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Abstract
One aspect of studying subatomic par-
ticles by observing proton-proton colli-
sion is being able to identify those colli-
sions where the particles of interest occur,
since thousands of collisions are happen-
ing in an accelerator such as the Large
Hadron Collider (LHC) at any given time.
Machine learning methods have shown
the potential to improve the performance
of the detection while using either hand-
engineered features or low-level measure-
ments from the detector as input features.
One such particle, which has been stud-
ied by multiple research groups, is the
Higgs boson. The aim of this thesis is to
test and compare several machine learn-
ing algorithms and compare the usage of
hand-engineered features with the usage
of direct measurements of the detector on
the task of detecting Higgs boson events,
namely the tt̄H process. Gradient boost-
ing, multi-layered perceptron (MLP) and
TabNet algorithms were tested and the re-
sults show superior performance of gradi-
ent boosting algorithms. Hand-engineered
features show superior performance as op-
posed to direct measurements from the
detector. Combination of all types of fea-
tures show the best performance. We also
show that classifiers training with only
the most important features can achieve
results with only a small performance de-
crease, while on the other hand provid-
ing benefits in terms of training time and
model simplicity. In addition, it is shown
that for an increased amount of training
data, the performance of the classifiers is
expected to improve.

Keywords: CERN, ATLAS, Higgs
boson, classification, neural networks,
machine learning

Supervisor: prof. Dr. Ing. Jan Kybic

Supervisor-specialist: doc. Dr. André
Sopczak

Abstrakt
Jedním z aspektů zkoumání subatomár-
ních částic pomocí studia protonových srá-
žek je schopnost identifikovat ty srážky,
kde vznikají částice, které nás zajímají, je-
likož v akcelerátoru, jako je Large Hadron
Collider (LHC), v každém okamžiku do-
chází k tisícům srážek. Metody strojového
učení ukázaly potenciál zlepšit úspěšnost
detekce při použití jak příznaků vytvoře-
ných na základě doménové znalosti (do-
ménové příznaky), tak těch odpovídají-
cím přímým měřením z detektoru (níz-
koúrovňové příznaky). Jednou z částic,
jejímž studiem se zabývá několik výzkum-
ných skupin, je Higgsův boson. Cílem této
práce je otestovat a porovnat několik al-
goritmů strojového učení a porovnat do-
ménové příznaky oproti nízkoúrovňovým
příznakům na úloze detekce kolizí, kde
vzniká Higgsův boson, konkrétně jeho pro-
dukce zvaná tt̄H proces. Byly testovány
algoritmy založené na gradient boostingu,
více-úrovňové neuronové sítě (MLP) a
TabNet, přičemž metody gradient boos-
tingu dosahují nejlepších výsledků. Uka-
zuje se rovněž dominance doménových pří-
znaků nad nízkoúrovňovými, nejlepších
výsledků je dosaženo při jejich kombinaci.
Je také ukázáno, že klasifikátory použí-
vající pouze několik nejdůležitějších pří-
znaků mohou dosáhnout téměř tak dob-
rých výsledků jako ty používající všechny
příznaky, s dodatečnou výhodou nižších
časů trénování a větší jednoduchosti vý-
sledného modelu. Rovněž je ukázáno, že
při získání více tréninkových dat lze od
klasifikátorů na příslušné úloze očekávat
zlepšení výkonu.

Klíčová slova: CERN, ATLAS, Higgsův
boson, klasifikace, neuronové sítě,
strojové učení

Překlad názvu: Metody strojového
učení pro detekci tt̄H mechanismu
produkce Higgsova bosonu
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Chapter 1
Introduction

Researchers at CERN and other institutions have been uncovering new insights
regarding how our universe works, which is often done by examining the
particles that make up the matter itself. One such experiment, which deals
with searching for new particles, is the CERN ATLAS experiment [A+08],
which registers particles created in proton-proton collisions from the Large
Hadron Collider (LHC).

The collisions where massive particles of interest occur constitute only
a small fraction of all events that happen in the detector, so it is important
to be able to select what subset of events is suitable for further analysis and
which events can be ignored.

This task, called event selection, is performed on multiple levels. Given that
the ATLAS detector detects over a billion particles per second, which would
not be possible to store into a permanent storage, it features a two-stage
trigger system reducing the total number of events. The first stage of this
system is hardware-based and immediately after an event is created, makes a
decision whether to keep or discard it. Roughly 100 000 events per second
are passed from the first stage to the second, which is composed of a number
of computers that perform a finer selection of roughly 100 events per second
for permanent storage. More custom analysis-specific selections are then
performed on the stored data.

Event selection can be framed as a signal versus background classification
problem, where the goal is to sucessfully detect particle collisions where some
physics process of interest happened (signal events) from those collisions where
it did not happen or where another process occured (background events).
Each collision event is described by a set of parameters and either is the
physics process of interest (positive class) or not (negative class). By framing
the problem as such, machine learning methods can be used to solve it.

This thesis in particular is dealing with the problem of event selection
applied on one particle that has been studied a lot in recent years in high
energy physics, the Higgs boson. This work aims to apply neural networks to
separate events where the Higgs boson was produced from the events which
have similar properties but the Higgs boson was not produced. In addition the
results are compared to previous results. Particularly, deep learning methods
and decision tree ensembles are the main focus.

1



1. Introduction .....................................
The aim of this study is to improve and further advance the study of the

tt̄H process [Col18] by creating a functional tool for the event selection task,
enabling more precise measurements of the properties of the Higgs boson.
Given that the event selection task is performed in the same way as other
processes that are studied in high energy physics, the knowledge gained in
this study related to the performance of different methods and algorithms is
transferrable to other studies that involve the task of separating signal from
background events.

1.1 Task description

The task of this thesis is to find a classifier that takes as input signal and
background events and classifies them such that significance is maximized as
computed in chapter 3. The signal class in this case are the events belonging
to tt̄H process, while the background constitutes of events of other processes,
namely tt̄W , tt̄Z, tt̄, V V and other. The other class represents multiple
merged less frequent background processes. Each event is described by a set
of parameters, which are either some direct detector measurements such as
energies or momenta of the collision products, or some higher-level constructed
numerical characteristics based on the measurements. The task itself is then a
multiclass classification. Although the goal is the maximization of significance
(as defined in chapter 3), other evaluation metrics are also used to keep track
of the classifier performance in the context of more frequently used (standard)
machine learning metrics, such as the ROC curve. This helps to see whether
the classifier is performing well from the machine learning point of view.

1.2 Related Work

The usage of machine learning and deep learning methods has been gaining
popularity in many fields and particle physics is no exception. Currently there
are many cases where these methods are used, such as hit reconstruction -
mapping particles to individual hits of the detector sensors, track finding -
identification of measurements belonging to the same track, object identifi-
cation - determining which particles were present or event selection, which
is the main focus of this thesis. An overview of machine learning cases in
high energy physics is given in [GCW18]. In [A+92] for example, a neural
network was used for separating a sample of selected hadronic decays. In
event classification in general, physics-inspired features are often created and
then fed into the models. [B+04] showed that deep networks, which receive
as input only the low-level measurements made by the particle detector,
can achieve better results, suggesting that manually creating features only
results in an information loss. Another successful usage of neural networks
in high energy physics was demonstrated in [A+16], where a convolutional
neural network was used to select neutrino events in the NOvA neutrino
detector [Bia13].

2



.................................... 1.2. Related Work

This thesis is focused mostly on the machine learning part of the physics
problem and therefore the network optimization is a significant part of it. The
optimization of neural networks is a complex problem involving the choice of
many different hyperparameters and although there is currently no way to
say beforehand what the best choice of these hyperparameters is, works such
as [Ben12] and [YA20] give practical recommendations based both on theory
and empirical research.

Deep neural networks have been achieving astonishing results in recent years
in involving language tasks, text, audio or video data [DCLT19, GPAM+14,
B+20]. One of the most common types of data today is tabular data, where
the ensembles of decision tree models such as those based on gradient boost-
ing [Fri01], are considered to be the state-of-the-art methods and can fre-
quently be seen on the top ranks of charts in many machine learning com-
petitions [SZA22]. Despite that, there have been attempts of researchers to
create specialized deep neural network architectures for tabular data such as
TabNet [AP21] or TabTransformer [HKCK20] to improve the performance
of deep networks on "classical" tabular data, although [SZA22] shows that
even these sophisticated models are often incapable of beating the gradient
boosting-based ensembles.

3
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Chapter 2
Data description

2.1 Physical meaning of the data

2.1.1 Proton-proton collisions

When two particles collide, new, heavier particles than those which were
involved in the interaction are produced and almost instantly decay into
lighter particles. In the detector, it is therefore only possible to measure
physical properties of these lighter particles called decay products. These can
be electrically-charged leptons (electrons or muons) and particle jets (streams
of particles originating from quarks or gluons). The fact that we can only
measure the properties of the decay products brings with itself a problem
where we have to deal with a situation where different physical processes
can result in decay products containing similar particles and therefore they
appear in our working channel (defined in chapter 2.1.3) and are not easily
distinguished by the measured properties, which is what makes the correct
event classification difficult [Kel19].

2.1.2 tt̄H production

There are many different ways how a Higgs boson can be produced, such as
through the gluon fusion process or vector-boson fusion process [Col16], but
this thesis focuses on the so-called tt̄H production, which is a rare process
where a pair of top quarks emits a Higgs boson or a fusion of a top quark-
antiquark pair creates a Higgs boson, which is shown in Figure 2.1. This
production mode counts for roughly 1% of all Higgs productions. Examining
this process is crucial to understanding the properties of the coupling of the
Higgs boson to the top quark, the heaviest known fermion.

5



2. Data description ...................................

Figure 2.1: Higgs boson production with a pair of top quarks [Ant21], the
so-called tt̄H process, shown as a Feynman diagram.

2.1.3 Channel & preselections

It is important to mention that the analysis done in this thesis is performed
on a so-called 2LSS1Tau channel. This means, that only events that satisfy
the condition of having two same-sign light leptons and one hadronically
decaying τ are considered, others are filtered out of the input files and not
considered for training at all. This filter on the data is called a preselection
and different experiments can vary in the preselection. The exact preselection
of an experiment is always specified with it. The reason why we do not
consider all events is that concurrently, there are multiple research groups
within CERN that study the Higgs boson and the work is divided among
them such that each group works on a different channel and research findings
are then merged together to produce an aggregate analysis result.

2.1.4 Background for tt̄H production

As mentioned in the previous chapter, when searching for the occurence of
a particular physical process, one has to be aware of processes with similar
decay products. In the case of tt̄H Higgs production, there can be many
such processes, but the main ones are tt̄W , tt̄Z and tt̄, which constitute the
majority of events with similar decay products happening in reality, therefore
they are used in our dataset to train and evaluate the classifier along with
the V V background and a class of backgrounds called other, which reflects
more processes which are less frequent and therefore merged together to a
single category.

From the machine learning point of view, signal, in this case tt̄H, is the
positive class while background processes are the negative classes. In the

6



.................................. 2.2. Training & Testing

previous study on the topic [Mal20], only tt̄W and tt̄Z background processes
were used for training and other background was held as a constant during
evaluation. The tt̄W process results in two W bosons and two b-quarks as
decay products, while the tt̄Z process can result in many different decay
modes. The V V process stands for di-vector boson production, either a
pair of W or Z bosons is produced. In the tt̄H process, two t-quarks are
produced which subsequently decay into a W and b, thus two W bosons and
two b-quarks are created. Figure 2.2 shows the diagrams for tt̄W , tt̄Z, tt̄
backgrounds.

Figure 2.2: Diagrams of tt̄W , tt̄Z and tt̄ processes [Ant21]

2.2 Training & Testing

2.2.1 Simulation data vs. real data

In order to train a classifier to discriminate between samples of different classes
of events, a training dataset with known labels is necessary. To address this
need, ATLAS uses programs for generating events such as Pythia [S+14]
and uses simulation frameworks that mimic the behavior of the detector
itself [A+10]. These simulations generate simulated data of each class of
events that are used in our training set. It is up to us to select which
classes (physics processes) should be included in our training set based on
the particular use case.

The fact that simulated data is used during training brings with itself
some specific aspects we need to take into account. First, the distribution
of classes in our dataset is completely different than the distribution of the
occurence of individual decay processes in reality because more signal events
are explicitly generated to provide more examples to the classifier. Second,
the expected numbers of events occuring in reality are usually much smaller
than the number of training samples we have from the simulations. Due to
this fact, weights are assigned to each event during training and evaluation
such that the data is scaled to the real class distribution and expected number
of events in real data. More details about weighing are given in chapter 2.2.2.

2.2.2 Event weights

As it was mentioned in the chapter describing the nature and differences of
real and simulated data 2.2.1, the number of simulated data that the classifiers
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2. Data description ...................................
are trained on exceed the number of events ocurring in real data, so a number
is computed for each event in our simulated dataset that is a probability of the
event occuring in reality during our measurement period, while the weighted
count of the events in the end produce a number of events corresponding to
the number of events recorded in the real data. This number calculated for
each event is called an event weight and is denoted as (we), which means the
weight of event (e), where event is a tuple of features describing it.

Event weights are used in two ways. First, they are used when computing
the loss function during training, so that the relative probability of each
event occuring is calculated. Both with and without-the-weight training was
experimented with. Second, the weights are always used when computing
the weighted confusion matrix (Cw) during the test phase, which is the main
element used to evaluate the classifier. The element Ci,j

w corresponding to a
value in the weighted confusion matrix on the row i and column j is calculated
as:

Ci,j
w =

∑
x∈Ci,j

wx , where
{
wx is the weight of test example x
C is a classical confusion matrix

, (2.1)

that is, the element on position (Ci,j
w ) is a weighted count (sum of weights

in other words) of samples in the test set, whose true class was (i) and the
predicted class was (j). The fact that the weights can be floating point
numbers also results in the weighted confusion matrix possibly having non-
integer values.

The calculation of weight for each event is based on a formula, which is
reflecting both the origin of the simulation file (different years correspond to
different detector configurations) and the size of the simulated sample. The
exact formula for calculating event weights is specified in appendix A.1 and
was taken from the tt̄H working group internal note [Col19]. One important
note is that some events end up having negative weights, with details about
this property specified in [VYM+21]. Negative weight events are, based on
group consensus, always removed from training. Based on the characteristics
of the simulated data, negative weight events are left in the test set, in
order to obtain the correct number of expected events. The important note
is that overall after applying weights, the weighted count of events should
match the expected number of events recorded in the real data resulting from
proton-proton collisions.

2.2.3 Input data

The simulated data and also real data files come in the form of so-called n-
tuples, which are essentially ROOT format (.root) files, which is a file format
used extensively in the scientific community of high energy physics. Details
about the ROOT ecosystem are explained in more detail in the previous work
on this task [Mal20].
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.................................. 2.2. Training & Testing

One ROOT file contains events of a single or multiple classes. There
can also be multiple files present for one class. Each simulated event is
characterized by a set of parameters describing the event. These are either
some precalculated characteristics of the event such as the number of b-jets or
they are a low-level information related to some physical measurable property
such as kinetic energy of some of the particles making up the decay product of
the event. Given the fact that this data comes from a simulation, the events
also contain some truth information that was fed into the simulation as input
and these variables must not be used as features for training a model, since
they are not available in the real data. Features that are used throughout
this thesis can be separated into two groups:. Low-level features - (IDs and explanations in Table B.1): Features which

correspond to the direct measurements of the detector.. High-level features - (IDs and explanations in Tables B.2 and B.3):
Features which correspond to metrics calculated using domain knowledge.

New simulations are produced regularly, with each simulation being more
precise than the last one and with possible addition of new features. It is
therefore advisable to always use the newest production. Each simulation
is also based on a particular configuration of the detector, which has been
changing throughout years. This is marked by the tags mc16a (2015 and 2016
configuration), mc16d (2017 configuration) and mc16e (2019 configuration).

The Table 2.1 shows the exact properties of the dataset used throughout
out experiments. It amounts to 73 370 training examples which correspond
to 105.87 expected events in real data.

Table 2.1: Training data overview - v0605_v3 dataset. Weighted count of
training examples corresponds to the expected count of events in real data.

Class Number of training examples Weighted count of training examples

tt̄H 29538 22.75
tt̄W 10289 24.84
tt̄Z 27410 18.22
tt̄ 186 22.16
V V 2805 6.45
other 3142 11.42

Total 73370 105.87

2.2.4 Preprocessing

Before using the data in any machine learning algorithm in this thesis, the
ROOT files are preprocessed such that multiple files are combined to form a
single tabular dataset that can be directly used as input for machine learning
algorithms. At first the data is scattered into multiple ROOT files, each
containing a subset of the whole dataset and it is not convenient to use it
in this way. The goal of the preprocessing is thus to take a set of n-tuples
and produce a single tabular dataset usable for training. The so-called
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2. Data description ...................................
data pipeline is used for this purpose. In general, the pipeline consists of
3 steps, separated into 3 scripts, data_convert.py , data_weights.py and
data_prepare.py. More details related to the functionality of the scripts is
given in the appendix C.
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Chapter 3
Significance

Unlike traditional machine learning metrics that are usually optimized in
classification tasks, such as accuracy, sensitivity or specificity, in the tt̄H
event selection, a special metric native to particle physics is used, called
significance.

To illustrate the meaning of significance, let there be a classifier, which
classifies events detected in a particle detector (described by a number of
features related to the event) into two classes, selected events and rejected
events.

In the context of this thesis, the selected events would be all events marked
by the classifier as tt̄H events while rejected events would be all other events.
Let us then have a null hypothesis H0, which states that a particular decay
process (tt̄H) does not exist and, based on a physics model we have, some
number of events b are expected to be observed in our dataset. We then
perform an experiment and observe a higher number of events than b, call this
number n. There is a possibility that this was just a statistical fluctuation, so
we are interested in determining, whether this was the case or that the reason
for observing a higher number of events than b was that there exists some
unknown process that our theoretical physics model predicts. If the number
of events n is much higher than the expected number of events b, we may
conclude that it is not just a statistical fluctuation. In other words, if the

n− b

is significant based on a result of a statistical test, we can reject H0. The
result of the hypothesis test is the test statistic, from which the p-value can
be calculated. The meaning of p-value is the probability of observing such
or more extreme observation given H0 is true. If the p-value is low enough,
we reject H0. This p-value is then reported, with the only difference being
that it is expressed as S, such that a zero-mean normally distributed random
variable with standard deviation 1 exceeds S with probability p-value. Table
3.1 lists p-values and their corresponding values of significance.

The detailed formula for calculating significance is given in [Kor08], but due
to the computational complexity and given the assumption that the selected
events come from a normal distribution, we can use simplified formulas for
estimating significance. These are used in many CERN publications as well.
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3. Significance .....................................
Table 3.1: Relationship of significance and p-value [Kor08]. 1 sigma standard
deviation corresponds to 68% confidence level. 2 sigma standard deviation
corresponds to 95% confidence level.

significance 1 2 3 4 5

p-value 16% 2.3% 0.14% 3 · 10−5 3 · 10−7

S = s√
s+ b

(3.1)

or in its simplified form, which can be used when the amount of background
largely exceeds signal:

S = s√
b
, (3.2)

where

s = n− b . (3.3)

In the classification task performed in this thesis, which is the task of
discriminating between signal events (tt̄H class) and background events (tt̄W ,
tt̄Z, tt̄, V V , other classes), the significance is calculated using a trained
classifier and a test set. In particular, the weighted confusion matrix
(defined in chapter 2.2.2) values are used to calculate the significance.

Signal s in our case is calculated as:

s = F ·
∑

x∈Pt

wx , where


wx is the weight of test example x
Pt is a set of True Positive examples
F is the scaling factor, defined below

, (3.4)

while Background b is calculated as:

b = F ·
∑

x∈Pf

wx , where


wx is the weight of test example x
Pf is a set of False Positive examples
F is the scaling factor, defined below

(3.5)

When significance is calculated, it has be calculated such that it corresponds
to a significance on a dataset of real data recorded in some specific period.
When using a test set to calculate it, this condition does not hold because we
only have a subset of the accordingly weighted simulated dataset. The scale
factor F is used to account for this. When the significance is calculated from
the weighted confusion matrix, it is necessary to scale the numbers in the
weighted confusion matrix such that they correspond to the expected count
of events in real data recorded in that specific period. To achieve that, we
calculate the scale factor as:
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...................................... 3. Significance

F = sizef

sizet
, where

{
sizet is the size of the testset,
sizef is the size of the simulated dataset

(3.6)

.
Figure 3.1: Example of a weighted confusion matrix for significance calculation.
The percentages in the light blue and green cells show the ratio of the cell value
to the sum of all cell values in green and blue cells. The 2-tuple of percentages
in the dark cells show the ratios of correctly (green percentage) and incorrectly
(red percentage) classified examples in the specific row/column

Figure 3.1 shows an example of a weighted confusion matrix (Cw) from
which the significance is calculated. (the term Ci,j

w corresponds to a value
in the weighted confusion matrix on the row i and column j (indexing goes
from zero)). The size of the test set was 20% of the simulated data, thus, the
scale factor F = 5. Equation 3.7 shows the significance computation for the
matrix specified in Figure 3.1.
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3. Significance .....................................

S = s√
b

= F · C0,0
w√

F · (C1,0
w + C2,0

w )

=
√
F · C0,0

w√
(C1,0

w + C2,0
w )

=
√

5 · 3.16√
(2.32 + 2.53)

= 3.208

(3.7)

The example described above is considered as a good result in terms of
significance on our particular task..NOTE Significance was also used to evaluate classifiers in the previous

thesis on this topic [Mal20], but the way how it is computed has changed
due to addition of sample weights in this thesis.
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Chapter 4
Methods

4.1 Optimal threshold search

The decision policy q of the classifiers for example x is as follows during the
training and testing:

q(x) = arg max
y∈C

p(y|x), where


C = {tt̄H, tt̄W, tt̄Z, tt̄, V V, other}
p(yi|x) = probability that
example x
belongs to class yi

(4.1)

In other words, the classifier predicts that an example is in a class which
has the highest probability. But this decision strategy is not always optimal
to achieve the best performance if we optimize for significance, so the same
strategy is used as in [Mal20] to find the best model. The strategy is also
displayed below.

q(x, t) =
{
tt̄H if p(tt̄H|x) ≥ t
arg maxy∈R p(y|x), where R = C \ {tt̄H} otherwise

(4.2)

After a model is trained, the test set is taken and 100 evenly distributed
decision thresholds (t) from 0 to 1 are generated. Then for each threshold (t),
the class predictions are calculated on the test set based on this classification
rule, and the weighted confusion matrix is then calculated, which is used to
calculate the metric of interest. The threshold (t) with the best value of the
significance is taken as the optimal threshold.

4.2 Hyperparameter optimization

During training of the classifiers, a hyperparameter optimization was per-
formed to find the optimal model. Each model used in our experiments had
their parameter grids (specified with the relevant experiments) and a variant
of coordinate descent algorithm was used to find the optimal value for each
hyperparameter. The method works in such a way that during one iteration,
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4. Methods.......................................
the best value of a single hyperparameter is being selected while keeping
the others fixed. After the best value is found, it is fixed and the procedure
continues with another hyperparameter. Altogether four rounds which go
over all hyperparameters are performed with an early stopping behaviour
in place to stop the optimization if it does not improve further. Due to
each experiment being run with a random training/testing split, a 4-fold
cross-validation is performed so that each experiment run with a certain set
of hyperparameters is described by 4 individual training/testing phases to
smooth out the random selection process.

4.3 Algorithms description

The goal of this chapter is to describe classification algorithms used in this
thesis for the signal-background classification problem. Namely these are
algorithms based on gradient boosting machines such as XGBoost [CG16],
feed-forward neural networks, and some other specific neural network archi-
tectures suitable for tabular data such as TabNet [AP21]. The method used
for calculating the importance of features by using the multi-layer perceptron
network is also discussed.

4.3.1 Neural networks - overview

Neural networks, also called artificial neural networks, are a type of machine
learning algorithm which can be used for a variety of prediction tasks such
as classification, regression, anomaly detection, computer vision or natural
language processing. There are many different types of networks, but in
general, they are composed of so-called layers and if the network is composed
of multiple layers, we speak about deep learning. Each layer is a set of
computational units, also called neurons. Each neuron can be represented
by some mathematical function, which receives an input and produces some
output. Each neuron also has a set of parameters which parametrize the
function it implements. Neurons in each layer are connected to neurons in
another layer, meaning that their outputs serve as inputs to the other neurons.
There are different types of architectures of the neural networks and they
differ substantially in how the individual layers are connected to each other,
what kind of mathematical functions the neurons implement, how many layers
and neurons are in the network and many other design aspects.

To put it more technically, the whole neural network is a mathematical
function:

f : XRn → yR
m (4.3)

mapping some input (X) (received by the first layer of neurons) to some
output (y) (produced by the last layer of neurons), where the nature of (X)
and (y) differs based on the task. For example, in the task of recognizing
the licence plates from images the input (X) is an image and (y) a letter
sequence, which corresponds to the predicted licence plate. On the other
hand, in a task of predicting age of a person from the measuerements of their
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................................ 4.3. Algorithms description

health indicators, the input (X) is a vector of numerical measurements and
(y) is a number.

Figure 4.1: Schema of a multilayered perceptron neural network with 4 lay-
ers [Der17]

4.3.2 Multi-layer perceptron

Multi-layer perceptron (MLP) is a type of feed-forward neural network that
is one of the algorithms used for the classification task in this thesis. Every
neuron in one layer is connected to every other neuron in the next layer, as
it is seen in chapter 4.1. The first layer is called the input layer and the
last layer is called the output layer. The layers in between are called hidden
layers. It is possible to make the network bigger and capable of representing
more complex relationships by adding new hidden layers and thus making the
overall mathematical function that the networks represents more complex.
The MLP network could also be viewed as a directed acyclic computational
graph.

Each node of the graph, as displayed in Figure 4.1, is a single neuron
implementing a linear transformation of the inputs along with a nonlinear
function called activation function:

A(
N∑

i=1
wi · xi) , (4.4)

where A is the nonlinear activation function.

4.3.3 Activation functions

The goal of activation functions in neural networks is to add a nonlinear
element, which enables the network to represent a more complex mapping
between inputs and outputs. There can be many different activation func-
tions and it also plays a role in which layer we want to use it. For the
input and hidden layers, the most common activation functions are Rectified
Linear Unit(ReLU), Sigmoid or Hyperbolic tangent(Tanh). For multinomial
classification, Softmax is often used on the output.
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4. Methods.......................................
. Rectified linear unit function (ReLU)

f(x) = max{x, 0}. (4.5). Sigmoid function
f(x) = 1

1 + e−x
. (4.6). Hyperbolic tangent function

f(x) = ex − e−x

ex + e−x
. (4.7)

. Softmax function
f(xi) = exp(xi)∑

j exp(xj) (4.8)

4.3.4 Feature Importance

When working with classification algorithms, one of their desirable properties,
besides being able to classify as many samples correctly as possible, is being
able to quantify the influence of a particular input dimension. This enables
us to say which features are important and play a key role in determining
the class of a sample. Not only does this allow us to reduce the number of
features without compromising the resulting performance of the classifier, but
it also indicates to us which features should we be interested in with respect
to the inputs-outputs relationship we are examining.

Deep neural networks are often thought of as black-box models which on
one hand can achieve outstanding results on some tasks, but on the other
hand it is often not clear why exactly they make some particular decision.
In tree-based models the feature importance for a parameter can easily be
calculated based on the reduction in the metric used to select split points
in the trees and given that gradient boosting algorithms (described more in
detail in chapter 4.3.5) sometimes use decision trees as weak learners, they
share this property [HTF09].

Although interpretability is not particularly a strength of neural networks,
there exist approaches to extract which attributes are the most important.
One such method is called Integrated Gradients [STY17], which is also used
to extract feature importance in some of our experiments.

For each feature in a particular sample, this method assigns a score de-
scribing whether the value of this feature contributed to the sample being
classified as the positive class or negative class and also by what extent. The
total score of the feature is then averaged over all samples.

The attribution for a sample works in the following way:..1. A baseline input is taken. This is an input for which the prediction is
neutral...2. A series of inputs are generated such that these are a linear interpolation
between our input of interest and the baseline input.
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................................ 4.3. Algorithms description..3. Model outputs are calculated for these inputs based on our trained model...4. For each model output corresponding to one interpolated input, the
gradient with respect to the inputs is calculated...5. Average of those gradients for a single feature is the feature attribution
for that parameter.

4.3.5 Gradient boosting algorithms

Ensembling

Some algorithms used by our experiments, namely the XGBoost, are based
on the technique of gradient boosting, which is a form of model ensembling.
Ensembling is a general technique used in machine learning to combine
prediction outputs of multiple (simpler) models, so-called weak learners,
together to form the final prediction output. It can be achieved by two
approaches:. Bagging: In bagging we sample multiple training sets ti from our training

set T with replacement (ensuring independance among the samples) and
train R high variance, low bias predictors - one model ri on one
dataset ti - which together creates the model ensemble. When classifying
a new sample xk, the output of the whole model is the average of the
output of all models ri:

q(xk) = 1
R
·

R∑
ri

ri(xk) (4.9)

Notable algorithm using the principle of bagging is the Random Forest.. Boosting: In boosting we sequentially train low variance, high bias
predictors, which are learned sequentially so that subsequent learners
aim to fix the mistakes made by previous learners. The most common
implementation of boosting is Adaboost, which in each step assigns
higher weights to incorrectly classified examples in order for the next
weak learner to improve performance on them.

Gradient Boosting

The idea of gradient boosting is best described on a gradient boosting al-
gorithm performing regression. In simple general terms, gradient boosting
model is created in the following way:..1. A baseline model is taken. This can be a model predicting a constant or

a model minimizing the mean squared error (as our example consists of
a regression problem).
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4. Methods.........................................2. Residuals are calculated as the partial derivative of the baseline model
predicted outputs with respect to its inputs...3. A new weak learner is fitted to the negative of these residuals using
squared loss...4. Output of the new model is taken as the baseline model output + output
of the weak learner from the previous step...5. Calculation of residuals of the new model and subsequent fitting of
another weak learner to the residuals is repeated for a desired number of
steps.

This procedure enables us to generalize for a classification task using slight
modifications and replacement of the loss function [Drc22] in the following
way:..1. True label of any given example xi is represented as a distribution

p(y|xi), where
{
p(yi|xi) = 1 if xi belongs to class yi

p(yi|xi) = 0 otherwise
(4.10)..2. Given the number of classes is M , we create M models, one for each

class yj in our dataset. During classification, each respective model mj

is used to predict a score for its respective class yj . The scores are then
normalized to represent a distribution. Result q of the classification of
example xi is determined by:

q(xi) = arg max
y

p(y|x) (4.11)..3. A difference between the predicted distribution and the true one is
calculated, for example using KL-divergence [Joy11]. This is the metric
we wish to minimize over the training set...4. Now the same approach as with training the regressor shown above
is used. The only difference is that we have M models, which aim to
predict scores corresponding to the values of the distribution p(y|x) for
their respective class over the whole training set. After each step, weak
learners are added to compensate for the residuals of the M models .

4.3.6 TabNet transformer network

For classification tasks on tabular data, gradient boosting algorithms such
as XGBoost or LightGBM are often the go-to strategy [SZA22], but some
specific architectures of the neural networks other than the multi-layered
perceptron have been designed specifically to tackle tabular data. One such
architecture is the TabNet network [AP21].

The TabNet is a transformer neural network architecture - a network based
on encoder and a decoder part using attention units [VSP+17]. The encoder
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part of TabNet is composed of a feature transformer, an attentive transformer
and feature masking steps. The decoder is composed of a feature transformer
block and a fully connected layer. The feature transformer blocks have a part
which has common weights throughout all feature transformer blocks in the
network and a part which has independent weights.

The TabNet model is composed of so-called steps, as it is shown in Figure
4.2. The number of steps is a configurable hyperparameter and the more steps
there are, the more components the model has and thus a larger capacity
to learn, but also more likely it is to overfit. The steps mimic the behavior
of weak learners in ensembles. One part of a step is a feature transformer,
which itself is a neural network composed of many layers of three types -
fully connected layer, Batch normalisation layer and a Gated Linear Unit
activation [DFAG16]. Another component in a single step is the attentive
transformer, which is again a neural network having three types of layers -
fully connected layer, Batch normalisation layer and a Sparsemax layer. This
component performs feature selection while also getting as input weights which
the previous block gave to each example, thus propagating the information
through steps.
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Figure 4.2: TabNet architecture overview, taken from [AP21]
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Chapter 5
Experiments

5.1 Overview

This chapter shows the results of the experiments, where different models are
tested on our dataset, the feature importance is determined and the perfor-
mance dependence on the amount of statistics is explored. The experiments
use n-tuples version v0605_v3 (see Table 2.1) and apply the tight lepton
preselection as specified in the Appendix A.2.

5.2 Experiment 1 - model and feature comparison

5.2.1 Overview

This experiment’s goal is to compare different types of models for the tt̄H
event selection task and also compare how low-level detector measurement
features perform against high-level features constructed by domain experts.
Namely, the types of models whose performances were compared are:.Multi-layer perceptron neural network. XGBoost. TabNet neural network

Three particular sets of features were tested - a detailed list of features
used is given in the respective table for each feature set:. Low-level features - (IDs and explanations in Table B.1): Features which

correspond to the direct measurements of the detector. Altogether there
is 17 low-level features available. Later referred to as L-L.. High-level features - (IDs and explanations in Tables B.2 and B.3):
Features which correspond to metrics calculated using domain knowledge.
Altogether there is 66 high-level features available. Later in the plots
referred to as H-L.
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5. Experiments .....................................
. All features - union of previous two. Later in the plots referred to as

ALL.

Each algorithm was tested using each feature set, so altogether it accounts
for nine experiments.

(a) : Distribution of jet_eta0 in all (train-
ing+testing) data

(b) : Distribution of taus_pt_0 variable
in all (training+testing) data

Figure 5.1: Distribution of events based on selected input features - v0605_v3
dataset. Numbers in the legend correspond to the expected numbers of events in
real data, in this case corresponding to the sum of weights of simulated events
of each particular process. Numbers correspond to the input data Table 2.1

5.2.2 TabNet - Parameter grid

Table 5.1 shows the parameter grid used during hyperparameter optimization
of the TabNet algorithm.

Table 5.1: Parameter Grid - TabNet

Parameter name Parameter description Values

n_a Width of the decision prediction layer numpy.arange(8, 64, 12)
n_d Width of the attention embedding for each mask value always equal to n_a
n_steps Number of steps in the architecture numpy.arange(3, 10, 3)
gamma Number of steps in the architecture numpy.linspace(1, 2, 4)
n_independent Number of independent Gated Linear Units layers at each step numpy.arange(1, 6, 2)
n_shared Number of shared Gated Linear Units at each step numpy.arange(1, 6, 2)
lambda_sparse Extra sparsity loss coefficient 0.001, 0.05
momentum Momentum for batch normalization 0.01, 0.02, 0.1, 0.2, 0.3

5.2.3 MLP - Parameter grid

Table 5.2 shows the parameter grid used during hyperparameter optimization
of the MLP algorithm.
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Table 5.2: Parameter Grid - MLP

Parameter name Parameter description Values

learning_rate Learning rate 0.05, 0.001, 0.1, 0.01
layers Network architecture List of network architectures as specified in B.4
max_epoch Maximum amount of epochs during training 150 - with early stopping enabled
batch_size Network batch size 8, 16, 32, 64, 128, 512
optimizer Optimization algorithm used for training Adam, Stochastic Gradient Descent
use_weights_in_loss Whether weights examples should be weighted in the loss function True, False

5.2.4 XGBoost - Parameter grid

Table 5.3 shows the parameter grid used during hyperparameter optimization
of the XGBoost algorithm.

Table 5.3: Parameter Grid - XGBoost

Parameter name Parameter description Values

gamma Minimum loss reduction required to make a further partition on a leaf node of the tree 0, 6, 12, 25, 100, 200
learning_rate Learning rate 0.01, 0.03, 0.1, 0.25, 0.5
max_depth Maximum depth of a tree 5, 10, 15, 25, 35
n_estimators Number of gradient boosted trees 50, 100, 130, 150
reg_alpha L1 regularization term on weights 0, 0.4, 3.2, 12, 25, 51, 102, 200
reg_lambda L2 regularization term on weights 0, 0.4, 3.2, 12, 25, 51, 102, 200

5.2.5 Results

Running these 9 experiments involving 3 classifiers and 3 sets of features
showed superior performance of higher-level parameters as opposed to the
low-level ones. The best results were achieved by combining both sets of
features. With respect to algorithms, the XGBoost showed the best results
compared to the other algorithms. Close to XGBoost was the MLP network
using all features.

Results are provided in the form of boxplots showing the performance
of each algorithm-feature combination in terms of significance (Figures 5.2
and 5.3 show two different significance approximations based on definitions
in chapter 3), AUC (Figure 5.4) and accuracy (Figure 5.5).

Each boxplot shows results of 20 cross-validation runs of the best model
for a particular algorithm and feature set in terms of the given metric. The
boxplots are sorted based on the mean value (green triangle in the plots) of
the metric of these 20 cross-validation runs.
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Figure 5.2: Significance dependance on algorithm and feature selection - training
with weights, simplified S approximation according to Equation 3.2 - Exp.1

Figure 5.3: Significance dependance on algorithm and feature selection - training
with weights, S approximation according to Equation 3.1 - Exp.1
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Figure 5.4: AUC dependance on algorithm and feature selection - training with
weights - Exp.1

Figure 5.5: Accuracy dependance on algorithm and feature selection - training
with weights - Exp.1

XGBoost algorithm achieved the highest significance of 2.90 when measured
based on the simplified formula for significance. This result proved the
strength of this gradient boosting ensemble on tabular data, where it often
outperforms the neural network algorithms. The details of one run of the best
XGBoost model are given in the confusion matrix (Figure 5.6), AUC plot
(Figure 5.7), and the plot showing significance dependance on the threshold
(Figure 5.8).
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5. Experiments .....................................

Figure 5.6: Weighted confussion matrix (XGBoost with all features) - Exp.1
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...................... 5.2. Experiment 1 - model and feature comparison

(a) : Significance on thresholds (b) : Signal/Background on different deci-
sion thresholds

Figure 5.8: Dependence of signal/background/significance on threshold (XG-
Boost with all features) - Exp.1

Figure 5.7: Network test scores (XGBoost with all features) - Exp.1. The AUC
score for each class is computed using the one vs. rest strategy

The second place in terms of significance is taken by the MLP network.
The overview of five best MLP models using the set of all features is given
in Table B.5. The performance of the MLP model using all features - which
was the second best model overall - is given in more detail in Figures 5.9,
5.10,5.11, 5.12. The stacked histograms (Figures 5.13, 5.14, 5.15, 5.15) provide
an overview of the distribution of the events in the test set and events selected
by the MLP network as signal.
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5. Experiments .....................................

Figure 5.9: Weighted confussion matrix (MLP with all features) - Exp.1
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...................... 5.2. Experiment 1 - model and feature comparison

Figure 5.10: Network test scores (MLP with all features) - Exp.1. The AUC
score for each class is computed using the one vs. rest strategy

(a) : Training - loss function (b) : Training - validation accuracy

Figure 5.11: Network training progress metrics (MLP with all features) - Exp.1
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5. Experiments .....................................

(a) : Significance on thresholds (b) : Signal/Background on different deci-
sion thresholds

Figure 5.12: Dependence of signal/background/significance on threshold (MLP
with all features) - Exp.1

(a) : Distribution of jet_eta0 variable (b) : Distribution of HT variable

Figure 5.13: Distribution of test events - MLP network with all features (1/2) -
Exp.1
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...................... 5.2. Experiment 1 - model and feature comparison

(a) : Distribution of taus_pt_0 variable (b) : Distribution of lep_Pt_0 variable

Figure 5.14: Distribution of test events - MLP network with all features (2/2) -
Exp.1

(a) : Distribution of jet_eta0 variable (b) : Distribution of HT variable

Figure 5.15: Distribution of events classified as signal - MLP network with all
features (1/2) - Exp.1
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5. Experiments .....................................

(a) : Distribution of taus_pt_0 variable (b) : Distribution of lep_Pt_0 variable

Figure 5.16: Distribution of events classified as signal - MLP network with all
features (2/2) - Exp.1

Overall based on the result of the experiment the classifiers using high-level
features outperformed classifiers using low-level features and both performed
worse than classifiers using all features. It showed that better significance
can be achieved by adding more information to the network. The best result
was a mean significance of 2.90 using the simplified approximation in formula
3.2. The resulting significance was confirmed by an independent calculation
using the TRExFitter program [Col21]. The mean significance of 2.90 was
obtained at a 95% confidence level.

A comparison with previous results is also presented. The significance of
2.90 is an improvement over a BDT study performed within the tt̄H working
group which reported a significance of 1.94 [BCG+21]. The previous result
corresponds to a measurement precision of µ = 1 + 0.72/− 0.54, determined
with TRExFitter. The expected measurement precision in this thesis has
improved and it is µ = 1 + 0.42/ − 0.37 1. The value µ is defined as the
ratio of measured compared to expected tt̄H events. As we are only using
simulated data, the value of µ is unity, thus, only the uncertainty of the µ
determination is relevant for this thesis.

To give more context to the presented results of the classifiers, which all
use weights during training as described in chapter 2.2.2, hyperparameter
optimization and subsequent selection of the 9 best models was also performed
without the weights to see how our observed metrics (significance, AUC,

1Similarly to the case of the significance computation, the expected limits calculated by
TRExFitter (or actually be CommonStatTools) are not "signal-blind". In order to build the
Asimov data-set used to extract the expected exclusion limit, the values of the nuisance
parameters fitted in the real data are used. This gives a more realistic value to compare
with the observed one, especially in cases where large nuisance-parameter pulls change the
background prediction significantly with respect to the pre-fit case [Col21].
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...................... 5.2. Experiment 1 - model and feature comparison

accuracy) change. As expected, the significance is reduced when compared
on the basis of the same algorithm-feature set tuple, as it is shown in the
Figures 5.17 and 5.18. This is because algorithms using weights achieve
better performance on highly-weighted samples. On the other hand, AUC
and accuracy are better when not using weights when compared among the
same algorithms-feature set combinations, as shown in the Figures 5.19 and
5.20 show.

Figure 5.17: Significance dependance on algorithm and feature selection -
training without weights, simplified S approximation - Exp.1

Figure 5.18: Significance dependance on algorithm and feature selection -
training without weights - Exp.1
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5. Experiments .....................................

Figure 5.19: AUC dependance on algorithm and feature selection - training
without weights - Exp.1

Figure 5.20: Accuracy dependance on algorithm and feature selection - training
without weights - Exp.1

5.3 Experiment 2 - reduced feature set

5.3.1 Overview

Based on the results of the previous experiment, which suggested that adding
variables will improve our result, it was suggested to improve the usability
of the models, mainly their training times, by finding the most important
features and building a classifier with this subset of them, which would enable
us to train faster with only a small possible reduction in performance.
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........................... 5.3. Experiment 2 - reduced feature set

In the first step, the MLP classifier using all features from previous ex-
periment was taken and it was trained again, this time with the inclusion
of a step which calculated Integrated Gradients (IG) score for each feature.
The computed scores are given in Tables B.6 and B.7. The most important
features in Integrated Gradients are those with the highest absolute value.
Distributions of the four most important features are shown in Figures 5.21
and 5.22.

(a) : Distribution of sumPsbtag variable (b) : Distribution of nJets_OR_TauOR
variable

Figure 5.21: Distribution of all simulated events in the simulated dataset - most
important variables 1/2
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5. Experiments .....................................

(a) : Distribution of taus_eta_0 variable (b) : Distribution of HT variable

Figure 5.22: Distribution of all simulated events in the simulated dataset - most
important variables 2/2

Five experiments were performed to test how much significance can be
achieved when using smaller numbers of the most important features. The
five experiments which using the same model (MLP) included the 5, 10, 15,
20 and 25 most important features based on the importance measured by the
absolute value of the IG score. Their performance was compared.

5.3.2 Results

Figures 5.23, 5.24 and 5.25 show the AUC, significance and accuracy depen-
dance on the number of used features. All three metrics show a gradual
increase, as more information is given to the classifier. With 25 features, the
significance is already larger than the 2.8 threshold.
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........................... 5.3. Experiment 2 - reduced feature set

Figure 5.23: Dependance of AUC on number of used features - Exp.2

Figure 5.24: Dependance of significance on number of used features - Exp.2

Figure 5.25: Dependance of accuracy on number of used features - Exp.2
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5. Experiments .....................................
5.4 Experiment 3 - dependance of significance on
simulated data size

5.4.1 Overview

Given that our data used for training and evaluation comes from a simulation,
we set out to understand how the amount of simulated data influences the
results we get, both in terms of classical metrics such as AUC and the one we
optimize for - significance. Therefore the following experiment was performed.

We performed training on variously sized subsets of our simulated dataset,
in particular we took datasets composed of random 20 %, 40 %, 60 % and
80 % of the simulated data and trained a classifier on these subsets and
then compared the results. The procedure was such that we took the best
MLP classifier using all features from Experiment 1 and on each dataset
size performed 40 experiments composed of training and testing phase to
account for the effect of the random example selection. On each of the 40
experiments, different random subset of the data of the specific size was
taken and trained/tested on. Results are therefore presented in the form of
boxplots. The calculation of significance was changed due to a new aspect
being brought by reducing the simulated data size.

Our full simulated dataset from the v0605_v3 (Table 2.1) n-tuples with
applied preselection contains 73 370 simulated examples, which correspond
to 105.87 expected events. When evaluating experiments for significance,
the goal is always to calculate with numbers that correspond to expected
numbers of events in real data (105.87). Therefore, the scale factor F (defined
in chapter 3) was employed in previous experiments which accounted for the
fact that significance evaluation is happening only on the test set, which is a
subset of our full simulated dataset corresponding to the expected number of
events. In this experiment, an additional scale factor G has to be employed
in order to account for the fact that our simulated dataset is smaller. It is
defined as:

G = 1
sizesub

(5.1)

where sizesub is the relative size of the simulated data subset compared to
the full simulated dataset. If we are training on a simulated dataset which is
50 % of our original simulated dataset corresponding to the 105.87 expected
events, the scale factor G will be:

G = 1
sizesub

= 1
0.5 = 2

(5.2)

Significance S in this experiment is then calculated as:
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..............5.4. Experiment 3 - dependance of significance on simulated data size

S =
√
F · G · s√

G · b

=
√
F ·
√
G · s√

b

(5.3)

5.4.2 Results

We present 3 boxplots showing accuracy, AUC and simplified significance
scores for each dataset size. All plots show a gradual increase in the given
metric. The increasing trend can be most clearly seen in the AUC boxplot
5.26 while the boxplot with significances 5.27 shows gradual improvement
with some slight drops. This instability can be explained by the fact that
altogether there is only 186 tt̄ training examples in the whole dataset, but
they account for 22.16 expected events, which is about one fifth of all expected
events. With such a small number of training examples and the amount of
features, the classifiers are not able to learn this class properly. Therefore
even classifiers using smaller subset of data, which happen to perform well on
this class, get a huge boost in terms of the performance on the significance
metric, therefore the trend of increasing significance is not that stable as for
example AUC or accuracy which do not involve the weights.

It is also visible that as the dataset size grows, the variance of the achieved
metrics among experiments of the same data size is getting lower. Overall these
results suggest that by generating more simulated data from the distribution
will enable us to get more stable and better results.

Figure 5.26: Dependance of AUC on simulated dataset size - Exp.3
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5. Experiments .....................................

Figure 5.27: Dependance of significance on simulated dataset size - Exp.3

Figure 5.28: Dependance of accuracy on simulated dataset size - Exp.3
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Chapter 6
Conclusion

This thesis deals with the task of separating signal (tt̄H) events from back-
ground events (tt̄W , tt̄Z, tt̄, V V , other). It uses events satisfying the
2LSS1Tau preselection, that is two same-sign light leptons and one hadron-
ically decaying τ . The main goal was to test the performace of low-level
features as opposed to high-level hand-engineered features created by domain
experts. Experiments were conducted such that three models (multi-layered
perceptron, TabNet, XGBoost) along with the two feature sets (low-level, high-
level) were tested on this task and their performance was compared. In terms
of the algorithms, XGBoost classifier showed the best performance, while
TabNet had the worst result. As far as the types of features are concerned,
classifiers using the high-level features showed better results than those using
low-level features. The best results were obtained when the feature sets were
merged and the XGBoost classifier was trained on this union, which resulted
in a mean significance of 2.90. The resulting significance was confirmed
by an independent calculation using the TRExFitter program. This is an
improvement over a previous BDT study performed within the tt̄H working
group which reported a significance of 1.94. The feature importance was also
determined for the best MLP model using the Integrated Gradients method,
which provided a feature ranking. Based on this ranking, several experiments
were performed with differently sized subsets of the most important features
and the experiment with the 25 most important features topped the mean
significance level of 2.8. Given that the training and testing of the classifiers
was performed on simulated data whose size after the preselection was 73
370 events, experiments were also made to determine whether it is worth
generating more simulated events from their respective distributions. All
evaluation metrics including AUC, accuracy and most importantly in our case,
significance, have been improving as the simulated dataset size was increased,
suggesting that further improvements can be obtained by producing more
simulated events.
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Appendix A
Formulas

A.1 Event weight formula

The formula for calculating weight of an event is based on a number of
parameters of the events, given in Table A.1.

Table A.1: List of event features used for event weight calculation

ID Parameter name Parameter explanation

f0 RunYear Year of detector configuration
f1 custTrigSF_LooseID_FCLooseIso_DLT -
f2 weight_pileup -
f3 jvtSF_customOR -
f4 bTagSF_weight_DL1r_70 -
f5 weight_mc -
f6 xs Cross-section
f7 totalEventsWeighted Total number of events in the file
f8 lep_SF_CombinedTight_0 -
f9 lep_SF_CombinedTight_1 -

The formula for calculating weight w for event e (we) is as follows:

we = L · fe
1 · fe

2 · fe
3 · fe

4 · fe
5 · fe

6 · fe
8 · fe

9
fe

7
(A.1)

where,

L =


36207.66 if fe

0 = 2015 ∨ fe
0 = 2016,

44307.4 if fe
0 = 2017,

58450.1 if fe
0 = 2018

(A.2)

is the luminosity of the detector in inverse picobarn [pb−1], which changes
based on the year that the simulation configuration was based upon and

fe
i = value of parameter with ID fi for event e. (A.3)

The numerator is a product of multiple variables corresponding to parame-
ters of the event and luminosity. The number is then normalized by the size
of the simulated data set.
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A. Formulas ......................................
A.2 Tight lepton preselection

Formula A.4 is a boolean condition on multiple variables determining whether
an event passes the preselection or not (filter of events). Due to the long
nature of the formula, the names of features that it is composed of were
shortened by substituting their IDs as specified in Table A.2.

Table A.2: List of features used for tight lepton 2LSS1Tau preselection

ID Parameter name

f0 lep_ID_0
f1 lep_isMedium_0
f2 lep_isolationFCLoose_0
f3 passPLIVVeryTight_0
f4 lep_isTightLH_0
f5 lep_chargeIDBDTResult_recalc_rel207_tight_0
f6 lep_ID_1
f7 lep_isMedium_1
f8 lep_isolationFCLoose_1
f9 passPLIVVeryTight_1
f10 lep_isTightLH_1
f11 lep_Mtrktrk_atPV_CO_0
f12 lep_RadiusCO_0
f13 lep_Mtrktrk_atConvV_CO_0
f14 lep_Mtrktrk_atPV_CO_1
f15 lep_Mtrktrk_atConvV_CO_1
f16 lep_ambiguityType_1
f17 nTaus_OR_Pt25
f18 lep_RadiusCO_1
f19 nJets_OR_TauOR
f20 nJets_OR_DL1r_70
f21 dilep_type
f21 lep_ambiguityType_0

selection_formula = (A ∨B) ∧ (C ∨D) ∧ J ∧ (f17 >= 1) ∧G ∧H
, where the individual components are themselves boolean formulas.

(A.4)

A = ((|f0| = 13) ∧ (f1 > 0) ∧ (f2 > 0) ∧ (f3 > 0)) (A.5)
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............................... A.2. Tight lepton preselection

B = ((|f0| = 11) ∧ (f2 > 0) ∧ (f4 > 0) ∧ (f5 > 0.7) ∧ (f3 > 0)) (A.6)

C = ((|f6|= 13) ∧ (f7 > 0) ∧ (f8 > 0) ∧ (f9 > 0)) (A.7)

D = ((|f6| = 11) ∧ (f8 > 0) ∧ (f10 > 0) ∧ (f5 > 0.7) ∧ (f9 > 0)) (A.8)

E = ((|f0| = 11) ∧ (f22 = 0) ∧ (¬E1 ∧ ¬E2)) (A.9)

E1 = (((f11 < 0.1) ∧ (f11 > 0)) ∧ ¬((f12 > 20) ∧ E3)) (A.10)

E3 = ((f13 < 0.1) ∧ (f13 > 0)) (A.11)

E2 = ((f12 > 20) ∧ ((f13 < 0.1) ∧ (f13 > 0))) (A.12)

F = ((|f6| = 11) ∧ f(16= 0) ∧ ¬F1 ∧ ¬F2) (A.13)

F1 = ((f18 > 20) ∧ ((f15 < 0.1) ∧ (f15 > 0))) (A.14)

F2 = (((f14 < 0.1) ∧ (f14 > 0)) ∧ ¬F3) (A.15)

F3 = ((f18 > 20) ∧ ((f15 < 0.1) ∧ (f15 > 0))) (A.16)

G = ((f19 > 2) ∧ (f20 > 0)) (A.17)

H = ((f21 > 0) ∧ ((f0 · f6) > 0)) (A.18)

J = (((|f0|= 13) ∨ E) ∧ (F ∨ (|f6| = 13))) (A.19)
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Appendix B
Tables

B.1 Used features

Table B.1: List of low-level features which correspond to the direct measurements
of the detector

ID Feature name Explanation

0 jet_eta0 pseudorapidity of the leading jet
1 jet_eta1 pseudorapidity of the subleading jet
2 jet_eta2 pseudorapidity of the sub-subleading jet
3 jet_pt0 transverse momentum of the leading jet
4 jet_pt1 transverse momentum of the subleading jet
5 lep_E_0 energy of the leading lepton
6 lep_E_1 energy of the subleading lepton
7 lep_Eta_0 pseudorapidity of the leading lepton
8 lep_Eta_1 pseudorapidity of the subleading lepton
9 lep_Phi_0 azimuthal angle of the leading lepton
10 lep_Phi_1 azimuthal angle of the subleading lepton
11 lep_Pt_0 transverse momentum of the leading lepton
12 lep_Pt_1 transverse momentum of the subleading lepton
13 taus_charge_0 charge of the leading tau
14 taus_eta_0 pseudorapidity of the leading tau
15 taus_phi_0 azimuthal angle of the leading phi
16 taus_pt_0 transverse momentum of the leading tau

49



B. Tables .......................................
Table B.2: List of high-level features corresponding to constructed metrics based
on domain knowledge - 1/2

ID Feature name Explanation

0 nTaus_OR -
1 taus_width_0 -
2 taus_decayMode_0 Decay mode of the leading Tau
3 taus_BDTJetScore_0 -
4 taus_BDTJetScoreSigTrans_0 -
5 taus_JetBDTSigLoose_0 -
6 taus_JetBDTSigMedium_0 -
7 taus_JetBDTSigTight_0 -
8 taus_RNNJetScore_0 -
9 taus_RNNJetScoreSigTrans_0 -
10 taus_JetRNNSigLoose_0 -
11 taus_JetRNNSigMedium_0 -
12 taus_JetRNNSigTight_0 -
13 taus_numTrack_0 number of Tau tracks
14 taus_DL1r_0 -
15 taus_fromPV_0 -
16 taus_passJVT_0 -
17 taus_passEleOLR_0 -
18 taus_passEleBDT_0 -
19 best_Z_Mll -
20 best_Z_other_Mll -
21 best_Z_other_MtLepMet -
22 DeltaR_min_lep_jet -
23 DeltaR_min_lep_jet_fwd -
24 dEta_maxMjj_frwdjet -
25 dilep_type -
26 DRll01 special distance of jet and lepton
27 eta_frwdjet -
28 HT sum of transverse momentum of all objects
29 HT_fwdJets sum of transverse momenta of jets
30 HT_inclFwdJets HT including FwdJets
31 HT_lep sum of transverse momenta of leptons
32 lep_DFCommonAddAmbiguity_0 -
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Table B.3: List of high-level features corresponding to constructed metrics based
on domain knowledge - 2/2

ID Feature name Explanation

33 lep_DFCommonAddAmbiguity_1 -
34 lep_EtaBE2_0 -
35 lep_EtaBE2_1 -
36 lep_ID_0 -
37 lep_ID_1 -
38 lep_Mtrktrk_atConvV_CO_0 -
39 lep_Mtrktrk_atConvV_CO_1 -
40 lep_Mtrktrk_atPV_CO_0 -
41 lep_Mtrktrk_atPV_CO_1 -
42 lep_nInnerPix_0 -
43 lep_nInnerPix_1 -
44 lep_nTrackParticles_0 -
45 lep_nTrackParticles_1 -
46 lep_sigd0PV_0 -
47 lep_sigd0PV_1 -
48 lep_Z0SinTheta_0 -
49 lep_Z0SinTheta_1 -
50 max_eta -
51 met_met -
52 met_phi -
53 minDeltaR_LJ_0 -
54 minDeltaR_LJ_1 -
55 minDeltaR_LJ_2 -
56 mjjMax_frwdJet -
57 MLepMet -
58 Mll01 invariant mass of lepton pair (leading and subleading)
59 MtLepMet -
60 nFwdJets_OR_TauOR -
61 nJets_OR_TauOR number of jets
62 nTaus_OR_Pt25 -
63 Ptll01 -
64 sumPsbtag -
65 total_charge total charge
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B.2 Experiment 1

Table B.4: Parameter Grid - MLP layers architecture - Exp.1

ID Layer architecture

1 [[num_input_features, 16], [16, num_output_classes]]
2 [[num_input_features, 64], [64, num_output_classes]]
3 [[num_input_features, 128], [128, num_output_classes]]
4 [[num_input_features, 256], [256, num_output_classes]]
5 [[num_input_features, 400], [400, num_output_classes]]
6 [[num_input_features, 800], [800, num_output_classes]]
7 [[num_input_features, 100], [100, 100], [100, 100], [100, num_output_classes]]
8 [[num_input_features, 50], [50, 50], [50, 50], [50, num_output_classes]]
9 [[num_input_features, 200], [200, 200], [200, 200], [200, num_output_classes]]
10 [[num_input_features, 400], [400, 400], [400, 400], [400, num_output_classes]]
11 [[num_input_features, 800], [800, 800], [800, 800], [800, num_output_classes]]
12 [[num_input_features, 100], [100, 100],[100, 100], [100, 100], [100, num_output_classes]]
13 [[num_input_features, 50], [50, 50], [50, 50],[50, 50], [50, num_output_classes]]
14 [[num_input_features, 200], [200, 200], [200, 200],[200, 200], [200, num_output_classes]]
15 [[num_input_features, 400], [400, 400], [400, 400], [400, 400], [400, num_output_classes]]
16 [[num_input_features, 800], [800, 800], [800, 800], [800, 800], [800, num_output_classes]]
17 [[num_input_features, 100], [100, 100], [100, 100], [100, 100],[100, 100], [100, num_output_classes]]
18 [[num_input_features, 50], [50, 50], [50, 50],[50, 50], [50, 50], [50, num_output_classes]]
19 [[num_input_features, 200], [200, 200], [200, 200], [200, 200],[200, 200], [200, num_output_classes]]
20 [[num_input_features, 400], [400, 400], [400, 400], [400, 400],[400, 400], [400, num_output_classes]]

Table B.5: Top 5 MLP models using all features * (BS|OPT|EP|W|LR = batch
size|optimizer|epochs|weights in loss|learning rate

Rank Layers *BS|OPT|EP|W|LR Significance Signif.-simple

1 [[83, 400], [400, 6]] 8|sgd|150|True|0.001 2.372809 2.859039
2 [[83, 128], [128, 6]] 16|sgd|150|True|0.001 2.377316 2.886544
3 [[83, 256], [256, 6]] 16|sgd|150|True|0.001 2.377527 2.866111
4 [[83, 16], [16, 6]] 8|sgd|150|True|0.001 2.387446 2.864654
5 [[83, 200], [200, 200], [200, 200], [200, 200], [200, 6]] 16|sgd|150|True|0.001 2.371628 2.863886
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B.3 Experiment 2

Table B.6: List of features based on their Integrated Gradient score 1/2 - Exp.2

Feature IG Score Feature IG Score

taus_charge_0 1.0 lep_sigd0PV_1 0.6538
taus_passJVT_0 0.6119 lep_ID_1 0.6089
DeltaR_min_lep_jet 0.6067 taus_JetBDTSigMedium_0 0.604
dEta_maxMjj_frwdjet 0.601 lep_sigd0PV_0 0.567
lep_ID_0 0.549 lep_DFCommonAddAmbiguity_1 0.5418
lep_Pt_0 0.5338 lep_Eta_0 0.5111
lep_Mtrktrk_atPV_CO_0 0.5102 lep_nTrackParticles_0 0.4853
lep_DFCommonAddAmbiguity_0 0.461 taus_width_0 0.4604
mjjMax_frwdJet 0.4598 taus_BDTJetScoreSigTrans_0 0.4488
DeltaR_min_lep_jet_fwd 0.4434 lep_Mtrktrk_atPV_CO_1 0.4421
minDeltaR_LJ_2 0.442 taus_RNNJetScore_0 0.4319
total_charge 0.4282 taus_JetRNNSigTight_0 0.4101
lep_Phi_0 0.4094 jet_pt0 0.402
taus_BDTJetScore_0 0.4014 nTaus_OR_Pt25 0.4012
taus_RNNJetScoreSigTrans_0 0.4002 taus_numTrack_0 0.3983
taus_JetBDTSigTight_0 0.3891 eta_frwdjet 0.3861
taus_phi_0 0.3845 taus_fromPV_0 0.3825
dilep_type 0.3751 taus_decayMode_0 0.3628
lep_Eta_1 0.3437 lep_Z0SinTheta_0 0.3366
taus_JetBDTSigLoose_0 0.3274 minDeltaR_LJ_1 0.3236
lep_Mtrktrk_atConvV_CO_0 0.3228 jet_eta0 0.3228
lep_Mtrktrk_atConvV_CO_1 0.3195 taus_DL1r_0 0.312
taus_JetRNNSigMedium_0 0.3065 taus_passEleOLR_0 0.3025
taus_JetRNNSigLoose_0 0.3023 best_Z_Mll 0.3023
nTaus_OR 0.3023 taus_passEleBDT_0 0.3023
best_Z_other_Mll 0.3023 best_Z_other_MtLepMet 0.3023
lep_nInnerPix_0 0.3009 lep_Z0SinTheta_1 0.2951
lep_nInnerPix_1 0.2933 lep_E_0 0.286
lep_EtaBE2_0 0.2776 lep_Phi_1 0.2757
taus_pt_0 0.2713 lep_E_1 0.2699
HT_lep 0.268 MtLepMet 0.2551
Mll01 0.2285 jet_eta2 0.2199
DRll01 0.2123 jet_eta1 0.2075

Table B.7: List of features based on their Integrated Gradient score 2/2 - Exp.2

Feature IG Score Feature IG Score

Ptll01 0.2065 max_eta 0.2051
lep_EtaBE2_1 0.1846 met_phi 0.1779
nFwdJets_OR_TauOR 0.1296 lep_nTrackParticles_1 0.1284
minDeltaR_LJ_0 0.1247 MLepMet 0.0753
HT_fwdJets 0.0485 jet_pt1 -0.0103
lep_Pt_1 -0.067 HT_inclFwdJets -0.0939
met_met -0.0996 HT -0.1447
taus_eta_0 -0.4432 nJets_OR_TauOR -0.6413
sumPsbtag -1.0
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Appendix C
Code description

C.1 Overview

As far as the code is concerned, it is available at https://gitlab.fel.cvut.
cz/prespjan/cern-machine-learning. Within the project, a flexible data
conversion pipeline was created, whose main goal is to take a number of
ROOT files and produce a dataset. The main requirement on the pipeline
was the ability to create new datasets for training quickly based on specifying
the required n-tuples (.root files), features that should be used, number of
classes and other optional filters (preselections) applied on the data. The
pipeline consists of three scripts:. data_convert.py serves as the first step, in which a set of root files in

a specific directory structure is converted to .csv files which contain only
the features we need in either the training itself or for the later stages
of the data processing pipeline (for filtering the data on some values of
particular columns, in other words, preselection). The requirement on
the directory structure of the input files is as follows. There should be a
parent directory containing a set of directories, each corresponding to
a directory with files of particular class of events. The name of these
subdirectories will later also serve as the class name. Another input of
this script is a directory path, which specifies where the resulting .csv
files will be saved. The output directory then contains a list of .csv files,
which have an added column (y) corresponding to the class of events
contained in the respective file.. data_weights.py serves two purposes. The first task this script accom-
plishes is that it calculates the weight for each individual event based on
the formula in 2.2.2. The second purpose is that it peforms filtering of
rows based on specified condition, so-called preselection 2.1.3. The most
widely used condition in this thesis is on the 2LSS1Tau channel, which
is specified by multiple conditions on many variables.. data_prepare.py takes as input the .csv files from the previous section
where columns correspond to individual features and combines them
into three pickle files that serve as a single dataset, which is then used
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by the neural network training program. The first one is X.pkl, which
contains a (n_event× n_features) matrix (X), the second file is y.pkl,
which contains a (n_event, ) vector y of true labels. The third file is
f.pkl, which contains a (n_features) long list (f) of features used in
this dataset described by their name. Along with these pickle files, .csv
file called big_dataframe.csv is created, which serves as a user-friendly
interface to the dataset, because it contains the feature names in the
columns and is mainly used for exploratory analysis of the data using
data analytics and visualization libraries in Python or other languages.
This step also removes the columns which were only used to perform the
row-wise filtering and are not used as features for the predictions.

Another essential component of the code is the classifier training component.
Again, the goal was to create a flexible program, that could be used to train a
classification model on some of the datasets. It was designed with extendability
in mind, meaning that the program is composed of various components based
on interfaces, so that if one wants to create a new type of model (agent), one
just implements an interface that specifies the methods. This interface can
be found in agents/base.py. An example of that could be switching a fully
connected network for a LSTM neural network. Later the architecture was
extended to accomodate training other types of classifiers using the same
interface.

The program is capable of getting a set of hyperparametes and their
values as input and then doing a coordinate ascent-based hyperparameter
optimization to select the best combination. It produces an output in the form
of a set of directories with the experiment results and an file summarizing
the results with the key metrics for each experiment.

C.1.1 Classifier training program overview

This part serves as a brief description of how the project is structured, while
further details can be found in the code itself in the form of method and
module descriptions (comments).

The root directory of the project contains the entry point of the program,
the main.py script, along with a number of packages (utils, models, agents,
datautils, common) and directories (data, experiments).

The configuration necessary before each experiment lies in the main.
py script itself, particularly all that is necessary to create a configura-
tion is to fill out the desired configuration parameters to the object of
type models.ExperimentConfiguration returned by the function user_
generated_configuration(). The documentation to the whole models.
ExperimentConfiguration object regarding the particular values of the at-
tributes is specified in the class docstrings.

When the main.py is run, it performs it performs multiple iterations over
hyperparameter values using the coordinate descent approach and for each
tested combination of hyperparameters, performs multiple iterations (based
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on cross-validation settings) of : 1. Training, 2. Testing and 3. Optimal
working point search...1. Training: The training is a procedure which performs repetitive itera-

tions over all training examples and aims to minimize the specified loss
function...2. Testing: The testing phase is a procedure which computes class pre-
dictions of the trained model on the test set, which is then used as
input to the finalize() method of the subclasses of the agents.base.
BaseAgent class. This method produces some of the result plots and
saves the resulting predictions and probabilities for further use...3. The working point search: The working point search is a procedure,
which takes as input a trained model, and iterates over all decision
thresholds and specifies the optimal one, which is the one that maximizes
the metric optimized for on the test data as described in chapter 4.1.

After the hyperparameter optimization phase finishes the search for optimal
hyperparameter values, an overview in the form of an Excel file is generated
to have a clear view of the experiment results.

C.1.2 Project modules and directories description

As mentioned in the previous section C.1.1, the project is composed of a
number of modules, which aim to serve as changeable components of the
whole program. The goal of this section is to give an overview on these
modules, while further documentation can be found in the code.. utils (module): This module contains the utils.root_processing_

scripts submodule, which contains the scripts related to the data
processing pipeline (chapter 2.2.4), utils.significance submodule
containing all methods related to the computation of significance and
other model evaluation functions, confmatrix_prettyprint.py script,
which deals with the generation of the confussion matrices, and other
helper scripts containing various functions used throughout the project.. models (module): This module contains a set of files, each containing a
class subclassing the torch.nn.Module class. These classes serve to build
a PyTorch model based on some input architecture and also implement
a forward pass of data for that particular model. Forward pass of data
through the model can be defined as a series of steps that should be
applied to the input tensor corresponding to a single batch of input
examples to produce an output of the network. These classes contain
all models that are defined and when it is required to use a particular
model in an experiment, the model class that was created is usually
imported to the constructor of agents.some_agent.SomeAgentClass
class usually in the following form as a class attribute: self.model=
NameOfTheNewlyDefinedClass.
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. agents (module): This module contains a set of files, each containing a

class subclassing the agents.base.BaseAgent class. This class defined
methods which create the structure of the whole training and testing
process. Each method in the agents.base.BaseAgent class contains its
proper documentation.. datautils (module): This module contains two significant files, dataloaders.
py and datasets.py. The dataloaders.py file contains classes that
serve as custom data loaders for training - practically these create
custom torch.utils.data.dataloader.DataLoader objects containing
the necessary data for training and evaluation. Example of one such class
is the datasets.dataloaders.tth_ttw_ttz_DataLoader. The second
file, datasets.py, contains classes that subclass the torch.utils.data.
Dataset class, for details see [P+19].. common (module):This module contains a set of directories and a set of
Python files. The first directory is named cutvariable_variations,
which holds the .csv files, each corresponding to a set of .root file pa-
rameters (features) based on which a row filtering should be done in
the data processing stage. More details can be found in the code docu-
mentation in utils.root_processing_scripts.data_convert.py file.
The second directory is named feature_variations, which holds .csv
files, each corresponding to a set of .root file parameters (features) which
should be used as features in a dataset generated by the data process-
ing pipeline. More details can be found in the code documentation in
utils.root_processing_scripts.data_convert.py file. Among the
files contained in this module are two files, conf.py and constants.py.
The conf.py file contains a series of methods for setting up project
logging and loading the configuration file. These functions are executed
at the beginning of the whole program. The constants.py file contains
global constants used throughout the project.. experiments (directory): When the program is run, this directory serves
as the storage location for the experiment files. When an experiment is
run, it generates an experiment name and each individual training/testing
phase which is using a certain set of hyperparameters produces a sub-
directory, so that in the end one experiment is stored as experiment/
experiment-id/EXP_F_0_OPT_experiment-run-id, along with a set of
subdirectories for each run.. data (directory): This directory serves as a storage for training/testing
datasets. It contains three subdirectories raw, converted and tabular.
The raw directory is used to store raw .root files. If one wants to create
a new dataset, one first has to create a directory in the data/raw with a
subdirectory structure, where each subdirectory corresponds to a storage
place for files containing events of a single class. For example, if we have a
number of .root files containing tt̄H, tt̄W , tt̄ and tt̄Z and want to create
a dataset using these files, we create data/raw/some_dataset_name
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directory and in it, we create four directories each corresponding to a
single class. See the directory for tt̄H as an example: data/raw/some_
dataset_name/tth. Then each .root file has to be placed to the specific
directory according to its class. The other two directories converted
and tabular are used for storing converted, filtered data that results
from the data processing pipeline outputs. Further documentation can
be found in the Python pipeline scripts themselves.
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