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Abstract

Most network defense systems only rely on evidence-based knowledge

about past cyberattacks, known as threat intelligence. Firewalls and intru-

sion prevention systems rely on the shared threat intelligence generated by

other systems to prevent attacks before is too late. Such threat intelligence

is usually shared via centralized public and private blocklists, where a single

centralized authority, hopefully, has complete control over what is published.

Such centralized systems have many issues: single point of failure both tech-

nically and in trust, lack of flexibility on new data and providers, and manual

trust in the providers.

To mitigate these problems, peer-to-peer networks can be used to share

threat intelligence. However, because these networks are open to anyone,

including malicious actors, peers need to be able to determine who to trust

and which data is better to discard.

This thesis introduces Fides. Fides is a generic trust model fine-tuned for

sharing security threat intelligence in highly adversarial global peer-to-peer

networks of intrusion prevention agents. We design and build Fides taking

into account the problems and limitations of previous state-of-the-art trust

models, optimizing it for a broad spectrum of peer-to-peer networks where

peers can join and leave at any time. Fides evaluates the behavior of peers

in the network, including their membership in pre-trusted organizations and

uses this knowledge to compute the trust. Fides continually assesses received

data from the peers, and by weighting and comparing them with each other

as well as with the existing knowledge, Fides is able to determine which peer

provides better threat intelligence and which peers are more reliable. The

received threat intelligence is always aggregated and weighted and then pro-

vided to the underlying intrusion prevention system. Among many results,

our experiments show that in the worst possible scenario, when 75% of the

network is completely controlled by malicious actors Fides is still able to pro-

vide the correct values of the threat intelligence data under an assumption

that the other part of the network, the remaining 25%, are peers that are

part of trusted organizations.

The direct contributions of this thesis are the computational model of the

trust model Fides, the reference implementation of the model in Python, the

simulation framework for modeling peers’ behavior in the network including

the implementation of the framework and the implementation of the Fides

module for reference intrusion prevention system.

Keywords: trust model, threat intelligence sharing, collaborative network defense,

intrusion prevention system



Abstrakt

Většina systémů śı̌tové obrany se spoléhá pouze na d̊ukazy o předchoźıch

kybernetických útoćıch, tzv. threat intelligence neboli informace o hrozbách.

Firewally a systémy prevence narušeńı se spoléhaj́ı na sd́ılené informace o

hrozbách vytvořené jinými systémy, aby předešly útok̊um dř́ıve, než bude

pozdě. Takové informace o hrozbách jsou obvykle sd́ıleny prostřednictv́ım

centralizovaných veřejných a soukromých seznamů tzv. blocklist̊u, kde má

jediná centralizovaná autorita úplnou kontrolu nad t́ım, co zveřejńı. Tyto

centralizované systémy maj́ı mnoho problémů: centrálńı bod, jehož selháńı

zapř́ıčińı kolaps celého systému jak z technického hlediska, tak i z hlediska

d̊uvěryhodnosti, nedostatečná flexibilita v oblasti nových dat a poskytovatel̊u

a také d̊uvěra v poskytovatele těchto dat.

K řešeńı těchto problémů lze ke sd́ıleńı informaćı o hrozbách využ́ıt śıtě

typu peer-to-peer. Protože jsou však tyto śıtě otevřené komukoli, včetně

podvodných aktér̊u, muśı být jednotliv́ı agenti schopni určit, komu d̊uvěřovat

a která data je lepš́ı skartovat.

Tato práce představuje systém Fides. Fides je obecný model d̊uvěry

optimalizovaný pro sd́ıleńı informaćı o bezpečnostńıch hrozbách ve vysoce

nepř́ıznivých globálńıch peer-to-peer śıt́ıch agent̊u prevence narušeńı. V této

práci navrhujeme a implementujeme Fides s ohledem na problémy a omezeńı

předchoźıch model̊u d̊uvěryhodnosti a optimalizujeme jej pro široké spek-

trum peer-to-peer śıt́ı, kde se členové této śıtě mohou kdykoli připojit a

odpojit. Fides vyhodnocuje chováńı těchto agent̊u, včetně jejich členstv́ı v

d̊uvěryhodných organizaćıch, a tyto znalosti využ́ıvá ke zjistěńı jak moc jsou

agenti d̊uvěryhodńı. Fides pr̊uběžně vyhodnocuje přijatá data od agent̊u v

śıti a jejich hodnoceńım a porovnáváńım mezi sebou i s existuj́ıćımi znalostmi

je schopen určit, který agent poskytuje lepš́ı informace o hrozbách a který

agent je spolehlivěǰśı. Výsledné informace o hrozbách jsou poté poskytnuty

systému prevence narušeńı. Z mnoha výsledk̊u našich experiment̊u vyplývá,

že v nejhorš́ım možném scénáři, kdy je 75% śıtě úplně ovládáno škodlivými

aktéry. Fides je stále schopen poskytovat správné hodnoty údaj̊u o hrozbách

za předpokladu, že druhá část śıtě, zbývaj́ıćıch 25%, jsou agenti, kteř́ı jsou

součást́ı d̊uvěryhodných organizaćı.

Př́ımým př́ınosem této práce je výpočetńı model modelu d̊uvěry Fides,

referenčńı implementace modelu v jazyce Python, simulačńı software pro

modelováńı chováńı agent̊u v śıti včetně jeho implementace a implementace

modulu Fides pro referenčńı systém prevence narušeńı.

Kĺıčová slova: model d̊uvěry, sd́ıleńı informaćı o hrozbách, kolaborativńı obrana

śıtě, systém prevence narušeńı
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Chapter 1

Introduction

When protecting local networks, the basic firewalls and advanced Intru-

sion Prevention Systems (IPS) [37] rely on evidence-based knowledge about

past cyberattacks, known as threat intelligence [26]. Threat intelligence is

primarily generated from the previous attacks locally or received from the re-

mote sources. Such sources can be, for example, public blocklists [2, 8, 9] or

centralized collaborative databases such as MISP [33] where the community

collectively shares the threat intelligence. However, all of these traditional

threat intelligence sources are, in the end, controlled by the centralized au-

thority, which has complete control over the resource and can at anytime

restrict access to these valuable assets or censor what is published and what

is not. In addition to that, central authorities allow the publishing of threat

intelligence only to verified entities and not everyone can contribute. Thus,

there are many systems that were left out even though they might have

precious knowledge about past attacks.

To limit the impact of one organization shutting down the database and

many other problems outlined above, we can use a peer-to-peer (P2P) model

and remove the central authority and single point of failure. In peer-to-peer

networks, each peer has the same privileges and can freely share and receive

any data without any central authority. Although P2P models solve the

problem of a single central authority, they may introduce new problems.

The most important questions to ask are: first, how much can each peer

trust the threat intelligence received from other peers, given that their re-

liability changes? Second, how to deal with peers providing contradictory

information when a single aggregated value is needed? Third, how to deal

with adversarial peers that lie in many different ways?

In this thesis, we answer those questions and tackle the problem of trust

relationships when sharing security threat intelligence data. The algorithms

1



CHAPTER 1. INTRODUCTION

that tackle trust relationships between multiple entities are called trust mod-

els [34]. The research field of trust models is not new, and there are many

existing trust models [1, 5, 6, 18, 20, 22, 24, 27, 36]. However, these models

were primarily designed to support file sharing in peer-to-peer networks and

inherently operate with different types of data. Almost no P2P system was

designed to fulfill the purposes of the security community. An exemption

to them is Dovecot [19], a local P2P trust model designed to operate with

threat intelligence data, but with the limitation that operates only in the

local networks.

This thesis proposes a new trust model called Fides1. Fides is a generic

trust model fine-tuned for sharing threat intelligence in highly adversar-

ial global peer-to-peer networks of intrusion prevention agents. Fides was

built by solving most of the problems of previous state-of-the-art trust mod-

els [5, 19] and its computational model is based on the existing trust model

SORT [5] which we modified and extended to support threat intelligence

sharing. Fides was optimized for a broad spectrum of networks; from local

networks controlled by a single company, to public global Internet peer-to-

peer networks where anybody can join and leave at any time.

Fides works with the concept of peers that belong to specific organiza-

tions and allows administrators to pre-trust specific peers and organizations.

This pre-trusting is a novel feature of Fides, representing the common crite-

ria of security practitioners of trusting some groups or companies more than

others. The comprehensive configuration options enable administrators to

share data only with particular organizations. This data filtering guarantees

that no privacy-sensitive intelligence is shared with peers that should not

have access to it.

Fides considers many security requirements for a global P2P trust model:

pre-trusted organizations, trust values depending on the service provided by

the peer, asking for the reputation to other peers, cold start problem of new

peers, aggregation of information received, evaluation of how services were

provided, adversarial peers that try to mislead others.

Fides was designed to be as modular and generic as possible, allowing

other uses of its computational model for different data than threat intelli-

gence by simply adding new evaluation methods.

Fides does not create or administer the low-level actions of the peer-

to-peer network but instead relies on a different system that performs these

operations on the network layer. The system is called Iris. Iris was designed

and developed simultaneously in the thesis by Bc. Martin Řepa [28] and it

1Fides was named after the ancient goddess of trust and good faith [35].

2



CHAPTER 1. INTRODUCTION

facilitates safe and secure communications between Fides instances in the

global peer-to-peer network. Communication between the two systems is

done via a standard defined interface, which allows replacing the network

module Iris if needed.

To interact with a real intrusion prevention system, we chose Slips [16]

and implemented a module that allows Slips to use Fides for receiving and

sharing threat intelligence over the network. By using this shared global

knowledge, Slips can prevent attacks on the local environment even before

they happen by acting upon received threat intelligence from other peers in

the global network.

While evaluating the trust model performance, we simulate multiple be-

nign and malicious peers. We also consider peers that provide incorrect data

since the beginning of the simulation and intelligent malicious actors that

try to exploit the trust model by gaining trust at the beginning and then

manipulating the trust model to wrong conclusions.

The only way to evaluate our trust model was to simulate myriad com-

plex situations. We proved that Fides could correctly uncover the peers’

behavior in the network and make sensible decisions about the threat in-

telligence. Fides especially excels in the situations where it communicates

with peers from trusted organizations. Moreover, in a situation where the

Fides talks to at least 25% of pre-trusted peers, it can eventually determine

correct threat intelligence no matter how other peers in the network behave

and how many of them are adversarial.

1.1 Thesis Structure

This thesis explains the required background and describes the current

state-of-the-art in Chapter 2. In Chapter 3 we propose a new trust model

Fides and outline how it works from the high-level perspective in Section 3.1.

After that, we explain problems related to gaining trust in Section 3.2. In the

following Sections 3.3 and 3.4 we analyze the taxonomy of attacks and the

attack vectors related explicitly to the trust models and discuss how Fides

defends against them. Once we explain our design choices, we describe the

entire computational model in depth in Section 3.5 and illustrate how Fides

can determine trust relationships in the network by evaluating interactions

between peers in Section 3.6. The last part of the computational model in

Section 3.7 explains how Fides can aggregate threat intelligence from the net-

work. Chapter 4 describes the Fides architecture and how we implemented

it as a new Slips module. In the following Chapter 5 we propose simulations

that evaluate the performance of the trust model and give a brief overview
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of the simulation framework that we developed alongside Fides. Chapter 6

then describes the results that we discovered in the evaluations. Finally,

Chapter 7 concludes our results and proposes further areas of improvement

for Fides. We also include an appendix with multiple interesting cases of

evaluations discovered in Chapter 6.

1.2 List of Contributions

The contributions of this thesis are:

• Analysis of state-of-the-art trust relationships models in peer-to-peer

networks. (2)

• Design of Fides, a generic trust model fine-tuned for sharing security

data in global adversarial peer-to-peer networks. (3.1)

• Design and implementation of multiple methods to evaluate interac-

tions between peers that share threat intelligence data. (3.6)

• A method that enables weighting and aggregation of threat intelligence

from multiple peers. (3.7)

• A complete working reference implementation of Fides in Python. (4)

• An implementation of a Slips module that allows the use of Fides for

global threat intelligence sharing. (4)

• A simulation framework for modeling any environment for Fides eval-

uation. (5)

• An simulated evaluation of Fides in different environments and anal-

ysis of its behavior in unfavorable situations. (6)
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Chapter 2

Previous Work and

Background

This chapter outlines security tools used in the local networks and de-

scribes what threat intelligence is. Then we describe the basic concepts of

peer-to-peer networks and how the trust relationships are modeled in them.

Modeling trust in peer-to-peer networks is not a new concept. Thus we de-

scribe previous work in this area and explain why we designed a new trust

model for sharing threat intelligence in peer-to-peer networks of Intrusion

Prevention Systems.

2.1 Intrusion Detection/Prevention System

An Intrusion Detection System (IDS) is a system that continuously mon-

itors a network for malicious activity and reports its findings to the network

administrator [4].

An Intrusion Prevention System (IPS) can be seen as an extension of

an IDS. It is a network security tool that continuously monitors a network

for malicious activity and takes action to prevent it, including reporting

and blocking when it does occur [37]. There are plenty of commercial and

open-source solutions that offer IDS/IPS capabilities. One of them is Slips.

2.2 Slips

Slips is an open-source behavioral Intrusion Detection and Prevention

System developed by the Stratosphere Research Laboratory of the Faculty

of Electrical Engineering at the Czech Technical University in Prague. Slips

5
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uses machine learning to detect malicious behaviors in the network traf-

fic. It was designed to focus on targeted attacks, detect command and

control channels, and provide good visualization for the analyst [16]. Its de-

sign allows developers to extend Slips by developing new modules that add

new functionality, such as additional machine learning models for network

analysis, or enable Slips to communicate over the network with other Slips

instances.

As the goal of the thesis is to design and build a trust model that coop-

erates with the IDS, we chose Slips as our IDS/IPS mainly because it is a

highly modular system. Its modularity allowed us to integrate deeply into

the system without the need for architectural changes on it.

2.3 Threat Intelligence

Threat intelligence is the provision of evidence-based knowledge about

existing or potential threats [26]. Such knowledge is produced by, for exam-

ple, intrusion detection/prevention systems. When the prevention systems

receive the threat intelligence, they act according to that. For example, if

an endpoint detection system provides threat intelligence that claims that

IP x.y.z.w is malicious, a blocking system with access to the firewall will

block access from and to this IP address.

This introduces a trust relationship between the system that detects the

malicious behavior and the system that can block it. The system taking

actions, for example, blocking the IP address, needs to trust the threat

intelligence that it received from other systems in the network. This also

means that the trust in some threat intelligence is an important aspect when

sharing and acting according to the said threat intelligence.

In this thesis, we will operate with the threat intelligence generated by

Slips. Slips uses multiple internal detection modules, where each provides

its assessment of the traffic network flows. Each module’s assessment is then

taken into account when Slips aggregates it and produces threat intelligence

that consists of score and confidence. The threat intelligence (score and

confidence) refers to a target - primarily to an IP, domain, hashes of files, or

any other unique identification of the subject that Slips classified with score

and confidence.

The score is a threat intelligence indicator and explains how much Slips

thinks the target is malicious or benign. Confidence then describes to what

extent Slips believe that the score is correct. In this thesis, whenever we

refer to threat intelligence, we refer to this score and confidence provided by

Slips.
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2.4 Peer-to-Peer Networks

A peer-to-peer network is a distributed network of computers without a

direct hierarchy where nodes (peers) communicate with each other directly,

without using a centralized server or any authority [30]. Unlike more tradi-

tional client-server networks, where the server provides data and the client

consumes them, in peer-to-peer networks, all peers are usually similar in

terms of permissions and what services they provide. Peers are free to join

and leave the network at any time, making the network highly dynamic, and

it does not provide any guarantees about data availability. Nowadays, peer-

to-peer networks are mostly used for file sharing, which Napster popularized

in 1999 [29].

2.5 Trust in Peer-to-Peer Networks

There are many existing approaches to model trust in peer-to-peer net-

works and many existing trust models. Unfortunately, most of them were

explicitly designed with file-sharing in mind, as that is the most common use

case for peer-to-peer networks. However, multiple trust models are generic

enough, such as SORT described in Section 2.5.3, or designed specifically for

sharing threat intelligence, for example, Dovecot described in Section 2.5.2.

2.5.1 Problems of Trust

In peer-to-peer networks, where no central authority can enforce rules

and assess whether the peers are honest or not, it can be problematic to find

out how much the peers can trust each other. Because anybody can freely

join and leave, a knowledgeable adversary can misuse the network for their

benefit by providing inaccurate data to the rest of the peers in the network.

For that reason, the peers need to be able to tell how much they can trust

each other.

An algorithm that models such trust relationships and can assign the

trust value to each peer is called a trust model [34]. An analysis of existing

trust models was performed by Shree and Basha in [31] and by Pinyol et

al. [27]. We took both analyses into account when researching existing

implementations of trust models that might be a good fit for our highly

adversarial global peer-to-peer network for sharing threat intelligence.
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2.5.2 Dovecot

Dovecot is a trust model developed by Dita Hollmannová [19]. This trust

model was designed explicitly for Slips to share threat intelligence in local

peer-to-peer networks. Dovecot counts interactions between the peers, and

the more interaction peers have, they have a higher base for trust. This

design is based on the Sality botnet [12], where botnet peers were storing

the goodcount that counted the number of interactions between each other.

The idea behind this is simple yet very effective. The more peers talk to

each other, the more they are trusted.

The final peer trust is computed using goodcount combined with Slips’s

threat intelligence about the peer. This is possible since, in local networks,

Slips knows every IP address and can obtain a complete overview of the

device on the network and its behavior.

Unlike other trust models where new peers start with no trust, Dovecot

trusts new peers by default. However, the authors mentioned in future work

that this property should be explored more in detail, so this may change in

future versions of Dovecot.

2.5.3 SORT

Self-ORganizing Trust model (SORT) aims to decrease malicious activ-

ity in a P2P system by establishing trust relations among peers in their

proximity [5].

In SORT, peers are assumed to be untrustworthy until they prove other-

wise by providing good service to the local peer. For example, in file-sharing

networks, this might be providing access to required files or, as in our case,

providing threat intelligence about some target.

Unlike other trust models, for example, Eigentrust [22], SORT does not

need a priori information about the network or any pre-trusted peers to

operate effectively in the network. Peers do not try to collect trust infor-

mation from all peers. Each peer develops its own local view of trust about

the peers who interacted in the past [5].

Even though peers do not collect trust information from other peers,

there is a recommendation system in place, where any peer can ask for a

recommendation about another peer. Because of the nature of the peer-to-

peer network, this allows the trust model to gain faster knowledge about

new peers that can join and leave at any time.

Even though SORT’s authors evaluated the algorithm on the file-sharing

peer-to-peer networks, the algorithm is generic enough to be reused for dif-

ferent environments. It achieves this thanks to its computational model,
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which is generic and flexible. As we mentioned previously, the peers are

gaining trust by providing services. When they provide the service to the

local peer, the trust model evaluates this interaction using the interaction

evaluation function. This evaluation is then passed to the computational

model, which assigns the trust value to the peer.

Thanks to this design, we can adapt the trust model for different environ-

ments by re-implementing the interaction evaluation function. For example,

in the file-sharing environment, such an interaction evaluation function can

be based on the speed of the upload/download so that peers will prefer nodes

with a faster internet connection.

However, we cannot use SORT directly, primarily because of the recom-

mendation algorithm, which can, in some cases, request a recommendation

even from peers that are not trusted enough. We describe this situation more

in detail in Section 3.5.4. Another reason was that SORT does not support

any pre-trusted peers or organizations, which is something we believe can

significantly improve the model performance. Moreover, threat intelligence

is a specific piece of data where we do not request data only from a single

peer but rather from multiple peers and then we aggregate it. Thus, we

could not use SORT as is, but rather extend it and modify it.

2.5.4 Related Trust Models

The field of trust models for peer-to-peer networks is not new, and there

are many other interesting trust models that attempt to tackle trust re-

lationships between peers. In this section, we describe only notable trust

models relevant to sharing threat intelligence in the peer-to-peer networks

but did not base our design on them at the end.

Sadan, proposed in [1], is a trust model that uses committees and com-

putational challenges to identify malicious peers in the network. Sadan

requires hardware chips, Trusted Platform Module (TPM), to verify the

running software, which allows other peers to verify the trustworthiness of

the peer. The requirement of TPM chips means that Sadan cannot be used

as the base for our trust model, as we do not want to limit our solution to

specific hardware.

Xiong and Liu then proposed PeerTrust [36], which uses a transaction-

based feedback system to determine the reputation and trust of the peers.

Even though the model is generic and was designed for peer-to-peer net-

works, it was optimized for e-commerce communities that inherently have

completely different behavior than the network for sharing threat intelli-

gence, which needs to protect itself from the malicious peers.

9
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Huynh, Jennings, and Shadbolt proposed the FIRE trust and reputation

model [20] which was designed for open multi-agent systems. FIRE incor-

porates multiple different trust metrics that are aggregated and provide a

view of the agents’ behavior. After analyzing the paper, we do not believe

that witness information [20] can be applied in settings for sharing threat

intelligence because it relies on a fact that the peers are honest. For that

reason, we decided not to use FIRE as the base for our further design.

In [18], He et al. proposed gathering peers and modeling their trust

relationships as clouds. They proposed an extended-cloud-model-based trust

model (ECMBTM). ECMBTM utilizes cooperation history between peers

to compute trust clouds. This trust model attempts to mitigate the cold

start problem by directly propagating trust to another peer in the network.

We find the application of this method in our setting problematic because it

would be easier for the malicious peers to propagate their false information

through the network.

In [24], Li et al. proposed a machine learning-based trust model for the

collaboration of IDS instances. Even though this model is closely related to

our use case, we cannot use it because it uses a central certificate authority

to issue a registration for the new peers. In our design, we want to have a

permission-less peer-to-peer network where each peer is equal, and there is

no central authority that controls the network and thus no single point of

failure.

After careful analysis, we decided to create a new trust model, Fides, that

is based on the SORT algorithm with various modifications and fine-tuning.

We describe how Fides work in the following Chapter 3. We chose SORT

because it is easily extensible and robust. Moreover, the evaluation provided

by the authors in [5] promised interesting results.
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Chapter 3

Trust Model Design

This thesis aims to design and implement a trust model for sharing threat

intelligence in global peer-to-peer networks where the peers are instances of

intrusion prevention systems. The previous chapter outlined what threat

intelligence is, how it is generated, and why trust relationships are essential

when making decisions based on the said threat intelligence. We described

the trust models in the context of peer-to-peer networks and analyzed the

notable ones. We discovered the promising trust model SORT [5], which

we described in Section 2.5.3. After careful analysis, we decided to use

SORT’s algorithm as a base for our trust model design mainly because of

its flexibility and modularity.

In this chapter, we propose a new trust model Fides. Fides was named

after the ancient goddess of trust and good faith Fides [35]. The trust model

utilizes modified SORT’s computational model with multiple modifications

and extensions that allows it to work in highly adversarial global peer-to-

peer networks effectively. Fides is a generic and heavily configurable trust

model specializing in sharing threat intelligence. Thanks to its modular

architecture, it can operate with any data and it is not limited only to threat

intelligence. In Section 3.1 we describe our trust model design and explain

how Fides works on a high level, the inputs and outputs, and how it behaves

in which situation. After outlining the general overview, we analyze the

weaknesses of the trust models and how they apply to Fides. First, we start

with the cold start problem in the Section 3.2, which describes how peers

can gain trust when they are new in the network and how Fides tackles this

issue. In the next Section 3.3 we analyze possible attack vectors on our trust

model, and then we describe the taxonomy of attacks in the next Section 3.4.

Once all trust model requirements are explained, we dive deep into Fides’s

computational model in the next Section 3.5 and explain how it can uncover
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trust relationships in the network. The following Section 3.6 explains how

Fides can evaluate interactions between peers and how that affects trust.

Because Fides specializes in sharing threat intelligence and integrates with

Slips, in the next Section 3.7 we explain how Fides aggregates the weighted

threat intelligence from the network.

In the upcoming pages, we use the following terminology to talk about the

trust model:

• Target: An identification of a resource for which is Slips able to gen-

erate threat intelligence. It can be, for example, either an IP address,

a domain, or hashes.

• Local Peer: The unique local instance of Slips that is connected to

the global P2P network and runs Fides. In equations, we use i when

referring to the local peer.

• Remote Peer. A peer on the Internet is connected to the global Slips

P2P network. In equations, we use j when referring to the remote peer.

• Service Trust: How much does Fides trust a remote peer that it

provides the local peer with good service. In other words, to what

extent does Fides trust a specific peer that it provides correct and

valuable threat intelligence. We denote it st and discuss it in detail in

Section 3.5.1.
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3.1 General Overview of Fides

In this section we describe how Fides work from a high level perspective.

We reference chapters and sections further into the thesis that provide more

information and describe particular situations and solutions in more detail.

Figure 3.1: Generic Trust Model Life Cycle of Fides

Fides operates in four general phases, which are visualized in Figure 3.1.

In the first phase, a local Fides instance receives threat intelligence data

from the remote peers in the network. How Fides receives data from the

network is described in Chapter 4 where we discuss its architecture.

In the second phase, Fides aggregates the threat intelligence data using

the trust data it has for each remote peer. In general, data from highly

trusted peers have a higher impact on the final aggregated threat intelligence

than the data from peers with low trust. How does Fides do that is described

in the Section 3.7. The aggregated threat intelligence is also sent to Slips

as an output of the trust model.

In the third phase, Fides evaluates the interactions with each peer. Fides

computes how much it was satisfied with the threat intelligence it received

from each remote peer. The evaluation does not depend on the content of

the threat intelligence and therefore is a generic method. This satisfaction

metric has then a direct influence on the trust relationship between the

local and remote peers because it is used in the next step to compute trust

data. The evaluation process and possible interaction evaluation functions

are described in detail in Section 3.6.
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In the fourth step, Fides updates the trust data for each peer according

to the satisfaction that is computed in step number three. Computations

that allow Fides to do that are described in detail in Section 3.5.

All operations, including the data flow and the communication with

other peers and Slips, can be found on the operational diagram shown in

Figure 3.2.

Figure 3.2: Detailed operational diagram of Fides trust model. All the inner

parts of Fides are represented, together with the external parts: Slips and

the P2P network.
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3.2 Cold Start Problem

A dynamic and global environment such as a global peer-to-peer network

is open to anyone since any peer can freely join and leave. Because of

that, the local peer will encounter many other peers that were not seen

before. Therefore, the trust model does not have any information about

their reliability or how much it can trust them. New benign peers need to

be somehow trusted by the local peer in order to be a useful part of the

network. However, the local peer also needs to be able to discover new

malicious peers that are trying to gain its trust.

The problem of how to know something about a new entity in order to

quickly work better is called the Cold Start Problem [6]. For Fides, it means

how to compute a good initial trust for new unknown peers.

We selected several solutions to this issue, which are all implemented in

Fides. Fides also combines them according to a provided configuration with

the aim to achieve the best result for the cold start problem with adversarial

peers.

3.2.1 Static Initial Trust

In this approach, whenever the trust model encounters a new peer, it

assigns a static value as an initial trust. The value is assigned by pre-

choosing some third-party trust models in the configuration.

For example, in the Dovecot trust model [19], every peer starts with

trust 1 (highest possible), and various interactions can lower the trust in the

peer to 0. In other words, the trust model considers new peers honest from

the beginning, and only during this time their reputation can be lowered

when they perform incorrect interactions or are discovered as a malicious

peer.

On the other hand, the Sality botnet [12] uses a value called goodcount as

a counter of good interactions with any other peer, the higher the goodcount,

the greater trust the local peer has on the remote peer. The goodcount for

each new peer starts with 0 in Sality. Meaning, that the botnet does not

trust fresh peers at all and they can gain trust only by following the Sality

protocol.

The model of static initial trust is easy to implement, but it requires

assumptions about the network. If the network is considered mostly benign,

it might be safe to use an initial trust of 1, however, for highly adversarial

networks using an initial trust of 1 might be dangerous and it is better to

use 0. Using low initial trust and no mechanism to gain more trust fast

15



CHAPTER 3. TRUST MODEL DESIGN

means that the benign peers that joined recently do not affect the final

decisions of the model, even though they might have useful information

about adversaries.

Static initial trust is supported by Fides as a form of fallback when no

other cold start technique is used. The administrator provides a configura-

tion that contains the initial reputation for each new peer.

3.2.2 Pre-Trusted Peers

This master thesis was done simultaneously to the master thesis on global

P2P security TI sharing by Bc. Martin Řepa [28], called Iris, which imple-

ments the new idea of pre-trusted peers in organizations for the Slips IPS.

Therefore, Fides works with the concept of pre-trusted organizations which

have pre-trusted peers. Iris implements the concept of pre-trusted organi-

zations, and Fides uses this knowledge to assign a higher or lower trust to

new peers.

The global P2P framework implemented by Řepa supports these type of

peers and provides a cryptographically-secure way how to identify a single

peer in the network, and its membership in an organization. This allows

Fides to pre-trust specific peers or all the peers from organizations by as-

signing them an initial value.

Fides can be configured to use pre-trust in two different ways. First, to

assign the pre-trusted peers an initial reputation. This means that the peer

will have an initial reputation, but it will be required to interact with the

local peer and it will slowly change that initial reputation according to its

interactions with others. All the interactions will be evaluated and Fides

will compute a service trust for the peer, as described in Section 3.6.

Second, Fides can use the initial pre-trusted value read from the config-

uration as the final service trust. This effectively means that Fides will not

evaluate any data received from the pre-trusted peer and this service trust

will be kept forever.

This configuration for Fides is called enforceTrust. If it is enabled and

thus enforceTrust = False is set in the configuration, Fides uses the first

variant where the trust for the peer will move during the interactions. If the

administrator uses enforceTrust = True, Fides uses the second option and

fixates the service trust for the peer to a set pre-trust.

Both options help solve the cold start problem for specific peers and

organizations, as they will start with a high reputation or fixed service trust.

Which organization or peer to trust is completely left to the administrator

of Slips. However, as the administrator needs to know the identity of the
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peers or organization, it does not solve the cold start problem globally for

all peers.

3.2.3 Recommendations

As the local peer might have multiple remote peers that it trusts enough,

Fides uses these relationships to ask the remote peers about how much they

trust a new peer. Fides only asks for recommendations once: when the local

peer finds a new peer for the first time.

Using a recommendation system introduces new attack vectors that can

be exploited by adversaries, either by getting trust for the malicious peer or

by lowering trust in honest peers that might have some threat intelligence

about the malicious actor. These attacks are called bad-mouthing and unfair

praises and we need to consider them and implement countermeasures.

Because of the possible attacks, the local peer should not solely rely on

the network recommendations when computing the final service trust for the

fresh peer. In case when the recommending peers are malicious, it might

skew the decisions of the local peer for the time being. In order to solve

this, when computing the final service trust for the remote peer, the local

peer should take into account its own interaction with the peer as well as

the received recommendations.

Moreover, the local peer should request recommendations only if it has

enough trusted remote peers, otherwise, it can expose itself to bad-mouthing

and unfair praises attacks more easily.

Fides employs recommendation systems based on SORT [5] but with

more strict rules when it is actually used and combines it with the pre-

trusted peers (3.2.2) as well as with the static initial trust (3.2.1) as a fallback

when no other option is available due to constraints such as having not

enough trusted peers. The algorithm used for the recommendation system

is explained in detail in Section 3.5.
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3.3 Attack Vectors

Since Fides is a trust model that computes how much to trust peers, it

is potentially open to attacks from adversarial peers. Adversarial peers are

peers that know how to talk the protocol and manipulate the recommenda-

tions, or threat intelligence data in order to influence the final decisions.

Adversarial peers can try to (i) send bad threat intelligence data; (ii) lie

about a peer that is benign, and (iii) lie about a peer that is malicious.

3.3.1 Influencing Aggregated Score & Confidence

The main output of Fides is the aggregated score and confidence of a

group of reports on a target. The sequence of actions typically are (i) Slips

wants to know what the P2P network thinks about target T ; (ii) it then

asks some peers; and (iii) uses Fides to aggregate the scores and confidences

sent by all the peers. The aggregated score and confidences are used for

computing the service trust of peers and also to weight the aggregated score

and confidence of the data sent by the peers.

Any attacker wants to ultimately influence these aggregated values either

to make malicious IP/domain seem to be benign or another way around.

However, for that to happen, the attacker needs to gain sufficient service

trust. For more information about the aggregated threat intelligence see

Section 3.7.

3.3.2 Influencing Service Trust

Fides always computes service trust for the peers locally and does not

take over the service trust computed by any other peer. How does Fides

computes the service trust is described in detail in Section 3.5.

Malicious peers can influence the service trust value for some other re-

mote peer in the network in the eyes of the local Fides in two situations.

Firstly, the peers can influence the service trust in a peer by manipulating

their recommendation responses when the Fides encounters the peer for the

first time and asks the network for the recommendations on it. For that

reason, the recommendation protocol is engaged only when the network

is trusted enough and only for the first time when the new remote peer

encountered. We describe this more in detail in Section 3.3.3 below.

The second case when the malicious peer can indirectly influence the

service trust for any other remote peer is a situation when Fides uses one

of the interaction evaluation strategies that utilizes the aggregated threat
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intelligence (3.6.2, 3.6.3, 3.6.5). Because in that case, even data from mali-

cious peers are taken in account when computing final satisfaction with the

interaction for each peer so by submitting incorrect data the group of mali-

cious peers can influence the interaction evaluation result which will lower

the service trust in benign peers.

This is expected as this interaction evaluation strategy (3.6.2, 3.6.3,

3.6.5) uses aggregated network opinion to evaluate the interactions. Thus if

the wrong opinion is in majority, and while considering the service trust of

each peer, it is taken into the account even though it is wrong.

For that reason, the intermediate goal of an attacker is to gain the service

trust of the local peer in order to have any influence over the decisions the

Fides makes. We explore this behavior in more detail in the experiments

in Section 5.3, when we let malicious peers gain the service trust at the

beginning of the simulation. In addition to that, we describe how resilient

Fides is to these types of attacks as part of the experiment results analysis

in Section 6.2.

3.3.3 Influencing Peers Reputation

When a new peer joins the network, Fides in some cases requests rec-

ommendations from other peers in the network. We go into detail of this

process further in Section 3.5.4.

Because Fides asks for the recommendation, it is possible that one or

more of the peers providing the recommendations is malicious and it provides

incorrect recommendations with the goal either to silence a benign peer or

to support another malicious peer.

Even though the reputation of a peer can be skewed by the attacker, it

is still able to gain correct service trust by following the protocol and pro-

viding useful data. The service trust Equation 3.1 suggests that the more

experience a local peer has with a remote peer, the more it ignores the ini-

tially received recommendations. This means that the service trust will tend

to converge to correct values that do not necessarily depend on the initial

recommendations and eventually will lose that information completely. In

other words, if the peer’s initial reputation was incorrect (from the ground

truth point of view), it will only take the peer longer to gain correct service

trust, but eventually, it will end up with the same value as with the correct

reputation value. We talk more about the service trust and how does it

behave further in Section 3.5.1.
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3.4 Taxonomy of Attacks

We were inspired by the thorough threat model analysis in Dovecot [19]

and based our own analysis on the same original paper from Koutrouli and

Tsalgatidou [23] which describes the taxonomy of different attack methods

on reputation systems in peer-to-peer networks. They classify the reputation

attacks in the following categories.

3.4.1 Unfair Recommendations

This category describes the behavior when a peer provides incorrect data.

The peer does not need to be necessarily malicious in order to do that, it can

also have not enough data to make correct decisions or maybe it is missing

some important information. In the case of Fides, these types of attacks also

influence service trust as well as the reputation system, because the service

trust depends on the initial reputation. Moreover, the malicious peers can

collude to amplify the effect on the final computations of the trust model.

The intent of the malicious peers, in this case, is to lower someone’s

service trust/reputation (badmouthing attack) or to make someone’s service

trust/reputation higher (unfair praises). In a case of service trust, this is not

possible directly, but rather by colluding with multiple high trusted peers

as described in detail in Section 3.3.2. In the case of reputation, this is

possible if the malicious peer is selected as a recommender. Fides mitigates

both of these problems by asking numerous peers for their opinion (in case

of service trust) and by asking only pre-selected and highly trusted peers

in case of recommendations. Of course, it is not possible to eliminate the

possibility of a malicious peer being asked for the recommendations, that is

why, in experiments, we simulate malicious peers as Malicious Peer (5.2.4)

behavioral patterns. In simulations we then evaluate what network topology

is needed in order for Fides not to be easily manipulated into believing the

malicious peers.

Inaccurate recommendations are a type of unfair recommendation when

an honest peer provides wrong data due to a lack of complete information.

This can happen, for example, because they were not attacked by the ad-

versary (yet), and they consider them to be benign because they have no

reason to see it otherwise. Another example can be a peer that does not

have the latest threat intelligence data from the black lists or other remote

resources. These peers are included in the experiments as well, we call that

Confident Incorrect (5.2.3) behavioral pattern.
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Koutrouli and Tsalgatidou [23] also mention Random opinions where

the peer is essentially providing random data. We simulate this in our

experiments as well, because there will be peers, in the network, that simply

do not have enough information to make a good and confident decision about

some target. This is the Uncertain Peer (5.2.2) behavioral pattern.

Because of the nature of Fides, which aggregates all network opinions it

receives, the worst-case scenario is the situation where the attackers collude

together because it amplifies their effect on the final aggregated score &

confidence. However, our trust model uses service trust during computing

the final score with confidence so, in order for attackers to influence this

decision, their total service trust must be higher than the service trust of

the benign peers. This makes it harder for the adversary to overturn the

decisions in their favor because it forces them to gain the service trust of

all their peers. In simulations, we have malicious peers that collude (and lie

about the same targets) as well as peers that do not collude and lie about

different targets.

3.4.2 Inconsistent Behavior

In the aforementioned Section 3.3.1 any malicious peer needs to gain

some service trust in order to have the ability to meaningfully influence

the trust model’s decisions. This leads to malicious peers that will have

different behavior when they try to gain the service trust and when they

provide misleading data to achieve their goals. This behavior is equivalent

to the Traitors from [23]. Fides tries to mitigate this problem with some of

the interaction evaluation strategies that compare individual threat intelli-

gence data from a single peer to aggregated network opinion (such as 3.6.2).

Thanks to these strategies, even peers that gained service trust at the be-

ginning can be eventually identified as malicious and their service trust will

be lowered whenever they provide threat intelligence data that are different

from the aggregated ones.

However, even the honest peers can have inconsistent behavior, mainly

when they do not have enough information about IP/domains. In experi-

ments, we simulate this behavior for honest peers withUncertain Peer (5.2.2)

behavioral patterns. For malicious peers, we have a period during which they

provide correct and consistent data, allowing them to gain the service trust.

3.4.3 Identity Management Related Attacks

The service trust and reputation are tied to the peer’s identity. In our

case, Fides uses a peer’s identity that was provided by the Network Layer
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[28]. From the technical point of view, the identity is, in fact, a public key,

and any data the peer provides is signed with the peer’s private key. Thus,

we can verify that the data were provided by the owner of the private key to

said public key (identity). Moreover, any peer in our network can belong to

one or more organizations that are, again, represented by their public key.

Peers prove their membership to the organization by providing their own

public key signed by the organization’s private key. The identity, as well as

the organization’s membership, is cryptographically verified by the network

layer [28] and Fides does not perform any additional verification.

Impersonation

Thanks to the data signatures and identities tied to private/public key

pairs, the Impersonation based attacks are then possible solely in cases when

the attacker gained access to the private key of the peer. Unfortunately,

this type of attack is not possible to prevent completely. However, when

the attacker gains access and starts submitting incorrect data, Fides will

start lowering the service trust associated with that identity, thus eventually

limiting the attacker’s influence.

Man-in-the-middle attack

Man-in-the-middle attacks are attacks when a third party is able to either

intercept or manipulate the transmitted data. From Fides point of view, the

data manipulation is not possible, as the data are signed by the sender and

the network layer [28] ensures that the signatures are verified. On the other

hand, the network layer is designed in a way that peers pass messages to

each other through the network [28], so any malicious peer can choose not

to pass down the message. How this affects the propagation of messages is

part of the experiments in said paper [28].

3.4.4 Whitewashing & Sybil Attack

Due to the nature of the global peer-to-peer network, where many devices

run behind NAT1 or even NAPT2 and have the same IP address, the identity

is not associated to an IP address. However, this also means that any device

can have multiple identities and can essentially generate new ones as time

1Network address translation - a router mapping multiple IP addresses from the private

network to a single public IP address.
2Network address and port translation - similar to NAT, but on the private network

even the ports are used during the translation process.
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goes by. This opens Fides to other types of attacks such as Whitewashing,

where the malicious peer drops an identity that was discovered as malicious

and its service trust dropped in 0, and then it generates a new, fresh identity.

However, this behavior does not benefit the attacker as much as in Dovecot

[19], because Fides assigns the initial service trust 0, instead of 1. In other

words, Fides distrust new peers by default, so whenever a peer drops its

identity and creates a new one, it starts with a service trust of 0.

As it is not expensive to generate a new identity, it is not costly for the

attacker to perform a Sybil attack. Sybil attack refers to a situation where

a single malicious peer creates multiple identities and uses them in concert

to defeat the system [11]. In our case, attackers can maliciously flood the

network with wrong data thus making some of the interaction evaluation

strategies from Section 3.6 perform poorly. Moreover, if the attacker is able

to gain some service trust for its malicious peers, it can effectively overtake

the network and influence most of the decisions that Fides makes. The

defense against this attack is to make it computationally hard to join the

peer-to-peer network, for example, by making it hard to compute peer IDs

or by letting peers solve some other type of computational puzzle.

However, we did not introduce any of these measures to our system, and

we leave that as part of future work in Section 7.1.3.
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3.5 Computational Model of Fides

This section describes how Fides determines to whom and how much it

can trust other remote peers. Our trust model expresses trust in a specif

peer with metrics called service trust. Service trust is a value that describes

how much the local peer can trust a specific remote peer.

In the following pages, we describe the process top-down starting with

the most important parts - service trust - and then breaking it down into

bits. Note that there are two main ideas behind most of the equations.

The first one, is that we want to robustly capture the average behavior

of the peers. In order to do that, we will be computing the average behavior

of the peers and then approximating the deviations from said behavior.

The second part compares and weights first-hand experience with the

remote experience. First-hand experience is what happened between local

and remote peers during the time they interacted. This can be, for example,

threat intelligence sharing, file-sharing, or the results of the recommendation

protocol. Remote experience is what happened between one remote peer and

another remote peer. In other words, first-hand experience for peer j are

actions between j and z. Whenever j shares information about these actions

with peer i, for i it is a remote experience.

Table 3.1 describes the most important notation we use in the following

sections.

i local peer, instance of Fides

j remote peer somewhere on the internet

sti,j
service trust - how much i trusts j that it pro-

vides good service

ri,j i’s reputation value about j

rti,j i’s recommendation trust about j

shi,j size of i’s service history with j

ski,j
i’s satisfaction value with interaction with peer

j in window k

wk
i,j weight of i’s interaction with j in k

fk
i,j fading effect of i’s interaction with j in k

Table 3.1: Fides Computational Model Notation
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3.5.1 Service Trust

As outlined previously, service trust sti,j is a value that describes how

much peer i trusts that remote peer j will provide a good service [5]. We

compute the sti,j in the Equation 3.1 by weighing local experience with

peer’s j service, with the reputation j got from the network when it was

first seen by i. The used weight is the size of the service interaction history

shi,j to global maximal history size shmax.

sti,j =
shi,j
shmax

·
(
cbi,j −

1

2
ibi,j

)
+

(
1− shi,j

shmax

)
· ri,j (3.1)

Equation 3.1 implies that the more interaction there was between peers

i and j, the bigger impact on sti,j it has. In other words, the more i and j

interact the less i relies on the reputation that i computed from the values

provided by the network, at the time when j was seen for the first time by

the peer i.

3.5.2 Local Experience for Service Trust

The first part of the Equation 3.1 contains competence belief - cbi,j , and

integrity belief - ibi,j . Both values are based solely on the history of the

interactions that the peer i experienced with the peer j.

Competence Belief

Competence belief represents how much did peer j satisfied local peer i

with the past interactions. We measure it as an average of interactions from

the past [5].

cbi,j =
1

βcb

shi,j∑
k=1

ski,j · wk
i,j · fk

i,j

βcb =

shi,j∑
k=1

ski,j · wk
i,j

(3.2)

It holds that 0 ≤ cbi,j ≤ 1 and where ski,j is the evaluation of the inter-

action in window k, wk
i,j is the weight of the interaction (how important it

was) and fk
i,j is the fading effect of that interaction. We describe ski,j , w

k
i,j

and fk
i,j in Section 3.5.3. βcb is the normalization coefficient that ensures

that cbi,j stays within the interval of 0 ≤ cbi,j ≤ 1.
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Integrity Belief

Integrity belief ibi,j is a level of confidence in the predictability of future

interactions [5]. It is measured as a deviation from the average behavior cbi,j .

Therefore, ibi,j is calculated as an approximation to the standard deviation

of interaction parameters [5].

ibi,j =

√√√√ 1

shi,j

shi,j∑
k=1

(
ski,j · w

µ
i,j · f

µ
i,j − cbi,j

)2
fµ
i,j =

1

shi,j

shi,j∑
k=1

fk
i,j

wµ
i,j =

1

shi,j

shi,j∑
k=1

wk
i,j

(3.3)

It holds that 0 ≤ ibi,j ≤ 1. The more consistent behavior peer j has, the

lower the ibi,j is. Consistency is a highly desired property as the local peer

then has more precise estimates about the future behavior of the remote

peer.

3.5.3 Interaction Satisfaction

ski,j is i’s satisfaction value with interaction with peer j in window k [5].

We outlined before, that each interaction between two peers is evaluated,

ski,j is a result of this evaluation of a single interaction between peers i

and j. Because our trust model is generic, the evaluation function can

be implemented differently for different data. How did we design it and

implemented it for threat intelligence is described in the Section 3.6.

However, even with the computed interaction satisfaction value, not all

interactions are the same. Some interactions are more important than oth-

ers. Moreover, because peers can change their behavior, most recent inter-

actions should be more important than the interactions that happened a

long time ago. That is why we include the weight of the interaction and the

fading effect.

Weight of the Interaction

Because each interaction is different and its importance is different, we

have wk
i,j that measures the importance [5]. The weight belongs to interval

0 ≤ wk
i,j ≤ 1 and Fides implements it as a discrete function of interaction
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type. For example, the weight of interaction when a remote peer shares

the threat intelligence is higher than when the remote peer requests threat

intelligence.

Fading Effect

Fading effect fk
i,j determines ”how much does the algorithm forget” as the

algorithm prefers most recent interactions over past interactions and thus

fk
i,j reduces the weight of the past interactions [5]. fk

i,j is a non-increasing

function of interaction and time or an index of said interaction in history.

The actual implementation of the fading effect depends on the data the

trust model is processing. For example, SORT implements it as a decreasing

linear function fk
i,j =

k
shi,j

, 1 ≤ k ≤ shi,j [5]. However, in our case and after

multiple iterations, we decided not to forget the interactions that the model

remembers and rather have all interactions with the same impact.

fk
i,j = 1 (3.4)

The way Fides computes fk
i,j might be changed in the future and imple-

mented as a function of time, we discuss this in more detail as a part of the

future work in Section 7.1.

3.5.4 Reputation and Recommendations

In order to mitigate the cold start problem outlined in Section 3.2 and

in the cases when there are no or few interactions between i and j, the

algorithm relies on ri,j - reputation value [5]. ri,j is the second part of the

service trust Equation 3.1 that introduces remote experience to the service

trust.

The reputation value is computed from the recommendations received

from the remote peers. This value represents what remote peers think about

another remote peer. However, this value is calculated by the local peer with

respect, to how much it trusts each peer, that provided the recommendation.

When the local peer i encounters remote peer j for the first time and it does

not have any data about its trustworthiness, i can request recommendations

on peer j from i’s most trusted peers. We denote a set of remote peers, that

provided the recommendations as Ti.

Requesting a Recommendation

The recommendation system built into Fides cannot be used in every

scenario. Because of the sensitive nature of the environment, the trust
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model was designed for, there are cases when it is dangerous to ask for

recommendations. This is mainly the case when there are not enough peers

that are trusted enough.

SORT requests recommendations every time it encounters a new peer.

The set of recommending peers is created by taking all known peers and

selecting those that have higher than average service trust. However, those

can also be peers with trust as low as 0.001. In a sensitive environment,

which the peer-to-peer network of IPS definitely is, we do not want to get

recommendations from peers, that have low trust at all. Moreover, given

the nature of Slips, we decided to combine a recommendation system based

on SORT with static initial trust (3.2.1) and with pre-trusted peers (3.2.2).

This approach provides a more robust basis for a trust-sensitive environment

and it helps us to mitigate the cold start problem (3.2).

If the peer is part of a pre-trusted organization or it is pre-trusted itself,

it inherits the configured reputation - ri,j from the configuration. In this

case, Fides does not engage the recommendation protocol at all, because

the peer already has reputation ri,j assigned from the configuration and it

was recommended by the administrator. Moreover, the administrator can

choose if this value is frozen, or not. Frozen Service Trust configuration

means, that the peer j has in eyes of i static service trust sti,j - it will never

change and whatever data peer j sends to i will not influence the sti,j . On

the other hand, when this configuration is not selected, the peer’s service

trust is going to change during the time when it communicates with the

local instance according to the data and interactions it provides.

In the case where the peer is not pre-trusted, Fides evaluates if it has

enough well-trusted peers that can be trusted to provide the correct rec-

ommendation. This value as well as a number of maximal peers used for

recommendation is configurable. In addition, the administrator can enforce

that for the recommendation protocol, only the pre-trusted peers or the

peers from pre-trusted organizations are used.

Recommendation Response

A single recommendation response from peer z ∈ Ti about giving the

recommendation to peer i about peer j contains the following data.

• cbz,j , ibz,j - summary of z’s interactions with j, competence belief and

integrity belief
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• shz,j - service history size, number of interactions between z and j -

the more interactions they had, then the z’s recommendation has more

credibility

• rz,j - summary of recommendations that z received on j

• ηz,j - number of peers that provided recommendations for j when j

was new to z and their recommendation was used to compute rz,j

cbz,j , ibz,j are included in the recommendation in order to provide a view

on what does z think about j. shz,j and ηz,j are included to indicate how

much experience with j does z actually have. To determine to which extent

is the z sure about correctness of cbz,j , ibz,j , rz,j in the recommendation.

And also to protect the z’s recommendation trust in i’s eyes, if cbz,j , ibz,j ,

rz,j values are wrong, because i inspects shz,j and ηz,j and does not penalize

z that much, if the history size or the number of original recommender are

low.

Computing Reputation

When the local peer receives all recommendations, it computes the rep-

utation value ri,j as a weighed expected local experience (ecbi,j , eibi,j -

estimates about competence and integrity) from the remote peers with their

remote experience (eri,j - estimate about reputation of said peer).

ri,j =
⌊µsh⌋
shmax

·
(
ecbi,j −

1

2
eibi,j

)
+

(
1− ⌊µsh⌋

shmax

)
· eri,j (3.5)

The weight, used in the Equation 3.5, is the average of history sizes in all rec-

ommendations to shmax, maximum interactions history size. We calculate

µsh as follows.

µsh =
1

|Ti|
∑
z∈Ti

shz,j (3.6)

Again, we are weighing local experience to remote experience. However, in

this case, it is local for the remote peers that provided the recommendations.

3.5.5 Remote Local Experience

Similarly, when we compute the service trust in Equation 3.1, we need

to get competence and integrity belief. However, while creating reputation

value in 3.5 where the values are coming from the remote peers, we are trying

to estimate those values received from the network. For that reason, we call
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them estimated competence belief - ecbi,j and estimated integrity belief -

eibi,j .

Estimated Competence Belief

ecbi,j is estimation about competence belief made by i about j. This

value is computed from the received recommendations in combination with

rti,z - a recommendation trust that i has about z. Similarly, as for service

trust, we have a normalization coefficient βecb that moves the resulting data

to the correct interval. It holds that 0 ≤ ecbi,j ≤ 1.

ecbi,j =
1

βecb

∑
z∈Ti

(rti,z · shz,j · cbz,j)

βecb =
∑
z∈Ti

(rti,z · shz,j)
(3.7)

Recommendation trust rti,z is described in detail in Section 3.5.7.

Estimated Integrity Belief

Following the ecbi,j , eibi,j is estimation about the integrity belief made

by i about j. Equation 3.8 is almost similar, but we use ibz,j instead of ebz,j .

This means that normalization coefficient βeib = βecb.

eibi,j =
1

βeib

∑
z∈Ti

(rti,z · shz,j · ibz,j)

βeib =
∑
z∈Ti

(rti,z · shz,j)
(3.8)

3.5.6 Remote Remote Experience

Going back to Equation 3.5 from Section 3.5.4, we use estimated rep-

utation value - eri,j . This value represents information that was created

by the peers that are remote even for remote peer j. In other words, this

information came from the second ring of trust - from acquaintances of an

acquaintance.

eri,j =
1

βer

∑
z∈Ti

(rti,z · ηz,j · rz,j)

βer =
∑
z∈Ti

(rti,z · ηz, j)
(3.9)
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3.5.7 Recommendation Trust Metric

Recommendation trust - rti,z - is another metric that a peer calculates

and stores. It expresses how much does i trust that z provides good recom-

mendations. Even though one could theoretically use service trust sti,z for

this, we have another trust metric because there are peers that can provide

very good data (service), but they are surrounded by bad peers or the other

way around. This also gives us the ability to have specialized nodes in the

network that serves as a peers registry for organizations - a single node that

only provides recommendations on peers.

We calculate the recommendation trust in a similar way as the service

trust and reputation, but we use recommendation competence belief rcbi,z,

recommendation integrity belief ribi,z and reputation ri,z. This time, we

use the weight rhi,z, which is the size of the history of the recommendations

provided by z to i, and rhmax, the maximal size of said history.

rti,z =
rhi,z
rhmax

(
rcbi,z −

1

2
ribi,z

)
+

(
1− rhi,z

rhmax

)
ri,z (3.10)

Recommendation Competence and Integrity Belief

Similarly for interactions, we use three different parameters for calcu-

lating the rcbi,z and ribi,z. We use satisfaction rsxi,z, weight rwx
i,z and the

fading effect rfx
i,z. The parameters have the same background as described

in Section 3.5.3, but in this case, they are connected to recommendations

instead of service. We calculate rcbi,z as follows:

rcbi,z =
1

βrcb

rhi,z∑
x=1

(
rsxi,z · rwx

i,z · rfx
i,z

)
βrcb =

rhi,z∑
x=1

(
rwx

i,z · rfx
i,z

) (3.11)

And for recommendation integrity we compute ribi,z as:

ribi,z =

√√√√ 1

rhi,z

rhi,z∑
x=1

(
rsxi,z · rw

µ
i,z · rf

µ
i,z − rcbi,z

)2
(3.12)

One more time, the computational model is trying to approximate average

behavior in recommendations - rcbi,z - and then the deviation from such

behavior - ribi,z.
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Fading effect rfx
i,z has similar properties as the fading effect for service

trust described in Section 3.5.3. It is a non-increasing function of a number

of recommendations or a time. For the recommendations, Fides implements

it exactly the same as for the service interactions.

rfx
i,z = 1 (3.13)

Evaluating Received Recommendation

As outlined in Section 3.5.7, in order to evaluate a particular recom-

mendation from remote peer z, we have satisfaction, weight, and the fading

effect. We calculate the recommendation satisfaction rsxi,z by comparing

values from z’s recommendation rz,j , cbz,j , ibz,j , with values that are the

results of the the recommendation algorithm. In other words, we compare

each recommendation, with the aggregated values - eri,j , ecbi,j and eibi,j .

This gives us an estimate of how off was the peer z’s recommendation from

the final result of the recommendation algorithm.

rsxi,z =
1

3

[(
1− |rz,j − eri,j |

eri,j

)
+(

1− |cbz,j − ecbi,j |
ecbi,j

)
+(

1− |ibz,j − eibi,j |
eibi,j

)] (3.14)

We calculate the weight of recommendation rwx
i,z as a weighed sum of

the proportion of the size of the service history between z and j with max-

imal service history size. And a number of peers that provided the initial

reputations ηz,j divided by a maximal number of possible recommending

peers.

rwx
i,z =

⌊µsh⌋
shmax

· shz,j
shmax

+

(
1− ⌊µsh⌋

shmax

)
· ηz,j
ηmax

(3.15)
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3.6 Interaction Evaluation Strategies

In order to determine which remote peers are providing valuable data

and which peers are not, the local peer needs to be able to evaluate each

interaction it had with the remote peer. In general, there are two options for

how to approach this, (i) by designing an evaluation that is protocol-aware

(i.e. it understands the protocol and the data that the two peers shared );

or (ii) by having an evaluation function that does not need to understand

the protocol and can be used for any type of data.

We choose to implement both approaches and they are described in

the following sections. In order to evaluate which strategy is better in what

scenarios, we designed and run many simulations - their results are described

in Chapter 5. We will use the notation from the table (3.2) when referring

to peers and their interactions.

i local peer

j remote peer

T
target of network intelligence, domain or IP

address

k evaluation window

ski,j
i’s satisfaction value with interaction with peer

j in window k

Sk
j,T

score computed by the peer j about target T

in window k

Ck
j,T confidence, how much is the score correct

Sk
T

aggregated score from all threat intelligence

reports in window w for target T

Ck
T aggregated confidence

Table 3.2: Interactions Symbols

3.6.1 EvenTIEvaluation

This strategy does not need to understand the underlying data, its se-

mantics, or its structure. It is a naive approach when the trust model uses

the same satisfaction value for all data it received. It does not check if the

data make sense and assigns all peers the same satisfaction value ski,j . The

value itself is loaded from the configuration provided by the administrator.

We denote it as CSS. The idea behind this algorithm is that when the
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peers are interacting for a long time or have more interactions, they are

more trustworthy.

ski,j = CSS (3.16)

This approach is used, for example, by the botnet Sality or by the

Dovecot trust model. Fides implements it as an EvenTIEvaluation strat-

egy with configurable satisfaction value and the administrator can use this

strategy if they see it as the most optimal.

The disadvantage of this approach is that we do not penalize remote

peers when they provide wrong data, because the evaluation method does

not care nor understand the underlying data. Because of that and in a case

when the adversary gains the service trust of the model by following the

protocol for a longer time, it may significantly influence the aggregated score

as the adversary has higher trust than other remote peers. If this happens,

there is no way to automatically downgrade the adversary’s service trust.

3.6.2 DistanceBasedTIEvaluation

Because Fides is designed for sharing and aggregating threat intelligence,

and understands the protocol that is being used, we can use this and penalize

the peers that are providing the local peer with incorrect data. The inter-

action evaluation is performed at the end of the threat intelligence sharing

process, where at that point, Fides already aggregated the data and cal-

culated the aggregated network score and confidence. Thus, we can use

the aggregated values as a baseline. Then we compare them against each

remote peer’s threat intelligence we received. This evaluation strategy is

implemented in the Fides as a DistanceBasedTIEvaluation.

Suppose, that remote peer j provided data about target T to local peer

i in window k. The provided data consist of score and confidence (Sk
j,T ,

Ck
j,T ). Where score, −1 ≤ Sk

j,T ≤ 1, indicates if the target is malicious (−1)
or begin (1). The confidence 0 ≤ Ck

j,T ≤ 1 on the other hand indicates, how

certain is the peer about its assessment of Sk
j,T .

In order to evaluate the interaction between the local peer i and the

remote peer j we need to compute the satisfaction value ski,j . It holds that

0 ≤ ski,j ≤ 1 where 1 means peer i was satisfied with the interaction.

ski,j =

(
1−
|Sk

T − Sk
j,T |

2
· Ck

j,T

)
· Ck

T (3.17)

Where Sk
T is the final score aggregated across the reports from the peers,

Ck
T is aggregated confidence.
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The problem with this evaluation algorithm is the situations where the

aggregated confidence Ck
T is close to 0. In this case, the algorithm will

penalize all peers for providing any threat intelligence as the final ski,j is close

to 0. Another issue with this approach is that when a single honest peer has

unique information about an IP address or domain, which is significantly

different than what other peers have, it is automatically penalized for not

sharing the same opinion as the other peers. However, if the peer is trusted

enough, it has a higher impact on the aggregated value and it is not penalized

too much.

3.6.3 ThresholdTIEvaluation

In order to compensate for the low confidence, Ck
T and in order not to

penalize all peers in the algorithm explained in Section 3.6.2, this evaluation

strategy considers Ck
T value and employs the DistanceBasedTIEvaluation

only when Ck
T is ”high enough”. In this case ”high enough” means higher

than a value CT , configured by the Slips administrator. In a case when

Ck
T < CT , the algorithm fallbacks to using EvenTIEvaluation, because it

is not possible to distinguish between ”good” and ”bad” network intelligence

due to low confidence in the decision. This strategy is implemented in Fides

under the name ThresholdTIEvaluation. What should be the correct value

for CT from the configuration is subject to evaluation in the simulations in

Chapter 5.

Algorithm 1 ThresholdTIEvaluation

1: CT ← configuration ▷ configuration provided by the administrator

2: if Ck
T < CT then

3: ski,j ← EvenTIEvaluation()

4: else

5: ski,j ← DistanceBasedTIEvaluation()

6: end if

3.6.4 LocalCompareTIEvaluation

This approach uses a similar equation for computing the satisfaction

value outlined in Section 3.6.2. However, the input is different. Instead

of comparing the remote peer’s (j ) threat intelligence (Sk
j,T , C

k
j,T ) to the

aggregated intelligence (Sk
T , C

k
T ), we compare it to the threat intelligence

of the local (i) Slips instance - (Sk
i,T , Ck

i,T ). Thus the evaluation is the

following:

35



CHAPTER 3. TRUST MODEL DESIGN

ski,j =

(
1−
|Sk

i,T − Sk
j,T |

2
· Ck

j,T

)
· Ck

i,T (3.18)

This approach is useful when the local peer has enough information

about the target but wants to verify the behavior of the remote peers. To

determine whether they are sending data that are somewhat correct. This

strategy is implemented in Fides with name LocalCompareTIEvaluation.

3.6.5 WeighedDistanceToLocalTIEvaluation

Another implemented strategy combines Sections 3.6.2 and 3.6.4 and

mixes them using a weight w, provided in the configuration. This is a

good approach when Slips or the network has a lot of data on the target.

It evaluates interactions with what the local instance thinks and what the

network opinion is. What the correct balance is, is subject to simulations

and configuration by the administrator.

ski,j = w ·

(
1−
|Sk

i,T − Sk
j,T |

2
· Ck

j,T

)
· Ck

i,T+

(1− w) ·

(
1−
|Sk

T − Sk
j,T |

2
· Ck

j,T

)
· Ck

T

(3.19)

In Fides this is implemented as theWeighedDistanceToLocalTIEvaluation.

3.6.6 MaxConfidenceTIEvaluation

As pointed out in Section 3.6.2, DistanceBasedTIEvaluation strategy

performs poorly if the confidence of aggregated data is low. The strategy

ThresholdTIEvaluation is solving the problem by introducing a threshold

that has to be configured by the administrator. This is not optimal and we

wanted to have a strategy that does not require configuration for its own

behavior, thus we introduce a new strategy implemented under the name

MaxConfidenceTIEvaluation.

The goal of this strategy is to evaluate the received data with as much

confidence as possible while having a fully automatic process without the

administrator’s configuration. In order to do that, we combine all previous

strategies into one, where we utilize all available information into a single

ski,j value.

We introduce new variables here - w0, w1, w2 - which are essentially

weights of the particular strategies. These weights are based on the con-

fidence the strategy has in its own decision. Note, that there is a hierarchy,

36



CHAPTER 3. TRUST MODEL DESIGN

and the order matters. In our case we decided to prefer decisions coming

from strategy DistanceBasedTIEvaluation (Section 3.6.2), then we add

data from the LocalCompareTIEvaluation (Section 3.6.4) and if the final

decision still does not have the confidence of 1, we add the static value config-

ured by the administrator (noted as CSS). The last part - CSS - simulates

the static strategy described in strategy EvenTIEvaluation (Section 3.6.1)

and is set by the Slips administrator.

w0 = Ck
T

w1 = min(1− Ck
T , C

k
i,T )

w2 = 1− w0 − w1

(3.20)

The weights w0, w1, w2 in the Equation 3.20, are designed to gather as much

confidence as possible. w0 is the confidence of the aggregated network data,

essentially saying how much is the network sure about the given score. w1

is the confidence coming from the local IPS and the w2 is the remaining

confidence to 1.

We use the calculations from Sections 3.6.2, 3.6.4 and 3.6.1 multiplied

by the weights w0, w1 and w2 respectively.

ski,j =

w0 ·

[(
1−
|Sk

T − Sk
j,T |

2
· Ck

j,T

)
· Ck

T

]
+

w1 ·

[(
1−
|Sk

i,T − Sk
j,T |

2
· Ck

j,T

)
· Ck

i,T

]
+

w2 · CSS

(3.21)

MaxConfidenceTIEvaluation is the implementation name of this strategy

in Fides.

All strategies and their short description are part of the diagram 3.3 that

we include for clarity.
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Figure 3.3: Overview of the interaction evaluation methods with their de-

scription and used values.
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3.7 Network Intelligence Aggregation

Fides is a trust model designed for global peer-to-peer networks of Slips

instances. It is designed to support Slips in detecting malicious actors on

the network and enables threat intelligence sharing between peers of Slips

instances. Because Slips was designed to be as modular as possible, Fides is

effectively running as a module that provides aggregated threat intelligence

to Slips. In other words, Fides provides a view of what the network thinks

about some threat intelligence target. This is necessary so Slips can have a

unique view of the network on a specific Threat Intelligence. Fides needs

to aggregate elements of threat intelligence from remote peers into a single

value that is then presented to Slips.

Fides needs to say that some reports are better than others, based on the

service trust the local peer has in the remote peer (previously computed as

stki,j). Thus Fides needs to weigh every report based on this trust and come

up with an aggregated score Sk
T . Apart from the aggregated score, Fides

needs to compute the aggregated confidence Ck
T that expresses how confident

i is about the aggregated score Sk
T that was computed in the previous step.

Once aggregated, the computed score and confidence (Sk
T , C

k
T ) are sent

to Slips to report data on target T . Apart from sending to Slips, these

same values can be also used to evaluate the interaction of the remote peers,

depending on the selected interaction evaluation strategy. We describe this

more in depth in Section 3.6.

We designed and implemented two different functions for aggregating

threat intelligence and computing Sk
T alongside with Ck

T . Both of them

are implemented in Fides under their respective names and which method

performs better under what circumstances is a subject of the experiments

in Chapter 5.

3.7.1 AverageConfidenceTIAggregation

In this method, the aggregated score Sk
T is the sum of Sk

j,T , which is the

score sent by each peer j about target T in time window k; weighed with

the normalized service trust that i computed for peer j, denoted wstki,j . The

sum is done over the set of remote peers that provided a report to i for T

in time window k, denoted Rk
i,T . We calculate it in Equation 3.22.

Sk
T =

∑
j∈Rk

i,T

wstki,j · Sk
j,T (3.22)

The normalized service trust wstki,j used as weight is computed as:
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wstki,j =
1∑

j∈Rk
i,T

stki,j
· stki,j (3.23)

Equation 3.23 estimates the percentage that the service trust on j stki,j has

relative to the total sum of service trust received by i for all peers, for this

target T , in time window k.

We compute the aggregated confidence Ck
T for this strategy as:

Ck
T =

1

|Rk
i,T |
·
∑

j∈Rk
i,T

stki,j · Ck
j,T (3.24)

Which is an average over all the peers that sent to i a report on T in time

window k, of the weighted confidence sent by peer j on target T on time

window k. The weight is done by the service trust that i has on j on time

window k.

3.7.2 WeightedAverageConfidenceTIAggregation

This strategy uses Equation 3.22 to compute the aggregated score Sk
T

similarly to the AverageConfidenceTIAggregation in Section 3.7.1. How-

ever, the way how this strategy calculates Ck
T is different. Instead of using

the service trust stki,j to determine the correct trust in the confidence Ck
j,T

submitted by peer j and then diving it by the number of peers, it uses

the normalized service trust wstki,j computed in Equation 3.23 that already

contains the weight of the peers in the final decision.

Ck
T = ·

∑
j∈Rk

i,T

wstki,j · Ck
j,T (3.25)
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Architecture

Slips is a modular software. Each module is designed to perform a spe-

cific detection in the network traffic [16]. The modules can also be used to

extend Slips with any additional functionality directly. Fides was designed

for seamless interoperability with Slips, and in addition to the generic trust

model, we developed the Fides module for Slips. In this chapter, we de-

scribe the architecture of Fides and how it interacts with the network and

with Slips.

Figure 4.1: Fides high-level architecture that visualizes communication be-

tween Fides, Iris and Slips.

From the high-level perspective (see Figures 4.1 and 4.2), the trust model

Fides communicates with two different systems - Slips [16] and the network

layer Iris [28]. Fides manages the trust relationships in the network, aggre-

gates threat intelligence data, and communicates with Slips. The commu-
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nication with the remote peers in the network is facilitated by Iris. Slips

then produces and consumes the threat intelligence and defends the network

against intruders.

Fides exposes and consumes an API [3] built using the Redis channels

for both parts (Figure 4.1). The messages and API calls are consumed using

the JSON [21] data format.

Redis is an in-memory data structure store that supports asynchronous

channels and a publish-subscribe model [25]. Moreover, it can also persist

data on disk if required. We chose to employ Redis channels as the medium

that allows communication between the Iris and Fides and allows them to

use their respective APIs because Slips already uses Redis for its internal

communication between modules. It brings no additional overhead to run

Fides with its network layer.
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4.1 Fides & Network Access

Figure 4.2: High-level overview of communication between Fides, Iris and

Slips including examples of messages that sends to each other.

Fides itself is a trust model and it does not interact with the network

directly, but rather it exposes an API that can be used either to receive

the information from the network or for sending the requests back to the

network. Thanks to this design, where all business logic is separated from

the network layer, Fides is highly modular and does not depend on the

network layer implementation. The network layer Iris then performs all

data transfers and facilitates all communications with the remote peers. It

also facilitates finding new peers and ensuring that all requests from Fides

are dispatched to the correct recipients. In the eyes of Fides, the network

layer is a black box and it does not need to know how the network layer is

implemented. See Figure 4.2 for a high-level overview of the communication.

The network layer, Iris, was developed by Bc. Martin Řepa in [28] where

Řepa describes how Iris works in detail and what protocols are used to safely

deliver necessary information and messages between the instances of Fides.
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4.2 Implementation

Because Fides was designed to integrate with Slips, we were constrained

by the Slips implementation [16] and for that reason we implemented Fides

in Python [14] version 3.8.

The code is versioned by Git [7] and published on GitHub [17] in the

repository github.com/stratosphereips/fides [13]. We chose to use Conda [10]

for managing the dependencies and Python versions. Fides package struc-

ture is then following:

fides

evaluation

recommendation

service

messaging

model

persistence

protocols

utils

The implementation is split into multiple Python packages. The pack-

age evaluation contains all necessary algorithms for any data evaluation.

All interaction evaluation strategies (Section 3.6) can be found in the file

ti evaluation.py, all methods for aggregating threat intelligence (Section 3.7)

in the file ti aggregation.py. The evaluation.recommendation package con-

tains all computations that are related to the recommendations and reputa-

tion as described in Section 3.5.7. Similarly, the package evaluation.service

stores algorithm for computing the service trust described in Section 3.5.1.

The package messaging is a connector that allows Fides to send and receive

data from the Redis and thus from the Iris. There is a network bridge.py

which allows Fides to send a message to Iris and Slips via message queue and

message handler.py which on the other hand is designed for receiving, mes-

sage syntax validation and parsing of messages. The package model stores

all data classes that represent the data Fides operate with. The next pack-

age persistence then contains the implementation of the Fides’s persistence

layer which we describe more in Section 4.2.2. The next package protocols

contains all data processing and Fides’s decision process. The last package

is utils where we store our implementation of logging.

In the end, we wrote 6159 lines of code in total where the trust model

Fides itself accounts for 2691 lines. The rest of the implementation is related

to the unit tests, integration tests, simulation framework, simulations and
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the Slips module. We also set up a simple continuous integration pipeline

for executing the unit and integration tests in GitHub.

4.2.1 Configuration

Our trust model contains many different configuration options either re-

lated to the computational model itself or to the data persistence or identity

of the local peer.

Computational model settings are for example the threat intelligence

aggregation methods described in Section 3.7 or the interaction evaluation

strategy from Section 3.6. As the trust model needs only a single method,

the administrator needs to define which one of these functions should be

used.

The configuration itself is in a single YAML [32] file that is in the repos-

itory root in fides.conf.yml [13]. This file is loaded and validated during the

trust model startup and is used to provide all possible configuration options

for the trust model.

4.2.2 Persistence

Fides stores trust-related data such as past interactions, cached network

opinions, service trust, recommendations, etc. inside the database. The

database layer was implemented as an abstract part and can be easily re-

placed in the future. As of now, we have two different implementations.

An in-memory database and a database that stores data in Redis. How-

ever, thanks to its modularity, different persistence solutions can be easily

implemented.

4.2.3 Data Filtering

Part of the configuration is the section about data confidentiality and

sharing of the threat intelligence with other peers. Fides allows operators

to choose what threat intelligence will be shared, when, and to whom.

For example, if the threat intelligence received from the local Slips in-

stance contains a confidentiality level, the operator can enforce that only

peers with high service trust will receive this threat intelligence when they

ask for it.

The confidentiality level, cl, 0 ≤ cl ≤ 1, defines how sensitive or confi-

dential the threat intelligence is where cl = 0 means public information that

can be shared with anybody and cl = 1 secret information that should not

be shared at all.
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The Fides administrator can then specify what service trust st is required

for what confidentiality level, cl, in the configuration (Section 4.2.1) . If

this configuration is in place, whenever a remote peer (j) asks for threat

intelligence and the local (i) Slips has the requested threat intelligence, Fides

verifies that sti,j ≥ cl before providing the intelligence to the remote peer.

This mechanism ensures that Slips does not leak information that is

private or somehow more sensitive than the others.
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Experiments

We designed a single and comprehensive experiment that simulates a

real-world usage of Fides. This chapter describes how we set up an environ-

ment that allows us to run experiments and simulate real-world situations

in the peer-to-peer network where the peers communicate and share threat

intelligence.

In Section 5.1 we describe how we sample threat intelligence shared by

the peers. In the following Section 5.2, we list different types of peers in

the network, what is their goal, and how they behave. Section 5.3 then

describes how we designed the environment and what are the inputs for

the simulation itself. The last Section 5.4 presents how we evaluate each

scenario and explains the vital simulation indicators.

5.1 Sampling Threat Intelligence

Threat intelligence, which is being shared on the peer-to-peer network

and is aggregated by Fides, is generated inside Slips by various modules.

Each module provides a score on its own and Slips aggregates these evalua-

tions into a single value. This means that threat intelligence is computed as

a sum of independent random variables and that tends to follow the normal

distribution. For that reason, we sample threat intelligence values from the

normal distribution.

As peers have different behavior, we will sample the threat intelligence

provided by them every time when they are asked for it. We will characterize

the peer’s behavior by the threat intelligence it provides, with respect to the

baseline, and the ground truth of the target being benign or malicious.

As described in the previous chapters, threat intelligence consists of a

score and the confidence in that score. We use the notation µs for the mean
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threat intelligence score and σs for the standard deviation of the score.

Similarly, we use µc for mean confidence and σc for the standard deviation

of the confidence.

Fides also in some cases employs a recommendation protocol, so in the

simulations, the peers might be asked to provide recommendations about

other peers. They will follow their behavioral strategy when providing the

data. Recall the recommendation description from Section 3.2.3. A single

recommendation response contains cbk,j , ibk,j , shk,j , rk,j and ηk,j . We will be

sampling those from the normal distribution as well with the corresponding

pairs of (µcb, σcb), (µib, σib), (µsh, σsh), (µr, σr) and (µη, ση). Every peer will

provide recommendations based on his behavioral strategy with respect to

the ground truth.

5.2 Peer’s Behavioral Patterns

For the sake of experiments, we chose the behavior of each peer in the

simulated network. We identified multiple different behavioral patterns for

the benign as well as for the malicious peers. Every behavior is different and

is defined by the (µ, σ) for every data we sample and by the intent the peer

has in the network. Most of the behavior depends on the baseline, which is

the ground truth for any target in the system, if it is benign or malicious.

We note the baseline score as SB ∈ {−1, 1}, where SB = −1 means that the

target is malicious and SB = 1 means that the target is benign.

5.2.1 Confident Correct Peer

This behavior corresponds to an honest peer that provides correct data

according to the baseline. Meaning, that if the target (domain/IP address

that we have threat intelligence for) is benign, the peer with confident correct

behavior will provide threat intelligence that says that the target is benign.

Moreover, the peer will provide the data with high confidence.

The very same thing applies to the situation when this peer is asked

to provide a recommendation for any other peer. The provided recommen-

dation will reflect the real behavior of said peer and it will indicate high

confidence in the recommendation. This peer has the ideal behavior as its

data are useful and correct. Table 5.1 describes the data used for sampling

the threat intelligence this peer provides.
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type notation µ σ

score µcc
s SB · 0.9 0.1

confidence µcc
c 0.9 0.1

Table 5.1: Confident Correct Behavior

5.2.2 Uncertain Peer

This behavior simulates peers that do not have enough information to

provide reasonably good data, but they are benign and honest with their

behavior. The peer can provide essentially any score but with very low

confidence in said score. That is why the µup
s is quite high whereas the

mean for this behavior is 0.

type notation µ σ

score µup
s 0.0 0.8

confidence µup
c 0.3 0.2

Table 5.2: Uncertain Peer Behavior

5.2.3 Confident Incorrect

The peer with this behavior is confident about their data and the threat

intelligence, but their threat intelligence is wrong. However, this peer is

still benign and is making honest mistakes. This strategy simulates peers

that were not attacked by a malicious device and they consider it benign

because they do not have any information indicating malicious intent. Thus,

whenever the peer is asked to provide threat intelligence, it responds with a

score that is opposite of the baseline and with a high confidence value.

type notation µ σ

score µci
s −SB · 0.8 0.2

confidence µci
c 0.8 0.2

Table 5.3: Confident Incorrect Behavior

5.2.4 Malicious Peer

The malicious peer is going to provide wrong threat intelligence inten-

tionally to achieve their goal of influencing the trust decisions of the local

peer. The sampling data are the same as for the confident incorrect (Sec-

tion 5.3) behavior, but the difference is that the malicious peer is providing
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misleading data intentionally. Moreover, intelligent malicious peer knows,

that it their incentive is to gain the service trust at the beginning in order

to more impact the decisions of the trust model in the later stages. We sim-

ulate this by introducing a grace period when the malicious peer does not

lie, but rather behaves like any other normal peer. This period then allows

the malicious peers to gain the initial trust. After that period, they start to

lie and thanks to the initial trust, they can influence the Fides’s decisions

with a larger impact.

As stated before, this behavior simulates knowledgeable adversaries that

are able to follow the Fides’s protocol and their goal is to influence decisions

of the local trust model. The adversaries can be either trying to bad-mouth

or provide unfair praises. In our case, it does not matter why they do

that, but rather the fact, that they do that intentionally and that they are

providing the opposite of the baseline score with the high confidence.

We decide to design an attacker, that is trying to hide in the data and

it is not providing score {−1, 1} with the confidence of 1 all the time, but

rather uses a distribution that is close to these values. The reason is that if

the model sees that there is a peer that provides {−1, 1} with high confidence

all the time, it would be very easy to detect and penalize this behavior.

type notation µ σ

score µm
s −SB · 0.9 0.1

confidence µm
c 0.9 0.1

Table 5.4: Malicious Behavior

5.3 Environment Simulation

It is important in the simulations to also simulate time. This is because

the trust model depends on when peers join the network and when they

decided to lie or not. It is also because new peers are subject to recommen-

dation requests, but only when they are new.

Time in the simulations is measured in clicks. The local instance of

Fides performs a single action and receives responses from other peers in

the network in exactly one click. For example, this is the series of events

that happen in a single click. Fides asks the network for threat intelligence,

receives the responses, aggregates network opinion, and evaluates the inter-

actions with peers. Another series of events happening in a single click is the

actions of recommendation protocol: a new peer joins the network, Fides

asks for the recommendation for a new peer, collects the responses, com-

50



CHAPTER 5. EXPERIMENTS

putes the reputation, and evaluates the received recommendations. What is

the relation between real time and the clicks depends solely on the network

layer, mostly on the speed of messages convergence described in-depth in

[28].

In order to simulate the environment, we have multiple parameters that

correspond to the expectations of how does the peer-to-peer network looks

like. We start with the number of peers in network that simulates the

size of the network and how many different peers can appear during the

whole simulation.

The network anatomy is another parameter for the simulation, where

we define what percentage of peers are using what strategy that was

described in the Section 5.2. In other words, how many peers in the network

are adversarial and how many of them are benign.

Another parameter is the number of targets (IP addresses and DNS

domains) that will be used when Fides will be requesting the network threat

intelligence. For each target, we know the label (malicious and benign)

and we will be sampling threat intelligence that came from the local Slips

instance. The local threat intelligence will be sampled from the parameters

of one of the strategies described in Section 5.2 - confident correct, uncertain,

or confident incorrect - which is yet another parameter that describes how

the local Slips instances behave.

For each remote peer, we select one of the behaviors from Section 5.2

and the number of peers for each behavior is determined by the con-

figuration of the simulation. We also determine if the peer is pre-trusted

or if it is a member of the pre-trusted organization. The percentage of

pre-trusted peers is again configurable. Next, we determine the time (in

clicks), when the peer is going to join the network. This allows us to eval-

uate the recommendation part of Fides, because if the peer joins late, Fides

requests recommendations from the other peers which can lead to further

problems if the recommending peers are adversarial.

If the strategy selected in the previous step is malicious (with its behavior

as described in Section 5.2.4), we determine for how many targets is the

peer going to lie about. This allows us to also simulate a highly advanced

attacker that lies only selectively for the targets that they control. It is not

rational for the attacker to lie about targets that are not known to them as

they do not gain any advantage from that. On the contrary, if they do not

lie, they gain more trust which they can use to further influence the local

decisions.

The last simulation parameter is how many clicks are left at the begin-

ning, for the pears to gain the initial trust. This means that in that initial
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time period, malicious peers will behave like confident ones (Section 5.2.1),

in order to gain initial trust, and after that, they will switch to their own

malicious behavior (Section 5.2.4). This allows us to evaluate how fast is

the trust model able to determine that the peer, with the existing service

trust, is malicious.

5.4 Experiments Evaluation

An important part of the experiments is how to evaluate what Fides

setup (interaction evaluations, threat intelligence aggregation) is better in

which scenario. We will be measuring two performance metrics that are

relevant for each situation.

5.4.1 Target Detection Performance Metric

This first metric, tdp, measures performance of the target detection. We

compute tdp in Equation 5.1 as an average distance between the ground

truth for the target and the final detection made by Fides at the end of the

simulation. We use the following notation: τ is the set of targets in the

simulation, GST is the ground truth score of the target, Skmax
T is then the

aggregated score (Section 3.7) for the given target computed by Fides at the

end of the simulation.

tdp =
1

|τ |
∑
T∈τ

∣∣∣GST − Skmax
T

∣∣∣ (5.1)

This metric provides information on how good Fides was in computing the

score (malicious / benign) for some target. It holds that 0 ≤ tdp ≤ 2 where

0 is the best detection and 2 is the worst detection. Moreover, if tdp ≤ 1

the Fides was on average able identify all targets correctly.

5.4.2 Peer’s Behavior Detection Performance Metric

The peer’s behavior detection performance metric pbdp measures how

close was the trust model’s service trust value for the remote peer to the

peer’s real behavior in the simulation. We measure it in 5.2 as an average

distance between computed service trust and the ground truth behavior of

the peer in the simulation.

pbdp =
1

|P |
∑
j∈P

∣∣∣b̄j − stkmax
i,j

∣∣∣ (5.2)
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P is the set of remote peers in the simulation, stkmax
i,j is the service trust

that the local trust model (i) had for the remote peer (j ) at the end of the

simulation. b̄j is then the ground truth behavior of the remote peer and we

compute it in the Equation 5.3.

b̄j =
1 + shift · µb

s

2
(5.3)

Recall the description of the peers’ behaviors from the Section 5.2, where

each peer’s behavior b had µb
s that was used during threat intelligence sam-

pling. Because the sampled score is [−1, 1] and service trust [0, 1], we can not

use the µb
s directly, but we need to scale it to the correct interval. Moreover,

as malicious and incorrect peers do have µb
s on the opposite scale that the

ground truth is, we need to shift it before normalizing it. For that reason,

shift = −1 for malicious and incorrect peers and shift = 1 for confident

correct, and uncertain behaviors and thus the Equation 5.3.

5.4.3 Environment Hardness

In order to be able measure how hard it is for Fides to operate in some

environment, we designed the environment hardness variable eh. It holds

that 0 ≤ eh ≤ 10 and the higher the value is, the easier is for Fides to

operate in such environment as there are more confident correct peers that

provide correct threat intelligence and recommendations. On the contrary,

the lower the eh is, the harder it is for Fides to operate as there are more

byzantine peers.

eh = 10 · |PCC |
|P |

+
|PUP |
|P | (5.4)

Where PCC is a set of peers in simulation that behave like a confident

correct (Section 5.2.1) peer and PUP that behave like an uncertain peer

(Section 5.2.2).

5.5 Simulation Execution

The simulations and experiments were designed to evaluate the trust

model in multiple ways and environments. In order to run arbitrary sce-

narios, we developed a framework, that allows us to simulate virtually any

environment with various combinations of Fides configuration.
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Unfortunately, it is not possible to run and evaluate all possible scenar-

ios, as there are 14 different sets of parameters that can have many different

values. This leads to a combinatorial explosion and therefore we were un-

able to cover all possible existing scenarios. However, alongside the Fides

implementation, we published the simulation framework as well, so anybody

can simulate their preferred scenarios.

In the next Chapter 6 we describe how we evaluated the experiments and

what we learned about the trust model behavior in various environments

with focus on the evaluation of Fides’s resilience.
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Results

This chapter presents and evaluates the results of the simulations that

were designed in the previous Chapter 5. Since there are too many different

scenarios to evaluate each setup thoroughly, we mainly focus on evaluating

Fides under specific conditions that verify its resilience. These conditions

are the more important for the administrator, such as situations with many

byzantine peers.

The evaluation focus on finding a scenario where there are as many

adversarial peers as possible, and Fides is still able to guarantee that it can

come up with the correct target score. This is worst case scenario that every

trust model should be evaluated under, since there is no point in evaluating

a situation only with good and trusted peers.

However, since the reader may be interested in trying different scenarios,

we developed and published a simulation framework [13] where anyone can

verify and simulate any scenario they are interested in.

Note that all figures in this chapter can be replicated by re-running the

simulation Python code in simulations/cases/figures [13]. The graphs

may differ slightly because the threat intelligence and recommendations are

sampled from a probability distribution as described in Section 5.1, but the

overall results should be the same.

6.1 General Overview of a Single Simulation

To understand the results of our simulation we first need describe how

does the outcome of a simulation looks like, such as the example shown in

Figure 6.1. The simulation framework provides this graph for each possible

simulation.
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Figure 6.1: An example outcome from a single simulation. The graph on

top shows how service trust changes as time goes by. In this example there

are four peers, two confident correct, one uncertain and one malicious. The

graph in the middle shows the score for the targets as computed by Fides

based on what the peers said. There are two targets (imagine google.com and

evil.com) and Fides computes the score for each of them: 1 means benign,

-1 means malicious. The lower graph shows the aggregated confidence for

the same targets. That means how confident is Fides about the score in the

middle graph.
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The graph’s headline explains which setup parameters were used for the

trust model. In the case of Figure 6.1 Fides used the interaction evaluation

strategy MaxConfidenceTIEvaluation (Section 3.6.6). For aggregating

threat intelligence, Fides used the aggregation described in Section 3.7. The

local Slips instance behaved like a confident correct peer outlined in Sec-

tion 5.2.1.

The graph on top in Figure 6.1 shows the development of the service trust

sti,j (Section 3.5.1) on the vertical axis over time on the horizontal axis. As

mentioned in Section 5.3, the time is measured in clicks. The higher the

service trust is for a peer, the higher impact it has on the final aggregated

threat intelligence. One can see multiple peers that were involved in the sim-

ulation and their respective behavior. All possible behaviors are described in

Section 5.2. There were four different peers that were communicating with

the local instance of Fides, two of them were confident correct, one was an

uncertain peer and the last one was a malicious peer. On the first graph, we

can see that all peers were gaining the service trust at the beginning of the

simulation and then their trust stabilized during the time. The exception is

the malicious peer, its service trust was getting higher at the beginning of

the simulation, but then it took a hit and was lowered when the peer started

to lie.

The dotted line indicates the time when the malicious peers start lying.

As mentioned, one can see that during this first period, when the malicious

peers were not lying (before the line), they were gaining the service trust.

In the case of Figure 6.1 this happened at click 25 when the malicious peers

started lying. After that, it is clear that they started to lose the service

trust.

The second graph in Figure 6.1 shows the target score during the time

(clicks). The target score Sk
T (Section 3.7) is the part of the aggregated

network threat intelligence, that was computed from the scores and confi-

dences provided by each peer. The score was calculated by Fides at click

k for target T . The score graph contains two different targets, one that is

according to the ground truth malicious and a second one that was benign

(imagine google.com and evil.com) and Fides computes the score for each of

them: 1 means benign, −1 means malicious. We also included the moving

average value (indicated as MM) within the window of 10 clicks to make the

graph clear. In a perfect scenario, we would see two straight lines where for

benign target (google.com) would be the line in Sk
T = 1 and for the malicious

target (evil.com) in Sk
T = −1. However, in the imperfect world, we can see

that the lines fluctuate according to the score the Fides received from the

peers. In a case, when the lines cross, and the benign target ends up below
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the red line (Sk
T ≤ 0) or the malicious target above the red line (Sk

T ≥ 0)

the Fides misclassified the targets and the attackers were successfully able

to influence the decision of the trust model.

Finally, the third graph, displays the aggregated confidence Ck
T (Sec-

tion 3.7) over time (clicks). The graph is similar to the score, we include

raw values for each time window and target, as well as the moving average

within the window of 10 clicks.

In this example output graph, it can be seen that Fides was clearly able

to identify that the malicious peer started to lie after click 25 because of

the service trust stki,j for this peer that fell down almost instantly. At the

same time, we can see that on the score graph, the Sk
T for both targets were

skewed and started to get closer to 0 because the malicious peer had already

gained service trust and thus the threat intelligence provided by it had an

impact on the final Sk
T . However, after Fides identified that the peer is lying,

it lowered the service trust for this peer, and the score started to recover

closer to the baseline.

6.2 Evaluation of Fides Resilience

To evaluate the resilience of Fides in different scenarios, we need to find

the optimal configuration for the following parameters in Fides: interaction

evaluation strategy (Section 3.6), threat intelligence aggregation function

(Section 3.7), and initial reputation (Section 3.5.4). Each combination of

parameters is evaluated in its capacity to correctly classify targets in any

network topology.1

In this section, we are focusing on finding the best possible combination

of parameters for the worst possible scenario. In other words, we want to

identify a setup, where the Fides can guarantee that it is eventually going to

provide the correct data and will classify the targets correctly even though

the malicious actor controls most of the network.

We show two specific scenarios - one with no pre-trusted peers and one

where there are 25% of peers part of some pre-trusted organization. Because

even the scenario with only 25% peers shows, that in some cases is Fides able

to defend itself against the rest of the network, we do not show scenarios with

more pre-trusted peers, but we include them in the appendix (Figure A.6).

1Distribution of correct/uncertain/incorrect/malicious peers in the network.
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6.2.1 Scenario With No Pre-Trusted Peers

In this scenario, there are no pre-trusted peers or organizations and Fides

needs to determine trust in each peer by itself. We simulated environments

starting with the 75% of confident correct peers (behavior from Section 5.2.1)

up to 75% malicious peers (behavior from Section 5.2.4) and used all possible

setups.
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Target Detection Performance

The target detection performance tdp (Section 5.4.1) is the most impor-

tant metric because it evaluates how good is Fides in the target classification

- if the Fides is able to correctly come up to a conclusion that evil.com is

the malicious target and google.com is benign.

Figure 6.4 visualizes the target detection performance on three different

graphs where each of the graphs is a single interaction evaluation strategy.

Each graph then displays dots with different colors. Each color a single

threat intelligence aggregation method in combination with different initial

reputation values. A single dot in the graph is the value of tdp and in a case

when the tdp ≥ 1, it means that Fides made on average the wrong decision

about the targets and classified them with the wrong label. In other words,

if tdp ≥ 1, Fides classified benign targets as malicious and the other way

around. We included the red line that shows tdp = 1 so if a dot is above the

red line, the Fides made an incorrect target classification. For that reason,

we optimize the dots to be below the red line (classifications being correct).

The horizontal axis in each graph measures the environment hardness

explained in Section 5.4.3. It is important to note, that hardness essentially

expresses how many peers that can provide correct data are in the simula-

tion. For example, if the hardness is 10, 100% of peers inside the simulation

are providing correct data and behave like confident correct peers. Thus the

higher the value of hardness is, the easier it is for the Fides to do correct

classification.

Specifically, in Figure 6.2 we can see that in the easy environment,

most of the dots are below the red line until the hardness gets close to

3. The metrics perform more or less the same as they are able to stay

below the red line until eh = 3. In that situation, the best performance

and thus the lowest tdp has ThresholdTIEvaluation in combination with

WeightedAverageConfidenceTIAggregation and initial reputation of 0.95.

Because the previous performance of all methods is almost similar, we rec-

ommend using this combination up to eh3 to ensure the best performance

even in the harder situations.

Interestingly, the DistanceBasedTIEvaluation in combination with 0

initial reputation and AverageConfidenceTIAggregation for threat intelli-

gence aggregation, shows the same target classification performance in each

environment - tdp = 0. This suggests that the method was unable to de-

termine any trust for any of the peers. This is then later confirmed by

Figure 6.3.
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Figure 6.2: Target detection performance (vertical axis) for three different

interaction evaluation strategies in different environments (horizontal axis)

with no pre-trusted peers.
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Peer’s Behavior Detection Performance

Figure 6.3 displays two important metrics which are related to how much

Fides trusts the peers in the network. The first is the peer’s behavior de-

tection performance metric pbdp (Section 5.4.2) and the second is the peer’s

average trust.

On the left side, one can see the peer’s behavior detection performance

metric that measures how good was Fides in estimating the peer’s behavior.

The lower value of pbdp the better because the Fides’s service trust for the

peer was closer to the real value used in the simulation.

On the right side, we show the peer’s average trust metric. That is an

average trust of Fides for each peer. We include this metric in order to see

how much trust was Fides able to obtain for the peers in the network. It is

important to note, that there is no correct or desired value of this metric,

because for example in the environment where there are all peers confident

correct, the peer’s average trust should be high, but in the environment with

all byzantine peers, this metric should be low because Fides should not trust

incorrect and malicious peers.

As suggested in the previous section while measuring target detection

performance, the right graph for DistanceBasedTIEvaluation in combi-

nation with AverageConfidenceTIAggregation shows, that this setup is

unable to determine trust for the peers and has average peer’s trust close

to 0. This means that the trust model will almost always aggregate threat

intelligence to score 0 with confidence 0 making it, in a fact, useless.
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Figure 6.3: The behavior of peer’s trust metrics in the different environments

for different Fides’s setups with no pre-trusted peers. On the left side

peer’s behavior detection performance, and on the right side peer’s average

trust.
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6.2.2 Scenario With 25% of Pre-Trusted Peers

In this scenario, Fides assumes that there are 25% of pre-trusted peers.

We simulated environments starting with the 75% of confident correct peers (be-

havior from Section 5.2.1) up to 75% malicious peers (behavior from Sec-

tion 5.2.4) and used all possible setups.

Target Detection Performance

Specifically in Figure 6.4 one can see that until the environment hard-

ness eh ≥ 3, all strategies help Fides to classify the targets correctly. In

general, the DistanceBasedTIEvaluation performs the best in almost all

situations except the easiest one, where the MaxConfidenceTIEvaluation

has slightly better results.

The situation changes after the environment hardness goes over 2.5 (eh ≤
2.5) when the ThresholdTIEvaluation and MaxConfidenceTIEvaluation

misclassify the targets. In that case, all threat intelligence aggregation meth-

ods are the same and all of them misclassify the targets no matter what ini-

tial reputation is used. However, the DistanceBasedTIEvaluation strategy

in combination with AverageConfidenceTIAggregation method is able to

still classify the targets correctly and maintain the tdp ≤ 1 even under the

toughest conditions where there are 75% of adversarial peers in the simula-

tion. We include a more detailed visualization of this case in the appendix

in Figure A.1.

When Fides is used in a similar situation with the threat intelligence

aggregation method WeightedAverageConfidenceTIAggregation, it mis-

classified the targets in one simulation when working in the hardest envi-

ronment. Thus, this method does not provide a guarantee that Fides will

end up with correct classifications for every target.

To summarize, the results have shown that with 25% of pre-trusted peers

is Fides able to classify all the targets properly all the time if the interaction

evaluation strategy DistanceBasedTIEvaluation is used in combination

with the AverageConfidenceTIAggregation. In such case, Fides provides

a guarantee that no matter what the adversaries do, it calculates the correct

threat intelligence.
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Figure 6.4: Target detection performance (vertical axis) for three different

interaction evaluation strategies in different environments (horizontal axis)

with 25% pre-trusted peers.
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Peer’s Behavior Detection Performance

Figure 6.5 shows the peer’s behavior detection performance pbdp on the

left side and the peer’s average trust on the right side. When we com-

pare Figure 6.3 (no pre-trusted peers) with this Figure 6.5 (25% pre-trusted

peers), we can clearly see that, especially the pbdp metric improved and in

all environments it holds that pbdp ≤ 0.4. This means that Fides’s ability to

identify the true behavior of the peers greatly improved for all interaction

evaluation strategies.

The biggest improvement was in strategy DistanceBasedTIEvaluation

which had poor performance with no pre-trusted peers in Figure 6.3. How-

ever, in the situation with 25% pre-trusted peers it is now able to detect the

true behavior of the peers with the similar precision as the other strategies.
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Figure 6.5: The behavior of peer’s trust metrics in the different environments

for different Fides’s setups with 25% pre-trusted peers. On the left side

peer’s behavior detection performance, and on the right side peer’s average

trust.
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6.3 Considerations when Evaluating Trust Results

Even though the results from the previous Section 6.2 suggest that a

combination ofDistanceBasedTIEvaluation for evaluating the interactions

in combination with AverageConfidenceTIAggregation is the best, there

are corner cases where this is not always true.

For example, recall Figure 6.1 from Section 6.1, where the presented

situation uses MaxConfidenceTIEvaluation and it is able to correctly de-

tect all types of peers as well as correctly determine the score for the target.

However, if we take the same environment and the only difference is using

DistanceBasedTIEvaluation for evaluating interactions, we get the follow-

ing graph for the service trust in Figure 6.6. The graph for confidence as well

as target score for the situation from Figure 6.6 can be seen in the appendix

in the Figure A.3. This is also the same behavior that we described when

we were describing Figure 6.3 in the previous Section 6.2.1.

Figure 6.6: DistanceBasedTIEvaluation in the situation from the fig-

ure 6.1

The service trust graph in Figure 6.6 suggests that Fides didn’t gain

any trust for any peer in the network. This happens because the evaluation

strategy didn’t have enough information at the beginning to evaluate the

received data properly. That leads to peers never gaining any trust and

thus not producing any valid outputs because, with no trust, the target

score and confidence ended up being 0 as well.

Another thing to consider is that during the simulations from the pre-

vious Section 6.2, the local Slips did not know anything about the targets.

Which means that whenever Fides requested threat intelligence from Fides,
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it responded as uncertain peer (Section 5.2.2). This simulates situations that

are close to the reality when Slips is asking about the targets it does not know

anything about. However, it also means thatMaxConfidenceTIEvaluation

strategy will not live to its full potential as it is also using information from

the local Slips.

6.4 Discussion

We discovered that actually there exists a particular setup that guar-

antees that Fides is able to eventually classify the targets correctly in a

very adversarial situation. When Fides communicates with at least 25% of

pre-trusted peers from pre-trusted organizations (0.25 · |P | are pre-trusted)

and uses DistanceBasedTIEvaluation (Section 3.6.2) for evaluating the

interactions in combination with AverageConfidenceTIAggregation (Sec-

tion 3.7.1) for aggregating the threat intelligence; then Fides is able to cor-

rectly classify the targets no matter how many adversarial peers are in the

network (up to filling the remaining 75%) or how hard they lie.

We included the graph of this case, similar to the Figure 6.1, with this

particular ”winning” setup in the most hostile environment to the Appendix

in Figure A.1. For the explanation of the graph see Section 6.1.

Figure 6.7: Score in figure A.2.

Interestingly, in this particular case, the initial reputation does not affect

the final outcome of the simulation, but it does affect the progress as when

using an initial reputation higher than 0, Fides provides wrong scores in

the situation when the malicious peers started to lie. However, in time it

discovers that the peers are lying, which decreases their service trust and is

able to eventually recover the correct labels for the targets. The score value
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over time for this situation can be seen in Figure 6.7. We included the whole

graph in the Appendix in Figure A.2.

With no pre-trusted peers in the network, the results of each configu-

ration vary and they highly depend on the network topology as well as on

the knowledge of the local Slips instance. The results for the no pre-trusted

scenario are shown in Appendix Figure A.4.

In the scenario of 50% pre-trusted peers, no matter the configuration,

Fides was eventually able to determine the correct target classification with

a high precision of tdp ≤ 0.7. Moreover, Fides was able to correctly identify

the peer’s behavior with the precision of pbdp ≤ 0.2. This is a very favorable

situation for the administrator, where you trust the peers so much that it is

not possible for the adversarial peers to modify the belief. The results for

this scenario are shown in Appendix Figure A.6.

In general, for a case with no pre-trusted peers and organizations, one

should use ThresholdTIEvaluation because it proved to be slightly better

than the others. However, in cases when the local Slips instance has some

local knowledge about the targets theMaxConfidenceTIEvaluationmight

be a better choice.

For cases where the Fides communicates with some pre-trusted peers,

one should use the DistanceBasedTIEvaluation threat intelligence eval-

uation strategy in combination with AverageConfidenceTIAggregation.

This combination is even able to guarantee that with at least 25% of pre-

trusted peers, it is able to eventually determine correct threat intelligence

for all the targets.
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Conclusion

In this thesis, we proposed, designed, and implemented Fides, a generic

trust model for highly adversarial global peer-to-peer (P2P) networks of

intrusion prevention system (IPS) agents, fine-tuned for sharing security

threat intelligence. Fides implementation allows IPS agents to cooperate

against malicious actors, also taking care of the security and privacy of

the local environment. Although Fides was designed for threat intelligence

sharing, it is generic and can be easily modified to share any other type of

data.

Fides is the first trust model that is implemented and ready to use,

designed for global P2P networks of defenders that consider memberships

of peers in organizations, evaluation of how much to trust peers based on

interactions, aggregation of contradictory information of threat intelligence

and adversarial peers trying to manipulate the system.

Fides was implemented and evaluated by simulating thousands of sce-

narios to find the best trust model parameters for each of them. We found

that Fides helps obtain the truth about the shared data, in the presence

of adversarial peers lying about the data, in most scenarios and conditions.

This is possible due to the correct combination of trust methodologies and

the new concept of pre-trusted organizations in Fides. Pre-trusted organi-

zations follow the very human tendency of having people that we know and

trust more than others. Even though Fides can work without pre-trusted

organizations, having them greatly improves its resilience.

We conclude that Fides is a viable solution for managing trust rela-

tionships in peer-to-peer networks and it is robust enough to work under

highly-adversarial situations. Even in these situations, with 75% of the

peers malicious, it can correctly identify the truth of the shared threat in-
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telligence data, and also identify the truth about how much to trust other

peers.

Thanks to all the configurations and optimizations that Fides has for

different organizations, we believe that Fides enables the Slips Intrusion

Prevention System adoption across a broader spectrum of organizations.

We believe that Slips, combined with Fides, will enable more possibilities for

sharing threat intelligence over the internet and improve the overall security

of the networks that use Slips for the defense against intruders.
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7.1 Future Work

Even though we achieved our goal of designing a resilient trust model

for sharing threat intelligence, there are multiple areas where the model can

improve either by exploring different approaches or by implementing new

additions to the data flow.

Most importantly, it is clear from the evaluation of simulations in Chap-

ter 6, that Fides performs differently with different setups under different

conditions. Even though we are able to manually pick settings that ensure

the best performance, this is not a perfect solution for real-world scenarios.

For that reason, we propose to explore further the following approaches.

7.1.1 Exploring Interaction Evaluation Strategies

The trust model developed in this thesis is generic and it is heavily relying

on the interaction evaluation function. This means that the performance of

the trust model is as good as the evaluation function.

In this work, we explored evaluation methods that are using only data

from a single time window to evaluate the interactions. However, the local

peer might store the complete interaction history with all other peers and

whenever it finds out that some peer reported threat intelligence, that proved

to be correct after some time, the reporter’s service trust should benefit from

such discovery. Another way might be storing the whole interaction history

and using machine learning techniques, to discover irregularities in provided

data during all communication windows.

In other words, all interaction evaluation strategies described in Sec-

tion 3.6 do not utilize the knowledge from the past, or the history of the

interactions. We believe that this is an interesting space to explore more as

it might lead to better performance of Fides in real-world scenarios.

7.1.2 Exploring Threat Intelligence Aggregation Methods

No threat intelligence aggregation methods explored in this thesis, de-

scribed in the Section 2.3, use any other information than ones provided by

the network at a single time window. By incorporating information from

the recent history, the aggregation might improve the overall detection per-

formed by the trust model.

Moreover, there might be better ways how to aggregate the threat intel-

ligence, or maybe the combination of multiple approaches to one might im-

prove the final confidence in trust model decisions. As we saw in Chapter 6,
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the combination of interaction evaluation and threat intelligence aggregation

influences the performance of the trust model to great extent.

7.1.3 Possible Mitigation of Sybil Attack

When analyzing the possible attack vectors for Fides, we described the

Sybil attack in Section 3.4.4 and we stated that Fides is vulnerable to this

type of attack. However, results have shown that this is true only in cases

when the attacker owns more than 75% of the network. If the attacker

controls 75% of the network or less, Fides has a way how to defend itself

and make the correct decisions about the threat intelligence.

There are essentially two possible ways how to mitigate this type of

attack even for cases where the attacker controls more than 75% of the

network.

One option is to introduce restrictions to Fides, where it uses data at

most from the 75% of peers that are not pre-trusted, and the rest, 25% comes

from the pre-trusted peers and organizations. All other data from other

peers in the network would not be considered during the threat intelligence

aggregation. That would ensure that Fides always only considers a limited

amount of data so it will not be vulnerable to an attacker who controls more

than 75% of the network.

The second possible solution would be making it computationally hard

for new peers to join the peer-to-peer network or generate a new peer iden-

tity. So the attacker would need to spend either time or computational re-

sources when generating new peer identities. This directly does not prevent

a malicious actor to perform this type of attack, but it makes it signifi-

cantly harder. However, this mitigation would need to be implemented in

Iris instead of Fides.

7.1.4 Adding Threat Intelligence Challenges

Fung et al [15] explore an interesting idea of creating initial trust in

remote peers by giving them computational challenges. In our case, chal-

lenges might be asking the remote peer for threat intelligence about the

target, that the local Slips know very well and with high confidence. When

the trust model receives a response it uses the interaction evaluation strat-

egy described in Section 3.6.4 to evaluate the received data. The trust model

can then ask multiple times to have more interactions and thus effectively

probing the remote peer and getting an estimate about its future behavior.

By using this approach, one can either replace the recommendation sys-

tem or greatly improve it in cases when the trust model does not have
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enough pre-trusted peers. The disadvantage might be a higher amount of

messages sent across the network when the new peer is registered by the

network, which could eventually lead even to a denial of service attack on

the newcomers.

This method should be explored more in detail and as the Fides is quite

flexible, it can be easily incorporated into the trust model as well.

7.1.5 Threat Intelligence Sharing Motivation

The designed peer-to-peer network for threat intelligence sharing unfor-

tunately does not promote data sharing at all. The peers sharing threat

intelligence are not gaining any benefit other than gaining trust in the eyes

of other peers. As the gained trust brings little to no benefit by itself, there

is a lack of incentive for the peers to share their threat intelligence with the

network.

However, we can see data and threat intelligence filtering as one of the

ways how to motivate other peers to share their threat intelligence. As we

described in Section 4.2.3, the Fides administrator can choose what threat

intelligence is shared with which peers by configuring confidentiality levels

with required service trust. Using this approach, the threat intelligence is

shared only with high trusted peers. That would result in an incentive for

the peers to gain the service trust which they do by sharing their own threat

intelligence with the network.

Another approach is exploring the idea of payments for the threat in-

telligence where the peers use some sort of cryptocurrency to pay for the

received threat intelligence and they receive payments for their own threat

intelligence they shared. This would give the peers an incentive to share the

threat intelligence and ask for it only when they need it.
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APPENDIX A. SIMULATION GRAPHS

Figure A.1: The scenario where there are 75% of the peers malicious and

25% are from the pre-trusted organizations. The second graph show that

the Fides was able to defend itself an still classify the targets correctly even

though the malicious peers lied about the targets.
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APPENDIX A. SIMULATION GRAPHS

Figure A.2: The scenario when the malicious peers overcame Fides after

they started lying but only for a short period of time. Once Fides realize

that the peers are lying, it lowered their service trust and the it was able to

recover the score to the correct values.
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APPENDIX A. SIMULATION GRAPHS

Figure A.3: The scenario when the Fides was unable to gain trust for any of

the peers in the network. It is an example of how does the initial reputation

matter during the Fides setup.
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APPENDIX A. SIMULATION GRAPHS

Figure A.4: All metrics in a single graph with no pre-trusted peers.
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APPENDIX A. SIMULATION GRAPHS

Figure A.5: All metrics in a single graph with 25% pre-trusted peers.
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APPENDIX A. SIMULATION GRAPHS

Figure A.6: All metrics in a single graph with 50% pre-trusted peers.

87



Diagram of Fides Trust Model Local peer i  peer j

Service Trust: How 
much i trust j to 
provide a good service

Reputation: Reputation i 
computes about j from remote 
experiences in the network. 
Asked to i's most trusted peers, 
set of peers Ti

Maximum number of 
interactions that the 
model remembers

i's satisfaction 
value of the 
interaction with j, 
in time window k. 
An evaluation of 
how satisfied i is

s k
i,j

shmax

st
i,j

r
i,j

Weight of i's interaction 
with j, in time window k
Between 0 and 1.
Fixed values depending 
on type of interaction.

w k
i,j

Fading effect of i's 
interaction with j, in 
time window k. How 
much to forget?
Reduces the weight of 
past interactions to 
make recent more 
important

f k
i,j

Remote 
peer

Remote 
peer Z

direct comm
From the point of view of peer i

Local 
Experience: of  i 
interacting with j

Remote Experience: 
Reputation of j gotten 

from the network

Weight 
Value

History size of 
services between 
i and j

shi,j

Average Competence belief: how much peer j 
satisfied peer i in the past interactions. Average of 
past interactions. Between 0 and 1
"Avg of weighted satisfaction faded in time"

cbi,j

Integrity Belief. Variability of 
past interactions between i 
and j. Deviation from the 
average behavior
Between 0 and 1

ibi,j

Weight 
Value

c,b

Weighted linear combination 
(sum) of all the satisfaction values 
between i and j in all the time 
windows up to the history size.
Normalization Factor

i's satisfaction value of the 
interaction with j, in time 
window k. An evaluation of 
how satisfied i is

sk
i,j

Weight of i's 
interaction with j, 
in time window k

wk
i,j

FIRST_ENCOUNTER = 0.1
PING = 0.2
INTELLIGENCE_NO_DATA_REPORT = 0.3
INTELLIGENCE_REQUEST = 0.5
ALERT = 0.7
RECOMMENDATION_REQUEST = 0.7
INTELLIGENCE_DATA_REPORT = 1
RECOMMENDATION_RESPONSE = 1
ERROR = 1

k

Number of time 
window where i 
and j are 
interacting

T
i

Set of remote peers that i asks for recommendations on j.
1- Take all the current peers of i and select those which 
service trust is > than the average service trust of all peers of i.
or 2- Use the peers that have a static inital trust > threshold
or 3- Take pre-​trusted peers
Pretrusted peers take their r   from the conf file.i,j

Pre trusted 
peers

Their trust value is in the conf file
Or they belong to a trusted organization (how does this work?)
The trust can be frozen forever, or it can be set initially and then 
let be modified by the interactions.

Remote peer Z, sends i 
this information about j

cbz,j

ibz,j

r
z,j

z,j

Number of peers that provided 
recommendations for j when j
was new to z and their 
recommendation was used to 
compute rz,j

Weight 
Value

Weight 
Value

History size of 
services between i 
and j

shi,j

i's satisfaction 
value of the 
interaction with j, 
in time window k. 
An evaluation of 
how satisfied i is

sk
i,j

wu
i,j

Mean of weights of 
interactions. with j 
(all interactions 
done)

fu
i,j

Mean of fading 
effect of i 
interactions with j 
 (all interactions 
done)

This value is computed in six 
different ways that are evaluated in 
the experiments. See the text for 
further explanations

"Avr weighted satisfaction faded 
in time" - "Avg of weighted 
satisfaction faded in time"

Max Interaction History Size = 100

Number 
interactions of i 

and j = 30

30% 70%

weig
ht weight

Sum of weighted satisfactions

Sum of weighted faded satisfactions

"How well a peer satisfied the needs of 
past interactions"

Many conditions: There must 
be enough trusted peers. Or 
only trusted peers are used.

ecbi,j

eibi,j

Competence belief z has in j

Integrity belief z has in j

Summary of recommendations z 
received about j

Recursive factor

ush

Average history 
sizes in all 
recommendations

sh
z,j

Service history size between z and j

Estimated competence 
belief by i of j about 
how good 
recommendations it 
gives (not service)

rt i,z

Recommendation Trust of i about z 
that it provides good 
recommendations. Like a service 
trust but for recommendations

ecb

Normalization Coeff

eib

Normalization 
Coeff

Estimated integrity 
belief by i of j about 
how variable are the 
recommendations it 
gives (not service)

er i,j

Estimated reputation done 
by i of j by the reputations 
of other peers given to z. So 
this is a recursive factor.

er

Normalization 
Coeff

Reputation i computes 
of j based on remote 

peers's direct 
interactions with j

Reputation i computes of j 
based on  i's remote peers 
that received reputations 
from other peers about j

direct c
omm

di
re

ct
 c

om
m

direct com
m

Remote 
peer

dir
ec

t c
om

m

direct comm

direct comm

rcbi,zrib i,z

rcb

"How much do I trust Z" * 
"num of other peers that 
recommended j to z" * 
"summary of 
recommendations z received 
about j"

Recommendation Competence belief. 
Average faded weighted satisfaction of i 
receiving recommendations from z

rh
i,z

History size of recommendations 
from z to i

rhmax

Max history size of 
recommendations from z to i

rs i,z

x

rwi,z

x

rf i,z

x

Weight of i 
recommendation with 
z in time window x

Fading factor of i 
recommendation 
with z in time 
window x. How 
much to forget?

Recommendation Integrity belief. 
Variability of past recommendations 
to i from z.

eri,j ecb
i,j eib

i,j

Aggregated 
recommendations 
received by i about j 
from all peers

Aggregated competence beliefs 
about recommendations received 
by i about j from all peers

Aggregated integrity beliefs about 
recommendations received by i 
about j from all peers

Normalized satisfaction of i 
receiving recommendations from 
z in time window x. Difference 
with the aggregated 
recommendations received by i 
about j

ush

Average history 
sizes in all 
recommendations

shmax

Max history size in 
recommendations

Same as above reputation: 
Reputation i computes about z 
from remote experiences in the 
network. Asked to i's most 
trusted peers, set of peers Ti

r
i,z

shmax

Max history size in 
recommendations

max

Maximal number of possible 
recommending peers

Recommendation 
trust i computes 

of z based on direct 
interactions of i with z

Recommendation 
trust i computes 

of z based on remote 
reputation of i with z

i

j

z

x

asks

as
ks

direct

computes
reputation

i

j

zasks

computes
reputation dire

ct

Can be any function of 
time/history size and 
position in history.

Fides does not forget 
using fading effect, but 
rather starts forgetting 
when the history size is 
reached and it uses 
moving window for the 
last interactions.


	Introduction
	Thesis Structure
	List of Contributions

	Previous Work and Background
	Intrusion Detection/Prevention System
	Slips
	Threat Intelligence
	Peer-to-Peer Networks
	Trust in Peer-to-Peer Networks
	Problems of Trust
	Dovecot
	SORT
	Related Trust Models


	Trust Model Design
	General Overview of Fides
	Cold Start Problem
	Static Initial Trust
	Pre-Trusted Peers
	Recommendations

	Attack Vectors
	Influencing Aggregated Score & Confidence
	Influencing Service Trust
	Influencing Peers Reputation

	Taxonomy of Attacks
	Unfair Recommendations
	Inconsistent Behavior
	Identity Management Related Attacks
	Whitewashing & Sybil Attack

	Computational Model of Fides
	Service Trust
	Local Experience for Service Trust
	Interaction Satisfaction
	Reputation and Recommendations
	Remote Local Experience
	Remote Remote Experience
	Recommendation Trust Metric

	Interaction Evaluation Strategies
	EvenTIEvaluation
	DistanceBasedTIEvaluation
	ThresholdTIEvaluation
	LocalCompareTIEvaluation
	WeighedDistanceToLocalTIEvaluation
	MaxConfidenceTIEvaluation

	Network Intelligence Aggregation
	AverageConfidenceTIAggregation
	WeightedAverageConfidenceTIAggregation


	Architecture
	Fides & Network Access
	Implementation
	Configuration
	Persistence
	Data Filtering


	Experiments
	Sampling Threat Intelligence
	Peer's Behavioral Patterns
	Confident Correct Peer
	Uncertain Peer
	Confident Incorrect
	Malicious Peer

	Environment Simulation
	Experiments Evaluation
	Target Detection Performance Metric
	Peer's Behavior Detection Performance Metric
	Environment Hardness

	Simulation Execution

	Results
	General Overview of a Single Simulation
	Evaluation of Fides Resilience
	Scenario With No Pre-Trusted Peers
	Scenario With 25% of Pre-Trusted Peers

	Considerations when Evaluating Trust Results
	Discussion

	Conclusion
	Future Work
	Exploring Interaction Evaluation Strategies
	Exploring Threat Intelligence Aggregation Methods
	Possible Mitigation of Sybil Attack
	Adding Threat Intelligence Challenges
	Threat Intelligence Sharing Motivation


	Simulation Graphs

