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Abstrakt

Pokrok v technologii přišpěl v posledním desetiletí ke zvýšení komplexity výrobních procesů ve
výrobním průmyslu. Tyto výrobní procesy pak generují data se složitější strukturou, což společně v
kombinaci s produkcí velkého množství dat zapříčinilo pokles efektivity klasických metod regulace
procesu. Metody strojového učení nejsou v tomto oboru příliš používané, ale právě tyto metody
ukazují největší potenciál řešit problémy, se kterými se dnešní regulace procesu musí často zabývat.
Mezi ně se řadí například vysoká vícerozměrnost, nelinearita, multimodalita a vzájemné korelace
mezi proměnnými. Tato práce se věnuje výzkumu statistické regulace procesů a využití klasických
metod oproti vybrané metodě strojového učení, one-class support vector machine. Výsledky v sérii
experimentů ukázaly, že se v tomto komplexním prostředí metoda one-class support vector machine
orientuje lépe než metody klasické a v drtivě většině případů získává lepší výsledky. Metody byly
také implementovány do aplikace pro statistické řízení procesů, která importuje data z měření,
předzpracuje je a aplikuje tyto metody detekce působení zvláštních příčin na proces výroby a
výsledky detekce prezentuje uživateli.

Klíčová slova: detekce stavu mimo kontrolu, strojové učení, statistická regulace procesu
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Abstract

The progress of technology in the last decade contributed to the growth of complexity among
processes in the manufacturing industry. These processes then generate data with increasingly
complex data structure, which, in combination with the data production of today’s world, resulted
in the dwindling effectivity of the classical statistical process control methods. Although underused,
machine learning-based methods have the potential to handle intricate dynamic processes with
multivariate, nonlinear, and multimodal data that are also mutually correlated. This thesis focuses
on the research of statistical process control and the comparison of its classical methods with a
machine learning method, one-class support vector machine. The results of a series of conducted
experiments show that the machine learning method adapts better to the complex environment and
outperforms the classical methods. Finally, the thesis discusses the implementation of statistical
process control software, which imports measurement data from a DFQ file (Q-DAS format),
preprocesses them, applies selected methods of assignable cause detection, and presents the results
visually to the user.

Keywords: out-of-control state detection, machine learning, statistical process control
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Chapter 1

Introduction

The out-of-control (OOC) state detection is one of the crucial parts of quality control in
manufacturing processes. As the name suggests, it detects faults in processes that create products
that do not conform to the company’s quality standard. The OOC state detection is performed by
employing statistical process control (SPC), an approach of quality management that is commonly
used in industries that operate with measurable parameter characteristics.

In Fig. 1.1, we can see a flowchart depicting the operation of SPC from input to output. According
to an individual sample plan, a product (or a part of a product) is taken to have its parameters
measured. If these parameters do not conform to the company’s quality standards, the cause of this
nonconformity needs to be identified and thoroughly investigated. After the cause of the problem
has been found, an appropriate action (called a control action) needs to be deployed to remove it.

These assignable causes are not an innate part of the process, but they will inevitably and maybe
continuously appear at the beginning of every SPC application. They should always be identified and
removed as soon as possible. The reason being that these causes create an unpredictable process
that has high variability, further affecting the production by creating products that considerably
vary piece by piece. If correctly removed, assignable causes appear less over time until they are
completely removed.

Process control

ProcessInput Output

Measurement

Assignable
cause finding

Out of control state 
detection

Selection of control 
action

Figure 1.1: Statistical process control flowchart, adopted from [1]
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CHAPTER 1. INTRODUCTION

Although the beginning of the industrial revolution marks the 18th century and processes suitable for
SPC might be found even before that, the foundations of SPC were laid only almost a hundred years
ago in the 1920s. The start of SPC is known to be pioneered by W. A. Shewhart and his Shewhart
Control Chart, which popularized statistical methods in the manufacturing industry. Ever since
then, SPC has been studied and extensively practiced, creating various methods to combat the
rising complexity of both data and processes over time. Despite that, the intriguing systems of
today’s technology seem to create a very complex environment where the classical SPC methods fail
to perform well.

The vast progress in technology in the manufacturing industry contributed to the considerable
improvement of the quality of the machines used in production and the possibility of almost unlimited
data collection. Both increased machine effectivity and the increased data pool lead to the rise
of very complex dynamic processes. The data instances from such processes commonly possess
properties that are intricate to work with. The classical SPC methods commonly underperform
in these situations and often arrive at misleading conclusions. Examples of such data properties
that are complicated for SPC to operate with are multimodality, nonnormality, heavy correlation,
multivariety for a large number of variables, et cetera.

While there is a lot of research related to the typical univariate and multivariate SPC methods,
the research focusing on today’s data properties is still at an early stage. Although there are
propositions for a new generation of machine learning-based SPC, many companies (if not most)
still use the basic methods developed in the last century or settle for an empirical estimation based on
experience. Such an approach ignores the underlying complexity of the present-day state detection
task as many processes are interlinked in a complicated manner, creating complex patterns that are
too difficult for a human or an older statistical process control tool to follow.

Although there is no formal summary on how to use machine learning in SPC correctly, some
attempts were more than successful. To list a few examples from well-known companies, Intel uses
predictive maintenance based on anomaly detection to predict IoT sensor breakdowns. This has
reportedly saved them hundreds of million [2]. From the automotive industry, BMW uses artificial
intelligence for quality assurance, boosting the efficiency of several production teams [3]. Machine
learning is believed to have a significant potential in the process control field, although it is currently
underused. This thesis focuses on the research of SPC in practice and encourages the use of machine
learning in the field by evaluating and benchmarking chosen classic SPC methods against a selected
machine learning algorithm.

2



CHAPTER 1. INTRODUCTION

Goal

This thesis is a part of a project with Škoda Auto, and as a result, it was developed after many
discussions and teleconferences with various domain experts from the field of mechanical engineering.
The goal included completing the following tasks:

• Conduct extensive theoretical research on SPC, commonly and historically used methods and
approaches.

• Research machine learning in SPC.

• Do data analysis of the data set provided by Škoda Auto and, consequently, research problems
related to the discoveries in data.

• Implement commonly used SPC methods and a selected machine learning algorithm. Evaluate
and benchmark them on real data.

• Generate synthetic data from the real data, evaluate, and benchmark the methods on them.

• Implement an application that visualizes the results so that they can be used for analytical
purposes even by non-experts.

Due to the fact that the data are real data from the manufacturing factory of Škoda Auto, this thesis,
unfortunately, cannot reveal any internal information and domain expertise that was important for
the creation of the output. Furthermore, the data itself and the code base of the application also
cannot be revealed due to them containing confidential information. Visualization and graphs have
been anonymized.

Structure

Since out-of-state detection and SPC is quite a specific topic to cover, the introduction provides
the reader with the basic idea of SPC, out-of-state detection and touches on topics that will be
discussed in more detail in the thesis. The following chapter Quality Management (Chap. 2) dives
into important terminologies and definitions of management of quality, of which SPC is also part of.

Chapter Out-of-control State Detection (Chap. 3) is partly theoretical, partly practical. It contains
related works, formal definitions of the classical SPC methods that are still commonly used, and
introduces the selected machine learning algorithm One-class SVM. However, it also includes the
analysis of the real data (only what can be revealed).

The rest of the thesis is purely practical. The whole chapter Experiments (Chap. 4) is devoted
to the experiments conducted on synthetically generated data, which offers a better overview of
the performance. The implementation of the application CIRQUE is described in the following
chapter Application CIRQUE (Chap. 5), while also discussing the visualization theory behind the
application design decisions. Ultimately, chapter Conclusion (Chap. 6) provides a complete overview
of the research result and offers ideas of what can be done in the future.

3



Chapter 2

Quality management

Even before the rise of computers and automation in modern technology, ensuring the quality of
products or services was crucial for most industries. From companies dealing with manufactured
commodities to companies that provide commonly used services, the act of overseeing and managing
activities to ensure a certain level of excellence is an essential concept for all of them. Examples
of industries that make extensive use of quality management are, e.g., the car industry or textile
industry, where the term quality could be defined varyingly. For cars, quality can be defined by
parameters such as the diameter of body parts, depth of holes, and for a garment, it could be
its durability or reliability. In services, these quality-improving methods can be applied to public
transport or healthcare. Generally, quality management is relevant to most matters related to
an organization or a company, including manufacturing, process development, finance, accounting,
marketing, and even logistics. To genuinely improve, the processes of quality management
undoubtedly require the efforts of many people within and even outside the organization to better
the product and the general company culture.

Principles of quality management were already introduced as early as in the 19th century. Frederick
W. Taylor proposed principles in 1875 that he called “scientific management”, establishing dividing
work into smaller assignments to simplify the manufacturing and assembling process [4]. As the mass
production industries were developing at that time, his work managed to improve the productivity
and the quality of manufactured goods considerably. Around this time, companies also started to
impose the concept of work standards (standard time to finish the work, specified number of units
per period, et cetera.), which was beneficial for the company’s productivity, but not very effective
quality-wise [5].

In the 1920s, the rise of statistics and statistical theories used in businesses became apparent. Ford
published My Life and Work focused on improving process efficiency, Fisher finished his papers on
designed experiments, and finally, in the year 1924, W. A. Shewhart introduces the control chart
concept [5]. This time in history is frequently dubbed as the formal beginning of statistical quality
(process) control, and later on, Harold F. Dodge and Harry G. Romig add to it by developing
statistical acceptance sampling. Around the year 1935, the statistical quality control methods

4



CHAPTER 2. QUALITY MANAGEMENT 2.1. DEFINING QUALITY

were already extensively used at Western Electric, although these methods had not been exactly
acknowledged by the public at that time [6].

The usage of statistical quality control was then greatly increased during World War II, where
the importance of quality control was more than apparent. During this time, the manufacturing
industries realized how important statistical methods were and started implementing them into their
quality management. By the 1950s, these implemented statistical methods were applied widely in
the chemical industry in the United States. However, the expansion of these methods into other
industries in the US was relatively slow.

On the other side of the world, Japan encountered an after-war industrial-economic crisis. At that
time, most Japanese netizens were considered predominantly illiterate, and the Japanese products
were, more often than not, very low quality. After recognizing this issue, certain companies, such as
Toyota, started heavily implementing quality management and quality control into their production
processes. Japan produced better products at a lower price with a more efficient production system.
By the 1960s, Japan became one of the most competent export countries, surpassing its Western
competitors in rapid speed [7] [8].

Around the late 1970s, the discovery of Japan’s improvement inspired the rest of the world to
look into statistically designed experiments to reproduce Japan’s success. The use of statistics in
quality management has also considerably helped domestic businesses in the USA, which at that
time suffered a substantial loss. The beginning of the extensive use of statistical methods for quality
assurance was motivated by the fierce foreign competition and took a big part in the reemerging of
the domestic industries.

The rest of this chapter is dedicated to the basic theoretical knowledge needed for the following
chapters of the thesis. This chapter discusses several definitions of quality and what they actually
portray in practice, introduces the quality engineering terminology frequently used throughout the
subsequent parts of the thesis, and briefly presents other quality control methods besides statistical
process control for overview. The last section is dedicated solely to statistical process control.

2.1 Defining quality

The whole concept of quality management comes from a business philosophy that lasting success
can be obtained only by assuring the customer’s satisfaction. A customer, an individual shopper, or
even a corporate, then perceives quality as a factor that helps them make a choice. These choices are
primarily based on the shopper’s subjective values, such as which material is used, how appealing
it is, or even the company’s money-back guarantee. Conceptually, quality can be understood as the
presence of wanted, desirable features that assist the consumer in final decisions.

In quality management theory, these subjective values can be put into more objective terms that
adequately summarize the structure of the definition of this term. Quality has several differentiated
components that are called dimensions of quality [9]. There are eight components that sufficiently
represent quality in industries and businesses:

5



CHAPTER 2. QUALITY MANAGEMENT 2.1. DEFINING QUALITY

• Performance describes whether the product does its intended job. The customer typically
compares specific functions of many different products to decide which one serves the best
purpose, e.g., When comparing visualization programs Power BI and Tableu for data analysis,
Tableu’s computing performance is better for a bigger volume of data.

• Reliability can be understood as a probability of the product failing. Although many products
can be repaired, a product is still called unreliable if it fails at its job too frequently (and before
its effective service life ends). Healthcare appliances are typically heavily dependent on this
particular dimension of quality. A car that breaks down every month and needs to be repaired
is unreliable.

• Durability describes the effective service life of a product. It can be understood as how many
uses until deprecation or until it is no longer economical to repair it anymore. The durability
of a product is a desirable factor in the automobile industry and major appliances.

• Serviceability is associated with ease of repair – be it fixing a product or correcting a mistake
in the service business. Serviceability involves the speed of repair, the competence of personnel,
as well as the economic aspect of it. Every company handles its serviceability differently, which
for customers typically directly reflects the quality of the product or service.

• Aesthetics responds to how visually appealing the product is. It involves the shape, color,
sensory features such as tactile or smell characteristics of the product. A popular color choice
for fast cars is red due to its psychological subtext. Red is usually appealing for people who are
more likely to drive fast.

• Features describes how much more the customer gets, besides the basic functions that the
product or service provides. Frequently, products and services that provide bonus features are
considered higher quality than those who do not.

• Perceived quality corresponds to the company’s reputation and the reputation of the product
itself. Perceived quality is directly affected by the way the company handles failure scenarios.
This dimension of quality is essential to customer loyalty.

• Conformance to standards is related to the likeness of the original design. A high-quality
product should fulfill the conditions that the designer has set. Many manufactured products
are created to be a piece with a much more intricate body. Not meeting these requirements
can result in serious quality problems.

Montgomery [5] pointed out that although these eight dimensions are sufficient for businesses and
industries, the service industry offers three more dimensions. He added another three dimensions to
describe service and transactional business organizations:

• Responsiveness is how responsive the service providers were to the customer’s request. It
involves both the response time and the attitude.

• Professionalism responds to how qualified and competent the service provider is.

• Attentiveness is “how the customer feels about their concerns being addressed”.
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This multifaceted aspect of quality gives us many ways how to define it. There are two basic
definitions of quality: the more traditional aspect and one that talks about variability dubbed as
the “modern” definition.

Definition 1 Quality is fitness for use.

This is the traditional definition of quality, inspired by the attitude that products and services must
simply fulfill the user’s demands. Every product and service has two aspects – the predetermined
intentional grade/level of quality and how the product/service complies or conforms with the design
specifications.

All cars are vehicles used for transportation. However, there are specific differences in sizes,
performances, displays, etc., that are intentional design choices. Each car has a predetermined
grade or level of quality that is intentional and predetermined by design. On the other hand, how
well the product conforms to design specifications relies on the motivation of employees to achieve
a good product, chosen procedures, etc. These aspects are technically called quality of design and
quality of conformance.

Definition 2 Quality is inversely proportional to variability.

This is the "modern" definition of quality that implies that when variability decreases, the quality
of the product increases. By variability at this time, we mean undesirable deflection from a target
value.

The second definition is often called the modern definition of quality because of its all-in-one nature.
Low variability means lower manufacturing costs and, later on, fewer repairs and rework. That
translates into less wasted time, effort, and money. Such a definition of quality improvement directly
relates to the following definition:

Definition 3 Quality improvement is the reduction of variability in processes and products.

The variability of the product or service comes in many forms. It may be the competence of
the staff, equipment used in the making, and even the chosen materials of the design. Although
it is impossible to make every product identically unit to unit, the companies try to minimize the
variability to the point where it is economically doable. If the variability in the product is small, it
does not impact the customer as much. However, if the variability between units is large, it impacts
the user and is deemed unacceptable.

As we eliminate variability in processes and products, we also eliminate waste. The efficacy of
this particular definition is shown in the service industry, where there is typically no parameter to
measure. In such a situation, waste may equal to an error of an employee. Such a mistake can be
costly as it takes time and effort to correct it.

2.2 Quality engineering terminology

The previous section contains a general, broad definition of the term quality. Every customer-
consumed product also has a set of characteristics that the customer or the user thinks of as quality.
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Such characteristics are called quality characteristics or also critical-to-quality (CTQ) characteristics.
They collectively represent what “quality” is from the customer’s point of view, and they can directly
or indirectly relate to the dimensions of quality mentioned previously.

Quality characteristics have several different types that further specify them:

• Physical such as length, weight, voltage, or viscosity.

• Sensory such as taste, color, and appearance.

• Time orientation such as reliability, durability, and serviceability.

Quality engineering is a group of various activities used to retain the quality of a product in the
company. Using these actions, the company tries to assure that CTQ characteristics of the product
stay at a required level and the variability of the manufactured good is minimal.

Variability is a statistical term that can also be described only through statistical means. Statistical
methods typically classify data on CTQ characteristics as attributes or variables based on the
continuity of the data.

Data that can be classified as an attribute is discrete, and it could be some form of count as a number
of emergency patients that had to wait more than 15 minutes before being treated. Variables, on
the other hand, are continuous and typically measurements such as length.

Quality engineering activities often refer to certain specifications that must be met for the quality
of the product to be high quality. Previously, it was mentioned that the company tries to assure
that CTQ characteristics of the product stays at a required level. That required level in quality
engineering terms is called the nominal level or also target value. It is the desired value of such
characteristic of the product.

Because for some manufactured products, it is essentially impossible to stay on the nominal or target
value at all times, these values are frequently bounded by a range. This range is usually decided upon
by experts of respectable fields as they choose an acceptable variability that the company can allow
while not compromising the quality of the product too much. The largest acceptable value for CTQ
characteristics to have is called the upper specification limit (USL). The smallest acceptable
value for the characteristic to have is named the lower-specification limit (LSL).

As was already mentioned, not simply the range but also the whole set of specifications are
constructed by design engineers as a result of the engineering design process. The design
configuration of the target value is firstly devised by following the engineering science principles.
After that, a prototype is constructed and then tested. However, compared to what one may
imagine, testing is generally not done in a statistically based experimental design manner. It is also
done without the presence of the manufacturing processes that will be making the final product.
The design engineers then set the rest of the specifications, releasing the product to manufacturing.
This is called the over-the-wall approach.

The over-the-wall methodology does have certain setbacks. The general result from this approach
yields many nonconforming products, meaning it creates products that do not satisfy at least
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one of the predetermined specifications. This type of problem, where the approach fails to create
conforming products, is called a nonconformity. However, these products do not have to be
automatically deemed inadequate and unfit for use [5].

A serum contains a nonconforming level of an active (effective) ingredient. Although the percentage
of the active ingredient is below its lower specification limit, the user can still reap its effects, but it
takes longer for the results to show on the skin.

A detected nonconformity in a product that is severe to the point of unacceptably affecting the
quality of it is called a defect. If the product contains one or more defects, it is called defective.

It is, however, not uncommon for some of these characteristics to only have a single upper
specification limit or only a lower-specification limit. A typical example of such a product is a
bumper on a car. The bumper has a nominal value and lower specification limit, but it no longer
possess the upper specification limit.

2.3 Quality control methodologies

The reader has so far encountered two critical terms that are commonly confused or mistakenly used
interchangeably – quality management and quality control. The term quality management is an
umbrella term for any approach used to control, manage and regulate quality within a company, while
quality control is an approach of solely controlling the quality and is a part of quality management.
Quality management could be anything from a business methodology for improving services, total
regulation of every company department, or solely using statistically based approaches to find
conforming products. The total regulation is, however, also a quality control methodology, as well
as SPC, our primary tool for the OOC state detection of this thesis.

Before we turn our attention solely to SPC, let us briefly introduce some other possible methods of
quality control to complete the reader’s general overview.

Certain quality management approaches focus on improving their products or services through the
whole company’s management and operations. Total quality management (TQM) draws its base idea
from the concept of a company-wide effort to collectively improve the quality of the final product.
TQM means to assemble all departments to work on their management, operations, and processes,
using other previously developed techniques of quality control [10]. TQM was slowly replaced due to
the growing demand for zero-defect and on-time production. Methods such as lean production or
lean manufacturing, which focus on efficiency of the production system and cutting down supplier-
to-customer response time, were developed and utilized. They also apply forecasting strategies to
predict supply-demand to request goods or materials only when needed, improving the amount of
waste and cost [11].

At times, certain collections of standards or families of quality systems (or management systems)
are used, such as in ISO 9000 [12] or Six Sigma [13], well-known statistical tools for quality
management. Some of them are regularly revised, updated, and used to this day.
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Another approach is to use statistical methods to reach an improvement, called statistical quality
control. It can be divided into three major parts: designed experiments, acceptance sampling
and statistical process control [14].

Acceptance sampling relates to product testing in a way that we inspect a randomly chosen
batch of products at any point in the process. Fig. 2.1 shows a system of acceptance sampling in a
process. We call it an incoming inspection if we sample batches after receiving it from the supplier,
outgoing inspection if we sample it before shipping it to the customer. Rectifying inspection
is when a sampled lot gets rejected, but they are suitable for being reworked into something new.

Figure 2.1: Acceptance sampling diagrams, adopted from [14]

Since acceptance sampling does not necessarily say much about the process and focuses more on
the conformance-to-quality aspect of it, it is not used as much as SPC and design of experiments
as the processes get increasingly complex. A well-designed experiment can be helpful as its goal is
to determine key variables affecting the quality of the process. It does so by systematically shifting
the variables and monitoring the change in variability. Design of experiments is mainly used at
the development stage to decrease variability in the processes, signifying that it is an off-line quality
control method. For the continuous monitoring of the process, methods of SPC are used.

2.4 Statistical process control

Statistical process control (SPC) is a method in quality control, which applies statistical methods
to control and oversee processes in which specifications of conforming products can be quantified,
typically by measuring. For that reason, SPC is regularly used in the manufacturing industries,
although it can be administered in services or nonmanufacturing processes as well. One of the
benefits of using SPC is in its core idea of correcting the process early instead of trying to correct a
made mistake.

Fig. 2.2 is a more detailed depiction of Fig. 1.1 from Introduction (Chap. 1). Since the previous
chapters already covered the necessary information, the flowchart now includes a better depiction
of how SPC operates.

10



CHAPTER 2. QUALITY MANAGEMENT 2.4. STATISTICAL PROCESS CONTROL

The machining process receives a process input that is cleared according to a predetermined control
plan. A sample of CTQ characteristics are then chosen, and products containing the sample are
transported to a measuring center for measurement. The OOC detection tool analyses the sample,
and if a nonconforming product (or defect) is found, a diagnosis for an assignable cause is initiated.
After identifying the assignable cause, a control action is selected and carried out to remove the
cause.

Figure 2.2: SPC diagram

It is clear that in reality, the SPC process is not as apparent and simple as is depicted in theory.
Depending on the type of industry and each factory, many inevitable issues get in the way of accurate
state detection.

In process control, we can identify two types of process inputs, a controllable input and an
uncontrollable input. Fig. 2.3 shows a diagram of a manufacturing process. As the name suggests,
the controllable inputs are process variables that we can control, such as applied pressure and feed
rates. The uncontrollable inputs are mostly environmental factors that are either very difficult
to control, or are uncontrollable, such as the behavior of the raw material. These inputs are all
processed into a product possessing certain quality characteristics (CTQ characteristics) that are
later on measured and evaluated.
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Figure 2.3: A manufacturing process, adopted from [14]

When selecting a method for an OOC detection, the manufacturing process as a whole should also
be taken into great consideration, and it should be thoroughly discussed with the domain experts
and employees. Looking again at the Fig. 2.2 of the SPC flowchart, some readers could easily
assume that the measurement of CTQ characteristics would take a very short time, and no other
components would be in the machining process at the moment, which is mostly not the case. For
that reason, primarily in the beginning of the SPC application, the selected method needs to perform
the detection quickly, in case the state was, in fact, in an OOC state. If the state were indeed in an
OOC state, the fast detection would waste a smaller amount of components and materials compared
to a method that would perform the detection slower.

2.4.1 Causes of variation

The previous chapters have already briefly mentioned the meaning of variation in statistical quality
control. SPC differentiates between two sources of variation: a common cause of variation and
a special cause of variation.

The common cause of variation is the natural variability in data that always occurs, no matter
how stable and well-operated the process is also known as background noise. It is the result of small
inevitable variations that have accumulated over time. A process consisting of only common causes
of variations, or chance cause of variation is called to be in-statistical-control. A typical case of
a common cause of variation is the humidity of the air.

The special cause of variation creates a significant shift in variance and should be minimized.
Most of the time, the result of these mistakes produces a nonconforming product or even a defect.
These causes are also called assignable causes of variation, and such a process consisting of such
variation is called a process that is out-of-statistical-control.

Special causes of variation can be further differentiated into sporadic and persistent causes.
Sporadic causes happen suddenly, affecting the process for a short period of time before disappearing.
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These causes can reappear after some time if not taken care of. Persistent causes manifest themselves
in changes in the observed parameters within the distribution of the observed variable (our CTQ
characteristics) and typically affect the process until not managed. These causes can be caused by
machine malfunctions or inexperienced staff.

Although most of the manufacturing processes that produce a conforming product usually operate
with in-control processes, assignable causes will always happen, no matter how well-managed the
process is due to natural occurrences (people make mistakes, devices break). Fig. 2.4 shows an
in-control process with distribution µ0 and σ0. At time t1, an assignable cause is present, shifting
the distribution’s mean to µ1 for which holds µ1 > µ0. At time t2, another special cause variation
appears, which shifts the process distribution further.

Figure 2.4: Causes of variations, adopted from [14]

It is important to notice the lines denoted LSL (lower specification limit) and USL (upper
specification limit), which were introduced in the chapter Quality Management (chap. 2). The
graph indicates that if the process is in-control, the distribution primarily lies within the two limits.
If the process is out-of-control, more of the distribution shifts outside the limits.

Having the process in-control also means that the process is predictable and we can foresee its
behavior better. Out-of-control processes are unpredictable, unrepeatable and there is no way to
predict its behavior.

As the goal of SPC is to minimize the variation between each manufactured product, the elimination
of the assignable causes of variation is an important aspect. Unfortunately, it is not always possible
to achieve a process without any assignable causes. In practice, the manufacturing process might
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be very complex and costly to adjust. In such cases, the company might decide that elimination of
the assignable cause is too costly (and does not affect the quality of the product too much). [14]

2.4.2 Phases of SPC

Under normal circumstances, the process of establishing SPC in a company is divided into two
phases, during which specific methods and actions are taken. The purpose of both of these phases
is quite different, although it might not seem so at first glance.

Phase I is devoted to the retrospective analysis of historical data or, eventually, if they are
not available, the collection of such data. Although the data collection task might seem trivial,
considering that the manufacturing data is often confidential, the acquisition of the dataset can take
up to a few months. During this period, it is necessary to learn as much as we can about the complex
mechanical processes since the knowledge is necessary for the correct interpretation of the analysis.

A critical part of the analysis is determining whether the data were obtained from a process into
statistical control. That is done by calculating the trial control limits (e. g. µ ± 3σ) from the
data and constructing a control chart (see the following chapter 3 for detailed definition). The
control chart displays the control limits computed from the data, the target value (given), and the
data values. Data points plotted outside these control limits are considered nonconforming, and
the process is recognized as out of statistical control. These nonconforming data points need to be
then examined further to investigate anything suspicious of causing it. After the assignable cause is
identified, the operating personnel work in conjunction with the mechanical engineers to eliminate
the cause. Nonconforming data points (and possibly the product on which the data were measured)
are then discarded from the dataset, and new control limits are calculated. Subsequently, new data
is collected and plotted against the new control limits. The whole procedure is repeated until the
process is stabilized. During this phase it is expected that certain circumstances in the process
change due to the removal of assignable causes, action plan adjustments, et cetera. All of that is
necessary to provide clean data for the second phase of SPC. Typically, at the beginning of any SPC
application, it is assumed that the process is not in-control, and thus it is not uncommon to find in
the literature that the objective of Phase I is to bring the process in statistical control.

Phase II is employed when the process has been reasonably stabilized. Although the process will
always have some variability, the most harmful causes should have been removed by the corrective
measures in Phase I. The objective of this phase is to monitor the process and remove smaller
variabilities in data to achieve better quality. [15] [14].
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Chapter 3

Out-of-control state detection

After a heavily theoretical chapter about the foundations of quality management and SPC, this
chapter focuses solely on the state detection aspect of SPC. This chapter begins with a section
Related work, where three generations of SPC are presented, and several important elements of
SPC are discussed. Subsequently, the reader is finally introduced to the formal definition of the few
most popular methods of SPC and a carefully selected machine learning algorithm. The rest of the
chapter is dedicated to the data analysis of the real dataset from Škoda Auto and a discussion on
it. This chapter also contains the evaluation method chosen for the following experiments.

3.1 Related work

This section is focused on the related work associated with SPC, introducing important methods
used throughout history. It also discusses issues related to the growing complexity of data and
processes, explains concerns of using classic methods of SPC on such data, and examines modern
alternatives to standard statistical methods. It also discusses work related to variable selection,
process changes, and the problematic side of interpretation and diagnosis of the SPC methods.

First generation SPC

Shewhart’s control chart is generally considered a pioneering state detection tool. Although it was
developed in the 1920s, making it a first-generation SPC tool, it is still currently used in process
control. Despite its limitations in modern data due to its normality assumption and univariate
character, we can still very often see variations of Shewhart used in practice, for example, in a 2017’s
paper where it was used to monitor clean ash during coal preparation [16], applying the central limit
theorem despite not satisfying the normality assumption. Researchers also often discuss possible
adjustments to Shewhart’s control chart in order to improve its effectiveness in phase II of SPC by
various control charting methodologies [17] or even fuzzy logic [18].

A control chart can also indicate that the process is out-of-control, although there is no data point
plotted outside the control limits. Under such circumstances, the data point patterns exhibit certain
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non-random or systematic behavior. Despite the fact that there is no nonconforming data point to
investigate, even such a situation can bring useful information. The symptomatic behavior of the
pattern is a sign that something is wrong with the process, and nonconforming products may soon
be produced. Trend analysis approaches the temporal patterns and evaluates the process from a
dynamical point of view compared to the static approach of univariate methods. In 1956, Western
Electric Company published a famous SPC handbook [19], which contains so-called Western Electric
rules that distinguish control chart temporal patterns to natural and unnatural. Those rules are
still in practical use, are implemented in SPC software, and were even extended. Between 1990 and
2010, the so-called "control chart pattern recognition" was intensively studied, and a related survey
can be found in [20].

Second generation SPC

With the accomplishments of the first generation methods, the development of the second SPC
generation was fueled by the growing ambition to reduce variability further and improve processes.
As technology advanced, most systems evolved into a complex hierarchical structure of subsystems,
creating a collection of varyingly intertwined datasets. As a result, correlations between quality
characteristics slowly became a norm, exposing a detriment in univariate methods.

Around the 1980s, experts started pursuing the development of multivariate methods extensively.
Process variables, however, violated many assumptions that were necessary for the application of
multivariate methods, such as the absence of normal distribution, nonlinearity (failing to use linear
transformation), multimodality (data comes from several distributions), the curse of dimensionality,
and more [21]. Although today’s processes call for extensive use of multivariate methods, many
companies still utilize simpler univariate methods due to the previously mentioned issues. The
second-generation SPC includes Hotelling T 2, multivariate CUSUM, MEWMA, U2 multivariate
control chart, and multivariate control charts based on projection methods such as Principal
Component Analysis and Partial Least Squares Regression.

Third generation SPC

The third generation of SPC is trying to come up with a general approach to managing these
previously mentioned problems. Undoubtedly, the amount of data will only increase in the future
as automation in industries expands. Fortunately, with data, the field of data analysis and machine
learning grows as well, allowing researchers to employ machine learning on SPC [22].

One of the methods that are frequently used to manage problems stated in the second generation
SPC paragraph is Gaussian Mixture Model as in [23]. Intuitively, this unsupervised algorithm is an
appropriate choice as it aims to find clusters in the data. Clusters represent the in-control state of
the process, and SPC should normally contain a small number of out-of-control samples. However,
researchers seem to forgo this method due to its dependency on the number of cluster selections.

State detection can also be transformed into a supervised learning problem in machine learning as in
[24]. The authors generated synthetic nonconforming data, typically from the uniform distribution.
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Using different labeling for the synthetic data and for the reference data, the method creates two
different classes with two different labels, making it a two-class classification problem. In SPC, it is
also called artificial contrast SPC.

Following up on the usage of clustering and classification on SPC, out of control state also offers
an intuitive definition via one-class problem. In such case, we use data obtained solely from an
in-control state to construct a model [25]. The convenience of this one-class setting is apparent
when the out-of-control class might be poorly defined, or unavailable [26].

One of nowadays’s most prominent methods based on one-class is one-class support vector machine
(OSVM), also called support vector data descriptor. OSVM is typically linked with anomaly
detection, which provides a very intuitive parallel to the state detection problem in SPC. It
comes from the idea that nonconforming quality characteristics, or at least those suspected of
nonconformity, usually do behave differently. The performance of OSVM is showcased in [27] where
over 70 papers were examined. In 2003, Sun et al. [28] proposed a kernel distance-based control chart
called k-chart. The shape of the irregular boundary formed by SVM is determined by the support
vectors optimized via quadratic optimization. In 2018, [29] proposed a distance-based multivariate
process control chart using support vector machines (SVM). They found that their model is more
efficient than the random forest model [30] for high-dimensional and nonnormal processes. Other
machine learning techniques used for SPC are neural networks [31], or nearest-neighbor algorithm
[32].

Many of the machine learning methods are reported to be robust to nonnormality. A general survey
on methods applied to process monitoring [33] contains a number of machine learning algorithms,
mentioning that these methods show promise for monitoring large and diverse data sets.

Changing processess

All real-world processes are changing over time, and so do the statistical distribution of their data.
Such changing processes can be evaluated using different approaches. A typical way of autocorrelated
data handling is to apply an SPC method to the residuals of a time series model. Weese et al. [33]
concluded their survey by stating that there is not “much literature on how to monitor auto-correlated
data when the time series model is unknown”. In [30], with each new observation, a new classifier
is trained, and statistics (such as the error rate estimated from the classifiers) are monitored. The
dynamic series of classifiers generate the statistics for the monitoring procedure. In machine learning,
this phenomenon is also called concept drift, and a survey on possible solutions can be found in [34].
In the last four decades, adaptive control charts were researched and developed, in which at least one
parameter (sample size, sampling interval, or control limit coefficient) changes in real-time according
to the actual state of the sample statistics (see [35] for the survey).

Variable extraction

The usage of machine learning methods is closely connected to variable extraction, as is pointed
out in another review from 2017 [36]. Variable extraction has a very important task – it needs to
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explore and identify representative features in the pursuance of avoiding irrelevant information and
as a concequence, improve the classifier’s performance. Variable selection tries to identify a subset of
variables that carries most of the relevant information contained in the complete dataset. Integration
of variable selection methods to MSPC approaches has become a promising research topic [37].

Interpretation and diagnosis

A quite important part of the research that is often neglected is the interpretation of positive
detection (finding which characteristic is in charge of the alarm) and further diagnosis (finding the
assignable cause). In common multivariate control charts based on Principal Component Analysis
or Partial Least Squares [38], after an out-of-control (OOC) alarm is triggered, the projected point
can be decomposed into its original variables, which can be then analyzed using contribution plots to
determine which variables are responsible for the alarm. This is clearly more difficult for nonlinear
data. In other multivariate charts, a sensitivity-based method can be used, where at each iteration,
the influence of one characteristic on the final detection is removed, e.g., by replacement of its value
by the mean computed over all available in-control data and the new value of the detection score or
statistic is computed. The difference between this value and the value before characteristic influence
removal approximately describes the importance of the characteristic for the decision. However, this
method is approximate, and the sensitivity value depends monotonically on the number of removed
characteristics, so it must be given how many characteristics we want to identify.

3.2 Methods used in SPC

The section about related research mentions many algorithms and techniques used for SPC. In
reality, not all of them are commonly used because of their theoretical complexity or difficulty to use
in practice. For that reason, the first generation’s Shewhart control chart still remains one of the
most popular methods due to its simplicity and easiness of interpretation. Another method worth
mentioning would be the Hotelling control chart, which is the first multivariate SPC method. These
two methods are frequently used in process control combined with the expertise of the operators
and the mechanical staff members.

The most popular method among machine learning algorithms would be one-class support vector
machine (OSVM). The nature of the algorithm offers a very intuitive definition of the problem and
is suitable for both multivariate and multimodal data. We could easily imagine a parallel between
machine learning and SPC as using OSVM in the retrospective phase I reminds the learning phase,
and phase II is the use of the model. However, instead of a control chart, we are using a classification
model of OSVM.

This section is be centered around the univariate Shewhart control chart, the multivariate Hotelling
T 2 control chart, and a machine learning method, OSVM.
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Shewhart control chart for individual measurements

Univariate methods analyze and monitor a single variable at a time, with the presumption that
its mean and standard deviation come from the process that was in-control. As the process gets
to the state of out-of-control, the values generated from such processes are suspected of being also
out-of-control.

Although the popularity of univariate methods is still very apparent even today due to their
simplicity and usefulness, the method of inspecting one variable at a time has its limitations. As
technology advanced, process control began to involve related variables, creating the need to regard
both variables simultaneously. Applying univariate methods to each variable separably can lead
to a multiple comparison problem that manifests itself in the surge of false alarms. However, the
presence of certain situations allow for the application of univariate methods to multivariate data,
such as when multiple measurements are taken on the same unit of product or the availability of
data is very slow, creating long intervals between measurement (as is in this case).

The complications that can arise from using univariate methods on correlated multivariate data are
shown in Fig 3.1. The univariate method creates rectangular-shaped boundaries that can fail to
recognize OOC data points and mistakenly categorize in-control datapoints as OOC.

Figure 3.1: Univariate evaluation (Shewhart) on multivariate 2D data. Shewhart considers points
inside the rectangular area as in-control.

The Shewhart control chart is a univariate method that is able to detect significant shifts in variability
readily. Its x-axis represents time, while the y-axis depicts information we want to visualize: a specific
statistic, e.g., mean or measured values of characteristics. The x-axis also suggests information about
the order of the data sequence. The Shewhart control chart also follows the presumption that the
historical observations were acquired from an in-control process.

Shewhart control chart contains a center line x̄ bounded by an upper control limit (UCL) and a
lower control limit (LCL):

UCL = x̄+ 3M̄R
d2

LCL = x̄− 3M̄R
d2

.
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The center line x̄ corresponds to the aspiring value of the observed characteristic. This value can be
defined in several ways:

• The value is already defined by the regulations – it is the target/nominal value.

• We do not possess the target value. The center line is obtained by collecting the data while
the process is statistically in control.

• The value is decided empirically on the basis of the past experience.

The limits UCL and LCL (control limits) are sometimes called action limits and are different from
the limits mentioned above USL and LSL (specification limits). As we have already mentioned in
the chapter 2, we have introduced the specification limits as in most acceptable limits. Note that
they are not the most acceptable limits in a way that they would create a defect if the value were
exceeded. A specification limit is an internal range agreed on by the company experts that does
not necessarily call for action if exceeded. However, control limits says something about the real
variation of the product. In such a case, if they are exceeded, the product is very likely defective
and needs assistance. These control limits are selected to ensure that if the process is in control, all
values are within limits.

Shewhart’s control chart uses a moving range of two consecutive observations as the basis for
estimating the variability of a process, defined in the following way.

MRi = |xi − xi−1|.

Although it was developed over 100 years ago, the Shewhart control chart is still widely used in the
industry due to its straightforwardness and ease of use [14].

Hotelling T 2 control chart

Hotelling T 2 control chart is one of the first multivariate methods developed. It extends the work of
the univariate Shewhart x̄ chart (chart depicting mean µ of the data), fitted for multivariate process
control.

Let x̄ be the sample mean vector. The Hotelling T 2 statistic is defined as follows:

T 2 = (x− x̄)′S−1(x− x̄)

where S is the estimation of covariance matrix

S =
1

m− 1

m∑
i=1

(xi − x̄)(xi − x̄)′

where m is the number of observations, p is the number of parameters and xi is the vector of quality
characteristics with p-coordinates [39].
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According to [40], the phase I limits should be based on the beta distribution; therefore, the limits
should be defined as

UCL =
(m− 1)2

m
βα,p/2,(m−p−1)/2

LCL = 0

Hotelling T 2 control chart is a Shewhart-type chart that is also used during the statistical process
control in phase I. The reason is that it detects more significant shifts, ignoring smaller shifts that
are later dealt with in later phases of process control [14]. The boundary of the Hotelling T 2 control
chart is elliptical as depicted in Fig 3.2.

Figure 3.2: Evaluation (Hotelling) on multivariate 2D data. Hotelling considers the points inside
the elliptical area as in-control.

One-class support vector machine

One-class support vector machine (OSVM) is an algorithm based on support vector machine (SVM)
and a type of classification used primarily for anomaly detection, one-class classification. Before
OSVM can be explained, it is necessary to discuss SVM and one-class approach.

Support vector machine (SVM)

SVM is a well-known machine learning algorithm that works based on supervised learning. It builds
separating hyperplanes to split classes in the multidimensional space. The hyperplanes that it
constructs are optimal, created from support vectors signifying the most influential data points in
the set. SVM can be quite robust and effective as it performs well in the correct setting [41].

SVM can behave as a linear classifier for a binary classification problem or use a kernel trick to
solve problems in n-dimensions. It can be used as soft SVM and hard SVM with the difference in
how many wrongfully classified points are allowed. Due to this, SVM performs well when classifying
both linearly separable and nonseparable datasets.
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The optimal hyperplane is reached by solving a quadratic optimization problem, which maximizes
the distance between two classes called margin and minimizes the training error. The quadratic
optimization problem is solved by constructing a dual problem that minimizes Langragian L over
w and b [42].

Hard margin SVM Hard margin SVM is used in the case of linearly separable data. The
quadratic optimization problem in the following way [43]:

min 1
2 ||w||

2,

s.t.: yi(w · xi ≥ 1), for i = 1,...,N

Soft margin SVM Soft-margin SVM is employed for datasets that are linearly nonseparable. It
uses a slack variable (ξ = ξ1, ..., ξN ) to allow missclassifications, since the dataset cannot be perfectly
separated. It also introduces a constant C, which regulates the margin-training error tradeoff fixed
by the user. We can define its quadratic optimization problem in the following way [43] [42]:

min1
2 ||w||

2 + C
∑N

i=1 ξi

s.t.: yi(w · xi + b) ≥ 1− ξi for i = 1, ..., N

ξi ≥ 0 for i = 1, ..., N

Kernel trick Nonlinear classification with SVM was initially proposed in [44] using the kernel
trick on the original hyperplane-maximizing SVM. In this case, every dot product is replaced with
a nonlinear kernel function that fits the hyperplane into a transformed feature space.

Let us have a transformation Φ : x → ϕ(x) and let us map every datapoint into high-dimensional
space via this transformation Φ. Then the inner product between vectors xi · xj is:

K(xi,xj) = ϕ(xi) · ϕ(xj),

where K(xi,xj) is called a kernel function .

One-class SVM As SVM is a supervised learning algorithm, it needs to learn to properly
predict the correct labels by learning from a training dataset containing both. However, the one-
class approach uses only one of the classes in the training approach, classifying everything else as
an "anomaly" that belongs to another class [25]. The advantage of it is that it is trainable through
a "clean" dataset without exploiting the negative sample from the other class. Despite that, in
some cases, data points from other classes are utilized in a certain way to improve the classifier’s
performance [45]. One-class is therefore popularly used in anomaly detection.

The one-class approach can be used on SVM as well, creating a one-class support vector machine
OSVM. OSVM builds a minimal hypersphere with radius r and center c containing all data points
[46] [47]. The in-control data is then confined in the boundary created by the hypersphere.

OSVM is formally defined in the following manner:

minr,c,ξ r
2 + 1

νn

∑i=1
n ξi,

s.t. : ||φ(xi)− c||2 ≤ r2 + ξi, ∀i = 1, 2, ...n,
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where ν is the positive parameter that indicates the tradeoff between sphere volume and the number
of outliers, r is the radius of the hypersphere with center c [48].

3.3 Evaluation of methods

All SPC methods are typically experimentally analyzed on data in terms of well-known performance
measures such as average length run, false positive rate, and false negative rate. There is, however,
an issue with the availability of datasets. Although the quality and representativeness of such
benchmark data are essential for the result’s credibility, surprisingly little attention is paid to it.
According to [27], 55% of the authors of the analyzed articles have used only simulated data in their
research and 45% have used real (or real and simulated) data. The datasets mostly contain only
units or tens of variables and a limited sample size. Moreover, no survey would summarize such
benchmark datasets. For example, this problem is briefly mentioned in [37] and [49].

In our case, the evaluation of methods on real data also possesses an issue. Although we always
evaluate data on the historical dataset provided to us, there is no way to obtain the ground truth. The
ground truth in SPC should be the information about the presence of assignable causes. However,
this is most likely not known. The decision of whether the characteristic is conforming or not is
determined by the company’s own process monitoring technique (which unfortunately cannot be
disclosed). Although there have been various discussions about this problem, the procedure of
acquiring the ground truth would have been too economically taxing to be realized. At first, we
had no choice but to calculate our evaluation based on the Škoda method – to be more specific, the
Škoda method was used as the ground truth for now, and we calculated our FNR rate according to
it. Later on, we also decided to generate synthetic data with known ground truth to better grasp
the performance of the methods.

Ultimately, we decided to use a false positive rate (FPR) and false negative rate (FNR) defined in
the following way:

FNR =
FN

P
, (3.1)

FPR =
FP

N
, (3.2)

where FN is the number of out-of-control parts falsely classified as in-control, FP is the number
of in-control parts falsely classified as out-of-control, P is the number of parts produced by the
out-of-control process, and N is the number of parts produced by an in-control process.

We chose this evaluation method based on discussions with our colleagues from Škoda Auto on the
importance of false positive and false negative rates. FPR is also analogous to the type I error rate,
while FNR represents the type II error rate.
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3.4 Analysis of real data

The dataset was provided by Škoda Auto, containing data about various parts of the engine heads
currently produced. Unfortunately, due to security reasons, a lot of information about the data and
domain knowledge has to stay unrevealed. For that reason, the figures and tables are anonymized,
and some pieces of information will only be briefly stated – not followed by a graph or quantified
proof of any kind. This section still hopes to provide as much information about data characteristics,
so that the subsequent parts of the thesis will be as straightforward as possible.

In the beginning, we obtained a collection of measured values of various engine head parameters
that came from a currently used monitoring system. This dataset was accompanied by metadata
such as the date and time of measurement, certain physical features of the parameters, and other
important engineering information. The data were clearly in the raw state and were presumed to
be utilized by Škoda engineers (or mechanical operators) as they were not adequately described.

Despite that, after numerous teleconferences with our colleagues from Škoda, we were able to
understand the meaning of the attributes to the point of being able to work with them. The first
goal was to get a better overview of the dataset, hence, fundamental data analysis was performed to
determine the statistical characteristics of the dataset better. Based on the discussion with Škoda
employees, we have separated the data into specific groups based on the machine layout. These
groups are identified by component labels, manufacturing machines, and tools of these machines.
This separation results from the difference between the measured values of these groups (every
component has several machines that operate on it, and every machine has several tools). Ultimately,
the dataset contains hundreds of characteristics, creating a high-dimensional dataset. However, the
data is fragmented due to the physical aspects of the component parameters. For that reason, the
dataset suffers from the lack of certain types of data and the curse of dimensionality at the same
time.

An analysis of the measurement sequence using the component characteristic’s measurement time
revealed that the measurements were irregular. The data also contains data point anomalies and
unexpected absence of measurements. The reason for these occurrences was later explained, but
it was revealed that this behavior could not be avoided. For that reason, we have decided not to
conduct any time-series analysis due to the possibly misleading results. A plot of data measurements
in time is shown in figure 3.3 with an anonymized set of characteristics. We can see from these four
subfigures that the data already exhibit several types of trend (upward, downward, and normal).
Although we cannot show the trend analysis for the whole dataset, this data behavior is only a
fraction of what is occurring.

It is quite clear that we are working with very complicated processes, resulting in many common
causes that may considerably change the data distribution. However, these causes are common
because it is not economically profitable to manage them or it is simply impossible to do so.

After examining the dataset trends, it was revealed that the dataset actually exhibits many
different trends, shifts, and other patterns, indicating that we are dealing with multimodal processes.
These processes generate data from various distribution sources, making the behavior of the data
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unpredictable. Due to the difficulty of working with multimodal processes, the research on them has
not been fully explored in SPC yet. Although machine learning-based methods show potential, no
general SPC technique has been shown to be effective in practice, primarily due to the complexity of
the technique in real-time monitoring. However, the fact that complex processes in Škoda generate
multimodal processes is not surprising, since the automotive industry is known to be quite advanced
and its production processes are complex.

Figure 3.3: Examples of different types of temporal patterns inside the data

As a result of dealing with multimodal processes, we are working with data from multiple distribution
sources, and thus the data cannot be assumed to be normal, violating the normality presumption
of the multivariate methods. Figure 3.4 shows density functions of a group of randomly chosen
anonymized characteristics (characteristics that possess the same component label, machine, and
tool). A normal distribution graph was fitted to the component characteristic’s histogram to better
observe how the distribution compares to the normal distribution. The histogram is plotted as an
x-axis containing the measured values and the number of occurrences of these values on the y-axis.
The figure 3.4 shows that these component characteristics are not normally distributed.
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Figure 3.4: Distribution of component characteristics (each subplot corresponds to one
characteristic)

The dataset also contains interesting cases of correlation depicted in the figure 3.5. The figure
illustrates a situation where we have characters A and B that are almost linearly correlated. To
get a better idea about their behavior, the left side of the figure also depicts measurements in time.
The analysis of other characteristics discovered that several of them mimic each other’s trends and
behavior.

Figure 3.5: Correlation of two characteristics A and B
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1 0.132 -0.0733 -0.0685 -0.0713 -0.0734 -0.0545 0.0358 -0.0723
0.132 1 0.3458 -0.0727 -0.0846 0.1779 0.1948 -0.5966 -0.0452
-0.0733 0.3458 1 0.7313 0.7174 0.8388 0.8555 -0.382 0.7522
-0.0685 -0.0727 0.7313 1 0.9757 0.9265 0.9372 0.0489 0.9834
-0.0713 -0.0846 0.7174 0.9757 1 0.9498 0.9436 0.0515 0.9954
-0.0734 0.1779 0.8388 0.9265 0.9498 1 0.9904 -0.1933 0.9605
-0.0545 0.1948 0.8555 0.9372 0.9436 0.9904 1 -0.205 0.9621
0.0358 -0.5966 -0.382 0.0489 0.0515 -0.1933 -0.205 1 0.0124
-0.0723 -0.0452 0.7522 0.9834 0.9954 0.9605 0.9621 0.0124 1

Table 3.1: Correlation matrix of characteristics

A correlation matrix 3.1 has been calculated on a selected anonymized group of 9 characteristics.
The matrix has been color coded with a sequential color scheme to better observe the correlation
between these characteristics. The higher the correlation between the characteristics, the darker the
shade of red. Here, we can observe a very high linear correlation between several characteristics.

Figure 3.6: Scatter matrix of a group of component characteristics

A scatter matrix of the same group of characteristics in Fig. 3.6 marks the correlation greater than
0.9 with a red rectangle.

After collecting these correlated characteristics, we discovered that they were actually parameters
coming from the same product part. An example can be a certain hole in the engine head –
characteristic A may be a certain depth of the hole, and characteristic B could be another level
of depth. In conclusion, these correlations were linear because physically they have to be, since
characteristics A and B are parameters of one hole at different depths. Unfortunately, the appropriate
identification labels for these characteristics were collected only after the correlation analysis, and
this connection was not clear to us from the beginning. Also, it should be noted that there can
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be more than 2 highly correlated characteristics – the examples and figures of pairs of correlated
characteristics are shown for simplicity.

At one point, a discussion was held on whether this analysis could help improve the mechanical
process of product inspection. If the parameter A is nonconforming, then parameter B, which is
strongly correlated, must be immediately checked as well. On the other hand, if parameter A is
conforming, then parameter B might not have to be checked, freeing some of the capacity of the
monitoring center 1.

Fig. 3.7 depicts how the correlation between variables affected the number of undetected
nonconformities and how the number of removed variables influenced the result. It shows that
if we were to set our correlation coefficient threshold to 0.985, we would be able to remove around
100 characteristics (out of 661) and still be able to detect all nonconforming characteristics, which
supports our theory. It should be noted that we only calculated the correlation coefficient on such
quality characteristics that were present in 50 commodities and more to avoid misinterpretation
created from the lack of data.

This theory may also be applied to weaker correlations (to a certain extent), although they do not
possess such a strong physical connection. Unfortunately, using the capacities of the monitoring
center has not been allowed until now, so the theory has not been tested.

1In our case: Let us have a group of n correlated characteristics. We remove such number of correlated
characteristics so that there exists at least one characteristic that is strongly correlated to them. We do this for
every group of correlated characteristics found
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Correlation Number of Percentage of Number of Percentage of
coefficient undetected undetected removed removed
threshold nonconformities characteristics characteristics characteristics

0.99 0 0 80 12
0.98 3 3.6 154 23
0.97 4 4.8 207 31
0.96 8 9.5 240 36
0.95 8 9.5 259 39
0.9 8 9.5 304 46

Table 3.2: Influence of correlation on the number of detected nonconformities. Any quality
characteristics with their correlation coefficient above the threshold had a respected number of
correlated characteristics removed.

Figure 3.7: Influence of correlation on number of detected nonconfomities. The left axis describes
the dependency of the number of removed variables on the correlation coefficient threshold; the right
axis describes the number of undetected nonconformities out of 84 nonconformities in total. Any
quality characteristics with a correlation coefficient above the threshold had a respected number of
correlated characteristics removed.

3.5 Evaluation on real data

To control the quality of the components produced, Škoda uses its own process control method, which
alarms the operators upon discovery of a nonconforming characteristic. The staff then investigates
the characteristic and, based on their expertise, either decide that it was a false alarm or not. Since
the whole manufacturing process of Škoda is very complex, the company relies on the expertise of
the staff. The problem, however, remains that there is no definite ground truth because the decision
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is based on each operator. This also means that the performance of the method does not depend on
an objective measurement, since no FNR or FPR rates can be calculated.

The issue of evaluation when there is no ground truth present was discussed and inspected for a
long time. Measurement of all (or many) characteristics that are deemed nonconforming by the new
methods is not feasible due to the capacity of the measuring center and the capacity of the staff.

The dilemma was later evaded by conducting a series of experiments by adding various shifts to
the data and observing the method’s performance. Unfortunately, these experiments with real
data cannot be made public. However, to gain more flexibility and reliability of the method’s
performance, a new synthetic dataset based on the real dataset has been generated. The following
chapter 4 contains a description of experiments conducted on the synthetic dataset.

Before the dataset shift experiments were conducted and synthetic dataset was generated, the only
available ground truth was the Škoda method. For some time, the methods were tested and compared
to the Škoda method to adjust the rate of alarms. A table 3.3 shows a FPR, FNR evaluated with
respect to Škoda method as ground truth.

Shewhart Hotelling OSVM
FPR 0.663 0.070 0.054
FNR 0.074 0.993 0.321
TNR 0.337 0.929 0.946
TPR 0.926 0.006 0.679

Table 3.3: Evaluation of methods with assumption checking

Let us note that these statistics are actually not the real rates. Since the Škoda method does not
represent the real truth, this table only represents a table of similarity to each other. We should,
however, remember that the company has been operating with the Škoda method for a long time,
so it very likely works, although we cannot objectively estimate how much. For that reason, if the
methods differ way too much from the Škoda method, the use of such method might not be accepted.

The evaluation is split into a table 3.3 and table 3.4. The previous section on methods in SPC
(Sec. 2.4) mentioned that the Shewhart control chart and the Hotelling control chart have certain
assumptions that the dataset should fulfill. The difference between these two tables is in the
assumption control. In table 3.3 if the assumption is not fulfilled, the characteristic is skipped,
and the next one is analyzed, while in table 3.4, these assumptions are completely disregarded, and
every characteristic is analyzed.

Although it might seem useless to force the analysis despite not meeting the assumptions, it is
believed that not many people check for assumption violation in practice.

The rates of the Shewhart control chart for the assumption checking table were ’better’, meanwhile
the Hotelling control chart’s were mostly ’worse’. This could be explained as the assumptions for
the Hotelling control chart are quite strict, compared to the Škoda method.
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Shewhart Hotelling
FPR 0.676 0.045
FNR 0.134 0.994
TNR 0.324 0.955
TPR 0.866 0.005

Table 3.4: Evaluation of methods without assumption checking

Fig. 3.8 and Fig. 3.9 visualize the boundaries of all three methods in a 2D graph. Fig. 3.8 shows how
the flexible boundary of OSVM adapts well to the irregular shape of the data, while the rectangular
boundary of UCL, LCL ignores the shape of the data. Next, Fig. 3.9 shows the more rigid elliptical
boundary of the Hotelling control chart, which categorizes many points as OOC.

OSVM continued to show good results throughout the research, adapting well to various irregular
data shapes created by complex manufacturing processes of products. The method performs quite
well even in cases where products are barely nonconforming, showed in figure 3.10.

However, OSVM has another practical value. Since OSVM can be easily adjusted and its limit can
be tightened or relaxed, its boundary can be set to produce similar results to the Škoda method
to reduce the initial shock in the beginning, from changing the process control techniques. The
boundaries can then be slowly restricted over time.

Figure 3.8: OSVM (green line) and Shewhart chart boundaries (red (UCL) and blue (LCL)). Variable
1 and variable 2 are quality characteristics.
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Figure 3.9: Hotelling (green line) and Shewhart chart boundaries (red (UCL) and blue (LCL).
Variable 1 and variable 2 are quality characteristics.

Figure 3.10: Flexible evaluation boundary of OSVM (green line) on the right. Variable 1 and variable
2 are quality characteristics.
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Chapter 4

Experiments

This chapter is dedicated to experiments conducted on the synthetic dataset. As already mentioned
in the previous sections, we currently cannot acquire the ground truth due to the complexity of the
mechanical procedure of obtaining it. However, it was clear from the beginning that we cannot only
rely on the existing Škoda method. Moreover, if we did not generate synthetic data, we would not
be able to publish the results due to the confidentiality of the data.

The results of Experiment I were also administered in a conference paper at the 13th International
Conference on Soft Computing and Pattern Recognition 2021 and as a result, published in Lecture
Notes in Networks and Systems [1]. The results of Experiment II, as of now, were submitted to the
International Conference on Systems, Man, and Cybernetics 2022 and are currently awaiting peer
review.

4.0.1 Synthetic data generation

Synthetic data for both experiments are generated a bit differently due to the nature of the
experiments. The first experiment focuses on the innate detailed performance of the methods in a
5-modal and multivariate environment of 2D data, where we can thoroughly visualize and examine
the results. After an overview of the method’s performance is gained, the second experiment utilizes
a much more realistic and complicated dataset, where it is no longer easy to visualize or interpret
the results in detail.

For Experiment I, we generated a bivariate distribution with two correlated variables. The first
variable has a gamma distribution with shape parameter 3 and scale parameter 0.5, while the second
variable has a gamma distribution with parameters 1 and 1. Subsequently, a normal cumulative
distribution function (cdf) was applied to a standard normal random variable, resulting in a uniform
random variable in the interval [0,1]. Using the theory of univariate random number generation, the
inverse cdf of any distribution F on a U(0,1) random variable produces a random variable of which the
distribution is exactly F. Applying the two-step transformation to each variable produces a dependent
random variable with arbitrary marginal distribution. In this way, five datasets (representing 5-
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modes), each consisting of 1000 data points, were created. Each such dataset will be further shifted
to simulate five modes of different means as described in the next section.

For Experiment II, we again have 5 sets of generated data to generate the multimodality of the
process (5 modes), and the multivariety of this experiment is increased to 12-dimensions. To
represent a more complex correlation structure, we divided the 12 variables into three groups
and generated highly correlated data for each mode within each such group, where the correlation
coefficient was 0.9 as shown in Fig. 4.10. Therefore, we have 3 groups of correlated variables, where
each group was generated separately. In this experiment, the modes have a normal distribution.

4.1 Experiment I

To create multimodal data, we generated five sets of data points consisting of 1000 points each, and
these sets were shifted by the following small vectors:

v1 = [0, 0]

v2 = [1, 0]

v3 = [0, 1]

v4 = [2, 1]

v5 = [0, 0]

Then every set represents one mode of the multimodal process.

The out-of-control part of the dataset was produced by applying a predefined shift S to both
variables. That is done by adding S = [s1, s2] to every out-of-control observation. This shift
was applied to 2000 observations out of 5000 observations, resulting in 3000 observations labeled as
in-control and 2000 out-of-control observations.

The previous procedure enables us to better control the process shift and evaluate the methods
using our chosen evaluation techniques, FPR and FNR . It should be noted that the training of the
machine learning-based OSVM corresponds to the first phase of SPC (Phase I, described in 2.4.2),
since learning in OSVM is, in fact, setting bounds for the control chart. Learning was performed on
1000 in-control observations (since OSVM learns only on clear data), and evaluation was performed
on the remaining 2000 in-control observations and 2000 out-of-control observations. All data for
different sizes of the shift S are depicted in Fig. 4.5. One can observe the bivariate multimodal
distribution of two correlated variables.

This experiment was carried out with three methods: Shewhart control chart, Hotelling T 2, and
one-class SVM, where one is univariate, one is multivariate, and one is based on machine learning.
Moreover, the goal of this experiment is to examine the performance of these methods on a complex
multimodal process.

The performance of these three methods was tested by iterating through different directions and
sizes of the shift, and the shift constant is constantly changed in the interval from −6 to +6. The
FPR and FNR were calculated for 21 different values of the shift.

34



CHAPTER 4. EXPERIMENTS 4.1. EXPERIMENT I

There are three following ways how to shift the data, considering the data mimics the real-world
data, and the experiment hopes to preserve the correlation in the data:

• Diagonal shift

s1 6= 0, s2 6= 0

Both correlated variables shifted in the same direction.

• Horizontal shift

s2 = 0

One variable is shifted.

• Vertical shift

s1 = 0

One variable is shifted.

4.1.1 Results

The FPR of the testing set was selected to be the same for all methods to fairly test performance.
First, Shewhart’s FPR was measured, and at the same time, both the upper bound for the T 2

statistics and the threshold of OSVM were set in order to achieve the same FPR on the testing set.
Despite using the testing set to set the FPR value, the results should not be impartial, as the test
set was used, in fact, only to set the FPR value. Since the whole SPC theory is based on controlling
false alarms, experiments measure performance through FNR.

A control area bounded by a decision boundary is presented in Fig. 4.5 for each method:

• The Shewhart control chart possesses a rectangular-shaped control area, created by its LCL
and UCL.

• The Hotelling control chart has a control area in the shape of an ellipse, defined by its UCL.

• OSVM control area has the shape defined by its support vectors and area given by threshold
for OSCVM score. It creates a flexible boundary around the data points.

Fig. 4.9 shows the graphical representation of the performance of each method for each shift. The
first row of the x-axis represents s1 and the second row represents s2.

The blue line representing OSVM is almost at all points of the graph under the rest of the lines,
which signifies better performance. As we can see, the FNR of Shewhart is already larger than
FNR = 0.1 with such a small horizontal shift as s1 = −4.857. OSVM doesn’t reach FNR = 0.1

until between around s1 = −3. For the vertical shift, the performance of the Hotelling control chart
improved substantially, even being on par with OSVM for the second half of the graph (positive shift
in s2). For the diagonal shift, the Shewhart control chart also improved for the positive s1 and s2
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Figure 4.1: No shift S=[0 0]
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Figure 4.2: Horizontal shift S=[3 0]
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Figure 4.3: Vertical shift S=[0 3]
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Figure 4.4: Diagonal shift S=[3 3]

Figure 4.5: Examples of different types of process shift
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shifts, approaching the other two methods. However, for the negative shifts, it continues to perform
poorly.

The univariate nature of the Shewhart control chart applied to the bivariate process failed to detect
shifts of a single variable, either s1 or s2 corresponding to a horizontal and vertical shift. The
diagonal shift was, however, noticeably better.

The most distinct moment remains the horizontal shift with the difference of OSVM and Hotelling
control chart being around 30 % for most sizes of the shift. The considerable performance of OSVM
in the negative shift detection in all shifts compared to the other two methods is caused by the
positive skew of the data distribution.

4.1.2 Discussion

The synthetic data was purposely generated as multivariate, multimodal, and purposely correlated
to authentically mimic the real data from Škoda Auto authentically. Due to that, the poor results
of the univariate Shewhart control chart were not surprising, as the data violated almost every
presumption of the method. The issue with using a method for monitoring a single variable for a
multivariate dataset lies within the rise of false alarms caused by the multiple comparisons problem.
In this case, false alarms increased almost ten times from the expected 0.0027 intended six-sigma
type I error probability up to 0.026. The Shewhart control chart also performs especially poorly
when the data are correlated.

However, the correlated data attributes are quite a norm in the manufacturing industry as perhaps
no complex system can really function without a subsystem structure. Despite the fact, most
multivariate methods require a normality assumption, including the Hotelling control chart, which in
this experiment had its assumption strongly violated by the nonnormality caused by the multimodal
nature of the generated synthetic dataset with five modes, each generated from a not normal
distribution (gamma).

As multivariate SPC methods are quite often used in the industry, one of the possibilities for correct
usage of Hotelling would be to know the real probability distribution of the data and have enough
data collected to approach the distribution. That is, however, a challenging task. The real probability
distribution is commonly unknown and is often extremely costly to estimate. Second, collecting
enough data to approach the original distribution might pose a problem.

OSVM is a distribution-free method that uses support vectors to enclose the data points. The
support vectors are based on the most important sample points in the dataset, which also offers
some additional information. The support vector-based boundary is visibly much more flexible than
the ones from the classical SPC methods. Due to its boundary, it is also more effective in higher
dimensions [28].
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Figure 4.6: Horizontal shift

0.000
-6.000

0.000
-4.857

0.000
-3.714

0.000
-2.571

0.000
-1.429

0.000
-0.286

0.000
0.857

0.000
2.000

0.000
3.143

0.000
4.286

0.000
5.429

S1:
S2:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
N

R

Shewhart
Hotelling
OSVM

Figure 4.7: Vertical shift
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Figure 4.8: Diagonal shift

Figure 4.9: Comparison of the Dependence of FNR on the shift
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Table 4.1: Dependence of FNR on the shift

s1 s2 Shewhart Hotelling OSVM
-6 0 0.021 0 0
-5.429 0 0.053 0 0
-4.857 0 0.121 0.008 0
-4.286 0 0.236 0.059 0.004
-3.714 0 0.388 0.245 0.027
-3.143 0 0.543 0.418 0.142
-2.571 0 0.755 0.639 0.323
-2 0 0.921 0.859 0.486
-1.429 0 0.984 0.961 0.706
-0.857 0 0.984 0.976 0.926
-0.286 0 0.983 0.981 0.98
0.286 0 0.98 0.98 0.978
0.857 0 0.965 0.974 0.954
1.429 0 0.937 0.946 0.859
2 0 0.871 0.841 0.621
2.571 0 0.763 0.619 0.423
3.143 0 0.615 0.449 0.188
3.714 0 0.461 0.179 0.073
4.286 0 0.261 0.049 0.001
4.857 0 0.084 0 0
5.429 0 0 0 0
6 0 0 0 0
Table 4.2: Horizontal process shift

s1 s2 Shewhart Hotelling OSVM
0 -6 0.021 0.001 0
0 -5.429 0.039 0.003 0.001
0 -4.857 0.081 0.01 0.002
0 -4.286 0.156 0.03 0.006
0 -3.714 0.288 0.086 0.018
0 -3.143 0.501 0.222 0.048
0 -2.571 0.704 0.394 0.112
0 -2 0.958 0.805 0.239
0 -1.429 0.989 0.976 0.486
0 -0.857 0.989 0.991 0.78
0 -0.286 0.985 0.986 0.982
0 0.286 0.975 0.972 0.975
0 0.857 0.963 0.953 0.954
0 1.429 0.934 0.889 0.854
0 2 0.877 0.736 0.72
0 2.571 0.79 0.572 0.461
0 3.143 0.623 0.19 0.268
0 3.714 0.371 0.016 0.051
0 4.286 0.18 0 0.002
0 4.857 0 0 0
0 5.429 0 0 0
0 6 0 0 0
Table 4.3: Vertical process shift

s1 s2 Shewhart Hotelling OSVM
-6 -6 0.017 0.021 0.004
-5.429 -5.429 0.029 0.037 0.006
-4.857 -4.857 0.054 0.07 0.015
-4.286 -4.286 0.108 0.139 0.023
-3.714 -3.714 0.211 0.266 0.044
-3.143 -3.143 0.39 0.499 0.082
-2.571 -2.571 0.626 0.722 0.163
-2 -2 0.918 0.965 0.309
-1.429 -1.429 0.995 0.995 0.553
-0.857 -0.857 0.994 0.991 0.787
-0.286 -0.286 0.987 0.986 0.983
0.286 0.286 0.974 0.973 0.973
0.857 0.857 0.952 0.958 0.949
1.429 1.429 0.907 0.921 0.9
2 2 0.814 0.841 0.807
2.571 2.571 0.68 0.721 0.659
3.143 3.143 0.484 0.521 0.457
3.714 3.714 0.281 0.302 0.224
4.286 4.286 0.118 0.103 0.049
4.857 4.857 0 0 0
5.429 5.429 0 0 0
6 6 0 0 0

Table 4.4: Diagonal process
shift
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4.2 Experiment II – Adding dimensions

The previous experiment examined the performance of methods on a simple multivariate, multimodal
dataset with correlated variables. Additionally, this section expands the scope of the first experiment,
bringing a dimension of size d = 12 to test the performance of the previously tested methods on the
small-dimension dataset.

This dataset models the characteristics and tendencies that today’s manufacturing data often have.
This experiment focuses on the performances of the three previously tested methods – Shewhart
control chart, Hotelling’s control chart and OSVM on a much more complex and much more realistic
set of data.

Out of 1000 samples for each set, 200 samples are used for testing and 800 samples for training. Out
of the training samples, 400 samples were shifted by a randomly generated shift vector in the range
from -4 to 4 to represent out-of-control data. The rest of the training samples are not shifted and
they represent the in-control data samples. In summary, we have 5000 data samples in total, where
4000 are used for training, 1000 for testing.

Figure 4.10: Scatter matrix of 12D generated data
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In this experiment, the horizontal, vertical, and diagonal shifts now no longer make sense. Let us
have a general randomly generated shift vector s that shifts around the correlated characteristics.
With a much more complex dataset, several scenarios need to be tested. The experiment on shift s
is conducted in the following manner 1:

• variables 1-4 shifted as depicted in 4.11,

• variables 5-8 shifted as depicted in 4.13,

• variables 9-12 shifted as depicted in 4.12

• one single variable shifted as depicted in 4.14.

This setting was chosen deliberately as it imitates the behavior of the real data in the manufacturing
industry. Correlation is, in fact, a very intriguing and common occurrence created by many different
circumstances, and it is crucial to understand why specific characteristics correlate.

Certain characteristics are correlated because they are related in a physical sense, meaning that
if one’s value is physically shifted, then the other one’s value is shifted as well. The previous
sections have provided the reader with an example of the depth of holes which resulted in an almost
linear correlation. Another realistic example would be the correlation created by deteriorating
machinery. Groups of characteristics are always processed together, and if a dull gauge is used
on them, all these characteristics will be correlated by a joint shift from a target value resulting
from the same faulty gauge. This correlation is advantageous as it can quickly uncover possible
nonconforming products or even groups of products. Similarly, as was mentioned before, with the
linearly correlated characteristics, the capacity of measurement centers could be freed by taking
advantage of correlations among characteristics. That is, of course, under the assumption that such
intervention in the measuring processes was allowed.

1The x and y labels were intentionally excluded due to the size of the subplots
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Figure 4.11: Variables 1-4 shift. Violet data points signify a shift.

Figure 4.12: Variables 9-12 shift. Violet data points signify a shift.
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Figure 4.13: Variables 5-8 shift. Violet data points signify a shift.

Figure 4.14: Only variable 1 shifted. Violet data points signify a shift.
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4.2.1 Results

Since the methods are evaluated on a dataset with noticeably higher dimensionality, they performed
much worse than their 2D counterparts. Shewhart control chart performed the worst out of the
three methods, again due to the nature of the data as it evaluates each variable independently. In
higher dimension and correlation between each 4 variables, the control chart’s FNR already starts
around FNR = 0.8 and never goes under 0.5. The more correlations the data have and the higher
dimensions it operates under, the worse the performance of the Shewhart control chart.

In the single variable shift situation, the Hotelling control chart completely outperformed the other
two methods. In this case, the assumption of independence of the variables acted as an immense
advantage for the method, as shown in Fig. 4.18.

However, except for this moment, Hotelling control chart’s FNR rate happens to be around
FNR = 0.4 at best. In Fig. 4.15, Fig. 4.16 and Fig. 4.17, OSVM outperforms Hotelling quite
considerably.
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Figure 4.15: Performance of methods with the variables 1-4 shifted
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Figure 4.16: Performance of methods with variable 5-8 shifted
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Figure 4.17: Performance of methods with variable 9-12 shifted
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Figure 4.18: Performance of methods with variable 1 shifted

4.2.2 Discussion

Additional experiments were conducted on a 12-dimensional dataset of multivariate, multimodal,
and correlated variables, where every four variables – variables 1-4, variables 5-8, and variables 9-12
were correlated to each other. Four settings were proposed to test the performance of the methods.

As the dimensionality of the dataset was raised, and several variables were correlated, the Shewhart
control chart performed noticeably worse than in the previous experiment with 2D data. Seeing the
poor performance of the Shewhart control chart on a dataset that is not that much more complex
than the datasets that can be seen in real life, it is surprising how popular the method still is.
However, in reality, the companies do not rely on SPC by themselves to assure the quality of the
products. Most of the time, quality control is acquired by combining simple SPC methods and the
experience of the operator and domain experts.

Although OSVM outperformed the other methods most of the time, the interesting situation depicted
in Fig. 4.14 needs to be addressed. In this case, only one variable is shifted despite being a part of
the 1-4 variable correlation. In other words, the shift is meant to describe a sole shift of variable
1 that is correlated with variables 2, 3, and 4, but the former variables are not shifted. Such a
situation was not previously considered when discussing the nature of correlations in manufacturing
industries, as under such circumstances, this portrays an unpredictable mistake.

For simplification, let us imagine a situation where a machining process is processing a mechanical
nut that has a threaded hole, and each depth of the hole is its characteristic. Now, a few of these
nuts fell on the ground during the transport. During the process control, one of the correlated
characteristics is shifted, but the others are not because the dirt from the previous transportation
mistake was trapped on one part of the threaded hole.
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Considering the complexity of the dataset, the popularity of the Hotelling control chart is
quite understandable. Despite the assumption violation and the high-dimensionality, it performs
sufficiently well, and the independence assumption even acted as an advantage in certain situations.

Except for one situation, OSVM seems to be reasonably suitable for SPC in a complex dataset
environment. Unfortunately, it cannot detect single-variable shifts that are correlated. Furthermore,
the interpretability of the methods, defined as finding variables that are responsible for positive OOC
state detection, is also important. Interpreting the results of multivariate methods is much more
difficult than interpreting the results of univariate methods. This could be solved via recent methods
of explainable AI, which is, however, out of scope of this thesis.
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Chapter 5

Application CIRQUE

The continuous collaboration of the CIIRC research team and the Škoda mechanical engineer team
called for a simple and effective means of result representation that can be reused at any time.
That led to the development of the application CIRQUE that conveys the decision of the method
in a more understandable intuitive graphical form for a quick check of results instead of analyzing
abstract pieces of information “by hand”.

The goal of this application is to do the following:

1. load raw data files generated from a system in Škoda Auto,

2. analyze the data on the previously implemented methods,

3. visualize the results.

Results are saved upon finishing the analysis in a user-specified directory for future revision of these
results. The flow of the application is depicted in a diagram 5.1

Figure 5.1: Application flow diagram

It is important to note that the data we firstly acquired to train our model are not the same as the
raw data files. After the operator acquires the raw data files created from the processing system
in Škoda auto, the file is enriched and processed into an Excel table with additional information.
The final table contains organized, easy-to-read information, cleared from any redundant metadata.
After some time, the raw data files are discarded.
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The raw data files contain data in the most unprocessed state in a disorderly structure and are
extremely difficult for a human to read. To process them into the application, the structure had
to be continuously discussed with the head operator. By processing the raw data files into our
application, we maintained more effective research as we could analyze each data file to quickly
obtain the results and also because we did not need to wait for the Excel file to be produced.
Another advantage proved to be that by understanding the data structure, we could update our
model continuously, combating a potential data drift. The development of CIRQUE created a
possibility to quickly analyze the most recent data and check the most obvious mistakes. It was a
useful tool for showcasing our methods to the colleagues from Škoda Auto or other domain experts
on various inside-project presentations.

5.1 Application architecture

The architecture of the CIIRQUE application is divided into three parts – the backend, the frontend
and the analysis engine, which consists of the methods and trained models analysing the data. Since
all of the research team members needed to interact and experiment with the models themselves,
Matlab was chosen for the implementation of the statistical methods as all members were proficient
in this language. Python was chosen to be a backend language, mainly due to its convenient Matlab
integration as Matlab allows exporting its scripts as Python libraries.

Since the application needed to plot non-standard graphs and present non-standard visualizations,
non of the graphical Python libraries were utilized. Instead, a framework based on JavaScript,
HTML and CSS (Electron) was used as it provided all the necessary tools – it was beginner-friendly,
highly customizable and could be run on any computer.

Backend

The backend of the application is divided into four python files:

• data_matlab.py attends to the extraction of the metadata and other necessary data about
the characteristics from the standard Škoda file. It also pairs correct combinations of
mechanical machining information, pairs correct character names and finally, it runs, exports
and imports analysis.

• main.py initializes server necessities.

• matlab_wrapper.py contains instantiation of the matlab library, taking care of the
initialization of the matlab runtime and handles the communication with the matlab runtime.

• structs.py contains structures for several methods, exporting necessary information for later
use for graph plotting.

Frontend

The frontend of the application is divided into the following files:
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• main.css contains all styling of the application.

• main.html contains layout of the application graphical interface.

• main.js instantiates the Electron application.

• ooc-window.html creates the out-of-control window for groups of characters upon mouse
click.

• renderer.js

Analysis engine

The models and methods for analysis are contained in the following files:

• hotelling.m implementation of the Hotelling control chart.

• shewhart.m implementation of the Shewhart control chart.

• one-class.m implementation of the OVSM.

• skoda.m implementation of the existing Škoda method.

All scripts from the analysis engine were exported as a Python library and initialized in the
matlab_runtime.py.

5.2 Visualization

It was crucial for the visual aspect to be intuitive and simple but still offer some interesting functions.
These were the following conditions that needed to be considered:

• We need to show clearly whether the method decided that the character was nonconforming.
We have several methods. How do we show this in a simple preemptive way?

• If the method decided that there was something wrong with the product, we should be able
to analyze it further. What other information do we show?

To communicate the information effectively about the method’s initial decision were used to show
whether the method suspects the characters to be nonconforming. The results are shown in a tabular
setting, where each column signifies the decision of the method, and each row is the group that the
characteristic belongs to. The groups are predetermined by the machine layout. This visualization is
used as an initial overview of the classification/method’s results, as is shown on the design proposal
5.10.
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Figure 5.2: Design proposal of result visualization.

The red square depicts that there is at least one nonconforming character in the group of
characteristics. Green square depicts that all characteristics within the group are conforming. The
yellow square is that crucial assumptions are violated and the method does not yield reliable results.

The visualization proposal presents the decision of the method promptly, with minimal room for
misunderstanding due to the large discriminability between the color hues. The conforming group
of characteristics (red square) is also clickable, presenting the characteristics that are the cause of
the nonconformity. Certain methods are not so straightforward, such as those based on machine
learning. For those, instead of presenting characteristics that are the cause of nonconformity, the
application offers characteristics suspicious of causing the nonconformity.

Nonconforming characteristic graph

For some of these methods, if the group of characteristics is conforming (group shows red square),
clicking the red square reveals exactly which character’s fault it is. More specifically, it reveals a
graph inspired by a statistical box plot for each character, as is shown in 5.3.

The graph presents the user with all of the available information about the characteristic and
the information about its historically measured values. The green box revealing historically
measured values could help to detect whether some particular characteristics have tendencies to
skew. Regulation limits represent the upper and lower specification limits USL, LSL and action
limits stand for the upper and lower control limits UCL and LCL. Currently, the methods alarm the
user the moment the regulation limits are exceeded.
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Characteristic name

TARGET VALUE

ACTION LIMITS

REGULATION LIMITS

MEASURED VALUE

ACTION LIMITS
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HISTORICALLY MEASURED VALUES

10TH PERCENTILE
90TH PERCENTILE

MEDIAN

Figure 5.3: Proposal for visualization of nonconforming characteristic graph.

A version of this graph is used for the nonconforming characteristic graph for the OSVM algorithm as
well. Since the machine learning algorithm was not very interpretable for our mechanical engineering
colleagues, they expressed a desire to have a graph that would help them understand what the
algorithm does. Although the OSVM graph might not make much sense to a person with a machine
learning background, it has proved to help people from other backgrounds to orientate around the
result.

SCORE

HISTORICALLY MEASURED VALUES

10TH PERCENTILE
90TH PERCENTILE

MEDIAN

THRESHOLD

Figure 5.4: Proposal for visualization of nonconforming characteristic graph OSVM.
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From the visualization theory point of view, this graph has made use of two identity channels
in combination – shape and hue. Considering that the focus of the graph is either on the
characteristic’s measurement or OSVM score, the measured value and the score are mapped onto a
dot mark, which is never used for any other information in the graph. For the original graph, both
control and regulation limits were placed as a line mark, differentiated by color. The action limit
marks are color mapped to red, and the regulation limits are color mapped to blue. Regulation
limits marks are shorter in height to intuitively indicate that the limits are smaller in reality and
the measured value could reach them sooner.

In the implemented version of both the graphs, the most important data is shown below, rounded to
four decimals. Measurements and other digits are shown upon hovering on each visual mark. The
OSVM graph also offers an explanation of the score to the user upon hovering. The implemented
versions of the graph can be seen in Fig. 5.11 and Fig. 5.10 in the following section.

Secondary visualization and user interface traits

To effectively express the correct information, the application implemented various features from
the theory of visualization. Besides the most crucial part of the application, the theory was applied
to the following parts of the application as well:

• The left part of the application shows metadata so it is always clear and visible, what part we
are currently analysing.

• While scrolling, method’s header is anchored to avoid visual cluster.

• Hovering above a button triggers a short animation.

• While the program is working on the analysis, a revolving gear is shown to exhibit that it is
still ongoing.
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Figure 5.5: Metadata, buttons all on the left, classification on the right

This application was designed with an intent of deployment to Škoda Auto. It was supposed to be
operated by the following type of people:

• The people operating the machines without any statistical or computer science background
will use it for assistance in out-of-control detection.

• Mechanical engineers/other domain experts will use it for analysis to further improve the
process.

5.3 Discussion

At first, the plan was to use the application at Škoda by domain experts and mechanical operators.
Since the current raw data format is challenging to evaluate quickly, the application intended to
provide visual feedback and analysis of the characteristics. The information and graphs of other
methods were also supposed to provide a tool for mechanical engineers to examine further.

Since domain expertise and knowledge of inside information were needed for many parts of the
implementation, the development of the application took place under the supervision of colleagues
from Škoda Auto. The visualization and user interface proposal was extensively discussed before
the implementation, and suitable adjustments were made. The implementation utilized the available
data from mechanical processes and character parameters. Several datasets were being collected for
months until they could be implemented into the application.
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5.4 Example of application usage

The application, unfortunately, contains a considerable amount of inside information. The data, the
know-how, and its code cannot be released publicly. Such information is interlaced throughout the
application architecture, from the data we use and load to the underlying tables containing machine
information for the correct visualization. For that reason, sole anonymization of the data regrettably
does not suffice as the whole codebase would have to be rewritten for it to function.

This section at least provides an example of usage with a series of screenshots and descriptions of
the application’s behavior.

1. Initial launch

Upon the first initialization of CIRQUE, the application is prompting the user to wait while
it is launching a Matlab server (analytic server for the user). The user interface follows the
aforementioned visualization rule of interaction – it informs the user about its business by showing
a revolving gear and a statement.

Figure 5.6: Initialization of the environment

Figure 5.7: Initial launch of CIRQUE
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After CIRQUE finishes setting the Matlab server (analytic server), the gear and the waiting
statement fade into the background. The user is presented with the ’Information about the
measurement’ column on the left (intentionally left empty) and a blank space on the right. The user
is now also able to interact with the buttons ’Import characteristics’, ’Find results’, and three-dot-
button, which serves as a directory setting button.

The button ’Import characteristics’ presents the user with a file directory, where the user is prompted
to choose a file that contains a ’.dfq’ extension (a standard used by Škoda).

2. Analysis

Figure 5.8: Analysis of the chosen characteristics

After the user chooses a ’.dfq’ file to run analysis on, Cirque executes the analysis on the chosen file
and the user is again prompted to wait by a statement and a revolving gear.

Figure 5.9: Final color-coded matrix
This particular color-coded matrix does not respond to the real results. The picture was meant just
to display colors and the user interface.
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Afterward, the method’s decisions are shown in the color-coded matrix. These results are
immediately saved to the predefined file directory shown above the ’Import characteristics’ button.
If the user ever wishes to load the analysis results again without going through the analysis, they
can do so through the ’Find results’ button. In case the ’dfq’ file was misplaced or lost, the results
of the analysis could still be kept. The results are saved in a .json file, which, if loaded, presents the
same color-coded matrix from the previous analysis of the file.

Figure 5.10: Analysis of nonconforming characteristics, OSVM

If the user wishes to look through the nonconforming characteristics, the red matrix window is
clickable, presenting the nonconforming characteristic graph shown in Fig. 5.11 and Fig. 5.10.
Compared to the design proposal of the OSVM graph, which only showed the classification score,
the implemented version also shows the characteristics it deems suspicious. These characteristics
are then presented in the same manner as the original graph so the user could interpret the reason
behind the OSVM’s decision better. As we see in the particular case of Fig. 5.10, the measured
value of the characteristic is already nearing the regulation limits. Due to that, the OSVM decided
that it was time to alarm the operator before the value exceeds any limits.
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Figure 5.11: Analysis of nonconforming characteristics
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Chapter 6

Conclusion

This thesis provides an overview of out-of-state detection and usage of machine learning on SPC. It
introduces commonly used methods and related work to this field and presents research on issues
that are commonly faced in the SPC. Although a lot of information could not be published, a very
general and anonymized analysis of the data was conducted to provide the reader with the state of
the data. Afterward, the implemented methods Shewhart control chart, Hotelling control chart, and
OSVM were compared to the classification of the original method that is currently used in Škoda
Auto. Subsequently, a series of experiments on a synthetically generated dataset was conducted to
gain a better overview of the method’s performance. The synthetic dataset was generated based
on the characteristics of the real data; therefore, they are multivariate, multimodal, and heavily
correlated.

The experiments showed that for data generated from such complex processes, OSVM performed
the best most of the time. The univariate nature of the Shewhart control chart struggled with the
multivariate aspect and even more so when the data dimension was raised in conjunction with further
correlations between variables. Although the Hotelling control chart had all of its assumptions
violated, its performance was satisfactory, in particular in the case of one variable shift where it
outperformed even OSVM. A part of these experiments was organized into a paper submitted and
admitted to the 13th International Conference on Soft Computing and Pattern Recognition held in
December 2021.

During the implementation and development of the methods suitable for the processes in Škoda Auto,
an application was built for a more intuitive comparison between the methods. The application offers
some useful features, such as intuitive visualization of the data chosen by the user, based on the
implemented SPC methods.

Since this thesis is promoting the usage of machine learning in SPC, it continuously creates a
parallel between SPC phases and the learning and testing aspect of machine learning. As this thesis
is focused on phase I of SPC, which targets the retrospective analysis, it is analogous to the learning
phase in a machine learning algorithm. In phase I, we are trying to adjust the method to create
the right balance as we are trying to improve quality. In practice, we need to respect the existing
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processes as well, so a certain similarity between the new OSVM and the current Škoda method
is needed. Although we lack the ground truth from the real dataset, we cannot expect Škoda to
have the capacity to ’blindly’ send every characteristic that the method deems nonconforming to
the measurement center.

Fortunately, the visualization of the application seems to help with proving the effectivity of OSVM
as it graphically shows the visualization of the measured value on a graph. The OSVM already
deems the characteristic to be nonconforming when it nears the regulation limits; meanwhile, the
original Škoda method does not yet notice since the characteristic has not exceeded the limits.

As for phase II of SPC that is parallel to the actual usage of the machine learning algorithm, we need
to face several problems first. The modern processes and data frequently deal with the undocumented
and unpredictable change of data structure, semantics, and infrastructure. This change is called a
data drift, an inevitable result of the modern data architecture. As phase I of SPC focuses on the
offline analysis, the current state of the OSVM is not prepared for the issue of data drift yet. One
of the possibilities would be to employ online learning, automatically updating new models with
newer data. Since many applications operate with real-time streaming data feeds, it could allow the
method to learn directly from data streams. Another approach would include data drift recognition
with model relearning to combat the problem.

Future Work

Although statistical process control is probably not the most popular research topic as of now, we
believe it has immense potential, in combination with the developing field of artificial intelligence.
Apart from the analysis itself, further work could be performed on the methods of how data is
obtained and stored, how quickly it is accessible within the process and on improving the data
structure in a way that would improve machine readability. Such improvements might allow us
to analyze more properties, speed up the analysis or make the analysis more accurate. Lastly, we
would like to generalize the usage of these methods outside the scope of the automobile industry
and explore the possibilities of utilizing other machine learning algorithms for OOC detection.

60



Bibliography

[1] M. Macas, D. H. Nguyen, and C. Panuskova, “Support Vector Machines for Control of Mul-
timodal Processes”, in International Conference on Soft Computing and Pattern Recognition,
Springer, 2021, pp. 384–393.

[2] B. +. A. Conference. (2018). How much money could predictive analytics truly save your
company?, [Online]. Available: https://biaconference.com/data/how-much-money-can-
predictive-analytics-truly-save-your-company/ (visited on 05/12/2021).

[3] Metrology and Q. News. (2020). Artificial Intelligence Supports BMW Quality Assurance,
[Online]. Available: https://metrology.news/artificial-intelligence-supports-bmw-
quality-assurance/ (visited on 05/12/2021).

[4] F. W. Taylor, Scientific management. Routledge, 2004.

[5] D. C. Montgomery, Statistical quality control. Wiley Global Education, 2012.

[6] R. E. Barlow and T. Z. Irony, “Foundations of statistical quality control”, Lecture Notes-Monograph Series,
pp. 99–112, 1992.

[7] W. E. Deming, “Lectures on statistical control of quality”, Nippon Kagaku Gijutsu Remmei,
1950.

[8] A. Mitra, Fundamentals of quality control and improvement. John Wiley & Sons, 2016.

[9] D. Garvin, “Competing on the eight dimensions of quality”, Harv. Bus. Rev., pp. 101–109,
1987.

[10] D. Ciampa, Total quality: a users’ guide for implementation. Addison Wesley Publishing
Company, 1992.

[11] J. P. Womack and D. T. Jones, “Banish waste and create wealth in your corporation”,
Recuperado de http://www. kvimis. co. in/sites/kvimis. co. in/files/ebook_attachments/James,
2003.

[12] Y. Tsim, V. Yeung, and E. T. Leung, “An adaptation to ISO 9001: 2000 for certified
organisations”, Managerial Auditing Journal, 2002.

[13] G. Tennant, Six Sigma: SPC and TQM in manufacturing and services. Routledge, 2017.

[14] D. C. Montgomery, Introduction to statistical quality control. John Wiley & Sons, 2020.

61

https://biaconference.com/data/how-much-money-can-predictive-analytics-truly-save-your-company/
https://biaconference.com/data/how-much-money-can-predictive-analytics-truly-save-your-company/
https://metrology.news/artificial-intelligence-supports-bmw-quality-assurance/
https://metrology.news/artificial-intelligence-supports-bmw-quality-assurance/


BIBLIOGRAPHY BIBLIOGRAPHY

[15] J. Eva and N. Darja, Pokročilejší metody statistické regulace procesu. Grada Publishing as,
2015.

[16] X. Fu, R.-f. Wang, and Z.-y. Dong, “Application of a Shewhart control chart to monitor clean
ash during coal preparation”, International Journal of Mineral Processing, vol. 158, pp. 45–54,
2017.

[17] M. Koutras, S. Bersimis, and P. Maravelakis, “Statistical process control using Shewhart con-
trol charts with supplementary runs rules”, Methodology and Computing in Applied Probability,
vol. 9, no. 2, pp. 207–224, 2007.

[18] A. Faraz and M. B. Moghadam, “Fuzzy control chart a better alternative for Shewhart average
chart”, Quality & Quantity, vol. 41, no. 3, pp. 375–385, 2007.

[19] Statistical Quality Control Handbook. Western Electric Co., 1956.

[20] W. Hachicha and A. Ghorbel, “A survey of control-chart pattern-recognition literature (1991–
2010) based on a new conceptual classification scheme”, Computers & Industrial Engineering,
vol. 63, no. 1, pp. 204–222, 2012.

[21] Y. Wang, Y. Si, B. Huang, and Z. Lou, “Survey on the theoretical research and
engineering applications of multivariate statistics process monitoring algorithms: 2008–2017”,
The Canadian Journal of Chemical Engineering, vol. 96, no. 10, pp. 2073–2085, 2018.

[22] S. J. Qin, Process data analytics in the era of big data, 2014.

[23] T. Chen, J. Morris, and E. Martin, “Probability density estimation via an infinite Gaussian
mixture model: application to statistical process monitoring”, Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 55, no. 5, pp. 699–715, 2006.

[24] W. Hwang, G. Runger, and E. Tuv, “Multivariate statistical process control with artificial
contrasts”, IIE transactions, vol. 39, no. 6, pp. 659–669, 2007.

[25] M. M. Moya and D. R. Hush, “Network constraints and multi-objective optimization for one-
class classification”, Neural networks, vol. 9, no. 3, pp. 463–474, 1996.

[26] S. S. Khan and M. G. Madden, “One-class classification: taxonomy of study and review of
techniques”, The Knowledge Engineering Review, vol. 29, no. 3, pp. 345–374, 2014.

[27] A. Apsemidis, S. Psarakis, and J. M. Moguerza, “A review of machine learning kernel methods
in statistical process monitoring”, Computers & Industrial Engineering, vol. 142, p. 106 376,
2020.

[28] R. Sun and F. Tsung, “A kernel-distance-based multivariate control chart using support vector
methods”, International Journal of Production Research, vol. 41, no. 13, pp. 2975–2989, 2003.

[29] S. He, W. Jiang, and H. Deng, “A distance-based control chart for monitoring multivariate
processes using support vector machines”, Annals of Operations Research, vol. 263, no. 1,
pp. 191–207, 2018.

[30] H. Deng, G. Runger, and E. Tuv, “System monitoring with real-time contrasts”,
Journal of Quality Technology, vol. 44, no. 1, pp. 9–27, 2012.

62



BIBLIOGRAPHY BIBLIOGRAPHY

[31] L.-J. Kao and C. C. Chiu, “Application of integrated recurrent neural network with multi-
variate adaptive regression splines on SPC-EPC process”, Journal of Manufacturing Systems,
vol. 57, pp. 109–118, 2020.

[32] S. B. Kim, T. Sukchotrat, and S.-K. Park, “A nonparametric fault isolation approach through
one-class classification algorithms”, IIE Transactions, vol. 43, no. 7, pp. 505–517, 2011.

[33] M. Weese, W. Martinez, F. M. Megahed, and L. A. Jones-Farmer, “Statistical learning methods
applied to process monitoring: An overview and perspective”, Journal of Quality Technology,
vol. 48, no. 1, pp. 4–24, 2016.
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