
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Comparing Exploration Methods in Partially
Observable Stochastic Games

Jakub Rada

Supervisor: doc. Mgr. Branislav Bošanský, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence and Computer Science
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492291Personal ID number:Rada JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Comparing Exploration Methods in Partially Observable Stochastic Games

Bachelor’s thesis title in Czech:

Porovnání metod explorace v částečně pozorovatelných stochastických hrách

Guidelines:

HSVI algorithm for solving subclasses of partially observable stochastic games approximates the value function of the
game using a lower bound and an upper bound value function. Every iteration of the algorithm, the point-based Bellman-style
updates are performed over these two approximate value functions. In HSVI, the belief points for the updates are selected
based on the strategies of the players and the gap between the lower and upper bound. This heuristic however does not
have to be the optimal method for exploring the space of belief points in POSGs. The goal of the student is to:
1. Get familiar with the algorithm HSVI for POSGs.
2. Survey the existing methods for solving exploration-exploitation problem in game-theoretic settings.
3. Select a subset of appropriate methods from the previous step and implement them as belief-points selection methods
into the HSVI.
4. Compare these methods and analyze the impact of these different exploration techniques on the effectivity with which
the space of the belief points is explored in POSGs.

Bibliography / sources:

[1] Horák, K., Bošanský, B., & Pěchouček, M. (2017). Heuristic Search Value Iteration for One-Sided Partially Observable
Stochastic Games. In AAAI (pp. 558-564).
[2] Slivkins, Aleksandrs. "Introduction to multi-armed bandits." arXiv preprint arXiv:1904.07272 (2019).

Name and workplace of bachelor’s thesis supervisor:

doc. Mgr. Branislav Bošanský, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 08.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Mgr. Branislav Bošanský, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor doc.
Branislav Bošanský for his patience, will-
ingness and support.

Computational resources were supplied
by the project "e-Infrastruktura CZ" (e-
INFRA CZ LM2018140) supported by the
Ministry of Education, Youth and Sports
of the Czech Republic.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 20.5.2022

. .
Signature

v

Abstract
The partially observable stochastic games
model many situations consisting of two
independent agents. Their one-sided sub-
class can be approximately solved by
the HSVI algorithm, which estimates the
optimal value function with lower and
upper bound value functions. The ap-
proximation is refined by iteratively per-
forming Bellman-style point-based up-
dates on both bounding value functions
in belief-points selected by a heuristic ap-
proach. However, this heuristic based on
the strategies of both players and the
gap between the bounding functions is
not proven to be the optimal exploration
method for searching the space of belief-
points.

In reinforcement learning, multi-
armed bandit algorithms are a tool for
solving the exploration-exploitation prob-
lem. It is thus possible to use the bandits
as an alternative approach for exploring
the belief-point search space and refine
the bounds in the HSVI algorithm. Ad-
ditionally, the multi-armed bandits can
provide similar alternative approach for
solving stage games in the value iteration
algorithm for the fully observable stochas-
tic games. Moreover, the need of linear
programming is thus eliminated, which
could lead to improved scalability.

The goals of this thesis were the inte-
gration of this novel exploration method
into the existing solving algorithms and
comparing subset of the multi-armed ban-
dit algorithms on both SGs and OS-
POSGs.

Keywords: game theory, stochastic
games, partially observable stochastic
games, multi-armed bandits, value
iteration, hsvi

Supervisor: doc. Mgr. Branislav
Bošanský, Ph.D.
Department of Computer Science

Abstrakt
Částečně pozorovatelné stochastické hry
modelují mnoho reálných situací skláda-
jící se ze dvou nezávislých agentů. Je-
jich podtřídu jednostranných her lze při-
bližně vyřešit algoritmem HSVI, který po-
mocí dvou value funkcí, jedné spodní a
jedné horní meze, odhaduje optimální va-
lue funkci hry. V každé iteraci se apli-
kuje Bellmanův operátor na obě meze,
který aktualizuje jejich hodnotu v bodech,
které byly vybrány heuristickou funkcí.
Nicméně, není dokázáno, že tento heuris-
tický přístup, který je založený na strate-
giích obou hráčů a velikosti mezety mezi
mezními funkcemi, je optimální metodou
explorace pro prohledávání prostoru bodů
beliefu.

Mnohorucí bandité jsou algoritmy po-
užívané v posilovaném učení, které řeší
problém vyvažování explorace a exploi-
tace. Je tedy možné použít tyto mnoho-
ruké bandity jako alternativní způsob pro-
hledávání prostoru bodů beliefu a tím
zlepšovat meze HSVI algoritmu. Mno-
horucí bandité mohou také zajistit po-
dobný alternativní přístup k řešení fázo-
vých her v plně pozorovatelných stochas-
tických hrách řešených metodou iterace
hodnoty. Navíc, použití banditů eliminuje
použití metod lineárního programování,
které mohou způsobovat špatnou škálova-
telnost původních algoritmů.

Cílem této práce byla integrace to-
hoto nového přístupu explorace do iterace
hodnoty a HSVI a porovnání některých
mnohorukých banditů na plně i částečně
pozorovatelných stochastických hrách.

Klíčová slova: teorie her, stochastické
hry, částečně pozorovatelné stochastické
hry, problém mnohorukého bandity,
value iteration, hsvi

Překlad názvu: Porovnání metod
explorace v částečně pozorovatelných
stochastických hrách

vi

Contents
1 Introduction 1
1.1 Complications of existing methods 1
1.2 Goals of the thesis 2

2 Technical background 5
2.1 MDP. 5
2.2 POMDP . 6
2.3 Game theory 7

2.3.1 Basic concepts 7
2.4 Stochastic games 10

2.4.1 Definition 10
2.4.2 Properties 11

2.5 Partially observable stochastic
games . 11

2.6 One-sided partially observable
stochastic games 12
2.6.1 Model . 12

2.7 Summary . 14

3 Standard solution methods 15
3.1 MDP. 15

3.1.1 Value iteration 15
3.1.2 Policy iteration 16

3.2 POMDP . 16
3.2.1 Value iteration 17
3.2.2 Point based value iteration . . 17
3.2.3 Heuristic search value iteration 17

3.3 Stochastic games 18
3.3.1 Value iteration 18

3.4 OS-POSGs 21
3.4.1 Value function 21
3.4.2 Exact algorithm 22
3.4.3 Heuristic search value iteration 23

4 Multi-armed bandits 27
4.1 Basics . 27
4.2 Bandit learning 28

4.2.1 Exploration-exploitation
trade-off . 29

4.3 Stochastic bandits 29
4.3.1 Best of N 30
4.3.2 ϵ-greedy 30
4.3.3 Successive elimination 31
4.3.4 UCB . 32

4.4 Adversarial bandits 32
4.4.1 Hedge algorithm 33
4.4.2 Exp3 . 34

4.5 Summary . 35

5 New solution methods 37
5.1 Preparation of multi-armed

bandits . 37
5.1.1 Observable stochastic bandits 37
5.1.2 Stochasticity 38
5.1.3 Numerical instability 39

5.2 Bandit iteration 40
5.2.1 Algorithm 40
5.2.2 Averaging of value functions . 42
5.2.3 Observable bandits 43

5.3 B-HSVI . 43
5.3.1 The algorithm 43
5.3.2 Performance 45

5.4 Conclusion 45

6 Experimental evaluation 47
6.1 Technical details 47
6.2 SGs and bandit iteration 47

6.2.1 Game types 48
6.2.2 Environment and parameters 50
6.2.3 Individual bandits 52
6.2.4 Bulk comparison 52
6.2.5 Strategies 55

6.3 OS-POSGs and B-HSVI algorithm 56
6.3.1 Pursuit-Evasion 57

vii

6.3.2 Environment and parameters 58
6.3.3 Individual bandits 59
6.3.4 Bulk comparison 60

6.4 Summary . 62

7 Conclusion 65
7.1 Thesis overview and contributions 65
7.2 Future ideas 66

Bibliography 69

A Time analysis in SG experiments 71

B Performance of individual
multi-armed bandit algorithms in
stochastic games 73
B.1 Best of N . 73

B.1.1 Mixed or pure strategies 73
B.1.2 Steps . 74
B.1.3 Observable variant 74

B.2 ϵ-greedy . 74
B.2.1 Convergence with average step

LIN(t) . 74
B.2.2 Accumulation step SQRT(t) 75

B.3 Successive elimination. 76
B.4 UCB. 78
B.5 Exp3 . 80

C Implementation details 83
C.1 Bandit iteration 83

C.1.1 Instance generators 83
C.1.2 Algorithms and parameters . 84

C.2 B-HSVI . 85

viii

Chapter 1
Introduction

Many real-life problems can be modelled as some form of sequential reasoning. Even the
single-agent models have usage in a wide spectrum of applications, the main areas being
agriculture, adjusting production to demand, finances, etc. [1]. Other examples, where
some information is hidden from some agents, include autonomous robotics, networking and
marketing [2].

Even more interesting are the environments consisting of multiple rational independent
agents competing or cooperating with each other to reach their own goals. The formalisms
modelling these types of environments are called games and are studied by the game theory.
However, due to the multiple agents, it is not as straightforward to define a solution of a
game-theoretical problem and hence various different solution concepts are used. Equilibria
are the most known solution concepts, the most famous being Nash equilibrium. Moreover,
the agents often need to randomize their decisions to behave optimally, which is not necessary
in the single-agent environments. This enlarges the size of the search space from finite to
infinite. These two aspects make solving games much harder than sequential decision problems
containing only a single agent.

The game theory was founded by John von Neumann as a method of economy, with the
well-known oligopoly game, product pricing methods and various number of other means of
studying behaviour of competing agents in an economic environment. A specific example
is designing market trading strategies by using the tools of the game theory [3]. However,
the game theory encompasses many more fields of application than economy. For example
biology [4], machine (deep) learning [5], computer security, where a more concrete example
being Attacker Defender model for Intrusion Detection Systems in Cloud [6] and even the
recently popular blockchain [7].

The game theory already provides means and methods find optimal strategies or other
solution concepts for the tasks mentioned above, but these methods usually have drawbacks
which are listed in the next part.

1.1 Complications of existing methods

As it was said, there already exists some algorithm or method which is proven to be capable
of finding the solution for each of the problems and models listed above. Unfortunately, these
proofs work in the theoretical sense but in practice, many of these methods do not scale very
well for very large instances as its demand for either space or time grows rapidly. In the case
of multiagent sequential reasoning, which is the sole topic in this thesis, these methods often

1

1. Introduction ..
require linear programming.

For single-agent or even multiagent environments, where all agents have perfect informa-
tion, this is not an issue as the linear programs do not grow in size as quickly and the problem
is generally easier to solve. But when the perfect information is even partly removed, for
example in partially observable Markov decision processes and partially observable stochastic
games, these mathematical programs grow larger and take longer to solve.

In practice, the methods using solely the approach of linear programming are unusable
for large problems, and thus approximative approaches had to be devised. One of these
approximative methods, which is the cornerstone of this thesis, is the Heuristic search value
iteration first introduced for POMDPs in [8] and then proposed for one-sided partially
observable stochastic games in [9]. The latter is the main source of inspiration behind this
thesis as it introduces the OS-POSG model and presents the solving HSVI algorithm with
proof of convergence.

This presented method, however, also uses many linear programs, and thus it is possible
to improve its scalability. Hence, some other method than linear programming is needed to
drive the search in the correct direction. This thesis focuses on multi-armed bandit algorithms
[10] as one of the most important reinforcement learning tools, which can provide this needed
type of search by learning the properties of the environment by a repeated interaction.

1.2 Goals of the thesis

In this bachelor thesis, we introduce the reader into the problematics of sequential decisions
with single or multiple agents, summarize the existing methods for solving such problems and
discuss their properties. We state why some solution methods are not suitable for practical
use and what are their main disadvantages. Then, we describe the concept of the multi-armed
bandit algorithms and how they could be used to remove some problems in the standard
algorithms.

We aim to incorporate the surveyed multi-armed bandit algorithms, which are meaningful
in the context of games, particularly stochastic games and partially observable stochastic
games, into the existing algorithms and investigate their behaviour. The goal is to realize,
which of them possess properties sufficient to make the enwrapping algorithm find the optimal
solution or at least a good approximation, and how quickly and reliably they discover the
solution. The result of this thesis is a comparison of individual multi-armed bandits supported
by experimental evaluation of the algorithms on domains of (partially observable) stochastic
games. The best found bandit algorithms and their settings are highlighted and summarized.
Also, the output is also a modification of an existing algorithm, which does not rely on linear
programming as heavily as the original method.

In addition to the assignment of this thesis, where only the class of partially observable
stochastic games is stated, we first focus more on the fully observable stochastic games and
comparison of the bandits on this problem. The class of partially observable stochastic games
is a harder problem than the stochastic games, mainly because of the uncertainty about the
current state of the environment which makes the search space infinite rather than finite.
Due to the infinite size, the so-called belief space needs to be discretized thus allowing us to
approximate the space with large but finite number of elements, in this case finite number of
bandits, but introducing another imprecision into the process.

Because of this increased difficulty it is reasonable to thoroughly compare the bandit

2

.......................................1.2. Goals of the thesis

algorithms on the easier domain and then proceed with investigating the differences which
arise in the harder partially observable problem. Once we understand how to bandits behave
in the finite dimension, the transition to the harder problem is smoother as some assumptions
can be made in advance.

The comparisons are the most important part of the thesis and conclude the main body of
this text. Last, we summarize the thesis and the results achieved by the experimental evaluation
together with proposal of future work. In the appendices, a more detailed comparison of the
multi-armed bandits is presented together with time analysis and implementation details of
the used algorithms.

3

4

Chapter 2
Technical background

In this chapter, we provide a theoretical ground which is essential for the rest of the thesis.
First, we describe basic models for single-agent environments as a foundation of sequential
reasoning. Then, we use these notions to define fundamental concepts of game theory with a
focus on game types studied in later chapters.

Definitions and terms in this chapter are based mainly on two textbooks, namely Artificial
Intelligence: A Modern Approach[11] and Multiagent Systems: Algorithmic, Game-Theoretic
and Logical Foundations[12].

In the next two sections, we consider environments consisting of a single agent. We define
the agent’s goals and discuss the agent’s means to behave optimally and reach the goals.

2.1 MDP
The most basic tool for modelling sequential reasoning is the Markov decision process,
abbreviated as MDPs. An MDP describes how a single agent moves through different states
of the environment by choosing actions in discrete time steps. After each step, the agent
receives a real reward from the environment and stores it. The agent aims to maximize this
accumulated quantity over time.

MDPs generally model stochastic environments, which means that changes among states
are (sometimes partly) randomized, so one action can possibly lead to more than one state
with non-zero probability. In the special case, when all probabilities in the transition function
are either 0 or 1, we say that the MDP is deterministic. The agent’s information, however,
is perfect, so he knows precisely his current state and actions that can be played. When
properties of the MDP do not change in time, it is called stationary, otherwise non-stationary.
Definition 2.1. A Markov decision process is a tuple (S, A, T, R), where:. S is a set of possible states,. A is a set of actions,. T (s′ | s, a) is a conditional probability of transitioning from state s ∈ S to state s′ ∈ S

when action a ∈ A is played,. R(s) is an immediate reward function.

In an MDP, there is a very important notion of so-called Markov property. This property
states, that the outcome depends only on the current state and the chosen action. In other
words, the actions played before the current state have no effect on the next state.

5

2. Technical background
In each time step, the agent, which is currently in state s, selects an action a and according

to the transition function T moves to state s′ and receives immediate reward r based on the
reached state. MDPs can have either finite or infinite horizon. In the case of the finite horizon,
we can use additive rewards, where all are summed together to form utility. When the time
horizon is infinite, we typically use 0 < γ < 1 as the discount factor and compute utility as
discounted rewards. Universally, additive rewards can be defined as discounted rewards only
with γ = 1. The discount factor is used to multiply the received reward in an increasing
manner as the play continues to the next time steps. The resulting discounted reward is then
computed as

R(γ) =
n∑

t=0
γtrt. (2.1)

A policy π describes how the agent selects actions. It is mapping π : S → A, and π(s)
returns the preferred action to be played in state s. If the agent follows an optimal policy
π∗, it will receive maximal possible expected reward or, in other words, utility. Based on the
situation, it can be computed as the additive rewards, discounted rewards or even average
rewards.

2.2 POMDP

The partially observable Markov decision process, abbreviated as POMDP, is a generalization
of an MDP. In contrast with an MDP, the agent has imperfect information about the states of
the environment, i.e. does not know in which state he currently is and also to which state he
transitioned. To capture this modification, we have to add two new concepts to the definition
of MDP (Definition 2.1).
Definition 2.2. A partially observable Markov decision process is a tuple (S, A, O, T, R, Z, b),
where:. S is a set of possible states,. A is a set of actions,. O is a set of observations,. T (s′ | s, a) is a conditional probability of transitioning from state s ∈ S to state s′ ∈ S

when action a ∈ A is played,. R(s) is an immediate reward function,. Z(o | s′, a) is a conditional probability of generating observation o ∈ O when the agent
transitioned to state s′ ∈ S while playing action a ∈ A,. b ∈ ∆(S) is a probability over states called initial belief.

The first new concept is observations o ∈ O, which are generated when transitioning to a
new state and then published. The agent can deduce some information about the change that
occurred and use it, but it can be inaccurate or wrong.

The second new element is belief b ∈ ∆(S). Because the current state is not revealed to
the agent by the environment, he keeps a probability distribution over states b ∈ ∆(S). This

6

... 2.3. Game theory

distribution b represents the agent’s knowledge about its current state. The agent starts from
some initial belief and updates it with incoming observations as follows.

b′(s′) = µZ(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s) (2.2)

where µ is a normalizing factor so that b′ is a distribution. Belief assigns a probability to each
state s ∈ S and thus forms a |S|-simplex, where |S| is the number of states.

As opposed to the MDPs, here the optimal behaviour does not depend on the real state of
the agent, but rather on his belief about his state. Thanks to this, we can formulate POMDP
as an MDP over belief points instead of states. However, the number of these states would be
infinite and thus intractable for solution methods for MDPs.

Even though the methods originally used for MDPs are unusable, there are some mod-
ifications that help to overcome these complications. We leverage the fact, that there is a
finite number of possible actions in an POMDP and define α-vectors. An α-vector[13] is a
linear function α : ∆(S)→ R and is conveniently represented as values α(s) in each of the
vertices s ∈ S of the belief simplex and thus forming a hyperplane in the belief space. Then
value α(s), where s ∈ S, directly represents a value of an n-step policy conditioned by the
starting state s. The conditionality follows from the agent’s uncertainty about the current
state, but the dependence on belief is linear. Thus, a value of the α-vector in a specific belief
point b ∈ ∆(S) is then computed as a convex combination of the α-vector’s corner values

α(b) =
∑
s∈S

b(s)α(s). (2.3)

This notion of α-vectors will be essential in the standard solution methods for POMDPs
(Section 3.2) and more importantly for tackling the partially observable stochastic games
(Section 3.4).

2.3 Game theory
MDPs and POMDPs provide formalisms for modelling and solving environments where only
one agent is present. However, many real-world situations contain multiple independent
agents. These problems are modelled by the game theory.

The game theory includes various game types. They differ in the number of players, time
horizons, utility functions, whether the agents compete or cooperate and in other aspects.
From now on, we will focus on strictly competitive games.

2.3.1 Basic concepts

In the next parts, the fundamental principles of the game theory are explained. After that we
will look into a specific subset of games with greater detail.

Players

In the game theory, agents are called players and there can be an arbitrary number of them,
as long as there is more than one. The convention is, that when we look at the game from
the perspective of player i, then the other players are denoted together by −i and are called
adversaries or opponents. In the rest of this thesis, we will consider only two-player games
and thus −i denotes only one adversary.

7

2. Technical background
Rewards

There exist many distinct types of games in terms of rewards or, as sometimes termed,
payoffs or utilities. For example, common-payoff games have equal rewards for all players
and action profiles. Action profile is a subset of the Cartesian product of the action sets of
individual players, i.e. a = (a1, ..., an), where ai ∈ Ai. We will focus on zero-sum games (only
two-player), which have a property that the reward of player i means the same reward for the
player −i only multiplied by −1.

Strategies

In single-agent environments, we worked with policies to describe the agent’s behaviour. In
games, the term strategies is used. We distinguish two types of strategies, pure and mixed.
A player following pure strategies selects just one action in each state and plays it with
probability 1. In contrast, in mixed strategies a player follows a distribution over actions
and plays each of them with probability ≤ 1. A strategy profile is a subset of the Cartesian
product of the sets of all mixed strategies of each individual player

s = (s1, . . . , sn) ∈ ∆(A1)× · · · ×∆(An). (2.4)

Actions, that are played with probability > 0 in a strategy s, are called support of a mixed
strategy s. The expected utility of player i under mixed strategy profile s is then computed as

ui(s) =
∑
a∈A

ui(a)
n∏

j=1
sj(aj), (2.5)

where A is the set of all actions and ui(a) is an assignment of utility to action a ∈ A.

Nash Equilibrium

In game theory, there are many notions of equilibria, but probably the most important is
Nash equilibrium[14], which describes how players play optimally in an n-player game. Nash
Equilibrium is a stable strategy profile for which it holds, that none of the players wants to
deviate from his (possibly mixed) strategy because it would decrease its payoff. More formally,
for every player holds, that his strategy si is the best response to the strategy profile of the
remaining players s−i. The overall strategy profile of all players in the game is then denoted
as s = (si, s−i). The best response to a strategy is such a strategy, that gains the same or
better payoff, than any other player’s strategy.
Definition 2.3. Player i’s best response to strategy profile s−i is a mixed strategy s∗

i ∈ Si,
for which holds that

ui(s∗
i , s−i) ≥ ui(si, s−i) ∀si ∈ Si. (2.6)

Nash proved that in every game with a finite number of players and action profiles exists
at least one Nash Equilibrium[14].

Minimax theorem

There are two special strategies and values, minmax and maxmin, which are then linked
together with the Minimax theorem[15]. Here, we restrict only to two-player zero-sum games,
even though maxmin is defined for a more general setting.

8

... 2.3. Game theory

Maxmin strategy is such a strategy, that maximizes the worst possible reward for a player
following a strategy profile si.
Definition 2.4. The maxmin value for a player i is

max
si

min
s−i

ui(si, s−i)

To obtain the strategy instead of value, the max changes to argmax. In other words, a
player is guaranteed to obtain at least its maxmin value, when following strategy si, but the
final payoff can be even higher.

On the other hand, minmax strategy wants to force the adversary to receive the worst
possible value even when playing optimally. This can be viewed as trying to punish the other
as much as possible without considering its own reward.
Definition 2.5. The minmax value for a player i is

min
si

max
s−i

u−i(si, s−i)

According to von Neumann’s Minimax theorem, these two values coincide for two-player
zero-sum games.
Theorem 2.6. (von Neumann[15]) In any finite two-player zero-sum game, in any Nash
Equilibrium, each player receives a payoff that is equal to both its minmax and maxmin
values.

The maxmin value is thus equal to the minmax value, we call this value the value of the
game. Strategies forming these values are then automatically Nash equilibria.

Game forms

Games can be defined in many forms each representing different views. The most general and
fundamental is normal-form and most other representations can be reduced to it.
Definition 2.7. A finite n-player normal-form game is a tuple (N, A, u), where.N is a set of n players,. A = A1 × · · · ×An, where Ai is a finite set of actions available to player i,. u = (u1, . . . , un), where ui is a real-valued mapping ui : Ai → R for player i.

Players’ utilities are written into an n-dimensional matrix, where n is the number of
players. In each matrix cell representing one possible outcome, there is a vector of utility
values for players. The vector has a length n and the cells in each dimension i are marked by
possible actions for a player i. This representation is very convenient but quite ineffective as
the size grows exponentially. Moreover, when reduced from other forms, the size grows even
bigger.

Normal-form representation does not explicitly consider the concept of time. In normal-
form games, all agents act simultaneously and independently on each other’s actions. When
time plays a major role in the environment, we use the extensive form.

The extensive form can be visualized as a tree, often called the game tree and this way
implies the notion of time. For each node in the tree a player, which takes actions in this
round, is assigned together with available actions. Depending on the selected action in each

9

2. Technical background
round, the state of the game transitions to one of the children of the current node and another
player gets to act. The sequence of these selected actions is called a history. The game can be
solved by solving subgames and applying backwards induction to find the Nash Equilibrium,
one of the used algorithms being minimax with αβ pruning for two-player zero-sum games.

If the extensive-form game is of perfect information, every player knows exactly in what
state it is currently in and a pure strategy Nash Equilibrium exists[16]. A more general
concept is a game with imperfect information, which better represents real applications and
where the agent cannot distinguish between some states. Sets of these equivalent states are
called information sets and available actions are not defined for individual states but rather
for these information sets. When we consider imperfect information games, we assume that
they are games of perfect recall, meaning that even though the player does not know in what
state he is, he perfectly remembers all his previous taken actions.

Games can be played only once, multiple times or infinitely many times. These are called
repeated games. In the case of infinitely repeated games, we have to employ either average
rewards or discounted rewards. In the next section, we will introduce a generalization of
repeated games, which is also a generalization of POMDPs.

2.4 Stochastic games

In previous section (Section 2.3), we laid out basic concepts of the game theory. In this
section, we define a class of games that generalize the (partially observable) Markov decision
process for more than one agent as well as repeated games. This class is known as stochastic
games, Markov games or even shortly SGs. We discuss some important properties, which will
be useful later in the partially observable variant. Last, methods that provide solutions for
two-player, zero-sum stochastic games are presented and compared.

2.4.1 Definition

In a stochastic game, players repeatedly play normal form games drawn from some finite set.
These games are usually called stage games. After each stage, players receive rewards based
on the outcome of the normal form game and then proceed to the next stage by drawing
a new game from the set. The probability of drawing this new game from the set depends
solely on the previous game and the action profile selected by the players, which is analogic
to the Markov property. It is clear, that with only one agent present the stochastic game
reduces to an MDP.

Another perspective on stochastic games is that players move together through a finite
set of states. In each state, all of them select an action to play and depending on these actions
they move to another state while receiving rewards. Also, as stated before, we will restrict
ourselves to the two-player, zero-sum case (2.3.1). As mentioned before, this is a strictly
competitive type of game, where player i receives a reward r and player −i receives a reward
−r Both players want to maximize their outcome. However, it is usually redefined that both
players receive reward r and while player 1 wants to maximize this quantity (the Max player),
player 2 minimizes it (the Min player).
Definition 2.8. A two-player zero-sum stochastic game[17] is a tuple (S, A1, A2, T, R, γ),
where. S is a finite set of states,

10

.............................. 2.5. Partially observable stochastic games

. A1, A2 are finite sets of actions available to player 1, resp. player 2,. T (s′ | s, a1, a2) is the transition function T : S ×A1 ×A2 × S → [0, 1], which gives the
probability of transitioning from state s to s′ with selected action profile (a1, a2),. R(s, a1, a2) is the reward function R : S ×A1 ×A2 → R specifying the reward gained by
player 1 when action profile (a1, a2) was played in the state s and. γ is a discount factor.

2.4.2 Properties

Even though the transitions between states are probabilistic, so one action profile can lead to
multiple new states, stochastic games are games with perfect information. Both players can
observe actions played by their opponent and can form play histories consisting of states and
played actions. They can leverage this information to better reason about selecting the best
action to play in every state.

Both players strive to obtain the best possible cumulative rewards throughout the whole
play. The maximizing player wants to get the maximal possible overall outcome, while the
minimizing player wants the minimal possible outcome. However, the play can be infinitely
long, so other methods to accumulate rewards have to be used. We will focus on discounted
rewards as they are less complicated and have better properties than for example average
rewards. In discounted rewards case players collect rewards in a way of infinite discounted
sum

∑∞
t=0 γtrt, where 0 < γ < 1 is the discount factor.

For every two-player, zero-sum stochastic game with discounted rewards there exists
a Nash equilibrium independent of the starting state. Moreover, in this type of game, the
equilibrium strategies are Markovian, meaning that the strategies depend only on the current
state. These two properties combined are called Markov perfect equilibrium. However, these
stationary equilibrium strategies are not necessarily deterministic as in the single-agent MDP
case. They might be stochastic, i.e. mixed, which means that a player doesn’t have a single
best action, but is given an optimal probability distribution over actions ∆(Ai) from which
the played action is drawn. This causes some additional demands on the solving algorithm,
which will be revealed in (Section 3.3).

2.5 Partially observable stochastic games

The next step from stochastic games described in previous sections towards a more general
game model are partially observable stochastic games, or POSGs.

In Markov games, the current state s was accurately revealed to both players in every
time step t. This fact allowed players to reason about quality of their individual actions
more precisely. However, in partially observable stochastic games, the current state generally
stays hidden to both players. To provide the agents with some information, they receive
private observations similarly as in POMDPs (Definition 2.2). Each player i then keeps belief
bi ∈ ∆(S), which is a probability distribution over states in S representing their knowledge
about the current state. They make their decisions based on this belief bi.

In a POSG, both players keep their own belief initialized as binit ∈ ∆(S), which is public.
Based on transition function T they both move to the same new state s′ ∈ S, but they
do not know which state. Instead, they are each given a private observation and with this

11

2. Technical background
observation they adjust their beliefs. They do not know in which state they are located,
the actions played by the adversary, or the observation received by the adversary. However,
they have perfect recall, so they can remember history of their own actions and observations.
From these pairs, they can construct behavioural strategies according to which they act, i.e.
σi : (AiOi)→ ∆(Ai).

Even though, there exist theoretical results for solving POSGs with finite horizon, they
are not applicable to the infinite horizon[18]. In their solution [18], they define a distribution
over possible action-observation histories and by these distributions they define value function
similar to Bayesian games. However, the number of action-observation histories grows
exponentially with horizon, and thus it is impossible to use this approach on games with
infinite horizon. To tackle this issue, there exist restrictions that simplify the problem and
make practical solutions possible.

One of such restrictions are one-sided partially observable stochastic games, or OS-
POSGs[9]. In this type of games, one of the player has perfect information while the other
still receives observations. This type is focus of this thesis and will be discussed in more detail
in the next section.

The second simplification of POSGs are partially observable stochastic games with public
observations, or PO-POSGs[19]. Here, both players still receive observations, but the observa-
tions are public, meaning that the player 1 knows what the player 2 observed and vice versa.
This allows the agents to reason about the belief of the adversary and thus better compare
quality of the actions.

2.6 One-sided partially observable stochastic games
Contents of this section, most importantly the definitions and formulas, are taken from a
doctoral thesis [9] with a slight change in notation to match the other definitions in this
document. It focuses and describes a subclass of partially observable stochastic games, POSGs
(Section 2.5), mentioned in the previous section. Because this model is a restricted version of
the general model, it avoids some problems which make the general model intractable. By
introducing asymmetry in the knowledge of the agents it reduces the high dimension of the
problem.

Here, we present the model and basic concepts, in the next chapter (Chapter 3) is then
described the standard methods for solving this class of games. In the chapter (Chapter 5) is
then proposed alternative solving algorithm employing multi-armed bandits.

2.6.1 Model

Definition 2.9. A two-player zero-sum One sided partially observable stochastic game (or
OS-POSG) is a tuple G =

(
S, A1, A2, O, T, R, binit, γ

)
, where. S is a finite set the game’s states,. A1 and A2 are finite sets of actions available to player 1, or player 2 respectively,. O is a finite set of observations for the player 1,. T : S ×A1 ×A2 → ∆(O× S) is a probabilistic transition function defining probability of

transitioning from state s ∈ S by playing (a1, a2) ∈ A1 ×A2 to a new state s′ ∈ S while
generating observation o ∈ O,

12

.......................... 2.6. One-sided partially observable stochastic games

. R : S ×A1 ×A2 → R is a reward function of player 1,. binit ∈ ∆(S) is the initial belief of player 2,. γ ∈ (0, 1) is the discount factor.

As opposed to the POSG model, in OS-POSGs, only the player 1 receives observations,
the opposing player 2 has perfect information about the current state and played actions by
both players. To represent knowledge of the current state held by the oblivious player 1 we
use the same notion of belief as was used in POMDPs and general POSGs. This said belief is
a probability distribution over the states ∆(S).

Course of the game

The game begins by sampling the initial state s1 from the initial belief binit.
Then, for an infinite number of rounds, i.e. stages, the players simultaneously choose

actions which move them through the game environment. After playing this pair of joint
actions, both of the agents receive rewards from the reward function R potentially with some
additional data and the game transitions into the next state s′. Note that the OS-POSG is a
zero-sum game, thus the rewards for players differ only in the sign. The next state s′ ∈ S is
chosen by the environment with respect to the transition function T , the current state s and
the joint action profile (a1, a2).

Not only the transition function returns a probability distribution over the states, but
it also provides an observation o ∈ O for the first player. Player 2, on the other hand, is
shown exactly the state of the game and the action played by the adversary. Thus, he has
perfect information about the game and can observe the entire course of the game. The
player 1 knows only his selected actions and the received observations, hence the information
asymmetry between the two agents.

Strategies

Due to the repeated infinity nature of the game, two types of strategies are defined. The one
known from the matrix games and stochastic games are stage strategies, which correspond to
probability distributions over available actions in the particular stage. Due to the asymmetry
in knowledge, each player has a different definition of a stage strategy.
Definition 2.10. Let G =

(
S, A1, A2, O, T, R, btextinit, γ

)
be a OS-POSG. Then. a stage strategy of the player 1 is defined as a distribution π1 ∈ ∆(A1) and. a stage strategy of the player 2 is a mapping π2 : S → ∆(A2).

The sets of all stage strategies are denoted as Π1 and Π2.
The mapping π2 can be understood as a probability distribution over actions conditioned

by the current state s, which is perfectly observed by the player 2. Thus, as used in [9] and
[17], we use the notation π2(a2 | s) for the stage strategy mapping.

Player 1, however, cannot adjust his strategy for the current state, because it is unknown
to him. Thus, the simple distribution over actions ∆(A1).

These strategies can be used to play only a single round of the game. In OS-POSGs there
are infinitely many stages, thus a more powerful notion of strategy is needed. For this serve
behavioural strategies.

13

2. Technical background
Definition 2.11. Let G be an OS-POSG. Then, mapping σ1 : (A1O)∗ → ∆(A1) is a behavioural
strategy of player 1 and mapping σ2 : (SA1A2O)∗ S → ∆(A2) is a behavioural strategy of the
player 2. The sets of all behavioural strategies are denoted as before as Σ1 and Σ2.

The behavioural strategies define a distribution over actions given the previously observed
history of length t thus determining the way the game is played in specific stages at time t.

Moreover, composition of behavioural strategies and stage strategies is possible and results
in new behavioural strategies assigning distributions to histories of length t+1 (one additional
stage strategy to the histories of length t). This composition is described in more detail in
[17] together with a derivation and a formula.

The infinite history is then called a play. To assign a value to a play, we consider
discounted rewards in the same way as in sequential decisions 2.1 and the basic concepts of
the game theory 2.3.1 and that is

∑∞
t=1 γt−1R(st, at

1, at
2)

Belief

As mentioned before, the unobserving player 1 keeps a probability distribution b ∈ ∆(S)
called belief, which represents his knowledge about the state of the game. Based on the
observations received from the environment, he adjusts it during the course of the game to
simplify choosing appropriate actions. However, an assumption is needed, that the player
1 knows some stage strategy π2 of the adversary and based on this strategy he updates his
current belief. If this premise is fulfilled, the new belief for the following stage is computed as
follows.
Definition 2.12. Let b ∈ ∆(S) be current belief, π1 ∈ Π1 a strategy of the player 1, π2 ∈ Π2
a strategy of the opponent, a1 be action played in the current round by the player 1 and o an
observation generated by the transition function T when proceeding to the next state. An
updated belief is then computed for every state s′ ∈ S as

τ(b, π2, a1, o)(s′) = 1
Pb,π1,π2 [a1, o]

∑
(s,a2)∈S×A2

b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) (2.7)

The normalization constant 1
Pb,π1,π2 [a1,o] ensures that the new belief is in fact a distribution

over the states ∆(S).

2.7 Summary

In this chapter, we presented theoretical background for problems related to and used in this
thesis. We discussed simple models of single-agent sequential reasoning as are MDPs and
POMDPs. Then we defined basic principles and terms of the game theory, we focused on
the description stochastic games and partially observable stochastic games. The one-sided
subclass of POSGs was mentioned separately as its solving algorithms will be one of the main
topics.

In the following chapter, standard methods to obtain solutions for these aforementioned
models are presented. Then proceeds a discussion of basics of reinforcement learning, specif-
ically multi-armed bandit algorithms, which play a crucial role in the main goals of this
thesis. Results of these two chapters are then combined to define algorithms incorporating
the bandits inside the standard method settings.

14

Chapter 3
Standard solution methods

In this chapter we mention and describe the solution methods that are commonly used to
solve the models mentioned in the previous chapter (Chapter 2). These methods are proven
to find the solution or at least an approximation but usually struggle from poor scalability.
In the next chapter, we use ideas from these methods to design alternative solution methods.

As in the previous chapter, notions and theoretical properties are based on Artificial
Intelligence: A Modern Approach[11], Multiagent Systems: Algorithmic, Game-Theoretic and
Logical Foundations[12].

3.1 MDP

To solve an MDP means finding an optimal policy π∗, which will guarantee that the agent
gains the best utility if he plays according to π∗. Due to the Markov property, the policy π∗

need not be computed directly, but it is sufficient to find the optimal value function V ∗. The
optimal policy π∗ can be extracted from V ∗.

Algorithms designed to find the solution of an MDP are based on value iteration or
policy iteration. These two algorithms are built around Bellman equations, different for both
methods. We focus on the former because value iteration will be crucial in solving stochastic
games later in this thesis.
Theorem 3.1. Let (S, A, T, R) be an MDP. Let V : S → R be a value function assigning each
state s ∈ S a real value. An optimal value function V ∗ is a value function which is the single
solution of the Bellman equation

V ∗(s) = R(s) + γ ·max
a∈A

∑
s′∈S

T (s′ | s, a) · V ∗(s′) ∀s ∈ S. (3.1)

Value V ∗(s) then corresponds to the expected reward received if the agent started the
play in state s.

3.1.1 Value iteration

An iterative variant of this system of non-linear equations is called the Bellman operator and
the computation of a new value for state s ∈ S by applying this operator on the old value is
called the Bellman update.

Vt+1(s) = R(s) + γ ·max
a∈A

∑
s′∈S

T (s′ | s, a) · Vt(s′) ∀s ∈ S. (3.2)

15

3. Standard solution methods....................................
More specifically, this operator takes into account the utility values of all states adjacent to
the current state and selects the neighbouring state with the maximal utility to compute the
new value.
Definition 3.2. Let f : X → X be a mapping and ||.|| be a norm defined on the vector space
X. Let 0 ≤ δ < 1. If the condition (Inequality 3.3) holds, the mapping f is a contraction.

||f(a)− f(b)|| ≤ δ||a− b|| ∀a, b ∈ X (3.3)

Very important fact is, that the Bellman operator is a contraction (Definition 3.2), which
ensures that the algorithm converges.

Algorithm 3.1 Value iteration for MDPs
Input: an MDP (S, A, T, R), ϵ
Output: ϵ-approximation of V ∗

1: Initialize V1(s)← 0 ∀s ∈ S
2: Set t = 1
3: repeat
4: ∆← 0
5: for s ∈ S do
6: Vt+1(s)← R(s) + γ maxa∈A

∑
s′∈S T (s′ | s, a) · Vt(s′)

7: ∆← max {∆, |Vt(s)− Vt−1(s)|}
8: end for
9: t← t + 1

10: until ∆ ≤ ϵ
11: return V

The value iteration (Algorithm 3.1) then iterates through all states and applies the
so-called Bellman update to each of them, which causes the immediate rewards to propagate
to other states. When the new value is close enough to the current value for every state (the
maximal difference of these values from all states is stored in variable ∆ in (Algorithm 3.1)),
the value iteration has converged to its optimal state. We say, that it reached an equilibrium,
which is an important notion in games as well. The optimal policy is then extracted as simply
selecting the state with the highest assigned value from value iteration.

3.1.2 Policy iteration

For the sake of completeness, we briefly mention another iterative algorithm for solving MDPs
called the policy iteration. As opposed to value iteration, the policy iteration consists of
two altering phases. First is policy evaluation, which evaluates current policy in each state.
Second is policy improvement, which in each state uses a modified Bellman update and looks
one step ahead and tries to find better action to play. If no action assignment was changed,
the found policy optimal.

3.2 POMDP

In the previous chapter (Section 2.2), we defined a notion of an α-vector as function linear in
belief b, which represents an n-step policy plan, where n is the time step of the α-vector’s

16

... 3.2. POMDP

creation. The motivation behind this idea was to tackle the intractability of the infinite
belief space, which would render the standard MDP solution methods useless. If we redefined
POMDP as an MDP over the belief state, as mentioned in (Section 2.2), it would imply
applying the Bellman operator infinitely many times in each iteration. The definition of
α-vectors partly removes this problem as the number of α-vectors depends on the number of
possible actions which is finite. Now, we can redefine value iteration from MDPs for POMDPs
using this notion of α-vectors.

3.2.1 Value iteration

To perform the exact value iteration algorithm we can keep a set of α-vectors, denoted Γ. In
each iteration t, new α-vectors are added and these correspond to all t-step policies for all
states. Thus, each such iteration adds all combinations of previous (t− 1)-step α-vectors and
possible actions to the Γ set. Because α-vectors represent values for n-step policies, the value
function in a belief point b is then computed as piecewise maximum over the set Γ

V (b) = max
α∈Γ

α(b) (3.4)

and this way the best n-step plan is selected [17]. Even though, α-vectors solved the issue with
infinite state-space, the size of Γ grows very rapidly and causes this method to be unscalable.

The size can be partly reduced be removing dominated α-vectors. An α-vector becomes
dominated, when there always exist some other α-vector with higher value over the whole
belief space. This means, that this vector is never optimal and will never be relevant to the
solution of the game and thus can be removed from the Γ set. Nevertheless, this pruning of Γ
is not enough to completely solve the poor scalability. Hence, another approach must be used.

3.2.2 Point based value iteration

The problem in the scalability comes mainly from the size of the belief space which is infinite.
The idea behind the PBVI method is to represent the entire belief space with a finite set
of belief points. Then, the Bellman update is performed only on elements of this finite set.
Moreover, an α-vector is added to Γ only if it is the best for any of those belief points. This
way, we have a coarser approximation of the real value, but now the number of α-vectors is
bounded by the size of the set of belief points. On the other hand, the quality of the found
solution depends on the selected belief points, and it is not a simple task to select which belief
points lead to a good approximation. Similar idea about belief points is used in the HSVI
algorithm described in the next part (Section 3.2.3).

3.2.3 Heuristic search value iteration

There are methods to approximate the value function without the need to keep all α-vectors
and thus scale better. One of these methods is Heuristic search value iteration[8]. Another
algorithm with the same name and similar idea will be presented in later sections to solve
partially observable games.

This method keeps two piecewise linear and convex functions, lower and upper bound,
where the lower bound is formed by a set of α-vectors, while the upper bound consists of
values in belief points, from which is then computed a lower convex hull. During the course
of the algorithm, new points and α-vectors are added to these sets and making the bounds

17

3. Standard solution methods....................................
closer to each other and thus making the approximation more precise. This operation is called
point-based update.

Points to be updated are selected using a heuristic function, for example, selecting the
best action based on the upper bound. We want to make the gap between the bounds tighter,
so it makes sense to select the action with the highest value in the upper bound and try to
push it lower. Then, both bounds are updated at the same point. When some α-vector or
point in the upper bound becomes dominated, it can be removed and thus the size of those
two sets can be reduced during the search.

After the distance between the two bounds is smaller than required threshold ϵ, the
algorithm terminates and the ϵ-approximation is found.

3.3 Stochastic games

Similarly to the Markov decision processes, there exist versions of well-known iterative
algorithms to find the approximate solution of the game, namely versions of value iteration
and policy iteration. In this section, we will focus on the former. Also, employing some methods
from reinforcement learning and multi-armed bandits can lead to good approximations, as
well. Those will be discussed in the next section.

3.3.1 Value iteration

The value iteration is a well-described method used to solve Markov decision processes. It
can be modified to solve stochastic games, too.

Value function

Let G = (S, A1, A2, T, R, γ) be a stochastic game. As mentioned in (Section 2.4.2), the
potentially mixed equilibrium strategies depend only on the current state s. Therefore, we
can define a strategy of a player i as πi : S → ∆(Ai), which maps a probability distribution
over possible actions Ai of the player i to each state s ∈ S.

We define a mapping V : S → R, which assigns a real value to every state s ∈ S. Then,
the value function V ∗ is a mapping V , where the value V ∗(s) is the overall discounted reward
received by player 1 if the game started from the state s. This definition of value function
indicates how good it is for players to move into each state and can be used later to derive
optimal strategies. Especially useful is that the mapping V ∗ can be expressed by equation
[17]:

V ∗(s) = [HV ∗](s) = max
π1∈∆(A1)

min
π2∈∆(A2)

Ea1∼π1(s),a2∼π2(s)[R(s, a1, a2)+

+ γ
∑
s′∈S

T (s′ | s, a1, a2) · V ∗(s′)] (3.5)

The backup operator H is a contraction, therefore by iteratively applying it on an arbitrarily
initialized V , it provably converges to its fixed point V ∗[20]. Moreover, applying the backup
operator H in a state s is the same as determining the value of the game of a corresponding
matrix game, game in normal form. The description of the matrix game follows.

18

....................................... 3.3. Stochastic games

Stage game

Definition 3.3. Let (S, A1, A2, T, R, γ) be a stochastic game and V be some value function.
A matrix game u for a state s ∈ S is then defined as:

u(a1, a2) = R(s, a1, a2) + γ
∑
s′∈S

T (s′ | s, a1, a2) · V (s′) ∀a1 ∈ A1, ∀a2 ∈ A2 (3.6)

Suppose we have a game in normal form for state s ∈ S of the stochastic game G defined
as above. Then, the value in the game table for an action profile a = (a1, a2) is equal to the
sum of the immediate reward received by playing action profile a in state s and the expected
discounted reward received in all the next moves.

In the context of stochastic games, this matrix game is often called a stage game and
can be solved by linear programming. Here is the linear program solving the game from the
perspective of the maximizing player (LP 3.1). It maximizes over all mixed strategies π1 of

maximize v (3.7a)
subject to

∑
a1∈A1

u(a1, a2) · π1(a1) ≥ v ∀a2 ∈ A2 (3.7b)

∑
a1∈A1

π1(a1) = 1 (3.7c)

π1(a1) ≥ 0 ∀a1 ∈ A1 (3.7d)

Figure 3.1: LPSGMAX(u)

player 1 and value of the game v. Because we defined strategy as a distribution over actions
∆(Ai), the constraints (3.7c) and (3.7d) ensure that π1 is in fact a probability distribution.
Constraint (3.7b) finds those pure strategies of the opponent for which the expected utility
against the player’s mixed strategy π1 is at least v. Those pure strategies for which the
expected utility is equal to v form the support of the opponent’s best response. Moreover,
the value v is maximized, which influences the choice of the player’s mixed strategy π1.

A linear program LPSGMIN(u) solving the game from the perspective of the minimizing
player can be constructed in a similar sense.

Algorithm

Now, we are ready to present the used value iteration algorithm (Algorithm 3.2).
Input to the algorithm is the stochastic game G and precision parameter ϵ. The precision

parameter limits the allowed gap (Definition 3.4) between the last two approximations Vt−1
and Vt so that d(Vt−1, Vt) < ϵ.
Definition 3.4. Let V , V ′ be value functions. Then, the gap between V and V ′ is defined as

d(V, V ′) = max
{∣∣V (s)− V ′(s)

∣∣ | ∀s ∈ S
}

. (3.8)

Informally, this implies that the distance between approximate and optimal values in
each state is at most ϵ. The output is then the ϵ-estimate of the real value function V ∗.

19

3. Standard solution methods....................................
Algorithm 3.2 Value iteration for stochastic games
Input: G = (S, A1, A2, T, R, γ), ϵ
Output: ϵ-approximation of V ∗

1: Initialize V (s)← 0 ∀s ∈ S
2: Initialize ∆←∞
3: while ∆ ≥ ϵ do
4: ∆← 0
5: Vprev ← V
6: for s ∈ S do
7: V (s)← solve LPSGMAX(u) in s (LP 3.1) ▷ for u see (Definition 3.3)
8: ∆← max {∆, |V (s)− Vprev(s)|}
9: end for

10: end while
11: return V

Any value function can be used as an initial estimate. For simplicity, we use 0, but it
could be initialized to any other value, for example, to maximal/minimal discounted reward.
The algorithm always converges, but some initializations will converge faster than others. The
initial gap ∆ is initialized to an arbitrary value bigger than ϵ, only to first enter the main
while loop.

In each iteration, the current gap is set to 0 and the approximation of V from the previous
iteration is saved for comparison. Then, we perform a value update for each state s ∈ S. The
update consists of building a stage game u in current state s and with the last approximation
V according to definition (Definition 3.3), getting the optimal value from the linear program
LPSGMAX(u) (LP 3.1) for the previously built stage game u and updating the current
maximal gap ∆. After the algorithm updates value for every state, it checks the maximal gap
∆. If ∆ < ϵ holds, the algorithm terminates and returns the approximation of V from the
last iteration, otherwise, it continues with the next iteration.

Optimal strategies. After the approximation is returned, it can be used to extract the
strategies of both players. It is sufficient to solve both linear programs LPSGMAX(u), resp.
LPSGMIN(u), for each state s with the returned value function V . This time, however, the
values of variables π1(a1) ∀a1 ∈ A1, resp. π2(a2) ∀a2 ∈ A2, are used instead of the value of
the game v.

Performance

Even though the algorithm is very simple and provably converges to an equilibrium, it is not
as efficient. As opposed to Markov decision processes, where the update is performed only as
finding the currently best action (pure strategy) in each state, here we need to solve as many
linear programs as states in the game. Moreover, this procedure is repeated until the desired
precision is met.

Linear programs can be solved in polynomial time, but the necessary number of them
can grow rapidly, which makes Markov games more difficult to solve than Markov decision
processes. And while in stochastic games it is not a real issue, in the partially observable
stochastic games this becomes a crucial cause of unscalability.

20

.. 3.4. OS-POSGs

In (Chapter 5), we propose other solution methods which do not require linear programs
and compare them with the value iteration.

3.4 OS-POSGs

Methods to solve OS-POSGs combine the practices from stochastic games together with
partially observable Markov decision processes. There exists an exact algorithm to solve this
class of games, but similarly as in POMDPs, due to the dimension of the belief space it is
practically intractable. Thus, an approximate approach is used to bypass this intractability
and obtain at least a rough solution.

3.4.1 Value function

The value of the game corresponds with the discounted utility which is guaranteed to the
unobserving player 1 by playing against a best-responding opponent 1, when starting in the
initial belief binit.
Definition 3.5. The optimal value function for an OS-POSG is a mapping V ∗ : ∆(S)→ R
assigning a real value to every belief point (a distribution over states) defined as follows [17]

V ∗(b) = sup
σ1∈Σ1

inf
σ2∈Σ2

Eb,σ1,σ2Discγ ,

where Discγ are the discounted rewards sum.
In other words, it corresponds to the expected utility received by player 1 when starting

in the initial belief b ∈ ∆(S) and both players employ their respective optimal behavioural
strategies.

Because the value function V ∗ is defined as an expectation over a discounted sum with
discount factor 0 < γ < 1, which converges to a single value, it is bounded. Thus, we can define
two values, the upper bound U and lower bound L, for which holds L ≤ V ∗(b) ≤ U ∀b ∈ ∆(S).
The bounds are defined as

L = min
s∈S,a1∈A1,a2∈A2

R(s, a1, a2)
1− γ

(3.9)

U = max
s∈S,a1∈A1,a2∈A2

R(s, a1, a2)
1− γ

(3.10)

α-vectors

Similarly to POMDPs, the belief state space is infinite and thus the value iteration technique
for applying backup operators for each state as in MDPs or stochastic games cannot be used.
Instead, we again use the notion of α-vectors in the same fashion as in POMDPs. Since the
value of a first player’s strategy σ1 is linear in b ∈ ∆(S), which is proven in [17], we can use
linear functions α : ∆(S)→ R to represent them. Moreover, a linear function defined in this
way can be characterized by the values in the vertices of the belief simplex so from now on we
represent the α-vector as values for each corner s ∈ S. The value of the α-vector in a belief
b ∈ ∆(S) is thus computed

α(b) =
∑
s∈S

α(s) · b(s). (3.11)

21

3. Standard solution methods....................................
Be reminded, that an α-vector represents a n-th step plan, in this case a behavioural strategy.

Because of this representation and the fact, that the optimal value function V ∗ is convex
and continuous, it can be approximated as a piecewise linear convex functions V . These are
then created as a pointwise maximum

V (b) = max
α∈Γ

α(b) ∀b ∈ ∆(S) (3.12)

where Γ is a finite set of α-vectors

Γ ⊂ {α : ∆(S)→ R | α is linear} . (3.13)

Information sets

In many domains, the dimension of belief can be reduced by introducing the information sets.
We allow the player 1 to know his location in the environment but the position and actions of
the opponent remain hidden to him. Thus, the space of space is split into partitions whose
inner states are indistinguishable for the player 1, he knows only the current partition. This
reduction of the size of the belief space helps to improve scalability and solve bigger instances,
where applicable.

3.4.2 Exact algorithm

As in previous problems, we use the iterative approach to obtain the optimal value function
V ∗, because finding the optimal value in a belief point exactly is a hard problem. The main
idea is again to start from some initial approximation and repeatedly apply a backup operator
on it to get a refined more accurate approximation. For this purpose serve the so-called
Bellman operators already known from the past sections. Here, we present the Bellman
operator [HV](b) for OS-POSGs as it was derived in [17].

In short, the Bellman operator is a special strategy composition, where an optimal stage
strategy π1 of player 1 is sought to maximally improve the current value function by adding
another step.
Definition 3.6. Let V : ∆(S)→ R be a convex continuous function and Γ be a convex set of
α-vectors such as V (b) = supα∈Γ α(b) ∀b ∈ ∆(S). Let τ be the belief update as defined in
(Definition 2.12). Then,

[HV] (b) = max
π1∈Π1

min
π2∈Π2

Eb,π1,π2 [R(s, a1, a2)] +

+γ
∑

(a1,o)∈A1×O

P [a1, o] V (τ(b, π2, a1, o))

 (3.14)

Note that, thanks to the minimax theorem, the max and min can be switched to form
equivalent formulations [15].

Similarly, as for Bellman operators for MDPs, POMDPs, etc., it can be proven, that it is
a contraction (Definition 3.2) and thus converge to a unique fixed point, which is the optimal
value function V ∗. The equality V ∗(b) = [HV ∗] (b) holds ∀b ∈ ∆(S). Also, the operator does
not depend on the set of α-vectors Γ and thus can be used for updates at any time and on
arbitrarily initialized approximation.

22

.. 3.4. OS-POSGs

Stage game

In stochastic games, applying the Bellman operator on the current approximation of the value
function was equivalent to finding a Nash equilibria of a matrix game, called the stage game.
This applies to the OS-POSGs too, and the corresponding stage game is defined as listed in
Definition 3.7. A stage game with a value function V , which is convex and continuous, and a
belief b ∈ ∆(S) is a two-player zero-sum game. Let Π1 be the strategy set of the maximizing
player 1 and Π2 of the minimizing player 2. The utility function is then

u(π1, π2) = Eb,π1,π2 [R(s, a1, a2)] + γ
∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, π2, a1, o)) (3.15)

This game can be solved by a linear program thoroughly described in [17] together with
its dual formulation. We exclude it because it is not essential for the topic of this thesis as we
will focus on the approximate HSVI algorithm.

Value iteration

The exact value iteration algorithm works similarly as the one mentioned in context of
stochastic games. It starts from an initial piecewise linear and convex value function V0 and
then by iteratively solving stage games and creating new piecewise linear and convex value
functions Vi = HVi−1 the algorithm converges to the optimal V ∗.

It is known that the exact algorithm designed for POMDPs can solve only very small
instances and since OS-POSGs are a more complex problem it can be estimated that this
would hold also for this domain. Thus, we focus more on the non-exact Heuristic search value
iteration described in the next section.

3.4.3 Heuristic search value iteration

This approximate method is inspired by the algorithm for POMDPs with the same name
and is described in [9]. It improves the scalability of the exact value iteration method while
sacrificing precision of the found result. Here, we shortly describe the original algorithm from
[9] and later in (Chapter 5) we introduce a modification of this algorithm employing the
multi-armed bandit framework.

Main idea

The basic concept of HSVI is keeping two value functions, lower bound V Γ
LB and upper bound

ub, which both bound the unknown optimal value function V ∗. In other words, the inequality
V Γ

LB ≤ V ∗ ≤ V Υ
UB holds for every belief point b ∈ ∆(S).

Then, in each step of the algorithm the bounds are improved until some desired precision
in the initial belief binit is reached. The improvement lies in recursively solving stage games,
reaching new belief points and using this information to create better stage strategies and
thus finding better behavioural strategies. After some recursion depth, the search is restarted
from the initial belief binit.

The precision is specified by ϵ ∈ (0, +∞) forcing the value function V (binit) returned by
the algorithm to be inside the ϵ-neighbourhood around V ∗(binit).

23

3. Standard solution methods....................................
Lower and upper bound

Both bounds are represented by finite sets of elements, from which can be constructed the
corresponding piecewise linear convex value function. However, type of the elements are
different for each bound.

Lower bound V Γ
LB : ∆(S)→ R is represented in the same way as discussed before in

this section and as was used for lower bound in HSVI for POMDPs. That is by a set of
α-vectors denoted Γ from which is selected a point-wise maximum as V Γ

LB(b) = maxα∈Γ α(b).
More details on selecting the maximum is in (Section 3.4.1). To understand the initialization
and point-based updates be reminded that α-vector corresponds to a n-th step policy of an
agent.

The point-based update of the lower bound is performed by adding new α-vectors into Γ.
These are created from behavioural strategies prolonged by one stage strategy of the players.
This way, when a strategy with higher value is found, the corresponding α-vector is selected
in the point-wise maximum over Γ. That pushes the lower bound V Γ

LB upwards.
Initialization of the lower bound V Γ

LB is done in a very straightforward way and that is
by creating an α-vector corresponding to uniform strategy of the player, meaning that each
action a1 ∈ A1 is played with probability 1

|A1| and conversely for player 2.
Upper bound V Υ

UB : ∆(S) → R is represented as a lower convex envelope of a set of
points Υ = {(bi, yi) | 1 ≤ i ≤ k, bi ∈ ∆(S), yi ∈ R}. Every (bi, yi) ∈ Υ bounds the optimal
V ∗ from above in the belief point bi. In [17] is shown, that this representation of the upper
bound follows the requirements on convexity. The convex envelope can be also computed by
linear programming.

The refinement of the upper bound V Υ
UB is again done by adding new points (b, y) into

the Υ set. The new point is retrieved by solving the stage game as well as in the case of lower
bound, but this time with simpler linear program as composition of values is not necessary.
Similarly, due to computing only the lower convex hull of the points, the value in a given
belief point b can only decrease and so the upper bound is pushed downwards.

The initialization of the upper bound V Υ
UB is more complex. The original OS-POSG game

is transformed into a stochastic game by revealing all the information to the player 1 too. All
the other parts remain the same as in the OS-POSG. Then, the value iteration algorithm can
be used to compute the optimal values V ∗(s)∀s ∈ S, which then create one point (bs, V ∗(s)),
where bs is a pure belief in state s ∈ S. By removing the full information, the player surely
cannot receive higher reward and so this is a good initial value function.

From the above follows that by refining the bounds by point-based updates, the lower
bound increases while the upper bound decreases and thus the gap gets tighter.

The algorithm

In this subsection, we present the HSVI algorithm (Algorithm 3.3) for OS-POSGs. The
correctness and termination is described in [17], here we provide only a description on which
we will build in next sections.

After the initialization of the bounds (Section 3.4.3), the algorithm repeatedly calls
procedure EXPLORE(binit, 0) until the excess gap in binit is zero or below. The excess gap is
computed as

excesst(bt) = V Υ
UB(bt)− V Γ

LB(bt)− ρ(t). (3.16)

24

.. 3.4. OS-POSGs

Algorithm 3.3 HSVI algorithm for OS-POSGs
Input: game G, initial belief binit, precision requirement ϵ > 0, discount factor γ, neighbouring

parameter D
Output: bounds V Γ

LB and V Υ
UB satisfying V Υ

UB(binit)− V Γ
LB(binit) ≤ ϵ and the corresponding

sets Γ and Υ
1: initialize V Γ

LB and V Υ
UB ▷ see (Section 3.4.3)

2: while excess0(binit) > 0 do
3: EXPLORE(binit, 0)
4: end while
5: return V Γ

LB, V Υ
UB, Γ, Υ

6: procedure explore(bt, t)
7: (πLB

1 , πLB
2) ← strategies of the Nash equilibrium of [HV Γ

LB](bt)
8: (πUB

1 , πUB
2) ← strategies of the Nash equilibrium of [HV Υ

UB](bt)
9: point-based updates of V Γ

LB and V Υ
UB ▷ see (Section 3.4.3)

10: (a∗
1, o∗)← select best pair according to the forward exploration heuristic

11: if Pb,πUB
1 ,πLB

2
[a∗

1, o∗] · excesst(τ(bt, πLB
2 , a∗

1, o∗)) > 0 then
12: explore(τ(bt, πLB

2 , a∗
1, o∗), t + 1)

13: point-based updates of V Γ
LB and V Υ

UB ▷ see (Section 3.4.3)
14: end if
15: end procedure

Hence, when the excesst is positive, the approximation error is bigger than the desired precision
computed by ρ(t) from ϵ. The function ρ : N→ R+ generates an increasing sequence starting
from ϵ and thus allows for higher gap between the bounds as the given trial goes in farther
stages of the game. The sequence ρ is defined as

ρ(0) = ϵ ρ(t + 1) = ρ(t)− 2δD

γ
, (3.17)

where δ = U−L
2 , D is an arbitrary neighbouring constant satisfying 0 < D < (1−γ)ϵ

2δ and γ
is the discount factor. Even though the gap in farther stages is allowed to be higher than
ϵ, in [17] is shown, that the algorithm converges to the ϵ approximation in the initial belief,
when the above conditions hold. Note that for the initial call of EXPLORE procedure, the
excess0(binit) is equivalent to a condition V Υ

UB(binit)− V Γ
LB(binit) ≤ ϵ.

The EXPLORE(binit, 0) procedure recursively searches for behavioural strategies and one
call of this procedure corresponds to a single trial of playing the game. The recursive call
moves through a sequence of belief points starting from binit and for every one tries to improve
the value bounds in the selected belief point bt.

First, it finds the stage strategies (π1, π2), i.e. Nash equilibrium, of the stage game
(Section 3.4.2) for both the upper and lower bounds in the belief bt of current recursive call
resulting in two strategy profiles. With these stage strategies, the point-based update of
both bounds is performed, i.e. a new α-vector and a new point (bt, y) are added into their
respective set Γ or Υ.

After the update a new belief point bt+1 = τ(bt, π2, a∗
1, o∗) is derived as described in

25

3. Standard solution methods....................................
(Section 2.12). The pair (a∗

1, o∗) is selected by a forward exploration heuristic.

(a∗
1, o∗) = argmax

(a1,o)∈A1×O
Pb,πUB

1 ,πLB
2

[a1, o] · excesst+1(τ(bt, πLB
2 , a1, o)) (3.18)

This heuristic approach aims to find the best action and observation of the player 1, so that
the next belief point has the biggest excess gap between bounds and thus promises the biggest
improvement. For this purpose serves the weighted excess gap, where the excess in give belief
point is multiplied by a probability of occurrence of the given pair (a1, o).

If the excess in the next belief given the (a∗
1, o∗) is non-positive, the algorithm stops

searching new stages and returns to the previous belief again performing point-based updates
for the belief points with the new improved bounds. Otherwise, it proceeds to the next stage.

If the gap between bounds in binit is wider than ϵ after emerging from the recursion, the
search is repeated with a new game play trial.

Performance

Even though, the algorithm is proven to converge and is an improvement from the exact
value iteration approach, it still uses linear programs which can become large and thus slow
the algorithm down. In the (Section 5.3) we propose the usage of multi-armed bandits as
an alternative exploration method to avoid linear programming and possibly scale better for
larger problems.

26

Chapter 4
Multi-armed bandits

At the beginning of the thesis (Section 2.1), we discussed the Markov decision process as one
of the models used for describing a single-agent environment. In MDPs, an agent continuously
chooses actions by which he moves through many states of the environment and receives
rewards throughout the process. Moreover, this model can be used for learning agent’s optimal
actions and policies in each state.

This section is about examining MDPs where the set of all states S is a singleton, i.e.
consists of only one state s ∈ S. This subset of all MDPs is often referred to as Multi-armed
bandits and many algorithms based on this model are very useful for solving more complex
problems. The bandits are a well-known tool of reinforcement learning enabling a single
agent to gain information about the environment and leverage it for its advantage. Here,
we describe the basic concepts of bandit learning and provide multiple specific algorithms
designed for this purpose.

This section and the standard versions of the bandit algorithms are based on a book
Introduction to Multi-Armed Bandits[10].

4.1 Basics

As stated above, a Multi-armed bandit problem is essentially a Markov decision process of
a single state s ∈ S with many, possibly infinitely many, different available actions ai ∈ A.
In the context of bandit algorithms, these actions are called ’arms’ and hence the adjective
multi-armed. We will use ’arms’ and ’actions’ interchangeably within this chapter. There

s

. . . ana3

a2

a1

Figure 4.1: Model of a multi-armed bandit

exists a variety of different bandit algorithms, which can be used in many contexts. By using
them, one can decompose a complex problem into many smaller bandit problems, which can
learn independently on the others. The means and methods of bandit learning are presented
in the next part.

27

4. Multi-armed bandits.......................................
4.2 Bandit learning

Let’s suppose that the rewards of actions depend solely on the current state. In other words,
the rewards are identically independently distributed. Thus, a bandit learning a particular
state can learn independently on the other bandits.

The bandit learning takes place in discrete time steps t = 1, In each step t, the
bandit selects and plays an arm at ∈ A according to some decision rule and receives a reward
rt. This decision rule, or sometimes selection rule, is the main distinction point among the
many multi-armed bandit algorithms. The bandit stores the received rewards, updates its
inner state and uses them for the next arm selections.

As a basis for the arm selection process, it is convenient to have some measure of quality
of a function. For this purpose, we define so-called action function q∗ : A→ R

q∗(a) = E[rt | at = a] ∀a ∈ A. (4.1)

However, neither the optimal values q∗(a), nor the distribution the rewards are drawn
from, is not known by the algorithm. Thus, instead of the true values for actions, it estimates
these values by averaging received rewards over time. For this purpose we define an action
function estimate Qt : A→ R in time step t, corresponding to the average reward gained by
playing some action a ∈ A so far.
Definition 4.1. Let A be a set of all arms of a bandit algorithm and t ∈ N be the current
time step. Then, Q : A→ R is defined as

Qt(a) =
∑t

i=1 ri · Jai = aK∑t
i=1Jai = aK

∀a ∈ A, (4.2)

the indication function J.K is defined as

Jai = aK =
{

1 ai = a

0 ai ̸= a
(4.3)

and where ai is an action taken in time step i ∈ 1, . . . , t and ri is reward gained by playing
this action ai.

Even though this formula is clear and simple it is not very computationally efficient,
because it would require evaluating two sums every time.

First, we need to derive an incremental computation of an arithmetic average of values.
Let Xm be an arithmetic average of first m− 1 values x1, . . . , xm−1, where

Xm = x1 + x2 + · · ·+ xm−1
m− 1 . (4.4)

Then, the arithmetic average of values received before time step m + 1 can be computed as

Xm+1 = 1
m

m∑
i=1

xi = 1
m

m−1∑
i=1

xi + 1
m

xm = m− 1
m− 1

1
m

m−1∑
i=1

xi + 1
m

xm =

= m− 1
m

1
m− 1

m−1∑
i=1

xi + 1
m

xm = m− 1
m

Xm + 1
m

xm =

= m

m
Xm −

1
m

Xm + 1
m

xm = Xm + xm −Xm

m

(4.5)

28

.......................................4.3. Stochastic bandits

Now, we can describe the computation of the action function estimate Qt. Instead of keeping
a full action-reward history, a bandit algorithm keeps track of the current average of received
values so far in Qt(a), ∀a ∈ A and also how many times have been each action selected in
a vector n(a) ∈ N|A|. On receiving reward rt after playing action at, the trial function is
trivially updated as

nt+1(at) = nt(at) + 1. (4.6)

The update Qt+1(at) can be computed by employing the previously derived incremental
averaging rule for the action selected at this time round.

Qt+1(a) =

Qt(a) + rt−Qt(a)
nt+1(a) ai = a

Qt(a) otherwise
∀a ∈ A (4.7)

Notice that except the changed notation, the update is the same as the result of (Equation
4.4).

4.2.1 Exploration-exploitation trade-off

Action at for which it holds
at ∈ argmax

a∈A
Qt(a), (4.8)

is usually called the greedy action. In some sense, it is the best of all possible actions with
respect to the received rewards up to the time step t.

However, always selecting the greedy action, which could be then called a greedy bandit,
can cause problems or slow down the convergence of the function Qt to the optimal action
function q∗ and thus making it harder for the bandit algorithm to find the optimal actions
to play. To improve convergence to the real values and prevent getting stuck in some local
optima, the exploration-exploitation trade-off has to be taken into account.

Exploration is a mechanism when a multi-armed bandit explores possibilities, i.e. actions,
that either have not yet been selected or the so far collected average reward is much lower
than for other actions and thus are not selected by the greedy method. Exploitation, on
the other hand, is abusing so far learned values to take as much profit as possible. In other
words, exploitation is selecting the action, which is thought to provide the highest reward.
It is essential for a well-performing bandit algorithm to balance these two aspects in some
way. If it was too much exploration, by selecting actions with values very different from the
real value, it would take a long time to converge and find the optimum. If it was too much
exploitation, it would get likely stuck in some local optima and it would struggle to find the
best actions to select.

Now we have everything ready to present some common bandit algorithms with several
arm selection rules, which handle the exploration-exploitation trade-off differently.

4.3 Stochastic bandits

Stochastic bandits are the simplest multi-armed bandit algorithms mentioned in this thesis.
As mentioned before, the rewards are assumed independent and identically distributed as well
as bounded.

At first, the Q function and function counting action trials n are initialized.

29

4. Multi-armed bandits.......................................
Algorithm 4.1 Initialize a bandit
Input: action set A

1: Q(a)← 0 ∀a ∈ A
2: n(a)← 0 ∀a ∈ A

In each time step t the algorithm selects an arm at. After, the standard versions of these
bandit algorithms observe only the received reward rt, which is then called bandit feedback.
However, in the context of games, we later construct observable variants (Section 5.1.1) for

Algorithm 4.2 The receive function for bandit feedback
Input: n, Q, action at, reward rt

1: n(at)← n(at) + 1
2: Q(at)← Q(at) + rt−Q(at)

n(at)

each mentioned stochastic bandit algorithm, which also observes the action taken by the
opponent a′

t. Later in this thesis, we will compare the observable and standard alternatives
and see if the information about the opponent’s selections can be leveraged and will lead to
faster convergence.

Now, we define the standard stochastic bandit algorithms. The first two mentioned bandits
are often termed as non-adaptive because they do not adjust the amount of exploration during
the course of learning.

4.3.1 Best of N

Algorithm 4.3 Best of N bandit
Input: action set A, N ∈ N

1: try arms uniformly at random until each one was tried exactly N times
2: select the action greedily as agreedy ← argmaxa∈A Q(a)
3: play agreedy forever

The first and simplest bandit algorithm described in this thesis is a Best of N bandit
(Algorithm 4.3), sometimes known as an uniform bandit. It has a single parameter N ∈ N
which influences the degree of exploration of each action. In short, the bandit uniformly tries
actions and accumulates the average received rewards until each action was tried exactly N
times. After all actions has been tried N times, exploration ends and from that point, the
algorithm only exploits. The exploitation phase is very simple as the agent selects the greedy
action agreedy (Definition 4.8) and plays it forever.

4.3.2 ϵ-greedy

The second bandit algorithm, which we will discuss here is an ϵ-greedy bandit (Algorithm 4.4).
In contrast to the Best of N bandit, ϵ-greedy does not separate exploration and exploitation
phases so strictly but does it in a more clever way founded on a single parameter ϵ ∈ [0, 1].
At the beginning of every action selection process, the algorithm probabilistically chooses

30

.......................................4.3. Stochastic bandits

Algorithm 4.4 ϵ-greedy bandit
Input: action set A, ϵ ∈ [0, 1]

1: with probability ϵ sample at uniformly from A
2: with probability (1− ϵ) select the greedy action at ← argmaxa∈A Q(a)

between two possibilities. With probability ϵ, it chooses exploration and samples action at

from uniform distribution over the set A. Otherwise, with probability (1− ϵ), it selects greedy
action based on saved function Qt as in (Definition 4.8).

The parameter ϵ thus controls how often the algorithm explores and how often it exploits.
A typical value of ϵ is 0.1, which means that exploration is expected to occur every 10th round.
However, this value can be tuned to a specific problem. If ϵ = 0, then the bandit degrades to
a greedy bandit, which never explores and only chooses the action with highest accumulated
rewards Qt.

As opposed to Best of N and ϵ-greedy stochastic bandits, both non-adaptive multi-armed
bandits, the following two algorithms are adaptive, because exploration of an arm depends
on a confidence that the accumulated average rewards are a good approximation of the real
values. For the purpose of this and the next bandit, we need to define confidence interval and
confidence bounds.

A confidence interval is a range around the estimated value and it holds that the true
value lies in this range with high probability. The two limit points of this said interval are
confidence bounds, lower and upper. We will use such confidence bounds as were derived in
[10] using Hoeffding Inequality.
Definition 4.2. For each arm a at fixed time step t let nt(a) represent the number of selections
of the arm a before time t and Qt(a) is the accumulated mean reward until t. We then define
a confidence radius rt(a) as derived in [10]:

rt(a) =
√

2 log t

nt(a) . (4.9)

Let α ∈ R, α ≥ 0 be a parameter. The upper confidence bound, resp. lower confidence bound
is thus defined as

UCBt(a, α) = Qt(a) + α · rt(a) (4.10)

LCBt(a, α) = Qt(a)− α · rt(a) (4.11)

Hence, the confidence interval of an estimate Qt(a) is [LCBt(a, α), UCBt(a, α)].
Now we have everything ready to present the two adaptive stochastic bandit algorithms.

4.3.3 Successive elimination

Successive elimination bandit (Algorithm 4.5) tries all actions until it is confident, based on
the computed confident intervals, that some action is the best. From that point, it plays only
this best action forever. The bandit keeps a set of active arms, which is initialized to contain
all possible actions. It iteratively selects actions from this active set one by one until it tries
every arm. After each active arm was tried, it computes the confidence bounds LCB(a, α)

31

4. Multi-armed bandits.......................................
Algorithm 4.5 Successive elimination bandit
Input: action set A, α ∈ R+

1: set all actions as active arms

2: try each active arm once
3: deactivate every active arm a for which UCBt(a, α) ≤ LCBt(a′, α) for some other active

arm a′

and UCB(a, α) for each arm a in current time step t. Then, if for some active arm a and
some other active arm a′ holds

UCBt(a, α) ≤ LCBt(a′, α) (4.12)

the action a is deactivated, i.e. removed from the active set. The condition (Inequality 4.12)
is often called the deactivation rule. After this rule is applied to each previously active arm,
the algorithm starts again iteratively selecting arms from this newly constructed active set.
This continues until only a single action remains. Then, the intervals need not be computed
and only the remaining action is selected until the end.

The deactivation rule can be visualized on the confidence intervals. When the intervals of
two different actions overlap, it cannot be said, that one is better than the other, with enough
confidence. However, if the intervals are disjoint, the arm with a lower average reward simply
cannot be better with high enough probability and thus can be deactivated.

The exploration parameter α in the computation of upper confidence bound values, resp.
lower confidence bound values, influences how much one trial improves the confidence of the
estimate. Higher values mean more trials are needed to gain enough confidence about the
average of received values.

4.3.4 UCB

Algorithm 4.6 UCB bandit
Input: action set A, α ∈ R+

1: always select at ∈ argmaxa∈A UCB(a, α)

The idea behind UCB bandit, or fully Upper Confidence Bound bandit, is simpler than
behind Successive elimination as it does not consider lower confidence bound at all, but it often
performs better and is more widely used than Successive elimination. It does not deactivate
arms, but every time step t it directly selects the action a with the highest UCB(a, α) value.
In other words, UCB bandit selects the action, which is optimistically the best, or that has
the best potential outcome based on the rewards received so far. As in successive elimination
bandit, it has a single parameter α ∈ R, α ≥ 0, which controls the amount of exploration,
specifically, how fast the confidence bounds get tighter with one trial.

4.4 Adversarial bandits
So far, all stochastic bandits were using so-called bandit feedback. In other words, they received
only the reward gained by playing the selected action, but the potential rewards for other

32

...................................... 4.4. Adversarial bandits

actions remained unknown. Adversarial bandits not only receive the reward for the chosen
action, they also observe all the other rewards. This is called full feedback. However, the
applications of bandits do not always enable receiving rewards for all actions, so later, a way
to use bandit feedback to fit into the full feedback model will be shown.

Moreover, adversarial bandits do not assume i.i.d. rewards, instead they are arbitrarily
chosen by an unknown virtual adversary, thus the name adversarial. For example, while
UCB is designed to learn the best pure strategy, i.e. always play the single best action, the
adversarial bandits strive to find suitable probability distributions over possible actions and
thus learn mixed strategies. This phenomenon is discussed on examples in a later chapter.

4.4.1 Hedge algorithm

The main idea from this category of bandits, which is used in further introduced bandits, is
expert advice. An expert can be viewed simply as a function, which gives its prediction, or
advice, about the action to play. The algorithm has a set of experts E and in each time step
decides which expert’s advice to follow. For this purpose serves the Hedge algorithm.

The purpose of this algorithm is to evaluate performance of individual experts in a sense
whether their advice was fulfilled or not and based on this adjust how often the particular
expert is followed. To ensure some amount of exploration, the expert selection is done in a
way of assigning weights to the experts and sampling the current expert from a distribution
proportional to these assigned weights. In this setting, it is not a full bandit algorithm, it
is more of a core algorithm for some other adversarial bandit which enwraps it and uses its
weighting system to handle the experts.

Algorithm 4.7 Hedge algorithm

Input: the set of experts E, parameter ϵ ∈
(
0, 1

2

)
1: Initialize weights w1(e)← 1 ∀e ∈ E
2: for t← 1, . . . do
3: construct probability distribution pt(e) = wt(e)∑

e′∈E
wt(e′) ∀e ∈ E

4: sample expert: e ∼ pt (.)
5: observe rewards: rt(e) ∀e ∈ E
6: adjust weights: wt+1(e)← wt(e) · (1− ϵ)−rt(e) ∀e ∈ E
7: end for

Input to this algorithm is the set of experts E and a single parameter ϵ ∈
(
0, 1

2

)
, which

determines how much do received rewards change the weights. The initial weight of every
expert is set to w1(e) = 1, ∀e ∈ E, so at the beginning, all bandits have the same probability
of selection.

In each time step t a probability distribution p over the set of experts E is constructed as

pt(e) = wt(e)∑
e′∈E

wt(e′)
∀e ∈ E (4.13)

From this distribution pt the algorithm samples an expert, whose advice will be used in this
time step t. Based on the observed rewards for every expert rt(e), new weights are computed

33

4. Multi-armed bandits.......................................
based on the arm they recommended.

wt+1(e) = wt · (1− ϵ)−rt(e) ∀e ∈ E (4.14)

In the cited textbook [10], this algorithm is defined for costs rather than for rewards, hence
the extra minus sign before rt(e) in the exponent of weight update.

Now we present a bandit algorithm using Hedge to achieve balance between exploration
and exploitation and provide good arm selection, while requiring bandit feedback, which is
natural to many bandit use cases.

4.4.2 Exp3

First, we need to discuss how to adapt bandit feedback, so that is accepted by the Hedge
algorithm, which requires full feedback. It is necessary because bandit feedback is more
common in bandit algorithms as the environment rarely returns rewards for all possible
actions, but only the actual outcome. This obstacle can be tackled by using fake costs.

Algorithm 4.8 Exp3 bandit

Input: action set A, ϵ ∈
(
0, 1

2

)
, γ ∈

[
0, 1

2

)
1: create set of experts E ← {e : ea = a′ | ∀a′ ∈ A}
2: for t← 1, . . . do
3: retrieve expert probabilities pt from hedge
4: sample an expert et ∼ {pt}
5: with probability (1 − γ) use action at = et

a recommended by sampled expert et,
otherwise sample action at uniformly at random

6: observe immediate reward rt(at)
7: compute fake costs r̂t(.) according to (Formula 4.15)
8: return fake costs r̂t(.) to hedge
9: end for

As said before, the Exp3 adversarial bandit is built on top of the Hedge algorithm
(Algorithm 4.7) and provides a transition from bandit feedback to fake costs. Experts in
Exp3 are constructed trivially as for one possible action ai ∈ A exists exactly one expert
ei ∈ E, which always recommends said action ai. No other experts are present in the set of
all experts, except those mentioned above. In addition to the Hedge parameter ϵ ∈

(
0, 1

2

)
,

Exp3 takes a parameter γ ∈
[
0, 1

2

)
, which regulates additional exploration.

In each time step t, the algorithm receives probability pt over experts from Hedge.
Exploration is provided by a procedure similar to ϵ-greedy bandit. With probability γ the
algorithm samples a random action uniformly from the set of all possible actions. Otherwise,
it samples an expert et from the Hedge probability pt and follows its advice et

a. Let the
selected action be denoted at independent of how it was selected. From the received reward
for the chosen (sampled or recommended) action the fake rewards r̂t are computed by a
formula

r̂t(e) =


rt(a)

Pr[at=et
a|pt] at = et

a,

0 otherwise
. (4.15)

These rewards are then returned to Hedge as real rewards to update its inner expert weights.

34

.. 4.5. Summary

This time, exploration is regulated by two parameters. γ influences the more aggressive
exploration with random actions, while ϵ manages selection of experts, which do not predict
so well very often.

There exists an extension of the Exp3 algorithm, which is called Exp4 and differs in used
experts. The user can define arbitrary experts to predict future actions and the number of
experts does not even need to coincide with the number of possible actions. However, this
bandit algorithm was not used in this thesis.

4.5 Summary

In this chapter, we focused on learning in an environment using multi-armed bandit algorithms.
The most simple stochastic bandits were described in addition to the more complex adversarial
bandit algorithm Exp3 (Section 4.4.2). Although, these methods are designed for a single
agent, they can be used to play games as well. In the next section, we propose modifications
to make them fit more into algorithms solving games, stochastic games specifically.

35

36

Chapter 5
New solution methods

In previous chapter (Chapter 3), solution methods for (partially observable) stochastic
games were presented. These algorithms are proven to converge and find a solution or its
approximation, however, they can be slow and thus unusable for very large domains.

In addition, in one of the first sections (Chapter 4), we examined the multi-armed bandit
problem and some examples of algorithms solving this problem. These so-called bandits serve
to decompose a big learning problem to smaller ones and learn more granularly.

In this chapter, we propose adjustments of the common definitions of some multi-armed
bandit problems, as in [10], so they are more suitable for the game-theoretic settings and
so could potentially be more effective. Then, we use these modified bandits to modify the
standard algorithms for both observable and partially observable stochastic games mentioned
in (Section 3.3) and (Section 3.4).

5.1 Preparation of multi-armed bandits

This section describes modifications made to the multi-armed bandits to be more fit for usage
in the context of stochastic games. By definition, the bandits presented so far (Chapter 4),
especially stochastic bandits (Section 4.3), do not consider the actions of the opponent at all.
They were created from MDPs and thus are focused on single-agent learning. However, in the
case of the fully observable stochastic games, the knowledge about opponent’s played action
could be leveraged and lead to improved learning.

With this in mind, we propose a new alternative bandit for each standard algorithm and
we will call this category observable stochastic bandit algorithms.

5.1.1 Observable stochastic bandits

As said before, we design derivations of stochastic bandit algorithms that also observe actions
played by the opponent. These derivations differ only in construction of the Qt function,
but everything else is the same as in the standard variants. Thus, we here describe only the
general principle behind these variants.

For the next part, suppose that A is a set of bandit’s available actions and B is the set of
opponent’s actions and let aN = |A| and bN = |B|. An observable bandit does not hold Qt

function directly but rather keeps reward matrix Rt ∈ RaN ,bN . Then, an entry Rt
a,b, where

a ∈ {1, . . . , aN} and b ∈ {1, . . . , bN}, corresponds to the average reward received by playing
action profile (a, b) up to time step t ∈ 1, Similarly, the action trial function is now

37

5. New solution methods......................................
represented by a matrix nt ∈ NaN ,bN . Moreover, the bandit holds a vector mt ∈ NbN where
entry mt

b is a number of times an action b was played by the opponent until time t.

Algorithm 5.1 Initialize an observable bandit
Input: action set A, action set B

1: R(a, b)← 0 ∀a ∈ A, ∀b ∈ B
2: n(a, b)← 0 ∀a ∈ A, ∀b ∈ B
3: m(b)← 0 ∀b ∈ B

Then, in the arm selection part, a bandit first computes its Qt function from the reward
matrix based on the opponent’s average play according to the formula

Qt(a) = Rt
a ·

1
t
mt ∀a ∈ A (5.1)

where Rt
a is the a-th row of the matrix Rt. This way, the Qt takes into account how likely is

the opponent to play some action. This allows the bandit to avoid selecting promising actions
with potentially high average reward, but whose corresponding counterpart is not selected
often by the opponent. From this state, the selection of an arm continues as in the standard
variant, but with Qt computed by this method.

The accumulation of gained rewards also differs from the standard variant as well as
initialization and is carried out as follows in (Pseudocode 5.2). Later, in experimental

Algorithm 5.2 The receive function for bandit feedback in observable variant
Input: player’s action at

i, opponent’s action at
−i, reward rt for joint actions

(
at

i, at
−i

)
1: m(at

−i)← m(at
−i) + 1

2: n(at
i, at

−i)← n(at
i, at

−i) + 1
3: R(at

i, at
−i)← R(at

i, at
−i) + rt−R(at

i,at
−i)

n(at
i,at

−i)

evaluation chapter, we compare this extension to the standard bandit algorithms. Note that
these bandits can be used only in settings, where the player has access to action history of
the adversary, and thus will be useful mainly in fully observable stochastic games.

5.1.2 Stochasticity

Ideally, every multi-armed bandit algorithm should have some stochastic element in it. Either
to differentiate among runs of the algorithms or to prevent a situation, where the structure of
a particular instance unintentionally benefited the algorithm thus leading to misinterpreted
results.

For example, suppose we have a vector of accumulated average rewards for actions over
time and we want to select the action with the highest value. Moreover, suppose that there are
multiple actions with the same value, which is equal to the maximal value of the vector, present
in the reward vector. Due to the way the operator argmax is implemented in programming
languages, the action selection always results in an action which is on the first position of
those with the same value in the vector. It is desirable to avoid this situation.

Many of the bandits already use such stochasticity somewhere in their design, we, however,
add one additional element into each algorithm just so they behave similarly. Namely, before

38

............................... 5.1. Preparation of multi-armed bandits

using argmax, argmin or some other position-dependent operation, we change the order of
the statistics in the vectors to prevent the example mentioned above. In detail, we generate a
random permutation of indices of actions and reorganize the structure of elements according
to the created permutation. On this reordered vector we perform the desired operation.

This procedure for the basic case with only Qt function is documented in (Pseudocode
5.3). If other deciding statistics are used (i.e., UCB(a, α) value), the procedure works similarly.

Algorithm 5.3 Shuffling of Q values before order-dependent selection
Input: function Qt represented as a vector, i.e. [Qt(a1), Qt(a2), . . . , Qt(an)]

1: generate a random permutation I of the set of indices {1, . . . , n}, where n is the number
of actions

2: create new action-function Ot ← [Qt(aI1), Qt(aI2), . . . , Qt(aIn)]
3: return action aIi ∈ argmax Ot

Note that the order is not changed in-place of the original values, but rather copied with the
new ordering. The inner state of the bandit algorithm stays unaltered, the only effect is on
the action selection in the current round.

Moreover, for every instance of the picked bandit algorithm the set of actions A is initially
randomly permuted, so the bandits are not exactly the same.

5.1.3 Numerical instability

This section is focused on the Exp3 bandit algorithm as it is the only one gravely affected.
Even though its definition serves well for theoretical analysis, if programmed exactly in the
way described in (Algorithm 4.8) and in [10], it becomes unusable after few iterations. Due
to the formula selected for updating weights w and computing probabilities p for experts, the
floating point representation quickly overflows and compromises the selection.

This can be solved by adapting the implementation of Exp3 algorithm from [21]. Here,
they provide equivalent formula for computing selecting probabilities but with more numerical
stability.

p(a) = γ

|A|
+ 1− γ∑

a′∈A eη(s(b)−s(a)) ∀a ∈ A (5.2)

where γ ∈ (0, 1] and η ∈ R+ are constant parameters. The expression s(a), where a ∈ A, is a
sum of rewards for all selections of the action a, each divided by the probability of selecting
that action in the specific round.

Both γ and η can be chosen arbitrarily and for different problems may have better results
for different pair of these parameters. We choose values according to description in [21]

γ = min
{

1,

√
|A| · log |A|

n(e− 1)

}
, (5.3)

where n is the number of trials and e is the Euler’s number, and

η = γ

|A|
. (5.4)

Moreover, for simplicity, we rewrite the Exp3 algorithm (Algorithm 5.4) in a way, that
it does not use Hedge as a separate independent component, but all the functionality is
implemented inside Exp3. For this, we took inspiration in [22].

39

5. New solution methods......................................
Algorithm 5.4 Numerically stable Exp3 with incorporated Hedge
Input: set of actions A, γ ∈ (0, 1], η ∈ R+

1: initialize s(a)← 0 ∀a ∈ A
2: for t = 1, . . . , n do
3: pt(a)← compute probabilities according to (Formula 5.2)
4: draw at ∼ pt(a) ▷ probability of drawing ai is pt(ai)
5: receive reward rt ∈ [0, 1]
6: for b ∈ A do

7: compute fake cost r̂t(b)←


rt

pt(b) b = at

0 otherwise
8: s(b)← s(b) + r̂t(b)
9: end for

10: end for

In this section we made some adjustments to the presented standard versions of multi-
armed bandit problems. We provided a way to take into account observations from the
opponent, we ensured that the algorithms do not exploit some undesired structure of the
problem by increasing their stochasticity. Last, we presented a variant of the Exp3 algorithm,
which is numerically stable and can be better used for experiments.

Now, we are ready to use these adjusted bandits with the standard methods described in
(Chapter 3) to create new algorithms.

5.2 Bandit iteration

In this section, we outline an alternative to the value iteration algorithm, which does not
require solving matrix games and thus linear programming is not necessary. Instead of the
linear programs, the previously mentioned multi-armed bandit algorithms are essential to
this new algorithm. The general algorithms are described in section (Chapter 4) and their
versions adapted for use in games in section (Section 5.1). From the use of bandit algorithms
is derived the name of the next algorithm bandit iteration.

5.2.1 Algorithm

The main algorithm is the same for all multi-armed bandits as they use the same interface.
This interface involves function select, which returns the bandit’s intended action to be
played, and function receive, which processes the received reward rt for the last action at.
Thus, only a type of the bandit Btype and its extra parameters Bparams must be passed as
input to the bandit iteration algorithm.

Other inputs are, of course, the stochastic game to be solved, a number of iterations to
be performed tmax and an averaging function step : T → R. The purpose of said averaging
function will be specified later in (Section 5.2.2). The pseudocode for the algorithm is listed
in (Algorithm 5.2.1).

Bandit iteration uses the same definition of value function as the value iteration algorithm
for stochastic games and aims to gradually improve the estimate of the value function in
individual states as well. Also, as in value iteration, we can initialize this value function to an

40

..5.2. Bandit iteration

Algorithm 5.5 Bandit iteration for stochastic games
Input: G = (S, A1, A2, T, R, γ), tmax, Btype, Bparams, step(t)
Output: approximation of V ∗ after tmax iterations

1: Initialize V (s)← 0 ∀s ∈ S
2: Initialize B1(s)← new Btype for actions A1 and Bparams ∀s ∈ S
3: Initialize B2(s)← new Btype for actions A2 and Bparams ∀s ∈ S
4: for t = 1, . . . , tmax do
5: Vprev ← V
6: for s ∈ S do
7: a1 ← select action from B1(s)
8: a2 ← select action from B2(s)

9: r ← R(s, a1, a2) + γ ·
∑

s′∈S T (s′ | s, a1, a2) · V (s′)
10: V (s)← Vprev(s) + r−Vprev(s)

step(t) ▷ see (Section 5.2.2)

11: B1(s)← receive (a1, r) ▷ for observable bandits see (Section 5.1.1)
12: B2(s)← receive (a2, r) ▷ for observable bandits see (Section 5.1.1)
13: end for
14: end for
15: return V

arbitrary value without breaking the convergence to the real values. The speed of convergence,
however, is influenced by choosing the starting values.

In contrast to the value iteration, in bandit iteration, a bandit of type Btype has to
be created for both players in every state s ∈ S with the set Ai of actions available to
the corresponding player i. Also, additional parameters required for each respective bandit
algorithm need to be passed to initialized bandits as well (for details see (Chapter 4) and
(Section 5.1)).

Note that in the pseudocode (Algorithm 5.2.1), it is assumed that all actions can be
played in all states. At the expense of a more complicated notation, the restriction to only
available actions could be made, but the overall algorithm would remain the same. The only
difference would be that only these playable actions would be given to the bandit in the state
s.

In each round of the value iteration, a matrix game u (Definition 3.3) is solved and thus
an optimal value of the game is found. This newly retrieved value then replaces the old one
in the value function for that solved state and in this way, the representation becomes more
accurate.

In this algorithm, on the other hand, no game is solved, but instead, bandits belonging
to the current stage’s state provide actions a1 for player 1, a2 for player 2 respectively, to be
played. Then a value representing the expected outcome if the players decided to play the
joint action profile (a1, a2) is computed and used to construct a new value function V . Also,
bandits that provided a1 and a2 collect this value by the receive method (Pseudocode 4.2),
which updates their inner state depending on their type (more in (Chapter 4) and (Section
5.1)). By this update, the bandits learn quality of their selected actions and as the algorithm
continues choosing the optimal actions more frequently and on average find the optimal

41

5. New solution methods......................................
strategy. In this way, the algorithm gets closer to the optimal value. To get the complete
value function, we perform the recently mentioned procedure for every state s ∈ S.

After the algorithm performs all tmax rounds, it returns the final approximation V of the
real value function V ∗. Value in V (s), s ∈ S approximates the value of the game V ∗(s), i.e.
total expected reward of the maximizing player 1, if the game started in the state s. The
equilibrial strategies can be then extracted from the value function by using the two linear
programs described in one of previous sections about the value iteration algorithm (LP 3.1),
resp. the ommited LPSGMIN. As an alternative, they could be retrieved from the individual
bandits as the normalized vector constructed from values in the Qt function.

5.2.2 Averaging of value functions

In a single-agent environment, this newly constructed value function can be taken as an
updated more accurate one, due to the fact that there always exists a single action, which is
better than some randomized decision, and thus every optimal strategy can be regarded as
a pure strategy. This is not possible in stochastic games, because, as mentioned earlier in
this thesis, the equilibrial strategies are possibly mixed. Therefore, the value functions from
previous rounds must be taken into account together with the new one as the bandits explore
new possibilities and better actions. Considering only the new value function would mean
taking the last pure actions recommended by the bandits.

To tackle this problem, we need to aggregate all past value functions in some way. The
most natural and easiest way of achieving is a simple arithmetic averaging of values V (s)∀s ∈ S.
However, as is later showcased in the experimental chapter (Chapter 6), the convergence of
this aggregate can be really slow, although functional.

This can be caused by the fact, that the arithmetic average takes all such collected values
equally and each of these values have the same impact on the final average. Nevertheless, it
would be practical to consider the later values with higher weights than the early ones, as
they are presumably closer to the real values. At the beginning, the bandits have not yet
accumulated enough trials to strongly prefer better actions and are likely to explore more
aggressively and thus the values tend to fluctuate more.

For better scaling of the algorithm, we once again use the incremental average as devised
in (Derivation 4.5). This formula can be viewed as the old value added to the difference
between the reward and the old value multiplied by a decreasing function. In the case of the
arithmetic average, this decreasing function is the reciprocal function 1

t , where t is the current
time step. Henceforth, we will identify this decreasing function with step(t). Also, we will
name the reciprocal function LIN(t).

To increase weights to more recent values, we need to select such a decreasing function,
which decreases slower than the reciprocal function. We choose one more and that is a
function SQRT(t) = 1√

t
.

As can be seen from the figure (Figure 5.1), the SQRT(t) step function decreases slower
than LIN(t) and thus can potentially lead to a faster convergence, because it will consider
more recent values with higher weights than the older ones. Please note, that the x axis of the
plot is displayed in the logarithmic scale. However, we can no longer speak of the aggregation
as of an arithmetic average. These two step functions will be later compared on the bandit
algorithms.

42

... 5.3. B-HSVI

100 101 102 103 104

0

0.2

0.4

0.6

0.8

1 LIN(t)
SQRT(t)

Figure 5.1: Comparison of decrease in value depending on time steps of two used step functions.
These functions are used to compute the incremental average as described in (Section 5.2.2)

5.2.3 Observable bandits

When an observable variant of any stochastic multi-armed bandit algorithm is used in the
bandit iteration algorithm (Algorithm 5.2.1), the receive function looks a bit different. These
bandits need to receive both action ai selected by the owner and action a−i selected by the
opponent together with the gained reward. A more detailed description of observable bandit
alternatives is located in section (Section 5.1.1).

5.3 B-HSVI

In (Section 3.4.3), a POMDP heuristic search value iteration modified for OS-POSGs (Section
2.6) was presented. Even though this algorithm scales better in comparison to the exact
method, it still uses linear programs as a method for solving stage games, which can lead to
poor scalability. With the use of multi-armed bandits presented in this and previous chapters
(Chapter 4), we introduce an alternative method to solve the stages and find the equilibrial
strategies.

5.3.1 The algorithm

From the original algorithm in (Section 3.4.3) the modified B-HSVI algorithm differs only in
finding the equilibrial strategies of [HV Γ

LB](bt), resp. [HV Υ
UB](bt). Thus, the only change in

(Algorithm 3.3) is on the lines 7, resp. 8.
In (Algorithm 5.6) is shown the extraction of a stage strategy profile from the lower

bound (πLB
1 , πLB

2). The algorithm for the upper bound is analogous except for a few minor
differences. Instead of an α-vector, a point (b, y) is selected from Υ and then new point (b′, y′)
is created and inserted to Υ.

In each call of solving the stage game, i.e. lines 7, 8 in the original algorithm, the procedure
(Algorithm 5.6) is performed. First, an α-vector, or a point (b, y) is selected from its respective
set. In the case of the set Γ, the selection is partly randomized. The elements of Γ are sorted
in decreasing order by their value in the current belief point bt. With probability ϵ = 0.1

43

5. New solution methods......................................
Algorithm 5.6 Extract equilibrial strategies from [HV Γ

LB](bt)

Input: OS-POSG G, V Γ
LB, Γ, bt

Output: stage strategies πLB
1 , πLB

2
1: α← select from Γ
2: B1, B2 ← bandit algorithms belonging to α
3: a1, a2, π1, π2 ← retrieve current actions and strategies from B1, B2
4: vala1 , vala2(s)← compute bandit feedback ∀s ∈ S
5: B1, B2 ← a1, vala2 update state of the bandits
6: Γ← Γ ∪ {construct new α′ from (π1, π2) in bt}
7: B′

1, B′
2 ← copy bandits B1, B2 belonging to the new α′

8: return π1, π2

a random α-vector from the first 10 elements of the ordered Γ is selected, with probability
(1− ϵ) the single best α-vector. This randomization prevents the algorithm from choosing a
single α-vector every time and creating new compositions which provide no improvement in
value. The point (b, y) is selected by the belief point b.

Then we retrieve the bandit algorithms which belong to this selected α-vector, whose
strategy is meant to be refined. Player 1 owns only a single bandit, while the player 2 has one
bandit algorithm for each state s ∈ S. From the bandits, the current actions are selected as
well as the strategies played so far by these bandits. Note, that while the bandit for the player
1 returns a single action a1 and a single stage strategy π1, the bandits of the player 2 are
conditioned by the state s and thus they provide mappings a1 : S → A1 and a2 : S → ∆(A2),
which can conveniently be represented by vectors of length |S|. The returned strategies
correspond to relative frequencies of selections made by the bandit so far including this round,
i.e. average play.

With these things prepared, the bandit feedback for the lower bound update is computed
according to the following formula

vala2(s) = R(s, a1, a2(s)) + γ
∑

(o,s′)∈O×S

T (o, s′ | s, a1, a2(s)) · αa1,o(s′) ∀s ∈ S, (5.5)

where a1, a2 are fixed by the selection from the bandits and αa1,o(s′) is a convex combination
of the α-vectors for the current pair (a1, o) evaluated in the simplex vertex s′ ∈ S. The upper
bound formula is again analogous except that instead the αa1,o(s′), the lower convex hull of
the points is computed and then evaluated in s′. The value val is then computed as

vala1 =
∑
s∈S

bt(s) · vala2(s). (5.6)

This feedback is the passed to the bandits, however, the vala2 is multiplied by −1 to follow
the maximization nature of the bandit algorithms.

Last, new α-vector α′ or (b′, y′) is created based on the strategies returned by the bandits
in this round. These two operations are still conducted by a linear program. The bandits B1
and B2 are then copied and assigned to this new object to allow independent continuation in
case it is better than the former.

44

.. 5.4. Conclusion

Presolve

For this procedure to work as described before, we need to alter the presolve process in a
similar fashion. New bandits need to be initialized and assigned for every α-vector and (b, y)
point. These empty bandits then correspond to uniform strategies over A1, resp. A2.

5.3.2 Performance

This modification of the HSVI algorithm removes the need for solving a linear program to
obtain the stage strategies in each step. Instead, it uses strategies learned by the bandit
algorithms corresponding to individual lower/upper bound elements. However, the update
of these strategies is changed only by a single action selection each round and thus can also
change slowly in later phases of the learning. In the next section, we compare different bandit
algorithms and how they handle this slow changes.

The bandits are being copied because if their single selection was not in a good direction,
in terms of creating α-vector with lower value than the original, it would not compromise the
original bandits and could be tried again. This is also improved by the randomized element
selection from Γ.

5.4 Conclusion

In this chapter, we summarized modifications of the bandit algorithms presented in chapter
(Chapter 4) to fit them more into game theory. Next, we used these bandit algorithms
to define an algorithm similar to value iteration called bandit iteration to find solution of
stochastic games without the need of computing linear programs. Last, we incorporated the
multi-armed bandits to the heuristic search value iteration algorithm to create algorithm
B-HSVI solving OS-POSGs again to omit solving too many linear programs.

In the following chapter, we compare the specified bandit algorithms on SGs and OS-
POSGs and how they influence convergence to the true values.

45

46

Chapter 6
Experimental evaluation

In the preceding chapters, we have built up the theory around games and the methods to
discover their solution. Then, modifications of these algorithms, which do not necessarily
require linear programming formalism to determine the approximate results, were proposed.
This chapter consists of comparing different multi-armed bandit algorithms within these
modified methods on two distinct models.

Firstly, we study the performance and the convergence of distinct bandits, used in the
bandit iteration algorithm proposed in (Section 5.2), to the optimal value found by the value
iteration method on the model of fully observable stochastic games. We will mostly focus on
comparing the observable and standard variants as well as the two different accumulation
steps (Section 5.1), LIN(t) and SQRT(t).

Secondly, we compare convergence of the B-HSVI (Section 5.3) algorithm also using multi-
armed bandits with the standard HSVI (Section 3.4) which uses mathematical programming.
In this case, we focus on partially observable stochastic games and specifically on the OS-
POSGs subset, even though this algorithm can solve perfect information stochastic games,
too.

6.1 Technical details

The experiments were carried out through the Metacentrum platform acknowledged at the
preface of the thesis, specifically on the halmir cluster [23]. For a single run of an algorithm
was used a single AMD EPYC 7543 core with 2.8GHz base frequency and 16GB of RAM.
The algorithms were implemented in a single-threaded program in the programming language
Julia, version (1.7.0) [24]. For the linear programs, the Coin-or linear programming [25] and
IBM CPLEX v. 20.1 optimization frameworks were used. The implementation details for
solution methods of both evaluated algorithms are listed in (Appendix C).

6.2 SGs and bandit iteration

In (Section 2.4) a formal model of a stochastic game was introduced and an algorithm provided
to solve any instance declared in this formalism in (Section 3.3). It was modified to create
bandit iteration algorithm in (Section 5.2). For comparison purposes of this thesis, we used
two specific game types, each consisting of multiple different instances. Before proceeding
with the experimental testing of the algorithm, we define the two types of games. The games

47

6. Experimental evaluation
are quite simple and the particular used instances are small so many results of the experiments
can be at least partly verified by intuition.

6.2.1 Game types

In both games, there are two players placed in a maze-like environment. The players
simultaneously choose actions and move through the maze or carry out extra manoeuvres
and while player 1 tries to defeat player 2 as quickly as possible, player 2 tries to stay alive as
long as he can.

Both players can observe positions and formerly chosen actions of the adversary, the only
thing unknown to them is the action selected in the current round. Because these are types of
stochastic games, every selected action can have multiple outcomes with different probabilities.
For example, if a player decides to go forward, he can end up somewhere else than before him
with some non-zero probability. However, these outcomes and probabilities depend on the
particular instance of a game type and are not essential for the understanding of the game.
Henceforth, for the sake of a simpler description, we will assume that each action has only a
single outcome, i.e. the player always does what was intended.

For both types, it is possible, that the game will take infinitely long. As any player can
perfectly observe its adversary, it just depends on the specific instance. We try to avoid this
situation by posing a restriction that there always exists some path between both players.

Chase

The game we call Chase is the simpler of the two types. It takes place in a randomly generated
directed graph g = (V, E) with loops allowed, where V is a set of vertices of size n and E is a
set of directed edges. The edges connect the n vertices in such a way, that there always exists
a path between any two different nodes in the graph.

Player 1, i.e. chaser, and player 2, i.e. runner, are then located in random vertices v1, v2
in g. Actions available to both players in a vertex v correspond exactly to outgoing edges
from the vertex v. An action identified with edge (v, v′) means that a player can move from
vertex v to the adjacent vertex v′.

Players use these actions to move through the graph g and the goal for player 1 is to
catch player 2, which happens when they end up in the same vertex. When this phenomenon
occurs, they are both moved to a special absorbing state n + 1, which is not shown on the
visualizations (Figure 6.1), and the game ends. The only exception to this rule, when both
can be present in the same vertex and the game does not end, is the initial round 0, because
both can be placed in the same vertex v1 = v2. In this case, the game continues and ends
only if they immediately go to a same vertex again.

To motivate the chaser to catch the runner the rewards are defined as follows. Every
chaser’s action, which does not lead to victory, is penalized with −1. When the runner is
caught, the chaser receives a reward +10. The chaser is trying to maximize the total received
reward over all rounds and thus trying to win soon. On the contrary, from the definition of a
two-player zero-sum game, the runner is trying to minimize this quantity and avoid being
caught for as long as possible.

48

.................................... 6.2. SGs and bandit iteration

(a) : Chase3 with n = 3 (b) : Chase4 with n = 4 (c) : Chase5 with n = 5

Figure 6.1: Illustration of graphs representing the environment of the Chase stochastic game for
different number of vertices. The detailed description of Chase is in (Section 6.2.1). Numbers
in vertices of the graphs represent identifiers of the states of the game and the integers near the
edges are labels for corresponding actions.

Tag

As opposed to Chase, Tag is closer to more conventional games. Player 1 is called tagger,
while player 2 is named evader. Players are randomly placed into a square n× n board with
some obstacles, which do not permit the player to pass through them. The only restriction to
the placement of obstacles is, as mentioned before, that there must exist a path between the
two players so that solving the game even makes sense.

Both players have actions to move to adjacent squares if there is no obstacle present
on the target square. In addition, the tagger can shoot a laser beam either vertically or
horizontally in every state. In this case, player 2 stays on the square he was before shooting
and the beam hits all squares in the chosen direction until an obstacle or end of the map is
hit.

The goal of the tagger is not to get on the same square as the evader, as it was in Chase,
but to hit the evader with the laser beam. Again, he tries to succeed as fast as possible and
player 2 tries to avoid getting hit for the longest. Rewards for moving and completing the
objective remain the same as in Chase. However, to discourage the tagger from shooting
unnecessarily, blasting a laser beam without hitting the target results in a bigger penalization
by reward −10. As well as in Chase, player 1 tries to maximize the overall accumulated
reward and player 2 tries to minimize it.

1 2

3

(a) : Tag 2 × 2

1 5

2 6

3 4 7

(b) : tag_3_01 3 × 3

1 3

2 4 6

5 7

(c) : tag_3_02 3 × 3

Figure 6.2: Illustration of the maze, where the tagger tries to shoot the evader in the Tag game
described fully in (Section 6.2.1). Both players cannot step on the black fields. The states available
for them are labelled with unique integer identifiers used in later comparisons.

49

6. Experimental evaluation
When the evader is hit, the game ends and both players are again moved into an absorbing

terminal state, which is again not shown in the pictures (Figure 6.2).

6.2.2 Environment and parameters

The performance of an algorithm depends not only on the algorithm itself but also on its
parameters and the settings of the environment where the algorithm is put. Here, the most
important parameters are the bandit ones as they drive the search. These details are briefly
described in this section.

Reference

To argument about convergence of a given bandit algorithm used inside the bandit iteration
framework (Algorithm 5.2.1) some referential value is needed. The values returned by the
algorithm are then supposed to get as close as possible to this reference value. Ideally, they
should be equal.

The best possible reference value is the optimal value, but this value is unknown. Thus,
the value returned by the value iteration algorithm, after it stopped with some precision
parameter ∆. From the definition of value iteration (Algorithm 3.2), the returned value
function Viter(s) is a good approximation of the optimal V ∗(s) in every state s ∈ S. For the
purpose of the following comparisons, we pose V ∗ = Viter and the values returned from the
bandit iteration algorithm are compared to this value. The precision parameter was set to
∆ = 1× 10−6.

For comparing the results of the bandit algorithm with different bandits, we use quantities
V (s) based on this formula

V (s) = Vbandit(s)− V ∗ ∀s ∈ S (6.1)

When V (s) = 0 ∀s ∈ S, we say that the bandit iteration has converged.

Means of evaluation

In stochastic games, there is defined a starting state, where both players begin their plays.
Solving the game then means finding value of the game in this particular starting state.
However, in our experiments, we always perform the learning backup for every state s ∈ S
and thus we end with value of the game for every state. To acquire the value of the game for
the starting point, it only needs to be picked from the value function Vbandit. This way is
convenient for comparison of the bandit algorithms and how they behave in different types of
states.

Setting

Experiments were run on all three Chase instances (Figure 6.1), for one Tag instance with
dimensions 2× 2 (Figure 6.2a) and for 7 instance of Tag with dimensions 3× 3. Two of those
latter instances are displayed in (Figure 6.2b), respectively (Figure 6.2c).

The versions of multi-armed bandits from (Section 5.1) were used in the bandit iteration
algorithm for evaluation, which are those with shuffled greedy action selection, the observable
variants and the numerically stable Exp3. Every bandit was tried inside the bandit iteration

50

.................................... 6.2. SGs and bandit iteration

bandit Best of N ϵ-greedy Successive elimination UCB Exp3
parameter N = 100 ϵ = 0.1 α = 20 n = 105

Table 6.1: The best found parameter values for each individual bandit algorithm tested on
stochastic games in the bandit iteration framework.

for 105 iterations 10 times for each instance for both steps, LIN(t) and SQRT(t) (Definition
5.1), with different seeds for each single run.

The runtime of these bandit iteration runs for different instances of Tag and Chase is
analysed in (Appendix A).

Parameters

The parameters were fixed to those used standardly with each respective bandit. Both
the observable and non-observable variants were parametrized with the same value, so the
comparison is more accurate. The individual chosen parameters for all non-observable bandits
are listed in table (Table 6.1).

For the Best of N bandit, the N should be much smaller than the intended number of
iterations, otherwise it would degrade into simply random selection as the first N ∗ |A| actions
are selected uniformly at random. The chosen number is shown in (Table 6.1)

The value ϵ = 0.1 is used usually for the ϵ-greedy as it provides sufficient exploration
while exploiting very frequently.

The exploration parameter α has the same purpose for both Successive elimination and
UCB bandits as it represents how fast do the confidence bounds tighten around the average
received reward. A good rule of thumb for selecting this value is the size of an interval, from
which the rewards are sampled. In the case of Catch, the interval is [−1, 10], so the parameter
should be αcatch = 11, for Tag it is [−10, 10], and thus αtag = 20. Naturally, the larger one
was selected as α.

The Exp3 is given the number of iterations n as a single parameter and then the
appropriate γ and η are computed as declared in (Formula 5.3).

The experiments were conducted for different parameter settings with the above in mind.
The values listed in (Table 6.1) showed the best results.

Graphs

Graphs are the most important part of the following examination of the algorithm’s behaviour.
To prevent confusion, we briefly describe the properties of the used graphs.

Each graph shows how selected bandits behave in a single state of the examined stochastic
game. Values on the x axis correspond to rounds t = 1, . . . , T of the bandit iteration and due
to the large T = 105, this axis is scaled by the decimal logarithm log10. The values on the y
axis then displays the deviation of the result computed by the bandit iteration and the optimal
value found by value iteration for each round. From these differences V (t) = Vbandit(t)− V ∗

is computed mean µ(t) and the standard deviation σ(t). The graph is thus shown as a line
µ(t) surrounded by an interval [µ(t)− σ(t), µ(t) + σ(t)] ∀t = 1, . . . , T .

The deviation of the optimal value from itself is always 0 and thus is displayed as a
constant function y = 0 in black.

51

6. Experimental evaluation
Now we have everything ready for the actual comparison of the bandit algorithms and

their convergence.

6.2.3 Individual bandits

In this short section, we summarize the analysis of the individual bandit algorithms. We focus
on their performance, comparison of the standard and observable variants and investigation
of the effects of the two step functions on the course of convergence. This summary is based
on a detailed analysis located in (Appendix B).

From the comparisons in (Appendix B), it clearly follows that the observable variants
converge faster and closer to the optimal value than the standard bandits. We demonstrate
this on the example of UCB. This algorithm does not converge to the optimal value in
states where mixed strategies are optimal, because it was designed to find the best single
action. However, the observable UCB is able to leverage the average play of the opponent
and correctly find the mixed strategy and converge to the optimal value.

Similarly, the SQRT(t) step function is superior to the LIN(t) function, but not as
definitely as the observable variants are superior to the standard ones. The SQRT(t) causes
much faster convergence to the value, but when the value is close to the optimal value it
produces high fluctuations in value. On the other hand, LIN(t) has a smooth course but at
the expense of slow convergence.

From the experiments, the best performing algorithms are UCB, ϵ-greedy with their
respective observable variants and the Exp3 adversarial bandit. These algorithms often find
the optimal value with either of the step functions. In contrast, the Best of N bandit and the
Successive elimination do not perform well due to fixating a single best action at some point,
which happens with these bandits with no means of recovery.

We proceed with comparison of these selected well-performing multi-armed bandits among
themselves to analyse their speed and resistance to changes in value.

6.2.4 Bulk comparison

Previously, we showcased how the proposed algorithms behave inside the bandit iteration
framework and how they converge to the value found by the value iteration. Also, we compared
the standard single-agent versions with the observable versions meant for games. Now, we
focus on the three most promising multi-armed bandits and compare them together on selected
states. Generally, the bandits which stop even considering some action should be avoided,
as this action can later be important in the mixed strategy and just more exploration is
necessary.

The comparison is conducted on 4 states, where are many possible actions and where
the optimal strategies are mixed which is confirmed by the value iteration. These selected
bandit algorithms usually have no problem with convergence to an optimum in states with
pure strategies, so these are more appropriate to showcase the advantages and disadvantages
of each individual bandit. We separate the set-ups by used step function and the version of
the algorithm to prevent confusion and increase readability of the charts.

The first state is s = (3, 3) of the instance tag_3_01 (Figure 6.2b). In this state (Figure
6.3), the Exp3 algorithm is superior to the standard versions without adversary’s average
play. Even though it falls behind at the beginning and despite the large fluctuations with
the SQRT(t) step, it eventually overcomes the other two in convergence. Standard UCB and

52

.................................... 6.2. SGs and bandit iteration

(a) : Standard bandits with LIN(t) step (b) : Standard bandits with SQRT(t) step

(c) : Observable bandits with LIN(t) step (d) : Observable bandits with SQRT(t) step

Figure 6.3: This quartet of figures studies development of deviation of learned values from the
value iteration result over time. The comparison is made on a Tag instance tag_3_01 in a
mixed-strategy state s = (3, 3) for the three best bandits from previous comparisons, ϵ-greedy,
UCB and Exp3, in combination with the two step functions, LIN(t) and SQRT(t). The top half
compares the standard bandits together, the bottom half their observable complements.

ϵ-greedy perform approximately the same, but UCB is more resistant to the fluctuations
caused by the weighted step. The observable UCB, however, catches up to the Exp3 algorithm
and does not oscillate afterwards, observable ϵ-greedy follow close behind.

The second state is s = (4, 4) of the instance tag_3_02 (Figure 6.2c). Here (Figure 6.4),
all the bandits converge very slowly with the LIN(t) step. Moreover, the non-observable
variants seem to converge to some suboptimal values, even though, after many more iterations,
the Exp3 algorithm appears that it would approach the optimum closer. The observable
bandits converge as slowly as the standard ones, but the trend suggests further decrease of
the deviation from the value of the game for more iterations. With this step function, these
three algorithms are comparable.

When it comes to SQRT(t), the situation dramatically improves. Especially the average
play UCB performs very well as it converges close to the real value and does not fluctuate
afterwards. The other standard bandits converge to another value and oscillate around it,
while the observable ones converge to the optimum. The fluctuations are enormous, when
intersected by a line.

The situation (Figure 6.5) for the third discussed state s = (1, 4) of the instance tag_3_02
(Figure 6.2c) is very similar to the second example with few exceptions which will be now
discussed. The LIN(t) step performs a bit worse than in the previous case, because it

53

6. Experimental evaluation

(a) : Standard bandits with LIN(t) step (b) : Standard bandits with SQRT(t) step

(c) : Observable bandits with LIN(t) step (d) : Observable bandits with SQRT(t) step

Figure 6.4: This quartet of figures studies development of deviation of learned values from the
value iteration result over time. The comparison is made on a Tag instance tag_3_02 in a
mixed-strategy state s = (4, 4) for the three best bandits from previous comparisons, ϵ-greedy,
UCB and Exp3, in combination with the two step functions, LIN(t) and SQRT(t). The top half
compares the standard bandits together, the bottom half their observable complements.

approaches towards the optimal value for a while and then it diverges to another value before
turning to improve again. From the graphs it seems, that more iterations would bring the
deviations even closer to 0. But again, the observable UCB with SQRT(t) step dominates the
others especially in close to no fluctuations and tight standard deviation intervals.

Interestingly, the Exp3 algorithm always goes below the 0 deviation line and then again
above rather than going just in one direction. This could be tied to the two most probable
joint actions which can occur in this state. The evader can go left or down, while the tagger
can hit the evader with vertical or horizontal beam. The Exp3 thus can first explore these
two pure strategies before settling to the randomized solution.

The last state is s = (3, 3) from the chase instance (Figure 6.1c). Here (Figure 6.6),
the situation can be divided into two categories. First, the observable variants converge
for both step function, only the SQRT(t) causing more oscillation at the end. Second, the
non-observable ϵ-greedy approaches the optimal value but not as quickly and precisely as
Exp3. The non-observable UCB converges to another value, because it found a pure strategy
in a state when mixed one is required.

54

.................................... 6.2. SGs and bandit iteration

(a) : Standard bandits with LIN(t) step (b) : Standard bandits with SQRT(t) step

(c) : Observable bandits with LIN(t) step (d) : Observable bandits with SQRT(t) step

Figure 6.5: This quartet of figures studies development of deviation of learned values from the
value iteration result over time. The comparison is made on a Tag instance tag_3_02 in a
mixed-strategy state s = (1, 4) for the three best bandits from previous comparisons, ϵ-greedy,
UCB and Exp3, in combination with the two step functions, LIN(t) and SQRT(t). The top half
compares the standard bandits together, the bottom half their observable complements.

6.2.5 Strategies

Here we shortly list and compare strategies acquired by the bandit algorithms in an example
state. The strategy is computed as the average use of that said arm. In terminology from
(Section 4.2) the strategy in state s, which is being learned by the bandit, is computed as

π(a) = nt(a)∑
a∈A nt(a) ∀a ∈ A. (6.2)

In the table (Table 6.2), the average policies over the 10 runs are listed. For simplicity,
we include only the runs with SQRT(t) step and only the strategies of the Tagger. The data
in the table confirm what was already clear in the graph comparison before. The best of N
simply selects the best action after the first N trials, while successive elimination removes the
not so good arms. But both of them do not reach near the optimal strategies and thus could
not converge to the optimal 0 deviation in the experiments before.

The rows for ϵ-greedy show that the bandit truly explores as it has a bit bigger usage of
actions ⇕ (shoot laser beam vertically) and ⇔ (shoot laser beam horizontally) which are not
used in the optimal strategy at all. Moreover, it can be said that the other bandits explore a
lot less.

55

6. Experimental evaluation

(a) : Standard bandits with LIN(t) step (b) : Standard bandits with SQRT(t) step

(c) : Observable bandits with LIN(t) step (d) : Observable bandits with SQRT(t) step

Figure 6.6: This quartet of figures studies development of deviation of learned values from the
value iteration result over time. The comparison is made on a Chase instance Chase5 in a
mixed-strategy state s = (3, 3) for the three best bandits from previous comparisons, ϵ-greedy,
UCB and Exp3, in combination with the two step functions, LIN(t) and SQRT(t). The top half
compares the standard bandits together, the bottom half their observable complements.

The UCB together with the observable variant gets quite close to the values found by the
value iteration. It should be noted, that most of these strategies could turn out better if the
beginning was not included. If the probabilities were computed from let’s say second half, it
could filter the wrong choices in the beginning and thus get closer to the optimal strategies.

The Exp3 bandit results in very similar average strategy as the UCB and observable UCB
algorithms and thus is again close to the optimum.

6.3 OS-POSGs and B-HSVI algorithm

In (Section 2.6) we presented the One sided partially observable stochastic game formalism
used to model scenarios, where one of the adversarial agents does not have full information
about the environment state. Then, in (Section 3.4) we showed an algorithm invented by
[9], which is proven to approximately solve problems modelled as OS-POSGs with the use of
linear programming. To avoid the poor scalability of such linear program, which can grow
very large for partially observable settings, we altered the HSVI algorithm to form a new
method called B-HSVI in (Section 5.3).

Here, we experimentally evaluate the B-HSVI algorithm and compare the different multi-
armed bandit type selections on a selected instance of an OS-POSG game. In contrast to the

56

................................6.3. OS-POSGs and B-HSVI algorithm

⇕ ⇔ ↑ → ↓ ←
value iteration 0 0 0.4 0.6 0 0
Best of N 0.997 0.001 0.001 0.001 0 0
Obs. Best of N 0.997 0.001 0.001 0.001 0 0
ϵ-greedy 0.07 0.21 0.18 0.54 0 0
Obs. ϵ-greedy 0.03 0.27 0.26 0.69 0 0
Successive elim. 0.02 0.02 0.02 0.94 0 0
Obs. Successive elim. 0.02 0.03 0.02 0.93 0 0
UCB 0.01 0.16 0.21 0.62 0 0
Obs. UCB 0.0 0.10 0.23 0.66 0 0
Exp3 0.01 0.08 0.27 0.64 0 0

Table 6.2: This table compares strategies learned by individual bandits used in the bandit iteration
framework to the optimal mixed strategy found by the value iteration algorithm. These depicted
Tagger’s strategies correspond to distributions over actions: ⇕ = "shoot beam vertically"; ⇔ =
"shoot beam horizontally"; ↑, →, ↓, ← = "move to the adjacent square determined by the direction
of the arrow". This strategy was learned on Tag instance tag_3_01 in a state s = (3, 3).

SGs, the observable variants cannot be applied to this setting. Therefore, we consider only
the standard bandit algorithms receiving feedback only for actions selected by them.

Note, that we will focus mainly on the results which are different from the previous
comparisons The similarities will be mentioned but not thoroughly analysed.

6.3.1 Pursuit-Evasion

For comparison purposes we selected a game type similar to the Chase and Tag game types
called Pursuit-evasion, or shortly PEG. This game type is taken from [17] and was inspired
by [26].

The game is played on a grid with a fixed number of rows and instance-dependent number
of columns. The two players are then placed in the environment and their actions correspond
to moving to an adjacent square. The player 1, called the Pursuer and represented by n
independent units, aims to get one of these units on the same grid cell as the Evader ’s single
unit and this way terminate the game. The Evader, on the other hand tries to escape for as
long as possible. For catching the Evader, the Pursuer receives reward 1.0, otherwise 0.0.

As player 1, the Pursuer does not have full information, thus the position of the Evader
is unknown to him. To simplify the problem, we employ the information sets (3.4.1), hence
allowing the Pursuer to know perfectly his own positions on the grid, effectively reducing the
dimension of the belief search space. The Evader has access to full information and knows his
and the adversary’s states and the actions played by both of them.

For the comparison purposes, we set the parameters of the game to a grid 3 × 3 and
fix the number of Pursuer unit to n = 2. However, for the sake of clarity, the transition
probabilities are either 1 or 0, thus prohibiting failed effects of actions.

For the comparisons, we consider two initial settings as shown on (Figure 6.7). The setup
on the right should be a bit easier for the algorithm to solve as the Evader is with some
probability very close to getting caught.

57

6. Experimental evaluation
• •

1.0

(a) : PEG 1 with initial belief binit
1

0.25 • 0.25

•

0.25 0.25

(b) : PEG 2 with initial belief binit
2

Figure 6.7: Illustration of the environment, where the game of PEG (Section 6.3.1) is played. In
the figures, the • symbol represents the units of the Pursuer and the numbers, represent the initial
belief binit about the position of the Evader.

6.3.2 Environment and parameters

As in the previous comparison, the convergence of the individual bandit algorithms inside the
B-HSVI algorithms depends on the parameters and the means of evaluation. These details
are briefly described in this section.

Reference

As well as in the previous experiments, we need some referential solution to which all the
bandit algorithms will be compared. Ideally, we would take the exact optimal solution, but
for this class of problems, this value is not available. Thus, we use the result of the original
HSVI algorithm, which is proven to converge to an ϵ-neighbourhood of the true solution.

Specifically, we solved the two possible initial settings of the PEG game instance (Figure
6.7) to a precision ϵ = 10−4. The retrieved solution is a tuple (l, u) where l ∈ R is the lower
bound and u ∈ R is the upper bound and where l ≤ u. The value used as a reference then
corresponds to the number exactly between these two bounds, i.e. the arithmetic average of l
and u.

In the experiments we observe how the bandits and the B-HSVI approach this referential
value.

Means of evaluation

As opposed to the value iteration and bandit iteration for stochastic games, the HSVI-based
algorithms only focus on finding the close approximation of the initial state and the value
of the others is not guaranteed to be inside the ϵ-neighbourhood. To provide two different
situations for comparison we choose the two initial starting settings as described in (Section
6.3.1). On the other hand, with these bounds-focused algorithms there are two possible means
of comparison of the individual runs, each convenient for different type of analysis. The first
is tracking the approach of the two bounds to the optimal value somewhere between them.
We focus on this to better distinguish between behaviour of the bandits on the lower bound
and the upper bound. The second and least important one is observing the gap between the
two bounds going to zero, which provides a more general idea about the convergence of the
algorithm.

58

................................6.3. OS-POSGs and B-HSVI algorithm

Setting

Experiments were conducted on the PEG instance described in (Section 6.3.1) on both initial
starting points as shown in (Figure 6.7). Moreover, each run was repeated both with the
default discount factor γ = 0.95 and with a smaller one γ = 0.9.

Each of these types of problems were executed 5 times for each non-observable bandit
algorithm with multiple different parameter values. The runs were set up for 5 · 104 discrete
time steps, where one time step corresponds to a single update of both the lower and upper
bound. This number of time steps corresponds to approximately 8-10 hours of solve time on
the Metacentrum machine mentioned at the beginning of the chapter. All the runs had a
unique random seed for the pseudo-random number generator.

The parameters selected for comparisons were decided by similar rules of thumb as in the
previous experiments. The best found values for individual algorithms are compared later in
this chapter in (Section 6.3.3).

Graphs

As in the experiments for stochastic games, the analysis includes demonstration on the
graphs, even though, there are a few differences from the previous ones. Similarly, the y
axis corresponds to a mean value over the 5 runs highlighted in full colour with the band of
standard deviation around it. However, here the number of evaluations is not as big and the
graphs are synoptic so there is no need for logarithmic scale on the x axis. For more technical
details see (Section 6.2.2).

The least important type of graphs is the plot displaying convergence of the gap between
bounding functions to zero. These graphs are very similar as those in (Section 6.2).

The second and more important graph type depicts how both bounds approach to the
optimal value found by HSVI with linear programs. These graphs differ as two lines highlighted
by the same colour belong to a single specific bandit algorithm with given parameter value.
These are more descriptive of the course of optimization because they distinguish between
the improvements in each respective bound and thus a deeper analysis can be made.

6.3.3 Individual bandits

In this short section we discuss the bandit algorithms individually with respect to the evaluated
parameters. The interesting realizations are demonstrated on images, while the less important
ones are only mentioned.

Surprisingly, most of the bandits do not change their behaviour much based on the tested
parameters even though chosen really different. The Exp3 bandit algorithm, for example,
for all the selections of the explorative parameter γ ∈ {0.1, 0.25, 0.5, 1.0} behaved almost
exactly the same for all the chosen runs with only slight changes within the standard deviation
interval. The same thing can be said about the Best of N and even about the Successive
elimination bandit for its exploration parameter α ∈ {1, 2, 10}. Thus, the parameters for the
bulk comparison of the bandit algorithms were chosen as those with the best mean value even
though it was never out of the interval of standard deviations of the other runs.

Conversely, the very important realization is that the UCB multi-armed bandit is not
suitable for the HSVI algorithm at all. While it and its observable complement dominated all
other bandits on most instances, here it is one of the poorly performing bandits with only the
Successive elimination being incomparably worse. And it seems that the parameter which

59

6. Experimental evaluation
bandit Best of N ϵ-greedy Successive elimination UCB Exp3
parameter N = 100 ϵ = 0.3 α = 1 γ = 0.1

Table 6.3: The best found parameter values for each individual bandit algorithm tested on PEG
OS-POSG within the B-HSVI framework. The argumentation about these values is presented in
(Section 6.3.3).

controls tightening of the confidence bounds around average reward, set similarly as for the
Successive elimination, α ∈ {1, 2, 10} has the opposite effect than the intuitive idea. The

(a) : The bounds of HSVI approaching the
true value

(b) : The gap between bounds converging to
zero

Figure 6.8: The behaviour of the UCB bandit algorithm on the PEG instance with initial settings
as in 6.7a with the discount factor γ = 0.95. On the left figure is show dependence of values found
by the upper and lower bound on the discrete time steps representing one point-based update and
how the bounds approach the true value. The right graph depicts convergence of the gap between
bounds to zero depending on the same discrete time steps.

parameter setting α = 1 shows the best results while the α = 10 does not converge almost at
all when considering the lower bound. This goes against the conclusions from the previous
experiments, where bigger exploration meant much better convergence. It could be caused by
the fact that with smaller α the UCB gradually degrades to the greedy bandit and as will be
shown in the next comparison the ϵ-greedy works well with the HSVI algorithm.

On the upper bound, the different parameters for the UCB do not show significant
differences in convergence.

The best parameter over the all trials for ϵ-greedy bandit algorithm is ϵ = 0.3, even
though not by a large margin. This holds mainly for the lower bound, because in the upper
bound the more aggressive exploration parameter value ϵ = 0.5 converges slightly closer to the
real value. However, when compared by the convergence of the gap to zero, the lower bound
improvements outweigh the upper bound, thus making the ϵ = 0.3 a better choice overall.

With these best parameters selected, we can compare all the bandit algorithms together.

6.3.4 Bulk comparison

The table (Table 6.3) lists the parameters deemed best from the previous analysis in (Section
6.3.3). These parameters are used for the comparison of all bandit algorithms together in this
section.

60

................................6.3. OS-POSGs and B-HSVI algorithm

The change of learning rate slightly changes the optimal solution found by the linear
programming utilizing HSVI algorithm. It would be expected, that solving the game with the
lower discount factor γ = 0.9, the game would become easier for the approximate algorithms
to solve. However, during testing of the B-HSVI algorithm, it converged slightly farther from
the optimal value than when the default γ = 0.95 was employed. On the other hand, the
standard deviation intervals surrounding the plotted means are noticeably tighter for the
smaller discount factor than for the default one and thus the values were learned by the
bandits with higher confidence.

All the bandits evaluated on the PEG instance with both initial settings and with the
discount factor 0.95 is shown in the (Figure 6.9). The courses of convergence are very similar

(a) : Value bounds for the original setting
(Figure 6.7a)

(b) : Gap between the bounds for the original
setting (Figure 6.7a)

(c) : Value bounds for the modified setting
(Figure 6.7b)

(d) : Gap between the bounds for the modified
setting (Figure 6.7b)

Figure 6.9: This figure depicts the convergence course of the multi-armed bandits with the best
found parameters on the PEG instance with the use of discount factor γ = 0.95. The upper two
graphs belong to the initial state in (Figure 6.7a), where the Pursuer is located in the upper left
corner and initial belief binit is pure in the bottom right corner. The bottom two charts then
belong to the initial state in (Figure 6.7b), with the Pursuer in the middle and the Evader with
uniform probability in each corner. The left graphs show dependence of both lower and upper
bounds on discrete time steps corresponding to bandit updates and the right graphs show decrease
of the gap between bounds for the same time steps.

for all the runs, only the absolute values differ, thus it suffices to discuss a single case.
The Successive elimination bandit algorithm performs by far the worst on the lower

bound. The upper bound is by a tiny margin better, but it does not suffice to make it a
suitable algorithm as the lower bound slowly converges to a completely different value.

61

6. Experimental evaluation
Surprisingly, the Best of N algorithm is for many bandit updates better than the UCB.

On the easier initial setting in the lower half of the (Figure 6.9) the UCB at last overcomes
the Best of N, so this can be expected even for the harder problem in later iterations after the
predefined horizon. This can be caused by the setting of the parameter N . Until all actions
are tried, the search is conducted as uniform sampling over the actions and thus provides
enough exploration power to improve quickly, but after the best action is fixed, no exploration
is conducted by the bandit. The only exploration at that moment is the randomized selection
of α-vectors, but evidently it is not enough and the more explorative UCB continues slowly
improving. Note, however, that this holds only for the selected α for UCB, as for higher
values it does not converge to the true value at all.

The best two algorithms are ϵ-greedy and Exp3 which both get closer to the real value, for
the easier example in the bottom half of (Figure 6.9) the gap between bounds gets even under
0.1. Even though, the ϵ-greedy with ϵ = 0.3 improves very quickly at the beginning, in later
iterations the improvements slows down as are more often chosen random actions which do not
move the values in the correct direction on average. Again, an adaptive annealing approach
could help overcome this issue. In contrast, the Exp3 improves more steadily and does not
slow down as much and based on the trends in the chart, it would continue converging while
the ϵ-greedy would slow down more.

In the upper bound there are not very large differences between the individual bandit
algorithms, but that is caused by the presolve procedure which gets the initial approximation
really close to the real value. However, the bottom graphs in (Figure 6.9) suggest that the
situation is different, because it seems like the ϵ-greedy is the worst, while Exp3 and Successive
elimination are closest to the optimal value.

To obtain the best performance, the suggestion would be to use the Exp3 algorithm and
fine-tune its γ parameter more thoroughly, or use a combination of different bandits for the
upper resp. lower bound.

6.4 Summary

In this chapter, we compared the bandit algorithms on different instances of games Tag and
Chase. Generally, it can be said, that neither Best of N, Successive elimination nor their
observable variants are usable in the context of games as they discard some actions during the
learning without possible correction and thus can prevent themselves from finding the optima.

From the other bandit algorithms the best option is the observable UCB multi-armed
bandit in combination with the SQRT(t) averaging step function as they almost always
converge quickly and without fluctuations in value. The Exp3 bandit is also very good but
sometimes struggles with speed and frequent oscillation around the optimal value with the
SQRT(t) step. The observable ϵ-greedy usually performs well but cannot compete with the
two before. Unsurprisingly, the non-observable variants of ϵ-greedy and UCB perform poorly
as they seek to find a single best action. These two algorithms converge slowly and often to
some suboptimal value.

It turns out, that the average play employed in the observable bandits is a powerful
factor in quality of the solution. Also, the speed increasing SQRT(t) step is convenient and
works really well for the average play UCB. The other algorithms are then caused to oscillate
because of it. Perhaps, some function which decreases more rapidly than 1√

t
but slower than

1
t could be proposed and lead to better results without fluctuations.

62

.. 6.4. Summary

Then, we focused on the OS-POSG model and the proposed B-HSVI algorithm, which
uses multi-armed bandits as well. This time, however, only the non-observable variants as
they fit the OS-POSG model more. The comparisons of the bandit algorithms were conducted
on a game of Pursuit-Evasion of size 3× 3.

The experimental evaluation showed surprising results as the UCB algorithm whose
observable complement mostly dominated in the context of observable SGs, now does not
perform well except for a very specific choices of parameters. On the other hand, the ϵ-greedy
algorithm outperformed its expectations as it did not converge as good in stochastic games.
The Exp3 algorithm was consistently good and fulfilled its promises gained by performing well
before, except for the fluctuations caused mainly by the alternative step function SQRT(t).

To conclude this chapter, we evaluated the bandit algorithms on two large domains of
problems and compared their performance on specific instances. Some of them exceeded
their anticipated results, some did not fulfil them. If a single bandit algorithms needed to be
selected for each domain, it would be the Observable UCB bandit for stochastic games as it is
able to converge to real values even for states with randomized strategies and the Exp3 for
One sided partially observable stochastic games as it performed consistently good for both
upper and lower bound and showed more potential even after the fixed discrete horizon in
the number of bandit updates.

63

64

Chapter 7
Conclusion

To conclude this thesis, we provide an overview of the discussed topics, the summary of
the achieved results and state possible further improvements of the proposed methods and
approaches.

7.1 Thesis overview and contributions

In (Chapter 2), we presented the used formal models for sequential reasoning, with a single
or multiple independent agents in different types of environment. The simplest models for
single-agent settings, MDPs and the generalizing POMDPs, were discussed together with
their most important properties, which are essential for the more complicated formalisms.
Also, the uncertainty about the state of the environment introduced by POMDPs and the
means to eliminate the following problem of the infinite search space were stated as well.

The same was done for a multiagent setting, i.e. an environment where multiple indepen-
dent units interact and influence each other’s decisions. This setting is thoroughly described
by the game theory, so all the relevant and important notions were explained, with focus on
two-player zero-sum games. Special attention was given to stochastic games, the partially
observable stochastic games and the one-sided subset, which was the main topic of this thesis.

The (Chapter 3) contains description of the existing methods which are guaranteed to
find exact or approximate solutions of problems formalized as one of the models mentioned in
(Chapter 2). The properties of these algorithms were investigated and possible disadvantages,
which motivate the creation of this thesis, were stated. The main problem of the presented
algorithms is the usage of linear programming framework, which especially for the non-
observable games grows in size rapidly making very large instances intractable.

The next chapter (Chapter 4) introduces the multi-armed bandit algorithm framework as
a standard tool of reinforcement learning and the main mean of replacement of the linear
programs in the standard methods. The basic principles are presented and the standard
definitions of stochastic and adversarial bandits are listed. Specifically, the bandits discussed
are Best of N, ϵ-greedy, Successive elimination and the UCB bandits from the stochastic class
and the Exp3 as an adversarial algorithm.

In (Chapter 5) we modified the methods and algorithms discussed in the previous
chapters to fit them more into the game theoretical context and to remove the need for
linear programming in the existing solving algorithms. First, we adapted the standard bandit
algorithms to contain more stochastic elements, for example changing the order of arms
to prevent selecting the same arm all the time by order-dependent operations. Second, we

65

7. Conclusion...
proposed so-called observable variants of the stochastic bandits which accept the actions of
the opponent as observations to form average play strategies of the adversary and leverage this
statistics to make better decisions. Then, we introduced the bandit iteration algorithm which
is derived from the value iteration method but replaces solving the stage game by a linear
program with gradually selecting actions by bandit algorithms and learn the optimal strategies.
Last, we incorporated the bandit algorithms into the HSVI algorithm for OS-POSGs to create
B-HSVI algorithm which again replaces stage games with iterative updates of the bandit
algorithms and learning Nash equilibria.

In the last (Chapter 6), we compared convergence of the altered multi-armed bandit
algorithms from (Chapter 5) both in the bandit iteration and B-HSVI frameworks on specific
instances of stochastic games and one-sided partially observable stochastic games. As stated
in the introduction (Chapter 1), the experiments focused more on the stochastic games as
the area of bandit algorithms was not fully investigated there, and the partially observable
superset is just a harder problem. Thus, it is sensible to first thoroughly explore the perfect
information games before moving to the imperfect information.

In the context of stochastic games, we compare the convergence of the average-play
variants to the non-observable bandits. From the conducted experiments it results, that the
observable algorithms are superior to the standard ones as they often converge faster and
closer to the optimal values. Two functions serving as averaging rates were compared, the
first being the regular arithmetic average LIN(t) = 1

t , where t ∈ {1, 2, . . . , T} is the time step
of the optimization, and the second being a faster learning factor SQRT(t) = 1√

t
. The best

bandits according to the experimental evaluation were the observable UCB together with
the SQRT(t) learning step and the Exp3 algorithm. These two managed to converge to the
optimal value even in states with randomized optimal strategies. On the other hand, the Best
of N, Successive elimination and unobservable UCB perform very poorly in those states.

Then, the same comparison was conducted on the domain of one-sided partially stochastic
games within the B-HSVI algorithm, but only for the standard bandits. From these com-
parisons, the best performing algorithms were the Exp3 and ϵ-greedy with high exploration
ϵ = 0.3. On the other hand, the UCB and Successive elimination almost never converged
close to the optimal value.

7.2 Future ideas

This concludes the contributions of the bachelor thesis and only a few suggestions for a next
work are listed as there is a space for improvement in the proposed algorithms.

As far as the algorithm for stochastic games, neither of the used averaging steps is perfect.
The LIN(t) step causes slow convergence for all tested bandits, but in contrast the faster
SQRT(t) showed large fluctuations in value at the later stages of the experimental evaluation.
Some monotonously decreasing function, which however decreases faster than 1

t , but slower
than 1√

t
, could bring dramatic improvements.

For the OS-POSG domain, we designed the B-HSVI algorithm to use bandits of the same
type for the upper and lower bound. However, the perfect information of the player 2 could
be leveraged and lead to a better result. The bandits in the upper and lower bound belonging
to the fully-informed player could possibly employ the average play approach similarly as the
observable bandits for stochastic games, which showed much better properties.

The next large step is to use the bandit algorithms for another subclass of partially

66

... 7.2. Future ideas

observable stochastic games, which is PO-POSGs, i.e. partially observable stochastic games
with public observations [19], where both agents do not have perfect information and the
search space is thus much larger. The HSVI algorithm for this domain is based on the similar
principle of the refinement of the lower and upper bounds, even though, the situation is more
complex, than in OS-POSGs.

67

68

Bibliography

[1] D. J. White, “Real applications of markov decision processes,” Interfaces, vol. 15, no. 6,
pp. 73–83, 1985.

[2] A. R. Cassandra, “A survey of pomdp applications.”

[3] G. W. Greenwood and R. Tymerski, “A game-theoretical approach for designing market
trading strategies,” in 2008 IEEE Symposium On Computational Intelligence and Games,
pp. 316–322, 2008.

[4] J. S. Brown, “Why darwin would have loved evolutionary game theory,” Proceedings of
the Royal Society B: Biological Sciences, vol. 283, p. 20160847, Sept. 2016.

[5] T. Hazra and K. Anjaria, “Applications of game theory in deep learning: a survey,”
Multimedia Tools and Applications, vol. 81, pp. 8963–8994, Feb. 2022.

[6] A. Jain, K. Tripathi, A. Jatain, and M. Chaudhary, “A game theory based attacker
defender model for ids in cloud security,” 2022.

[7] Z. Liu, N. C. Luong, W. Wang, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, “A survey
on blockchain: A game theoretical perspective,” IEEE Access, vol. 7, pp. 47615–47643,
2019.

[8] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,” in Proceedings
of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, (Arlington,
Virginia, USA), p. 520–527, AUAI Press, 2004.

[9] K. Horák, B. Bošanský, and M. Pěchouček, “Heuristic search value iteration for one-sided
partially observable stochastic games,” 2017.

[10] A. Slivkins, “Introduction to multi-armed bandits,” 2019.

[11] S. Russell and P. Norvig, Artificial intelligence: A modern approach. Pearson, 3 ed.,
2009.

[12] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations. Cambridge University Press, 2008.

[13] E. J. Sondik, “The optimal control of partially observable markov processes over the
infinite horizon: Discounted costs,” Operations Research, vol. 26, no. 2, pp. 282–304,
1978.

69

7. Conclusion...
[14] J. Nash, John F., “Equilibrium points in n -person games,” Jan 1950.

[15] J. v. Neumann, “Zur theorie der gesellschaftsspiele,” Dec 1928.

[16] P. B. Larson, “Zermelo 1913,” 2010.

[17] K. Horák, Scalable Algorithms for Solving Stochastic Games with Limited Partial Observ-
ability. PhD thesis, Czech Technical University in Prague. Computing and Information
Centre., jan 2020.

[18] W. A. J., O. F. A., and R. D. M., “Structure in the value function of two-player zero-sum
games of incomplete information,” Frontiers in Artificial Intelligence and Applications,
vol. 285, no. ECAI 2016, p. 1628–1629, 2016.

[19] K. Horák and B. Bošanský, “Solving partially observable stochastic games with public
observations,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 2029–2036, Jul. 2019.

[20] L. S. Shapley, “Stochastic games,” Oct 1953.

[21] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set monte carlo tree
search,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 4,
no. 2, pp. 120–143, 2012.

[22] K. Richard, “Combining online learning and equilibrium computation in security games,”
Master’s thesis, Czech Technical University in Prague. Computing and Information
Centre., 2015.

[23] Metacentrum, “Resources.” https://metavo.metacentrum.cz/pbsmon2/resource/
halmir.metacentrum.cz/, Last accessed on 06-05-2022.

[24] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017.

[25] J. Forrest, S. Vigerske, T. Ralphs, L. Hafer, J. Forrest, jpfasano, H. G. Santos, M. Saltz-
man, Jan-Willem, B. Kristjansson, h-i gassmann, A. King, pobonomo, S. Brito, and
to st, “coin-or/clp: Release releases/1.17.7,” Jan. 2022.

[26] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile
robotics,” Autonomous Robots, vol. 31, pp. 299–316, July 2011.

[27] J. Brož and O. Kubíček, “https://gitlab.fel.cvut.cz/brozjak2/HSVIforOneSidedPOSGs.jl.”

70

https://metavo.metacentrum.cz/pbsmon2/resource/halmir.metacentrum.cz/
https://metavo.metacentrum.cz/pbsmon2/resource/halmir.metacentrum.cz/

Appendix A
Time analysis in SG experiments

The execution time of the bandit iteration algorithm, as it was designed and mentioned in
(6.2.2), strictly depends on the number of states of the stochastic game. In every round, for
every state, two bandits, one for each player, have to select an action, receive the computed
stage game value based on those actions and update their inner states.

In our case, the number of rounds is fixed for all runs of the algorithm to T = 105, the
number of states, however, differs for every instance. This number is equal to the second
power of either the number of empty cells of the maze in the case of Tag or the size of the
set of all vertices in the case of Catch. To this count, the absorbing terminal state, which
completes the SG model, must be added before computing the second power. The total
number of states is then computed as |S| = (K + 1)2, where K is the count based on the type
of game mentioned above. Thus, the performance degrades fast with larger number of states.

instance no. of states min median max
tag_2_01 16 25.1 s 27.1 s 39.1 s
Chase3 16 34.5 s 39.7 s 66.0 s
Chase4 25 2.3 min 2.4 min 4.1 min
Chase5 36 6.0 min 6.6 min 10.4 min
tag_3_04 49 17.3 min 18.5 min 19.9 min
tag_3_01 64 31.7 min 33.6 min 66.6 min
tag_3_03 64 32.8 min 33.7 min 35.9 min
tag_3_06 64 33.2 min 34.2 min 55.0 min
tag_3_02 64 48.2 min 50.6 min 53.1 min
tag_3_07 64 49.4 min 50.6 min 52.8 min
tag_3_05 64 49.6 min 51.5 min 57.5 min

Table A.1: Statistics of execution times for individual instances of both Chase and Tag processed
over 10 independent runs. Each run was solved by bandit iteration for 105 iterations. The rows in
the table are sorted in an ascending order by the median time.

(Table A.1) shows statistics about running times of the bandit iteration algorithm on
individual instances of both games. The experiments were conducted according to (Section
6.2.2), so they ran for 105 iterations each, every different setting 10 times with random seeds.

Note that, the instances were solved by all bandits and some bandits are more computa-
tionally demanding than the others, which causes the significant spread between min and
max times. The few cases, where the maximal execution time is much longer than the median,

71

A. Time analysis in SG experiments
were very limited in number and always occurred within trials of a single bandit algorithm.
This could be caused by damaged pre-compilation of the code, which would force Julia to
compile during the first runs of the cluster job. Another possible origin of these outliers is
temporary overload of the cluster.

The data confirm the claims above, that the execution time depends strongly on the
number of states in the model. Those instances with the same number of states then differ
in number of actions per state. The higher the number of actions in a state, the more
computationally demanding the corresponding bandit is and thus the whole algorithm is
slowed down. This phenomenon can be showcased on two groups of Tag, the first group being
tag_3_01, tag_3_03, tag_3_06 and the second tag_3_02, tag_3_07, tag_3_05. While the
instances in the first group average approximately 5.4 actions per state (both tagger and
evader actions are taken together), the second group averages around 6.5. actions per state.
It can be seen that the difference of one action per state adds over the course of 105 iteration
roughly 20 minutes.

72

Appendix B
Performance of individual multi-armed bandit
algorithms in stochastic games

B.1 Best of N
Firstly, we investigate the most basic multi-armed bandit algorithm and that is Best of N
and its observable variant.

B.1.1 Mixed or pure strategies

Here, two states are sufficient to analyse the performance of this bandit algorithm and
showcase its gravest weakness.

(a) : tag_3_01 in state s = (1, 1) (b) : tag_3_02 in state s = (4, 4)

Figure B.1: The two graphs depict performance of the Best of N bandit, for N = 100, in starting
states of two Tag instances, namely tag_3_01 and tag_3_02. The left figure belongs to a state
where the optimal strategy is pure, conversely the right figure to a starting state with mixed
optimal strategy. The graphs represent the development of deviation of the returned value from
the true optimal value in each iteration t ∈ [0, 105]. A comparison of the two step functions is
displayed and in detail described in B.1.

Graphs (Figure B.1) depict, that after the first random search over all actions, until each
was tried N times, the bandit found the single best pure strategy and played it to the end,
thus receiving the same reward forever.

The first state is from the instance tag_3_01, where both the tagger and the evader are
located on position 1 so a joint state s = (1, 1). The map of this game (Figure 6.2b) suggests,
that the optimal strategies of both players are pure. The evader can only go down and thus

73

B. Performance of individual multi-armed bandit algorithms in stochastic games..............
the tagger can always hit him with the beam by shooting vertically. The graph (Figure B.1a)
confirms that the Best of N bandit can and will find such a pure best actions for sufficiently
large N and converge to the optimal value.

On the contrary, the second state (4, 4) from tag_3_02 (Figure 6.2c) has mixed optimal
strategies. Neither player can commit to play a single action, because the adversary would
exploit this information and obtain better outcome than in the case of a randomized strategy.
For the evader, all directions are equally good and the tagger has to decide the direction of
the beam as he is always able to hit the evader. But clearly he has to randomize, because he
cannot know the direction of the evader. This can be verified by extracting the strategies
from the value iteration algorithm, where the tagger chooses the beam direction with uniform
probability. The chart in (Figure B.1) confirms the intuitive idea, that the Best of N bandit is
not able to find the optimal value and converges to a different value. The deviation improves
over the course of the random search, but once the single pure action is selected, the value
recedes from the optimum.

B.1.2 Steps

From the graphs in previous subsection, we can also compare the two types of steps, LIN(t)
and SQRT(t). The increased weights for the newer presumably more accurate values have no
real benefit here. Although, the SQRT(t) converges to the resulting value much faster during
the initial random phase, both of these step methods eventually converge to the same value.
On the other hand, during the random search at the beginning, the SQRT(t) step deviates
much farther.

B.1.3 Observable variant

As displayed in the example state plotted in (Figure B.2), the observable variant behaves
almost exactly the same as the standard bandit algorithm. Here, the average play of the
adversary matters only once and that is in the selection of the best action after each was
tried N times. But, at that moment the average play is a uniform strategy, so it does not
have any effect on ruling out less promising options. Other choices are either completely
random or conversely fixed to a single action. Even though, from the graph it looks that
the observable bandit converged exactly to the optimum, the intervals of standard deviation
almost completely overlap and thus it cannot be confidently said that one reached the optimum
while the other did not.

B.2 ϵ-greedy

The second bandit algorithm for analysis is ϵ-greedy. Be reminded, that the search parameter
was posed to ϵ = 0.1.

B.2.1 Convergence with average step LIN(t)

In this part we consider only the averaging step LIN(t), the other one will be discussed
separately.

The ϵ-greedy does not have a problem in getting close to the correct values in easy states
with pure optimal strategies. Although, it did not converge exactly to the value iteration

74

... B.2. ϵ-greedy

Figure B.2: The figure shows comparison deviations from ground truth of the observable and
non-observable variant of the Best of N bandit on the instance tag_3_01 in a joint initial state
s = (1, 3). It includes both types of step functions, LIN(t) and SQRT(t). The x axis represents
iterations of the bandit iteration algorithm.

results for states with many actions and randomized decisions (thus more difficult to learn the
strategies precisely), based on the demonstrated trend of the deviation going towards zero,
it would eventually converge given many more iterations. The figure (Figure B.3) displays
one easy and one hard state and the convergence in those respective states. It displays states
s1 = (4, 4) of the instance tag_3_02 (Figure 6.2c) and s2 = (4, 3) in the Chase5 instance
(Figure 6.1c). Moreover, from both of these figures, the observable variant outperforms the
standard one and gets closer and faster to the optimum. In contrast to the Best of N bandit
(Section B.1), ϵ-greedy selects best action 9 times out of 10 trials on average and thus the
average play of the opponent influences the decisions in the observable variant.

B.2.2 Accumulation step SQRT(t)

Generally, the ϵ-greedy bandit struggles with the intensive exploration at the end, causing
bigger fluctuations in the accumulated value. This gets highlighted by the use of the step
function SQRT(t). The algorithm definitely gets closer to the optimal value than the LIN(t)
but then, due to the quite frequent random decisions, the solution rather oscillates around
the optimum. However, in easy states, this averaging step is effective, especially with the
employed average play.

The figures (Figure B.4) depict these two cases on the observable bandit.
This makes the accumulation step SQRT(t) not very convenient for ϵ-greedy, because the

one random explorative action selection shifts the value more than is desirable. This flaw
could be improved by employing some adaptive way of setting ϵ for each iteration and cool
down exploration in later rounds.

In the easiest states, the both step functions produce equivalent results. For example, in

75

B. Performance of individual multi-armed bandit algorithms in stochastic games..............

(a) : tag_3_02 in state s = (4, 4) (b) : Chase5 in state s = (4, 3)

Figure B.3: These graphs display convergence of the ϵ-greedy bandit algorithm to the values of
states with mixed optimal strategies, when the LIN(t) step function is used to accumulate rewards.
The y axis represents deviation from the value iteration optimal value shown as a black graph of a
constant function in each iteration on x axis.

(a) : SQRT(t) outperforms LIN(t) on
tag_3_01 in s = (1, 4)

(b) : SQRT(t) oscillates in tag_3_02 in s =
(1, 4)

Figure B.4: This chart compares the two step functions LIN(t) and SQRT(t) and how they influence
performance of the ϵ-greedy bandit in states with mixed optimal strategies. The performance
is measured as a dependence of difference between the optimal value and the value from bandit
iteration on iterations t.

states where only a single action is available for one of the players.

B.3 Successive elimination

The Successive elimination multi-armed bandit is the first examined algorithm, which adapts
its behaviour based on the received rewards. It should perform better in learning randomized
strategies, but due to the deactivation of actions when the confidence intervals do not overlap,
it can still degrade to pure strategy even though it was not optimal. This also depends on
the setting of the exploration parameter α.

In the figures (Figure B.5), the extreme occurrences of the phenomenon described before
are showcased. On the left figure (Figure B.5a), we see an example, when the function LIN(t)
slowly converges to the optimal value. The SQRT(t), however, gets close very quickly but then
some arm which was important in the mixed strategy gets deactivated and the value shifts

76

.....................................B.3. Successive elimination

(a) : Behaviour in joint state s = (4, 3) (b) : Behaviour in joint state s = (2, 1)

Figure B.5: The figures depict graphs of convergence of returned values of the Successive elimination
multi-armed bandit when used with the bandit iteration on Chase5. The learned values correspond
to values read on the y axis and the iterations of the framework on the x axis.

somewhere else. The rapid changes in the graph of the obtained values exactly correspond to
deactivation of some arm by the bandit. And while the LIN(t) function does not sway very
much, the SQRT(t) step causes high fluctuations.

In the right figure (Figure B.5b), the algorithm converged almost exactly to the optimal
value, but after the important action is removed from the decisions, the value drifts afar.

An example of a situation when the deactivation rule benefits the learning. In this state

Figure B.6: The graph displays dependence of the deviation of the learned values from the true
values on iteration step t on an instance tag_3_02 in a state s = (2, 6), where a mixed strategy is
optimal. The two step functions are included in the comparison.

of tag_3_02 (Figure 6.2c), the mixed strategy initially contained actions which was not in
the optimal strategy and thus the graph of the value iteration dips below the optimal value.
After the wrong action is not used any more, the value approaches the optimal zero deviation.

77

B. Performance of individual multi-armed bandit algorithms in stochastic games..............
Moreover, the SQRT(t) step converges much closer than the LIN(t) arithmetic average. On
the other hand, it again fluctuates much more aggressively.

The Successive elimination bandit improves over the ϵ-greedy in randomized decisions,
but as well as Best of N, it can degrade to pure strategy by deactivating a wrong arm. This
could be prevented by tuning the α parameter for a specific problem. Here, the SQRT(t)
method can be beneficial, but can also lead to larger deviation when combined with the
another problem mentioned first.

B.4 UCB
The Upper Confidence Bound bandit algorithm is an alternation of the Successive elimination
bandit. In contrast, it does not deactivate presumably bad arms, but it always optimistically
selects the best arm. Even though it performs well in learning MDPs, it is primarily designed
to converge to the single best action, i.e. pure strategy. In these experiments, the search
parameter is α = 20. Now, we analyse it on stochastic games together with its observable
variant.

The first comparison is done on the tag_3_01 and tag_3_02 instances and is depicted in
figure (Figure B.7). Here are shown two hard states from every chosen instance, which were

(a) : tag_3_01 in a state s = (2, 4) (b) : tag_3_01 in a state s = (3, 3)

(c) : tag_3_02 in a state s = (2, 4) (d) : tag_3_02 in a state s = (4, 4)

Figure B.7: The graphs display convergence of observable and standard UCB multi-armed bandits
with both of the step functions, LIN(t) and SQRT(t), and the development of learned values
change in time represented by discrete iteration steps. The comparison is done on two instances,
tag_3_01 and tag_3_02, in states where true optimal strategies are mixed.

either hard for previous bandits or they did not converge close to the optimum. From these

78

.. B.4. UCB

graphs, it can be derived that the observable variant of UCB is significantly better than the
non-observable UCB. In all these states, it either finds the optimum or continues pushing the
deviation to 0 even after the standard algorithm finds its best pure strategy and converges to
some suboptimal value.

Also, in the case of UCB, the SQRT(t) accumulation step boosts the speed of convergence
for both of the algorithms without unnecessary fluctuations as it was with previous bandits.
Even though the observable UCB with LIN(t) step appears to approach 0 as well, the
SQRT(t) reaches this value much faster and most importantly stays there as opposed to other
multi-armed bandits.

Here is another example of the same phenomenon as described above, but this time for
a Chase5 instance (Figure 6.1c). This particular state is interesting, because both bandits

Figure B.8: This comparison chart depict performance of UCB in comparison to its observable
counterpart on a Chase instance Chase5 in a mixed-strategy state s = (3, 3). The y axis shows
deviation from the ground truth represented by the black constant function depending on the time
stamp t on the x axis.

start in the same vertex of the graph in (Figure 6.1c), this node being the node 3. The graph
visualization implies that both players would have to randomize their action selection, i.e.
employ a mixed strategy. This is because if on of them committed to either using the loop
and staying in the node 3 or use action 2 to reach vertex 5, his adversary would instantly
leverage this. The runner would choose the opposite action, while the chaser would choose the
same action. From the graph, UCB has clearly an issue with converging in a mixed strategy
state, while the average play variant tries to respond to the frequent choices by the adversary.

The observable UCB bandit converged to the optimal value in almost all states of all
instances, or at least got very close. In contrast, the standard UCB sometimes struggles to
reach the optimum and finds the best pure strategy. This showcases that the opponent’s
average play provides an actual advantage in bandit learning in stochastic games. It permits
the bandit originally intended to search for a single best action, to rather find the best

79

B. Performance of individual multi-armed bandit algorithms in stochastic games..............
response to the average play of its adversary.

Moreover, in this case the SQRT(t) step function is far superior to the LIN(t) and
significantly improves the speed of convergence as is documented in the figures in this section.
Of all these combinations, the observable UCB bandit with the use of SQRT(t) dominated
the other options.

B.5 Exp3
The adversarial Exp3 bandit, in contrast to the others, was designed to learn a whole strategy
rather than a single best action.

In figure (Figure B.9) are showcased 4 different examples of states with various difficulty.
The first one (Figure B.9a), is the easiest with a pure strategy optimum and the Exp3

(a) : tag_3_01 in a state s = (2, 7) (b) : tag_3_01 in a state s = (3, 3)

(c) : tag_3_02 in a state s = (1, 4) (d) : tag_3_02 in a state s = (3, 3)

Figure B.9: These graphs display different convergence courses of the Exp3 algorithm in combina-
tion with either LIN(t) or SQRT(t) on two Tag instances in states where the optimal strategy is
mixed. The graphs show dependence of deviation from the true value on the iterations t of the
bandit iteration algorithm.

algorithm converges to this value. In this specific case, the SQRT(t) step again increases
speed of convergence.

The rest of the examples are states, where mixed strategies has to be used to find the
optima. Clearly, the LIN(t) step can find this value, even though slowly. The SQRT(t) step,
on the other hand, reaches the value quicker but then oscillates around it with high amplitude.

This could be caused by computing the probability from the sums of so far received
rewards in the exponential. Moreover, the bandit samples from these computed probabilities,

80

.. B.5. Exp3

so the explorative power is quite strong. Then, one such value which was then divided by the
low probability of choosing the corresponding action can shift the sums in such a way that
the learned probability of selection changes largely.

It can be said, that the SQRT(t) step function is not very appropriate for the Exp3
algorithm as the fluctuations influence the resulting values gravely. On the other hand, these
values appear centred around the 0 deviation, so their mean could be taken as the optimal
value.

81

82

Appendix C
Implementation details

In this appendix, the implementation details for both the bandit iteration and the B-HSVI
algorithms are shortly described with the focus on how to execute the respective methods.

C.1 Bandit iteration

The implementation is located in a git repository on https://gitlab.fel.cvut.cz/radajak5/
HSVIforPOPOSG.git. Even though, the repository is named after the subclass of partially
observable stochastic games with public observations, this functionality is not ready yet.
Instead, it offers solving methods for stochastic games for the first experimental evaluation,
the value iteration (Section 3.3.1) as the reference method and bandit iteration (Section 5.2)
as the tested method. Moreover, it provides means to load and generate the two SG instances,
Tag and Chase 6.2.1.

To install this package, clone the repository, and then it can be imported to an environment
with the standard Pkg julia commands.

Note, that for the sake of simplicity, only the functions essential for the game generators
and the individual algorithms are presented.

C.1.1 Instance generators

An already created game can be loaded into a special SG structure, which can then be passed
to the two algorithms, by calling its constructor with the path to the file as the only parameter.

sg = SG("./path/to/game/file.txt")

To generate an instance of the Tag game, one needs to create a map.txt text file, which
contains map of the maze similar to the games in (Figure 6.1) and (Figure 6.2) and to the
following example.

#####
#
#
#
#####

The stochastic game with this map is then generated by the following command.
sg = generateSGtag("./path/to/map.txt")

83

https://gitlab.fel.cvut.cz/radajak5/HSVIforPOPOSG.git
https://gitlab.fel.cvut.cz/radajak5/HSVIforPOPOSG.git

C. Implementation details
To generate an instance of the Chase game, a custom random graph generator is used

with the following function.
sg = generateSGrandom(states;

outdegree = 1:1,
multiplicity = 1:1,
penalty = -1:-1,
victory = 10:10,
seed = -1

)

The parameters have the following effects. states . . . the number of vertices of the generated graph,. outdegree . . . optional range argument to specify the number of edges going out from
each vertex (the actual number is uniformly sampled from this range),. multiplicity . . . optional range argument to specify the number of potential targets of
a single action, i.e. actions with stochastic effects,. penalty . . . optional range from which the rewards for a step without catching the
opponent are uniformly sampled,. victory . . . the same as penalty but the rewards are for catching the opponent,. seed . . . optional initial seed for the pseudo-random generator

C.1.2 Algorithms and parameters

To execute the reference value iteration algorithm on a loaded sg instance with a precision
ϵ > 0, the following command is used.

V = valueiteration(sg;
gap::Real = 1e-6,
discount::Real = -1,
output::Type{<:Output} = Brief

)

The important parameters are gap, which is the maximal absolute value between the last two
approximations of V ∗ as described in 3.3.1, discount which can change the default discount
factor γ = 0.95 to another value. The output parameter can be set to Detailed to return a
vector of all approximations of V instead of only the last approximation in the case of the
Brief option.

To execute the tested bandit iteration algorithm on a loaded sg instance serves the
following command.

V = bandititeration(sg::SG,
bandittype::Type{<:Bandit};
epsilon::Real = 0.0,
expgamma::Real = 0.0,
expeta::Real = 0.0,

84

... C.2. B-HSVI

alpha::Real = 0.0,
maxtrials::Integer = 0,
iterations::Integer = 1000,
seed::Integer = -1,
discount::Real = -1,
output::Type{<:Output} = Brief,
step::Type{<:Step} = LinT

)

The bandittype is one of the tested bandit algorithms with its corresponding parameter,
i.e. (Observable)BestOfN with maxtrials, (Observable)EpsilonGreedy with epsilon,
(Observable)SuccessiveElimination and (Observable)UCB with alpha and Exp3 with
expgamma and expeta. The other optional parameters have the following meanings:. iterations . . . number of iterations of the run,. seed . . . initial value for the pseudo-random generator. discount . . . change the default discount factor γ = 0.95 to another value. output . . . the Detailed option returns a vector of all approximations, matrix of bandit

algorithms for every state and the initial seed instead of the last approximation in the
case of Brief option,. step . . . choose the accumulation step function, either LinT or SqrtT.

These versions of the algorithms were used to conduct the experiments as in (Section
6.2). The other possible call options with non-essential parameters can be clearly understood
from the code, but these listed options are sufficient to run the algorihtms.

C.2 B-HSVI

This B-HSVI algorithm continues the work of [27] in the git repository https://gitlab.fel.
cvut.cz/brozjak2/HSVIforOneSidedPOSGs.jl.git. The implemented bandit alternative is
located in the bandits git branch. The core of the algorithm is their work, the contribution of
this thesis are the bandit algorithms and the other modifications in the mentioned branch.

As the repository and possible parameters is very large, we describe only the parameters
essential for our purposes, the rest can be viewed in the mentioned repository.

The instance used for evaluation is located in "HSVIforOneSidedPOSGs.jl/games/pursuit-
evasion/no-fail/peg03.posg", but the other instances can be used as well. After the package
is installed according to the standard procedure, i.e. cloning the repository and adding the
package to the desired environment, the only available function is hsvi in detail described
below.

hsvi("./path/to/game/file.posg", epsilon;
ub_value_method::String = "lp",
stage_game_method::String = "bandit",
alpha_vector_creation::String = "lp",
evaluate_strategy::Bool = false,
seed::Int64 = 42,

85

https://gitlab.fel.cvut.cz/brozjak2/HSVIforOneSidedPOSGs.jl.git
https://gitlab.fel.cvut.cz/brozjak2/HSVIforOneSidedPOSGs.jl.git

C. Implementation details
bandit_type::Type{<:Bandit} = EpsilonGreedy,
bandit_epsilon::Float32 = 0.1f0,
bandit_maxtrials::Int64 = 10,
bandit_alpha::Float32 = 10f0,
bandit_gamma::Float32 = 0.1f0,
alpha_vector_epsilon::Float32 = 0f0,
alpha_vector_random_size::Int64 = 10,
experiments_dir::String = "",
change_discount::Float32 = 0f0,
change_partition::Int64 = 0,
change_belief::Vector{Float32} = Vector{Float32}([]),
max_explores::Int64 = 50000

)

In the following list, only the parameters which can be changed to test the bandit algorithm
are shown, the other parameters are necessary to remain set to the written values.. seed . . . the initial value for the pseudo-random generator,. bandit_type . . . one of the following bandits with its respective parameter: BestOfN with

bandit_maxtrials, EpsilonGreedy with bandit_epsilon, SuccessiveElimination
and UCB with bandit_alpha and Exp3 with bandit_gamma,. alpha_vector_epsilon . . . probability of choosing α-vector uniformly from the set of
best α-vectors of size alpha_vector_random_size, instead of selecting always the best
one,. experiments_dir . . . directory for the output files of the course of search,. change_discount . . . different value as a discount factor γ than the default 0.95,. change_partition . . . different initial information set than the one specified in the game
file,. change_belief . . . different to default initial belief over the states of the specified
information set,. max_explores . . . maximal number of bandit updates of both value function bounds
(the search is terminated after the closes return from the recursive call of EXPLORE
procedure).

Note that the method to compute the value of the upper bound and creation of the new
α-vector is still using the linear programming method. However, the stage game linear
program was avoided by the use of the bandit algorithms.

This description of the execution of the B-HSVI algorithm is sufficient for our purposes.
For more detail, visit the repository page.

86

	Introduction
	Complications of existing methods
	Goals of the thesis

	Technical background
	MDP
	POMDP
	Game theory
	Basic concepts

	Stochastic games
	Definition
	Properties

	Partially observable stochastic games
	One-sided partially observable stochastic games
	Model

	Summary

	Standard solution methods
	MDP
	Value iteration
	Policy iteration

	POMDP
	Value iteration
	Point based value iteration
	Heuristic search value iteration

	Stochastic games
	Value iteration

	OS-POSGs
	Value function
	Exact algorithm
	Heuristic search value iteration

	Multi-armed bandits
	Basics
	Bandit learning
	Exploration-exploitation trade-off

	Stochastic bandits
	Best of N
	-greedy
	Successive elimination
	UCB

	Adversarial bandits
	Hedge algorithm
	Exp3

	Summary

	New solution methods
	Preparation of multi-armed bandits
	Observable stochastic bandits
	Stochasticity
	Numerical instability

	Bandit iteration
	Algorithm
	Averaging of value functions
	Observable bandits

	B-HSVI
	The algorithm
	Performance

	Conclusion

	Experimental evaluation
	Technical details
	SGs and bandit iteration
	Game types
	Environment and parameters
	Individual bandits
	Bulk comparison
	Strategies

	OS-POSGs and B-HSVI algorithm
	Pursuit-Evasion
	Environment and parameters
	Individual bandits
	Bulk comparison

	Summary

	Conclusion
	Thesis overview and contributions
	Future ideas

	Bibliography
	Time analysis in SG experiments
	Performance of individual multi-armed bandit algorithms in stochastic games
	Best of N
	Mixed or pure strategies
	Steps
	Observable variant

	-greedy
	Convergence with average step LIN(t)
	Accumulation step SQRT(t)

	Successive elimination
	UCB
	Exp3

	Implementation details
	Bandit iteration
	Instance generators
	Algorithms and parameters

	B-HSVI

