
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Detecting objects in images with known
scene geometry

Bc. Matěj Suchánek

Supervisor: Ing. Jan Čech, Ph.D.
May 2022

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474573Osobní číslo:MatějJméno:SuchánekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Datové vědySpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Detekce objektů v obraze se známou geometrií scény

Název diplomové práce anglicky:

Detecting objects in images with known scene geometry

Pokyny pro vypracování:
Contemporary visual object detectors have achieved a great progress recently. The detectors are able to find many object
categories while being real time. The detectors are general and do not take into account additional information on the
objects and the scene geometry. A typical situation occurs when objects of known size are located on a given plane in the
scene, e.g., a scenario of traffic cones in front of an autonomous student formula. In such a case, it is impossible that small
objects were detected close to the camera, large objects at distance, or above the horizon.
Explore the problem and propose a way to incorporate the geometric information into the detection algorithm. Consider
modifying a standard algorithm, e.g. [1,2], or postprocessing their output, or proposing a novel algorithm. Evaluate both
the accuracy and computational time.

Seznam doporučené literatury:
1. S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
In NeurIPS, 2015.
2. J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You only look once: Unified, real-time object detection. In CVPR, 2016.
3. A. Bulat and G. Tzimiropoulos. How far are we from solving the 2D & 3D Face Alignment problem? (and a
dataset of 230,000 3D facial landmarks). In ICCV, 2017.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jan Čech, Ph.D. skupina vizuálního rozpoznávání FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 20.05.2022Datum zadání diplomové práce: 08.02.2022

Platnost zadání diplomové práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jan Čech, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to thank my supervisor Jan
Čech for his invaluable continuous guid-
ance. I would also like to thank the eForce
FEE Prague Formula team for sharing
their data from an experiment and their
member Roman Šíp for sharing parts of
his thesis on a related topic.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 20. 5. 2022

...

v

Abstract
Recently, there has been great progress in
object detection accuracy and speed. In
autonomous driving, fast and accurate
predictions are crucial. Current state-
of-the-art methods do not constrain the
detection according to the scene geome-
try. In the thesis, we study approaches to
object detection based on deep learning,
such as Faster R-CNN and YOLO, and
propose a formal model of prior knowl-
edge about the environment and its scene
geometry. We assume that the objects
have known size, are on the ground, and
the camera parameters are known. On
the basis of that, we propose three ways
of including the prior knowledge in the al-
gorithms. First, we modify the YOLOv3
detector by varying the dimensions of its
expected bounding boxes. Second, we
process the detections provided by a de-
tector and ignore those with impossible
dimensions. Third, we develop a heatmap
regression model for object detection that
relies on the prior knowledge. We experi-
ment with the prototypes in cone detec-
tion for an autonomous student formula.
We observe a slight improvement in iso-
lated cases. We conclude that deep neural
networks learn the constraints implicitly
from the training data and that our pro-
posals do not have much space for im-
provement.

Keywords: object detection, computer
vision, YOLO, neural networks, deep
learning

Supervisor: Ing. Jan Čech, Ph.D.

Abstrakt
V poslední době se podařilo značně zrych-
lit a zpřesnit detekci objektů. Rychlou a
přesnou detekci vyžadují autonomní vo-
zidla. Soudobé moderní metody však de-
tekci s ohledem na geometrii scény nijak
neomezují. V této práci se zabýváme po-
stupy detekce objektů založenými na hlu-
bokém učení, jako jsou Faster R-CNN a
YOLO, a navrhujeme formální model po-
vědomí o prostředí a geometrii jeho scény.
Předpokládáme, že objekty mají známou
velikost, nacházejí se na zemi a parametry
kamery jsou taktéž známé. Na základě
toho navrhujeme tři způsoby inkluze po-
vědomí o prostředí do algoritmů. Za prvé,
úpravu detektoru YOLOv3, aby se lišily
rozměry očekávaných bounding boxů. Za
druhé, kontrolu detekcí zjištěných detekto-
rem a vylučování těch s neodpovídajícími
rozměry. Za třetí, realizaci detekce pomocí
modelu pro výpočet map intenzity, který
využívá povědomí o prostředí. S proto-
typy experimentujeme při detekci kuželů
pro samořiditelnou studentskou formuli.
Pozorujeme malé zlepšení v určitých izolo-
vaných případech. Shledáváme, že hluboké
neuronové sítě se učí omezení implicitně
z trénovacích dat a našim návrhům již
nenechávají moc prostoru pro zlepšení.

Klíčová slova: detekce objektů,
počítačové vidění, YOLO, neuronové sítě,
hluboké učení

Překlad názvu: Detekce objektů v
obraze se známou geometrií scény

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Thesis outline 2
2 Related work review 3
2.1 Overview of object detection

paradigm . 3
2.2 Viola–Jones object detector 4
2.3 R-CNNs . 4
2.4 YOLO . 5

2.4.1 YOLOv3 5
2.5 Point-based detection and heatmap

regression . 6
3 Proposed methods 9
3.1 Prior knowledge representation . . 9

3.1.1 Camera model 10
3.2 Variable anchor size in YOLOv3 11
3.3 Filtering detections using camera

model . 14
3.3.1 Location-based filters 14
3.3.2 Similarity-based filters 15

3.4 Heatmap regression using
segmentation model 15
3.4.1 Ground truth representation . 16
3.4.2 Architecture 16
3.4.3 Output processing 17

4 Experiments 21
4.1 Dataset . 21
4.2 Evaluation metrics 21
4.3 Models . 22
4.4 Evaluation 23
4.5 Results . 23

4.5.1 General analysis 24
4.5.2 Performance 24
4.5.3 Variable anchor box sizes for

YOLOv3 . 24
4.5.4 Direct application of scene

geometry constraints 25
4.5.5 U-Net models for heatmap

regression . 26
4.5.6 Plots . 26

5 Conclusion 43
Bibliography 45
A Contents of CD 49
A.1 List of files 49

A.2 Custom synthetic dataset 49
A.3 Support for variable anchor box

dimensions YOLOv3 model 49

vii

Figures
2.1 Visualization of how individual

outputs from YOLOv3 determine the
position of a detected object. The
dashed line corresponds to the anchor
box. The image was taken from [1]. 6

3.1 Visualization of relationships
between concepts related to object
detection. Our goal is to exploit the
potential relationship between
“Algorithm” and “Prior knowledge”
(red arrow). The figure is our own
work generated using the yEd editor. 9

3.2 Visualization of a layer of anchor
boxes with variable size. The red
dots are cell centers (stride = 32) and
the white rectangles are the
corresponding anchor boxes. For
better clarity, only every other
anchor box is displayed. 13

3.3 Example of the proposed
representation of the ground truth for
heatmap regression. The upper
image shows a sample image, and
objects annotated by the bounding
boxes with the respective color and
the keypoints (points on the bottom
lines). The bottom image shows the
corresponding heatmap (independent
of classes; Σ = 50I). 19

3.4 Demonstration of the inference
pipeline with the sliding window
algorithm for finding local maxima
(with heatmaps reduction) written in
Python using the PyTorch library [2].
There are two parameters: images –
the input to the network (tensor),
and kernel – the size of the sliding
window (integer). 20

4.1 Visualization of measurement
results from Table 4.2. We plot the
performance (latency) versus
accuracy (total and per class) of the
baseline models. Faster architectures
are on the left, more accurate ones
are higher. 28

4.2 Scatter plot of all samples in the
train (top) and test (bottom) dataset
split. The x-axis indicates the
inferred distance, y-axis their IoU
with the expected bounding box
according to the prior knowledge. We
can see significant variance in IoU,
cluster of outliers (objects very close
to camera) and low IoU for red
cones. 29

4.3 Faster R-CNN precision-recall
curves (Sec. 4.5.6). Faster R-CNN
had the best accuracy of all evaluated
detectors, and our proposed methods
for using prior knowledge did not
improve it further. 30

4.4 YOLOv3 precision-recall curves.
We notice significant drop in
accuracy of the modified version
which uses variable anchor box sizes. 31

4.5 “YOLOv3 eForce” precision-recall
curves. This detector had the worst
accuracy with mAP = 0.38. Our
methods could only improve it by less
than 0.01. 32

4.6 “YOLOv3 eForce 18”
precision-recall curves. The filters
could improve accuracy (mAP) of
this model by ca. 0.015, though
combined scoring on the blue class
achieved even more than 0.02
increase in AP. 33

4.7 Precision-recall curves of U-Net for
heatmap regression. The model using
unit covariance did not learn to
predict any objects and its accuracy
(mAP) was zero. The accuracy of the
other two models was comparable
considering the yellow and blue class;
one of the models could even detect
some red cones (whereas the other
model did not detect any). 34

viii

4.8 Scoring and precision-recall curves
(see Sec. 4.5.6) of (top to bottom)
baseline YOLOv3, modified YOLOv3
with variable anchor box sizes and
baseline YOLOv3 with combined
scoring. 35

4.9 Scoring and precision-recall curves
of the two best U-Net models. We
notice the second model (bottom)
yielded most detections with a very
high confidence (blue and yellow
dotted lines). 36

4.10 Accuracy of models grouped by
distance of objects. The plots
continue in Fig. 4.11. 37

4.11 Continuation of Fig. 4.10. The
two figures demonstrate that the
detectors had problems with
detecting more distant objects.
However, there were only few objects
more than 20 meters from the
camera, both in training and test
data (see Fig. 4.2). 38

4.12 Demonstration of a successful
application of the geometrical
location- and similarity-based filters.
The top image shows the predicted
detections, the bottom one shows
detections after the filters have been
applied. White rectangles correspond
to the ground truth, other bounding
boxes correspond to the predictions
and have the respective color (class). 39

4.13 Sample image from the dataset
evaluated by the YOLOv3 baseline
model (top) and YOLOv3 with
variable anchor box sizes (bottom).
We can see rather suboptimal results
in the bottom image. White
rectangles correspond to the ground
truth, other bounding boxes
correspond to the predictions and
have the respective color (class). . . 40

4.14 Demonstration of the problematic
definition of red cones. Although the
U-Net model could detect the one
close to the bottom-right corner, the
inferred bounding box is orthogonal
to its annotation, and they overlap
only partially. The detection thus
does not count as true positive, but
false positive (and the ground truth
counts as false negative), which
causes decrease in average precision. 41

ix

Tables
4.1 Statistics over the number of

samples of each class in the dataset.
Counted separately for the train and
test split. 24

4.2 Accuracy and performance of all
tested models and methods on the
test dataset. We show the mean
average precision (mAP) as well as
the average precision for each class.
More granular results or other
comparisons are presented in the
following graphs. 27

x

Chapter 1
Introduction

1.1 Motivation

In object detection, we research an algorithm (called detector) that receives
digital images as input and is supposed to find some objects of interest in
them. As a response, it tells what their locations are within the image and
what kind of an object they are (an apple, a car, a human, etc.). The image
may depict no objects or multiple objects of the same or different kinds.

Algorithms of object detection find application, for example, in the nowa-
days very popular self-driving car industry. A self-driving car needs to quickly
and reliably determine the position (distance) of various objects (traffic signs,
other vehicles, pedestrians, etc.) in front of it to drive safely.

The application range of solutions to object detection is relatively broad,
and there is naturally a trade-off between the variety of supported applications
and their performance in specific applications. We notice that state-of-the-art
approaches are general and do not provide any means of further adaptation
to the surrounding environment. For example, in the environment of a self-
driving vehicle, pedestrians will appear taller than wider, unlike other vehicles
around, and they will stay on the ground, unlike traffic signs.

Suppose it was possible to provide this prior knowledge about the environ-
ment to the detectors, e.g., by applying some environment-specific constraints
based on the scene geometry. In that case, it could help to improve the detec-
tor’s performance. For example, we could make an algorithm simply ignore
detections that do not satisfy the knowledge model. Ultimately, this may
improve its robustness and allow it to increase its greediness, so overlooking
potentially important objects is less likely.

In this thesis, we make a review of state-of-the-art methods and propose
an appropriate model for the prior knowledge. Based on these findings,
we formulate several proposals for improving existing algorithms and do
experiments involving them.

1

1. Introduction
1.2 Thesis outline

We divide the thesis into three main parts. In the first part (Chapter 2), we
formulate the object detection problem and review existing state-of-the-art
approaches by describing their architecture and features. We also examine
algorithms used in other related fields of computer vision and identify ideas
that may be carried over and used to improve general algorithms for object
detection.

In the second part (Chapter 3), we describe some familiar computer vision
essentials and present suggestions on how they could be combined with
existing object detection algorithms to improve their performance. In the last
part (Chapter 4), we present the results of our experiments with the proposed
enhancements and compare their performance with baseline state-of-the-art
methods.

2

Chapter 2
Related work review

Like in other problems in computer vision, or machine learning in general,
state-of-the-art solutions to object detection are based on deep learning. We
describe an early face detector (Sec. 2.2) and the development and design of
two popular “families” of ANN architectures, R-CNNs (Sec. 2.3) and YOLO
(Sec. 2.4). We also summarize ideas from other related research fields that
we later adopt and experiment with (Sec. 2.5).

First, though, we present our general overview of object detection as a
process, as well as the concepts related to it, and some practical remarks. In
particular, R-CNNs and YOLO follow this schema.

2.1 Overview of object detection paradigm

We stick to the following object detection paradigm and terms throughout
the thesis.

Objects of interest are located in the surrounding 3D world (scene). An
agent interested in detecting objects carries a camera taking 2D images of
the scene and uses an algorithm to perform object detection. Images are
represented as a multidimensional array organized by image pixels.

The algorithm takes one or more multiple images as the input and produces
a certain number (zero, one, or more) of detections for each one. Each
detection holds information about its location within the image. The location
is represented as a rectangle (called “bounding box”), which circumscribes
the detected object in the image. Its parameters can be expressed in multiple
equivalent ways, for example:. its width and height (in pixels) and coordinates (offset in each dimension

in pixels) of its top-left corner,. its width and height (in pixels) and coordinates of its center,. coordinates of its top-left and bottom-right corner,

etc. The next information about a detection is one of the categories that the
agent knows and wants to distinguish from each other.

3

2. Related work review..................................
Finally, the algorithm may assign each detection some kind of “score” or

confidence value, usually between 0 and 1 (the higher the value, the more
confident the algorithm is about the object’s presence). Prior to inference, the
agent chooses a threshold and only considers detections with a score higher
than the threshold as actual detections. Determining the best value for the
threshold is a manifestation of a common dilemma of machine learning algo-
rithms – there is a trade-off between the number of false-positive (“invalid”)
detections and the number of false-negative (“missed”) detections.

The choice of threshold determines how sensitive the algorithm is supposed
to be, that is, whether and how much it prefers precision over recall (sensitivity,
“greediness”) or vice versa.1 While the preference for the recall may prevent
the algorithm from overlooking potentially important objects, it will also
likely increase the number of invalid detections, which may cause the agent’s
confusion (e.g., when planning the path).

2.2 Viola–Jones object detector

Prior to deep learning, one of the earliest detectors was the Viola–Jones
object detection framework. It was primarily focused on face detection, that
is, finding a human face in the image. The detector would learn to classify
features in a data structure called integral image using the AdaBoost classifier.
It achieved real-time performance [3].

2.3 R-CNNs

R-CNN (Region Based Convolutional Neural Networks) is an early family
of deep neural networks for object detection. The initial version of R-CNN
uses selective search algorithms to extract regions of interest (RoI) from
the input image. Each region is then evaluated by a convolutional neural
network (CNN), returning feature maps that are classified using support
vector machines (SVM). This approach was inefficient, as it took tens of
seconds to process an image [4, 5].

The next version, Fast R-CNN, changed the order of operations. It com-
putes the feature maps for the whole image only once and identifies RoIs
in them. It still uses selective search to identify RoIs, but it replaced SVM
classifiers with the standard classification module. Classification is carried
out on a fixed-size feature vector which is extracted from the feature map for
each proposed RoI [6, 5].

Its successor, Faster R-CNN, replaced the selective search algorithm for
proposing regions of interest with a region proposal network (RPN), whereby
it became fully end-to-end trainable and achieved real-time performance.
Internally, it still involves a loop over the proposals. The RPN also exploits
the concept of anchor boxes (called “anchors”), which was also adopted by
YOLO [7, 5].

1Formal definition of these two statistics is provided in Sec. 4.2.

4

....................................... 2.4. YOLO

2.4 YOLO

As the name “You Only Look Once” suggests, the YOLO architecture evalu-
ates the input image (and its feature map) only once. It is categorized as a
single-stage detector, unlike Faster R-CNN (which is classified as a two-stage
detector). The architecture has been continually improved since it was first
published [8, 1, 9]. We focus on and describe the third edition – the YOLOv3
architecture.

2.4.1 YOLOv3

The YOLOv3 network is divided into two modules. The first is a “backbone”
deep fully-convolutional network (called DarkNet). The second one is a “tail”
module which behaves as a feature pyramid network (FPN) and has three
levels. Each level generates detections from features with different scale
(resolution). The ultimate output of YOLOv3 is a union of these detections.
The FPN is supposed to help YOLOv3 detect objects of various sizes [9].

An important hyperparameter of YOLOv3 is a set of anchor boxes (also
called bounding box priors). They represent the expected dimensions (width
and height) of rectangular bounding boxes of detected objects. YOLOv3
allows for the choice of custom anchor boxes and assigns them to each output
scale. Anchor boxes must be chosen before the training phase and cannot be
changed afterwards because the weights are learned relative to anchor boxes.

YOLOv3 splits outputs from the FPN into units called “cells” and yields
detections per cell and scale. Each cell corresponds to a portion of the input
image and is responsible only for detections in that region. The regions do
not overlap, and their shape is square [8, 1, 9]. The original implementation
has three detections per cell and scale.

For each cell on every scale, YOLOv3 returns the following array of values
[9]:. the “objectness” score (probability that there is an object) ∈ (0.0; 1.0). offset of the location of the detection center relative to the top left corner

of the cell and the dimensions of the cell ∈ (0.0; 1.0)2. natural logarithm of the quotient of anchor box width and height devia-
tion ∈ R2. C conditional class probabilities (given objectness) ∈ (0.0; 1.0)C

During training, for each ground truth sample, the detection with the greatest
overlap (measured using the Intersection over Union (IoU) metric) is chosen. It
is treated as true positive and backpropagates objectness, coordinate (location
and size), and classification errors. Other detections that have significant
overlap with ground truth, but not the greatest, do not backpropagate. All
other detections are treated as false positive and backpropagate objectness
errors. During inference, only detections with an objectness score above a

5

2. Related work review..................................

Figure 2.1: Visualization of how individual outputs from YOLOv3 determine
the position of a detected object. The dashed line corresponds to the anchor
box. The image was taken from [1].

threshold (e.g., 0.5) are considered. They may be further post-processed
by the non-max suppression algorithm so that overlapping (likely duplicate)
detections are removed [9].

2.5 Point-based detection and heatmap regression

The two presented methods share common properties – they directly predict
the object location and size as a list of tuples of four values: offset from the
border in each dimension and size in each dimension (i.e., width and height).
They also use anchor boxes and let their predictions be relative to them.

We believe that having all these pieces of information is redundant if we
already have enough knowledge about the scene geometry. We looked into
recent solutions to other related problems in computer vision for ideas for an
alternative approach.

During the research, we noticed a recurring proposal in several papers –
formulating problems as heatmap regression. These include solutions to face
alignment (facial landmarks localization) [10, 11], human pose estimation
[12, 13], treatment planning [14] and also object detection problems – some
very recent architectures of deep networks for object detection, like CornerNet
[15] and ExtremeNet [16], use heatmaps instead of anchor boxes to predict
positions of certain significant points (multiple per detected object).

These methods do not regress location directly (i.e., they do not predict
the exact pixel offset), but infer it from a regressed heatmap as the output – a
data structure that holds information about each pixel of the input (i.e., maps
each pixel to the information). The information is usually some intensity
measure that increases towards the keypoint’s location (pixel), and it is often
constructed from a Gaussian kernel.

Heatmap regression is similar to the semantic segmentation problem, where
the expected output is classification of all input image’s pixels (pixel-to-class
map). It is usually formulated as a pixel-wise regression of class logits (prob-
abilities). Semantic segmentation was designed for processing medical images

6

...................... 2.5. Point-based detection and heatmap regression

or surface segmentation. A notable architecture of deep neural networks for
semantic segmentation is U-Net [17].

These findings make us believe it is possible to narrow our task to predict
the location of an only significant point (keypoint) and reconstruct the object’s
most likely position and dimensions from it using knowledge about the scene
geometry. We later introduce means of how it can be done in practice (Sec. 3.1)
and propose a modification of existing architecture for purposes of object
detection that borrows some of these ideas (Sec. 3.4).

7

8

Chapter 3
Proposed methods

In this chapter, we present three different methods that we believe can improve
the accuracy of existing object detection algorithms. They all utilize prior
knowledge about the scene and its geometry in various ways and thus are
only applicable if the knowledge is available.

The first section of this chapter summarizes what kind of knowledge is
useful and necessary.

3.1 Prior knowledge representation

Figure 3.1: Visualization of relationships between concepts related to object
detection. Our goal is to exploit the potential relationship between “Algorithm”
and “Prior knowledge” (red arrow). The figure is our own work generated using
the yEd editor.

In the beginning, we looked at what prior knowledge can actually concern
and how it can be represented. Our mental model, which is also based on

9

3. Proposed methods
our overview of object detection outlined in Sec. 2.1, is presented in Fig. 3.1.

First, the prior knowledge may concern the geometry of the objects of
interest. Complete representation of their geometry is often complex, and
hence not suitable. Since the produced detections (and also the ground truth)
are shaped as rectangles, we believe it is sufficient to represent the objects’
geometry as a tuple of dimensions of the respective cuboids, i.e., their width,
depth, and height. Knowledge about the expected position (exact or relative
to the agent) of the objects (e.g., on the ground, in the distance, etc.) may
also be involved.

The second aspect is the camera, or the process of taking images in general.
Knowledge about the objects naturally applies to the 3D world. However,
the algorithms for object detection read the (2D) images of the world where
knowledge about objects’ dimensions does not apply directly. Obviously, it
is necessary to be aware of the process by which the images of the scene
are produced, and it is advantageous if it can also be simulated. We call
this knowledge the “camera model” and describe its representation in the
following section.

3.1.1 Camera model

We build our prior knowledge model about the camera on computer vision
essentials and use the pinhole camera model [18]. It allows us to simulate the
environment (world) and control the mapping from the 3D world coordinates
to the 2D coordinates on the projective plane (called pixel coordinates) using
linear algebra [19].

The relation between the world and pixel coordinates of a point can be
expressed by the following equation [19, 20]:

zc

u
v
1

 = K
[
R T

] 
xw

yw

zw

1

 (3.1)

The parameters u, v represent the pixel coordinates, xw, yw, zw represent the
world coordinates. The two vectors correspond to the two points’ homogeneous
coordinates [21] – they have an additional dimension with the value 1. zc is a
real number and is chosen so that the equation is satisfied.

K is the 3×3 intrinsic camera matrix. It holds the camera’s intrinsic
parameters, such as the focal length. R, T are the 3×3 rotation matrix and
the 3×1 translation vector, respectively. These specify the transformations
needed to map the scene to the camera-centered coordinates. K, R and T
are usually estimated using computer vision algorithms (not the subject of
this research) [19, 20].

Given an object in the world whose dimensions (i.e., width, depth, and
height) and location are known, we can now determine its position on the pro-
jective plane (image) of our camera. However, this mapping is not reversible
– multiple points in the world’s 3D space can be projected to a single point in

10

............................ 3.2. Variable anchor size in YOLOv3

the 2D image space [19]. (“A single point can be represented by infinitely
many homogeneous coordinates.” [21])

3.2 Variable anchor size in YOLOv3

The concept of anchor boxes (explained in Sec. 2.4) is, in fact, a kind of
prior knowledge. If we know how large the objects we want to detect are and
how large they will appear in the image, we may choose anchor boxes with
dimensions close to the expected object dimensions. It was proposed that
instead of arbitrarily choosing their dimensions, they can be determined by
running the k-means algorithm on a large training dataset, such as COCO
[1, 22].

However, we also need to keep in mind the following: distant objects appear
smaller than nearby objects of the same size. This principle is particularly
important in the environment in which we would like to apply our research –
the agent is an autonomous formula with a camera, and the objects to be
detected are traffic cones on the road. YOLOv3 anchor boxes, however, use
fixed dimensions for all regions of the image [9].

Thus, we want to explore the possibility of modifying the YOLOv3 detector
to use anchor boxes of dimensions that would vary for different regions of the
image depending on how large the objects will appear in them. If we could
determine that for each region (YOLOv3 organizes the input into cells and
assigns the same number of anchor boxes to each [9]), we would be able to
precompute the anchor box sizes, train the model relative to them, and use
them during inference in the same environment.

Notice, though, that this procedure starts from the opposite end – we
know the position in the image and want to determine the location in the
world. The usual process, i.e., taking images, goes from 3D (scene, objects)
to 2D (image), and we already know it is not reversible by default (Sec. 3.1.1).
The latter fact is manifested by the parameter zc in the mapping, eq. (3.1),
which represents the degree of freedom even if the parameters u and v (pixel
coordinates of the YOLOv3 cell / anchor box center) are fixed.

Here, we will exploit the prior knowledge about the scene and its geometry.
In particular, we know that traffic cones stay on the ground in our environment
and we also know their dimensions. This information, together with the
complete camera model (Sec. 3.1.1), is sufficient – we know the location and
orientation of the camera and can infer the z-coordinate of a point based on
the orientation of the ground plane (where usually z = 0). Fixing the zw

parameter no longer leaves an extra degree of freedom.
Formally, we want to express xw and yw as a function of u, v, and zw, given

the camera model. It can be derived as follows:

11

3. Proposed methods
First, we rewrite the eq. (3.1) and then multiply both sides by the inverse

matrices of K and R from the left. R is a rotation matrix; hence, its inverse
is its transposition:

zc

u
v
1

 = K
[
R T

] 
xw

yw

zw

1

 ,

zc

u
v
1

 = K(R

xw

yw

zw

 + T),

zcK−1

u
v
1

 = R

xw

yw

zw

 + T,

zcRT K−1

u
v
1

 =

xw

yw

zw

 + RT T.

Then, since u, v, K, R, T are known, we make the following two assignments:a1
a2
a3

 := RT K−1

u
v
1

 ,

r1
r2
r3

 := RT T

and substitute them in:

zc

a1
a2
a3

 =

xw + r1
yw + r2
zw + r3

 .

This is a system of three equations, where zc, xw and yw are the variables
(though we are only interested in xw and yw). We express zc from the third
equation and xw, yw from the other two:

zca3 = zw + r3 zca1 = xw + r1 zca2 = yw + r2

zc = zw + r3
a3

xw = zca1 − r1 yw = zca2 − r2

and by substituting the expression for zc into them, we get the result:

xw = a1(zw + r3)
a3

− r1 (3.2)

yw = a2(zw + r3)
a3

− r2. (3.3)

Now that we can also determine complete world coordinates based on the
pixel coordinates, camera model, and knowledge about the scene geometry,
we can precompute all the anchor box dimensions. We propose the following
“ray-casting” algorithm for computing an object’s bounding box given its
central point in the pixel coordinates:

12

............................ 3.2. Variable anchor size in YOLOv3

Figure 3.2: Visualization of a layer of anchor boxes with variable size. The red
dots are cell centers (stride = 32) and the white rectangles are the corresponding
anchor boxes. For better clarity, only every other anchor box is displayed...1. Cast an imaginary ray (line) from the camera center through the cell

center on the projective plane...2. Record world coordinates (i.e., xw and yw) of a point on the ray whose
zw-coordinate is equal to the expected zw-coordinate of the center of the
object (substitute in equations (3.2) and (3.3)). More precisely, this is
also the central point of the smallest rectangular cuboid spanning the
object...3. Determine coordinates of the eight vertices of the imaginary cuboid using
knowledge about the expected object’s dimensions...4. Project the eight vertices back into the projective plane (substitute xw,
yw, and zw in eq. (3.1) and solve for u and v). This step can be vectorized
by arranging the vectors of world coordinates (right-hand side of eq. (3.1))
into a matrix...5. Find the smallest spanning rectangle of the vertices on the projective
plane by computing the minimal and maximal coordinates in both
dimensions. The width and height of the smallest spanning rectangle are
the dimensions of the desired bounding box.

Now, we run the above algorithm for all YOLOv3 cells’ centers. We do it
for each output layer from the feature pyramid network (FPN) separately,
as the cells on each level are organized differently. The example result of
the algorithm is visualized in Fig. 3.2. Notice that anchor boxes were also
computed for the upper part of the image, which captures the sky above the
horizon. However, the objects are expected to be located below the horizontal
line, close to the ground. In fact, these are projections of (imaginary) objects

13

3. Proposed methods
that are located behind the camera. We consider these anchor boxes harmless,
since no traffic cones are expected to be detected above the horizon. (We
propose using this knowledge during post-processing, see further.)

We note that models of the YOLOv3 architecture modified in this way may
lose the ability to accept images of variable size, which fully-convolutional
networks usually have.

Note that the algorithm is more general – the pixel coordinates do not
necessarily have to correspond to a YOLOv3 cell’s center but to any point in
the image. Therefore, we also make use of it in the other proposed methods
that we introduce later.

3.3 Filtering detections using camera model

This proposal focuses directly on the problem of increasing the rate of false-
positive (invalid) detections with increasing the algorithm’s sensitivity. It
exploits the model of the environment based on our knowledge about the
camera and the scene geometry. Unlike our previous proposal (Sec. 3.2), it
can be used to enhance an arbitrary detector.

We propose running the detector unmodified and just applying a filter to
the detections it returns (it happens as a part of the post-processing phase).
Formally, let D be the set of detections produced by the detector, and let
filter be a function that takes a detection from the set as the input and
returns a boolean. The procedure (in pseudocode) is the following:

function FilterDetections(D, filter)
Dfilter ← ∅
for det ∈ D do

if filter(det) then
Dfilter ← Dfilter ∪ {det}

end if
end for
return Dfilter

end function

The filters that we propose and explore are based on knowledge of the scene
geometry (that is, the camera model and the dimensions of the objects).

3.3.1 Location-based filters

The first type of filter is based on location. For example, if the agent is
an autonomous student formula that detects colored traffic cones on the
ground, it can use a filter that removes detections located above the horizon.
The filter then compares the v-coordinate of a representative point of the
detection (e.g., its center-middle or center-bottom point) and the v-coordinate
of the horizontal line. The position of the horizontal line can be inferred by

14

...................... 3.4. Heatmap regression using segmentation model

projecting a point in infinity using eq. (3.1). In practice, this means setting
yw and zw to zero and xw to a large number and solving for u.1

3.3.2 Similarity-based filters

A more advanced type of filter is based on the similarity (or deviation) of
properties of the “expected” detection and the predicted one. The expected
detection is functionally dependent on the predicted one (given the scene
geometry). We can determine the expected bounding box dimensions using the
ray-casting algorithm (Sec. 3.2, page 13) – by casting the ray from the camera
center through the center of the detection’s rectangle (pixel coordinates u, v).

After that, we can determine the similarity of the expected and predicted
detections by evaluating a certain similarity metric. For example, the in-
tersection over union (IoU) measure is a well-known metric that is often
used during detector accuracy evaluation. Detections that do not conform to
the camera model can be removed by computing the IoU of the expectation
and prediction (a value between 0 and 1) and comparing the value with a
threshold. Detections with IoU below this threshold are not considered. We
refer to this as a “strict” filter. The threshold needs to be determined prior
to inference, e.g., based on the training data. It may be a constant value
between 0 and 1, but it may also functionally depend on the prediction. For
example, the threshold may be relaxed for more distant predictions due to
possible imprecision in the estimated camera model, or may vary for different
classes of objects.

Alternatively, the output of a similarity function may be used to adjust the
detection score prior to thresholding (Sec. 2.1). When the detector assigns
each detection a confidence value/score (e.g., YOLOv3 objectness value), we
propose combining it with the similarity score using an operator (function)
and doing thresholding on its output instead. We refer to this as a “soft” filter.
The function should be non-increasing for decreasing values of similarity so
that the ultimate score is lower for detections that are not in accordance with
our knowledge about the scene geometry. We experimented with combining
the two scores by computing their product, which satisfies this criterion.

3.4 Heatmap regression using segmentation model

Based on the related work review (Sec. 2.5), we want to explore reformulating
the object detection problem as heatmap regression using deep learning. This
approach is different from traditional state-of-the-art architectures (Sec. 2.3
and 2.4) that regress multiple parameters of objects’ bounding boxes individ-
ually.

We present our approach based on the proposal divided into three subse-
quent steps.

1Or similarly if another orientation of the axes was chosen.

15

3. Proposed methods
3.4.1 Ground truth representation

First, we assign each object of the ground truth to a single keypoint. The
relative location of the keypoint is the same for all objects, and its choice may
vary for different types of objects. Furthermore, the bounding box should
be recoverable from the keypoints. For example, in our environment of an
autonomous formula, we placed the keypoints on the ground in front of traffic
cones. In particular, if we are provided with the usual 2D annotations that
assign each object a rectangular bounding box, the keypoint’s location is the
central point of its bottom line (see Fig. 3.3).

Next, for every image, we produce a set of heatmaps, i.e., 2D arrays with
input image dimensions. Since we need to discriminate different classes of
objects, there are separate heatmaps for each class of detected objects. (There
is no additional class for the “background”.) Each keypoint is mapped to
the respective heatmap as a Gaussian kernel that is centered at the keypoint
(where it also reaches its maximum value). Note that we do not normalize it
nor have it integrate to one (like bivariate normal distribution); we simply let
its maximal value be 1.

Formally, let D be the set of all image keypoints organized as tuples of
three values: two pixel coordinates and the class index (x, y, c). Also, let
Dc = {(x, y)|(x, y, c) ∈ D} be the set of coordinates of keypoints of the given
class. Then, the formula for all pixels and channels of the heatmap can be
expressed as:

H[c, x, y] =
{

maxµ∈Dc Gµ,Σ(x, y), |Dc| > 0
0, otherwise

where Gµ,Σ(x) = exp(−1
2(x− µ)T Σ(x− µ)) and Σ, the covariance matrix,

must be chosen arbitrarily. We do not provide any hints for the optimal
choice; instead, we only describe our observations in the experimental part
of the thesis, where we experimented with setting the covariance matrix to
several integral multiples of the identity matrix.

3.4.2 Architecture

We adopt U-Net, a fully-convolutional network architecture originally devel-
oped for semantic segmentation of biomedical images [17]. It takes images of
arbitrary size with three input channels and produces pixel-wise class logits.2
Instead of computing the argmax for each pixel to obtain image segmentation,
we treat the output as a set of heatmaps. The only modification to the archi-
tecture that we made is the addition of a ReLU layer (yi = max(0, xi)) after
the output for learning that focuses on the foreground (objects). We propose
training this model with the usual gradient descent method by optimizing L2
loss.

2The original paper only indicates a two-channel output map. Modified versions allow
for an arbitrary number of output channels.

16

...................... 3.4. Heatmap regression using segmentation model

3.4.3 Output processing

The final step involves extracting the actual detections (location, class, and
confidence) from the predicted heatmap. First, we determine the location
of all potential keypoints and then assign a bounding box to each one. The
latter part involves the knowledge about the scene geometry.

Heatmap to keypoints

We invert the process of creating the ground truth heatmap from key-
points (Sec. 3.4.1) by looking for pixels with the highest intensity in their
neighborhood – local maxima.

The algorithm we propose for finding local maxima uses a sliding window.
It evaluates each pixel with a sliding window (a square subset of the image
domain) and finds the one with the highest intensity. If it is found in the
sliding window’s center (i.e., the center is the argmax), there is a local
maximum and the keypoint is found in the window’s center. The intensity
value of the keypoint can be considered as its score. Keypoints with a score
lower than a threshold (potential “noise”) may be ignored.

The size of the sliding window is a hyperparameter. It should preferably
be an odd integer greater than 1 so that the center is clearly determined.
Increasing the size of the window will make the algorithm evaluate greater
portions of the heatmap but also suppress keypoints that are located very
close to each other – likely the same object. (This may be an alternative to
the non-max suppression algorithm that YOLOv3 and other detectors use to
remove overlapping detections.)

Two evaluation strategies are possible for combining results from multiple
heatmaps that are supposed to discriminate the classes of detected objects:..1. Local maxima are searched in each heatmap separately, and the set

of all keypoints in the image is the union of keypoints from individual
heatmaps (complexity: K2 × C × w × h, where K is the kernel size)...2. The heatmaps are first reduced to a single heatmap of maximal intensities
per pixel (Hmax[x, y] = maxc H[c, x, y]), and the algorithm only looks
for local maxima in this heatmap. A keypoint’s class can be looked up
from the heatmap argmax array.
We believe that this strategy has two advantages: it reduces computations
(the sliding window runs only once per image, complexity: (C +K2)×w×
h), and it may prevent attribution of multiple objects of different classes
to a single keypoint, especially in a situation where the presence of an
object also “activates” the other heatmaps slightly. An implementation
of this algorithm is demonstrated in Fig. 3.4.

Keypoint to bounding box

Finally, we map each identified keypoint to a bounding box. The exact
process depends on the prior choice of its relative position. Note that if the

17

3. Proposed methods
keypoints do not correspond to the central point of the object, we cannot
use the ray-casting algorithm (Sec. 3.2, page 13) and provide the keypoint
as input. Instead, we exploit the prior knowledge and determine the object
center within the scene (in world coordinates) based on the known object’s
dimensions. Then we continue with step 3 of the algorithm and determine
the dimensions of the desired bounding box.

For example, if the keypoints are located in front of the objects on the
ground (as we proposed in Sec. 3.4.1), we first compute the world coordi-
nates of the keypoint by substituting zw (of the ground plane), u and v in
eq. (3.2) and (3.3). Then, we determine the world coordinates of the object’s
center using knowledge about its dimensions. The bounding box can now
be determined by running the remaining steps of the ray-casting algorithm,
which computes its dimensions. In the end, we put the bounding box in
the appropriate position relative to the keypoint (in our environment, the
keypoint is in the middle of the bottom line).

18

...................... 3.4. Heatmap regression using segmentation model

Figure 3.3: Example of the proposed representation of the ground truth for
heatmap regression. The upper image shows a sample image, and objects
annotated by the bounding boxes with the respective color and the keypoints
(points on the bottom lines). The bottom image shows the corresponding heatmap
(independent of classes; Σ = 50I).

19

3. Proposed methods

import torch.nn.functional as F

shape = images.size()
center_index = (kernel * kernel) // 2
prediction = model(images)
prediction = F.relu(prediction)
values, indices = prediction.max(1, keepdim=True)
sliding = F.unfold(

values, kernel, padding=kernel // 2)
sliding = sliding.reshape(

shape[0], kernel * kernel, *shape[2:])
maxima = sliding.argmax(1, keepdim=True) == center_index

nonzero = torch.nonzero(maxima)
for pos in nonzero:

image_index = pos[0].item()
keypoint_y = pos[2].item()
keypoint_x = pos[3].item()
score = values[pos].item()
category = indices[pos].item()

Figure 3.4: Demonstration of the inference pipeline with the sliding window
algorithm for finding local maxima (with heatmaps reduction) written in Python
using the PyTorch library [2]. There are two parameters: images – the input to
the network (tensor), and kernel – the size of the sliding window (integer).

20

Chapter 4
Experiments

In the last part of the thesis, we present the results of our experiments.
We applied our proposals for using knowledge about the scene geometry
and compared their results to uninformed methods based on state-of-the-art
approaches.

4.1 Dataset

The dataset we used for the experiments consisted of a set of circa 670 images
(376×672 pixels) taken by a camera on a self-driving student formula during
an off-site experiment in Autumn 2019. They capture the scene in front of
the formula, while it navigates a track delimited by traffic cones (the objects)
in an airport.

The annotated objects have three categories: yellow, blue, and red traffic
cones. We assumed that objects of all types were located on the ground and
had equal diameter (i.e., width and depth) of 32 cm and height of 30 cm. Most
importantly, we were also provided the parameters of the camera (Sec. 3.1.1).

4.2 Evaluation metrics

The key metrics we used for the comparison of competing methods were
average precision (AP) and mean average precision (mAP) at IoU of 0.5.
Predicted detections that have IoU with a ground truth detection at least
0.5 are considered true-positive (“hits”). Those for which no such overlap is
found are considered false-positive (“invalid”), and ground truth detections
for which no such overlap exists are considered false-negative (“missed”).

AP is defined as the area under the precision-recall curve (i.e., its integral).
This curve represents a functional dependence of the precision on the recall.
Precision is defined as the number of true-positive samples over the number
of all positive samples (T P

T P +F P) and recall as the number of true-positive
samples over the number of true-positive samples and false-negative samples
(T P

T P +F N). The recall-precision pairs are sampled by changing the value for
the threshold on the score of detections (confidence, objectness, etc.), so
that the precision is known for values of recall equal to every hundredth unit

21

4. Experiments
between 0 and 1. mAP is the mean of average precision statistics computed
independently for each class of objects.

We used the COCO API toolbox (Python) [23] to compute the above
metrics and plot the graphs and curves. The experiments were carried out
remotely on a shared Linux workstation with a 32-core Intel Xeon CPU and
an NVIDIA GeForce GTX 1080 Titan GPU. We used PyTorch version 1.10
and torchvision version 0.11.1.

4.3 Models

We trained and evaluated several models of neural networks for object detec-
tion:..1. Faster R-CNN model (Sec. 2.3) from the torchvision library (PyTorch)

[24]. Per [25] we took advantage of transfer learning – the provided
backbone layers trained on ImageNet were frozen during our training...2. YOLOv3 model (Sec. 2.4.1) from a GitHub repository1 [26]. We used
transfer learning, too – we did not train the DarkNet backbone module,
which had been trained on ImageNet...3. Our modification2 of the previous YOLOv3 model that supports variable
anchor box sizes (Sec. 3.2)...4. Three U-Net models from a GitHub repository [27] we modified for the
heatmap regression task (Sec. 3.4). We parameterized the heatmaps by
Σ, the covariance matrix, which we set to I, 10I, and 50I (I is the 2×2
identity matrix). The models were trained from scratch...5. An alternative (optimized) YOLOv3 model trained on a different (large)
dataset of images similar to ours. More detailed information on its
specification can be found in [28] (unpublished as of this writing). In
particular, the images were taken in various environments with different
camera setups.
Apart from the usual way of having the model process the whole image
at once, we were recommended to evaluate the model using a different
evaluation strategy – divide the input images into smaller parts (we used
18) and have the same model process them simultaneously. In the report,
we refer to these models either as “YOLOv3 eForce” or as “YOLOv3
eForce 18” when the multi-processing approach was used.

Unless otherwise stated, we trained the models ourselves on a training subset
(80%) of the dataset by optimizing the default losses using the Adam optimizer

1We created a fork of the repository because we found training a custom model using
the original code malfunctioning. It is available at https://github.com/matejsuchanek/
YOLOv3-in-PyTorch.

2Code: https://github.com/matejsuchanek/YOLOv3-in-PyTorch/tree/var_anchors
(var_anchors branch). See also Appendix A.3.

22

https://github.com/matejsuchanek/YOLOv3-in-PyTorch
https://github.com/matejsuchanek/YOLOv3-in-PyTorch
https://github.com/matejsuchanek/YOLOv3-in-PyTorch/tree/var_anchors

......................................4.4. Evaluation

[29]. U-Net and Faster R-CNN were trained for 100 epochs, YOLOv3 for 200
epochs.

4.4 Evaluation

After training each model, we performed inference on the test split of our
dataset (20%, ca. 140 images). We would always have the models evaluate the
data with high sensitivity, that is, we decreased the threshold for considering
an activation an actual detection to 0.01. We refer to the set of detections
produced by each model as the “baseline”.

Then, we applied our proposals to the baseline methods and produced a
new set of detections for each application. In addition to a general comparison,
we were particularly interested in the comparison of:

. YOLOv3 baseline to its modification that uses variable anchor box sizes
(Sec. 3.2).. Faster R-CNN, YOLOv3, YOLOv3 eForce, and YOLOv3 eForce 18
baseline detections to two derived sets of detections produced by:..1. Strict application of location-based (horizon) and similarity-based

(IoU) filters (see Sec. 3.3.1 and 3.3.2) that use knowledge about the
scene geometry. Objects (bounding boxes) that would appear above
the inferred horizon or that would not have at least 0.5 IoU3 with
the expected bounding box would be removed from the baseline set...2. Strict application of the location-based filter and “soft” application
(Sec. 3.3.2) of the similarity-based filter. Detections that appear
above the inferred horizon would be removed from the baseline set.
No other detections would be removed, only their score would be
updated by multiplying it by its IoU with the expected bounding
box. (We refer to this as “combined score”.). The three custom U-Net models to each other.

As a secondary metric, we also measured the time it takes the models to
process their input. We performed the tests with multiple batch sizes to
demonstrate how the performance changes in case we took advantage of
multiprocessing.

4.5 Results

The results of our experiments are aggregated in Table 4.2 and visualized in
Figures 4.1 to 4.11. We provide an analysis and a discussion of the results.

3The value of the threshold is further discussed in Sec. 4.5.4.

23

4. Experiments
Class Train data Test data

blue 2,533 (54.1%) 649 (53.0%)
yellow 1,896 (40.5%) 489 (40.0%)

red 251 (5.4%) 86 (7.0%)
All 4,680 1,224

Table 4.1: Statistics over the number of samples of each class in the dataset.
Counted separately for the train and test split.

4.5.1 General analysis

After breaking the results down by class, we noticed an oddity in the results
(average precision) for the class of red cones. We realized this class was
underrepresented in the dataset (ca. 6% of all samples, see Table 4.1 for
complete data), and also, the samples were not consistent – some of the red
cones would not stay on the ground and have the usual pose we assumed, but
they were tumbled4. This discrepancy caused that although some cones were
detected, the predictions either were not counted as true-positive or were
not consistent with the geometrical information and thus filtered out (see
further). An example of this situation is visualized in Fig. 4.14.

4.5.2 Performance

The comparison is shown in Fig. 4.1. YOLOv3 eForce was the fastest of all
models, but with the worst accuracy. We could improve its accuracy using
subimage multi-processing at the cost of making it ten times slower. U-Net
model for heatmap regression was the slowest, but its accuracy was compa-
rable to YOLOv3 when considering only the yellow and blue class. Though
performance of YOLOv3 and Faster R-CNN may also seem comparable, we
note the actual input size to YOLOv3 was 672×672 since YOLOv3 only
accepts images of square shape.

4.5.3 Variable anchor box sizes for YOLOv3

We looked at the modified YOLOv3 architecture with variable anchor box
sizes. This model suffered a significant drop in accuracy – the baseline model
achieved mAP of 0.776, while the modified one’s mAP was 0.614 (Fig. 4.4).
We could not find a clear recurring trend in the yielded detections. Since
both models were being trained on the same data with the same parameters,
we believe variable anchor boxes make learning less stable and more difficult.
Comparison of their output from a sample image is shown in Fig. 4.13.

4Ideally, those would be annotated as a different class that we would assign different
parameters (i.e., the dimensions).

24

....................................... 4.5. Results

4.5.4 Direct application of scene geometry constraints

We also examined the results of the methods that use the knowledge about
the scene geometry to filter the set of detections produced by a detector.
We expected a noticeable increase in accuracy compared to baseline models
(we now focused on AP for the yellow and blue cones), but it would mostly
decrease when strict filters were used (see, e.g., R-CNN and YOLOv3 in
Table 4.2), or decrease or just very slightly increase when the soft filter
(combined scoring) was used. An exception was the YOLOv3 eForce 18
model (uniting detections from multiple portions of the input image), where
combined scoring could increase AP for the blue class by more than 0.02
compared to the baseline algorithm (Fig. 4.6).

To understand the influence of the threshold on IoU of the strict filter,
we relaxed it from 0.5 to 0.3 and re-evaluated the models. This time, the
accuracy of most models recovered. Since increasing the threshold naturally
decreases the number of positive detections and since it caused the accuracy
(AP/mAP) to decrease, application of the filter decreased recall – the number
of true-positive detections divided by the number of all detections in the
ground truth (see also the definition in Sec. 4.2).

By an analysis of the dataset (Fig. 4.2), we discovered there was a high
variance of the IoU of the annotations with the expected bounding boxes
(according to the prior knowledge). The models were thus supposed to
learn to predict bounding boxes that are not consistent with our model of
prior knowledge. On the other hand, the strict filter relied on the prior
knowledge, and therefore, its application was contra-productive and harmful
because it removed valid detections. Alternatively, there might also have
been imprecision in the camera model.

Furthermore, we revealed a cluster of outliers in the dataset. It was a
subset of samples located less than 5 meters5 from the camera with low IoU.
We quickly identified the pattern – they represented cones located so close to
the camera that only a part of them (the tip) was captured in the image. We
find such samples very problematic because a) it is difficult to annotate them
reliably, b) some predictors, like YOLOv3, may not be allowed to predict the
object center outside the input image, and c) if annotated within the image
bounds, they do not correspond to the prior knowledge model.

In summary, deep neural networks are known to be very powerful and
capable of learning features of a very high level. In our case, they probably
learned not to provide invalid detections, which naturally are not included
in the training data. However, we observed an improvement in the model
that was trained on data from various different environments. This makes
us believe that the method of filtering detections could be more suitable
in situations where there are little or no data from the target environment
available to adapt a model to it. We also recommend that annotations of the
training data be made with respect to the camera model.

5The distance was inferred using eq. (3.2) and the ray-casting algorithm (Sec. 3.2,
page 13) based on the camera model.

25

4. Experiments
4.5.5 U-Net models for heatmap regression

Finally, we were interested in the performance of our proposed U-Net models
for heatmap regression. The model trained on heatmaps with the lowest vari-
ance (Σ = I) could not learn the representation and did not correctly predict
any detections. The other two models (Σ ∈ {10I, 50I}) did not outperform
the other state-of-the-art architectures in precision and performance, but still
achieved reasonable accuracy, with AP on the blue and yellow class around
0.8. The best of the three models trained on heatmaps with Σ = 50I even
succeeded in detecting some samples from the underrepresented class of red
cones (Fig. 4.7). This model also predicted most of the identified objects
(yellow and blue cones) with very high confidence (Fig. 4.9).

4.5.6 Plots

Figures 4.3 to 4.7 show plots of precision-recall curves in pairs. In these figures,
higher recall and precision mean better accuracy. The upper plot always
compares mean precision-recall dependence of the baseline method against
methods enhanced by our proposals aggregating all three classes. The bottom
plot compares the precision-recall dependence per method (discriminated by
line style) and class (includes the “aggregate” class, discriminated by color).
For example, in Fig. 4.5, bottom plot, the yellow dashed line intersects the
point (0.7, 0.8) – if we set the threshold on the combined score so that the
model could detect 70% of all objects, 80% of its produced detections would
be valid.

Figures 4.8 and 4.9 display “scoring” curves in addition to the precision-
recall curves. They show the value of the threshold (dotted line) as a function
of recall. For example, in Fig. 4.8, middle plot, the blue dotted line intersects
the point (0.6, 0.8) and the precision at the 60% recall is 85%. That is, if we
set the objectness threshold to 0.8, the model would detect 60% of all objects,
and 85% of its produced detections would be valid.

26

....................................... 4.5. Results

Model mAP Average precision Time/batch (ms)
blue yellow red batch size: 1/2/4

Faster R-CNN 32.2/53.0/97.4
baseline 0.891 0.937 0.960 0.776

filtered (IoU > 0.3) 0.876 0.937 0.960 0.731
filtered (IoU > 0.5) 0.823 0.928 0.944 0.597

combined score 0.887 0.929 0.958 0.774
YOLOv3 30.2/51.2/99.8

baseline 0.776 0.867 0.829 0.630
filtered (IoU > 0.3) 0.777 0.869 0.830 0.631
filtered (IoU > 0.5) 0.714 0.843 0.798 0.500

combined score 0.773 0.867 0.822 0.630
var. anchor boxes 0.614 0.707 0.705 0.431

YOLOv3 eForce 5.0/6.5/11.7
baseline 0.377 0.425 0.532 0.174

filtered (IoU > 0.3) 0.379 0.426 0.533 0.179
filtered (IoU > 0.5) 0.373 0.417 0.510 0.194

combined score 0.384 0.430 0.535 0.187
YOLOv3 eForce 18 41.6/–/–

baseline 0.579 0.628 0.708 0.401
filtered (IoU > 0.3) 0.580 0.630 0.712 0.399
filtered (IoU > 0.5) 0.565 0.630 0.715 0.349

combined score 0.594 0.650 0.722 0.410
U-Net 44.1/75.9/155.6

Σ = I 0.0 0.0 0.0 0.0
Σ = 10I 0.533 0.814 0.786 0.0
Σ = 50I 0.641 0.796 0.814 0.313

Table 4.2: Accuracy and performance of all tested models and methods on the
test dataset. We show the mean average precision (mAP) as well as the average
precision for each class. More granular results or other comparisons are presented
in the following graphs.

27

4. Experiments

Figure 4.1: Visualization of measurement results from Table 4.2. We plot
the performance (latency) versus accuracy (total and per class) of the baseline
models. Faster architectures are on the left, more accurate ones are higher.

28

....................................... 4.5. Results

Figure 4.2: Scatter plot of all samples in the train (top) and test (bottom)
dataset split. The x-axis indicates the inferred distance, y-axis their IoU with the
expected bounding box according to the prior knowledge. We can see significant
variance in IoU, cluster of outliers (objects very close to camera) and low IoU
for red cones.

29

4. Experiments

Figure 4.3: Faster R-CNN precision-recall curves (Sec. 4.5.6). Faster R-CNN
had the best accuracy of all evaluated detectors, and our proposed methods for
using prior knowledge did not improve it further.

30

....................................... 4.5. Results

Figure 4.4: YOLOv3 precision-recall curves. We notice significant drop in
accuracy of the modified version which uses variable anchor box sizes.

31

4. Experiments

Figure 4.5: “YOLOv3 eForce” precision-recall curves. This detector had the
worst accuracy with mAP = 0.38. Our methods could only improve it by less
than 0.01.

32

....................................... 4.5. Results

Figure 4.6: “YOLOv3 eForce 18” precision-recall curves. The filters could
improve accuracy (mAP) of this model by ca. 0.015, though combined scoring
on the blue class achieved even more than 0.02 increase in AP.

33

4. Experiments

Figure 4.7: Precision-recall curves of U-Net for heatmap regression. The model
using unit covariance did not learn to predict any objects and its accuracy (mAP)
was zero. The accuracy of the other two models was comparable considering
the yellow and blue class; one of the models could even detect some red cones
(whereas the other model did not detect any).

34

....................................... 4.5. Results

Figure 4.8: Scoring and precision-recall curves (see Sec. 4.5.6) of (top to bottom)
baseline YOLOv3, modified YOLOv3 with variable anchor box sizes and baseline
YOLOv3 with combined scoring.

35

4. Experiments

Figure 4.9: Scoring and precision-recall curves of the two best U-Net models.
We notice the second model (bottom) yielded most detections with a very high
confidence (blue and yellow dotted lines).

36

....................................... 4.5. Results

Figure 4.10: Accuracy of models grouped by distance of objects. The plots
continue in Fig. 4.11.

37

4. Experiments

Figure 4.11: Continuation of Fig. 4.10. The two figures demonstrate that the
detectors had problems with detecting more distant objects. However, there
were only few objects more than 20 meters from the camera, both in training
and test data (see Fig. 4.2).

38

....................................... 4.5. Results

Figure 4.12: Demonstration of a successful application of the geometrical
location- and similarity-based filters. The top image shows the predicted detec-
tions, the bottom one shows detections after the filters have been applied. White
rectangles correspond to the ground truth, other bounding boxes correspond to
the predictions and have the respective color (class).

39

4. Experiments

Figure 4.13: Sample image from the dataset evaluated by the YOLOv3 baseline
model (top) and YOLOv3 with variable anchor box sizes (bottom). We can see
rather suboptimal results in the bottom image. White rectangles correspond to
the ground truth, other bounding boxes correspond to the predictions and have
the respective color (class).

40

....................................... 4.5. Results

Figure 4.14: Demonstration of the problematic definition of red cones. Although
the U-Net model could detect the one close to the bottom-right corner, the
inferred bounding box is orthogonal to its annotation, and they overlap only
partially. The detection thus does not count as true positive, but false positive
(and the ground truth counts as false negative), which causes decrease in average
precision.

41

42

Chapter 5
Conclusion

The goal of the thesis was to explore ways of incorporating additional infor-
mation about the target environment into contemporary methods for object
detection. We described the problem, reviewed existing algorithms, and
presented their properties and design. We also searched for outcomes from
related research fields and identified ideas that could help us in our efforts.
Furthermore, we presented fundamental knowledge, concepts, and relation-
ships from the field of computer vision and used them to derive techniques
useful for our further work.

As the next step, we described our conception of the additional prior
knowledge and proposed its formal representation. Then, we proposed three
diverse improvements that take our findings into consideration. We suggested
encoding the geometric information directly into a deep neural network or
adding a new component to the detection pipeline that tries to identify
and suppress impossible predictions. We also repurposed an existing neural
network architecture and designed a different evaluation process that relies
on prior information about the environment.

Finally, we created prototypes of the enhanced algorithms and compared
their performance with the respective baseline methods that were not informed
of the environment. We considered accuracy to be the key indicator. We
found that the baseline methods are robust and their accuracy cannot be
greatly improved through our proposals. However, we also revealed some
isolated cases where the informed methods were more accurate.

We conclude that deep neural networks can probably learn their own
representation of prior knowledge from the training data, which prevents
them from making impossible decisions. We also express the hypothesis that
our proposals might be more useful in situations where only few data about
the target environment are available.

43

44

Bibliography

[1] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger.
In 30TH IEEE CONFERENCE ON COMPUTER VISION AND PAT-
TERN RECOGNITION (CVPR 2017), IEEE Conference on Computer
Vision and Pattern Recognition, pages 6517–6525. IEEE; IEEE Comp
Soc; CVF, 2017. 30th IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, JUL 21-26, 2017.

[2] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[3] Paul Viola and Michael Jones. Robust real-time object detection. In
International Journal of Computer Vision, 2001.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmenta-
tion. In 2014 IEEE CONFERENCE ON COMPUTER VISION AND
PATTERN RECOGNITION (CVPR), IEEE Conference on Computer
Vision and Pattern Recognition, pages 580–587. Comp Vis Fdn; IEEE;
IEEE Comp Soc, 2014. 27th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Columbus, OH, JUN 23-28, 2014.

[5] Rohith Gandhi. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — object
detection algorithms. https://towardsdatascience.com/r-cnn-
fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-
36d53571365e, 2018.

[6] Ross Girshick. Fast R-CNN. In 2015 IEEE INTERNATIONAL CON-
FERENCE ON COMPUTER VISION (ICCV), IEEE International
Conference on Computer Vision, pages 1440–1448. Amazon; Microsoft;

45

https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

5. Conclusion......................................
Sansatime; Baidu; Intel; Facebook; Adobe; Panasonic; 360; Google;
Omron; Blippar; iRobot; Hiscene; nVidia; Mvrec; Viscovery; AiCure,
2015. IEEE International Conference on Computer Vision, Santiago,
CHILE, DEC 11-18, 2015.

[7] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. In
C Cortes, ND Lawrence, DD Lee, M Sugiyama, and R Garnett, editors,
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
28 (NIPS 2015), volume 28 of Advances in Neural Information Processing
Systems, 2015. 29th Annual Conference on Neural Information Processing
Systems (NIPS), Montreal, CANADA, DEC 07-12, 2015.

[8] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In 2016 IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOG-
NITION (CVPR), IEEE Conference on Computer Vision and Pattern
Recognition, pages 779–788. IEEE Comp Soc; Comp Vis Fdn, 2016. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, JUN 27-30, 2016.

[9] Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improvement,
2018. arXiv preprint arXiv:1804.02767.

[10] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving
the 2d & 3d face alignment problem? (and a dataset of 230,000 3d
facial landmarks). In 2017 IEEE INTERNATIONAL CONFERENCE
ON COMPUTER VISION (ICCV), IEEE International Conference on
Computer Vision, pages 1021–1030. IEEE; IEEE Comp Soc, 2017. 16th
IEEE International Conference on Computer Vision (ICCV), Venice,
ITALY, OCT 22-29, 2017.

[11] Marek Kowalski, Jacek Naruniec, and Tomasz Trzcinski. Deep alignment
network: A convolutional neural network for robust face alignment. In
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION WORKSHOPS (CVPRW), IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
pages 2034–2043. IEEE; IEEE Comp Soc; CVF, 2017. 30th IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Honolulu, HI, JUL 21-26, 2017.

[12] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks
for human pose estimation. In B Leibe, J Matas, N Sebe, and M Welling,
editors, COMPUTER VISION - ECCV 2016, PT VIII, volume 9912 of
Lecture Notes in Computer Science, pages 483–499, 2016. 14th European
Conference on Computer Vision (ECCV), Amsterdam, NETHERLANDS,
OCT 08-16, 2016.

[13] Jonathan Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler.
Joint training of a convolutional network and a graphical model for human

46

...................................... 5. Conclusion

pose estimation. In Z Ghahramani, M Welling, C Cortes, ND Lawrence,
and KQ Weinberger, editors, ADVANCES IN NEURAL INFORMA-
TION PROCESSING SYSTEMS 27 (NIPS 2014), volume 27 of Advances
in Neural Information Processing Systems, 2014. 28th Conference on
Neural Information Processing Systems (NIPS), Montreal, CANADA,
DEC 08-13, 2014.

[14] Zhusi Zhong, Jie Li, Zhenxi Zhang, Zhicheng Jiao, and Xinbo Gao.
An attention-guided deep regression model for landmark detection in
cephalograms. In D Shen, T Liu, TM Peters, LH Staib, C Essert, S Zhou,
PT Yap, and A Khan, editors, MEDICAL IMAGE COMPUTING AND
COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI,
volume 11769 of Lecture Notes in Computer Science, pages 540–548,
2019. 10th International Workshop on Machine Learning in Medical
Imaging (MLMI) / 22nd International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), Shenzhen,
PEOPLES R CHINA, OCT 13-17, 2019.

[15] Hei Law and Jia Deng. CornerNet: Detecting objects as paired keypoints.
In V Ferrari, M Hebert, C Sminchisescu, and Y Weiss, editors, COM-
PUTER VISION - ECCV 2018, PT XIV, volume 11218 of Lecture Notes
in Computer Science, pages 765–781, 2018. 15th European Conference
on Computer Vision (ECCV), Munich, GERMANY, SEP 08-14, 2018.

[16] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl. Bottom-up object
detection by grouping extreme and center points. In 2019 IEEE/CVF
CONFERENCE ON COMPUTER VISION AND PATTERN RECOG-
NITION (CVPR 2019), IEEE Conference on Computer Vision and
Pattern Recognition, pages 850–859. IEEE; CVF; IEEE Comp Soc,
2019. 32nd IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, JUN 16-20, 2019.

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In Lecture Notes
in Computer Science, pages 234–241. Springer International Publishing,
2015.

[18] Wikipedia contributors. Pinhole camera model — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Pinhole_camera_model&oldid=1028923582, 2021. [Online; accessed
12-January-2022].

[19] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2 edition, 2004.

[20] Wikipedia contributors. Camera resectioning — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Camera_resectioning&oldid=1062633321, 2021. [Online; accessed 12-
January-2022].

47

https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=1028923582
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=1028923582
https://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=1062633321
https://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=1062633321

5. Conclusion......................................
[21] Wikipedia contributors. Homogeneous coordinates — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Homogeneous_coordinates&oldid=1062485619, 2021. [Online; ac-
cessed 12-January-2022].

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: Common Objects in Context. In Computer Vision – ECCV
2014, pages 740–755. Springer International Publishing, 2014. [Online:
http://cocodataset.org/#download].

[23] Piotr Dollar and Tsung-Yi Lin. COCO API. https://github.com/
cocodataset/cocoapi/, 2020.

[24] torchvision.models. PyTorch documentation. https://pytorch.org/
vision/0.11/models.html [Online; accessed on 2022-05-14].

[25] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning
and transferring mid-level image representations using convolutional
neural networks. In 2014 IEEE CONFERENCE ON COMPUTER
VISION AND PATTERN RECOGNITION (CVPR), IEEE Conference
on Computer Vision and Pattern Recognition, pages 1717–1724. Comp
Vis Fdn; IEEE; IEEE Comp Soc, 2014. 27th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Columbus, OH,
JUN 23-28, 2014.

[26] Haoyu Wu. YOLOv3 in PyTorch. https://github.com/
westerndigitalcorporation/YOLOv3-in-PyTorch, 2019.

[27] U-Net: Semantic segmentation with PyTorch. https://github.com/
milesial/Pytorch-UNet, 2017.

[28] Roman Šíp. Visual detection of traffic cones for autonomous student
formula, 2022. [Thesis to be defended].

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014. arXiv preprint arXiv:1412.6980.

[30] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amsterdam,
2018.

48

https://en.wikipedia.org/w/index.php?title=Homogeneous_coordinates&oldid=1062485619
https://en.wikipedia.org/w/index.php?title=Homogeneous_coordinates&oldid=1062485619
http://cocodataset.org/#download
https://github.com/cocodataset/cocoapi/
https://github.com/cocodataset/cocoapi/
https://pytorch.org/vision/0.11/models.html
https://pytorch.org/vision/0.11/models.html
https://github.com/westerndigitalcorporation/YOLOv3-in-PyTorch
https://github.com/westerndigitalcorporation/YOLOv3-in-PyTorch
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet

Appendix A
Contents of CD

A.1 List of files. dataset1.zip. dataset2.zip. generator.py. generate_anchors.py

A.2 Custom synthetic dataset

In the early stage of our work, we created a small dataset (100 images,
600×1024), which imitates the environment we dealt with – path delimited
by traffic cones on the road. We used Blender software [30] to create the
scene and its Python API to simulate movement and obtain the ground truth.
The images, ground truth annotations, and the source file are included in the
dataset1.zip and dataset2.zip files.

A.3 Support for variable anchor box dimensions
YOLOv3 model

The modified version of YOLOv3 that uses anchor boxes with variable sizes
respecting the current camera model was published at https://github.com/
matejsuchanek/YOLOv3-in-PyTorch/tree/var_anchors. It is stored in the
var_anchors branch of our fork of the third-party YOLOv3 implementation
in PyTorch that we found to be malfunctioning.

Sizes of the anchor boxes should be saved in the anchor.py file in the src/
directory. They can be generated using the generate_anchors.py script and
the generator.py class from the thesis attachment, which implement the ray-
casting algorithm (Sec. 3.2, page 13) in steps. When run, the script produces
the anchors.py file based on the config (camera model, see Sec. 3.1.1) and
anchors_example.png image, similar to that in Fig. 3.2 (for visual feedback).

49

https://github.com/matejsuchanek/YOLOv3-in-PyTorch/tree/var_anchors
https://github.com/matejsuchanek/YOLOv3-in-PyTorch/tree/var_anchors

	Introduction
	Motivation
	Thesis outline

	Related work review
	Overview of object detection paradigm
	Viola–Jones object detector
	R-CNNs
	YOLO
	YOLOv3

	Point-based detection and heatmap regression

	Proposed methods
	Prior knowledge representation
	Camera model

	Variable anchor size in YOLOv3
	Filtering detections using camera model
	Location-based filters
	Similarity-based filters

	Heatmap regression using segmentation model
	Ground truth representation
	Architecture
	Output processing

	Experiments
	Dataset
	Evaluation metrics
	Models
	Evaluation
	Results
	General analysis
	Performance
	Variable anchor box sizes for YOLOv3
	Direct application of scene geometry constraints
	U-Net models for heatmap regression
	Plots

	Conclusion
	Bibliography
	Contents of CD
	List of files
	Custom synthetic dataset
	Support for variable anchor box dimensions YOLOv3 model

