
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3
Faculty of Electrical Engineering

Department of Computer Science

Bachelor’s thesis

The Multi-Agent Path Finding
Demonstrator

Tůma Ondřej
Open Informatics, Software

May 2022

Supervisor: RNDr. Miroslav Kulich, Ph.D.

Acknowledgement / Declaration

I would like to thank my supervisor
RNDr. Miroslav Kulich, Ph.D., for ex-
cellent mentoring and guidance and for
providing great advice when I needed it.
I would also like to thank Ing. Tomáš
Rybecký for providing the base soft-
ware solution and for introducing me to
the problem domain. Finally, I would
like to acknowledge the co-authors of
the original Fleet Management System
and its components, mainly Ing. Lukáš
Bertl and Ing. Jakub Hvězda Ph.D. The
original mapfIR project also rightfully
deserves appreciation.

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, date 18. May 2022

. .

v

Abstrakt / Abstract

Tato práce analyzuje a vylepšuje de-
monstrátor robotů pro automatizované
sklady využívaný na pracovišti CIIRC.
Hlavním úkolem této práce je vylepšit
stávající software, přidat nové funk-
cionality a umožnit použítí formátu
kompatibilního s mapfIR projektem.
Výsledný software by měl zásadně zlep-
šit dojem z práce s demonstrátorem
pro studenty, kteří budou v budoucnu
vyvíjet algoritmy pro mapfIR solver.
Nedílnou součástí práce je také vylep-
šení celkového dojmu při prezentaci
externím subjektům.

Klíčová slova: software, vizualizace, ro-
bot

This work analyzes and improves upon
the multi-agent planning system demon-
strator currently used at the Czech
Institute of Informatics, Robotics and
Cybernetics. The main objective is to
improve existing functionality, add new
features and enable the usage of map-
fIR format. The final software should
significantly improve the developer ex-
perience for future students developing
algorithms for the mapfIR solver, en-
hance the impression when presenting
to 3rd parties, and provide a better user
experience overall.

Keywords: software, visualization,
robot, pathfinding

vi

Contents /

1 Introduction .2
1.1 Current state .2
1.2 End goal .3

2 Analysis of the mapf-IR project4
2.1 Introduction .4
2.2 The solver .4

2.2.1 Input format5
2.2.2 Output format5
2.2.3 Map format6
2.2.4 Coordinate system

convention7
2.3 The visualizer .7
2.4 Benefits .7

3 Analysis of the FleetControl
demonstrator .9

3.1 Project history9
3.2 Input format .9

3.2.1 Map file .9
3.2.2 Coordinate system

convention9
3.2.3 Execution plan 10

3.3 Components . 10
3.3.1 Server. 10
3.3.2 Robots. 10

3.4 Environment 12
3.5 Server software analysis 13
3.6 Robot software analysis 13

3.6.1 Navigation 13
3.6.2 Runner 13

3.7 Runtime behavior 14
4 Implementation decisions 15
4.1 Compatibility considerations . . 15
4.2 GUI library considerations 15
4.3 GUI implementation consid-

erations . 16
4.4 Virtual run implementation

considerations 16
4.5 Coordinate system conven-

tion . 17
5 Implementation 18
5.1 Application architecture 18

5.1.1 Communication 18
5.1.2 Shared resources 19

5.2 TurtleBot . 20
5.3 Server. 20

5.3.1 Vicon . 20

5.3.2 Network communica-
tion . 21

5.3.3 Virtual run 22
5.4 Graphical user interface 22
5.5 Coordinate system 23
5.6 Robot synchronization

strategies . 25
5.6.1 Discreet time step 26
5.6.2 Action Dependency

Graph . 26
5.6.3 Demonstration 26

6 Implemented system proper-
ties . 28

6.1 Demonstration setup. 28
6.1.1 Original system 28
6.1.2 New system 28
6.1.3 Comparison 29

6.2 Runtime behavior 29
6.2.1 Original system 29
6.2.2 New system 29
6.2.3 Comparison 30

6.3 Runtime demonstration im-
pression . 30

6.4 Runtime demonstration
problems. 30

7 Summary . 31
A Contents of the attached CD 33

References . 35

vii

/ Figures

2.1. mapf-IR GUI .8
3.1. Single robot execution plan 10
3.2. Robot front . 11
3.3. Robot rear . 11
3.4. Robot fleet . 11
3.5. Robot top . 11
3.6. Complete area 12
3.7. Vicon cameras 12
3.8. Robot positioning grid 14
5.1. Communication UML 18
5.2. Communication sequence di-

agram . 19
5.3. Vicon markers 21
5.4. GUI . 23
5.5. Admin panel . 24
5.6. Robot panel . 24
5.7. Plan highlight 24
5.8. Overlayed grid 25
5.9. Step 1 . 27

5.10. Step 2 . 27
5.11. Step 3 . 27
5.12. Step 4 . 27
5.13. Step 5 . 27
5.14. Step 6 . 27
5.15. Step 7 . 27
5.16. Step 8 . 27
5.17. Step 9 . 27
5.18. Step 12 . 27
5.19. Step 11 . 27
5.20. Step 12 . 27
5.21. Step 13 . 27
5.22. Step 14 . 27
5.23. Step 15 . 27

viii

Abbreviations

. Cmake - C++ build system with a homepage at https://cmake.org/

. Makefile - Originally Unix C build system with a homepage at https://www.gnu.
org/software/make/

. mapfIR - mapfIR project with source code available at https://github.com/Kei18/
mapf-IR

. OF - openFrameworks C++ framework with source code available at https://
openframeworks.cc/

. original project - Original FleetControl project with source code located at https://
gitlab.ciirc.cvut.cz/rybectom/SIPPDemonstrator

. XML-based format - the IO format used in the original project

. SafeLog project - The SafeLog project http://safelog-project.eu/

. Vicon - Vicon motion capture system https://www.vicon.com/

. ROS - Robot Operating System

1

https://cmake.org/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://github.com/Kei18/mapf-IR
https://github.com/Kei18/mapf-IR
https://openframeworks.cc/
https://openframeworks.cc/
https://gitlab.ciirc.cvut.cz/rybectom/SIPPDemonstrator
https://gitlab.ciirc.cvut.cz/rybectom/SIPPDemonstrator
http://safelog-project.eu/
https://www.vicon.com/

Chapter 1
Introduction

With the increased demand in the logistics industry in recent years, new solutions
enabling higher efficiency and accuracy are necessary. Autonomous robot fleet systems
are at the frontier of used solutions, enabling logistics providers to operate at a much
larger scale. New algorithms are constantly being developed for this purpose. With
that comes the necessity to test them and evaluate their properties. The real-world
properties of such algorithms might not be obvious when they are developed in the
academic environment. It is, therefore, necessary to create conditions similar to the
ones in real warehouses in order to design the best algorithms that will be able to avoid
situations that might arise only due to otherwise unexpected causes.

The goal of this thesis is to improve the software for autonomous warehouse demon-
strations currently used by the Intelligent and Mobile Robotics Group (IMR) at Czech
Institute of Informatics, Robotics and Cybernetics (CIIRC).

1.1 Current state

Currently, the IMR is operating a demonstrator of autonomous warehouse robots. Its
main purpose is the execution of a solution to a pathfinding problem. The problem
usually consists of several agents with assigned starting points and a set of goals that
the agents have to arrive to. The solution is then created, assigning each agent a path to
a specific goal. The demonstrator is part of the original project. The version currently
used is hard to set up, supports only a proprietary format, and creates additional friction
in the workflow. Moreover, the demonstrator’s output is text-only, making it generally
unappealing to work with. It enables only basic functionality for the simulations, which
mainly include:

1. Loading generated simulation data (in the XML-based format)
2. Run against physical robots in a lab with commands in a predefined order

It does the basics necessary to run the simulation, but it does not enable the user to
adjust or view the result. The information flow is limited, as the only information
relevant to the execution is the feedback from robots after command execution. It
has no continuous data about real-world positions. If a collision happens between two
robots, the executor has no way of detecting and adjusting the robot’s paths.

The IMR also experiments with the mapfIR project [1], a software-only solution for the
generation and visualization of similar plans. The current data representation format
used by the demonstrator is XML-based. It is not compatible with mapfIR’s input
nor output format, which makes the software at its current state useless for students
developing algorithms for the mapfIR solver.

2

. 1.2 End goal

Another disadvantage is the substantial amount of work and knowledge required to
set up a basic demonstration run. This substantially limits possible use-cases for this
project, as the setup takes significantly more time than the actual demonstration run.
By making the setup process more straightforward, the project could be used more
often, increasing its perceived usefulness and likely increasing its chances of getting
future updates.

1.2 End goal

The goal is to create a version of the demonstrator that would simplify the setup
process, improve the experience for developers working on an algorithmic solution with
the mapfIR format, allowing them to switch between the original visualizer and this
demonstrator seamlessly, and enable the possibility of presenting it to external visitors
for representational purposes (i.e., possible applicants) by enhancing the user interface.

The Graphical User Interface (GUI) should enable the user to set up demonstration
settings and interact with the system during the demonstration run.

Among other goals is the incorporation of the Vicon system, allowing for real-time
tracking of robots. Another option available for getting real-time positions that will be
used is the feedback from the robots themselves.

The department will benefit both internally and externally from this work. The internal
benefits are mainly increased productivity of future developers working on this project
and lesser time spent on the demonstration setup. The external benefits include the
additional possibility of presenting to future applicants. The complete list of features
should include:

1. Simplified demonstration setup
2. Purely virtual run
3. GUI with information about the current run and the ability to modify the run, such

as disabling individual agents.
4. Standardized input and output formats with mapfIR
5. Vicon system integration
6. Ability to display real-time robot positions (Vicon/robots)
7. Easy integration of future changes to the demonstration execution

The rest of the text is as follows. Chapter 2 analyzes the mapfIR project to help us
understand the formats it uses and simplify further development. Chapter 3 analyzes
the current state of the software used as a basic prerequisite for its enhancement.
Chapter 4 goes over implementation decisions for the creation of the final software,
while Chapter 5 describes the actual implementation details. Chapter 6 sums up the
workflow and user experience and compares the original and new software. Chapter 7
serves as the summary of this thesis.

3

Chapter 2
Analysis of the mapf-IR project

In this chapter, I will take a detailed look at the inner workings of the mapfIR project.
This chapter also aims to point out the differences in formats and inner workings that
might play an important role during implementation.

2.1 Introduction

mapfIR is a simulator and visualizer of Multi-Agent Path Finding (MAPF) [1]. Given a
graph of connected nodes, a list of agents with their initial locations, and a set of target
destinations, a solution of MAPF is a set of collision-free paths connecting the initial
locations with target destinations. mapfIR is written in C++(17). Its main appeal for
us is the ease of use and the usage of human-readable input and output formats that
are generally easy to understand.

The project consists of 2 parts.

. The solver is a standalone Cmake application. It generates a simple CLI binary
executable that allows the user to generate an execution plan based on a pathfinding
problem definition. It supports multiple planning algorithms that can be switched
using the command-line arguments.

. The visualizer is based on openFrameworks (OF) [2] and is built using Makefile. It
is used to visualize the output of the solver once it has been generated. The user is
able to change the visualization speed and highlight particular robots.

This split is necessary, as described in Section 4.2. The general workflow is to:

1. Run the solver on a problem set as described in Section 2.2.1, creating output in the
format described in Section 2.2.2

2. Visualize the solution using the visualizer described in Section 2.3

Although the project description says it does support only macOS, there seems to be
no problem compiling and running under Linux. This appears to be coming from the
lack of documentation and documentation in an outdated state whenever it actually
exists. This seems to be a common pattern for the OF applications and the project
components as well.

2.2 The solver

This section aims to describe the solver and analyze the input and output formats
used by the solver. An understanding of the formatting used will be necessary when
migrating our application from the XML-based format.

4

. 2.2 The solver

The solver is used to generate an execution plan in discreet time steps. It focuses
solely on the generation of static plans. It currently supports the following algorithms.
Hierarchical Cooperative A* and Windowed Hierarchical Cooperative A* [3], Prior-
ity Inheritance with Backtracking (PIBT) [4], Conflict-based search (CBS) [5], Itera-
tive Conflict-based search (ICBS) [6], A Bounded-Suboptimal Search variant of CBS
(ECBS) [7], Revisit Prioritized Planning [8], Push and Swap [9], Extended Prioritized
Algorithm (winPIBT) [10], and Iterative Refinement (IR).

2.2.1 Input format

The input is a description of the pathfinding problem that is given to the solver, which
in turn, tries to create a solution for a given problem set.

1 map_file=arena.map
2 agents=300
3 seed=0
4 random_problem=0
5 max_timestep=500
6 max_comp_time=30000
7 36,33,5,23
8 3,17,23,33
9 30,15,9,27

10 19,35,42,30
11 8,21,2,18

The input format is illustrated above. The file starts with the name of a map file on
the first line, continuing with the number of agents on the second line, followed by the
seed of the problem, max_timestep, and max_comp_time. The seed is used to preserve
the information about how to problem was generated and enable its regeneration. The
max_timestep gives us the information about the total number of time steps in the
simulation. The max_comp_time is used for debugging and performance monitoring
and will not be important for the purpose of this thesis. The next „number of agents“
lines are in the format sx sy gx gy where sx and sy are the x and y coordinates of
the starting point, respectively, and gx, gy are the x and y coordinates of the goal,
respectively.

2.2.2 Output format

The output file is a solution to a given pathfinding problem on a given map, with
additional metadata included.

1 instance=instances/arena_300agents_1.txt
2 agents=300
3 map_file=arena.map
4 solver=IR_HYBRID
5 solved=1
6 soc=12085
7 lb_soc=9722
8 makespan=80
9 lb_makespan=80

10 comp_time=414

5

2. Analysis of the mapf-IR project .
11 iter=0,comp_time=20,soc=13284,makespan=13284
12 starts=(36,33),(3,17),(30,15),(19,35),...
13 goals=(5,23),(23,33),(9,27),(42,30),...
14 solution=
15 0:(36,33),(3,17),(30,15),(19,35),...
16 ...
17 80:(5,23),(23,33),(9,27),(42,30),...

The output format is as illustrated above, with the vital information being the number
of agents on line 2, followed by the coordinates of starting points on line 12 in the
format (x1, y1), (x2, y2)... (xm, ym), where x and y are the respective coordinates
for each agent identified by the index of its coordinates on the row, and m is the
number of agents. Followed by goals in the same format. Following are „makespan“
lines, each representing a single discrete timestep in the simulation, where each line has
the coordinates of each agent in the above-mentioned format. The description of the
additional, not so important (in the scope of this thesis) options is the following. The
instance line stores information about the problem set used to generate the solution.
The map_file option informs us about the map file used for the generation of the
output. The solver and solved fields provide us with information about the used
solver algorithm and whether the search for a solution was successful, respectively. The
soc and lb_soc store information about the sums of cost for the whole simulation. It
is generally used when comparing different algorithms for the same problem set. The
comp_time line informs us about the computation time required to generate the solution
and is generally used for benchmarking.

2.2.3 Map format

Below is an example map file. This file format is used both by the solver and visualizer
to represent the environment. On the first line is the map type, represented by a string.
Following are two lines representing the dimensions. On the 5th line starts the actual
map represented by m rows and n columns, where m and n are the height and width
of the grid dimensions, respectively. Each grid tile is represented by a single ASCII
character. Currently, only two characters are used.

. . - Representing blank space

. T - Representing an obstacle

1 type octile
2 height 14
3 width 13
4 map
5 T....TTT....T
6 T...........T
7
8
9

10
11
12T......
13
14

6

. 2.3 The visualizer

15
16
17T.T.T....
18 T..TTTTT....T

2.2.4 Coordinate system convention

All positional data assumes a grid representation of the simulated map. The representa-
tion of the data expects the coordinate (0, 0) to be the top-left corner of the simulation
grid, while (xm −1, ym −1) is expected to be the bottom-right corner of the grid, where
xm, ym is the number of columns and rows in the simulation grid, respectively. This
perception comes from the fact that in GUI applications, the coordinate system grows
from the upper left corner.

2.3 The visualizer

The visualizer uses input files conforming to the format described in Sections 2.2.2
and 2.2.3 to visualize the run of the generated simulation. It lets the user change
the simulation speed and move through discrete time steps. Other features include
selecting only a single agent to display, stopping the agent during the simulation, and
visual features such as hiding/showing the lines to goals. The complete UI can be seen
in Figure 2.1.

2.4 Benefits

The benefits of the format used by mapfIR are mainly:

. Human readability

. Simple parsing

. Ability to use community solvers

Additionally, I believe that switching to a standardized IO format will enable more
students to use the demonstrator, and eventually introduce new use-cases that were not
possible before due to the inaccessibility of the demonstrator. The ability to execute
the generated execution plan on real robots might greatly increase the attractiveness
of the field for students developing algorithms for pathfinding.

7

2. Analysis of the mapf-IR project .

Figure 2.1. mapf-IR GUI

8

Chapter 3
Analysis of the FleetControl demonstrator

In this chapter, I will take a detailed look at the inner workings of the original Fleet-
Control project. The purpose of this chapter is also to point out differences in formats
and inner workings that we need to migrate in order to achieve full compatibility.

3.1 Project history

The original project was developed as part of the SafeLog project, which aimed to
study and enable the cooperation of people and robots in a single robotized warehouse
environment. Further work was done by Tomáš Rybecký as part of his thesis [11].

3.2 Input format

All data-related input and output files used in the original project are XML-based.
The XML format has numerous advantages for advanced use-cases that need more
metadata, but at the same time, it is hard to read by human operators and its parsing,
as currently implemented, is overly complicated.

3.2.1 Map file

The map file Projekt_mapa4.xml in the root of the project was used as the source for
the navigation system on robots. The file is in XML format and consists of a relatively
simple definition of nodes that are directly referred to by id from the bar codes placed
on the laboratory floor. The rest of the map file was unused but kept for possible
backward compatibility. It includes edges definition, describing the possible routes.

Example node

<PickStationNode Id="464" X="3.5" Y="2.1">

3.2.2 Coordinate system convention

The coordinate system representation in the file is independent of the rotation of the
whole coordinate system. It is, by convention, expected to begin in the lower-left corner
of the imaginary grid, growing linearly to the upper right corner of the grid. The
rotation of the coordinate system plays a role only in the physical robots; therefore,
keeping the convention standardized across both components simplifies the potential
visualization of the plans and makes it simpler to imagine the final plan without the
need to perform multi-dimensional rotations. This is in contrast to the coordinate
system used by mapfIR described in Section 2.2.4, which begins in the upper left
corner.

9

3. Analysis of the FleetControl demonstrator .
3.2.3 Execution plan

The execution plan was also supplied in the XML format, providing a list of n points
relative to the grid coordinates for each robot, with duration for each step. The co-
ordinates were scaled relative to the grid coordinate system, and it was necessary to
provide this scaling information at runtime for successful coordinate transformation.
This information is, however, not encoded in the file itself.

I’d also like to point out that, in contrast to the solution generated by mapfIR, this
execution plan does not use discreet time steps to synchronize the whole simulation.
It uses the timing information provided in each command definition to avoid collisions
and ensure synchronization across commands. A single robot execution plan can be
seen in Figure 3.1

Figure 3.1. Single robot execution plan

3.3 Components

The whole demonstration application consisted of two distinct parts communicating
over TCP in the local network.

A custom layer built upon the nanomsg library serves as the common facilitator for
all network communication across all components. It simplifies the interface provided
by the library and provides unified access to the network layer. Nanomsg is a socket
library that provides several common communication patterns. It aims to make the
networking layer fast, scalable, and easy to use. It is implemented in C [12].

3.3.1 Server

The server component was expected to be run at static IP address 192.168.2.4.This
part of the application was responsible for reading, parsing, and converting the execu-
tion file into the grid coordinate system used by robots. Another of its responsibilities
included handling the connections from individual robots. Once all connections have
been established, the server would start sending individual commands to each robot,
ensuring the order and timing of the executed commands.

3.3.2 Robots

The robot model used is TurtleBot 2. It is an open source, low-cost robot kit, consisting
of a mobile base, single board computer, and the TurtleBot mounting hardware kit [13].
The robots are equipped with a Kinect sensor on the front, as can be seen in Figure
3.2. Vicon markers are glued to the top of the robot in a predefined constellation, as

10

. 3.3 Components

Figure 3.2. Robot front view Figure 3.3. Robot rear view

Figure 3.4. Robot fleet

Figure 3.5. Robot top view

can be seen in Figure 3.5. Each robot is mapped to a name in the Vicon system based
on the tag constellation. The complete fleet used during the demonstration can be seen
in Figure 3.4, together with the bar codes used for their navigation.

The robot is running the Robot Operating System (ROS). ROS [14] is a set of software
libraries and tools for building robot applications, providing advanced algorithms and
complete framework for working with robots. The base of the software running on
robots consists of a ROS package, a module responsible for navigation on the grid, and
a simple communication layer executing the commands received from the server. This
layer will be referred to as runner in the rest of this thesis. The robots were only

11

3. Analysis of the FleetControl demonstrator .
responsible for executing the individual commands and had no context of the whole
simulation or other robots.

3.4 Environment

The laboratory is in a room with the barcode grid layed on the ground, covering roughly
100m2 area as shown in Figure 3.6, with the Vicon cameras mounted on the ceiling
(Figure 3.7).

Figure 3.6. Complete area

Figure 3.7. Vicon cameras

12

. 3.5 Server software analysis

3.5 Server software analysis

The software structure was split into the server runner thread and serializable classes
representing the individual messages. Other utility classes for time synchronization
were also used, although their impact was negligible. The communication with robots
happened in a loop in the server thread.

During a later stage, there were found some rather critical bugs in the nanomsg ab-
straction used by both the server and client that resulted in an array out of bounds
write and corruption of the stack when the server’s IP address length increased. This
did not, however, affect the original project, as the server IP was static and relatively
short.

3.6 Robot software analysis

3.6.1 Navigation

The navigation part proved to be well written and abstracted away the navigation
problem completely. From the developer’s perspective, the whole abstraction usage can
be simplified to two synchronous method calls

. int driveToPosition(double x, double y, double time);

. int turn (double angle);

The underlying solution for the navigation system is based on the AprilTag project. It
„is a visual fiducial system, useful for a wide variety of tasks including augmented reality,
robotics, and camera calibration. Targets can be created from an ordinary printer, and
the AprilTag detection software computes the precise 3D position, orientation, and
identity of the tags relative to the camera. The AprilTag library is implemented in C
with no external dependencies. It is designed to be easily included in other applications,
as well as be portable to embedded devices.“[15]

The internal representation of the grid can be seen below in Figure 3.8. All robot
movement is calculated and realized relatively to this grid representation. The numbers
on the individual grid tiles are embedded in the bar codes on the laboratory floor
and are the ids of the nodes in the Projekt_mapa4.xml file. X represents a missing
node/obstacle.

As an additional safety measure, the underlying software abstracts away direct collision
handling, during which the robot stops all further execution to prevent any potential
damage.

3.6.2 Runner

The runner consisted of a simple communication handler, calling the above-mentioned
navigation API, performing the desired tasks, and returning the results. In case of not
finishing the command, the robot would simply not send back the response, and the
server would then reinitiate the command execution.

13

3. Analysis of the FleetControl demonstrator .

Figure 3.8. Robot positioning grid

3.7 Runtime behavior

The runtime behavior is consistent and reliable in its main functionality, which is in-
herently limited by the purpose of the software.

Due to the multithreaded nature, the server was sometimes logging to stdout multiple
logs at a time, resulting in message corruption, but that was a minor inconvenience,
that did not affect the executed demonstration in any way.

14

Chapter 4
Implementation decisions

In this chapter, I will briefly describe the implementation requirements provided and
decisions that were necessary before the actual implementation.

4.1 Compatibility considerations

The original project uses Cmake build system. It provides great benefits compared to
Makefile, mainly portability across multiple build systems. The primary decision was
that we were to keep this build system for the server part of the application. This will
be important later when choosing GUI in Section 4.2.

4.2 GUI library considerations

The primary candidate for the GUI library was OF. It provides an extensive amount
of add-ons ranging greatly in functionality, with the pros being mainly:

1. Event loop synchronized with framerate
2. Interacting with the canvas using framework APIs
3. Rich set of GUI widgets (buttons, text fields, etc.)

with the only downside being its dependence on the Makefile. Therefore we are not
able to use the official version with our build system.

The developers are rather defensive about migrating build systems. The recommended
way of building OF app is to clone the official repository, create an app using their
template, and extend the makefiles provided by the original repository. In order to be
able to use this project with Cmake, it would be necessary to fork the original repository
and create a header map for each component of the framework, potentially breaking
support for unported add-ons. This would break the main benefit of the framework,
extensibility, while the time investment necessary would certainly overrun the budget
for this thesis.

There appear to be a few attempts to do this. Unfortunately, the vast majority of them
are out of date and unusable without heavy modifications. During the preparation for
this thesis, I tried to set up all of them without success, as they are out of date. Below
are a few example approaches to this problem.

The first one being ofxCMake1. It attempts to provide the package as OF add-on.
Unfortunately, the latest version is from Aug 13, 2017, and there seems to be no active

1 https://github.com/BildPeter/ofxCMake

15

https://github.com/BildPeter/ofxCMake

4. Implementation decisions .
development keeping it in sync with current Linux distributions and versions of libraries
used in them.

Another one being ofnode1, taking a different approach. It has its own fork of the whole
OF repository, with mappings for Cmake. The fork approach introduces inevitable split
from the main branch, implicitly keeping it out of sync with no support for new features.
The latest version is from Nov 7, 2018. I ran into several issues with system libraries
with this version and was not able to compile even the bare repository.

From the forums, it seems that both approaches had been working for at least a few
users for some time. The main issue with both approaches seems to be the development
outside of the main repository, which led to their deprecation, as the developers had to
maintain it themselves, which both of them stopped doing. It was then decided that it
would be most beneficial to split the GUI into a separate application and keep using
the framework as intended by the authors, as the approach to port it to Cmake had
been tried before, and as we can see, it did not work in the long term.

The implementation will be, however, done with the possible switch to a single applica-
tion in mind, trying to abstract most of the communication away from the developer,
making the switch relatively easy, were the developers ever to introduce Cmake support.

4.3 GUI implementation considerations

The first aspect was speed and network bandwidth. The simulation might run hundreds
of robots, depending on the simulation. So on each robot move, it is necessary to send
the minimal amount of information required in order to keep the latency to a minimum.
It was then decided that the plan would be synchronized between both applications on
simulation start or plan change. Any messages regarding the robots’ positions will
strictly refer to the synchronized plan.

The second aspect was the ease of development. It is necessary to create enough ab-
straction for the developer not to have to worry about the network. A set of abstractions
allowing to share messages and state in an asynchronous manner will be necessary. Ide-
ally, the developer should not care whether the apps are running in different threads or
processes, the API should remain the same.

4.4 Virtual run implementation considerations

In the original demonstrator, there was no support for a virtual run. It is, however,
truly inconvenient having to have physical robots in order to evaluate an execution
plan. The virtual run will also be useful for testing the server and frontend. For those
cases, the server and frontend should not be able to distinguish between the real robots
and the virtual run, as we should not introduce any code related to testing to the tested
parts of the application. Given these constraints, the virtual run will be implemented
using virtualized robots that will be listening and responding on the same ports as
real robots would. This approach should make both use-cases as efficient as a real run
while keeping test-related code to a minimum.

1 https://github.com/ofnode/of

16

https://github.com/ofnode/of

. 4.5 Coordinate system convention

4.5 Coordinate system convention

The coordinate system of the mapfIR project is perceived to grow from the upper left
corner, as described in Section 2.2.4, while the coordinate system of the original system
grows from the lower-left corner, as described in Section 3.2.2. For the convenience of
the user, it is best to keep the orientations of all coordinate systems used within the new
demonstrator in the same direction. Since the robots and the Vicon coordinate systems
are tied to the physical equipment in the laboratory, the new system will comply with
the convention used by the original system. In the mapfIR project, the only place
where the rotation of the coordinate system should matter is during the visualization,
as the solver and visualizer use the same convention. This means that the perception
of the grid coordinate system will be rotated when visualized on the mapfIR visualizer
and the new demonstrator. This might cause minor inconvenience for the developers
working with both projects, but it is necessary to keep all the components in the new
system consistent without the need to perform rotations and confuse the developer
while working with the software.

17

Chapter 5
Implementation

In this chapter, I will describe my implementation and the particular solutions used to
comply with decisions made in Chapter 4.

5.1 Application architecture

The application is split between a server, a frontend, and a robot part. The server is a
central part of the project, communicating with the frontend and the robots. The robots
and the frontend communicate only with the server and are completely independent of
each other.

5.1.1 Communication

All communication in the built system is based on an abstract interface built upon
the same layer on top of nanomsg that has been used in the original project. This
abstraction greatly simplifies the introduction of new message types and the general
process of sending/receiving messages and synchronizing a global state.

The main classes used for communication are Messenger (asynchronous handler for
inbound/outbound messages) and Message (serializable container), providing an easy-
to-use interface and abstracting the network layer away from the programmer. The
basic hierarchy of used communication classes is illustrated below.

Figure 5.1. Communication UML

18

. 5.1 Application architecture

The server and frontend each have their own instance of Messenger associated with a
given Message type, communicating through API defined by a given messenger. In the
case of SynchronizedStateMessenger, only the latest version of the synchronized state
is publicly available outside of the class.

The asynchronous nature of the communication can be seen in the sequence diagram in
Figure 5.2, where it can be clearly seen how the SynchronizedStateMessenger performs
multiple actions and independently synchronizes its state, while the Frontend is free to
do other actions.

Figure 5.2. Communication sequence diagram

The asynchronous handlers allow both applications to run in the main thread perform-
ing latency-sensitive tasks. The current implementation uses a thread per messenger,
mainly to eliminate application-wide locking and shared state, but another more opti-
mal approach could be a single static event loop for all the messengers. It would be
more efficient, but it could also introduce hard to debug bugs where one Messenger
instance could affect every other messenger. It was decided to go with the threaded
implementation. The Messenger architecture was, however, created with the possible
switch to a different implementation in mind, and the possible switch should be only a
matter of changing minor parts of the implementation.

During the implementation of the above-mentioned mechanisms, great measures were
taken to avoid race conditions. The Messenger has an implementation of Lamport’s
logical clock [16], assuring the order of messages for each Message type. This is mainly
to prevent the user from updating a state on the server based on a non-actual version.

5.1.2 Shared resources

Since one part of the application is built using Makefile and the other part using Cmake,
it made sharing code across parts of the application more difficult. The configuration

19

5. Implementation .
of OF only allows one user-defined include directory, so all the shared files have a flat
structure in the {projectRoot}/FleetControl/modules/utils/Comm directory.

5.2 TurtleBot

The software running directly on TurtleBot is based on ROS. Its main purpose is to
receive commands from the server and broadcast its position. It acts on the instructions
by using the position API provided by the underlying layer described in Section 3.6.1.
It also performs translations to and from its grid coordinate system. The robot is
the only component that should be aware of its shifted grid relative to the standard
cartesian coordinate system beginning in (0, 0).

TurtleBot software is built using CMake. The sources for the TurtleBot are in the
/src directory, where the actual code resides in the /src/agv_package/TurtleBot/
directory.

All relevant application information about robots has been moved to a single place. It
is in a file named robot_definitions.txt in the root of the project. Description of
each robot consists of its ID, IP address, port used for command reception, ssh user
used for direct connections, name registered in the Vicon system and color displayed in
the user interface. This file is used by the command-line utilities, the server, and the
robots themselves, providing a single source of truth.

At runtime, the TurtleBot uses the following ports.

. single port defined in /robot_definitions.txt - server commands handling

. 9980 - position feedback

5.3 Server

The general idea behind the server architecture is that it should mainly handle the
execution of the demonstration while aggregating data from Vicon and robots, and
synchronizing them to the frontend.

The execution of the demonstration should be guided by the synchronization strategy
(Section 5.6) currently selected.

The server code resides in the {projectRoot}/FleetControl/modules/manager direc-
tory. The only other code it touches should be the Shared resources further described
in Section 5.1.2.

5.3.1 Vicon

The laboratory is equipped with a Vicon motion capture system, monitoring the area
spanned by robots completely. The purpose of the system is to provide positions of
defined known objects.

The system consists of a central server and high refresh rate motion cameras emplaced
on the ceiling of the laboratory around the monitored area. The Vicon system is usually
used in the movie industry but is by no means limited to it.

20

. 5.3 Server

The tracking works by placing special tracking markers, as can be seen in Figure 5.3,
and mapping each marker constellation to an identifier in the Vicon software. The
system then automatically tracks the position, rotation, and speed of each marker
constellation.

Figure 5.3. Vicon markers

Additional tooling is used to transform the source data from the Vicon system into
a network stream that can be consumed by other applications running on the local
network.

The actual usage in the server is then relatively straightforward. Each robot is assigned
a name in the Vicon system that is referenced in the file with robot definitions in the
root of the project. Afterward, when the Vicon system is running, we are able to
transform the output data into a continuous stream of data, send it over the network
to the Server, filter out only wanted objects, and save the current position provided by
Vicon for each robot. The final position for each robot is periodically transferred to
the frontend primarily to save network bandwidth. Given the high refresh rate of the
positioning system and the relatively low speed of physical robots, the updating period
was set to 100ms without any noticeable delay in the user interface.

5.3.2 Network communication

The server is the only component of the application that is aware of more than one other
component. It serves as a central point for all other components. It communicates with
the frontend, with each one of the robots and Vicon.

The following ports should be used at runtime.

. single port per robot for command execution

. single port per robot for position feedback

. single port for Vicon

. multiple ports for frontend connections (1 for each message type)

The message types used are associated with the following use-cases:

21

5. Implementation .
. sharing current Vicon positions
. sharing current robot’s positions
. information about robot’s command execution start
. information about robot’s command execution blockage
. information about robot’s command execution end
. sharing of simulation settings
. sharing of map and command list

The usage of the word „sharing“ in this context implies the usage of Synchronized-
StateMessenger.

5.3.3 Virtual run

The virtual run is implemented through a class called RobotConsumer. It is started by
providing the CLI option --robot-consumers. It runs in its own thread and, from the
server’s perspective, should be indistinguishable from real robots. It automatically cre-
ates sockets for each robot, allowing the server to initiate communication as it normally
would. The RobotConsumer also broadcasts the robot’s positions, mimicking the real
behavior. The position used is the position of the last command executed if there is no
command currently being executed.

The execution of a command is set up in a way that it takes a random amount of time
from 1 to 5 seconds and is performed linearly, meaning that the perceived speed of the
robot is constant. During the command execution, the consumer periodically broadcasts
its position every 100ms. The position broadcasted during execution changes with the
progress of the command linearly from the start to the end location. It is mainly used
for developer convenience and for testing, as it does not require the setup of physical
equipment and can be performed on a single machine.

5.4 Graphical user interface

The GUI is implemented using OF. It runs a single thread for main logic and
event handling and another one for the GUI application. Communication with
the server is directed through the Messenger abstraction, allowing uninterrupted
handling of all events that might arise and providing smooth rendering for the ap-
plication. All synchronous events and rendering happen in the main event loop of
OF, providing a centralized state for the whole component. The code resides in
{projectRoot}/FleetControl/modules/app directory

The GUI, as visualized in Figure 5.4, displays robot’s positions based on position data
from robots, or alternatively from a connection to the Vicon system, allowing the user
to browse all time steps and show available information about them. The individual
steps are shown after clicking on each robot, as can be seen in Figure 5.7. They can
also be displayed for all the robots at once by selecting the option in the main admin
panel described later. This is not used by default, as it adds a lot of unnecessary
information to the GUI. They are displayed in the form of dots on the target grid tiles.
When clicked, they populate the panel shown in Figure 5.6 with information about its
coordinates, the order of the step in the robot’s plan, and additional information about
the robot, such as current connection status and IP address. The GUI also provides

22

. 5.5 Coordinate system

Figure 5.4. GUI

the user with the ability to disable individual agents for a given simulation run and to
completely start and stop the simulation run.

Most of the settings can be changed in the admin panel (Firgure 5.5) on the left side
of the application window.

The admin panel allows the user to disable individual robots, which is useful if the bat-
tery of the robot dies, but the remaining robots are still good enough for demonstration
purposes. The system then does not send new commands to the disabled robots. The
options may be reset even during a demonstration run, so this option might be used to
consistently test the synchronization algorithms by making a robot blocked while still
being part of the execution plan. Below is the option to change the position provider
for showing the real-time robot’s positions in the user interface. This option does not
override the robot’s internal positioning system. The default option is Robot, as the
Vicon startup time is not insignificant, the cameras have a limited lifespan, and for
the majority of demonstration runs, the feedback from robots gives the same informa-
tion within an acceptable margin of error. The simulation can be started using the
start simulation button. This also allows the user to disable the simulation again
after the start of the execution, preventing the server from sending any new commands
to any of the active robots.

5.5 Coordinate system

23

5. Implementation .

Figure 5.5. Admin panel

Figure 5.6. Robot panel Figure 5.7. Plan highlight

The reference coordinate system used across the system is relative to the output of the
solver. All reference, robot, and vicon coordinate systems can be seen in Figure 5.8
highlighted in blue, purple, and green, respectively. The reference coordinate system
starts at the point (0, 0) in the lower-left corner of the demonstration grid, just as a
convention. The robots have the coordinate system shifted and scaled. The beginning
of the Vicon coordinate system can be seen highlighted in green. The robot coordinate
system scale is roughly equivalent to the scale of Vicon, meaning that the distance
between two neighboring nodes is roughly 0.7m.

The translation from Vicon coordinate system to the base one happens on the server
right after the reception of Vicon data and no other system component is aware of
the different coordinate system used by Vicon. The translation from base to robot

24

. 5.6 Robot synchronization strategies

Figure 5.8. Overlayed coordinate systems

coordinate system and in reverse happens on the robot and no other system component
is aware of the different coordinate system used by the robots.

5.6 Robot synchronization strategies

The solver solves the problem set in discreet time steps. The solution should guarantee
that the simulation will be run without collisions. However, that can be quite inefficient,
as, in the real world, the speeds of individual robots may differ from the expected ones,
and making all robots wait for a single slow robot may lead to a bottleneck in the whole
system. It is, therefore, desirable to be able to break the distinct step barrier. That may,
however, break the consistency of the plan and introduce potential collisions. Once we
disable this implicit safeguard, it is necessary to introduce an additional, possibly more
efficient solution that will prevent collisions and enable the simulation to run without
inconsistencies.

By eliminating the implicit barrier, we are able to dynamically enable and disable
multiple synchronization strategies, making the system more modular and allowing
the development of new algorithms and the demonstrator without any modification
to existing strategies. Each strategy should act independently on the state of other
strategies.

25

5. Implementation .
Currently, the Discreet time step strategy, which is a reimplementation of the original
implicit barrier and Action Dependency Graph strategy are available.

5.6.1 Discreet time step

This synchronization strategy reintroduces the constraints given by the solver’s output,
keeping all robots in the same time step until the last one finishes execution. The
reintroduction of the implicit barrier as a modular strategy makes it great for testing
new planning algorithms, where the original solution of the solver can be inspected
without real-world inconsistencies.

5.6.2 Action Dependency Graph

The second currently implemented approach is to construct an action dependency graph
(ADG) [17] of the nodes and ensure the correct execution order for actions on a given
node. An edge in the ADG represents a move between two nodes at a certain time step
in the originally planned simulation. It also contains information about its dependencies
(the edges that lead to the same end node but should happen before this one). Edge
execution is only allowed when all of its dependencies have been resolved. When an
edge is executed, it unblocks all the edges that it might have been blocking, further
progressing the simulation.

The ADG greatly increases the efficiency, allowing robots to move until they break the
dependency graph. In the original paper, a replanning algorithm is also introduced,
but it was not implemented here for demonstration purposes, as changing the plan
during execution would be quite contrary to the idea of the demonstrator, where we
are demonstrating the execution plan itself. It might, however, be quite an interesting
demonstration on its own.

5.6.3 Demonstration

In Figures 5.9- 5.23, you can see part of the execution using ADG. The Figures are not
spaced evenly relative to the simulation time. Instead, they were selected to represent
significant events during the execution.

Before Figure 5.11, the execution is running normally. However, somewhere between
Figures 5.10 and 5.11, the green robot has been delayed. In order to continue execution,
the pink robot has to wait. This is represented by having the currently waiting robot’s
grid block highlighted in red, as can be seen in Figure 5.11. The pink robot continues
to wait until the next node in its desired path is free (from the ADG perspective), as
displayed in Figure 5.15. This means that every robot that planned to travel through
the node before this one already did so.

The inverse situation, where the green robot is blocked by the pink robot, can be seen
in Figures 5.20 and 5.21. The rest of the demonstration does not need to avoid any
collisions; it is therefore not included in this example. The robots will just return to
their initial positions without any unexpected behavior.

26

. 5.6 Robot synchronization strategies

Figure 5.9. Step 1 Figure 5.10. Step 2 Figure 5.11. Step 3

Figure 5.12. Step 4 Figure 5.13. Step 5 Figure 5.14. Step 6

Figure 5.15. Step 7 Figure 5.16. Step 8 Figure 5.17. Step 9

Figure 5.18. Step 10 Figure 5.19. Step 11 Figure 5.20. Step 12

Figure 5.21. Step 13 Figure 5.22. Step 15 Figure 5.23. Step 16

27

Chapter 6
Implemented system properties

The main goal of this chapter is to describe and evaluate the properties of the imple-
mented system and compare them with the properties of the previously used system,
while pointing out the benefits and discussing potential improvements.

6.1 Demonstration setup

This section describes the process before the demonstration can be run. It includes
updates from source code, build of the robots, server, set up of the connections and
synchronization of all the elements of the demonstration.

The setup has to be done before each demonstration run, which in turn limits the
development speed when performed inefficiently. Therefore, I attribute a large impact
on the perception of the project as a whole to the tooling provided for the developers
working with the demonstrator.

6.1.1 Original system

In the original system, the developer was required to manually connect to each robot
while typing the robot’s IP address and local account password for each one. Then login
to the VCS, pull the newly updated source code, and ensure it builds correctly on the
system. This task was time-consuming and did greatly affect the developer experience.

6.1.2 New system

In the new system, the preferred way to run the demonstration is through the shell
script ciirc-exec.sh in the project root. Commands interacting with the server are:

. server:init - performs initial cloning of the repository

. server:update - performs a hard reset of the tracked branch and pulls the latest
changes from the VCS on the server, and fixes permissions for executable files.

. server:build - builds the software on the server machine.

. server:start - starts the server software

. server:stop - stops the server software

. server:ssh - opens an interactive shell in the root of the project on the server

Commands interacting with the robots are:

. robots:ssh <robotId> - opens an interactive shell in the root of the project on the
robot

. robots:init <robotId> - performs initial cloning of the repository

28

. 6.2 Runtime behavior

. robots:update <robotId> - performs a hard reset of the tracked branch and pulls
the latest changes from the version control system (VCS) on the robot, and fixes
permissions for executable files.

. robots:update:all - executes robots:update <robotId> for all available robots.

. robots:inspect <robotId> - connects to a running tmux session on the robot

. robots:start <robotId> - starts the robot software

. robots:start:all - performs robots:start <robotId> for all available robots.

. robots:stop - stops the software running on all robots.

The script is intended to reduce the time necessary for the setup and automates most
of the initial setup tasks that had to be done manually before. Commands that are
connecting directly to robots use the mapping defined in /robot_definitions.txt
and perform actions using the defined credentials. The :update script first copies the
ssh keys used for the git repository to the target machine, removing the need to ever
type a password during script execution, while keeping the access restricted.

There are additional scripts for verifying the network connectivity, which proved to
be very helpful when eliminating possible bug sources that, in many cases, led to the
network connectivity.

This greatly decreases the developer time needed to review any changes done to the
source code. Great developer experience is also ensured by defining the source repos-
itory, branch, and local ssh credentials to server and robots in a single place at the
start of the script, allowing them to deploy the complete system from different reposi-
tory/branch easily.

6.1.3 Comparison

The original user experience (UX) required the user to have extensive knowledge of the
system, know the IP addresses of each one of the robots, and it had a significant time
impact. The new UX enables anybody with access to the repository and local network
to deploy all the robots in under 3 minutes. Single robot testing can be set up in under
a minute. That is a huge time saving when compared to the original workflow, where
the update would take approximately 10 minutes after getting to know the system and
required an additional 2 hours of getting to know the system.

6.2 Runtime behavior

6.2.1 Original system

In the original system, the only way for the user to determine what is the current
execution state was to look at logs in the server console or connect manually through
ssh to the tmux sessions open on each robot. It required the developer to type the
password repetitively, and during my time testing, proved to be really discouraging
from getting actual work done.

6.2.2 New system

Since the new system has GUI, it provides a great experience to the user. The user
can easily change the demonstration parameters, enable/disable particular robots, and

29

6. Implemented system properties .
change demonstration execution algorithms at runtime. The GUI also provides in-
formation about the connection status for the server, and individual robots, further
improving the setup process visibility.

Improved is also the developer experience, as it is possible to stop the demonstration
after each step, which makes debugging the whole application a lot simpler, should it
ever be needed.

6.2.3 Comparison

In the new system, the user can change the parameters of robots, see their individ-
ual positions, enable/disable them and see the avoided potential collisions. Since the
original system did not have a GUI, there is no point in directly comparing the UX.

6.3 Runtime demonstration impression

When presenting to 3rd party, the speed and consistency of setup are even more cru-
cial, as it can have a negative effect on the presentee should anything go wrong. The
visualization becomes more important than the runtime properties, as the 3rd party is
mostly unaware of them and should be hidden when briefly presenting the result of a
planner/execution algorithm. When presenting the new system, the continuous feed-
back from robots, Vicon, and visualization of plans provide a great impression and are
largely able to mitigate insignificant inconsistencies should they happen during runtime.

6.4 Runtime demonstration problems

The whole setup is mainly dependent on the condition of the local network. The network
consists of multiple subnets with relatively low-end endpoints, limiting the network
throughput and introducing hard-to-debug problems for the system administrators.
During testing, there have been found inconsistencies when routing in local subnets.
This has been mitigated to a degree by reversion of the connection flow, where each
robot now acts as a server from a networking point of view, waiting for connection
from the centralized runtime server, avoiding the dependency on a static IP address of
the server. This makes it possible to run the demonstration from any suitable device
connected to the local network.

30

Chapter 7
Summary

The aim of this thesis was to improve upon the previous version of the demonstrator
and achieve compatibility with the format used by the mapfIR project. The work was
structured as follows.

At first, the mapfIR project was analyzed in order to identify key features and decide
which ones are desirable in the final software. Afterward, the original project was
reviewed to determine the current state of development and the actual usage. Then,
the software design and decisions for implementation were discussed. The final stage
of the project was the implementation itself, where the core features were implemented
first, followed by the non-crucial ones.

The evaluation metrics for the project are the factual criteria given in the assignment.
Particularly

1. Get acquainted with the current state of development of the demonstrator and the
simulator for multi-agent planning (https://github.com/Kei18/mapf-IR).

2. Modify the simulator to serve as the basic user interface (GUI) of the demonstrator.
3. Display robot positions obtained from the Vicon system in the GUI.
4. Integrate the supplied components for planning and plan execution into the demon-

strator.
5. Evaluate experimentally properties of the implemented system. Describe and discuss

obtained results.

Given that the system performs the tasks as expected, I am glad to conclude that the
criteria mentioned above were successfully fulfilled.

Furthermore, I’d like to point out one aspect of the final software that has not been
introduced as evaluation criteria but proved to be very important during my encounter
with the original software. It is the actual user experience of the software and relevant
processes. This topic has been discussed in Chapter 6, and it has been greatly enhanced
when compared to the original project. It plays a significant role for new developers
and might greatly increase the motivation to continue upon the outcome of my work.

Future steps will probably include the addition of new synchronization algorithms (Sec-
tion 5.6) and the introduction of in-app rerouting, incorporating selected algorithms
supported by mapfIR and enabling easy addition and development of custom algo-
rithms. This project, as designed, expects additional modifications to happen in the
future and should make them as easy as possible.

31

Appendix A
Contents of the attached CD

demonstrator . Complete demonstrator sources
src .Sources for the robots
FleetControl

modules
app . Sources for the frontend
manager . Sources for the server
utils . Sources for the shared resources

thesis . Sources for the thesis

33

References

[1] Keisuke Okumura. Kei18/MAPF-IR: Iterative refinement for real-time multi-robot
path planning (IROS-21).
https://github.com/Kei18/mapf-IR.

[2] Openframeworks. Openframeworks/openframeworks: OpenFrameworks is a
community-developed Cross Platform Toolkit for creative coding in C++.
https://github.com/openframeworks/openFrameworks.

[3] David Silver. Cooperative Pathfinding. Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment. 2021, 1 (1), 117-122.

[4] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. Prior-
ity Inheritance with Backtracking for Iterative Multi-agent Path Finding. In: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Orga-
nization, 2019. 535–542.
https://doi.org/10.24963/ijcai.2019/76.

[5] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based
search for optimal multi-agent pathfinding. Artificial Intelligence. 2015, 219 40-66.
DOI https://doi.org/10.1016/j.artint.2014.11.006.

[6] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, Oded Betzalel, David Tolpin,
and S. E. Shimony. ICBS: The Improved Conflict-Based Search Algorithm for
Multi-Agent Pathfinding. In: SOCS. 2015.

[7] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal Variants of
the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem.
In: SOCS. 2014.

[8] Michal Čáp, Peter Novák, Alexander Kleiner, and Martin Selecký. Prioritized Plan-
ning Algorithms for Trajectory Coordination of Multiple Mobile Robots. IEEE
Transactions on Automation Science and Engineering. 2015, 12 (3), 835-849.
DOI 10.1109/TASE.2015.2445780.

[9] Ryan Luna, and Kostas E. Bekris. Push and Swap: Fast Cooperative Path-Finding
with Completeness Guarantees. In: IJCAI. 2011.

[10] Keisuke Okumura, Yasumasa Tamura, and X. Défago. winPIBT: Expanded
Prioritized Algorithm for Iterative Multi-agent Path Finding. ArXiv. 2019,
abs/1905.10149

[11] Tomáš Rybecký. Trajectory planning for a heterogeneous team in an automated
warehouse. 2020.

[12]
https://nanomsg.org/.

[13] What is a TurtleBot?
https://www.turtlebot.com/about.

35

https://github.com/Kei18/mapf-IR
https://github.com/openframeworks/openFrameworks
https://doi.org/10.24963/ijcai.2019/76
http://dx.doi.org/https://doi.org/10.1016/j.artint.2014.11.006
http://dx.doi.org/10.1109/TASE.2015.2445780
https://nanomsg.org/
https://www.turtlebot.com/about

References .
[14] Inc. Open Source Robotics Foundation. Robot operating system.

https://www.ros.org/.
[15] Apriltag.

https://april.eecs.umich.edu/software/apriltag.
[16]
[17] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and Nora Aya-

nian. Persistent and Robust Execution of MAPF Schedules in Warehouses. 2019.

36

https://www.ros.org/
https://april.eecs.umich.edu/software/apriltag

	Introduction
	Current state
	End goal

	Analysis of the mapf-IR project
	Introduction
	The solver
	Input format
	Output format
	Map format
	Coordinate system convention

	The visualizer
	Benefits

	Analysis of the FleetControl demonstrator
	Project history
	Input format
	Map file
	Coordinate system convention
	Execution plan

	Components
	Server
	Robots

	Environment
	Server software analysis
	Robot software analysis
	Navigation
	Runner

	Runtime behavior

	Implementation decisions
	Compatibility considerations
	GUI library considerations
	GUI implementation considerations
	Virtual run implementation considerations
	Coordinate system convention

	Implementation
	Application architecture
	Communication
	Shared resources

	TurtleBot
	Server
	Vicon
	Network communication
	Virtual run

	Graphical user interface
	Coordinate system
	Robot synchronization strategies
	Discreet time step
	Action Dependency Graph
	Demonstration

	Implemented system properties
	Demonstration setup
	Original system
	New system
	Comparison

	Runtime behavior
	Original system
	New system
	Comparison

	Runtime demonstration impression
	Runtime demonstration problems

	Summary
	Contents of the attached CD
	References
	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Current state
	End goal
	Analysis of the mapf-IR project
	Introduction
	The solver
	Input format
	Output format
	Map format
	Coordinate system convention
	The visualizer
	Benefits
	Analysis of the FleetControl demonstrator
	Project history
	Input format
	Map file
	Coordinate system convention
	Execution plan
	Components
	Server
	Robots
	Environment
	Server software analysis

	Robot software analysis
	Navigation
	Runner
	Runtime behavior
	Implementation decisions
	Compatibility considerations
	GUI library considerations
	GUI implementation considerations
	Virtual run implementation considerations
	Coordinate system convention
	Implementation
	Application architecture
	Communication
	Shared resources
	TurtleBot
	Server
	Vicon
	Network communication
	Virtual run
	Graphical user interface
	Coordinate system
	Robot synchronization strategies
	Discreet time step
	Action Dependency Graph
	Demonstration
	Implemented system properties
	Demonstration setup
	Original system
	New system
	Comparison
	Runtime behavior
	Original system
	New system
	Comparison
	Runtime demonstration impression
	Runtime demonstration problems
	Summary

	Contents of the attached CD
	References

