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Abstract

Representations used by mobile autonomous systems for visual navigation have trou-
ble effectively dealing with changes which inevitably happen with time and are
detrimental to their performance. The goal of this thesis is to propose and eval-
uate methods for the unsupervised learning of semantic landmarks from a long-term
deployment of the visual teach-and-repeat navigation system. Their main assumed
benefit is the ability to enable such navigation over extended periods of time where
classical methods based on local image features fail. Deployment of autonomous
robotic systems is heavily dependent on large annotated datasets because of neural
networks in perception. These, however, fail to satisfy the requirements for repre-
sentativeness, which makes even partial automation of creating these datasets very
desired. In the particular task of visual navigation, learning more abstract and high-
level representations of the environment is also interesting as it brings the algorithmic
solution closer to human cognition. The work proposes three methods for automatic
semantic landmarks discovery, each based on a different principle specifically de-
signed to make use of the data from long-term visual teach-and-repeat navigation.
The proposed methods are evaluated on their ability to align images necessary for
their integration into the chosen navigational system. The results indicate that they
are more robust albeit less precise than the classical methods based on local image
features. The integration is then also done and tested in a real-world experiment
with a robot repeating a path recorded two weeks previously.

Keywords: teach-and-repeat navigation, long-term autonomy, unsupervised learning, auto-

labeling, chronorobotics

Abstrakt

Reprezentace použ́ıvané mobilńımi autonomńımi systémy pro vizuálńı navigaci trṕı
změnami v prostřed́ı, které nevyhnutelně v čase nastávaj́ı a zhoršuj́ı jejich výkon.
Ćılem této práce je navrhnout metody pro učeńı sémantických orientačńıch bod̊u bez
učitele pomoćı dlouhodobého nasazeńı navigačńıho systému pro opakovanou nav-
igaci. Dále je zhodnocen jejich schopnost umožnit dlouhodobou navigaci, protože
klasické metody založené na lokálńıch obrazových vlastnostech mohou v takových
př́ıpadech selhávat. Nasazováńı autonomńıch robotických systémů je silně závislé
na velkém množstv́ı anotovaných dat pro neuronové śıtě z oblasti poč́ıtačového
viděńı. Dostupná data však nesplňuj́ı požadavky na reprezentativnost, a proto je
i částečná automatizace tvorby těchto datových sad velmi žádoućı schopnost. Př́ımo
pro úlohu vizuálńı navigace je také zaj́ımavé učeńı abstraktněǰśıch reprezentaćı
prostřed́ı, která jsou bližš́ı lidskému uvažováńı. Práce navrhuje tři metody pro au-
tomatickou identifikaci sémantických orientačńıch bod̊u, z nichž každá je založena
na jiném principu, specificky navrženém pro využit́ı dat z opakované vizuálńı nav-
igace. Navržené metody jsou hodnoceny z hlediska jejich schopnosti horizontálně
zarovnávat sńımky, což je nutné pro jejich integraci do zvoleného navigačńıho
systému. Výsledky naznačuj́ı, že jsou v tyto metody robustněǰśı, i když méně přesné
než klasické př́ıstupy založené na lokálńıch obrazových př́ıznaćıch. Samotná integrace
byla otestována v reálném experimentu s robotem opakuj́ıćım cestu dva týdny po
jej́ım naučeńı.

Kĺıčová slova: opakovaná navigace, dlouhodobá autonomie, učeńı bez učitele, automatické

anotace, chronorobotika
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1 Introduction

Countless determined hands and minds of researchers in the field of robotics have for
a long time worked very hard to realize the idea of robotic autonomy. All the advances
in new sensors, the recent revolution in techniques for robotic perception and others
have brought us extremely close to its realization, but why is it that the robots are still
mostly tied to confined space of industry sites? One of the main problems of integration
of autonomous robots into the lives of ordinary people is the principal difference in
reasoning, knowledge extraction and other competencies between the human and the
robot. These make tasks that are very easy for humans hard for robots, which can cause
frustration to the people having to interact with such autonomous systems. One particular
case is the task of visual navigation.

For a human, it is hard to imagine the technical problems tied to traversing an envi-
ronment based on visual sensors. Moreover, once a human is guided through a specific
path between two places, they are able to repeat the path easily even under heavy changes
like the fall of leaves during the autumn or construction work alongside the route. If some
parts of the route were blocked, the human would just go around, but for a robot, this
can be rather complicated problem to solve.

Robots simply navigate differently. They are often equipped with an external locali-
sation system like the GPS, which allows them to repeat some path by simply checking
their exact position with the reference one and correcting this along the path. If then
these systems need to enter a building, they are completely lost because such external
localisation systems are rendered unusable. One of the approaches not relying on external
localisation are the methods collectively referred to as Simultaneous Localization And
Mapping (SLAM). These build complex maps of the environment where the robot oper-
ates, in which the robot localises itself even without the use of external infrastructure.
Most currently existing systems, however, need very precise and high-end equipment to
be able to do so, being it 3D-LiDAR scanners or industrial grade 4k, stereo or depth
cameras. These can be very expensive and, in general, try to solve the problems the
robots have by adding more data into more and more detailed maps, while at the same
time the human might be able to explain the route—communicate their internal map of
the path—in few sentences and based on a simple pair of cameras only.

The efforts to mimic the visual-only navigation through a known path with a simple,
even monochromatic camera have been very successful in the last ten years showing
that no external infrastructure like Earth-orbiting satellites or expensive sensors like 3D-
LiDAR scanners are needed. As the ability of these systems has been tested for longer
and longer periods of time, it became apparent that the internal representations of the
path they used are not good enough because with the passing time between the first and
repeating navigation, the ability declined rapidly. The representations were not robust
enough because they were based on local information embedded in the images taken by
the camera and did not consider any high-level information about the environment.

With the new technologies based on deep learning, we are now able to equip the
robots with perception modules able to identify and understand the image and scene at

1



1.1 Organisation of the Thesis

a much higher level. This brings the option to use higher-level features of the environment
as a basis for the repeating navigation and to create internal map representations at a
semantic level—much closer to those of humans.

Unfortunately, even these methods are not without their own problems. The enormous
need for large datasets that have previously been hand-annotated does present a big
hurdle in deploying such models in real applications. The creation of such datasets is
very expensive and human-labour intensive, so it is not possible to create a completely
new dataset for every particular deployment environment and scenario. And humans are
still able to learn the significant and important landmarks from the actual navigation
itself—they do not need to distinguish a stationary white building from a moving white
van to figure out that one is a useful landmark and the other is not.

This particular ability to learn the effective landmarks simply from performing the
navigation is the main topic of this thesis. If robots were to posses it, they would have a
robust navigational method that works under various conditions and a dense representa-
tion of their paths, which they could easily communicate. With some level of effectiveness
these representations could even be communicated to humans.

The problem to be solved is formulated as proposing methods for automatically gener-
ating annotations for unsupervised learning of semantic landmarks by a neural network
and evaluating them. To fulfil the proposal, the author conducted an in-depth review
of relevant literature, proposed and implemented three methods—one adopted and two
original methods—designed an evaluation to compare the proposed methods in the task
of long-term visual navigation and performed said evaluation including contribution to
the dataset collection, complete processing of the data and a real-world robotic experi-
ment. At the end of the work is a discussion of the prospects of the proposed methods
and their potential.

1.1 Organisation of the Thesis

The thesis is organized into six sections in most parts corresponding with the proposal
guidelines. The first Section is this Introduction.

The second Section, titled “Related Work”, provides an overview of the literature
on four topics important for this thesis. The first topic is the teach-and-repeat naviga-
tion with particular focus on the variant based on cameras—the visual teach-and-repeat
navigation (VT&R). The second one concerns itself with the problem of the long-term
adaptation of the maps in VT&R to account for the changes in the environment. Then
the topic of temporal modelling is reiterated as its methods are further used in this work.
The last covered topic is the literature on the task of unsupervised object discovery,
which is not a much-studied topic but corresponds strongly to the topic of this thesis.

The third Section, titled “Methods for Mask Generation”, proposes the methods for
automatic generation of annotations for the unsupervised learning of semantic landmarks
that are the main concern of this work. The section presents one method presented in a
proof-of-concept two-page extended abstract paper [1] and two original methods based

2



1.1 Organisation of the Thesis

on two different kinds of information present in the kind of data created during the long-
term deployment of the VT&R navigational system. Alongside the specification of the
methods, the section also contains implementation details necessary for reproducing the
work.

The fourth Section, titled “Experiments”, contains the design of the evaluation scheme.
As the evaluation is supposed to reflect the use of presented methods for long-term VT&R
navigation, additional methods had to be proposed to make the neural networks trained
using the methods from the third Section integrable into such a system. The Section
also presents the dataset used for the evaluation and the details on its collection. And
finally, two experiments are designed to compare the proposed methods, one based on
the collected dataset and one real-world robotic experiment.

The fifth Section “Results” presents all the findings. First, the methods are evaluated
qualitatively based on what they were able to learn. Then the outcomes of the two
experiments are presented and discussed together with statistical evaluation.

The last sixth Section “Conclusion” closes the thesis. An overview of the work done is
given with its main outcomes. The findings and the possibility of deploying such methods
in autonomous robotic operations are discussed in the context of their capabilities. The
Section also contains the directions of future work and hypotheses to be tested.

3



2 Related Work

This section presents the context of this work in the current state of the research
on related topics. First, the concept of teach-and-repeat navigation is discussed with
particular focus on its visual variant. Then, as the existing standard implementations
used in this thesis exhibit problems when navigating over long periods of time, and one
of the goals of this work is to make these systems less likely to fail due to this, the
approaches for fixing these problems are presented. Next, as they are used in existing
adaptive visual teach-and-repeat systems and are a large part of this work, temporal
models are discussed. The section closes with the topic of methods for object discovery
from visual data.

2.1 Teach and Repeat Navigation

Teach-and-repeat navigation (T&RN) is an extensively studied concept in robotics,
originally especially popular with industrial robotic manipulators, which could be adapted
to a new task by technicians at the site by simply guiding the manipulator through its
operation. In the field of mobile robotics, T&RN refers to robot movement in the environ-
ment, which is once performed under some supervision and then repeated autonomously.

This particular formulation of navigation task is special because it does not require a
precise global map—it is sufficient to build a locally consistent topometric map [2, 3]. A
particular kind of map building methods can also provide global localisation during the
building of the map—Simultaneous Localisation And Mapping (SLAM) [4]—but since
the global consistency of the map is not required, this is not necessary for T&RN. In
fact, no explicit localisation against the map is needed [5], though it can be beneficial
and is often used as in [6] for along-path corrections.

There are solutions to this problem labelled as map-less, as they employ implicit
representation of the navigational algorithm using deep neural networks like [7, 8]. Some
have been shown to perform well in outdoor environments, but no deep study of their
reliability was conducted, and therefore deployment of such methods in practical robotic
applications is still far, given the inherent inexplicability of neural networks.

Efforts have been made to build T&RN systems using various sensors, including Li-
DARS [9, 10] that performed well in indoor experiments. Cameras turned out to be more
suitable for this task as they can be used both indoors and outdoors without such strict
requirements on the environment—structures need to always be in the range of LiDAR
sensors if any matching should be done. Using cameras for T&RN falls under visual nav-
igation, defining the visual teach-and-repeat navigation task. Of course, different kind
of cameras can be used—monocular [11], stereo [12] or omnidirectional [13], monochro-
matic [14] or RGB [6]. As this work builds on the existing BearNav system, it is limited
to the use of the monocular camera.

Individual approaches are also characterisable by whether they use robots odometry or
not. Systems not using odometry need to provide the whole navigation, while those that
do use it only need to correct for errors occurring due to problems like wheel slipping.

4



2.1 Teach and Repeat Navigation

Orientation Correction Along-path Correction

Path with
accumulated error

Corrected path

Orientation
correction

Along-path
correction

Current
position

Corrections Applied to Path

Figure 1: This Figure shows an example schema of a visual navigation teach-and-repeat
system. This particular system corrects the odometry information both in the heading
and along its path. Courtesy of [6]

.

The authors of [11] developed VT&RN for navigation in corridors without odometry.
Their system navigates only by computing the steering angle from the template, matching
the centre of the current image to the current position on the map. For a map, they use
a sequence of images captured during learning and localise on it by incrementing the
current position when the correlation of the current position becomes lower than the
next one.

In [14] the system is in the teaching phase recording steering commands to the robot
from the teacher and also a sequence of images along its path. During operation, it replays
stored commands and corrects for errors in orientation only by computing correction
steering angle from matching the image features in the current view to the ones in the
map. Localisation in the map is done using the information about travelled distance from
robots odometry. It was shown that only by correcting the heading, the trajectory of the
robot converges in time to the one performed during training, given it is a closed curve [5].

Finally, in [6] authors extend on orientation correcting with along-path correction
computing it by searching for the best-matching image in the map in the neighbourhood
of the currently estimated position. This particular system is as an example shown in
Figure 1.

An important distinction is also the method used for computing the steering command,
i.e. the image alignment. Some have used the alignment by maximising correlation [11, 6]
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2.2 Adaptation

described above, some derived alignment of the whole images from matching of individual
images features, and there have been efforts to perform the matching directly using CNNs.
In [15, 16] the used features were based on whole lines. In [17] the authors used SIFT [18]
features in combination with KLT point tracking. [14] used very simple histogram voting
based on pair-wise mapping of SURF [19] features in both images. Other image features
like BRIEF [20] or later ORB [21] have also been used. Authors of [22] show that just
by incorporating the information about time, it is possible to achieve better accuracy in
image alignment.

2.2 Adaptation

Alignment based on rather low-level image features is precise but prone to very fast
map degradation over time as the appearance of the scene changes. This effect has been
extensively studied with respect to standard image features [23, 24] and navigation using
them [25, 26]. There are currently two approaches to solving this problem—one is to clev-
erly update the map during the operation [27, 28, 29, 30], the other is to use higher-level
features that are unlikely to change and detectable under diverse conditions. In [31] the
authors successfully try to use higher-level features based on the output of convolutional
masks of a pre-trained CNN. An alternative to feature matching then presents the use
of CNN on the images directly—the authors of [32] used a higher level output of a pre-
trained CNN on which they then applied the Discrete Fourier Transform for matching,
the authors [33] trained Siamese networks to predict the alignment between two images
which was then further developed [34]. They all show that such an approach brings sig-
nificant improvement in robustness. Once a robust but maybe not precise alignment is
reached it can also be further improved by image features for a finer alignment [35].

As in other domains of artificial intelligence, even the field of robotics is lately un-
dergoing a transformation caused by the success of deep artificial neural networks in
high-dimensional data processing [36]. Unlike in other applications, though, roboticists
have to be warier as allowing a physical machine to be operated by an algorithm of low
explainability with potentially erratic behaviour can lead to property damage or even
injury. That is why deep learning (DL) models are usually deployed as modules of larger
systems performing a rather specific task, most likely of perception, where the prevalent
kind of models are convolutional neural networks (CNN), e.g. YOLO architecture for
object detection [37] or Mask-RCNN for semantic segmentation [38].

DL has been successfully applied in many applications trained in a supervised man-
ner [39]. Due to quite large feature spaces of typical DL applications, e.g. images, useful
models often end up being large as well. This, in turn, creates extreme requirements
for training dataset—one of the first large datasets for object detection ”ImageNet” [40]
contains millions of annotated images, another popular Microsoft COCO dataset [41]
contains 328k images with 2.5 million labelled instances. When a new application for DL
models arises, it is first necessary to collect immense amounts of data and hand annotate
them, which is why unsupervised training of DL models has such potential.

There are multiple ways to achieve unsupervised learning of deep models like transfer
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learning [42] or GAN networks [43]. Often, the network is taught on a proxy task in a
supervised manner, which allows it to learn low level convolutional or other features that
are applicable in other contexts and then it is used in other tasks where it needs lower
amounts of data to adapt [42]. Such data can sometimes be generated automatically as
in [44, 45, 46], either algorithmically or by cleverly withholding parts of the whole dataset
to use as training labels.

2.3 Temporal Modelling

Being it the work on improving the image alignment accuracy [22] or the work on the
adaptation of the maps over time [27] it has been shown that robotic systems operating
over a long time benefit from explicitly taking into account the temporal information. As
this is an effect present also in other robotic tasks like localisation, there have already
for some time been efforts to study ways to model temporal phenomena for robots.
The robotics subfield with such focus is called the chronorobotics [47]. This section first
provides an overview of the efforts in this direction until the time of writing this thesis
and then focuses on the evolution of two particular methods used later in this work.

Mapping has been a key capability of robots operating over the long term, and one of
the problems such systems have to deal with is the uncertainty of their measurements as
well as the changes in the environment itself. The first approaches chose to neglect the
changes in the environment and only deal with the former [48], which was highly enabled
by the development of probabilistic methods based, among others, on the Bayes theorem
and other probabilistic techniques. While that allows the robots to operate in a static
environment like industrial halls, the long-term operation in environments that change
has to deal with those changes as well [49].

There are different strategies for dealing with environmental change—it is possible
to suppress them, filter them and learn from them. Suppressing the changes is mostly
tied to the visual appearances, which are highly affected by the changes in illumina-
tion typical for the day-night cycle [50, 51], but choosing structure over appearances for
navigation [52] can also be understood here. The filtering approach consists of many
techniques like filtering of features in feature-based maps by estimating their chance
of persistence [53], learning visual representations that isolate features invariant to the
changes [54] or learning visual feature descriptors that are robust to the change [55, 56]
which was further enabled by the success of neural networks [57]. Finally, the learning
from the changes strategy recognizes that changes are inherent to the environments where
autonomous mobile robots are set to operate and even more heavily when humans are
involved [58]. There are works trying to learn various representations of the environment
based on the conditioning of the changes like [59] others choose to embed the descrip-
tion of the changes into the maps themselves, allowing, among other things, for predictive
queries over the map [60, 61] with existing efforts employing generative networks to make
such predictions over visual appearances [62].

7



2.3 Temporal Modelling

Figure 2: One of the approaches to dealing with changes in the environment is to learn
from them. This has been shown to be beneficial in many tasks like visual localisation.
Courtesy of [47].

2.3.1 FreMEn

Particular methods stem from the efforts to build universal maps of periodic temporal
phenomena. The first efforts to do this were trying to use spectral decomposition based
on the Fast Fourier Transform (FFT) to model the evolution of binary states in a robot’s
environment, including grid occupancy maps [63]. The idea of using spectral represen-
tations was then tested on various robotic tasks like localisation [64], navigation [65] or
activity recognition [66]. To overcome limitations imposed by the FFT algorithm like the
need for regular observations of modelled phenomena which can happen in different parts
of the environment forcing the robot to often revisit all places of observation, and the
inability of model updating, a new method was derived called the Frequency Map En-
hancement (FreMEn) [22]. The FreMEn method was used in many scenarios, much like
its predecessor based on FFT. It was used, for example, to enhance occupancy maps [67],
predict traversability of edges of a topological map [68] or improve task allocation based
on predictions of human movement [69].

Following up on the success of FreMEn, another model was proposed called the
AAM [70]. The authors also show its qualities for semantic clustering of locations on
a topological map. Similarity based on spectral analysis of time series is an idea of inter-
est to this work as it is at the heart of one of the methods for unsupervised object mask
generation.

2.3.2 Other Methods

Apart from FreMEn method, there are others that deal with modelling periodic spatio-
temporal phenomena, for example, STeF-map [71]. These are often developed for a par-
ticular application but still provide a hint for the development of a more general method.
Many works introduce the knowledge about the periodicities into the models in form
of a priori knowledge and only use a small number of periodicities like predicting the
demand for ambulances [72, 73], predicting street crime [74, 75] or modelling the spread-
ing of disease [76]. Others seek to extract the periodical nature in its entirety from the
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data itself, like efforts for approximations of periodic kernels for Gaussian process-based
methods [77], but aside from already mentioned work on FreMEn there are not many.

One noteworthy method building on FreMEn is the Warped Hypertime method [78]
and its derivatives [79] which is based on a warping projection of spatio-temporal data
onto a surface of a hypertorus where the non-temporal data is then processed as depicted
in Figure 3. This allows the model to be built from temporally sparse observations. It was
applied in the robotic [80, 81] and other [82, 83] tasks and found to be equal or better
than FreMEn [79].

Figure 3: The process of warping the temporal dimension of spatio-temporal data to
allow for periodic model creation from sparse observation by an autonomous system.
Courtesy of [78].

2.4 Unsupervised Object Discovery

This last section tries to capture various interesting works tied to the topic of unsu-
pervised object discovery. While that is a research topic of its own, the application in this
thesis has its specifics mostly tied to the robotics domain, so most of the general work
is not directly applicable. Although it still gives an interesting perspective, more focus is
put on efforts directly in the robotics domain as these better capture the context of the
task.

The approaches to object discovery use various kinds of data, which heavily determines
the principles they exploit. If the data is visual, the main difference is if the methods only
use one image or full videos. One image only methods sometimes try to solve the salient
object detection task [84], and even active learning can be employed for them [85]. How-
ever, for the learning from a video, the possibilities are numerous. The spatio-temporal
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Figure 4: A visualisation of a spatio-temporal occupancy model and the environment it
is supposed to capture. The red color indicates daily periodicity of the data. Courtesy
of [99].

context provided by the video data gives much more information to the differentiation of
the objects, the knowledge to be exploited mostly comes from the motion [86, 87, 88, 89],
with techniques usually using some kind of optical flow method. Still, other approaches
can be found, like the segmentation of the dynamic textures [90]. In robotics, another
popular kind of data is the RGB-D maps which, when created dense, can combine the
information about appearance with geometry [91, 92, 93] or maps made from the LiDAR
scanners [94, 95].

Of particular interest to this work are efforts in object discovery based on temporal
information gathered over longer periods of time. The temporal aspect of the autonomous
operations does not just bring more data over time, but it gives the robot an entirely new
source of information—the changes in the environment. These changes can, analogous to
the previous section, be also used to discover objects as the sets of sensor inputs exhibiting
similar change characteristics. The authors of [96] explored this idea in the long-term
autonomy scenario for unsupervised learning of objects and further developed it into a
system which is able to perform this for a long time with no human interaction [97] and
show that temporal patterns of the changes are also usefull [96]. The semantic relevance
of temporal properties has been explored, for example, in the work [98] which is set to
classify spatial areas based on temporal properties (temporal grids). There are works
supporting that temporal patterns of the changes are also useful, like [96]. In the results
of [99] the authors also show that sectors of an office which exhibit daily periodicity are
relatively compact and spatially tied to places of human work, which also suggests the
meaningfulness of efforts to segment data using temporal characteristics. Their figure is
included as Figure 4.
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This section presents in detail the individual methods proposed by this work as parts
of the whole pipeline for VT&R navigation. The overall idea is that an autonomous
vehicle uses the VT&R navigation system to travel the same path over and over for
some time. The system could eventually use the data it collects to investigate landmarks
specific to the particular environment and therefore learn better representations to enable
the navigation further. Because the current methods based on image features are known
only to be able to repeat the given trajectory for some limited time due to changes in
the environment and their inherent frailness, this approach could prove to be a viable
solution to enable the navigation to happen for really extended periods of time.

First, proposed methods for automatic generation of masks for training neural net-
works are presented as the main focus of the thesis. Then the training of the neural
networks in the given application is discussed. Finally, albeit not the main focus of the
work, it was also necessary to design methods to provide alignment information based
on the output of the trained models on pairs of images to be able to test them using the
selected visual navigation system BearNav. The image matching approaches are therefore
also discussed.

3.1 Mask Generation

The main goal of this thesis is to propose a set of methods for the automatic generation
of annotations for a landmark detecting artificial neural network. This process has to
be unsupervised to allow its deployment in long-term autonomy navigation scenarios,
and for the same purpose, it has to be able to process the data produced in such an
application. As the automatic generation of masks for training the landmark detecting
neural network necessarily encompasses the establishment of what the landmarks in the
data are or could be, and the network used performs the task of instance segmentation,
the terms “generation of annotations”, “mask generation” and “landmark detection” will
be used interchangeably where no confusion can arise.

The first question to answer is, what is a good landmark for visual navigation based on
which the navigation is possible even over extended periods of time. The current methods
rely heavily on standard local image features like SIFT or BRIEF, but these have been
shown to drop fast in their matching ability with the changes in the environment as
their local nature does not allow for much robustness. Hence, the landmarks necessarily
have to be higher level than local pixel values based features. From experience with
human navigation in a known environment, it follows that the landmarks useful for such
navigation often correspond to prominent structures, such as buildings, their parts, trees
or hills in nature. The ideal landmark is distinguishable under various conditions and
carries some semantic information in the given environment. While larger objects do
often fall into this category, one does not want to pay attention to those that move a
lot, only to those that are stationary, so in general, not all objects are good semantic
landmarks.
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Based on the previously described requirements, two approaches to generate masks—
ultimately providing the ability to detect useful semantic landmarks—alternative to [1]
were proposed to exploit the specific data generated during the operation of the BearNav
VT&R system. The system operates by repeating the same control commands as it
received during the teaching phase and correcting its heading by aligning the current
view with the images stored regularly in a given time interval during the teaching. This
generates specific maps where the same place from a very similar viewpoint is visited as
many times as the system repeats the traversal with the number of “places” determined
by the interval parameter of the system. The standard interval is one meter of along-the-
path travelled distance.

The reference approach dubbed Autodidact uses pairs of images of the same place
from different traversals, i.e. different times, to establish dominant colour changes. The
second proposed method—the first alternative—uses pairs of images that are consecutive
in the traversal, i.e. from the same time but slightly different places, to establish the
motion patterns in the image. The third proposed approach—the second alternative—
tries to detect temporally stable and interesting regions of the images based on long-
term observations of the same place, i.e. all available times. All these methods aim at
detecting regions of the images that show some similar characteristics in the sense relevant
to navigation. The Autodidact approach targets extracting structure from appearance
changes, the first alternative targets extracting structure from camera motion and the
second targets extracting landmarks from temporal stability.

All the presented implementation details and parameter settings have been developed
and tailored to data used in this thesis which are further discussed in detail in Sec-
tion 4.3 and contain images of the dimensions 640 x 320 pixels which for the actual mask
generation were rectified using the actual camera calibration and distortion parameters.

3.1.1 Autodidact

The first method for generating annotations, presented in [1], is the Autodidact which
extracts the masks from pairs of images taken at different times.

From the historical runs of the navigational method, the collected data present a
large set of image pairs in which the same place is viewed up to a relatively small change
of viewpoint, mostly in terms of a horizontal shift. The Autodidact method assumes
that the change in the viewpoint is minimal, as the images have been aligned by the
navigational system over the course of traversal so far. This assumption is quite strong
and possibly could be weakened by prior prealigning the images by image features or
whatever method was used for the navigation so far, but this improvement is not part
of the original paper. Because of the nature of the navigational task—it takes some time
to complete the whole traversal—the two images come from different times, and the
appearance of the scene is therefore necessarily a subject to change. This change comes
from various sources depending on the time difference between the two images analysed,
but the change sought by the method is simply the change in appearance.
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Image A

Image B

Figure 5: A visualisation to the process of construction of the accumulator matrix and
its contents.

As stated previously, the method works under the assumption that the images are shot
from the same spot only at different times. This allows for the reasoning that one can
associate individual pixels in one image with the respective pixels in the other image, and
by analysing this association, segment regions of interest—the landmarks. The method,
therefore, calculates statistics over the changes in colour between associated pixels and
searches for dominant changes across the whole image. The pixels of respective colours
in both images are then masked. With the use of morphological operations, the masks
are refined and split into connected components. This results in the set of masks for the
given pair of images.

Formally, the method has five steps.

1. First, the colour mapping quantitative statistics are computed. The process starts
with two grayscale images P and Q understood as matrices which are pixel-wise
overlaid, and the relative frequencies of the generated colour mapping are com-
puted. This frequency information can be organised into the accumulator—a matrix

A =
(
aij
)C
i,j=0

, where C is the total number of colors in the picture and

aij = #{(k, l); Pk,l = i ∧Qk,l = j with k = 0, ...,H and l = 0, ...,W}, (1)

where H and W are the height and width of the images, respectively. A more
intuitive understanding of the construction of the accumulator matrix is shown in
the Figure 5

2. The accumulator matrix is then interpreted as a grayscale image, which is first
blurred using a gaussian kernel and then normalized to a standard 8-bit image. In
the resulting image, blobs are searched for using a simple blob detection algorithm
based on thresholding the image on various levels and filtering the resulting blobs by
certain characteristics like colour, area or circularity. The original paper presenting
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Figure 6: An example of the image interpretation of the accumulator matrix and the
result of blob detection in the images. The particular example was generated from images
quantized to 64 colors.

Autodidact references a particular implementation of this algorithm in a popular
computer vision library OpenCV [100]; this work follows.

A visualisation of the resulting accumulator matrix image can be seen in Figure 5
with the blobs detected by the detection algorithm shown as well.

3. The blobs extracted in the previous step represent the prominent colour shifts
between the two captures of the scene. These now have to be translated back to
the original image. Because of the way the accumulator matrix is constructed, this
is straightforward—the blob defines a set of positions in the accumulator matrix,
which give pairs of colours at the corresponding pixels in the two images, so these
just have to be masked. This happens for all the blobs, which generates a set of
binary masks for each image.

4. In the next step the binary masks are refined. Due to the pixel-wise analysis and the
fact that in the accumulator matrix, values of pixels from different regions of the
image are all projected in the same position by having a common colour, the masks
that result from the backprojection are not particularly compact. To improve them,
standard image processing morphological operations dilate and erode are applied.

5. Finally, to extract individual landmark masks from the binary masks for the whole
image refined in Step 4, the connected components algorithm is used to extract
connected regions. As the morphological operations make the connected regions
more compact, the result of the connected components splitting the whole mask
tends to output realistic individual masks that have intuitive properties—they are
dense, compact, localised and have some common colour structure.
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(a) (b)

Figure 7: Two examples from different places of how the process of mask extraction
happens using the Autodidact method. On the left, the extracted landmark is the whole
building, and on the right, the corner of the roof with a characteristic gutter drain. The
sequence of images from the top represents the original image (one from the pair), the
mask extracted directly from the autodidact method through backprojection of one of
the colour blobs from the accumulator matrix, the mask after morphological refinement,
one of the connected components and finally the mask, as it is further refined by the
GrabCut algorithm. The whole process happens in binary masks. The overlay over the
original image is added for visualization purposes only.
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Unfortunately, the original paper is not very descriptive of the details, and the pre-
sented proof-of-concept experiments seem to involve some manual interaction with the
method and limited dataset of a natural environment. From experimentation with the
method, the following improvements had to be introduced or specified to reach the wanted
performance of the method.

• The first significant change in the implementation done for this work is that to
reach stable performance of the method, the colour space was quantized to a lower
number of colours. Namely, two versions were studied, one with 32 and one with
64 colours instead of the full 256 colour spectrum of 8-bit images.

• Because, ultimately, the masks are supposed to be used for navigation and come
from the camera on a robot, the lower half of the image was cut before searching
for the masks. The reasoning behind this decision is that the camera is positioned
relatively low and on the robot. The lower half of the image captures the ground,
which does not present very good landmarks for navigation. Even in the BearNav
navigation system, features from the lower part of the image are discarded.

If this was not applied, the method would produce masks, for example, for parts of
the sidewalk. While this is a nice result, due to the structures on sidewalks being
repetitive and the method picking it up differently each time, the network trained
on these would not produce good navigational landmarks.

• In the Step 2 of the method, one percent of the highest values in the accumulator
matrix image was clipped before the gaussian blurring for the stability of the blob
detections.

• The blob detection itself is an algorithm with a lot of parameters that depend
heavily on the rest of the settings, like the number of colours necessarily affecting
the size of the blobs detected. Out of the set of parameters to the OpenCV, the
library function used in this work sets the maximal threshold value to 250 and filters
resulting detections only by inertia, i.e. the mathematical measure of resistance to
the rotation around the principal axis, and sets the minimal inertia ratio parameter
to 0.05.

• The refinement of the masks in the Step 4 using morphological operations misses
important information about the setting of parameters. The size of the structural
element obviously depends on the size of the images and the qualitative properties
of the masks, which in turn depend on the size of the colour blobs and of the colour
quantization. Therefore this has to be tuned to the rest of the algorithm. This work
for the particular data used in the experiment and further explained in Section 4.3
used a circular element with a radius of 6,4.

• After refinement of the masks and their splitting by the connected components
algorithm in Step 5 the method, based again on the overall setting of parameters,
produces a relatively large number of masks. Although these masks mostly corre-
spond to interesting regions and, due to their number, are not really suited for the
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training of the neural network directly. Extra filtering is therefore applied to only
keep those individual masks that satisfy the size requirement for the area being
larger than 1500 pixels.

• A completely new extension to the method was introduced as a sixth step to get
a more consistent result over different pairs of images to enable better learning of
landmarks by the network. It lies in the application of the GrabCut algorithm [101]
to extract the foreground of the masked region from the background. This algorithm
iteratively estimates the foreground and background colour models and then gives
a refined mask based on what the foreground is estimated to be.

All the parameter values presented are based on preliminary qualitative experimenta-
tion with the method as it was implemented according to the original paper.

Finally, some examples of the created masks at different stages of refinement are
presented in Figure 7.

3.1.2 Motion-Based Object Discovery

The second proposed method—alternative to Autodidact—for generating the masks
of landmarks is based on the analysis of the motion of the camera with the robot through
the environment. Data-wise it operates on pairs of images taken during one traversal on
two consecutive places, i.e. for a video-like sequence.

If the robot operates using a VT&R system for long enough, based on the work
presented in Section 2, the robot should be able to learn about the structure of the
environment and even perform the object discovery task from the video captured during
the operation. However, in the actual deployments, the processing of raw video feed
can prove to be overly demanding on computational resources and moving it from the
robot to a cloud solution is currently not possible due to the bandwidth limitations.
While the introduction of 5G networks may lift the bandwidth limitations, the approach
presented in this work tries to show that for the particular applications of long-term
VT&R navigation, a sufficient amount of data lies in the regular sampling of the camera
feed done by the BearNav system.

This method works by comparing the images from consecutive places, which are likely
to contain most of the same scene only with the change of the camera position. Under this
assumption, it is possible to employ algorithms for computing the dense optical flow, i.e.
the field of vectors of displacement for the pixels in one image to best match the view in
the second one. After this information is obtained, it is converted into polar coordinates,
giving for each pixel the direction and magnitude, which are normalized and quantized
into a lower number of possible values. Direction and magnitude information is turned
into an HSV colour space image and segmented by unique colour values resulting in a set
of binary masks. The relative movement captures the dimensionality of the environment
thanks to the various distances of the objects to the robot. This splits the image based on
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the relative movement of the objects projected into parts of the image. The binary masks
are then filtered and refined in a process similar to the one of the Autodidact method.

The method has formally five steps.

1. The first step of the method is to compute the dense optical flow for the two
input images. This is done using the Farneback dense optical flow algorithm [102]
for which both images are first converted to grayscale. This algorithm iteratively
computes the displacement field using a prior estimation and polynomial expansion
of the neighbourhoods of the pixels. The particular implementation used was the
one in the OpenCV library, with the parameters set as follows: the pyramidal scale
to 0.5, the number of levels in the pyramid to 6, the size of the averaging window
to 20 pixels, and at each level the algorithm performed five iterations, used 10-pixel
neighbourhood for local polynomial expansion and sigma of 1.7 for the Gaussian
smoothing. The numbers were determined experimentally and not tested rigorously.
The specifics compared to the standard applications to video sequences are that
the movement between the images can be substantial, and fast blurred motion is
not really interesting for landmark detection.

2. The displacement field from the optical flow algorithm is then converted to polar
coordinates—the angle and distance from the origin, in terms of the motion, this
gives the direction and magnitude. The values are then normalized over the whole
image to the standard 8-bit grayscale image interval [0, 255] and then quantized to
10 distinct values.

3. Using the direction and magnitude of the motion, construct a new motion image. A
particular choice of method does not matter as this is merely a different interpreta-
tion of the motion field given by the optical flow algorithm. As with the Autodidact
method, the lower half of the image should now be removed to prevent focus on
areas not suited for navigation.

4. Segment the motion image simply by colour. As the quantization has greatly re-
duced the number of colours present, this produces better binary masks, which can
be spread over the whole image because the positions of colour pairs were lost in
the accumulator. Therefore the masks do not have to be continuous, so they have
to be further divided using the algorithm for finding connected components, and
only those of sufficient size are kept.

5. In the last step, the masks produced in the previous one are refined using the
GrabCut algorithm for the same reason as with the Autodidact method.

To summarize, this method produces masks that correspond to regions of the image
that exhibit similar motion behaviour and are therefore believed to belong to the same
structure in the physical world. To illustrate how the method behaves, the Figures 8 and 9
contain an overview of how the individual steps look on two selected views. In Figure 8
the situation is particularly challenging, as it happens in the time when the robot was

18



3.1 Mask Generation

turning fast, so the part of the scene visible in the images changes significantly. Even in
this situation, the method was able to produce masks.

3.1.3 Temporal Properties Based Object Discovery

The third proposed method—an alternative to the Autodidact method—is based on
the temporal properties of the image features observed during a long-term operation.
Unlike the two previous methods, where the long-term aspect only matters in the sense
of more data collection and a limited environment, this method aims to explicitly observe
and model changes in the environment over the long-term and reason about them.

When navigating over a limited time span, the current VT&R navigation systems
perform well with the use of local image features for the alignment of images. The problem
with image features is that only some of the detected features belong to some interesting
semantic landmarks, and their detection is not robust to appearance change. The main
idea of this method for generating masks is that if one could filter those features that
are semantically interesting and train a neural network to detect their surroundings, one
could get a robust detection algorithm for the underlying landmark.

As presented in Section 2, the research on the long-term autonomy of mobile robots
over the last decade has shown that the assumption of a static world is one of the
main hurdles of their deployments as they lose critical competencies with time. This led
to the development of techniques to battle this problem. These were later adopted for
various robotic tasks, including visual navigation. The experience with these methods
led to the conclusion that systems that are able to understand the structure of time
improve their ability to navigate under various conditions as they are, for example, able
to distinguish between landmarks visible during the day and the ones visible during the
night. The method for generating landmark masks based on temporal information is
inspired by these ideas, as it analyses the image features for those that are stable and
exhibit temporal properties that suggest usefulness to navigation.

Specifically, the method analyses the time series mapping the time of place observation
to the visibility of a specific landmark. Only those landmarks that are visible often enough
are kept, and a descriptive temporal model based on spectral decomposition is trained on
them. Then the landmarks are filtered according to the periodicities they exhibit to only
retain those influenced by long enough processes relative to the length of the observation
period. Once the interesting landmarks are separated, a square mask is drawn around
them in each image where they are visible. As in the previous methods, a complete mask
for each image is then split by the connected components algorithm and refined using
the GrabCut algorithm.

Formally, the method has five steps.

1. The first step is constructing the time series from a series of image observations of
the same place. This process could be done in many ways. To select one, this work
refers to the papers [22] and [78] where the authors applied the temporal modelling
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(a) the original image 0 (b) the original image 1

(c) full estimated motion image (d) cut and quantized motion image

(e) example of the resulting masks

Figure 8: An example of the application of the motion-based mask generation approach.
The first row depicts two consecutive images captured by the navigational system. The
second shows the estimated motion image where the direction has been mapped to the
hue and magnitude to the value component in the HSV colour space in a full-colour
resolution cut and quantized version. The last row shows an example mask that was
generated—the corner of the small technical building.
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(a) the original image 0 (b) the original image 1

(c) full estimated motion image (d) cut and quantized motion image

(e) example of the resulting masks

Figure 9: This figure analogously to the Figure 8 shows the application of the motion-
based mask detection approach but on a different input images this time with simple
forward motion.
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techniques to the task of topological localisation for which they needed to construct
the same kind of time series of feature visibility from the image data. This process
works by feature matching in the series of images associating the features from the
first image to the subsequent ones. The particular implementation of the process
was the one provided by the authors of [78] as it contains a significant amount of
implementation details.

The result of this step is the set of time series

vi =
(
vi(t)

)
t∈T ∀i ∈ I, (2)

where vi(t) is the binary visibility value associated with feature i at time t, T =
ti, i = 1, ..., n is the set of times at which the observations were made, represented
in linear time as the number of seconds in the UNIX epoch, and I is the index set
for the detected image features.

2. The generated time series are now filtered so that only those where the feature is
visible in at least 10% of the observations are left, i.e. the index set I is restricted
to I ′ = {i|i ∈ I ∧ avgt∈T (vi(t)) > 0.1}.
The FreMEn temporal model of order two is then applied. The model of order o
takes as input the time series as defined above and a set of candidate frequencies,

in the literature defined as angular velocities ωk ∈ {2πi/L}
bL/Sc+1
i=1 , with the L and

S constants setting the longest and shortest considered periodicity respectivelly.
Computing the complex coefficients of the discrete Fourier series for the visibility
series vi is done by the means of the following equations:

γ0 = avgt∈T
(
vi(t)

)
,

γk = avgt∈T
(
(vi(t)− γ0) ejtωk

)
∀k (3)

and selecting these (γk, ωk) that have the o highest values of abs(γk). The selected
pairs are the converted into amplitudes αk = abs(γk), phases φk = angle(γk)
and periodicities pk = 2π/ωk. While the method also defines a predictive function
predicting the state visible if for time γ0+2

∑o
i=1 αi cos(tωi−φi) > 0.5 and invisible

otherwise, this work only considers the learned parameters.

Implementation by the author of this thesis done during the work as a part of the
publicly available Python library Chronolib [103] was used.

3. With the parameters of the FreMEn model for all the image feature time series,
these are further filtered, i.e. the index set I ′ is restricted to I ′′, so that I ′′ = {i|i ∈
I ′ ∧ max

(
per(FreMEn2(vi))

)
∈ [12600, 43200]}, where the per function gives the

set of periodicities and the filtering allows only those series where the maximal
periodicity is between 3.5 and 12 hours. These numbers are more or less arbitrary
but only leave the features where the affecting process is long enough and at the
same time is not a day-night process of 24 hours. The upper limit is the highest
attainable value below 24 hours.

22



3.1 Mask Generation

0 5 10 15 20 25
Periodicity [h]

0.10

0.15

0.20

0.25

0.30

0.35

A
m

p
lit

u
d

e
 [

-]

−3

−2

−1

0

1

2

3

Figure 10: The relationship between learned periodicities and amplitudes of the FreMEn
models trained on one example place in the used dataset. Colour is used to show the
associated value of the phase shift in radians.

4. For every image feature left in the index set I ′′, a square binary mask of size 40 x
40 pixels is drawn for the images where it is detected. These masks are grouped for
each image in the set, i.e. the one place.

5. The mask for one particular image from the previous step is split using the con-
nected components algorithm and refined using the GrabCut algorithm as in the
other methods.

The original idea included clever clustering of the parameters of the methods to split
the landmarks also into distinctive categories allowing this method to also produce some
additional labels for the mask. While this idea is supported by the literature, its imple-
mentation proved to be quite difficult. The clustering of the parameters themselves is not
that complicated, and a preliminary analysis of the learned model on data presented later
on suggests that it makes sense to do it. In Figure 10 the relationship between learned
amplitudes and associated periodicities is shown, and Figure 11 presents the visualisa-
tion of all the learned parameters of individual models, where the parameters do form
distinctive groups. The reason why this was not further studied for the generation of the
masks is that upon closer inspection, some of the groups of features did have a similar
semantic category, like a specific part of the balcony railing, but for most of them, it was
not clear, and they did not exhibit any spatial coherence in the image that would allow
for any segmentation.
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3.2 Summary of the Proposed Methods
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Figure 11: This figure shows the t-SNE visualization of 7-dimensional vectors of the model
parameters in 2-dimensional plane. Because of mapping by the non-linear dimentionality
reduction the values are unitless. On the left, all models for a particular place are shown,
on the right they are shown after filtering by the maximal periodicity used in the method.
The results indicate, that the models do actually form distinctive groups and therefore
their clustering could bring useful information.

3.2 Summary of the Proposed Methods

To summarize the Section 3, the methods for generating the masks to be evaluated
in the rest of the thesis are the Autodidact, the motion-based method referred to as
“OptFlow”, and the temporal properties-based method referred to as “Temporal”. These
methods were designed for the particular data generated by a long-term deployment of
the BearNav VT&R system and represent three distinct approaches to the task. The
first one has been adopted from a proof-of-concept paper and supplemented by a lot of
practical notes and implementation details not covered by the original paper. The second
and third have been developed completely from scratch for this thesis based on ideas
present in the literature and tailored for the particular data.
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4 Experiments

This section explains in detail the evaluation scheme designed to test the methods
presented in Section 3 in the task of long-term visual navigation. That first involves
training the neural networks from the generated annotations and their integration into the
BearNav navigational system. Then a real-world robotic dataset used for the development
and evaluation of the methods is described. Finally, two experiments are designed, one
based on the metrics used in the literature on the topic and the other assessing the ability
of a real-world robotic platform to navigate using the proposed methods.

Because the presented methods are, in general, supposed to automatically produce
annotations for an artificial neural network that should learn to detect the given land-
marks, the evaluation of the methods really only makes sense looking at the quality of
the neural network models that were trained using these annotations. Furthermore, the
methods are supposed to be evaluated in the task of long-term visual navigation, and
because the methods were designed specifically for the BearNav navigation system, the
evaluation requires their integration into this system. Namely, from the set of detections
by the network, one has to be able to align two images well enough to eventually get the
steering command for the robot. Because this has been thoroughly studied in the liter-
ature, the metrics and the evaluation scheme are adopted from relevant papers. Finally,
of the most important metrics for any robotic task is whether a robot using the method
can actually perform the task it is supposed to perform, so an experiment with a real
robot is included as well.

4.1 Network Training

Following the original paper of the Autodidact method [1], the neural network used
in this work is the Mask R-CNN architecture for instance segmentation [38]. The reason
for choosing an instance segmentation network instead of an object detection one is that
such a network actually combines object detection with extra mask segmentation. The
masks produced by the methods have various sizes and shapes, and these often do not
correspond well to standard rectangular bounding boxes, so having the information on a
more detailed level should help the network learn and identify the relevant landmarks.

Because the dataset is naturally small and does not present much diversity for proper
training of a deep convolutional neural network, the training scheme selected is the trans-
fer learning, where the significant part of the network is pre-trained on a large but dif-
ferent dataset and then finetuned with a completely new head part. A popular choice for
the large proxy tasks for transfer learning in object detection is the Common Objects
in Context dataset [41], which was also used in the original Mask R-CNN paper. The
particular implementation and model pre-trained on the COCO dataset used comes from
the open-source deep-learning library PyTorch torchvision module [104].

In order to increase the robustness of the model to noise, which particularly during the
night is from the camera very high, the images were for the network further downsized by
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4.2 Image Alignment

a factor of half, and gaussian blurring was applied in operation referred to in computer
vision as transforming the image one level in the standard Gaussian image pyramid.

For the training, the dataset dedicated for the training of the networks was randomly
split in the ratio of 9:1 into a training and validation set of images and corresponding
binary masks representing the individuals to be detected. The network is trained using
a very complicated loss based on the IoU metrics for bounding box detection and corre-
sponding segmentation loss, and the validation loss used is the bounding box detection
accuracy as designed for the instance segmentation challenges associated with the COCO
dataset. Unfortunately, these have very little correspondence with the real target ability
of the network—the detection of semantic landmarks useful for navigation—so in this
work, these are only used to assess the level of training of the model.

4.2 Image Alignment

As mentioned in the introduction to this section, the methods to be tested for long-
term visual navigation have to be integrated into the BearNav navigation system. For
this, they need to be extended by some matching module that is able to horizontally
align two images during the operation of the vehicle. One of these images comes from
the original mapping phase of the T&R navigational scheme, the other from the current
situation so that their alignment can be used to produce a steering command for the
vehicle.

This turned out to be a hard problem of its own, making the comparison of the
presented methods for mask generation quite difficult. The method for aligning the images
presented in the original Autodidact paper [1] unfortunately does not contain enough
information to reproduce it but is said to be based on the positions of the detected
objects. Several methods for aligning two images based on the output of the network,
therefore, had to be designed.

4.2.1 Feature-Based Matching

In the original BearNav system, the alignment of the two images is done using local
image features. A technique used regularly for determining transformation between two
images in the field of computer vision relies on computing a set of matches between points
in the two images. In the particular case of BearNav, no complicated transformation is
sought, and the only important quantity is the values of horizontal displacement.

The key points of interest for computing the local features are determined based
on edges, corners and other structural primitives, and for them, a descriptor vector is
computed as a specific function of their neighbourhoods. Using the nearest neighbour
algorithm, the matches are determined between the descriptors from one and the other
image, which are then further filtered based either on the cross-checking rule that the
matching must be symmetric or by the ratio rule by D. Lowe, where the ratio of the
distance to the nearest neighbour to the distance to the second closest neighbour must
be less than a given value chosen typically around 0.8 based on the original paper [105].
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4.2 Image Alignment

Because of the local nature of the feature descriptors, even the filtering of not so good
matches will not provide one with robust and reliable correspondences. In the literature,
the solution to this is to determine the final one-value alignment for the two images not
by, for example, averaging the individual displacements between the matched features,
but by a histogram voting scheme, i.e. taking the modus of the sample with respect to
some division of the containing interval. This works well in general when one can establish
enough correspondences between the images, as statistically, a large number of not very
reliable matches allows one to filter out the noise effectively. For details on this technique,
one can refer, for example, to [35].

For this work, this algorithm in its original form stands as a baseline to compare to,
as it has been shown to effectively perform the visual navigation over limited time spans
as its effectiveness drops significantly with time. To also adopt this approach with the
neural networks trained for landmark detection, an approach is tested where the feature
matching algorithm is only allowed to detect features in the regions identified by the
networks as landmarks.

Specifically, the feature used is the SIFT algorithm [105] with the contrast threshold
parameter set to 0 as that should lead to the maximum number of detections. A larger
number of features should then lead to better matching, and compared to the time
requirements of the neural networks, the overhead of generating so many features is
negligible, as shown later.

4.2.2 Position of Detections

The first proposed alternative to matching based on local image features is matching
the detections based on the position of the detections in the image. Under the assumption
that the method would detect the same landmarks in both images, one could build a
matching scheme based on the minimal cost assignment problem. The simplest choice to
determine the cost of matching two detections then is their euclidean distance. Obviously,
the assumption that the detections will be the same is very strong. Moreover, treating
the detections independently and solving the assignment problem completely neglect
the structure of the environment. To deal with this, an additional constraint has to be
introduced, which is the limit of vertical displacement to allow for two detections to be
matched. The limit set in this work is 30 pixels which corresponds approximately to 12%
of the height of the images used. Because the robot operates only in a locally planar
environment, this covers the displacement caused by shaking of the camera and slight
violations of the same viewpoint distance travelled assumption of the BearNav system.

To turn the matching into alignment of two images, one simply takes the differences in
a horizontal position, but because the number of detections is generally not high enough,
the same histogram voting scheme as used with the image features cannot be used. The
first choice may seem to be to take the mean value, but as this is known to be heavily
influenced by the outliers, the median was chosen instead.
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4.2 Image Alignment

4.2.3 Color Descriptors

The second proposed scheme for alignment is based on creating custom descriptors
to be associated with the detected landmarks and to reduce the task back to feature
matching as done in the standard way. The process then is to take the mask of the
detection, overlay it over the original image and compute a function on the masked
region producing a fixed-size vector descriptor.

Particularly two different descriptors based on colours were tested. The first one would
simply give the channel-wise mean, i.e. produce the mean RGB colour of the segment.
The second considered the image to be grayscale and computed a 50-bins histogram of
its values over the interval [0, 255] of colour values in a standard 8-bit grayscale image.

4.2.4 Convolutions

The third proposed matching algorithm is based on convolving the images. Convolu-
tion is generally known to align the images reasonably well—it has been used for VT&R
in this way—but fails when big changes happen in the environment for example move-
ment of dynamic objects can throw it off by introducing previously nonexistent edges.
The idea here is that the network should be able to only detect a small subset of land-
marks over the whole image, so it would filter the changes that cause the convolution to
fail.

Again two variants have been designed. The first one only convolves the binary masks
produced by overlaying the detections in one image with the same combined mask from
the other image. The second further uses these combined masks to segment the original
images in grayscale and tries to convolve these restricted images.

Unlike the matching between individual detections, this approach provides the align-
ment information directly as the shift maximizes the convolution value.

4.2.5 Template Matching

The last tested matching scheme is quite similar to the previous one—it also employs
convolution but not over the whole images but detection-wise. The idea is based on
template matching, where the detections by the network in the image from the current
view are understood as templates, and their position is estimated in the image from the
map—the teaching phase.

This approach produces again a set of displacement values that have to be consolidated
into one alignment value. For this, the same scheme as with the matching based on the
colour descriptors is used, where these are aggregated by taking the median value.

4.2.6 Implementation Details

During the development and experiments, few implementation details arose as impor-
tant.
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4.3 Dataset

First, the networks output a lot of detections, and these have to be filtered to some
reasonable set. Because the detections also have an associated value of confidence score,
the standard approach is to select some confidence threshold which, based on preliminary
testing, was set to a standard 0.5 level.

Sometimes the network also flagged most of the scenes as a plausible detection. While
the reason for this can lie in such masks being present in the annotations, such detections
are not very suited for aligning the images and, therefore, navigation. Because of this,
another rule was introduced for filtering the detections, which is that detections which
span more than one-third of the image are discarded.

4.3 Dataset

One of the main pillars of the proper testing and evaluation of the methods is having
a proper dataset on which the methods can be run to produce annotations, the networks
can be trained, and finally, the evaluation of the image alignment and the real-world
experiment can be conducted.

The dataset used in this work comes from an experiment conducted by the Chronorobotic
laboratory of the Artificial Intelligence Center at the Faculty of Electrical Engineering
of the Czech Technical University in Prague with the participation of the author of this
thesis, who is currently a member of said group. The experiment was done in order to
test the ability of methods presented in [34] to navigate continuously over long periods of
time under various lighting conditions by often letting the method repeat the same path
in a structured urban exterior environment. This experiment happened in the courtyard
of the Charles Square campus of the said faculty in Prague—top overview of the site is
shown in Figure 12—started on the Saturday 30th of April at approximately 4 am in the
morning and lasted until approximately 8 am on the Monday 2nd of May with a clear
sky weather conditions. During this time, a robotic platform autonomously repeated the
given trajectory at least once every hour with about two exceptions due to technical
reasons and a particular focus on the time of transition from day to night and vice versa.
As the method successfully navigated under the day-night changes, this experiment pro-
duced a lot of data from VT&R navigation, which is optimal for this work. In terms of
the data contained, this dataset is not very complicated as it comes from a structured
urban environment where the navigational structures are prominent.

The robotic platform used for the experiment and running the whole data collection
was the Husky A200 platform mounted with an extra sensoric and computational tower.
The computational resources present include one Jetson AGX running an ARM CPU with
CUDA enabled GPU and 32GB of shared RAM and Intel NUC10i7 with i7 10th Gen x86
CPU with 64GB of RAM, both contained 1TB SSD for data recording. Both computers
are interconnected via 1Gb networking and a 300Mb Wi-Fi allowing connection wireless
connection of external hardware, which includes a command post with a laptop, geodetic
total station and RTK-GPS base station. Sensor wise is a platform equipped with an
MTI-30 IMU running at 100Hz, RTK-GPS running at 5Hz, Ouster OS0 3D lidar with 128
channels running at 10Hz and 4 Basler AcePro colour Ethernet cameras, one facing each
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1
4

3 2

Figure 12: The view of the faculty courtyard at the Charles Square campus where the
data collection and real robotic experiment took place. The path the robot was traversing
is shown in blue with several special places marked. Place (1) corresponds to the starting
position of the robot. Place (2) is the first turn, which depending on the error in the
rotation of the initial pose, causes the first significant error in odometry, place (3) is
another such turn, and place (4) denotes the position of the total station measuring the
ground truth.

side with the front one running at 30Hz for navigation and the rest at 1Hz for additional
and debugging data. The teaching was done using an Xbox controller, by which the robot
was manually guided through the desired trajectory. The robotic platform used can be
seen in Figure 13.

For collecting the ground truth on the robot’s position, its tower was fitted with
a geodetic 360◦ crystal to be tracked by a Laica TS-16 total station which gives the
position of the crystal in a predefined 3D metric coordinate system with submillimeter
precision. Small reflexive markers were placed on the surrounding buildings so that even
after removing the total station and its reinstallation, the exact coordinate system can
be easily recovered, so the experiment can be continued or repeated later. The also tested
RTK-GPS was not used in the end because of the positioning of the experiment in the
courtyard between buildings.

From the data produced, 24 traversals were selected at random, distributed over the
whole duration of the data collection, and the stored video feed was processed to produce
an image per every meter of the path based on the robot’s internal odometry. This sample
was taken so that it is representative of the whole dataset but reasonably big with respect
to constraints in processing capabilities, given one traversal amounts to about 25-30GB
of data and considering that its contents are very uniform and the network’s training
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Figure 13: The robotic platform used for collecting the data and performing a real-world
experiment with the navigating methods.

might be degraded if too much same data was used. This produced the set of traversals
from 60 to 80 places each based on the context of the recording. To reach a uniform
dataset, all were cut to 60 places for uniformity.

The complete dataset of 60 places by 24 views was split into a part for training and
a part for evaluation by splitting the dataset temporarily to correspond to the way such
methods would be used in real deployments. The particular division line was set to 5
am on Monday, to especially retract, for the image alignment evaluation, the data that
were shot after the sunrise as the map against which the comparison is made was shot at
4 am during the night conditions and aligning two images under different conditions is
harder that under the same conditions. To summarize, for the evaluation, three traver-
sals were retracted and hand-annotated for their horizontal displacement relative to the
corresponding map images by identifying 5 to 10 key points that match on both images
and then averaging their displacements. Because of some faulty hand annotation, this
process resulted in 174 evaluation image pairs.

4.4 Image Alignment Experiment

For the evaluation of the image alignment methods for their use in VT&R navigation,
this work follows the approach used in the literature on BearNav and its derivates, pre-
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sented in [27]. The method allows for qualitative and statistical evaluation of the quality
of the horizontal image registration.

For each image pair i in the evaluation dataset and method m, an error emi is calculated
as the absolute difference between the estimated alignment ami and the ground truth
alignment agti , giving emi = | ami − agti |. This results in a sequence of error em for a
particular method m. The cumulative distribution function is then estimated from the
errors to evaluate the methods’ performance qualitatively. Formally, this is the estimation
of a probability, that a method m will have the error smaller than some threshold t, i.e.
Fm(t) = P (em ≤ t). These distribution functions allow for a better understanding of how
well the method performs compared to a single value metric, as well as reasoning on how
to set the threshold for catastrophic failure to align the two images. In this work, this
threshold for catastrophic failure is set to 70 pixels, corresponding to almost one-quarter
of the aligned image.

On the sets of errors, the standard statistical methods can be used. The literature
often chooses tests like t-test [27] or Wilcoxon test [34] in their pair variants and applied
to all pairs of methods, but because these tests fail to control the family-wise error, they
are not suited for comparing larger sets of methods. If all 29 combinations of methods in
this work should be compared, the Šidak correction [106]—which dictates to set the new

level of significance to αSID = 1−(1−α)
1
n where α is the original significance and n is the

number of tests—would require to perform all the pairwise tests at the ridiculous level
of αSID = 6.3× 10−5. For this reason, in this work, the number of compared methods
is first reduced significantly by their qualitative evaluation. As the ultimate evaluation
should compare the methods for generating masks and not the methods for aligning
images, one representative is selected for each mask generating method plus the baseline
method based on SIFT features. Of course, most of the statistical tests also assume the
independence of tested samples as the most basic condition, which is an assumption that
could be challenged on almost any robotics dataset.

The procedure for selecting the representatives was not based on statistical testing but
rather on the assessment of the qualities of individual methods. The literature compares
the methods, as stated previously, by looking for the minimal value of the expected error.
This choice is reasonable especially given the almost perfect performance of the methods
on used datasets, but one can argue that the worst-case approach, which maximizes the
probability of correct registration at the threshold of the critical failure, i.e. minimizes
the percentage of never correctly registered images, is also of interest. This value is
easily readable from the graphs of the error distribution functions Fm. In this work,
the representatives were selected based on their worst-case performance, but as this was
usually very similar between the alignment methods as a second ordering between the
best was done by maximizing the area under the curve of the Fm which corresponds to
minimizing the average error.

To evaluate the results of the alignment experiment also statistically, two tests are
performed.

First, each of the selected representatives is tested whether or not its output for the
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alignment is meaningful with respect to the ground truth. This test is performed by
simply fitting a linear regression function on the estimated alignment as a function of
the ground truth alignment and then performing the F-statistics to determine if the
slope is statistically significantly not equal to zero (the model is better with the slope
parameter than without it). To beware of violating the assumption of normality of the
residuals too much, the outlier values—the ones corresponding to the critical failure
of absolute error of more than 70 pixels—were removed from the test. Because of the
way the representatives are selected, this amounts to about 5% or less samples. The
assumption of heteroscedasticity or its violation does not affect too much the main goal
of determining the positive relationship between the estimate and the true value as long as
the samples are symmetrically distributed around the fitted line. However, no conclusions
on the actual form or parameter values of this relationship can be drawn without proper
testing of these assumptions. Because there are five hypotheses, their significance level
of standard 5% is corrected by the aforementioned Šidak correction to αSID = 0.0102.
If also the assumptions would need to be rigorously tested, the number of hypotheses
would grow, and the correction would have to be stronger.

The second test, applied on methods passing the first one, the non-parametric version
of ANOVA—the Kruskal-Wallis test—is used to determine whether or not there is a
difference between the errors em of individual methods.

As the methods are supposed to run on a real robot, their runtime is also measured
and evaluated as these have to be real-time able to correct the heading of the robot often
enough relative to its speed.

4.5 Real-World Experiment

Based on the qualitative evaluation of the methods using the graphs of distribution
functions of error, the representatives for every mask generating scheme with an image
alignment strategy were evaluated through an experiment with a real robot. The rep-
resentatives and a baseline method based on local image features were deployed on the
same robotic platform described in Section 4.3, and this was then made to repeat the
same path as was used during the data collection.

This real experiment was conducted on the 16th of May, approximately two weeks
after the initial map recording and in the evening around 7 pm and with light rain to
again create the hardest conditions for the methods, given that the map was recorded
during the cloudless nighttime.
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5 Results

In this section, all the results and comparisons are presented and commented on.
First, the qualitative evaluation is performed to show how and what the neural networks
were able to learn from the automatically generated masks. This is to understand how
the methods proposed in Section 3 actually work and assess their actual performance
compared to expectations. Then the results of the image alignment experiments are
shown with a commentary, and the four representatives are selected for further testing.
The representatives are statistically tested to whether their alignment does bring any
information on the true alignment between the images and whether there is an actual
difference between their performance. Finally, a field robotic experiment is conducted to
test the ability of the methods to perform in the actual navigation scenario.

5.1 Qualitative Evaluation

To qualitatively evaluate how the methods work and what kinds of detections they
lead to, this section looks at the outputs of the trained models in various situations.

(a) (b)

(c) (d)

Figure 14: A set of examples of the inference using the Mask R-CNN neural network
trained using annotations automatically generated by the Autodidact method version
with 32 colours discovering the landmarks from appearance change between two images.

The Figures 14, 15, 16 and 17 show several examples each of the inference of the
individual methods on the pairs of two images to be aligned. The pairs were taken from
the evaluation dataset for the image alignment. Therefore the one on the left always
contains an image from the map, and the other data the method never saw. For each
method, the inference is shown from several different places to get a representative sample,
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(a) (b)

(c) (d)

Figure 15: A set of examples of the inference using the Mask R-CNN neural network
trained using annotations automatically generated by the Autodidact method version
with 64 colours.

as all the results would not fit the thesis. To also show how the detections are consistent,
the views are duplicated to show a place that is close and possibly at a different time but
where the image shows a very similar scene. For the visualisation, all the detections are
overlaid over the original image, and the result of this is shown.

Figure 14 shows the behaviour of the Autodidact method quantised to 32 colours.
The results, at first sight, do not suggest that the method is able to detect localised
semantic landmarks. Nevertheless, under closer inspection, this is caused by overlaying
the masks, as the Autodidact method simply produces larger masks that generally cover
larger portions of the image, providing more segmentation into individuals than a set
of localised detections. The method generally produces rather large masks expectably of
surfaces of a similar colour. An example of one isolated mask generated by the method
can be seen back in Section 3 in Figure 7.

The Figure 15 which shows the behaviour of the same Autodidact method version only
quantising the colour space into 64 colours, exhibits a very similar kind of behaviour, but
it, of course, provides slightly different detections. It seems to have higher resolution and
produce smaller landmarks.

Because of the high coverage of the underlying images with the detected masks, the
figures, unfortunately, do not allow us to really compare the detections made by networks
trained by Autodidact between day and night.

The detections by the network trained on the masks generated from camera motion
are shown in Figure 16. Clearly, this method has a bias for detecting—and therefore very

35



5.1 Qualitative Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 16: A set of examples of the inference using the Mask R-CNN neural network
trained using annotations automatically generated by the OptFlow method discovering
the landmarks from the camera motion.

likely also discovering—the landmarks closer to the edges of the picture, which corre-
sponds to the areas where larger values of the movement-caused displacements happen.
The detections on similar scenes are highly consistent, which is definitely a quality the
method should have, and moreover, the detections from the day and from the night im-
ages are also consistent, which suggests the robustness of this method to the day-night
appearance changes. This result is to be expected as the movement detected in the image
should depend on the structure, not appearance, and the structure is not affected by the
changes in lighting or other similar natural processes.

The last method presented is the method based on the analysis of long-term temporal
properties of the images features in the environment. The examples of the detected masks
can be seen in Figure 17. This method produces the most localised and semantically
differentiated detections that seem to have the potential for well establishing the bearing
direction. The obvious problem of this method is that the landmarks learned for the
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(a) (b)

(c) (d)

(e) (f)

Figure 17: A set of examples of the inference using the Mask R-CNN neural network
trained using annotations automatically generated by the Temporal method discovering
landmarks based on stable image features with interesting temporal properties.

day and for the night barely correspond in the pair to be aligned. That means that the
features, even when filtered to those with periodicities lower than a day, do not melange
enough to provide some minimal amount of correspondences between day and night views.

5.2 Alignment Experiments

In the alignment experiments, the goal was to compare the ability of the methods
to align images which is the necessary requirement to compute the steering command
during the actual navigation using the BearNav system.

Figure 18 presents the estimated cumulative distribution functions for all the methods
that came into existence by combining the networks trained by the mask generating
methods with the methods for the image alignment. The methods are split so that the
image alignment methods are compared for individual mask generating methods, and the
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Figure 18: The resulting estimated cumulative distributions function Fm for different
variants of the methods. In the top four figures, every image alignment method is com-
pared for the individual mask generating method and the baseline alignment based on the
SIFT features (distinguished by a dashed line). These figures are the base for selecting
the representative for further experiments. In the bottom figure, the selected representa-
tives are compared with each other. The labelling of the image alignment methods goes
as follows: template matching (T), convolution (S), convolution with colour (SC), image
features (F), position-based matching (P), mean colour descriptor (C), colour histogram
descriptor (CH).
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5.2 Alignment Experiments

Method Estimated slope P-value P-value < αSID

OptFlow 1.276 0.005 True
Temporal 0.293 0.007 True
Autodidact32 1.021 0.000 True
Autodidact64 1.046 0.000 True
SIFT 0.751 0.000 True

Table 1: Results of linear regression fitting.

representatives can therefore be selected. The selection was done by the scheme discussed
in detail in Section 4.4, where the main criterion was to select the method with the lowest
rate of catastrophic failures—the value of CDF to be highest at the error threshold of 70
pixels—and in case multiple methods have this value similar then select the one with the
highest probability of correct registration in the left part of the graph in the change point
around the threshold of 10 pixels. The selected matching schemes were—the convolution
with colour information for the two Autodidact methods and matching by the minimal
assignment problem over the positions for the OptFlow and Temporal mask generating
methods. The figure compares the CDFs of these representatives is also shown.

The image alignment methods affect the performance of the methods greatly, and in
general, the methods based on colour descriptors do not perform very well. Particularly,
looking closer at the matching using SIFT image features over the regions determined
by the landmark detections, the methods that perform better are the Autodidact ones
that, as shown previously, detect large landmarks covering a significant part of the image.
Because these still underperform the baseline method matching features across the whole
image, the conclusion is that these do not benefit from preselection using the network
and comparing them will only lead to selecting less useful landmarks.

The selected representatives are then compared statistically. First, the testing of
whether the methods even bring any information based on the linear regression described
in Section 4.4 showed that all methods exhibit a positive dependence of the estimated
error on the actual ground truth alignment. The results of this test are summarised in
Table 1.

The absolute errors of the individual methods were then compared using the Kruskal-
Wallis test, comparing the distributions of the errors. The test allowed to reject the
hypothesis at the level of significance of 0.05 with a p-value of 9.49× 10−10. The errors
compared are shown in Figure 19, where the difference between the methods is clear
at first sight. The results indicate that the methods based on the semantic landmarks
are generally more robust than the SIFT features based baseline and have fewer outliers
which comes at the cost of higher variance in the errors interpretable as lower precision.
The mean values of the errors are shown in Table 2, and one can see that even with twice
the variance compared to the baseline, the Autodidact and OptFlow methods have lower
average absolute error.

Regarding the temporal requirements of the methods, the measurements during their
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Figure 19: The distribution of the absolute error in alignment between individual meth-
ods. While the methods based on semantic landmarks have higher variance than expected,
they exhibit a significantly lower amount of outliers and, therefore, can be believed to be
more robust.

Method Average error [px]

Autodidact64 16.174
Autodidact32 16.669
OptFlow 17.466
SIFT 19.730
Temporal 21.944

Table 2: The average error of individual methods, sorted from the best.

evaluation show that the most demanding part of the process is the evaluation of the
neural network, and the image matching by any method is then negligible. The evaluation
was done on a PC equipped with an AMD Ryzen 9 3950X 16-Core Processor and an
NVIDIA GeForce RTX 3080 Ti dedicated GPU. This, as it later turned out, might have
heavily biased the timing results as the bottleneck of the methods is the model evaluation,
and the GPU used was very strong. The actual results are in Table 3 where all methods
prove to be able to run at no less than 4 FPS, which is a real-time performance satisfactory
for the BearNav system. The baseline not using any neural network was expectably more
than twice as fast.
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5.3 Experiment With a Real Robot

Method Sec. per sample Runtime FPS

OptFlow-P 0.246 4.067
Temporal-P 0.240 4.162
Autodidact32-SC 0.246 4.071
Autodidact64-SC 0.288 3.476
SIFT 0.103 9.687

Table 3: Time requirements of individual methods.

5.3 Experiment With a Real Robot

To truly evaluate the performance of the methods, it is important to test them in
the actual application where they are supposed to function. For this work, the four
representatives selected based on the previous results were together with the baseline
method deployed on the same platform used for data collection and made to repeat the
exact same path.

The results of this experiment were not conclusive, but three out of four methods
were successfully deployed on a real robotic platform. Only one of the methods got lost
completely—the OptFlow—suggesting some systemic error causing the method to lead
the robot off of its path. The rest of the methods were able to finish the lap with some
variance to the final position, but that can be expected given they are less precise in the
image alignment task and would have to run longer to show whether they converge to
the target path. The baseline method SIFT was the only method able to follow the map
very closely all the way. The visualisation of the trajectories in the common coordinate
frame given by the total station is shown in Figure 20.

When analysing the problems that might have had a negative effect on the proposed
methods, two key observations were made. The total station was set up further from the
sidewalk where the robot was driving. In the examples in Section 5.1 one can see that the
total station that was completely stationary during the data collection has been identified
as a landmark; therefore, its displacement might have affected the ability to align images
in the last segment of the path. The processing power on the robotic platform equipped
with an NVIDIA Jetson AGX board might have been insufficient to run the methods in
their given state as the time of aligning one pair of images on the robot rose up to about
1.2 seconds which cannot be labelled as real-time and is completely unsatisfactory for
robotic navigation at the speeds the robot was driving. For comparison, the SIFT-based
method was still able to run at a rate close to 10 FPS which even strengthens the case
for a weak GPU.

The problem with processing power could be solved in three ways. One is optimis-
ing the network for deployment on a device with limited resources with techniques like
compiling the network for inference only and targeting the specific platform, pruning
and other techniques. These would, at the loss of general library implementation, turn
the model into a highly optimised engine. Changing the control scheme from control
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5.3 Experiment With a Real Robot

Figure 20: The 2-dimensional plot of planar trajectories performed by the evaluated
methods in the effort to repeat the traversal performed during the teaching phase as
recorded by the total station in the common coordinate frame, the grid size is 1 meter.
The “Map” curve represents the target map trajectory, and all the others correspond to
individual methods. A special method was added extra, which is the Odometry method
introduced as a control sample. The numbered locations correspond to the spatial layout
presented in the Figure 12 and the highlighted points are the final positions where the
robot ended.

based on estimated turning speed but based on the error in heading. This would allow
running a two-level controller with different frequencies eliminating the problem of only
low-frequency control. The last and the simplest would be to run the robot at a signif-
icantly slower speed, which would make the task even harder as the internal odometry
of the platform used should exhibit higher error during slower movement. None of these
two solutions was tested for the temporal limitations as the first one is highly specialised,
and the particular implementation of BearNav used does not yet allow for repeating the
traversal at a different speed than was used for the teaching.
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6 Conclusion

This thesis set out to propose and test methods that should, in the long run, allow
autonomous systems to learn about their environment and discover useful semantic land-
marks without any need for human input. Such semantic landmarks are much closer to
the human path representations than current methods based on image features or black-
box neural network algorithms, which could, among others, make the communication of
the paths between the man and the machine easier.

6.1 Summary of the Findings

Based on the review of the literature, the thesis proposed three methods for the
automatic creation of annotations for unsupervised learning of semantic landmarks over
extended periods of time. One was adopted from a proof-of-concept paper [1] by which
the whole task was inspired, and two were original, designed to each using a different
kind of information hidden in the collected data. All methods were implemented and
tested, and implementation details have also been presented in the text so that the work
is reproducible.

The evaluation of the methods was a complex process that proved to be more de-
manding than designing and implementing the methods. To allow for integration of the
methods into the BearNav navigational system, extra work was put into developing meth-
ods able to align images based on the learned and detected landmarks. The methods were
evaluated qualitatively to assess their qualities and identify patterns in their functionality.

Based on the standard way of comparing and inspecting image alignment methods,
the methods were evaluated. The resulting estimated CDFs of the absolute error were
used to select a representative image alignment method for each mask, generating one
which created a set of methods which were further tested in detail. Then to evaluate the
methods, a complex set of experiments was designed and conducted. The experiments
have shown the methods to be useful in the image alignment task by testing the de-
pendence between the estimated displacement and the actual one and that the methods
differ significantly, with the average absolute error of the alignment being between 16
and 22 pixels for all methods. Temporal requirements of the methods were also tested,
which in the evaluation system amounted to about 4 FPS for the proposed methods and
almost 10 FPS for the baseline method.

Finally, all five tested methods were integrated into a particular BearNav implemen-
tation, and a real-robotic experiment was conducted. The results of this experiment were
optimistic as only one of the methods failed to complete the navigation. In comparison to
the baseline method, their final position was not so precise, but that can be expected from
less precise methods, and the experiment does not allow for a proper comparison. The
problems identified that might have affected the results were the moving of the total sta-
tion to a slightly new location or—which is more problematic—by the GPU performance
drop compared to the testing environment.
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6.2 Future Work

To summarize the results of this work, the methods for automatic annotation genera-
tion from long-term VT&R operation were proposed and shown to work with interesting
properties tied to the principle of their function. Their performance back in the visual
navigation, however, was not established. In the dataset evaluation, the methods per-
formed comparably and have shown to be more robust than traditional SIFT matching
with better average performance but higher variance.

6.2 Future Work

Probably the main question for future work is whether the methods can actually be
used for visual navigation. This includes investigating the image alignment based on
the detection techniques or performance optimization on the computers with limited
resources as are present on the robotic platforms.

Furthermore, the tests should be conducted on more complicated datasets with more
heterogeneous structures or higher variance in the distance from the objects. The methods
presented in this paper—especially Autodidact—might have trouble with an unstructured
natural environment, but the highly structured urban environment used in this work
might be too simple, so a semi-structured environment should be tested.

If the ability to navigate is established, then another important question to answer
is the relative performance of the methods and their testing. The BearNav navigational
system navigating in a loop is proven to converge to the correct trajectory, so a quantity to
measure would, for example, be the speed of convergence. Because the presented methods
are believed to be more robust, these tests should be conducted under dramatic changes
of the environment. Based on an idea presented in [35] it should also be possible to fuse a
more robust but less precise technique with more precise but less robust matching based
on image features and achieve overall better performance.

6.3 Discussion of Prospects

The technologies studied in this work have been shown to perform well in the task of
automatic mask generation of prominent structures from image data. This result is very
strong for the long-term autonomy efforts because these techniques could be used for
learning relatively general representations of the environment that promise to be robust
and explainable with a simple camera.

The clear advantage of such an approach is that the autonomous mobile robot can
adapt its models to a particular environment of operation without the need for additional
manually prepared data. The ability to adapt is known to be important from the biological
sciences. Moreover, creating datasets automatically without human supervision is a step
toward lifelong learning systems able to update, refine and improve their perception
models within their deployment.

While the field of perception has evolved considerably in the last years with higher
and higher penetration of deep learning technologies, neural networks are always only as
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6.3 Discussion of Prospects

good as the data used to train them. This quality obviously means their volume, which
is crucial with the growing complexity and size of neural network architectures, but for
robotic applications, even more importantly in their representativeness of the problem for
which the learned models are supposed to be deployed. The so popular large computer
vision datasets like the COCO dataset simply do not contain a representative sample of
real-world conditions as, for example, adversary weather conditions are rarely included,
which is caused by the human tendency to seek shelter instead of sacrificing comfort at
the altar of science. Thus, each new project is now facing the problem of creating proper
and specific datasets, which—when combined with requirements on their volumes and
quality—is an investment that can prevent independent and small research teams from
entering the field. This then harms the development of innovative industry nowadays,
mostly revolving around the start-up companies and gives large behemoth corporations
a monopoly on the data. Any methods that automate all or at least a significant portion
of the dataset creation process in robotics are bound to have an immense impact on the
democratization of robotic research.

Finally, regarding the specific topic of this thesis and the ability to navigate using
the methods proposed, the results were simply inconclusive. Based on the qualitative
evaluation, the author—and hopefully the reader as well—tends to the opinion that the
methods have huge potential and present a very interesting option in the search for
autonomous dataset creation. Unfortunately, because the real-world experiment of the
navigation is the ultimate test of this ability and it was not favourable to the proposed
methods, more investigation is needed. Assuming that the landmark detecting networks
learned to detect good landmarks for navigation—note that, for example, the Temporal
method was shown to be inconsistent between the day and night—the problem can either
lie with the image alignment methods, which were not the main subject of this work so
they might not have been studied enough or in the insufficient computational power of
the robotic platform to achieve necessary real-time performance. Even if the latter was
the reason, the problem might not have a simple solution, so the ability to navigate using
these methods remains an open question.
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Experimental validation of real-time concurrent mapping and localization. In Pro-
ceedings 2002 IEEE International Conference on Robotics and Automation (Cat.
No. 02CH37292), volume 2, pages 1802–1809. IEEE, 2002.

[11] Yoshio Matsumoto, Masayuki Inaba, and Hirochika Inoue. Visual navigation using
view-sequenced route representation. In Proceedings of IEEE International confer-
ence on Robotics and Automation, volume 1, pages 83–88. IEEE, 1996.

[12] Stephen D Jones, Claus Andresen, and James L Crowley. Appearance based pro-
cess for visual navigation. In Proceedings of the 1997 IEEE/RSJ International

46



REFERENCES

Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World
Applications. IROS’97, volume 2, pages 551–557. IEEE, 1997.

[13] Alan M Zhang and Lindsay Kleeman. Robust appearance based visual route follow-
ing for navigation in large-scale outdoor environments. The International Journal
of Robotics Research, 28(3):331–356, 2009.
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Robust image alignment for outdoor teach-and-repeat navigation. In 2021 European
Conference on Mobile Robots (ECMR), pages 1–6. IEEE.
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Hanheide. Now or later? predicting and maximising success of navigation actions
from long-term experience. In 2015 IEEE international conference on robotics and
automation (ICRA), pages 1112–1117. IEEE, 2015.

[69] Filip Surma, Tomasz Piotr Kucner, and Masoumeh Mansouri. Multiple robots
avoid humans to get the jobs done: An approach to human-aware task allocation.
In 2021 European Conference on Mobile Robots (ECMR), pages 1–6. IEEE, 2021.

[70] Ferdian Jovan, Jeremy Wyatt, Nick Hawes, and Tomáš Krajńık. A poisson-spectral
model for modelling temporal patterns in human data observed by a robot. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4013–4018. IEEE, 2016.

[71] Sergi Molina, Grzegorz Cielniak, and Tom Duckett. Go with the flow: Exploration
and mapping of pedestrian flow patterns from partial observations. In 2019 Inter-
national Conference on Robotics and Automation (ICRA), pages 9725–9731. IEEE,
2019.

[72] Zhengyi Zhou and David S Matteson. Predicting ambulance demand: A spatio-
temporal kernel approach. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pages 2297–2303, 2015.

[73] Andrea Gilardi, Riccardo Borgoni, and Jorge Mateu. A spatio-temporal model
for events on road networks: an application to ambulance interventions in milan.
Preface XIX 1 Plenary Sessions, page 702, 2021.

[74] Sergio Hernán Garrido Mej́ıa et al. Predicting crime in bogota using kernel warping.
2018.

[75] Juan S Moreno Pabón, Mateo Dulce Rubio, Yor Castaño, Alvaro J Riascos, and
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[106] Zbyněk Šidák. Rectangular confidence regions for the means of multivariate normal
distributions. Journal of the American Statistical Association, 62(318):626–633,
1967.

55

https://chronolib.readthedocs.io
https://chronolib.readthedocs.io


Appendix

List of attachments

This appendix lists the contents of the digital attachment by directory, including a
short description of each one of them.

Directory name Description

data Structure and sample of data used by the rest of the software

experiments Source codes for the experiments including the image alignment methods,
neural networks training and results analysis

results Results from which the figures for this thesis were generated

src Source codes of the methods proposed in this thesis

Table 4: Attachment content
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