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Abstract

Despite the severity and amount of daily cyberattacks, the best solutions our commu-
nity has so far are centralised, threat intelligence shared lists; or centralised, commercia-
lly-based defence products. No system exists yet to automatically connect endpoints
globally and share information about new attacks to improve their security. This thesis
proposes Iris, a global Peer-to-Peer (P2P) system specifically designed for cybersecu-
rity needs. Iris allows collaborative defence in cyberspace with emphasis on security
and privacy concerns. It is a pure and completely decentralised P2P network that
allows peers to (i) share threat intelligence files, (ii) alert peers about detected attacks,
and (iii) ask peers about their opinion on potential attacks. Iris addresses the problem
of confidentiality of local threat intelligence data by introducing the concept of Or-
ganisations. Organisations are cryptographically-verified and trusted groups of peers
within the P2P network. They allow Iris to send content only to pre-trusted groups of
peers. Iris is optimised for fast, low-bandwidth spread of information by experiment-
ing on different spreading strategies for epidemic protocols. We present a complete
implementation of Iris in Go using the LibP2P project together with an integration of
Iris into Slips IPS as a collaborative module.

Keywords: Threat Intelligence, P2P Network, Collaborative Defence, Cybersecurity



Abstrakt

Navzdory četnosti a závažnosti kybernetických útoků jsou zatím nejlepším řešením pro
sdílení informací o kybernetických hrozbách centralizované systémy sdílených informací
nebo centralizované komerční produkty. Neexistuje žádné řešení, které by automaticky
spojovalo koncová zařízení a umožnilo rychle a bezpečně sdílet data o kybernetických
hrozbách s cílem zlepšení bezpečnosti. Tato práce navrhuje Iris, globální Peer-to-Peer
(P2P) systém, který je speciálně navržen pro potřeby sdílení informací o kybernet-
ických hrozbách s důrazem na bezpečnost samotného systému a ochranu soukromí.
Iris je plně decentralizovaná P2P síť, která umožňuje připojeným zařízením i) sdílet
analýzy hrozeb, ii) varovat ostatní zařízení před právě detekovaným útočníkem, iii)
ptát se ostatních zařízení na hodnocení potenciálního útočníka. Pro ochranu soukromí
Iris navrhuje nový koncept zvaný Organizace. Organizace reprezentují kryptograficky
ověřené skupiny zařízení a umožňují Iris adresovat citlivá data pouze skupinám důvěry-
hodných zařízení. Práce porovnává různé strategie šíření informací v síti s využitím
epidemických protokolů pro optimalizaci šíření zpráv v Iris. Práce zároveň prezentuje
kompletní implementaci Iris v Go s využitím knihoven LibP2P a kompletní integraci
Iris do systému Slips IPS jako modul pro kolaborativní bezpečnost.

Klíčová slova: Analýzy Hrozeb, Globální P2P Síť, Kolaborativní Kyberbezpečnost
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Chapter 1

Introduction

Every device currently connected to the Internet is constantly being attacked [53].
Some organisations capture these attacks to produce threat intelligence (TI) data that
is essential for a comprehensive defence against malicious actors on the Internet. In an
ideal scenario, we would (i) detect and analyse an attack, (ii) share threat intelligence
data, (iii) aggregate or curate the data, and (iv) apply defensive measures across all
devices. However, no security and privacy-based system exists that would offer a
way to share general threat intelligence and alerts fast, directly between end devices
without a central authority.

Currently, the best solutions that our security community has to share information
and be better protected are (i) lists of threat intelligence data downloaded for free or
paid to companies; or (ii) commercial products that centralise data from clients to
improve their defence. In both cases, sharing of threat intelligence is the most used
technique.

In order to share threat intelligence, users can use email lists, web downloads,
RSS feeds, or text alerts [26]. However, one of the most used open-source systems
is the Malware Information Sharing Platform (MISP) [51] . MISP is a software for
collecting, storing, visualising and sharing threat intelligence data in the community.
It is a semi-centralised service that serves as a middleman between devices, and it
is mostly used by humans. Each MISP instance has many users, and instances of
different organisations can connect to each other if manually configured.

Malicious incidents in cyberspace repeat. Optimally, the community would spend
resources to detect such incidents only once and immediately share the alerts with
other devices. Thus, effective sharing of alerts and threat intelligence data could
significantly improve security. However, for an effective collaborative defence, the
community needs an option to securely and privately share alerts and possibly con-
fidential threat intelligence data in a timely and fully decentralised manner.
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CHAPTER 1. INTRODUCTION

Theoretical proposals to improve defence in cyberspace using collaborative knowl-
edge have appeared, mainly in the field of Collaborative Intrusion Detection Networks
(CIDNs). Nonetheless, to our knowledge, no CIDN implements a fully decentralised,
secure and privacy-based network for fast sharing of alerts and general-purpose threat
intelligence data. Moreover, no other P2P system addresses the needs of the security
community, where files are not large (as in file sharing P2P systems) but they have
other needs: fast distribution of TI, reporting of attackers, consultation of the rep-
utation of Indicators of Compromise (IoC), consideration of trust issues, adversarial
peers trying to compromise the network, and pre-trusted groups.

This thesis proposes Iris, a global peer-to-peer system for collaborative defence
with special emphasis on security and privacy. Iris is a fully decentralised (with-
out central authority) and pure (all peers share the same rights and responsibilities)
network that allows peers to exchange threat intelligence data. Since Iris needs to
spread information fast without saturating the network, we conduct experiments on
the speed of convergence of messages in epidemic protocols used in the P2P en-
vironment. We implement a working prototype of Iris using Go and the LibP2P
project [30], together with a module for the Slips IPS (Intrusion Prevention System).
All code is open-source and can be accessed online [41].

The first major contribution of Iris is the concept of organisations. Organisations
represent cryptographically-verified trusted groups in the P2P system. Peers can
be members of larger specific organisations, or they can create their own trusted
organisations. The reason is that some detections and threat intelligence data cannot
be publicly disclosed for privacy and security reasons. Therefore, Iris allows peers
to authorise particular messages to be given only to specific organisations. Iris uses
Distributed Hash Table (DHT) to store members of organisations. This allows peers
to easily find other pre-trusted peers from the same organisation. The specific design
of Iris allows us to mitigate DHT attacks against an adversarial that wants to prevent
peers from finding other members of the same organisation.

The second major contribution is the design of three protocols for sharing threat
intelligence data between peers: Alert Protocol, File Sharing Protocol and Network
Opinion Protocol.

The Alert Protocol allows peers to disseminate alerts about specific Indicator of
Compromise (IoC) in the network as fast as possible. Iris allows addressing alerts
only to a set of authorised peers that are part of organisations.

The File Sharing Protocol allows peers to securely share large threat intelligence
data. Inspired by the InterPlanetary File System (IPFS), Iris stores information
about the providers of files in the DHT. A provider is a peer that has the file and
is sharing it. An important part of the File Sharing Protocol is that it spreads the
knowledge that a new file is shared in the P2P network using a novel dissemination

2



CHAPTER 1. INTRODUCTION

mechanism that respects the access control authorisation mechanism and checks if a
peer can receive the file.

The Network Opinion Protocol allows peers to ask other peers about their opinion
on a specific IoC. Using the Network Opinion Protocol, peers can share knowledge
about resources that have not yet been labelled as malicious. Using this approach,
Iris can accelerate the detection of malicious entities because it allows using collective
knowledge.

In order to better define how messages should be spread in the P2P system,
we conduct an experiment about the speed of convergence of a gossip in the Iris
environment while employing different spreading strategies from Epidemic Protocols.
The results of the experiment show that it is possible to decrease the number of
repeated messages in the network by spreading messages slowly. Iris uses this fact
in the File Sharing Protocol when disseminating the information about a new shared
uncritical file.

The last and significant part of the thesis is a working implementation of Iris in
the Go programming language using the LibP2P project [30]. A special effort has
been made to integrate the implementation into Slips (Slips) as a module to provide
a collaborative defence.

Our work offers a design of the first P2P network for sharing threat intelligence
that takes into account the security of the entire system and considers the privacy
of the threat intelligence data. Even though special attention was paid to security,
the system may still be vulnerable to a set of attacks related to the storage of file
providers in the DHT. These attacks are difficult to mitigate as they are inherent to
the characteristic nature of the DHTs and not specifically to Iris.

Iris does not focus on interpreting the credibility of the received data from other
peers. Such problem is non-trivial and therefore it has been addressed in a another
thesis done in parallel by Bc. Lukáš Forst [17] that proposes Fides, a trust model
for adversarial collaborative defence networks. Both theses were designed in tight
cooperation to assure their mutual compatibility, yet both theses focus on different
topics.

To summarise, the contributions of this thesis are:

• The design and implementation of P2P system for sharing threat intelligence
and collaborative protection.

• The protocol for requesting information from the P2P network about a specific
IoC.

• The protocol for fast alerting peers and distribution of new IoC in the P2P
network.

• The protocol for secure sharing of threat intelligence data in the P2P network.

3



CHAPTER 1. INTRODUCTION

• The design of pre-trusted organisations that support addressing confidential
data to trusted groups of peers in the P2P network

• The design of the first P2P system that takes privacy of threat intelligence data
into account by sharing it only within a trusted organisation.

• A consideration of adversarial peers in the design of the entire P2P system to
enhance the robustness of the network.

• The working implementation of the Iris P2P system along with the integration
of Iris into Slips IPS.

• Evaluation of different spreading strategies for epidemic protocols to optimise
dissemination of information in the P2P network.

4



Chapter 2

Background

2.1 Threat Intelligence (TI)

There has not been yet a general consensus on a definition of Threat Intelligence.
According to ISO27005 [28], a threat is “A potential cause of an unwanted inci-
dent, which may result in harm to a system or organization.” and Gartner’s Rob
McMillan [32] defines Threat Intelligence as “evidence-based knowledge, including
context, mechanisms, indicators, implications and actionable advice about an exist-
ing or emerging menace or hazard to assets that can be used to inform decisions
regarding the subject’s response to that menace or hazard”.

TI can be either used inside an organisation to understand the background behind
attacks, or shared publicly to help the community mitigate similar incidents in the
future.

Nevertheless, an important detail is that Threat Intelligence might contain private
or sensitive data bound to the intellectual property of an organisation, such as IP
addresses, domains, tools, etc. That is why practitioners should be extremely cautious
about who are the recipients of the TI. This is because if private TI is disclosed to
attackers, it might help attackers adjust their strategies. It is therefore crucial to
have the possibility to share specific data only to a specific trusted groups of peers.

In general, there exist four main types of threat intelligence [8]:

• Strategic - broader trends that provide high level information typically for
non-technical audience and high level decision makers.

• Operational - contextual information about security incidents which helps
defenders to understand relevant factors like nature, timing, sophistication,
intent and motivation of malicious actors.

5



CHAPTER 2. BACKGROUND

• Tactical - information related to tactics, techniques and procedures used by
malicious actors. Such information is useful to design behaviour models of
attacks.

• Technical - technical resources the threat actors have at their disposal such as
tools, IP addresses, domains, malware programs or any other technical details
collected and analysed during an ongoing attack or postmortem forensics.

This thesis considers threat intelligence any data that peers share with other peers
in the P2P network with the intention of increasing the level of collaborative defence.
Nonetheless, most often we specifically mean Technical Threat Intelligence provided
by Slips ( see Section 2.3.1).

2.2 Cryptography

Cryptography [1] is the study of a secure communication in the presence of an ad-
versarial third party. Modern cryptography explores several aspects of information
security such as:

• Confidentiality - protection of secret information against disclosure to unau-
thorised 3rd party

• Integrity - assurance that transmitted information has not been altered
• Authentication - assurance of a message author’s true identity
• Non-Repudiation - a property of undeniability assuring an author of the

message cannot deny being the author

We can divide modern encryption and decryption schemes into two major groups:

• Symmetric cryptography is a type of cryptography with a single cryptographic
key that is being used both for encryption of a plaintext and decryption of a
ciphertext.

• Asymmetric cryptography uses a cryptographic key-pair to perform encryp-
tion and decryption.

Asymmetric cryptography is a key aspect of the security mechanisms of this thesis.
That is why we elaborate on its mechanism deeper in Subsection 2.2.2. However,
firstly, we need to define what a cryptographic hash function is.

6
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2.2.1 Cryptographic Hash Functions

Cryptographic hash functions are mathematical algorithms that map variable sized
input to a fixed sized output. The output is usually called a hash. The formal
definition of the function can be seen in Definition 2.2.1 [46].

A type of keyed hash functions also exist. Those functions take in addition a
cryptographic key as a second argument. However, we do not use such functions in
the thesis, and thus we concentrate solely on describing the un-keyed hash functions.

Definition 2.2.1 (Hash Function).

h : D → R

where D ∈ {0, 1}∗

R ∈ {0, 1}n n ∈ N

Cryptographic hash functions have many applications in computer science and
especially in computer security, notably in digital signatures, authentication, stenog-
raphy, time stamping, etc. [46]. To achieve the security objectives they must satisfy
the following properties [1]:

• The computation is deterministic - the same input is mapped to the same
output.

• It is a one way function - it is infeasible to reverse the computation.
• It is infeasible to find inputs x and y such that h(x) = h(y) ∧ x ̸= y

• A small change to the input extensively changes the hash value. The output
should appear uncorrelated with the previous hash value.

• Variable-sized inputs map to a fixed sized outputs.

Ideally, if the hash function is correctly designed, given the output C, the only
way to find input x such that h(x) = C is to attempt a brute-force search.

2.2.2 Asymmetric Cryptography

Asymmetric cryptography (also called public-key cryptography) uses mathematically
related key-pairs to perform cryptographic operations. Each key-pair consists of a
public key and a corresponding private key. Each of the keys, and only that key,
can decrypt what the other key encrypts. However, the properties of the private and
public keys are not the same and they should not be exchanged.

Effective security requires hiding the private key from everyone except the owner.
Protecting the private key from disclosure to unauthorised actors ensures that only
the owner of the private key can read the secret information. The public key, on the
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other hand, can be disseminated widely and openly without breaching the security.
It shall be computationally infeasible to find a private key with only the knowledge
of the corresponding public key.

Asymmetric cryptography algorithms are essential security primitives in modern
crypto-systems. Protocols built on top of the public-key algorithms offer confiden-
tiality, integrity, authentication, and non-repudiation.

Two of the best-known use cases of asymmetric cryptography are encryption/de-
cryption and digital signatures.

Encryption/Decryption

Asymmetric encryption works by encrypting a secret message using the recipient’s
public key. Only a person that possesses the corresponding private key is able to
decrypt the message. Since we assume that the private key is kept hidden and not
disclosed to the public, only the true recipient can decrypt and read the message.
This process provides confidentiality of the message but does not reveal any infor-
mation about an author of the message. A scheme of this mechanism can be seen in
Figure 2.1.

Figure 2.1: Encryption/decryption scheme using asymmetric cryptography

Digital Signatures

Digital signatures provides robust authentication, non-repudiation and integrity as-
sertion for any message. The process (visualised in Figure 2.2) between a sender
(Alice) and a receiver (Bob) goes as follows:
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1. Alice computes the hash H = h(M) from the message M .

2. Alice computes the signature S = epriv.k(H) by encrypting the hash H using
her private key.

3. Alice sends the message M (M in plaintext) and signature S to Bob.

4. Bob computes the hash H ′ = h(M) from the received message.

5. Bob decrypts the signature H = dpub.k(S) using Alice’s public key.

6. Bob compares the computed hash H ′ with the received hash H. If the values
are equal, it implies:

• authenticity - only the owner of the private key could have sent the
message because nobody else possesses the private key to encrypt the hash
H.

• non-repudiation - only the owner of the private key could have sent the
message, thus the owner cannot dispute its authorship.

• integrity - the content of the message did not change after the signature
was made. Otherwise the hash H ′ computed by Bob would differ from the
received hash.

Figure 2.2: Digital signature scheme using asymmetric cryptography
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2.3 Intrusion Prevention System

An IPS (Intrusion Prevention System) is a defence mechanism against threats in
cyberspace. It monitors actions on the local machine and/or network behaviour to
detect threats and then block them. The goal is to either prevent an incident or stop
the ongoing attack before any damage occurs.

2.3.1 Stratosphere Linux IPS

Slips is an open-source IPS developed by the Stratosphere research laboratory at the
Faculty of Electrical Engineering of the Czech Technical University in Prague [18].

Slips is a modular software implemented in Python. It focuses on analysis of
network behaviour using machine learning models to detect threats, such as port
scans, ARP poisoning attacks, communication with known malicious IP addresses,
and others [19].

Slips is the IPS software for which Iris was designed for.

2.4 Peer-to-Peer Networks

A Peer-to-Peer (P2P) network connects devices directly to each other without the
use of a server acting as an intermediary. Unlike conventional client-server commu-
nication, no peers in a P2P network are designated solely to serve or receive data.
Every device in a P2P network has equal permissions to join and leave the network
at any time. This thesis uses the term peer, node and device interchangeably.

2.4.1 Types of P2P Networks

Based on the responsibilities given to the peers, we classify peer-to-peer networks
into two types [25]:

• Pure - Every peer has the same permissions and responsibilities in the network.
Any peer can leave without disrupting the network (e.g. Gnutella [5]). Unless
otherwise specified, in this thesis we always refer to pure P2P networks.

• Hybrid - A subset of centrally controlled peers is responsible for core function-
ing features of the network (e.g. Domino [54]). Such peers might, for example,
authorise other peers, offer search engine for content shared in the network, etc.
Without these peers, the network cannot function to its full extent.

Another way to classify P2P networks is by the topology of the network. If the
network enforces peers to be connected in a specific structure, we call the network
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structured. Otherwise, the network is called unstructured [25]. An example of a
structured and unstructured network can be seen in Figure 2.3.

An important variable defining a P2P network is the dynamics of peer partici-
pation, also called churn rate. Churn defines the frequency of peers joining and
leaving the network [47]. It plays an important role in the operation and design of
P2P networks.

For example, if the churn rate is extremely high, a structured network would
malfunction. The topology would be often disrupted as peers leave, and the network
would have to consume resources to re-establish the structure.

However, measuring the churn rate is often difficult, as it requires fine-grained
and unbiased information about the arrival and departure of peers [47], and active
monitoring of peers in P2P networks is almost impossible to implement.

(a) Structured network (b) Unstructured network

Figure 2.3: Example of structured and unstructured P2P networks

2.4.2 Properties

Due to its inherent characteristics, a peer-to-peer architecture offers the following
properties (with a few exceptions discussed later):

• Scalability - easy to scale with large number of peers.
• Reliability - any peer can leave the network at any time without disrupting the

network.
• Efficiency - no extra latency added by intermediate server.

On the other hand, the P2P architecture has also its disadvantages.

11



CHAPTER 2. BACKGROUND

Pros of P2P Networks

• No Central Point of Failure - In a traditional client-server communication,
the client cannot function without a properly working server. Which means
that the server represents a single point of failure without which the clients
essentially cannot operate. In a P2P network, such entity does not exist and
any peer can leave the network as it wishes.

• No Central Authority - Usually, in a client-server communication, we have
no knowledge about logic and business code that runs on the server side of a
service we use. For example, the server might jeopardise the clients’ security
or privacy by storing passwords in a plain text or harvesting user’s data for
further monetization. That being said, we are involuntary forced to trust the
central authority and its good intentions and technical abilities to follow security
standards. In contrast, no central authority exists in a peer-to-peer network.

• Easy To Join The Network - Every potential peer has the same right to
join the network. The only assumption is to know at least one peer connected
to the network and follow the protocol. Because of that, P2P networks offer
great scalability potential.

Cons of P2P Networks

• Trust Problem - The trust problem is one of the major challenges in peer-to-
peer networks. How can we identify peers that are trustworthy? How can we
detect that peers deliberately lie to our disadvantage? The problem grows if we
cannot computationally verify the correctness of the data received from other
peers. We do not elaborate further on this problem as it is not in the scope of
this thesis.

• Security - Designing a secure P2P network is a difficult task as there are
many known attack vectors which exist because of the inherent nature of P2P
networks. Some of the attacks do not have a clear mitigation and often require
relaxation of some key properties of the network. Such as, for example, pivoting
from pure network architecture to hybrid network architecture or hardening
the process of joining the network. We discuss known attack vectors later in
Subsection 2.4.6.

• Networking Complexity - Even-though the Internet can be viewed as a
huge peer-to-peer network of small networking devices, our P2P application
logic is built on top of the Internet topology. Unfortunately, the Internet was
not designed with a peer-to-peer network architecture in mind. Many devices
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nowadays have not been assigned public IPv4 address and are hidden behind
Network Address Translation. This enormously increases the complexity of P2P
networks if we want to allow direct communication of two peers that are hidden
behind different NATs.

2.4.3 Peer Discovery

Peer discovery refers to the problem of finding initial peers which a new peer can use
to join the network. After that, consecutive peers can be discovered through already
existing connections. We describe next several known approaches.

Crawling the Internet

The most naive approach suggests to crawl the Internet to find devices that follow
the same protocol. Crawling the Internet is not a feasible solution in terms of time
complexity. That is why no P2P network actually implements it.

Bootstrapping Nodes

One of the reasonable options is to use static bootstrapping nodes that act as an
entry-point to the network. The listening addresses of these nodes are usually hard-
coded into the clients. Employing this approach, the network becomes hybrid because
a specific subset of nodes have more responsibility than others. Also, if the bootstrap-
ping nodes happen to be controlled by one group of people, the network becomes less
decentralised.

TOR [14], for example, utilises a very similar approach called directory author-
ities [12]. Directory authorities are special-purpose peers that periodically publish
together with other directory authorities a signed consensus about current active re-
lays. Addresses of these authority peers are hard-coded into the tor clients. Clients
then download and verify the consensus and randomly choose relays to establish the
connection.

However, the selection of the bootstrapping nodes must be done with caution
because if attackers manage to control them, they can essentially control all the
connections of their victims. This situation results in a Bootstrapping Attack [16].
The TOR organisation tries to mitigate this attack vector by selecting maintainers of
directory authorities with the special heuristics “we-know-you-and-have-had-many-
beers-with-you” [48]. More about this attack vector can be found in the Security
Subsection 2.4.6.
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Usage of DNS

Another option to obtain an initial list of active peers is to use DNS. A list of sup-
ported domains is hard-coded into the clients. To find the initial peers, the client
queries some of the domains which resolve into a list of IP addresses with active peers.
This technique (among others) can be seen deployed in practice in Bitcoin [36].

A big advantage of this approach is that an owner of the domain can dynamically
change the returned addresses. The owner can deploy a crawler into the network to
keep an up-to-date list of active peers. Random peers from such a list can be rotated
in the DNS record.

This technique is very similar to the previous one, with the difference that in
this case domains are hard-coded into the clients instead of IP addresses. And since
the domains dynamically resolve to different peers, this approach contributes to the
decentralised nature of the network and the robustness of the whole system.

Unfortunately, a raw DNS resolution is vulnerable to man-in-the-middle attacks,
cache poisoning, stale records, and many other attacks [44], and as such, should be
used very carefully. For example, a man-in-the-middle actor could resolve only IP
addresses of peers controlled by the attacker, essentially launching a Bootstrapping
Attack [16].

Manual Configuration

Another option is to manually configure a listening address of some peer that is used
to connect to the network. An advantage of this approach is that we can connect
to the network through peers we personally trust or know. However, this approach
assumes knowledge of such peer.

Again, the TOR [14] project supports this option via the so-called bridge re-
lays [13]. The motivation behind bridge relays is to bypass censorship in a form of
firewalls (e.g. Chinese Great Firewall) that block known IP addresses linked to TOR
network.

Cache

Smart clients might store peers and corresponding addresses in a local persistent cache
for a future usage. Nonetheless, after some time, the stored addresses are likely to
become deprecated. Also, enumerating all stored peers might require a considerable
amount of time.

Mixed Approaches

To summarise, none of the mentioned techniques is superior to the others. Every
technique has its own pros and cons. That is why, for example, the official devel-
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opment documentation of Bitcoin recommends [36] the usage of all techniques to
minimise the risk of becoming isolated in a malicious network.

2.4.4 Epidemic Protocols

In a common client-server communication, the server acts as a central authority that
distributes messages or any other information to clients. In P2P networks, such entity
does not exist. That is why we need another method that ensures that information
is disseminated to all peers in the network.

A naive approach is to recursively flood all peers with the message. A peer that
wants to share a piece of information, floods all the peers it knows with information.
Recipient peers do the same until the information propagates through the entire
network. However, this approach introduces unnecessary traffic overhead.

Epidemic protocols (also called gossip protocols) try to guarantee information
dissemination to the entire network. The epidemic terminology was first introduced
in 1987 in [11]. Depending on the nature of information and events in the network,
many techniques and optimisations may be applied. Nevertheless, the concept is
always the same. Some nodes are aware of the information and some are not. And
the ones that know about the message should cooperate in order to disseminate the
message to all peers [33].

Many modern systems implement some form of epidemic protocols. For example,
the BitTorrent file sharing network [9], and botnets such as Storm and Sality, etc. [42].
Even Amazon reported the use of epidemic protocols to maintain a fully-connected
overlay network inside their data centers [10] [33].

As the name suggests, the epidemic protocol is a paradigm inspired by the way
viral biological infections spread in a population. Another useful analogy that de-
scribes the concept is how gossip spreads in a population. Let us consider a group of
office workers and some gossip initiated by one of the workers. If workers form bonds
and periodically spread gossip, after a certain amount of time, the gossip reaches all
the workers.

The nodes in the network can be in one of three states [33]:

• Susceptible - the node has not heard about the message yet.

• Infected - the node has heard about the message and is actively spreading it.

• Removed - the node has heard about the message but stopped spreading it.

In the basic model (also called Simple Epidemics), three algorithms of spreading
exist [33]:

• Push - Nodes actively spread the messages by sending them to connected nodes.
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• Pull - Nodes actively try to learn about the newest updates by asking connected
nodes.

• Push/Pull - Nodes actively share the most recent update to see if anyone
knows a more recent update.

However, for an optimal spreading, we need to figure out:

1. What algorithm of spreading to use?

2. To how many nodes should the infected nodes spread the message at once?

3. How long should the infected nodes wait until they ask/spread again?

4. How do the infected nodes choose recipients?

5. After how much time should the infected nodes move to a Removed state?

Setting these values incorrectly might result in either too slow or too fast gossip
convergence. If the gossip converges slowly, it might not be up-to-date when it reaches
the whole network (if it even reaches the whole network). On the other hand, if the
gossip converges too fast, we might unnecessarily flood the network with messages.

As a consequence, plenty of protocols and their versions exist [33]. Also, every
distributed system behaves differently and can guarantee different properties such as
network topology, churn rate, etc. That is why it is difficult to re-use some specific
protocol for a new system.

Optimally, peers would spread the message only to peers that have not heard
about it yet. However, we cannot achieve that because without central authority, we
cannot determine who already knows about the message. Hence, we cannot avoid
sending repeated messages to peers that have already received the message before.

Therefore, an optimal spreading strategy is the one that optimises the trade-off
between flooding the network with repeated messages and speed of convergence.

2.4.5 Distributed Hash Table (DHT)

Distributed Hash Table is a decentralised key-value storage paradigm. In general,
hash tables should offer following operations:

• put(k, v) - store a key-value pair (k, v)

• get(k) - retrieve the value associated with the key k

DHT assigns keys to different subset of nodes in the network that are responsible
for storing the corresponding value. This way, every node manages a small part of
the global table.
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A first specification of DHT was published in 2001 and was called CAN [39].
Very soon CAN was followed by CHORD [40], PASTRY [43] and TAPESTRY [55].
Nowadays, Kademlia DHT [31] with some modifications is the most widely used.

Conceptually, all DHTs work the same. They differ mostly in caching, lookup
algorithms, and resilience against common attacks and peers leaving the network. In
this thesis, we use the Kademlia implementation, therefore in the following Subsection
we focus just on describing Kademlia.

Kademlia DHT

Kademlia [31] requires that identifiers of DHT keys and identifiers of nodes share the
same space. This way, we can deterministically map keys to nodes with a notion of
closeness. Also, we can calculate the distance between two nodes. In the thesis, we
consider that a key space of DHT keys has size of 256 bits.

For the calculation of the distance, Kademlia uses bitwise exclusive OR (XOR).
Formally, for two identifiers i1 and i2, the distance is calculated as d(i1, i2) = n1⊕n2.

The most important procedure nodes have to perform is to find the n closest nodes
to a given key. In this thesis, we call these nodes responsible peers. Nonetheless, peers
do not have the knowledge about all nodes in the network. That is why we need a
routing algorithm to locate the responsible peers. Kademlia calls this procedure a
node lookup.

For the node lookup procedure, every node keeps a list of nodes and their listening
addresses with distance between 2i and 2i+1 from itself. Kademlia calls these lists
k-buckets. For small values of i, the buckets will be often empty since the probability
that such peers exist is extremely small. Each bucket has a maximum of k nodes.
Every node tries to keep k-buckets full and up to date by periodically sampling a
random identifier in the bucket range and launching a node lookup procedure with
the given identifier.

The node lookup is a recursive procedure. When a node n tries to locate respon-
sible peers for a given key k, it picks up to α closest peers from the key k from its
k-buckets list and puts them into a list of candidates. Then it asynchronously asks
nodes from the list of candidates about the closest nodes from the key k. Each node
returns up to α closest peers from its k-buckets list. Received nodes are added to
the list of candidates and the search continues until the peer n finds the responsible
peers.

As stated before, the node lookup procedure is used to keep k-bucket lists up to
date. Also, it is used for storing and retrieving values from the DHT. When a peers
wants to store a key-value pair (k, v) to the DHT, they use node lookup procedure
to find l responsible peers. After that, they send value v to these l peers to store it.
Similarly, when peers want to retrieve the value associated with the key k, they first
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launch node lookup and find l responsible peers. After that, they ask these l peers
for the value.

Note that we have described a slightly simplified version of the whole protocol
to highlight the concept. In addition, Kademlia specifies a caching and a persistent
mechanism to prevent losing information when responsible peers leave the network.
However, these mechanisms do not play a core role in this thesis.

A nice secondary property is that apart from the distributed storage we can use
DHT to search for the listening addresses of peers. Imagine that peer a wants to
connect to peer b but it does not know the listening address of b. It only knows the
identifier of b. In this case, peer a can use the node lookup procedure to find peer b.
If peer b exists, it should be found because no other node is closer to b than b itself
(d(b, b) = b⊕ b = 0).

Security and Privacy of Distributed Hash Tables

The DHT specification does not cover any form of access control. If one node in the
network stores a value to the DHT, knowing the key is enough to query the associated
value. Thus, privacy-aware networks need to design some form of access control on
top of the DHT specification. Kieselmann and Wacker [27] proposed access-control
mechanism that can be incorporated into the DHT itself. Nonetheless, their solution
only support access control per individual peers, not groups.

Among the most common attacks against DHT [2, 50] are:

• Eclipse Attack - Eclipse attack is an attack targeted against a single victim.
Usually, attackers try to control all peers that the victim connects to. This
can be achieved by poisoning victim’s routing table with malicious peers. As a
result, the attacker essentially controls the whole communication of the victim.
A mitigation of this attack is to protect the routing table from other peers’
influence. Kademlia does this by favouring long-living nodes in the routing
table.

• Sybil Attack - An attacker can generate many specially crafted peers to control
all the responsible peers for a given key. As a result, the attacker can decide
not to retrieve a value for the given key when somebody asks.

• Churn Attack - If attackers control a large amount of peers in the network,
they can cause a malfunction of the network by disconnecting all the peers at
once. This increases the churn rate and forces the network to consume resources
to re-establish its structure.

• Adversarial Routing - Adversarial routing refers to a situation where the
victim’s message is routed through adversarial peers. In that case, the attacker
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can route a victim to peers under their control and never let the victim find the
true closest peers. A mitigation was proposed in [2] by using multiple disjoint
paths for each query to minimise the chance of an attacker tampering with all
of them.

• Pollution attack - In this attack, an attacker can store fake data under the
given key in the DHT. This attack can be mitigated by enforcing that the keys
for every value are calculated as part of its hash. Then this attack is essentially
transformed into finding a collision in the hashing function.

2.4.6 Security of P2P Networks

Peer-to-peer networks are vulnerable to several types of attacks that are mostly caused
by the decentralised and anonymous nature inherent to P2P networks. In this section,
we talk about known general attack vectors [52, 16].

• Man-in-the-Middle Attack - A MitM attack refers to a situation when an
attacker impersonates both ends of a communication channel. Both commu-
nicating parties have no knowledge about the ongoing situation and trust the
communication channel. Depending on the security measures, the attacker can
eavesdrop or even alter the messages.

We can mitigate this by encrypting (assures confidentiality) and signing (assures
integrity) the messages. However, if the communicating parties do not possess
public key of the other party before the communication starts, we cannot verify
that the received public key truly belongs to the benign peer or the attacker.
Without a central authority, it is impossible to prevent that.

• Sybil Attack - An attacker generates multiple fake identities and deploy them
to the network as fake peers. This way the attacker can control a substantial
amount of the entire network. It was shown [15] that without a central author-
ity, Sybil attacks cannot be prevented except under extreme and unrealistic
assumptions.

One way to make the attack more expensive for the attacker is to enforce a
computational puzzle for every peer before joining the network [2]. The attacker
then needs to spend computational resources for each fake identity. However,
nothing prevents the attacker to pre-generate rainbow tables of fake identities
with solved computational puzzle. To prevent the generation of rainbow tables,
we have to link the puzzle to a time and implement expiration time. On the
other hand, this approach brutally handicaps small benign devices that do not
possess enough computational power to keep recomputing the puzzles.

19



CHAPTER 2. BACKGROUND

• Eclipse Attack - An Eclipse attack targets either one or a small group of vic-
tims. Many types of Eclipse attacks exist, and they depend on the features of
each network. However, a general concept is to control as many victim’s con-
nections as possible. The attacker can then respond with incorrect responses,
route victim’s messages to other peers the attacker controls, etc. The mitigation
greatly depends on the architecture of each network.

• Churn Attack - An attacker can disrupt the structure of a network by sub-
stantially increasing the churn rate of the network. Usually this can be achieved
if the attacker controls a majority of peers in the network and decides that all of
them leave the network. The topology of the network breaks and the network
must spend resources to re-establish the structure. Mitigation techniques differ
and depend on the architecture of each network.

• Bootstrapping Attack - In this attack, attackers try to control the bootstrap-
ping nodes which are used as entry-points into the network. If the attackers
achieve that, they can essentially control all the connections that victims make.
Mitigation depends on the architecture of the network. The general advice is
to make a great effort to keep the bootstrapping nodes secure.

• DHT related Attacks - The attacks that relate to DHT have been already
described in Subsection 2.4.5.

• Impersonation Attack - In this attack, an attacker tries to impersonate other
peers in the network. A mitigation is to link a peer identifiers with public keys
of a cryptographic key-pair. The private key is then used to sign all messages.
This way, the attacker cannot impersonate any peers without owning their
private keys.

• Distributed Denial of Service (DDoS) - A DDoS attack focuses on making
victims’ services unavailable either by completely disrupting them or draining
all the victims’ resources. In P2P networks, such a goal can be achieved by
leaving/joining the network with many peers, performing traffic amplification
attack or simply attacking the victim directly. To mitigate this attack vector
we can deploy mechanisms that allocate resources in a secure way, such as for
example, to control the maximum allowed messages sent in a given time period
by one peer.

• Trust Related Attacks - There are many attacks associated with tempering
of victim’s trust about other peers [22]. Among those we can find Badmouthing,
Unfair Praises, Inaccurate Recommendations, and many others. Since the trust
problem is not in the scope of this thesis, we do not further analyse these attack
vectors.
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2.5 LibP2P

LibP2P [30] is an open-source project that provides a peer-to-peer networking stack.
It contains protocols, specifications, and, more importantly, libraries in multiple lan-
guages to help developers build peer-to-peer networks.

LibP2P was derived from IPFS (InterPlanetary File System) [4] and focuses on
implementing the core features of P2P networks such as NAT traversal, peer routing,
content sharing, etc. It offers implementations in Go, Rust, and JavaScript pro-
gramming languages. Currently, the biggest coverage is offered in Go because of its
efficient built-in support for asynchronous networking.

LibP2P is a modular and extensible system. Users can easily substitute the
implementation of specific features for their own. This allows building almost any
distributed application.

In the following section, we present a subset of the features that LibP2P imple-
ments and are essential to our work [29]:

• Peer Identity - Every peer owns a cryptographic key-pair. Peers’ identifiers
are modelled as multihashes [35] of their public keys. Multihash is a special
encoding that encodes to one structure a hash along with information about a
hashing function that was used.

Modelling peers’ identifiers as hashes of public keys helps LibP2P to mitigate
Man in the Middle and Impersonating attacks. Peers encrypt and sign all the
messages with their underlying public and private key. The recipient can verify
that the sender’s public key used in the secure communication actually matches
the sender’s identifier.

Also, modelling peers’ identifiers as hashes of public keys essentially means that
users cannot arbitrarily choose values of peer identifiers to for example control
a peer that is closest to a given key in the DHT key space.

• Transport - LibP2P is built with the requirement to be transport agnostic.
This way, developers can use any transport protocol they wish. LibP2P of-
fers transport implementation for plain UDP, plain TCP, TLS, WebSockets,
QUIC [23] and others.

• Peer Routing - LibP2P offers also an implementation of S/Kademlia [2] with
some modifications [21]. The DHT can be used for peer routing functionality
(Described in DHT Subsection 2.4.5) and as a standard distributed storage.

• Addressing - LibP2P uses a concept called Multiaddresses [34]. Multiaddresses
encode multiple layers of addresses into one structure. For example, a multiad-
dress ’/ip4/1.2.3.4/udp/9000/quic 12D...oJ8
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encodes that we should use IPv4 with address 1.2.3.4, UDP transport protocol
with port 9000 and expect QUIC protocol. The last part specifies an identi-
fier of the peer that we want to dial. This is to provide an authentication of
the peers we want to dial - they need to provide a correct signature using the
corresponding private key.
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Related Work

3.1 Collaborative Intrusion Detection Networks

There has been a constantly growing trend in the number of cyber-threats over the
past decades. Along with the number of attacks, the sophistication of malicious actors
also increases [53]. Increasing threats drive research towards the field of collaborative
cyber-defence.

Specifically, there has been a significant amount of work done in Collaborative
Intrusion Detection Networks (CIDNs). A CIDN consists of a set of agents which use
collective knowledge and experience to achieve improved intrusion detection. How-
ever, every CIDN we know of lacks some key feature with respect to our goal. In this
section, we present similar projects and CIDNs that share similarities with our goal
and discuss the differences.

DShield [49] is a centralised web repository where registered members can auto-
matically send raw logs from different sources. Later, a group of people analyse the
received logs and produces threat intelligence. Dshield is not an automated sharing
system, but a central repository of data where members can manually download lists,
and that focuses solely on the aggregation of raw logs. It is not peer-to-peer, it does
not generate alerts or detections, it does not share data automatically, and it does not
consider privacy, confidentiality, encryption, authentication or trust, or verification.

The Malware Information Sharing Platform and Threat Sharing [51] (MISP) is an
open source software for receiving and sharing reports. MISP allows administrators
to manually connect multiple MISP instances together. By connecting, the instances
become trusted, thus MISP allows constructing a semi-centralised architecture. A
difference with Iris is that MISP instances serve as middlemen between end-devices
and are not fully decentralised or peer-to-peer.

Indra [24], on the other hand, offers a fully decentralised network with agents
that monitor the network behaviour, and share data to strengthen its collaborative
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defence. Indra allows peers to subscribe in groups based on attacks they are inter-
ested in. For example, some peers can join only the SSH group to receive only SSH
related alerts. However, it operates only on a local area network and with fixed par-
ticipants. Furthermore, Indra does not address the risk of compromised participants.
Compromised nodes can send false alerts or even convince other participants to put
any machine into their blacklist. Lastly, Indra authors proposed only ideas and did
not conduct any experiment or implement a public proof of concept.

Similarly, Dovecot [22] proposes a fully decentralised P2P network that allows
peers to ask other peers about specific Indicator of Compromise. Also, Dovecot imple-
ments a trust model that considers compromised or malicious participants. Nonethe-
less, Dovecot operates on a local area network and does not consider privacy and
confidentiality of threat intelligence data.

Other CIDNs such as Domino [54] or ABDIAS [20] work in a hybrid mode. Hybrid
networks consist of different types of agents with different responsibilities. For exam-
ple, Domino consists of agents that are responsible only for monitoring the network
and forwarding data to other types of agents for analysis. Note that Domino tried
to solve the need of trusted groups because not all captured data can be disclosed
publicly for privacy and security reasons. Because of that, all agents are allowed to
talk only within its trusted group and another type of agents exists that is designed
solely to anonymize and transfer the data between trusted groups. Iris, in contrast, is
a pure P2P network and, as such, all peers share the same rights and responsibilities.

The first work that proposes a global and fully decentralised network was Net-
Shield [7]. Netshield focuses on detecting epidemic worm outbreaks and uses Chord [40]
DHT to store prevalence of each content block sent in the network. Every agent con-
tributes to the DHT when the prevalence of a certain content block exceeds a local
threshold. If a value stored under the given content block in the DHT exceeds a
global threshold, a responsible peer triggers an alarm. However, NetShield assumes
that all agents are honest and that is why the network does not mitigate any DHT
attacks.

Another approach [38] utilises smart contracts [56] deployed to public blockchains [57]
to offload computation of dishonest peers and process logs. Nonetheless, using
blockchain smart-contracts is expensive and introduces a latency overhead while
blockchain blocks are being created.

Hence, to our knowledge, no work focuses on designing a pure, fully decentralised,
and permissionless peer-to-peer network for sharing confidential threat intelligence
data.
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3.2 Content Sharing in Peer-to-Peer Networks

The purpose of the first P2P networks was mainly to share content. The main
challenges that content sharing networks try to solve are how to publicly keep track
of the peers that offer certain files, how to efficiently download the files, and finally
how to verify correctness of a provided file.

A first large P2P network scheme was called Napster [52] and allowed users to
download mp3 files. However, the network operated centralised servers that kept
track of the peers offering files and paired the peers with these providers to facilitate
the download.

Currently, probably the most known file sharing protocol is BitTorrent [9]. Bit-
Torrent addresses the inefficiency problems of inactive peers, which was a common
problem in a similar network called Gnutella [5]. The BitTorrent protocol chunks
files into smaller parts to allow parallel downloads. BitTorrent’s disadvantage is that
if users want to download a file, they need to first find a file called tracker that lists
all the providers of the given file they want to download.

Modern content sharing networks such as IPFS [4] utilise Distributed Hash Ta-
ble [45] to store information about shared files in a distributed way. Particularly,
IPFS keeps track of peers sharing a file in the DHT under a key computed as a hash
of the given file. Nonetheless, in order to find the list of file providers for the given
file in the DHT, peers need to know the file hash. An advantage of this approach is
that every peer can easily verify correctness of a downloaded file by computing the
hash of the received content and verifying it with the DHT key which is an expected
hash value.

Note that IPFS does not implement any form of access control for shared files.
The reason is that DHT itself does not specify any access control mechanisms. Wacker
et al. [27] proposed the use of resilient access control for any DHT to allow build-
ing privacy-aware distributed applications. However, their solution supports only
assigning access-control per individual peer and not per trusted group.
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Chapter 4

Design of Iris: P2P System

This chapter describes the general design of Iris P2P System and its integration into
Slips [19]. First, we describe the features and overall goal of Iris. Next, we discuss
the assumptions that we make about the environment. Furthermore, we show the
general architecture of the system with all components and responsibilities. Last,
we elaborate on the protocols that we have designed to achieve the aforementioned
goals. Iris implementation details are presented in Chapter 6).

4.1 Goals of the System

The high level goal of Iris is to allow Slips instances to communicate directly with
each other without any central authority and to securely exchange threat intelligence
data. Threat intelligence data might contain confidential information, and that is
why peers should be able to share specific data only to a trusted subset of peers.

In following Subsections, we further elaborate on the mandatory requirements:

4.1.1 Functional Requirements

• Peers shall be able to be members of trusted groups to allow message exchanges
only within a subset of peers. We introduce a solution called Organisations for
this problem in Section 4.6.

• Peers shall be able to alert the network or trusted groups of peers with an alert
message about an IoC. This information can be used by other Slips instances to
block the malicious IoC. For that, we designed a solution called Alert Protocol
which is described in Section 4.7.

• Peers shall be able to share threat intelligence files with the network or trusted
groups of peers. We propose a File Sharing Protocol in Section 4.8.
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• Peers shall be able to ask other peers for their opinion about a given Indicator
of Compromise (an IP address, a domain, etc.). To support this feature we
propose a Network Opinion Protocol in Section 4.9.

4.1.2 Non-functional Requirements

We consider information security as the main non-functional requirement. In partic-
ular, Iris tries to address, as much as possible:

• Confidentiality - ensure that only authorised peers can access the data.

• Integrity - ensure that the exchanged data are not altered.

• Availability - ensure that the system is available.

4.2 Trust Model Assumption

Iris does not try to solve the issue of how to trust other peers and the data in the
network, since it is a non-trivial problem. For that reason, there is a parallel diploma
thesis done by Bc. Lukáš Forst [17] focusing on this particular issue in P2P networks.
Both theses were designed in tight cooperation to ensure their mutual compatibility,
yet both theses elaborate individually on different topics.

As a consequence, we assume the existence of a black-box trust model called Fides
that Iris queries inside each peer to retrieve a value called service trust (defined in
Definition 4.2.1). The service trust value is an estimation of how much a peer can be
trusted to provide a good service. Iris uses this value in its design, for example, to
favour more trusted peers when downloading a TI file. For more details about the
computation of trust, we refer the reader to the Fides thesis [17].
Definition 4.2.1 (Service Trust). Service Trust stp denotes a belief about how much
we trust that a given peer p will provide a good service. It is a real number between
0 and 1 where a value closer to 1 represents larger trust. On the other hand, a value
closer to zero stands for no trust all.

stp ∈ [0, 1]
p ∈ {p1, ..., pn}

Fides provides Iris with the option to report misbehaviour of any peer (such as
providing incorrect files, not following the defined protocol, etc.). The reporting of
peers should result in decreasing their service trust. That is why Iris does not need
to remember the reputation or trust of peers.

Iris does not manipulate the application data shared between peers. It treats
the content as a raw stream of bytes. Iris serves solely as a networking layer that is
responsible for delivering the messages and the security of the system.
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4.3 Architecture Overview

In total, there exists three major components in Iris, as shown in Figure 4.1:

Figure 4.1: Diagram of the communication flow between components in the system

• Slips [19] - Slips is a modular IPS implemented in Python. The Slips instance
monitors the behaviour on the local machine and in case of suspicious events
might decide to ask the network for advice, share threat intelligence data or
alert the network. Slips uses Redis as a database system.

• Fides Trust Model [17] - Fides is implemented as a Slips module in Python.
If Slips wants to interact with the network, it asks Fides. Fides forwards the
task through a Redis channel to Iris and subscribes for a reply in the Redis
channel. Fides determines the credibility of the aggregated peers’ replies and
returns it back to Slips.

• Iris P2P System - Our networking stack that provides direct communication
with other peers. Iris is responsible for secure communication, privacy of trans-
ferred data, and delivery of requests and corresponding responses. Iris is built
on top of the LibP2P[29] project that provides libraries for P2P networking.
Figure 4.2, shows an analysis of responsibilities between Iris and the LibP2P
project.

4.4 Peers Joining the Network

The mechanism for new peers to join the network is problematic. All methods that
we have described in the Background Section 2.4.3 either introduce more attack
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Figure 4.2: Diagram of responsibilities between Iris and LibP2P project

vectors or make the network hybrid or less decentralised. Even though it is possible
that the best approach would be to use a mixture of methods, we only implemented
bootstrapping nodes and the manual configuration of known peers and organisations.

4.5 Iris Usage of Distributed Hash Table

The Distributed Hash Table plays an essential role in Iris. We use S/Kademlia DHT
implemented with some modifications by LibP2P project. The DHT in our system
serves three purposes (the security aspect of all use cases is discussed later in this
Chapter):

1. Store providers of TI files. The DHT stores the providers of every shared
file in the system. Section 4.8 describes the details of the proposed File Sharing
Protocol.

2. Store members of organisations. The DHT stores information about pre-
trusted groups of peers. Section 4.6 describes details on the concept of Organ-
isations.

3. Peer routing. Peer routing is a mechanism to locate peers in the network
using only their identifiers. We have described the process in the Background
Section 2.4.5. LibP2P project already supports this feature, so it is not imple-
mented in Iris.
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4.6 Organisations as Trusted Groups

Iris introduces a new concept for P2P networks called Organisations. An organisation
represents a trusted group of peers in the P2P network. The main incentive to create
them is that security practitioners on the Internet naturally form groups, where
they know each other, trust each other to some degree, share common interests, and
share data. It is a basic methodology to counteract adversaries. Therefore, having
cryptographically-verified groups was necessary for a security P2P network.

There are two main motivations behind this concept:

• Organisations allow Iris to exchange data only with peers within a specific
trusted group.

• Organisations provide the initial ground-truth of who to trust in the trust
model. Note that Fides, the underlying trust model, takes organisations’ mem-
berships into consideration and uses this to compute the value of service trust
for a given peer.

4.6.1 Definition of Organisation

Internally, Iris identifies an organisation in the same way as LibP2P defines identifiers
of peers, which is by using a cryptographic key-pair. An identifier of an organisation
is then a multihash of its public key.

Apart from its simplicity, identifying an organisation like this also ensures that
peers’ identifiers and organisations’ identifiers share the same key space, which is
an important fact in organisation member discovery and secure storage (Subsec-
tions 4.6.2 and 4.6.3, respectively).

Any peer p can become a member of an organisation o by having its ID digitally
signed by the organisation’s private key. Later, when the peers introduce themselves
to other peers, they present also the signature and the organisation’s ID. If the
organisation matches any organisation in the receiver’s trusted list, the receiver can
verify the signature and consider given peer as a member of the given organisation.

Note that a peer does not have to be a member of an organisation o in order to
trust peers that are members of o. A knowledge of the organisation’s identifier is
enough to verify other members.

4.6.2 Discovery of Organisations and Organisations’ Members

Iris does not provide any way to trustworthily disclose organisations identifiers to
users. Also, Iris does not provide users with a way to verify that an organisation’s
identifier truly belongs to the given organisation in the real world. For this, every
organisation should choose any technique they wish to ensure trustworthiness of the
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published ID, such as using a Central Authority from a Public Key Infrastructure to
issue them a certificate, or use public social networks. It is then the users’ respon-
sibility to verify the correctness of a given organisation ID before launching a peer
that trusts the given organisation.

After joining the network, it is in the new peer’s interest to establish a connection
with at least some peers from the trusted organisation. The reason is that if the peer
trusts their organisations, there is a bigger probability that these peers will not be
under the control of an adversary. It is the only heuristic the new peers have because
otherwise they end up talking to complete strangers.

Since peers would like to find other members of the organisation they trust, Iris
should provide a way to achieve that. A naive approach would be to traverse the
whole network as a graph using depth-first or breadth-first search until the peer finds
at least a minimum number of such peers. However, with a bigger sized network, this
approach introduces unnecessary network overhead.

Therefore, Iris uses the DHT for automated discovery of organisation members.
This is done as normally the DHT would be used to locate file keys, but since the id
of an organisation shares the same key space, organisations can be found in the same
way.

Organisations can also publish the identifiers of its peers on the Internet in any
way they want. That way users can use publicly known peers in their configuration
to connect directly to these trusted peers.

Storing Members in the DHT

Since we have defined the organisations’ IDs from the same space as peers’ IDs, we
can use organisations’ IDs as keys in the DHT. As the corresponding value for the
key we store a list of peer IDs that belong to the given organisation.

To support this feature, we define two new methods that use the DHT:

1. membership(o) - using this method a peer advertises themselves as a member of
organisation o in the DHT. To do so, the peer launches a node lookup procedure
with the key o to find responsible peers for the key o. After that, the peer sends
to all responsible peers a claim of being a member of o with a digital signature.
The responsible peers verify the signature and if the signature is correct, they
append the peer to an already existing list of members, or they create a new
one if necessary.

2. members(o) - using this method a peer can find advertised members of an
organisation o. Firstly, the peer finds all responsible peers for the o key. After
that, it asks the responsible peers about the value of the corresponding key o,
which contains the members.
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For this method to work, whenever peers that are members of some organisations
join the network, they shall advertise themselves as members of the organisations in
the DHT using the membership method. Later, whenever any peer wants to connect
to some pre-trusted peers, it can query the DHT using the members method.

4.6.3 Security of Storing Organisation Members in DHT

Since DHT plays an important role in our organisation mechanisms, we need to
consider all the threats that come along with it. We must address two security risks:
attackers controlling the responsible peers for an organisation, and poisoning the
DHT with fake members of an organisation.

Attacker Controlling Responsible Peers for a Given Organisation

An attacker can try to control the information in the DHT by controlling the peers
that are responsible for storing a list of organisation’s members. This would have
fatal consequences and could result in a lost communication between organisation
members because the malicious peers could return anything instead of the list with
organisation’s members.

Remember that responsible peers are the ones which IDs’ are closest to the stored
key. Thus, the attacker would have to control the peers that are closest to the given
key. However, it is enough for the attacker to be closer than everyone else in the
network. And the list of currently closest peers in the network is fairly easy to
acquire by simply launching the node lookup procedure.

The cost of this attack grows with a size of the network because if there is a large
number of peers in the network, the attacker has to generate large number of peer
IDs in order to find and control the closest ones. However, as has been shown in [37],
that such attack may take only some seconds to find the closest peers in the IPFS
network, which already has thousands of active peers. Most probably our network
will be even smaller, that is why we have to consider this attack vector very seriously.

That being said, our goal to mitigate this attack is to prevent the attacker con-
trolling the closest peers to the DHT key. But since the DHT key is actually an
organisation ID and we generate the organisation ID the same way as peer ID, we
essentially own the peer that has ID with distance zero from the organisation key
because d(x, x) = x⊕ x = 0.

That is why, if we deploy a peer into the network with the same ID as the organi-
sation ID, the attacker can never control all the closest peers. Utilising this technique,
we can effectively mitigate this attack vector.

Also, if there is a peer in the network with the ID that equals to the organisation
ID, we can automatically consider this peer non-adversarial and use them straight
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away as a responsible peer. Otherwise it implies that the attacker controls the private
key of the organisation and the whole trust mechanism of the organisation is breached.

Poisoning the DHT with Fake Organisation Members

An attacker could try to generate large number of sybil peers and falsely claim to be
a member of any organisation to poison the list with members in the DHT. However,
in order to poison the correct list of organisation members, the sybil peer needs to
provide the true ID of the victim organisation (because the ID is used as a key in the
DHT). And since the organisation ID is also a public key, the responsible peers can
easily verify if the sybil peer owns a correct signature generated by the organisation’s
private key. Sybil peers will not be able to provide such signature and thus they will
not be able to poison the DHT.

The only option is that the attacker controls the responsible peers to skip the
verification process. However, if the attacker controls the responsible peers, we talk
about the attack we have just described in previous Subsection.

4.7 Alert Protocol

The Alert Protocol is one of the contributions of Iris that provides alerting to other
peers in the network about an IoC. The idea is that when Slips confidently detects an
Indicator of Compromise (such as IP address, domain, etc.) it wants to warn other
peers in the network. When a peer wants to block a new attack, the expected life of
the IoC is measured in days at most (and hours at least), therefore we assume that
peers want to receive the alert as soon as possible. Note that the content of alerts is
irrelevant for Iris.

Peers might want to share the alerts only within a trusted organisation. There are
several reasons for that. One of them is that alerts contain confidential data. Another
one is to prevent attackers from eavesdropping on the alerts of their victims to adapt
their behaviour. For that reason, Iris allows to specify authorised organisations of
alert messages. If an alert is addressed only to a subset of organisations, peers spread
the alert only to authorised peers along with information who is authorised to receive
the alert for further propagation.

To understand how the Alert Protocol can spread different messages better, we
have conducted experiments (Chapter 5) to see if we can optimise the configuration
of spreading algorithms with the service trust values provided by Fides.
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4.8 File Sharing Protocol

Another contribution of Iris is a File Sharing Protocol to share threat intelligence
data. The goal is to notify peers in the network about a new available file in a
reasonable time and to allow all authorised peers to download the file, therefore to
design some form of a reading access control per organisations.

A naive approach would be to propagate the file content similarly as the alerts de-
scribed in Section 4.7. However, that would introduce unnecessary network overhead,
because not every peer wants to download every available file for various reasons -
connection bandwidth limitation, no interest, etc.

The special need is that peers do not want to distribute the content of files to
everyone in the network, since peers may not want or need that threat intelligence.
Because of that, metadata of the shared file is first published, and the peers that
want that threat intelligence file can ask for it in the P2P network.

Iris File Sharing Protocol stores providers of files in the DHT, similarly as IPFS [4].
Storing providers in the DHT is practical because peers can easily advertise them-
selves as providers just by writing a value into the DHT. Also, any peer can easily
query the DHT to obtain an up-to-date list of providers for the given file. However,
storing the providers in the DHT is not sufficient because we need to also somehow
notify peers in the network about the existence of the file in the first place.

An overall diagram of how to share a file can be seen in Figure 4.3.

Figure 4.3: A high-level diagram of a peer sharing a file in File Sharing Protocol
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4.8.1 Storing File Providers in the DHT

DHT stores information about the peers that share certain files, called file providers.
The files themselves are not stored in the DHT, but the file hash is used as a key in
the DHT. Thus, for every shared file with a hash f in the network, there shall be a
list of provider peers l stored in the DHT as a key-value pair (f : l).

Iris implements two methods using the DHT to support this functionality:

1. provide(f) - A peer can claim to be a provider of a file f by calling this method.
As a result, the responsible peers for they key f append this peer to the list
of providers of the f key (or create a new one if the list does not exist). Note
that responsible peers cannot verify this claim as they may not be authorised
to access the file. Figure 4.4 depicts this process.

2. providers(f) - A method to query the DHT for a list of providers for the given
key k. Internally it launches the node lookup procedure to find responsible peers
and ask them for a corresponding value - the list of providers.

Figure 4.4: Diagram of how to store a new provider peer for a file in the DHT

4.8.2 Notification of Authorised Peers

Iris uses Epidemic Protocols (similarly as for Alerts in Section 4.7) to spread metadata
of files to notify peers about their existence. An example can be seen in Figure 4.5a.
The metadata contains a description of the file and the hash of the file that recipients
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can use to query the DHT to find a list of providers of the file. This way, every peer
can decide based on the received metadata file whether it wants to download the file
or not.

Spreading algorithms depend on how the set of peers that receive a message
are chosen. In the case of metadata files, should the metadata be shared with the
whole network? We conclude that not. The reason is that by disclosing the threat
intelligence metadata to unauthorised peers, we might face a side channel attack. A
smart attacker could monitor the messages originating from its victims to learn about
their defence mechanisms and adapt to their behaviour.

For this reason, Iris adds a list of authorised organisations into the metadata
message and peers must only forward the metadata to members of authorised or-
ganisations. In other words, if only organisation O is authorised to download a file,
then only the members of the organisation O should receive the metadata message.
A diagram of sharing metadata only to authorised peers can be seen in Figure 4.5b.
This requires every peer to have always at-least one open connection with members
from their organisations.

However, not all files share the same importance. For example, all authorised
peers should promptly find out about a new file with high risk threat intelligence even
at the cost of flooding the network with messages. On the other hand, less important
threat intelligence files can take longer to spread without any cost. Therefore, we
propose two severity levels of shared files. By setting the appropriate severity level,
the network should guarantee to spread the metadata message to all authorised peers
in a different way:

• CRITICAL - by setting a file to severity CRITICAL, the network should
guarantee to spread file metadata to all authorised peers as fast as possible.

• NORMAL - by setting a file to severity NORMAL, the network should also
guarantee to spread the file metadata to all authorised peers but try to minimise
flooding of the network with messages.

Separating threat intelligence files into two severity levels may be useful to use
different spreading algorithms and thus optimise the use of network’s resources. We
conduct an experiment to answer this question in Chapter 5.

4.8.3 Reading Access Control

Even-though we share metadata of files only to authorised peers, it does not pre-
vent unauthorised peers from knowing the IDs of the shared files. For example, we
cannot guarantee that the responsible peers that store provider records in the DHT
are authorised to access the given file. Most probably the responsible peers will be
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(a) Example of an epidemic propagation of file metadata to all peers

(b) Example of an epidemic propagation of file metadata to authorised peers from one organ-
isation

Figure 4.5: Examples of an epidemic propagation of file metadata
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unauthorised to access the file. And we cannot prevent responsible peers from dis-
closing the file hash. After the possible disclosure of a file hash, anyone can query
the providers in the DHT and try to download the file from them.

Thus, providers themselves have to verify that every peer that wants to download
a file has authorisation to do so. Every peer can ask to be authorised by providing
the organisation’s signature. The provider peer verifies the signature and eventually
decides to sends the file or not.

In the case that the shared file has no access control restrictions, providers do not
demand any form of authorisation. Also, metadata of this file can be spread to all
peers in the network.

4.8.4 Downloading Files

To download a file, peers query the DHT to get a list of providers for the given file.
Peers then choose a provider from the list and try to download the file. If the file
has access-control restrictions, peers also present their organisation signatures that
authorise them to access the file. If the provider provides an incorrect file, the peer
needs to try another provider from the list. The diagram of this process can be seen
in Figure 4.6.

After downloading a file, peers can decide whether they want to be listed in the
DHT as another providers of the file. By advertising themselves as new providers,
they help an original provider because suddenly more peers allow to download the
file from them.

4.8.5 Security of the File Sharing Protocol

There are two major security risks related to the use of DHT for file sharing: an
attacker controlling the responsible peers for a file, and poisoning the DHT with fake
providers of the file.

Attacker Controlling Responsible Peers for Given File

An attacker can try to control the information in the DHT by controlling the respon-
sible peers. As a consequence, this would lead to a disruption of a service because
peers would not be able to query the providers - thus to download the file. Remember
that, to control the responsible peers, the attacker needs to own peers that are the
closest to the given key in the DHT key space. The cost of this attack grows with the
number of peers in the network. But as shown in [37], even in the IPFS network [4]
an attacker can target one DHT key in a matter of minutes.
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Figure 4.6: A diagram of a peer downloading a shared file

However, this attack assumes that the attacker knows about the file hash, other-
wise it cannot attack the hash key in the DHT. On the other hand, we cannot prevent
the attacker from discovering the file hash as the file hash is not secret information.

This attack can be mitigated a little bit by chunking files into smaller chunks (we
further discuss this feature in Future Work Section 7.1). Nonetheless, our implemen-
tation does not implement chunking and thus is vulnerable to this attack vector.

Poisoning the DHT with Fake File Providers

An attacker might generate many fake peers that all claim to be providers of a certain
file. And as shown in [37], the generation of fake peers in the IPFS P2P network is
extremely easy. Peers responsible for storing the list of providers in the DHT may
not be able to verify these claims as they may not be authorised to read the file and
verify the hash.

As a result of this attack, when a victim peer asks for a list of providers of a
specific file, it receives a list of peers, but the majority of them may be fake. The
victim then needs to spend a non-trivial amount of time, filtering out the fake peers
by trying to download the file. A fake file can be recognised by verifying that the
hash of the given file does not equal to the ID of the file. However, peers have to
download the whole fake file first in order to detect that the content is wrong. This
essentially results in a DoS attack. A diagram of this attack can be seen in Figure 4.7.
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Figure 4.7: A diagram of downloading a file from a list of sybil providers controlled
by an attacker

In our environment, Iris relies on service trust value provided by Fides trust
model for choosing specific providers from the list of all providers to download the
file. If these providers give us incorrect files, Iris reports them to Fides, and future
interactions with them will be less trusted. If Fides works correctly, in the long run,
the legitimate providers should possess a bigger service trust and thus we should be
able to promptly find the correct providers. For more information about Fides, see
Section 4.2.

4.9 Network Opinion Protocol

Iris implements a protocol to allow peers to ask other peers about their opinion on a
specific IoC. The idea is that the Slips instance encounters a suspicious resource (e.g.
an IP address, a domain, etc.) and needs to asks other peers for an opinion.

4.9.1 Design of Network Opinion Protocol

This protocol was designed so that a peer always asks more peers than just the ones
it is connected to. However, a peer cannot ask the whole network. A peer doesn’t
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know the size of the network and the number of responses could be enormous. In the
worst case scenario, a peer could even launch a DDOS attack against itself.

That is why this protocol was designed in a way that spreads the request message
in an epidemic style, but containing the outbreak by automatically terminating it
after some time. The termination is implemented in the Network Opinion Protocol
messages by a special field called time to live (TTL) value. The peer that asks for
an opinion, sets the initial TTL value of the request and sends the request to a set
of peers. Every peer that receives the request, decrements the TTL value by one,
and forwards the request to other peers. This propagation is done recursively until
the TTL reaches zero. When the TTL reaches zero, the current peer stops further
propagation.

Every peer that received the request (no matter if the peer propagated the request
further to other peers or not) also forwards the request to a local Slips instance to
acquire a local opinion. The peer signs the local opinion with its private key and
encrypts the local opinion using the original requester’s public key. This is very
important for the overall confidentiality of the Iris P2P network. No message can be
opened by any intermediary peer that is not the originator of the request.

After that, peers collect together the local encrypted opinion and opinions from
responses of other peers. The accumulated opinions are returned as a response to the
sender. This way, no peers can see the contents of opinions of other peers because
every opinion is encrypted using original requester’s public key.

Lastly, every peer that receives the request should make sure that it had not
already processed the request before. If yes, the peer should not process the request
again. Otherwise, peers could do the same work multiple times because they might
be asked multiple times by different peers.

An overview of just described process that propagates the opinion request can be
seen in Algorithm 1 and in Figure 4.8.

Nonetheless, two questions regarding the forwarding of opinion requests arise:

• How many opinions does a peer want to acquire about a potential
malicious IoC? For a rigorous answer, we should find a heuristic that would
provide us an approximation to the probability of two random peers dealing
with a similar attack. Using this heuristic, we could decide how many opinions
a peer needs in order for some of the opinions to be useful. However, the answer
for this question is out of scope of this thesis and left for future work. For our
current work, we approximate that an ideal number of total received opinions
is around 100.

In Iris, using the previously described process of opinion request propagation,
the total number of recipients is calculated as the number of nodes in the
spreading tree minus one (the original requester) - see Equation 4.2. For our
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Algorithm 1: Propagation of opinion request through the network
1 Function getOpinions(rsc)():
2 req ← generate request for opinion on resource rsc

3 req.sig ← digitally sign the request
4 req.ttl← initial value of TTL
5 recipients← sample recipients for the request
6 opinions← empty list
7 for r ∈ recipients do
8 msg ← encrypt req using public key of r

9 resp← send msg to r
10 opinions← decrypt opinions in resp using local private key
11 end
12 return opinions

13

14 Function receive(msg)():
15 req ← decrypt msg using local private key and verify signature
16 if req was already seen by local peer then
17 return ALREADY PROCESSED
18 end
19 opinion← get and digitally sign local Slips opinion
20 resp← encrypt opinion using original requester’s public key
21 if req.ttl > 0 then
22 req.ttl← req.ttl − 1
23 recipients← sample recipients for the forwarded request
24 for r ∈ recipients do
25 msg ← encrypt req using public key of r

26 respr ← send msg to r
27 resp← add items from respr

28 end
29 end
30 return resp

31
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Figure 4.8: An example of propagation of opinion request in Network Opin-
ion Protocol. An example of propagation of opinion request with initial TTL
value=3. The request originates in the yellow peer. Blue edges represent the flow
of opinion request and are labelled with current TTL value. Green edges represent
successful replies with accumulated opinions. Red edges represent unsuccessful re-
sponses because a receiver already processed the request.

implementation, we use a strategy that forwards a request to 3 peers with an
initial value of TTL=4. This results in a total number of recipients being up to
120 (∑4

i=0 = 3i − 1 = 120).

T T L∑
i=0

= ni − 1 (4.2)

• How should peers choose which other peers are the recipients of the
opinion request? One approach is to choose recipients completely randomly.
Another approach is to use service trust value from Fides as a heuristic when
sampling recipients from the list of candidates. Since service trust is defined
exactly as the belief that peers would provide a good service, it is a rational
value to use for choosing recipients.
It is also important for peers not to ask every time the same peers about an
opinion. We would like to allow a bit of variability that would slightly favour
the more trusted peers. That is why Iris chooses recipients from candidates
with a probability that is exponentially weighted with the candidates’ service
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trust. Iris does this by firstly transforming service trust values of all candidates
using exponential function f(st) = ast−1

a−1 with a constant value a = 10 (see
the function plotted in Figure 4.9). After that, Iris normalises the transformed
values which represent the probabilities of the candidates being chosen.
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Figure 4.9: An exponential function y = ax−1
a−1 with a constant value a = 10

4.9.2 Security of the Network Opinion Protocol

Encrypting and signing the messages provides confidentiality and integrity of the
opinions. Every peer knows who the original requester was and cannot tamper with
the forwarding request. Also, no intermediate peer can see into the opinions that are
not addressed to him. This allows peers to respond with confidential data because
nobody except the original requester can see the data. Also, every opinion is digitally
signed by opinion’s author and that is why the original requester knows who provided
the opinions.

The only potential attacks done by adversarial peers using this protocol are based
on lying to mislead the peer that requested the information. However, this is not an
issue for Iris, but for the Fides trust model, and it is addressed in that work.
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Chapter 5

Experiment on Optimal
Epidemic Spreading Strategy

The Iris P2P system proposes new ways to deal with the security concerns of threat
intelligence sharing. However, many of these ideas need to be verified and explored
in simulated experiments in order to understand how a network of peers may behave
under different conditions. We simulate and evaluate different spreading strategies in
an epidemic sense. As a result of this experiment, we choose the optimal spreading
strategy for each different condition and for the protocols for spreading Alerts (defined
in Section 4.7) and for spreading file metadata with different levels of severity (defined
in Section 4.8).

We decided to run one very large experiment with many parameters instead of a
large number of small experiments. In this way it was possible to validate how the
conditions relate to each other.

5.1 Goal

The goal of this experiment is to evaluate different spreading strategies based on
how fast they spread the message in networks and how much they flood networks with
messages. To define a spreading strategy, we first need to refer to the Background
Chapter 2.4.4, where we state that for the optimal spreading, we need to answer five
questions:

1. What algorithm of spreading to use?

In our case, only the Push algorithm makes sense. The others assume that
gossip is constantly updated in the system, and thus peers proactively ask other
peers for updates. That is not true in our environment - it might happen that
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no gossip is spread for a long time. In that case, the proactive update messages
in Pull and Push/Pull algorithms are unnecessary.

2. To how many nodes should infected nodes spread the message at once?

We will call this value a spreading factor. Finding the optimal spreading factor
is one of the goals of the experiment.

3. How long should the infected nodes wait until they ask/spread again?

We will call this value spreading period. Finding the optimal spreading period
is one of the goals of the experiment.

4. How do infected nodes choose recipients for spreading from a list of candidates?

Among choosing the recipients completely randomly, we can utilise the service
trust of candidates to design a better heuristic. We propose 3 options:

(a) Choose recipients with a uniform probability. Most of the Epidemic Pro-
tocols employ this option.

(b) Sort recipients based on their service trust and choose first the most trusted
ones. This technique assumes that peers with bigger service trust will more
likely follow the protocol and thus contribute more into a dissemination of
the message.

(c) Choose recipients with probability that exponentially grows with service
trust of each recipient. This technique was already described in Sub-
section 4.9.1 when we talked about choosing recipients of recipients in
Network Opinion Protocol. It works firstly by transforming service trust
values of all candidates using exponential function f(st) = ast−1

a−1 with a
constant value a = 10 (see the function plotted in Figure 4.9). After that,
Iris normalises the transformed values which represent the probabilities of
the candidates being chosen. This technique still favours the trusted peers
but allows also to choose less trusted peers for a bigger variety. The reason
is that the option (b) might result in flooding the trusted peers and not
spreading the message to less trusted parts of the network which may also
contain benign peers.

5. After how much time should the infected node move to a Removed state?

We will call this value spreading expiration. Optimally, the spreading should
stop after the gossip reaches the entire network. Nonetheless, our network
is decentralised and does not provide complete information about status of
all peers. For this reason, the spreading expiration should be set beforehand
to a duration that guarantees the full convergence. Note that the spreading
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expiration depends on the previous points because they essentially define the
speed of spreading.

As a consequence, we define a spreading strategy as a triplet of:

• spreading factor ∈ N

• spreading period ∈ N

• algorithm to choose recipients - we define three options:

1. choose recipients with uniform probability
2. choose first the peers with the biggest service trust
3. choose recipients with probability that exponentially grows with the service

trust of recipients

Finally, after we evaluate the spreading strategies, we should be able to choose
an optimal strategy for following types of messages:

• Alerts (viz Section 4.7): Alert messages should be spread rather quickly to
their recipients. The reason is that the event that has caused the alert is
usually relevant to the given moment and can help other peers to prepare for
an incident.

• File Metadata (viz Section 4.8): Each metadata message has either NORMAL
or CRITICAL severity. Each severity level should guarantee different spreading
properties. Metadata messages with CRITICAL severity should spread faster
to their recipients even for the cost of flooding the network with messages. On
the other hand, metadata messages with NORMAL severity do not have to
be spread as fast, and thus the peers should choose a spreading strategy that
minimises the magnitude of flooding the network with messages.

5.2 Assumptions

Our experiment makes some important assumptions. First, we make assumptions
about the Fides trust model. We assume that, in the long run, the average service
trust of all malicious peers is smaller than the average service trust of all benign
peers. This assumption essentially means that Fides behaves correctly.

Also, we think it is rational to assume that Fides does not provide to peers
estimates of service trust values that 100% match the ground-truth values. We assume
that an error of the estimation has a mean µ = 0 and a standard deviation σ = 0.25.

Other assumptions are about a network itself. We assume that the churn rate of
the network is practically zero. It means we assume that the network is static - no
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peers join or leave the network. Real networks probably never have churn rate zero,
but we think that our network will not be too dynamic. The reason is that once a
peer joins, it is in his best interest to stay connected for the benefits of a collective
defence.

Lastly, we assume that the underlying graph of our network is connected. How-
ever, the connectivity of the underlying graph is difficult to verify in the real world
because we designed our network as an almost unstructured (DHT k-buckets form a
small structure) and pure P2P network.

5.3 Methodology

In this section, we describe exactly how we plan to conduct and evaluate the experi-
ment. Firstly, we describe how we generate the networks. Then we elaborate on how
exactly our spreading mechanism works. Lastly, we define based on which values we
compare the spreading strategies.

Note that we might use terms graph and network interchangeably.

5.3.1 Generating Networks

When peers want to send a message to all other peers in the network, the total
number of peers in the network is unknown. That is why in our experiment, we
generate graphs with number of nodes uniformly sampled from a range between 2-
200. We have chosen 200 as an upper bound because we think that is a rational
guess for the number of peers in our network in its initial stage of adoption. After
that, for every peer, we sample edges representing random outbound connections. We
sample a degree for every node’s outbound connections from a Poisson distribution
with λ = 7. Furthermore, we randomly choose one node that acts as a peer that
starts spreading a gossip. This algorithm is described in Algorithm 2. Some example
networks generated for the experiment with just described algorithm can be seen in
Figure 5.1.

After generating a network, we have to select the service trust value for every
node. In the experiment, we consider 2 types of peers - malicious and benign. For
each graph, we test 4 scenarios which are defined by ratio of malicious peers in the
network. Possible ratios are 0%, 25%, 50% and 75%.

However, the behaviour of malicious and benign peers is the same. We do not
try to model any specific attack scenario. The maliciousness of malicious peers is
modelled by in average smaller service trust because we assume that Fides assigned
them smaller service trust based on their past malicious behaviour. As stated in
assumptions, we assume average service trust of malicious peers is smaller than av-
erage service trust of benign peers. We distinguish between malicious and benign
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(a) A network with 20 peers (b) A network with 40 peers

Figure 5.1: An example of two networks generated for the experiment on
optimal epidemic spreading strategies. Purple nodes represent a randomly
chosen starting nodes for spreading a message.

peers because we would like to see if specific spreading strategies favour only benign
or malicious peers. This is explained further in the subsection that describes our
evaluation technique.

In each scenario, we randomly choose the mean µm of service trust of all malicious
peers. Then, we sample ground-truth service trusts for all malicious peers from
normal distribution srn = N (µm, 0.15). The same process is repeated for benign
peers. We chose a standard deviation of 0.15 to allow situations where malicious
peers have higher service trust than some benign peers because we think it is rational
to expect such inaccuracy in our trust model.

Finally, we choose how every peer views its connected peers in terms of service
trust. We realise Fides will most probably estimate service trust of other peers with
some error from ground-truth value. That is why, for every scenario, we randomly
choose standard deviation σT M from the set {0, 0.05, 0.15, 0.25} that represents the
error produced by the underlying trust model. Then, for every edge (n1, n2), we
sample a service trust view of n1 about n2 from N (sr2, σT M ) and vice-versa. This
process is described in Algorithm 3.

5.3.2 Gossip Spreading

After describing how the networks were generated we only miss the algorithm of how
to simulate a spreading strategy in a network.
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Algorithm 2: Generate raw graphs
1 Function generate():
2 nodes← generate random number of nodes between 2-200
3 edges← empty set
4 for n1 ∈ nodes do
5 degree← sample from Poisson(7)
6 N2 ← degree number of random nodes from nodes− {n1}
7 for n2 ∈ N2 do
8 edges← add (n1, n2)
9 end

10 end
11 start← random node from nodes
12 return (nodes, edges, start)
13

A spreading period is defined using time. That is why we need to find a way of
simulating time. We do that by running our simulation in ticks. One tick represents
a time period in which peers can transfer one gossip to peers that they share an edge
with. However, after we find an optimal spreading strategy, we need to convert the
ticks back to time by measuring an average duration of one message transfer in the
real network.

In the simulation, we treat the ground-truth service trust of every peer as a
probability of successfully sending a message to its recipient. For example, if a peer p

has a ground-truth service trust of 0.1, it successfully shares only 1 out of 10 messages
even despite the fact that any other peer x might view the service trust of p as much
higher or lower.

Every peer keeps a list of candidates for sharing the gossip. In the beginning, the
list of candidates for every peer p1 contains peer p2 for every edge (p1, p2). Whenever
a peer receives the gossip from a sender s, it removes s from the list of candidates
because peer s already knows about the gossip. Also, whenever the peer successfully
shares the gossip with a recipient r, it removes recipient r from the list of candidates
because peer r already knows about the gossip.

Peers can only choose recipients of gossips from their list of candidates. If the
list is empty, the peer stops spreading the gossip. An algorithm of how to choose
recipients from the list of candidates is determined by currently tested spreading
strategy.

In our simulation, we simulate spreading of only one message in the network. All
peers begin in Susceptible state (see definitions of states in Background Section 2.4.4)
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Algorithm 3: Generating graphs with service trust
1 Function generate(k):
2 G← generate k graphs /* viz Algorithm 2 */

3 N ← empty list
4 for g ∈ G do

/* for every possible malicious ratio */

5 for mr ∈ {0%, 25%, 50%, 75%} do
/* set ground-truth service trust to malicious peers */

6 µm ← random from {0, 0.25, 0.5, 0.75}
7 assign service trust from N (µm, 0.15) to mr nodes in g
8

/* set ground-truth service trust to benign peers */

9 µb ← random from {0.25, 0.5, 0.75, 1} but higher than µm

10 assign service trust from N (µb, 0.15) to (1-mr) nodes in g
11

/* set trust models’ views of service trusts */

12 σT M ← random from {0, 0.05, 0.15, 0.25}
13 for n1 ∈ g.nodes do
14 for n2 ∈ n1.edges do
15 streal ← ground-truth service trust of n2
16 stview ← sample from N (streal, σT M )
17 set stview as a trust view of n1 about n2

18 end
19 end
20 N ← add g

21 end
22 end
23 return N
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except the starting peer that starts in Infected state. Peers move to Infected state
after they receive the gossip. From the Infected state, peers can move to Removed
state when their list of candidates is empty. The simulation ends when no peer is in
Susceptible state or the maximum number of allowed ticks has elapsed.

5.3.3 Evaluation Technique

We conduct simulations of spreading strategies in two different environments - non-
malicious and malicious. In both environments, we want to see which spreading
strategies were successful in all networks. We consider a strategy successful in a
network, if it manages to spread the gossip to all benign peers before the maximum
allowed ticks elapse. If no strategy in a given environment succeeds in all networks,
we focus on finding strategies that were successful in most networks.

Further, we essentially search for metrics that would show us how fast the most
successful strategies manage to spread the gossip and how much they flood the net-
works with messages. Also, in the malicious environment, we measure these metrics
both for the whole network and only for benign peers to see if some strategy produces
strictly better results only for benign peers or vice-versa.

The speed of spreading the message is determined by a tick when all peers have
already heard about the message. The intensity of flooding can be calculated by a
number of repeated messages in the network. We consider a message repeated if it
has been sent to a peer in either Infected or Removed state (in other words every
peer that has already received the gossip before).

However, absolute number of repeated messages is not sufficient because it also
greatly depends on the end tick of the simulation. Imagine two strategies s1 and s2.
A total number of repeated messages both for s1 and s2 is 10 and 20, respectively.
Strategy s1 seems outperforming s2. However, if strategy s1 ended during 5th tick,
it in an average produced 2 repeated messages per tick. If strategy s2 ended during
100th tick, it produced in average 0.2 repeated messages. Thus in a long run, s1
could flood the network significantly more compared to s2. That is why we measure
the average number of repeated messages per tick.

Furthermore, we record the ratio of repeated messages to all sent messages in the
networks to see if some strategies produce smaller ratio of repeated messages.

To summarise, for the most successful strategies, we measure:

• Repeated messages per tick - An average number of repeated messages per
one tick.

• Ratio of repeated messages - A ratio of repeated messages to all successfully
sent messages in the system.

• Average end tick - An average end tick of finished spreading.
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• Worst case end tick - A worst case end tick of finished spreading. This value
should help us decide a spreading expiration value for the final strategy because
it tells us how long it can eventually take until all peers receive the message.

5.4 Results

We present results of the experiment conducted with following values. We have
generated in total 210 testing spreading strategies as permutations of:

• spreading factor - {1, 2, 3, 5, 7, 9, ALL}. ALL stands for all possible recipients
in a candidate list.

• spreading period - {1, 2, 3, 5, 10, 20, 50, 100, 250, 500}. Each value represents
TICKS in a simulation.

• 3 algorithms for choosing recipients (described in Subsection 5.1)

All spreading strategies were simulated in totally 2,000 different networks which
results in totally 420,000 simulations. We have chosen maximum allowed ticks in
every simulation 10,000.

Note that for clarity, we show results with ticks converted back to time. We have
measured that one transfer of a message using Iris P2P network takes approximately
300ms. The measurement was conducted between one peer deployed in CTU network
while the other one was deployed in a server in Japan. Because of that, we have
decided to convert 1 tick to 500ms to take into account also low-bandwidth and low
CPU devices.

Firstly, we show results of spreading strategies simulating in networks without ma-
licious peers. After that, we show results from environment with simulated malicious
peers.

5.4.1 No Malicious Peers in Networks

In this scenario, all peers are considered benign. This still means that some mes-
sages can get lost because peers have different ground-truth value of service trust
that represents the probability of successfully sending a message. Out of totally 210
strategies, 200 strategies have successfully spread the in all networks before maximum
ticks elapsed. Across all successful strategies, an average ratio of repeated messages
is µ = 0.74 with standard deviation σ = 0.028 and maximum and minimum values
0.68, 0.78, respectively.

As we cannot clearly present results for all the 200 successful strategies, we filter
only the most interested ones. In Table 5.1, we can see the five best and the five worst
successful spreading strategies in terms of repeated messages per tick. For these 5 best
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strategies we can see a total total number of sent messages in Figure 5.2. In contrast,
in Table 5.2 we see the 5 best strategies in terms of speed of convergence. Value A
in choosing recipients field in spreading strategies stands for choosing recipients with
uniform probability. B represents choosing recipients based on their service trust
in descending order. C stands for choosing recipients with a probability that grows
exponentially with a view of recipient’s service trust.
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Figure 5.2: A total number of messages sent for 5 spreading strategies with
the lowest number of repeated messages per tick in an environment without
malicious peers. The figures’ legends depict values of spreading strategies. The first
one represents spreading factor. The second one represents spreading period. Lastly,
third value represents an algorithm for choosing recipients. The value A stands for
choosing recipients with uniform probability. B represents choosing recipients based
on their service trust in descending order. C stands for choosing recipients with a
probability that grows exponentially with a view of recipient’s service trust.
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spreading
strategy

repeated
messages
per tick

ratio of
repeated
messages

average
duration of
spreading

worst case
duration of
spreadingfactor period choosing

recipients

1 100 C 0.33 0.69 7.1min 45.86min
1 100 A 0.35 0.68 6.75min 29.21min
1 100 B 0.35 0.70 7.05min 45.08min
2 250 B 0.43 0.71 6.96min 41.73min
2 250 C 0.44 0.70 6.68min 56.32min

...
9 1 A 106.66 0.78 1.93s 6.5s
9 1 B 106.97 0.78 2.035s 11.0s

ALL 1 B 112.72 0.78 1.93s 10.5s
ALL 1 C 112.84 0.78 1.89s 9.0s
ALL 1 A 112.84 0.78 1.86s 9.5s

Table 5.1: The five best and the five worst spreading strategies in terms
of repeated messages per tick in an environment without malicious peers.
Value A in choosing recipients column stands for choosing recipients with uniform
probability. B represents choosing recipients based on their service trust in descend-
ing order. C stands for choosing recipients with a probability that grows exponen-
tially with a view of recipient’s service trust. Value ALL in spreading strategy factor
column stands for spreading to all available recipients in a candidate list.

5.4.2 Different Ratios of Malicious Peers in Networks

We have simulated spreading strategies in networks with 25%, 50% and 75% of mali-
cious peers. In all three environments, no spreading strategy successfully spread the
message in all networks. However, in all environments, the most successful spreading
strategies were successful in 99% of all networks. We present the best strategies from
these most successful strategies.

In Table 5.3, we can see an average value of ratio of repeated messages sent to
benign peers along with standard deviation, minimum and maximum values across
the most successful strategies.

In Table 5.4, we can see for each malicious ratio the best spreading strategies in
terms of repeated messages sent to benign peers per tick. For these strategies, Fig-
ure 5.3 shows a total number of messages sent to benign peers. In Table 5.5, we can
see for each malicious ratio the best spreading strategies in terms of average end tick
of spread to benign peers. Value A in choosing recipients field in spreading strategies
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stands for choosing recipients with uniform probability. B represents choosing recipi-
ents based on their service trust in descending order. C stands for choosing recipients
with a probability that grows exponentially with a view of recipient’s service trust.

5.5 Discussion

Regardless the number of malicious peers in the networks, spreading strategies with
the fastest convergence of spreading are the ones with the biggest possible spreading
factor and the smallest possible spreading period (as we can see in Tables 5.5 and 5.2
that show both malicious and non-malicious environments). Such result is logical
because in these strategies peers simply send the message to all possible candidates
as soon as possible. On the other hand, the strategies that produce the smallest
number of repeated messages per tick are the slowest strategies - the ones with the
smallest spreading factor and the biggest spreading period (as we can see in Tables 5.1
and 5.4). This makes also sense because bigger spreading period makes the simulation
to take more ticks and that is why a value of repeated messages per tick decreases.

A significant discovery of this experiment is that we can decrease the ratio of re-
peated messages sent in the overall system and more importantly sent to benign peers
by spreading the message slowly. We see that one of the the best strategies in terms
of repeated messages per tick in the non-malicious environment produced a ratio of
repeated messages 0.68 (viz Table 5.1). On the other hand, the best strategy in terms
of speed of convergence produced a ratio of repeated messages 0.78 (viz Table 5.2).
We observe a 10% difference. This fact holds strongly even in the environments with
malicious peers. By comparing the same values in Tables 5.4 and 5.5, we see that
in the environment with 25% of malicious peers, we can reduce the ratio of repeated
messages sent to benign peers from 0.76 to 0.66 by spreading slowly. In the environ-
ment with 50% of malicious peers, we can reduce the ratio of repeated messages sent
to benign peers from 0.74 to 0.63 and in the environment with 75% malicious peers
from 0.72 to 0.60. The improvement is always at least 10%. This means that no
matter the amount of malicious peers in the system, we can decrease a total number
of sent repeated messages to benign peers by at-least 10% with spreading the message
slowly. The reason is that by spreading the message slowly, we can avoid situations
when peers send messages to each other simultaneously without a knowledge that the
other peer already knows about the message.

If we look at the best spreading strategies in terms of repeated messages per tick
sent to benign peers (Tables 5.1 and 5.4), we see that the top 3 strategies differ only in
algorithms for choosing recipients (except for the environment with 75% of malicious
peers) - strategies (1,100,-). It means that in all environments except the one with
75% of malicious peers, algorithms for choosing recipients have no substantial effect
in moderating the level of flooding the networks with messages. The change occurs
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in the environment with 75% malicious peers where the best strategies in terms of
repeated messages per tick sent to benign peers choose recipients with a probability
that exponentially grows with candidates’ service trust. It means that if we assume
a highly adversarial network, we can actually benefit from using service trust as a
heuristic to choose message recipients.

Moreover, service trust value has no effect if we want to share the message as fast
as possible because all fastest strategies simply try to send the message to all available
peers in the list of candidates. That is why the algorithm for choosing recipients is
actually redundant.

In Table 5.3, we can see the distribution of ratio of repeated messages sent to
benign peers across all strategies in malicious environments. We can see, that mean
values decrease disproportionately with ratio of malicious peers in the network. A
wrong interpretation would be to say that the more malicious peers the better. That
is not correct. In Table 5.5, we can see that worst case duration of spreading grows
proportionally with maliciousness of the network. The reason is that the networks
become so untrustworthy that almost no message is successfully sent.

As we already stated, the fastest spreading strategies are the ones that send
the message to all possible peers as fast as possible and the algorithm that chooses
recipients is redundant. However, to decide the best strategies while optimising the
repeated messages per tick, we have plotted the best strategies from Tables 5.1 and 5.4
in Figures 5.2 and 5.3. The figures show the total number of messages sent to benign
peers over time - that is why the lower the y axis, the better. From the figures we
conclude that strategy (1, 100, A) has the best performance in environments from 0%
to 50% of malicious peers. In the environment with 75% of malicious peers, strategy
(1, 50, C) has the best performance. If we use again the conversion that 1 tick equals
500ms, we get the best strategy (1, 50s, A) for non-to-medium malicious networks
and (1, 25s, C) for highly adversarial networks. Let us remind that algorithm A
stands for choosing recipients with uniform probability, while C represents choosing
recipients with a probability that exponentially grows with candidates’ service trust.

Another outcome of the experiment is that we can estimate how long it can
eventually take to spread the message to all benign peers using certain strategies in a
given environment. For the estimation we can utilise the worst case duration column
in the result Tables. For example, in Tables 5.2 and 5.5 we can see that the fastest
spreading strategies may take from 10s in non-malicious environment up-to 40s
in the most malicious environment. On the other hand, if we focus on optimising
the number of sent repeated messages to benign peers per tick by spreading slowly,
we can see in Tables 5.1 and 5.4 that the best strategies may take from 45min in
non-malicious environment up-to 80min in the most malicious environment.

It is also important to discuss if the simulated networks behave the same way
as the real networks would behave. We have assumed that the simulated networks
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are static - edges in the under-laying graph do not change. In reality, peer-to-peer
networks can never guarantee such property. On the other hand, in dynamic networks,
the number of nodes and edges may change. To design the best spreading strategies
in such environment, we would have to be able to measure an up-time of peers to
choose recipients that have a bigger probability of not leaving the network after we
share the gossip with them.

Another important note is that in the experiment, we have not considered a
malicious actor that would try to exploit the epidemic protocol by disseminating
a large number of messages. Such action could result in flooding the network with
substantial number of messages and potentially leading to DDoS of the entire network.
A possible mitigation for such attack is to employ some form of rate-limiting per
individual peers. Every peer would keep track of number of sent messages by all its
neighbours (or number of bytes) and allow only a certain amount of them for each
neighbour per time unit. Researching this idea is out of scope of this thesis and left
as a future work.

Lastly, we could have designed values that define spreading strategies differently.
For example, spreading factor and spreading period could be defined as ranges from
which every peer randomly chooses values which define its spreading strategy. How-
ever, the number of possible combinations is large and that is why we have not chosen
this approach in our experiment. Another different option how to choose a value of
spreading factor is by for example setting spreading factor of every peer to a specific
percentage of its all connections.
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spreading
strategy

repeated
messages
per tick

ratio of
repeated
messages

average
duration of
spreading

worst case
duration of
spreadingfactor period choosing

recipients

ALL 1 A 112.84 0.78 1.86s 9.5s
ALL 1 C 112.84 0.78 1.89s 9.0s
ALL 1 B 112.72 0.78 1.93s 10.5s

9 1 A 106.66 0.78 1.93s 6.5s
9 1 C 106.25 0.78 1.98s 5.5s

(a) Best strategies based on average duration of spreading column

spreading
strategy

repeated
messages
per tick

ratio of
repeated
messages

average
duration of
spreading

worst care
duration of
spreadingfactor period choosing

recipients

9 1 C 106.25 0.78 1.98s 5.5s
9 1 A 106.66 0.78 1.93s 6.5s
7 1 A 95.50 0.77 2.085s 7.5s
5 1 C 79.90 0.77 2.445s 8.5s

ALL 1 C 112.84 0.78 1.89s 9.0s

(b) Best strategies based on worst case duration of spreading column

Table 5.2: The five best spreading strategies in terms of speed of spreading
the message to all peers in the network in an environment without mali-
cious peers. Value A in choosing recipients column stands for choosing recipients
with uniform probability. B represents choosing recipients based on their service
trust in descending order. C stands for choosing recipients with a probability that
grows exponentially with a view of recipient’s service trust. Value ALL in spreading
strategy factor column stands for spreading to all available recipients in a candidate
list.
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ratio of
malicious peers

ratio of repeated messages
sent to benign peers across

strategies

µ σ min max

25% 0.73 0.03 0.66 0.77
50% 0.70 0.03 0.63 0.76
75% 0.65 0.04 0.56 0.72

Table 5.3: Distribution of ratio of repeated messages sent to benign peers
across spreading strategies in malicious environments. The table covers only
strategies that were successful in 99% of networks (i.e. most successful strategies)

ratio of
malicious

peers

spreading
strategy

repeated
messages
per tick

ratio of
repeated
messages

average
duration of
spreading

worst case
duration of
spreading

factor period choosing
recipients

all
peers

benign
peers

all
peers

benign
peers

all
peers

benign
peers

all
peers

benign
peers

25%

1 100 A 0.30 0.21 0.68 0.66 7.92min 7.64min > 85min 49.23min
1 100 C 0.30 0.21 0.69 0.68 7.85min 7.21min > 85min 39.18min
1 100 B 0.33 0.25 0.70 0.70 7.47min 6.25min > 85min 50.85min
2 250 C 0.38 0.27 0.70 0.68 7.38min 6.62min > 85min 56.27min
2 250 A 0.41 0.29 0.69 0.67 7.71min 7.33min > 85min 77.1min

50%

1 100 A 0.23 0.10 0.68 0.63 11.09min 10.01min > 85min 77.57min
1 100 C 0.24 0.11 0.68 0.65 10.28min 7.97min > 85min 80.07min
1 100 B 0.26 0.13 0.69 0.68 9.5min 6.29min > 85min 56.75min
2 250 C 0.30 0.13 0.69 0.65 9.85min 7.41min > 85min 66.72min
2 250 A 0.30 0.13 0.69 0.64 11.07min 9.85min > 85min 70.88min

75%

1 50 C 0.36 0.08 0.68 0.60 9.0min 5.13min > 85min 59.62min
2 100 C 0.51 0.11 0.68 0.60 7.99min 4.11min > 85min 77.53min
3 250 C 0.46 0.11 0.69 0.62 11.37min 5.43min > 85min 77.1min
2 100 B 0.49 0.13 0.69 0.64 8.11min 3.34min > 85min 57.52min
1 20 A 0.85 0.17 0.68 0.56 5.1min 3.55min > 85min 79.55min

Table 5.4: The best spreading strategies in terms of repeated messages sent
to benign peers per tick in a malicious environment. All depicted strategies
were successful in spreading the message to all benign peers in the network in 99%
of cases of all networks. Value A in choosing recipients column stands for choosing
recipients with uniform probability. B represents choosing recipients based on their
service trust in descending order. C stands for choosing recipients with a probability
that grows exponentially with a view of recipient’s service trust.
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(b) ratio of malicious peers 50%
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Figure 5.3: A total number of messages sent to benign peers for the best
spreading strategies with the lowest number of repeated messages sent to
benign peers per tick in malicious environments. All depicted strategies were
successful in spreading the message to all benign peers in the network in 99% of cases
of all networks. The figures’ legends depict values of spreading strategies. The first
one represents spreading factor. The second one represents spreading period. Lastly,
third value represents an algorithm for choosing recipients. The value A stands for
choosing recipients with uniform probability. B represents choosing recipients based
on their service trust in descending order. C stands for choosing recipients with a
probability that grows exponentially with a view of recipient’s service trust.
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ratio of
malicious

peers

spreading
strategy

repeated
messages
per tick

ratio of
repeated
messages

average
duration of
spreading

worst case
duration of
spreading

factor period choosing
recipients

all
peers

benign
peers

all
peers

benign
peers

all
peers

benign
peers

all
peers

benign
peers

25%

9 1 B 102.74 79.02 0.77 0.77 2.025s 1.845s > 85min 8.0s
9 1 C 103.81 76.19 0.77 0.76 1.95s 1.86s > 85min 5.0s

ALL 2 B 97.77 75.16 0.77 0.77 2.105s 1.925s > 85min 7.5s
ALL 1 A 102.40 74.36 0.77 0.76 1.995s 1.95s > 85min 13.0s
ALL 1 C 96.58 70.77 0.77 0.76 2.075s 1.98s > 85min 6.5s

50%

9 1 B 79.74 41.06 0.76 0.76 2.635s 2.01s > 85min 9.5s
9 2 B 84.05 43.46 0.76 0.76 2.71s 2.02s > 85min 28.0s
9 2 C 84.29 40.27 0.75 0.74 2.495s 2.055s > 85min 33.0s

ALL 2 B 66.13 35.33 0.75 0.75 3.555s 2.195s > 85min 15.5s
ALL 2 B 72.22 37.11 0.76 0.76 2.8s 2.205s > 85min 23.0s

75%

ALL 1 B 65.47 17.48 0.74 0.72 5.555s 2.17s > 85min 44.0s
9 1 C 64.62 15.57 0.74 0.70 5.6s 2.27s > 85min 24.5s

ALL 2 B 61.19 16.22 0.74 0.72 6.205s 2.285s > 85min 36.0s
9 1 C 61.33 14.67 0.74 0.70 5.205s 2.285s > 85min 23.0s
7 1 B 55.97 14.72 0.74 0.72 5.825s 2.365s > 85min 26.0s

Table 5.5: The best spreading strategies in terms of average duration of
spreading to benign peers in malicious environments. All depicted strategies
were successful in spreading the message to all benign peers in the network in 99%
of cases of all networks. Value A in choosing recipients column stands for choosing
recipients with uniform probability. B represents choosing recipients based on their
service trust in descending order. C stands for choosing recipients with a probability
that grows exponentially with a view of recipient’s service trust. Value ALL in
spreading strategy factor column stands for spreading to all available recipients in a
candidate list.
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Implementation

A significant part of this thesis consists of an implementation (> 5000 lines of code)
of a working prototype of Iris which is intended to be integrated into Slips [19]. The
reference implementation is written in Go using the LibP2P project and can be found
online in Github [41].

In this chapter, firstly, we briefly describe generating organisations and running
an Iris instance. Secondly, we show diagrams that describe integration of Slips, Fides
and Iris. To access the full documentation of Iris, we refer the reader to the Github
repository [41] that offers a detailed technical description of the entire project.

6.1 User Guide

6.1.1 OrgSig Tool

We have developed a small tool called OrgSig. OrgSig offers two features (see help
message displayed in Listing 6.1) that help operating organisations:

• Generate a new organisation - Internally this means generate a new asym-
metric key-pair, save corresponding private key to a file and output ID (public-
key) of the new organisation.

• Sign a peer using an Organisation - Internally this means to sign a peer
ID using the organisation’s private-key.

Listing 6.1: Compilation and help output of Orgsig tool
> make o r g s i g
go bu i ld cmd/ o r g s i g . go
> . / o r g s i g −−help
Running v0 . 0 . 1 o r g s i g
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Usage o f . / o r g s i g :
−load−key−path s t r i n g

Path to a f i l e with o r g a n i s a t i o n p r i va t e key . I f not
set , new pr ivate −key i s generated .

−peer−id s t r i n g
Publ ic ID o f a peer to s i gn . Flag −−sign−peer must be

s e t f o r t h i s opt ion to be v a l i d .
−save−key−path s t r i n g

I f set , va lue w i l l be used as a path to save
o r g a n i s a t i o n pr ivate −key .

−sign−peer
Flag to s i gn peer ID . Flag peer−id can be used to s e t

peerID , otherwise , c l i w i l l ask . The s i gna tu r e
w i l l be pr in ted to stdout .

6.1.2 Running an Iris Instance

To run a peer, a user needs a running Redis instance that serves as a communi-
cation channel between Redis and Fides (see the communication diagram between
components in Figure 4.1). Also, to compile the code, Go (≥ 1.17) is needed.

Every peer requires a configuration file given in yaml format. See a small example
with most important parameters depicted in Listing 1. The example configuration
specifies to generate new peer ID and start listening for incoming connections at an
address 127.0.0.1:9000. It also specifies a Redis instance running at localhost with
default port and Redis communication channel to exchange messages with Fides.
Further, the configuration defines one trusted organisation. Lastly, configuration
lists an address of one running peer and disables default bootstrapping nodes. To
see a list of all configuration options, we refer reader to the project repository [41].
With the mentioned configuration saved in the config.yaml file, a peer can be simply
started as:

> go run cmd/peercli.go --conf config.yaml

6.2 Flow of Events Between Slips, Fides and Iris P2P
System

As we have described in Section 4.3 of the Design Chapter, there are in total three
components: Slips, Fides and Iris. Slips is a brain of the system and uses Iris
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1 Identity:
2 GenerateNewKey: true
3

4 Server:
5 port: 9000
6 Host: 127.0.0.1
7

8 Redis:
9 Host: 127.0.0.1

10 Tl2NlChannel: gp2p_tl2nl
11

12 Organisations:
13 Trustworthy:
14 - "12D3KooWErR8ZLhjAWYw4oj7gWLRPp99aupNU5HbFfVN9U12NBFZ"
15

16 PeerDiscovery:
17 ListOfMultiAddresses:
18 - "/ip4/127.0.0.1/udp/9001/quic 12D3KooWNxiCsZFyUFpLFNKDLEQDUK36my
19 ifqufnnveK1jycMoJ8"
20 DisableBootstrappingNodes: true

Listing 1: An example of a YAML configuration file for a peer. The config-
uration starts a peer that generates a new new random ID and listens for incoming
connections at an address 127.0.0.1:9000. The newly created peer trusts peers from
a single organisation and connects directly to a peer at address 127.0.0.1:9001. Also,
the peer tries to connect to a Redis instance running on 127.0.0.1 with default port
and channel gp2p_tl2nl to exchange messages with Fides.

as a tool to talk with other Slips instances. Fides is a trust model implemented
in Python and integrated into Slips as a built-in module. On the other hand, Iris
is implemented as a separate code-base in Go. A reason for not implementing Iris
also in Python is that Go offers much better support for networking (for example
built-in goroutines for asynchronous communication) and that LibP2P offers most
specifications written in Go. That is why only Fides exchanges messages directly with
Slips and Iris communicates only with Fides through a Redis channel (a diagram of
the communication flow can be seen in Figure 4.1).

In this section, we show in more details the flow of events between these compo-
nents for all implemented protocols.

67



CHAPTER 6. IMPLEMENTATION

6.2.1 File Sharing Protocol

The theory behind File Sharing Protocol is defined in Section 4.8. Figure 6.2 contains
diagrams that depict file sharing procedure. Firstly, Figure 6.2a depicts events after
Slips decides to share a file with peers in the network. Secondly, Figure 6.2b shows
events after a peer receives a metadata file from the network. Lastly, Figure 6.1
depicts how downloading of a file from the network works.

Figure 6.1: Flow of events between components in File Sharing Protocol after Slips
decides to download a shared file

6.2.2 Alert Protocol

The theory behind Alert Protocol is defined in Section 4.7. In Figure 6.3, we can see
diagrams that show how the alerts propagate through the components in the system.
Firstly, Figure 6.3a shows events after Slips decides to alert the network. Secondly,
Figure 6.3b depicts Iris receiving an alert form the network.

6.2.3 Network Opinion Protocol

The theory behind Network Opinion Protocol is defined in Section 4.9. In Figure 6.4
we can see diagrams that show how Slips ask other Slips instances for an opinion on
a specific suspicious IoC. Firstly, Figure 6.4a shows communication events between
components after Slips decides to ask other peers for an opinion. Secondly, Figure 6.4b
depicts Iris receiving an opinion request from the network.
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(a) Slips sharing a file

(b) Iris receiving a metadata message from the network

Figure 6.2: Flow of events between components in File Sharing Protocol after Slips
decides to share a file
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(a) Slips alerting the network

(b) Iris receiving an alert from the network

Figure 6.3: Flow of events between components in Alert Protocol
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(a) Slips asking the network for an opinion

(b) Iris receiving an opinion request from the network

Figure 6.4: Flow of events between components in Network Opinion Protocol
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Chapter 7

Conclusion

This thesis presented Iris, a global P2P system for collaborative security defence on
the Internet with special emphasis on security and privacy. Iris allows peers to share
threat intelligence data, alert other peers in the network about detected Indicator of
Compromise (IoC), and ask other peers their opinion on a specific IoC. To address the
possible confidentiality issues of sharing threat intelligence data with untrusted peers,
Iris presents a novel concept called organisations that represent trusted groups in the
P2P system. Organisations allow peers to address messages only to a specific subset
of peers. Further, we have evaluated different spreading strategies based on epidemic
protocols to optimise how to spread gossip messages. Last, we have implemented a
working prototype of Iris in Go using the LibP2P project and integrated Iris into
Slips [19] as a collaborative module.

Organisations are cryptographically-verified groups of peers that help establish
connections between trusted peers. Organisations help peers form trusted connec-
tions in an otherwise completely adversarial environment which is a P2P network.
Peers can be members of an arbitrary number of organisations or create their own
organisations. Iris uses Distributed Hash Table (DHT) to store members of all organi-
sations publicly. Our unique design of organisations allows owners of the organisations
to have complete control over the organisations’ data stored in the DHT. As a result,
we mitigate most of the attack vectors that target specific values stored in the DHT.

As far as we know, Iris is the first global security P2P network for sharing threat
intelligence that considers the confidentiality of sharing data and the security of the
overall system. We face difficulties evaluating our proposed design because, to our
knowledge, no similar project or theoretical proposal exists. To some extent, the
community could use BitTorrent [9] or IPFS [4] to share threat intelligence in a
decentralised manner but these candidates do not offer any built-in form of access
control to share confidential data nor are designed to provide information on time.
Thus, clients would need to require some additional form of authorisation or provide
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the files encrypted, which leads to a problem of distributing keys for decryption. In
addition, these non-security P2P networks do not automatically disseminate infor-
mation about new files to peers in the network. Also, our solution provides more
features in terms of collaborative defence than just File Sharing Protocol such as
Alerting and Network Opinion Protocol.

The Alert Protocol provides dissemination of information as fast as possible within
the P2P network. The idea is that a peer confidently detects a malicious IoC and
wants to warn other peers. Iris also allows addressing the alerts just to members
of specific organisations to avoid side-channel attacks of attackers eavesdropping on
their victims. Also, the content of alerts might be confidential for privacy reasons.
On the other hand, the Network Opinion Protocol allows peers to ask other peers
about their opinion on a potential IoC. Using the Network Opinion Protocol, peers
can ask for threat intelligence about resources that have not yet been labelled as
malicious. Using this approach, Iris accelerates the detection of malicious entities
because it allows using collective knowledge.

The thesis presented an experiment evaluating different spreading strategies in
epidemic protocols to optimise the dissemination of critical and non-critical messages
in the Iris P2P system. Results of the experiment show that we can decrease the
number of sent repeated messages in the system by at least 10% if we decide to
spread the message slowly. This fact holds strongly even in hostile environments. Iris
utilises this fact when spreading non-critical metadata messages in our File Sharing
Protocol. Also, the experiment shows that Iris can spread critical messages such as
alert messages in the P2P network in less than a minute.

A significant part of the thesis is a working implementation of Iris with more than
5000 lines of code. The implementation is written in the Go programming language
using the LibP2P project [30]. Besides the implementation itself, the thesis also
provided complete integration of Iris into Slips [19] as collaborative module. The
entire code-base is open-source and offered to the community [41].

Iris guarantees the confidentiality and integrity of shared data. All communication
is digitally signed and end-to-end encrypted using keys that at the same time form
peers’ identities. In this way, an attacker cannot impersonate other peers without
knowledge of the private key of the impersonating peer. If the attacker tries that,
the digital signatures would not match the impersonating peer’s ID. Similarly, the
attacker cannot launch a Man-in-the-Middle (MitM) attack if the involved peers
already know their respective IDs before the MitM attack happens. Moreover, the
confidentiality and integrity properties hold even for the content shared within our
File Sharing Protocol.

Even though we have paid special attention to security, we have not researched and
mitigated all attack vectors that could potentially lead to disruption of the system’s
availability. Such attacks include a churn attack, exploiting our usage of Epidemic
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Protocols to flood the network with messages or attacking the use of DHT in our File
Sharing Protocol. For example, as was shown in [37], the generation of enormous
rainbow tables of peer identifiers is relatively simple. Such databases can be later
used to query responsible peers for given keys stored in the DHT. By launching
this attack, an attacker controls the stored value in the DHT under the given key.
Unfortunately, this attack vector comes inherently with the characteristic nature of
the DHT, and even IPFS [4] is nowadays vulnerable to this kind of attack. Despite
the fact that the mitigation of this attack is unknown, we propose mitigation ideas
for further research in the Future Work Section 7.1.

We hope Iris can fill the void in the space of security and privacy-based solutions
for decentralised sharing of threat intelligence that automatically connect global end-
points to improve the collaborative security. Since Iris is the first proposed solution
of its kind, many directions for further research exist. In the last section of the thesis,
we describe our ideas for future work.

7.1 Future Work

The field of peer-to-peer networks is vast. In the following paragraphs, we describe
some ideas for further practical development of Iris and theoretical research in secure
sharing of threat intelligence for fast and collaborative defence.

Our File Sharing Protocol could greatly benefit in terms of security and per-
formance if the protocol chunks shared files and advertise each chunk individually
through the DHT. An advantage of this approach is that peers downloading a file
can simultaneously download different chunks from different peers; thus, it improves
performance. Additionally, it allows downloading peers to perform incremental veri-
fication. Incremental verification means that peers can verify the correctness of each
chunk, and because of that, they can detect malicious peers providing an incorrect
file even before they download the entire content of the file. A question that arises is
how to store and share a list of all chunks of one file to peers that want to download
the file. IPFS does that using Merkle Trees [3]. Every peer that wants to download a
given file receives a Merkle Tree of the given file. The Merkle Tree can be used to lo-
cate and verify each chunk and to construct the final file from individual downloaded
chunks.

One problem Iris shares with IPFS is that responsible peers in the DHTs do not
verify the claims of file providers that they truly own the given file. IPFS does not
implement this mechanism for performance reasons because it means that responsible
peers would have to download the entire file and verify its correctness. On the other
hand, Iris cannot implement this mechanism because responsible peers might not
have the authorisation to download the given file. To solve this problem, we propose
researching the usage of zero-knowledge proofs. Zero-knowledge proofs are methods
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to prove a correctness of a statement without revealing the statement. The idea is
that responsible peers could require zero-knowledge proof from potential providers
to verify that they truly own the file without actually downloading the entire file.
Without the proof, responsible peers would not store the providers in the DHT. If
this idea succeeds, we could completely mitigate the sybil attack in both Iris and
IPFS.

Iris could increase the cost of sybil peers by making it harder to join the network.
This could be achieved by enforcing a computational puzzle before joining the net-
work [2]. Peers would have to spend computational resources to compute a puzzle
before joining the network. The puzzle can be linked to a peer ID, and that is why the
attacker would have to compute a puzzle for every sybil peer. However, this approach
dramatically disadvantages benign peers without too much computational resources,
such as for example small IoT devices. A solution could be to enforce the puzzle only
for peers that claim to be providers of files in the DHT to at least mitigate the risk
of sybil providers in our File Sharing Protocol.

So far, Iris does not support the expiration of peers’ memberships in organisations.
When an organisation issues a signature for a peer, the signature is valid forever. An
idea for future work is to design an expiration mechanism after which peers lose
membership and have to ask for a new signature. Similarly as certificates issued by
certificate authorities expire.

Iris disseminates information in the network using the epidemic protocols. We
think an attacker could exploit this fact and craft plenty of fake messages to flood
the network, which could potentially lead to a DDoS attack and disruption of the
network. At the moment, Iris does not implement any mitigation technique against
this attack vector. One solution could be to research adaptive gossip protocols [6]
and rate-limit the number of sent messages (or bytes) per peers.

A practical limitation of the current version of Iris is that peers that join the
network later have no way of finding information about recently shared alerts or files.
Once the dissemination of information ends, newcomers have no way to learn about
these pieces of information. To solve this issue, peers could keep a small database of
past messages and provide recent events to newcomers that issue a request for this
information.

Lastly, our reference implementation only supports joining the network through
bootstrapping nodes or configuring online peers manually. We think that variability
in methods of joining the network improves the overall security because an attacker
needs to attack all the methods to launch a Bootstrapping Attack. For this reason,
we think that Iris could benefit from also employing DNS records to find initial peers.
The list of peers returned by each DNS record can be dynamically updated; thus,
this approach also contributes to the decentralised nature of the entire P2P network.
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