
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Automotive Ethernet Network Identification
Tool

Martin Komínek

Supervisor: Ing. Jan Sobotka, Ph.D.
Field of study: Open informatics
Subfield: Software
May 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483612Osobní číslo:MartinJméno:KomínekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Nástroj pro automatickou identifikaci sítě Automotive ethernet

Název bakalářské práce anglicky:

Automotive Ethernet Network Identification Tool

Pokyny pro vypracování:
1. Familiarize yourself with the 802.3bw (Automotive Ethernet), DoIP, UDS standards, and the IPv6 family protocols.
2. Perform a search within CAN bus security exploration tools (e.g. Caring Caribou) for a prospective tool for diagnostics
services identification.
3. Perform a search within port scanners and network mappers suitable for automotive ethernet networks.
4. Design and implement a software tool for automated identification of an automotive ethernet network focusing on a
single (pre-selected) ECU.
5. The tool should identify parameters of the data link layer, network layer, and Diagnostics services over DoIP.
6. Demonstrate your results by testing with a suitable ECU (provided by the supervisor).

Seznam doporučené literatury:
[1] MATHEUS, Kirsten; KÖNIGSEDER, Thomas. Automotive ethernet. Cambridge University Press, 2017.
[2] Craig Smith. 2016. The Car Hacker's Handbook: A Guide for the Penetration Tester (1st. ed.). No Starch Press, USA.
[3] Nicolas Navet, F. and Simonot-Lion, F.: Automotive Embedded Systems Handbook, CRC PressINC, 2009.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Jan Sobotka, Ph.D. katedra měření FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 14.02.2022

Platnost zadání bakalářské práce: 19.02.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jan Sobotka, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
Tímto bych chtěl poděkovat hlavně svojí
přítelkyni, která mě svojí neuvěřitelnou
pílí pomáhala motivovat psát tuto práci.
Dále bych chtěl poděkovat mojí mamince
za její neutuchající podporu abe jejíž pod-
pory by tato práce nemohla nikdy vzni-
knout. Také bych chtěl poděkovat svojí
nejlepší kamarádce, za to, že si našla čas
na přečtení a kritiku mojí práce. Hlavní
díky ale patří vedoucímu mojí práce. Ing.
Janu Sobotka, Ph.D. za cenné rady, věcné
připomínky a vstřícnost při konzultacích
a hlavně za vedení mojí bakalářské práce,
která mi dala hodně zkušeností do mého
života.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 20, 2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškeré použité informační zdroje vs
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 20. května 2022

v

Abstract
Aim of this thesis is to analyze current
tools that perform automatic analysis of
an ECU, provide theoretical information
about DoIP and UDS, and implement a
new tool that would automatically iden-
tify Automotive Ethernet network and
scan some supported services on ECU.
Firstly we explore what technologies are
used and than we look at tools, that were
developed for previous technology CAN.
Next chapter describes methods to dis-
cover IP address of an ECU and in the
rest of the thesis we describe how to de-
sign, implement and test this application.
At the end, we evaluate results and sug-
gest some possible future improvements.

Keywords: DoIP, Automotive Ethernet,
UDS, diagnostic

Supervisor: Ing. Jan Sobotka, Ph.D.

Abstrakt
Cílem této práce je prozkoumat současné
nástroje na automatickou analýzu funkcí
řídící jednotky a implementovat nový ná-
stroj, který bude identifikovat parametry
současné techonologie Automotive Ether-
net a provede scan podporovaných funkcí.
Nejdříve se seznámíme s použitými tech-
nologiemi a podíváme se na nástroje pro
sběrnici CAN. V další kapitole zjistíme
jak odhalit IP adresu ECU a ve zbytku
práce se podíváme na návrh, implemen-
taci a testování nového nástroje. Na konci
zhodnotíme výsledek práce a navrhnu pří-
padné možnosti na vylepšení.

Klíčová slova: DoIP, UDS,
diagnostika,Automotive Ethernet

Překlad názvu: Nástroj pro
automatickou identifikaci sítě
Automotive ethernet

vi

Contents
Acronyms 1
1 Introduction 3
2 Technologies 5
2.1 Automotive Ethernet 5
2.2 DoIP . 5
2.3 UDS . 6
2.4 IPv6 . 6
3 CAN tools 7
3.1 CaringCaribou 8
3.2 CANalyzat0r 8
3.3 CANToolz . 9
3.4 Summary . 9
4 Identifying network parameters
and services 11
4.1 IP address discovery 11

4.1.1 Network scan in IPv4 11
4.1.2 Network scan in IPv6 11
4.1.3 Vehicle announcement 12
4.1.4 Network scan 12

4.2 UDS services 13
5 Tool selection 17
5.1 GUI Framework 17

5.1.1 PyQt5 . 17
5.1.2 Tkinter 17
5.1.3 CustomTkinter 18
5.1.4 Used framework 18

5.2 DoIP Transport layer 19
5.3 UDS . 19

5.3.1 udsoncan 19
5.4 Architecture 19
6 Implementation 21
6.1 Interface . 21
6.2 IP address discovery 21

6.2.1 IPv6 network scan 22
6.2.2 Network listener 22
6.2.3 VLAN identifier 23
6.2.4 Vehicle announcement 23

6.3 Additional info about IP address 24
6.4 Connection to ECU 25
6.5 Scan DID and DTC 26
7 Conclusion 27
7.1 Ideas for further improvements . 27

7.1.1 More services 27
7.1.2 Backward compatibility 28

7.1.3 Interpret DID codes 28
7.1.4 Implement VLAN into

application 28
Bibliography 29
A List of appendixes 31

vii

Figures
3.1 DoIP and UDS with respect to OSI

model[9] . 7
3.2 Example of GUI interface for CAN 9

4.1 Structural diagram of DoIP
discovery . 12

4.2 Structure of UDS request message 13
4.3 Structure of UDS positive response

message . 14
4.4 Structure of UDS negative

response message 14

5.1 Example of Tkinter[14] 18
5.2 Example of CustomTkinter[15] . 18

Tables
3.1 CAN tools summary 10

4.1 Overview of UDS services[13] . . . 13
4.2 Overview of NRC codes[13] 15

viii

Acronyms

ARP Address Resolution Protocol.

CAN Controller Area Network.

DHCP Dynamic Host Configuration Protocol.

DID Data by identifier.

DNS Domain name system.

DoIP Diagnostic over Internet Protocol.

DTC Diagnostic trouble codes.

ECU Electronic Control Unit.

GUI Graphical User Interface.

IEEE Institute of Electrical and Electronics Engineers.

IP Internet Protocol.

OSI Open Systems Interconnection.

PAM Pulse-amplitude modulation.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

UDS Unified Diagnostic Services.

UI User Interface.

XCP Universal Measurement and Calibration Protocol.

1

2

Chapter 1
Introduction

In recent years, modern cars have radically developed, and each generation
has more electronics than the previous one. This development allows to bring
new features from safety to entertainment and dramatically improves the
capability of each car in terms of driving or monitoring space around the car.
It is clear that all development aims to continue this trend and slowly change
the whole industry from driving a car to being a passenger.

To achieve this goal, car will need to have a lot of sensors to monitor
its surroundings at any situation. All of that data needs to be acquired by
control units in the car to be processed and interpreted. Another example
where data needs to be transferred is entertainment. Passengers want to do
something during their ride, like watching movies or playing computer games,
which requires a lot of data.

The automotive industry needs thin wire harness to reduce the cost and
weight of a vehicle and at the same time have the capacity to transport all
data. In history, CAN was used for this task, but with the ever-growing need
for speed, CAN is quickly being replaced with Automotive Ethernet, which is
designed to be cheap while offering more than 200x more bandwidth than
CAN. DoIP and UDS are now implemented by some major manufacturers
and it is becoming dominant in the market. With the new change from CAN
to Ethernet, many open source projects based on CAN get outdated and need
to be rewritten into new standard.

During my research, I did not find any paper that would cover this topic
or an open-source project that would allow users to establish a connection
to ECU and automatically diagnose what type of requests it supports. This
thesis should help people understand what is happening in the background
and help them further improve the capability of tools like this.

In this thesis, needed technologies will be introduced. Then I will try to
search for CAN projects that could be helpful or used as parts for my tool for
automatic network identification. After that, I will search for other usable
tools and design and implement a tool with GUI to make the tool easy to
use and accessible to a wider audience.

3

4

Chapter 2
Technologies

In this chapter, I will introduce needed technologies and a short summary of
them. Many of these technologies are new and are used by a small number of
people, so not many sources are available, and they could be difficult to read.

2.1 Automotive Ethernet

Automotive Ethernet is a physical layer specified in 802.3bw by IEEE. The
most significant difference between standard Ethernet and Automotive Ether-
net is the used cable. Standard Ethernet cable has eight wires. These wires
are divided into four pairs of twisted wires. Standard Ethernet has dedicated
transmit and receive paths and can transmit data up to 100 meters. Automo-
tive Ethernet consists of an unshielded pair of copper wires, which reduces
its price and weight, making it ideal for transport and competitive against
current cheap technologies such as CAN while having higher bandwidth than
FlexRay[1]. To achieve high speed, both cables receive and transmit data
simultaneously. Automotive Ethernet uses PAM3 signalling at a speed of
66.667 Mb/s to achieve a transport speed of 100 Mb/s.The newer version
standardised by IEEE 802.3bp is even more impressive, with PAM3 signalling
at a speed of 750 Mb/s and modulation of 80B/81B, it can transmit up to
1000 Mb/s[2]. Automotive Ethernet has a maximum range of 15 meters.

2.2 DoIP

DoIP is short for Diagnostic over Internet Protocol and is standardised by ISO
13400-2. It serves as a fourth transport layer of OSI model to establish and
maintain a connection. DoIP facilitates diagnostic communication between
an external device and ECU using Internet Protocol, using both TCP and
UDP[3]. It serves the same purpose as ISO-TP on CAN. DoIP enables to
use of automotive diagnostic services exposed through UDS over IP. By
standard, all equipment implementing DoIP features Vehicle announcement
and discovery, error handling, vehicle basic status information retrieval,
connection establishment, and data routing[4].

5

2. Technologies
2.3 UDS

Unified Diagnostic Services (UDS) is a communication protocol used in auto-
motive ECU to provide diagnostics, updates, testing, etc. It is standardized
by ISO 14229, UDS is currently used by all tier 1 manufacturers. It pro-
vides various services like diagnostic and communications management, data
transmission, remote activation etc. UDS uses 5th and 7th layer of OSI
model[5][6].

2.4 IPv6

Internet protocol version 6 (IPv6) is the latest version of Internet protocol.
It provides a unique identification for each device in the network and further
improves IPv4. The biggest change is the size of the address. IPv4 address
is 32bit long, but IPv6 address is four times longer with 128bit[7]. That
generates so many possible combinations that we will never run out of free
addresses in our lifetime. Even though that IPv6 has larger addresses, header
was reworked, and its length is 40 bytes fixed. For comparison, IPv4 header
length ranges from 20 to 60 bytes. In addition to larger address space, it
supports stateless address autoconfiguration, so devices do not require manual
or DHCP configuration. Furthermore, it substitutes the ARP protocol with
Neighbour Discovery Protocol instead. IPv6 does not support broadcast
and instead uses multicast, which is more efficient in terms of bandwidth
utilization. Security is also improved as opposed to IPv4. The use of IPSec is
mandatory, and address space is so vast that it makes it impossible to scan
the network for possible computers with security vulnerabilities[8].

6

Chapter 3
CAN tools

Before I start developing my system, I should find out if there are some
projects that already solved this problem or would simplify development
significantly. CAN projects are definitely the first place where I should start
because the Application layer should be similar or the same, and I could just
modify the transport layer, as you can see in this reference 3.1 to the OSI
model.

Figure 3.1: DoIP and UDS with respect to OSI model[9]

7

3. CAN tools
3.1 CaringCaribou

CaringCaribou is a car security tool for CAN bus. It contains various modules
such as XCP used for measurement and calibration of sensors, sending or
dumping CAN massages and also UDS and newly even a DoIP, which is
relevant for my thesis

When I looked closely at the UDS module, I find out that it has five services.
The first service is used to discover arbitration IDs, where ECU responds
to an incoming diagnostic request. Otherwise, the ECU will dump arriving
packets. The second service scans for services supported by the ECU. The
third one requests ECU to reset, and the fourth one forces ECU in diagnostic
mode to stay active. Both third and fourth services are not so crucial. The
last one scans the range of DID and dumps their value to terminal, which is
important, because these data can be useful. Although that UDS module of
CaringCaribou has services I could use, its implementation is done for CAN,
which has a different header, so I cannot use this module for Automotive
Ethernet.

Caring Caribou has a new module called DoIP, which was added on the
23rd of March 2022, so during the writing of my thesis. Main services are
the same as in the UDS module. Discovery, Scan services, and scan DID are
the same functions as in the UDS module, just for a different transport layer.
I tested this module as it supports the same services I want to implement.
Discovery service works well, but it takes a lot of time. It takes ECU logical
address from Vehicle Announcement message and scans a range of addresses
to identify tester logical address. During my testing, Scan service didn’t
manage to identify any of the available services, suggesting that this service
doesn’t work properly, but I don’t have another ECU to confirm this. Reading
values from DID didn’t work for me either, because it couldn’t interpret data
it received and crashed. Another small problem I encountered is that even
though you don’t use it, you have to install library python-can to run Caring
Caribou. It is not a big problem, but as Caring Caribou was designed for
CAN, I think it would be better if DoIP module would be a standalone
program.

Caring Caribou has 14 contributors, and they added a new module this
year, so the project is maintained, and there are not many issues. I can take
inspiration from how they implemented these services and try to implement
my own functions but overall DoIP module didn’t match my expectation and
I wouldn’t use it to diagnose Automotive Ethernet.

3.2 CANalyzat0r

CANalyzat0r is a tool that has a GUI, so it should be easier to use. It
also analyzes ECU via CAN bus and also uses UDS to diagnose available
services. This tool is more complex and supports many other features. It
enables logging of all action, basic UDS sniffing, threaded sniffing and fuzzing,

8

......................................3.3. CANToolz

packet filters and many more. I already have an inspiration for how the
UDS module should be designed, but this project offers something else. GUI
design and overall architecture is really good and can be an inspiration for
my tool. Features like logging and saving your setup and results can be very
helpful. Here 3.2 is example of how a CANalyzat0r GUI looks like. With six
contributors and the last update in 2020, and no issues on GitHub, this tool
is finished, and I don’t expect any significant changes in the future.

Figure 3.2: Example of GUI interface for CAN

3.3 CANToolz

CANToolz also aims to analyze the CAN network but was built using modules
and the idea of chaining them together. So with a single install, it should
be ready to use without the need to install several projects and try to make
them work together. CANToolz supports ECU discovery, MitM testing,
scanning, fuzzing and more. Unfortunately, with the last real update in 2017,
17 unresolved issues and the creator of the tool moving to another project,
this tool is not suitable as a model for a new application.

3.4 Summary

In this chapter, I searched for various tools, that were developed for analyzing
CAN bus and analyze their potential to be used in my tool for Automotive
Ethernet. In short, the most promising tool was Caring Caribou with its
implementation of the DoIP module, which implements UDS specified by
ISO 14229 and can be used as an inspiration for my UDS module based on
automotive Ethernet. Other tools are not so helpful, but I can take inspiration

9

3. CAN tools
from their design. CANalyzat0r is great for its GUI, which makes it easier for
inexperienced users to use. CANToolz is interesting for its modular design
that enables to chain modules together, so only one tool is needed to test
and research ECU, and both of these ideas should be kept in mind when
designing my own tool. Here is a summary of all projects.

Name Features Status Last Update
Caring Caribou[10] Modules Active 1.4.2022
CANalyzat0r[11] GUI, Managment, Logging Finished 13.2.2020

CANToolz[12] Modular design,Pipe Abandoned 29.11.2017

Table 3.1: CAN tools summary

10

https://github.com/CaringCaribou/caringcaribou
https://github.com/schutzwerk/CANalyzat0r
https://github.com/CANToolz/CANToolz

Chapter 4
Identifying network parameters and services

4.1 IP address discovery

To diagnose and analyse ECU, I first need to know its IP address. This
section describes three ways to identify needed IP addresses and problems
and solutions that come with it. I will explore different approaches in both
IPv4 and IPv6 and how to establish a connection using DoIP.

4.1.1 Network scan in IPv4

When I want to scan for IPv4 addresses on a local network, it is pretty
straightforward. In order to scan IPv4 network, I need to identify which part
of IP address is the network address and which part is a host address. To do
that, a subnet mask needs to be applied to the IP address using bitwise AND.
As a result, I get the network address. Now I have two options. The first
option is to brute force all combinations and try to connect to all possible
addresses, and perform a port scan on each address. The second option is
to add bits of 1 at the end of the address to get a broadcast address that
will broadcast to all devices on the local network. For example, when subnet
mask is 255.0.0.0 and the network address is 144.0.0.0, broadcast address
would be 144.255.255.255.

4.1.2 Network scan in IPv6

Scanning an IPv6 local network is different. Thanks to its much larger address
space of 128 bits, brute-forcing is impossible as a number of combinations
are too high. I also cannot use broadcast because it’s not supported in IPv6.
Instead, I can use multicast. As I need to multicast to only local addresses, I
will use the FF02::1 address. In IPv6, local addresses need to add scope id of
the interface that I want to use. I can add this manually or I can extract all
available interfaces and try all of them. Then I need to ping FF02::1%scopeID
and wait for unique addresses that will respond.

11

4. Identifying network parameters and services
4.1.3 Vehicle announcement

When an ECU boots, it is mandatory, according to specification, to send 3
Vehicle Announcement messages with 1-2 seconds between them. The message
contains the ECU IP address, logical address and some other parameters
to establish a connection and identify ECU. These messages are sent to the
UDS discovery port. There I can receive the message and extract these
parameters and try to establish a connection. This depends on the condition,
that external equipment is ready to receive messages before the last message
is sent. In case I missed the initial vehicle announcement messages, I can
send a vehicle identification request to ECU on UDS discovery port using
multicast or unicast. To that message, ECU is mandatory to respond with a
vehicle response message. The diagram below 4.1 show possible sequences to
establish a connection.

Figure 4.1: Structural diagram of DoIP discovery

4.1.4 Network scan

The last method to identify IP address of an ECU is listen to ongoing traffic
on the interface, where I know the ECU is connected. If the ECU is connected
to the network, there is a good chance that there is some traffic. It can
broadcast some messages, when it is trying to resolve Neighbour Discovery
Protocol or it already communicates with some device. I can use tools like
Wireshark to intercept this communication and try to connect to this ECU.

12

.................................... 4.2. UDS services

4.2 UDS services

To understand how a UDS discovery can be done, I have to look at its request
and response message structure.

Figure 4.2: Structure of UDS request message

First byte of this message identifies what UDS service I request. This can
be, for example Diagnostic Session Control, ECU Reset, Read DID and many
others. I created an overview of UDS services 4.1. Response of the ECU will
depend on the passed parameters, like what sub-function or data I pass, but
not all services has sub-function as seen below.

Service name SID Available in Default Sub-function
Diagnostic session control 0x10 Yes Yes

ECU reset 0x11 Yes Yes
Clear diagnostic information 0x14 Yes No

Read DTC 0x19 Yes Yes
Read DID 0x22 Yes No

Read memory by address 0x23 Yes No
Security access 0x27 Yes Yes

Communication Control 0x28 Yes Yes
Read data by periodic identifier 0x2A Yes No

Dynamically define DID 0x2C Yes Yes
Write data by DID 0x2E Yes Yes

Input Output control by Id 0x2F No No
Routine control 0x31 Yes Yes

Request download 0x34 No No
Request upload 0x35 No No
Transfer data 0x36 No No

Write memory by address 0x3D Yes Yes
Tester present 0x3E Yes Yes

Table 4.1: Overview of UDS services[13]

When ECU supports service it will response with Positive response message,
which you can see on this image 4.3. It has the same structure as request.
Difference is in the first byte, which identifies Service response instead of
request. This ID is usually a request ID plus 0x40. For example for 0x10,

13

4. Identifying network parameters and services
which is a Diagnostic session control, response starts with 0x50. Other two
parameters stay the same, followed by the requested data.

Figure 4.3: Structure of UDS positive response message

When for some reason ECU cannot send positive message, it will send a
Negative response message, which structure you can see on 4.4 image. First
byte is always 7F. After that comes the service ID of request, so that the
tester knows what request message it responds to. Last byte is Negative
response code. This represents why is the message negative. Example of
some of the NRC codes is seen in table 4.2

Figure 4.4: Structure of UDS negative response message

To perform diagnostic, I will send UDS request and then wait for a response.
When it is positive, I know that ECU supports this service, and I can try to
extract data. If it sends a Negative response, I can look at NRC. If it is 0x11,
I know ECU does not support this service as it is a code for a service not
supported. In other cases, I cannot decide, as there are too many possibilities.
Message can have wrong combination of parameters, service can be supported
only in extended sessions, ECU can be busy, etc.

14

.................................... 4.2. UDS services

UDS NRC code Description
0x10 General reject
0x11 Service not supported
0x12 Sub-function nor supported
0x13 Incorrect message length or invalid format
0x14 Response too long
0x21 Busy repeat request
0x22 Conditions not correct
0x24 Request sequence error
0x25 No response from sub-net component
0x26 Failure prevents execution of requested action
0x31 Request out of range
0x33 Security access denied
0x35 Invalid key
0x36 Exceeded number of attempts
0x37 Required time delay not expired
0x70 Upload/Download not accepted
0x71 Transfer data suspended
0x72 General programming failure
0x73 Wrong Block Sequence Counter
0x78 Request correctly received, but response is pending
0x7E Sub-function not supported in active session
0x7F Service not supported in active session

Table 4.2: Overview of NRC codes[13]

15

16

Chapter 5
Tool selection

After analysing existing solutions for Automatic diagnostic on CAN in chapter
3, none of the existing solutions can be reused in my program, so I have to
write a new application from scratch. To do that I need to choose tools, that
I will use to create a GUI interface and diagnostic of ECU.

5.1 GUI Framework

I choose Python as a programming language, I need to look for available GUI
Frameworks that work with Python. All of the frameworks are free to use for
non-commercial applications.

5.1.1 PyQt5

Pyqt5 is a python interface for Qt, which is a set of C++ libraries for creating
GUIs using widgets. It runs as cross-platform applications that run on
Windows, Linux or macOS. Because QT is written in C++, it is fast and
takes less space. PyQt enables to take this speed and, at the same time, makes
it easier to develop an application by using Python. It enables to design of
UI with drag and drop tools, which speeds up the creation of applications.
It supports many built-in widgets that look modern and tools to develop
custom widgets, and there are plenty of tutorials on how to use it. With that
said, you have to install this library to use it. It’s harder to use for beginners,
and each widget takes more lines in code as each setting is on the new line,
so the code takes more space, and it is harder to navigate. There is also a
lack of Python-specific documentation.

5.1.2 Tkinter

Tkinter is the standard GUI library for Python, so in order to use it, you
don’t have to install anything else. It works across all platforms, and it is
easy to understand and master. It has a very simple syntax and is stable.
There are a lot of tutorials on Tkinter. Widgets look old as the Tkinter’s
first release was in 1991. Compared to other GUIs, there are not so many

17

5. Tool selection
widgets, and some more complex widgets are lacking completely. Changing
the scene in a window is, in my opinion, harder than it should be.

Figure 5.1: Example of Tkinter[14]

5.1.3 CustomTkinter

Custom Tkinter is a new GUI framework based on Tkinter. It is very new,
as development started in 2021, and it has a very modern look and has the
same syntax as Tkinter. The only difference is naming. For example, instead
of a Label, a new name is CTkLabel. It is also written in Python, but unlike
Tkinter, you have to install an additional library.

Figure 5.2: Example of CustomTkinter[15]

5.1.4 Used framework

I decided to use Tkinter to create GUI, as the size of the project is relatively
small, and I had no previous experiences with these GUI frameworks, so
Tkinter was the easiest to learn, and it was part of the standard library, so
that makes deployment of application easier. Development was slower because
Tkinter didn’t have a drop and drag tool. After I finished all development, I
found CustomTkinter, so I decided to try it, and manage to implement it into
my application. Application now has more modern look and only downsize is
that tool requires to install a new library.

18

................................. 5.2. DoIP Transport layer

5.2 DoIP Transport layer

Implementation of DoIP has only one library in Python. DoIP client is a new
library started in 2020. It is a library that implements all necessary functions
according to standard ISO 13400-2. The library is still in development as
they added support for IPv6 just 16.2.2022, so at the beginning of writing
this thesis.

5.3 UDS

As every major manufacturer of ECUs uses UDS, I need to choose a library
that would help us create and send UDS Requests and Responses. I found
three libraries that implement UDS in Python. Udsoncan, python-uds and
py-uds. Python uds could work with DoIP client, as creator of DoIP client
created fork to run it, but it is still not merged, and library has many
unresolved issues, so I will not use this library. Py-uds is a new library that
started its development last year and wants to implement futures such as
Client and Server simulations. Today it is still under development and it does
not have support for Automotive Ethernet, so I will not use this library too,
which lefts only one library left.

5.3.1 udsoncan

Udsoncan started its development in 2017 and today fully implements UDS
standard. It offers four layers of sending a UDS message, starting with raw
connection of hex data, and ending with services that create a request, send
it, wait for a response, and interpret it. For lack of alternatives I explained
above, I choose to use this library.

5.4 Architecture

Main purpose of my application is to perform an Automatic diagnostic of
an ECU with a GUI. I based my application as a desktop application so
everybody can download it, connect the ECU and perform analysis.

I chose to develop this application with Model-View-Controller(MVC) ar-
chitecture. This enables separation of how data are stored, used and viewed.
In this architecture when user creates an event in View, Controller will handle
this event, decides what function to use and uses Model to get stored data.
When data are loaded, it returns them to Controller to change View as needed.

Advantages of MVC[16]:. Separation of functionality. Each section does only what some operations.. Easy to maintain.

19

5. Tool selection
. This architecture helps to test components independently.. Easy to swap components. If I want to have a different GUI, I will just

change view section.

Disadvantages of MVC:. It is harder to watch flow of application..More complexity.

20

Chapter 6
Implementation

In this chapter, I will describe how was my application built, how I imple-
mented necessary functions and what problems couldn’t be solved and the
limits of my application. Before I started programming, I chose Python as
a programming language. It’s easier to write code with it, and it has many
libraries that make my work easier. I developed this application for Linux as
I used some commands from the bash terminal, and anybody can install it
for free. I used Git, so I could version my application, and I used Pycharm
as my IDE.

6.1 Interface

The first thing I needed to do was to identify available network interfaces of
the computer, so the user of the program could choose the interface on which
the program could analyze network traffic. To do that, I used a command
from terminal ifconfig that will list all available interfaces together with
information about that interface. I only need the name of the interface, so I
used a library called ifconfig-parser that takes the output from ifconfig and
divides it into attributes. Here you can see an example from the program.

from ifconfigparser import IfconfigParser

def identify_interfaces():
process = subprocess.run(['ifconfig'], capture_output=True)
console_output = process.stdout.decode('UTF8')
interfaces = IfconfigParser(console_output=console_output)
return interfaces.list_interfaces();

6.2 IP address discovery

In Chapter 4, I described three ways to get the IP address of an ECU. In this
section, I will describe how I implemented these methods and some limitations
and problems with them.

21

6. Implementation....................................
6.2.1 IPv6 network scan

I need to send a multicast message to a local network. Before I can do that, I
need an interface on which I will send this message. How to get the interface
I showed in the previous section. Now I need to send multicast message ff02::1
using terminal command ping. After I do that, the program will wait for
responses and parse the output to identify the unique address that responded
to the ping.

def scan_net(laninterface):
address = 'ff02::1%' + laninterface
process = subprocess.Popen(['ping6', '-c 3', address],

stdout=subprocess.PIPE, stderr=subprocess.PIPE)↪→

network_list = []
while True:

output = process.stdout.readline()
temp = output.strip().split()
if len(temp) > 5:

address = temp[3].decode('UTF8')[:-1]
if address not in network_list and

address.startswith("fe80"):↪→

network_list.append(address)
return_code = process.poll()
if return_code is not None:

break
return network_list

6.2.2 Network listener

Another method to get the IP address of the ECU is to simply monitor
network traffic. To do that, I used Pyshark, which is a Python library that
wraps tshark, which is a terminal version of a Wireshark. Pyshark enables to
read packets from a file or live capture ongoing traffic. It can be done for some
amount of time or for some number of packets. Unfortunately, capturing for
some amount of time did not work, and it is an unresolved issue on GitHub.
So I choose to capture some amount of packets and identify all unique IP
addresses. This means that until some amount of packets is received, the
application freezes for time, which depends on ongoing network traffic.

def listen_network(interface):
address_captured = []
try:

capture = pyshark.LiveCapture(interface=interface)
for packet in

capture.sniff_continuously(packet_count=5):↪→

address = None
if "IPV6" in packet:

address = packet["IPV6"].src

22

................................. 6.2. IP address discovery

else:
continue

if address not in address_captured:
address_captured.append(address)

return address_captured
except:

raise StopIteration

6.2.3 VLAN identifier

Some ECUs communicate only at a specific VLAN. To find out if ECU has
VLAN, I can again use Pyshark and find out if there is another layer with
VLAN and return its id. Then I can run a script that will add a new interface
with the VLAN id added. Unfortunately, this is not a regular command and
requires sudo access. I could do that inside the app, but the script needs to
be owned by root. Also, sudo setting needs to be changed to run without the
need for a password. This has to be done manually and is too complicated
for an average user. On the other hand, after setting this configuration,
the application can run the script by itself, and a new interface is added
automatically. The second option is that after the user gets the VLAN id
from the application, he needs to run the script manually with the VLAN id
as a parameter. This is, in my opinion, easier for an average user.

def get_vlan(interface):
capture = pyshark.LiveCapture(interface=interface)
try:

for packet in
capture.sniff_continuously(packet_count=20):↪→

if "VLAN" in packet:
return packet['VLAN'].id

except:
raise StopIteration

6.2.4 Vehicle announcement

In my opinion best method how to get only ECU address is simply to use the
Vehicle announcement message that ECU sends. It contains all important
data about ECU as IP address, port and ECU logical address. To receive this
message and communicate with ECU, I used the python-doipclient library.
In the example below, you can see how to extract this information using
DoIPClient. As I want to use IPv6, I have to specify that via bool parameter,
so my application doesn’t work with IPv4 ECU.

address, announcement =
DoIPClient.await_vehicle_announcement(ipv6=True)↪→

logical_address = announcement.logical_address
ip, port,_,_ = address

23

6. Implementation....................................
6.3 Additional info about IP address

Before I will connect to ECU and start UDS diagnostic, it would be useful to
know additional info about chosen IP address. Discovering what ports are
running on an IP address can be useful, as many services use default ports.
To do that, I can use nmap tool, which is a bash command in linux. "Nmap is
used to discover hosts and services on a computer network by sending packets
and analyzing the responses."[17] By default, Nmap scan only TCP ports,
but parameters can be added to scan both UDP and TCP ports.

def scan_address(address):
if ":" in address:

process = subprocess.run(['nmap', '-6', address],
capture_output=True) # add 'p' to scan all ports↪→

return process.stdout.decode('UTF8')

Ports are not the only thing I can identify about IP addresses. By listening
to ongoing traffic and analyzing packets, I can get MAC addresses as well.
Another piece of information I can get is to simply ping the IP address to
find out if it responds to ping and how long it takes. The last information I
try to find about the IP address is its domain name on DNS server. Example
from the application of extracting this information.

for packet in capture.sniff_continuously(packet_count=5):
if "IPV6" in packet:

address = packet["IPV6"].src
if address in ip:

mac_address = packet[0].src_resolved
else:

mac_address = packet[0].dst_resolved
output = process.stdout.readline()

temp = output.strip().split()
while len(temp) > 0 or output.decode('UTF8') == "\n":

output = process.stdout.readline()
if output.decode('UTF8') != "\n":

temp = output.strip().split()
avg = temp[1].decode('UTF8')
if "avg" in avg:

ping_responses = temp[3].decode('UTF8')
split_ping = ping_responses.split('/')
ping_avg = split_ping[1]
it_pings = True
break

strip_ip = ip
if '%' in ip:

result = ip.find('%')
strip_ip = ip[:result]

24

..................................6.4. Connection to ECU

process = subprocess.Popen(['nslookup', strip_ip],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)↪→

output = process.stdout.readline()
temp = output.strip().split()
name_of_ip = temp[3]
return mac_address, it_pings, ping_avg, name_of_ip

6.4 Connection to ECU

Now when I have an IP address, I can try to connect to an ECU. To establish
a connection, I use DoIP Client, which is a library that I described in the
chapter 5. The connection can be simply established like this.

is_doip = False
try:

doipclient = DoIPClient(ip, 0x0000, activation_type=None)
is_doip = True

except:
messagebox.showerror("Error", "Couldn't connect probably

not an ECU")↪→

The problem is that ECU has a logical address that I don’t know. Standard
takes care of this by forcing ECU to send a logical address together with a
Vehicle announcement response message. This message is broadcasted three
times after turning on the ECU. I can restart the ECU so I can receive this
message, or I can use connection and send a Vehicle announcement request on
which the ECU must respond with a Vehicle announcement response. During
my testing I discovered, that ECU supports this request and response with
Vehicle announcement response, but only with when DoIP Client has correct
ECU logical address, which I wanted to get from response. Only way I can
extract a logical address from ECU is to close the old connection, restart the
ECU manually and await Vehicle announcement response.

doip_client.close()
#manually restart ECU
address,announcement =

DoIPClient.await_vehicle_announcement(ipv6=True)↪→

logical_address = announcement.logical_address

Now that I have a new connection, I can finally perform some diagnostic
using UDS. The problem is that some ECUs will not respond to UDS requests.
If the client’s logical address in the DoIP client is not right, ECU will deny
access. To solve that, I can send a simple UDS request and, each time change
the client’s logical address, which ranges from 0x0000 to 0xFFFF, until I
receive a positive response. Now I can create the final DoIP Client with all
needed parameters set.

25

6. Implementation....................................
while send_address < max_address:

doip_client = DoIPClient(ip, logical_address,
client_logical_address=send_address)↪→

conn = DoIPClientUDSConnector(doip_client)
with Client(conn,request_timeout=timeout) as client:

response = client.change_session(
DiagnosticSessionControl.Session.defaultSession)

if response.positive:
self.tester_logical_address = send_address
break

send_address += 1

6.5 Scan DID and DTC

Application can scan a range of DIDs and diagnose which ones return a
positive response with some data. Application returns only IDs of these
DID as there is no standard for decoding these data. In this exmaple the
application creates a request for a DID and waits for a response from the
ECU. Than, it checks if response was positive and adds it to a list.

my_hex_data = did_id.to_bytes(2, 'big')
req = Request(services.ReadDataByIdentifier, data=my_hex_data)
self.uds_connection.send(req.get_payload())
payload = self.uds_connection.wait_frame(timeout=1)
response = Response.from_payload(payload)
if response.code == Response.Code.PositiveResponse:

supported_did_codes.append(did_id)
else:

if textbox is not None:
continue

return supported_did_codes

I can also get DTC codes, which stands for diagnostic trouble codes. When
some problem occurs, it will be stored in the ECU and can be later retrieved
by a tester. Unlike DID, DTC has some structure and I can retrieve how
sever the error is, its ID and its status. Example of implementation.

status = Dtc.Status(True, True, True, True, True, True, True,
True)↪→

response = client.get_dtc_by_status_mask(status)
save = response.service_data.dtcs
text_insert = "DTC with id " + hex(save[i].id) + " status " +

hex(↪→

save[i].status.get_byte_as_int()) + " severity " +
hex(save[i].severity.get_byte_as_int()) + "\n"↪→

26

Chapter 7
Conclusion

The main aim of this thesis was to design and implement a tool for Automotive
Ethernet that could automatically identify Automotive Ethernet network and
services supported by an ECU, as older projects are not usable in modern cars.

In the beginning, I explained the necessary terms regarding Automotive
Ethernet and diagnostic. After that, I conducted an analysis of current tools
that are open-source and perform a similar task for the CAN bus. During
this analysis, I discovered that one CAN tool has a module for DoIP. I tested
it and discovered that two main services did not work with an ECU I had,
but I looked at what services they try to scan and how. Another CAN tool
that I looked at had a nice GUI, and I tried to design my tool to have a
similarly simple and nice GUI.

In the next step, I described three methods to get IP address and other
parameters of IPv6 network. Later I described UDS message structure,
particularly response and request. I explained how to perform diagnostic
of supported services and their limitations. Based on previous research, I
presented tools that I considered and explained why I decided to use that
tool over another. Based on performed analysis, I designed and implemented
a new tool with GUI that performs automatic network identification and can
scan two of the UDS services, DID and DTC.

7.1 Ideas for further improvements

I have several ideas that could be implemented in the future to further improve
my tool’s usefulness. Here are the most significant ones.

7.1.1 More services

Currently, only two services are supported by my tool. Reading of DID and
DTC. It would be useful to add support for more services such as ECU reset,
read Memory by address, Tester present, and others. Unfortunately, these
services could not be implemented and tested because the tested ECU did
not support these features or due to a lack of time on my side. This will not

27

7. Conclusion......................................
take much time, and I am already working on support for service discovery
and adding an option to periodically send tester present message.

7.1.2 Backward compatibility

I designed my tool with IPv6 as its network layer. It wouldn’t be hard to
modify my tool to work with IPv4.

7.1.3 Interpret DID codes

DID codes contains various data like VIN code,hardware number and many
others that depends on manufacturer. Decoding these data would be nice. I
actually tried to decode some of the DID codes, as some of them are stored
in ASCII, but I had to add how long the string is, and I did not manage to
get this info automatically.

7.1.4 Implement VLAN into application

Currently application can detect VLAN on network, together with its id, but
it cannot create a new interface with VLAN to communicate with an ECU.
Currently outside script that requires sudo access can be run. It would be
better to implement this into the tool, ask for password and run the script
from application.

28

Bibliography

[1] CAN and alternatives — Navixy. GPS Tracking Platform – Navixy [online].
Copyright © 2005 [cit. 31.03.2022]. Available at: https://www.navixy.
com/docs/academy/can-bus/can-and-alternatives/

[2] From Standard Ethernet to automotive Ethernet. (2019) [online] [cit.
31.03.2022]. Available at: https://www.keysight.com/us/en/assets/
7018-06530/flyers/5992-3742.pdf

[3] (DoIP) Diagnostics Over Internet Protocol Explained | AutoPi. IoT plat-
form for your car, built on the Raspberry Pi | AutoPi [online]. Copyright ©
Copyright [cit. 31.03.2022]. Available at: https://www.autopi.io/blog/
diagnostics-over-internet-protocol-explained/

[4] DoIP Software Solution for Remote Vehicle Diagnostics | UD-
SonIP v/s UDSonCAN. Product Engineering Services | Magento
| Hybris | Ecommerce Website Development [online]. Copy-
right © 2021 Embitel. All Rights Reserved [cit. 31.03.2022].
Available at: https://www.embitel.com/blog/embedded-blog/
how-uds-on-ip-or-doip-is-enabling-remote-vehicle-diagnostics

[5] UDS Explained - A Simple Intro (Unified Diagnostic Services) [online]. [cit.
31.03.2022]. Available at: https://www.csselectronics.com/pages/
uds-protocol-tutorial-unified-diagnostic-services

[6] Unified Diagnostic Services - Wikipedia. [online]. [cit. 31.03.2022] Available
at: https://en.wikipedia.org/wiki/Unified_Diagnostic_Services

[7] IPv6 overview, IBM Docs. [online]. Copyright © Copyright IBM Corpo-
ration 1998, 2010 [cit. 31.03.2022]. Available at: https://www.ibm.com/
docs/en/i/7.2?topic=6-ipv6-overview

[8] IPv4 vs IPv6: Comparing Their Security & More. WisdomPlexus -
"Top Destination for Updated Techscoop" [online]. Copyright © Copy-
right [cit. 31.03.2022]. Available at: https://wisdomplexus.com/blogs/
ipv4-vs-ipv6-security/

29

https://www.navixy.com/docs/academy/can-bus/can-and-alternatives/
https://www.navixy.com/docs/academy/can-bus/can-and-alternatives/
https://www.keysight.com/us/en/assets/7018-06530/flyers/5992-3742.pdf
https://www.keysight.com/us/en/assets/7018-06530/flyers/5992-3742.pdf
https://www.autopi.io/blog/diagnostics-over-internet-protocol-explained/
https://www.autopi.io/blog/diagnostics-over-internet-protocol-explained/
https://www.embitel.com/blog/embedded-blog/how-uds-on-ip-or-doip-is-enabling-remote-vehicle-diagnostics
https://www.embitel.com/blog/embedded-blog/how-uds-on-ip-or-doip-is-enabling-remote-vehicle-diagnostics
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://en.wikipedia.org/wiki/Unified_Diagnostic_Services
https://www.ibm.com/docs/en/i/7.2?topic=6-ipv6-overview
https://www.ibm.com/docs/en/i/7.2?topic=6-ipv6-overview
https://wisdomplexus.com/blogs/ipv4-vs-ipv6-security/
https://wisdomplexus.com/blogs/ipv4-vs-ipv6-security/

7. Conclusion......................................
[9] Embitel how uds on ip or doip is enabling remote vehicle diag-

nostics[online] https://www.embitel.com/blog/embedded-blog/
how-uds-on-ip-or-doip-is-enabling-remote-vehicle-diagnostics

[10] Caring Caribou [online] https://github.com/CaringCaribou/
caringcaribou

[11] CANalyzat0r [online] https://github.com/schutzwerk/CANalyzat0r

[12] CANToolzl [online] https://github.com/CANToolz/CANToolz

[13] Softing Automotive | Expertise of diagnostics and testing in au-
tomotive electronics [online]. Copyright ©U [cit. 18.05.2022]. Avail-
able at: https://automotive.softing.com/fileadmin/sof-files/
pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf

[14] Frank. Medium. 2020. Create desktop applications with Python
tkinter. [online] Available at: https://medium.com/@frank_43640/
create-desktop-applications-with-python-tkinter-bb7a0e073f0c
[cit. 16.05.2022]

[15] Custom Tkinter [online] https://github.com/TomSchimansky/
CustomTkinter

[16] Svirca, Z., 2020. Everything you need to know about MVC ar-
chitecture. [online] Available at: https://towardsdatascience.com/
everything-you-need-to-know-about-mvc-architecture-3c827930b4c1
[cit. 31.03.2022]

[17] What is Nmap And Why You Should Use It? - The Hack Report.
Top Software Testing Services Compant | The Hack Report - The Hack
Report [online]. Copyright © [cit. 10.05.2022]. https://thehackreport.
com/what-is-nmap-and-why-you-should-use-it/

30

https://www.embitel.com/blog/embedded-blog/how-uds-on-ip-or-doip-is-enabling-remote-vehicle-diagnostics
https://www.embitel.com/blog/embedded-blog/how-uds-on-ip-or-doip-is-enabling-remote-vehicle-diagnostics
https://github.com/CaringCaribou/caringcaribou
https://github.com/CaringCaribou/caringcaribou
https://github.com/schutzwerk/CANalyzat0r
https://github.com/CANToolz/CANToolz
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf
https://medium.com/@frank_43640/create-desktop-applications-with-python-tkinter-bb7a0e073f0c
https://medium.com/@frank_43640/create-desktop-applications-with-python-tkinter-bb7a0e073f0c
https://github.com/TomSchimansky/CustomTkinter
https://github.com/TomSchimansky/CustomTkinter
https://towardsdatascience.com/everything-you-need-to-know-about-mvc-architecture-3c827930b4c1
https://towardsdatascience.com/everything-you-need-to-know-about-mvc-architecture-3c827930b4c1
 https://thehackreport.com/what-is-nmap-and-why-you-should-use-it/
 https://thehackreport.com/what-is-nmap-and-why-you-should-use-it/

Appendix A
List of appendixes

Part of this thesis is an attachment in zip format. This attachment has these
folders.. EthernetIdentificationTool - Source code of implemented tool. overleaf - source code of this thesis

31

	Acronyms
	Introduction
	Technologies
	Automotive Ethernet
	DoIP
	UDS
	IPv6

	CAN tools
	CaringCaribou
	CANalyzat0r
	CANToolz
	Summary

	Identifying network parameters and services
	IP address discovery
	Network scan in IPv4
	Network scan in IPv6
	Vehicle announcement
	Network scan

	UDS services

	Tool selection
	GUI Framework
	PyQt5
	Tkinter
	CustomTkinter
	Used framework

	DoIP Transport layer
	UDS
	udsoncan

	Architecture

	Implementation
	Interface
	IP address discovery
	IPv6 network scan
	Network listener
	VLAN identifier
	Vehicle announcement

	Additional info about IP address
	Connection to ECU
	Scan did and dtc

	Conclusion
	Ideas for further improvements
	More services
	Backward compatibility
	Interpret DID codes
	Implement VLAN into application

	Bibliography
	List of appendixes

