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Abstract
This thesis explores interpretability meth-
ods and the possibilities of their appli-
cation to natural language processing
(NLP) models used within a fact-checking
pipeline. More specifically, it focuses
on the application of two local, model-
agnostic interpretability methods LIME
and SHAP to natural language inference
(NLI) models used to infer a veracity label
from a claim and a context.

In this work, we modify and apply SHAP
and LIME interpretability methods to the
NLI models and develop a text-augmented
version for LIME. Later, we test various
parameter settings to find the optimal
parametrization for each method which
we then compare in a binary forced-choice
experiment with human-grounded evalua-
tion. For both datasets used within the
project, SHAP is evaluated to produce
more helpful explanations.

Keywords: NLP, Interpretability,
Explainability, LIME, SHAP

Supervisor: Ing. Jan Drchal, Ph.D.

Abstrakt
Tato práce zkoumá interpretační metody
a jejich aplikovatelnost na modely pro
zpracovávání přirozeného jazyka (NLP)
použitých v rámci úlohy ověřování faktů.
Konkrétněji se zaměřuje na aplikaci dvou
lokálních, modelově agnostických interpre-
tačních metod LIME a SHAP na modely
pro inferenci přirozeného jazyka (NLI). Cí-
lem těchto NLI modelů je odvození prav-
divostní hodnoty výroku z kontextu.

Metody LIME a SHAP upravujeme a poté
aplikujeme na NLI modely. Rovněž navr-
hujeme a implementujeme vlastní verzi
LIME, rozšířenou o generování nových
vstupů na základě podobnosti textu. Ná-
sledně tyto interpretační metody testu-
jeme s různým nastavením parametrů,
abychom našli nejvhodnější parametri-
zaci pro každou z nich. Poté metody s
nejvhodnější parametrizací porovnáváme
proti sobě v binárním experimentu s nuce-
nou volbou, pro něž využíváme lidské hod-
nocení. Pro obě, v práci použité, datové
sady SHAP vytváří užitečnější vysvětlení.

Klíčová slova: NLP,
Interpretovatelnost, LIME, SHAP

Překlad názvu: Vysvětlování výstupu
modelů zpracování přirozeného jazyka
pro úlohu ověřování faktů
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Chapter 1

Introduction

The decisions we make are based on the information we have and it is therefore
not at all surprising that many political and industrial subjects have long
lived by the credo "If you can control information, you can control people."1

Fake news is not a new phenomenon, it has been used as a form of political
and industrial propaganda for centuries (OW19). However, with the rise of
internet and social media its speed of spreading and effect multiplied (Bur17),
(BB19).

As a result, we live in the age of misinformation, which floods our public
space.

A lifebuoy comes in the form of high-quality journalism and well-resourced
articles which bring verified information to the public discourse. But the
verification process, essential for quality journalism, is time-consuming and
mentally demanding.

Therefore, we build on recent experiments of automated fact-checking (TVCM18)
and bring a tool which, using state-of-the-art natural language processing
(NLP) models, helps journalists verify information.

But even the best models are sometimes wrong. Therefore our tool is not
meant to be an omniscient black box. Instead, it should guide the user
through the quanta of text to the vital information.

And that is where the contribution of this thesis lies. We will research different
explainability methods, explore how they could be applied to interpret NLP
models and test which of them are most suitable to to ease the work of human
fact-checkers.

1Quote by American novelist Tom Clancy (Sch95)

1



1. Introduction .....................................
1.1 Fact-checking

Fact-checking refers to the assessment of the truthfulness of a claim (VR14). It
has traditionally been linked with journalism. As argued in the Introduction,
it is now more needed than ever.

There is a range of projects, which focus on the fact-checking activity, e.g.
PolitiFact2, FactCheck.org3 or The Washington Post Fact Checker4. In the
Czech Republic, there is a successful project Demagog.cz5.

However, all these projects perform manual fact-checking - a process in which
a person (usually a journalist) manually verifies claims. And manual fact-
checking is a time-consuming and tedious process. Moreover, it is expensive
and hard to scale because it cannot keep up with the pace, at which news is
created and spread online.

Therefore, in recent years, automated fact-checking has been gaining an
increased amount of attention(ZAZ21). Full or partial automation of the
fact-checking process would be very beneficial for the journalism community.
It would also broaden the horizons of fact-checking use e.g. to real-time
verification during political debates.

There are multiple automated fact-checking projects, which provide a different
definition of the task and present various pipeline designs (ZAZ21). This
work is a part of a Czech fact-checking project, which was based on pipeline
from (TVCM18) and presented in (DUR+22). We are going to use datasets
and explain models described in (DUR+22) and therefore we are going to
consider the fact-checking pipeline used in the project.

1.1.1 Fact-checking pipeline

The fact-checking pipeline (also verification pipeline) in (DUR+22), consists
of two stages - document retrieval (DR) and natural language inference (NLI)
and is visualized in fig. 1.1

In the beginning, we have a claim – a statement to verify, and a ground-truth
corpus - database of verified texts, which we accept as the ground truth.

2https://www.politifact.com
3https://www.factcheck.org
4https://www.washingtonpost.com/news/fact-checker
5https://demagog.cz
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.................................... 1.1. Fact-checking

Label

Stage 2

Stage 1
Ground-truth

corpus

Document retrieval 
Claim

Most relevant
documents

Evidence

Sentence selection
 

Natural language inference

SUPPORTS REFUTES NOT ENOUGH INFO

Figure 1.1: Fact-checking
pipeline

. In the first stage, the DR compo-
nent selects documents from the
ground-truth corpus which are most
relevant (semantically closest) to
the claim. From these documents,
the most relevant sentences are se-
lected and formed as evidence. In
(TVCM18), sentence selection is de-
fined as a separate stage.
DR is typically implemented using
traditional approach of numerical
methods (e.g. TF-IDF weighting
scheme), or neural approach, which
currently means using large-scale
Transformer architecture.. In the second stage, the NLI model
matches the claim against the
evidence and determines whether
the claim is supported, refuted or
whether there is not enough evi-
dence to decide.
NLI is also implemented using
Transformer architecture and is fur-
ther described in section 3.3.

1.1.2 Models

Throughout this work, we shall be focusing mainly on interpretability methods
and so our approach to the explained models will be pragmatic. Therefore,
unless necessary for the explainability method, we will not be describing the
architecture in detail, parameter settings, or inner workings of the model.

However, as can already be seen in the fact-checking pipeline description, the
fact-checking project heavily relies on Transformer architecture. And since
it is such a crucial component of the project and every model which we are
going to interpret is based on it, we are now going to devote a short section
to the Transformers as well as to the training process used to train all the
models that we are going to encounter.

3



1. Introduction .....................................
Transformer architecture

The Transformer architecture was introduced in (VSP+17) and in the 5 years
since its release, it has dominated nearly every Natural Language Processing
task.

It is a neural network architecture originally invented for sequence-to-sequence
tasks which, due to better parallelization, outperformed at that time popular
recurrent neural networks(RNN). Because unlike RNNs, Transformers do
not need to process the data in order. Instead of recurrence, they use solely
Attention, which provides arbitrary context for a token at any position in the
input sequence.

Attention. Attention is the key mechanism of Transformers. Its main task
is to handle long-term dependencies and provide context. For example in
the sentence "The Law will never be perfect, but its application should be",
attention links word "its" with word "Law". (example from Appendix of
(VSP+17))

Architecture. Transformers use Encoder-Decoder architecture (previously
known from RNNs), containing an encoder unit and a decoder unit. Each
unit consists of N repeatedly stacked identical blocks - encoder block and
decoder block. The whole architecture can be seen in fig. 1.2.

BERT. Transformers enabled the creation of many popular models. One
such famous example is BERT - Bidirectional Encoder Representations from
Transformers (DCLT18) which is a stack of Transformer encoders pre-trained
on a large corpus of unlabelled text (including entire Wikipedia).

BERT and countless number of its variations are accessible through a library
called Hugging Face Transformers6 (WDS+20) as pre-trained models, which
can be retrained at relatively small costs to yield admirable results for various
NLP tasks. This retraining process is called transfer learning.

Transfer learning

Transfer learning means applying the knowledge of an already trained model
to a different but related task. In practice, we distinguish two training stages
- pre-training and fine-tuning.

Pre-training. Pre-training is a computationally expensive process during
which the network is trained for a generic task on large corpora. (E.g. training
BERT from scratch.)

6https://huggingface.co/docs/transformers/index
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.................................... 1.2. Thesis outline

Figure 1.2: Transformer model architecture. Figure from (VSP+17)

Fine-tuning. Fine-tuning means taking the pre-trained model with its learnt
weights and retraining it for the specific task which we want to use it for with
a new, usually smaller dataset. (E.g. retraining BERT to fit Czech-English
translation.)

If the task’s output varies from what the original model was trained to return
or if the new dataset is very small, instead of retraining the whole model,
we can retrain only its final layers. We add or replace the final layers of the
original model and retrain those.

1.2 Thesis outline

.Chapter 1 states the motivation for this work and provides a broader
context in terms of the project, which this work is a part of.. In chapter 2 we define the concept of interpretability and introduce
different interpretability techniques and interpretability assessment meth-
ods.

5



1. Introduction .....................................
. In chapter 3 we define the problem, that we trying to solve. First, we

analyze, where best to apply the interpretability methods, then introduce
the chosen task and describe the models and datasets that we work with..Chapter 4 presents the solution to the problem - the interpretability
methods, their parametrization, implementation details and results. In
this chapter, we pre-select the methods and parameter settings which
produce the most helpful explanations.. In chapter 5 we compare and statistically evaluate the best methods
and parameter settings from chapter 4.. Finally, chapter 6 concludes the thesis and provides a brief summary of
the work done and the results achieved.

6



Chapter 2

Background

In this chapter, we shall introduce the concept of interpretability, its taxonomy,
as well as selected applicable methods. Then, we will move to an overview of
current evaluation measures. This chapter is designed, such that it provides
all the theoretical background that will be used in the search for a suitable
solution.

2.1 Terminology

In literature, the terms explainability and interpretability are frequently either
used interchangeably (CPC19) or the authors only use one of the terms
and disregards the other (DVK17). However, there are also sources which
recognize or even describe the differences and because it is the main subject
of this work, we will differentiate between them also.

Before we clearly define the vocabulary used in this work, let us remark,
that there is not an agreement within the machine learning community
on the terminology (MV20) and there are several different definitions of
interpretability and/or explainability - e.g. (Lip16), (DVK17) or (Rud19) are
worth mentioning. In this work, we will use terminology from (Lip16), whose
description of nuances between the terms is well suited for this thesis. Let us
now clarify the vocabulary used in this work.

The term interpretability (in some papers synonymous with understandability
and comprehensibility (LCGH13)) refers to the degree to which cause and
effect can be observed within the system. In other words, it is describing
what effect changes in parameters or input will have on a system.

On the other hand, the term explainability means the extent to which the
internal mechanics of a machine or deep learning system can be explained
in human terms. To rephrase it, it tries to explain the inner workings of the
model such that it can be understood by a non-expert.

7



2. Background .....................................
One way of looking at it would be, that interpretability is enabled through
explainability.

The goal of this work is to explain the model output with respect to the input.
We are not trying to explain the inner mechanics of the model but rather
to show which exact values in the input resulted in the particular model
outcome. Therefore in this project, we are interested in interpretability.

2.2 Classification of interpretability

Interpretability can be described and categorized based on many different
criteria - described for instance in (DVK17) or (CPC19). In different sources,
there are different categories, we selected the most frequently used ones,
which are also used later in this chapter to describe individual explanation
techniques.. Intrinsic vs post-hoc Intrinsic, or sometimes also inherent, inter-

pretability is achieved through a lack of complexity in the model struc-
ture. Intrinsic interpretability can be attained before model training
because the models are self-explanatory. For instance, sparse linear
models or decision trees belong to this category. Throughout the work,
we will refer to these self-explanatory, inherently intuitive models as
interpretable. Post-hoc interpretability, on the other hand, refers to
using an explainability method (a tool) after the model training, which
provides us with an explanation of the model or interpretation of the
prediction..Model-specific vs model-agnostic Model-specific interpretability
methods can only be applied to a specified set of model classes because
such a method typically works by examining model internal structures
or parameters. Intrinsic interpretability methods are by definition al-
ways model-specific. Model-agnostic methods allow interpretation of
any model, independently of implementation or structure because they
approach the model as a black box. They do not have access to model
internals or parameters and derive explanations by alternating input and
analysing input-output pairs. They are by definition always post-hoc.. Local vs global Another way, how we can classify interpretability is
by its scope. Global methods try to explain the overall behaviour of the
model - over the whole population, therefore they provide an assessment
of the quality of the model. In practice, however, a global explanation
is difficult to obtain. The model will be very complex and it is not
within the mental capacity of an average human to comprehend so many
aspects and dimensions. Local explanations interpret one individual
prediction. It can therefore provide a better explanation of feature
contribution in less significant groups, which could be left unnoticed
by global methods. Since holistic global interpretability is so hard to

8



.............................2.3. Intuitively interpretable models

achieve, it is worth mentioning that for some model structures (e.g. naive
Bayes) it is possible to achieve global interpretability on a modular level
- only for a certain part of a model. Or we can apply a global method
only for a subgroup of predictions.

2.3 Intuitively interpretable models

First, we shall have a brief look at intrinsic interpretability, because many
complex interpretability techniques rely on an intuitive understanding of
simple models.

As Lundberg and Lee write in (LL17) "the best explanation of a simple model
is the model itself". In this section, we will not introduce any interpretability
methods. Instead, we shall characterize some of the models which are simple
enough that they are easy to understand without further processing.

We also need to keep in mind that the goal of interpretability is to provide
understanding of the relationship between the input and the prediction.
Therefore, we must also take into consideration the expertise and limit of the
target audience. For instance, for a machine learning professional, gradient
vector might be understandable, while laymen would find a short list of
weighted features more enlightening.

For our use case, the explanation should help journalists find key parts of
a text. Hence we are striving for an explanation model, which will assign
weight to a text unit. This can be further presented, for example, in a form
of highlighted text.

Therefore, even though there are of course many more interpretable models,
we shall limit the overview to the several most significant ones. Moreover, since
the following models are generally known machine learning models, we shall
not describe them in detail, we will only briefly outline their explainability
utility.

Linear regression

Linear regression is possibly the most famous simple model. Many complex
post-hoc methods are trying to emulate it because thanks to linearity, the
model is easy to interpret. The prediction is a weighted sum of the feature
inputs and therefore we can understand the model outcome just by reviewing
model weights and inputs.

If we then want to measure the importance of a feature, we can do so by
calculating its t-statistics as the wight βi divided by the weight’s standard

9
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error (SE(βi)) which represents variance.

tβi
= βi

SE(βi)
(2.1)

What is however crucial for the interpretability of a linear regression model
is sparsity. Because while it is easy to explain (and visualize) a prediction
made with two features, it is harder to understand the model as the number
of features is growing. Probably no one can imagine regression with hundreds
of dimensions. Therefore, for models with many features, we often want
to introduce sparsity by applying some feature selection algorithm, such as
forward selection, backward selection or Lasso (least absolute shrinkage and
selection operator).1

Logistic regression

Logistic regression is used for binary classification and we can view it as an
extension of linear regression for classification. Since the prediction of linear
regression is not a probability, but a linear interpolation, it can be hard to
find a substantial trash-hold between classes. Therefore we often use logistic
regression, which maps linear prediction into interval [0, 1].

The interpretability of the logistic regression prediction is not as straight-
forward as with linear regression, since the weights no longer influence the
outcome linearly.

We can however calculate odds ratio for each feature, which tells by which
factor the odds of the result change with the feature value increasing by 1
and all other feature values remaining the same.

Decision tree

Decision trees are well suited for situations when features are not in a linear
relationship with the predicted value and when they interact with each other.
Tree models repeatedly split the data according to cutoff values in selected
features and thereby distribute the data into different subsets. The prediction
for each node is then achieved by averaging the value of the predicted feature
over training data belonging to the subset of the node.

Decision tree predictions are understandable because we can track the decision
through the tree and in every node explain the change in a predicted value.

1An overview of feature selection algorithms used in this work can found in (Wan18).
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2.4 Interpretability methods

Intuitively interpretability has many perks. However, models, which are
currently best at automated fact-checking, are large and complex neural
language models (TVC+18). And not even a machine learning expert can
comprehend a network with multiple layers and thousands of nodes and
weights. In order to explain such a model’s prediction, we need to use a
post-hoc explainability method, some of which, we shall introduce in this
section.

Because the goal of this work is to help users understand individual predictions
rather than to provide insight into the model, we will limit our overview to
local interpretability methods, which are more suitable for this task.

2.4.1 Local Interpretable Model-agnostic Explanations
(LIME)

As the characteristics in the name suggest, Local Interpretable Model-agnostic
Explanations (LIME) is applied for a single prediction of any machine learning
model. It is based on the following technique: For a single prediction of any
black-box model, we locally approximate the original, usually complex model
by a different, simpler and usually self-explanatory model, such that it fits
the original model’s outcome in the neighbourhood of the target prediction.
The simple, intuitively-interpretable model is called the local surrogate model
and it can be used to intuitively interpret the original model’s prediction.

LIME, introduced by Ribeiro, Singh and Guestrin (RSG16) is a proposition
of a specific implementation of the local surrogate model.

As was already stated, LIME’s main objective is to explain why the model
made a certain prediction for a particular input instance. The main principle
is, that it generates random samples in the neighbourhood of the prediction’s
input by perturbing the input. Then, it uses the original black box model
to predict output for each of the newly generated input samples. Finally,
LIME trains an interpretable model on the newly created dataset of generated
samples, annotated by the original model, while each sample is weighted by
the proximity of the sample to the target instance, we are aiming to explain.
The learnt model is then a good approximation of the black-box model locally,
although it does not have to be a satisfactory approximation globally, e.g.
features which are critical locally might be negligible in the global scope and
the other way around. This criterion is called local fidelity.

The learnt interpretable model can be any intuitively interpretable model
(section 2.3). However, in practice, both, the current implementation of LIME
and later chapters of the (RSG16) paper, only offer/consider linear regression
models.

11
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Formally, the explanation ξ is obtained as:

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (2.2)

G is a class of interpretable models (section 2.3).

f is the original true model.

We use πx(z) as a proximity measure between target instance x and a gen-
erated instance z. It is a local kernel function which weights input z based
on its proximity to target instance x and hereby specifies how broad the
neighbourhood of instance x should be. πx then represents locality around x.

L(f, g, πx) loss function, which represents infidelity - how unfaithful approxi-
mation g is to true model f .

Ω(g) stands for the complexity of model g, which in (RSG16) stands opposite
to interpretability and it can vary for different model types - for instance for
decision tree it could be its depth.

Hence we can state that LIME’s explanation is produced as a fidelity-
interpretability trade-off. However, in practice LIME does not optimize
complexity Ω(g) (in the paper it is suggested as future work), it has to be set
as a constant in the development stage and LIME only optimizes infidelity.

Sparse Linear Explanation. Let us now consider an alternative, where G is
a class of linear models, such that g(z′) = wg ∗ z′, as it is the case with the
current LIME implementation. The explanation returned will have a form of
list of feature weights wg and it is obtained as defined in eq. (2.2), but the
paper closer specifies loss function L as a locally weighted square loss

L(f, g, πx) =
∑

z,z′∈Z
πx(z)(f(z) − g(z′))2 (2.3)

Z is a dataset of perturbed samples.

πx(z) is kernel function, which takes distances and kernel width and returns
weights. By default an exponential kernel is used, denoted as:

πx(z) = exp(−D(x, z)2/σ2) (2.4)

The exponential kernel uses any defined distance function D and a kernel
width σ, which is provided during the development phase and determines how
close the instance must be to the original input instance in order to affect
the local model.

LIME for text. Since the goal of this work is to explain text data, we
decided to also elaborate on specifications used for textual input. LIME can
also be used for images, however, it is not relevant for this work.

12
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The algorithm works as described above, using cosine distance as a distance
function for exponential kernel in eq. (2.4). The main distinction is in the
sample generating process. It splits the text into words (each word becomes
a feature) and then randomly erases some words from the original text. Each
dataset is expressed with a binary value for each word. 1 if the word is present
and 0 if it was removed from the text. The explanation will be interpretable,
because the interpretable representation is a bag of words, and we limit the
number of words returned in the explanation with K, which is specified during
the development phase.

Advantages and drawbacks. LIME method is frequently used thanks to
its many good aspects - it results in short and therefore often readable and
contrasting explanations, it allows us to use comprehensible features derived
from the ones, the model was trained with and with implemented libraries it
is very easy to use. However, there are several drawbacks which are worth
considering.

Its instability and lack of robustness can be a serious deficiency. Due to the
random data sampling process, the result - the explanation is not stable and
repeating the explanation process with the same prediction instance and the
same model can lead to different feature weights. In (AMJ18) the authors
measured the robustness of different interpretability methods and showed
that LIME is profoundly sensitive to subtle perturbations in the input data,
which have minimal effect on the model’s predicted class probabilities. It also
showed that for two close instances, the explanation varied significantly in
different experimental settings.

This could be connected with another issue, which is the problem of locality
setting πx - how major impact it has on the explanation while being insuf-
ficiently defined (Mol22). One of the characteristics of LIME is that it is
local, but the method itself does not define what the neighbourhood should
be. With the default implementation alone, kernel width is a game-changing
parameter, which can literally turn the explanation around, yet it is set to
a constant unexplained value without any guidance on what a good kernel
width could be for different problems.

Finally, especially in the context of textual data, imperfect sampling is worth
mentioning. Even for tabular data, the sampling is derived from Gaussian dis-
tribution ignoring inter-feature relationships, therefore the generated samples
might be very implausible. For textual data, the effect is enhanced because
the possible value of each feature (word) is reduced to present and absent.
Therefore perturbed texts contain a subset of words from the original text
but when read by a human, they might not make sense because the semantics
might get lost during the perturbation.
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2.4.2 Shapley values

Shapley values originate in cooperative game theory and they were introduced
in 1953 by Lloyd Shapley (Sha16) as a technique for fair distribution of a
payout among a team of n players.

Imagine we have a team of n players, who together win a payout. The
question arises - how to fairly distribute the payout among the n players
according to their individual contributions?

This idea can be applied to explain a particular prediction p with the following
mapping:. payout (shared by all players) is the difference between the prediction

p and the full-dataset-average prediction. It is the predicted value (for
regression) or probability (for classification), predicted for the explained
instance, reduced by the average predicted value over all instances.. players are feature-value pairs of the instance that cooperatively won
the payout (resulted in a prediction p).

For each feature value, we are trying to tell, with what value the feature
contributed to the predicted value of the instance in comparison with the
average prediction. And that is a Shapley value.

Shapley value for one feature-value pair of the target instance can be defined
as the average marginal contribution of the feature-value pair across all
possible coalitions.

ϕi(x) =
∑

S⊆F \{i}

|S|!(|F | − |S| − 1)!
|F |! (f(xS∪{i}) − f(xS)) (2.5)

We want to compute ϕi(x) - Shapely value of the i-th feature for instance x.
We have a model f , predicted instance x and a set of all features F used by
model f to predict instance x.

We take a set of all model features F except for feature i (which we are
computing Shapley value for) and we create a set of all possible coalitions
(subsets) of the features.

We further denote f(xS) as a prediction of model f made with features in
the set S with their according values from instance x.

For every coalition S of features we calculate the contribution of the feature
i for the coalition. The contribution is the predicted value for features in the
set S and the feature of interest i, and their according values from instance
x reduced by the predicted value for features S without the feature i. The
Shapely value ϕi(x) is a weighted average of all these contributions.

There is however a problem in the approach above, in step f(xS). How do
we remove a feature from the input? For tabular data, if the model was

14



................................ 2.4. Interpretability methods

trained with certain features, we need to provide all of them for obtaining a
prediction. There are several solutions.

Shapley regression values. For linear models, we can calculate Shapley
regression values, which solve the problem by model retraining. For every
feature subset S, we need a model fS∪{i}, trained with the feature present
and model fS , trained without the feature of interest. The equation eq. (2.5)
then has the following form:

ϕi(x) =
∑

S⊆F \{i}

|S|!(|F | − |S| − 1)!
|F |! (fS∪{i}(xS∪{i}) − fS(xS)) (2.6)

That is however costly since we would need to train 2|F | models - two for all
possible feature subsets.

Shapley sampling values. A different approach is applied with Shapley
sampling values, which approximate the effect of feature removal by integrating
over samples from the training dataset. To calculate them, we randomly
sample an instance y from the dataset, which we call the donor. Then as
input to the model, we provide the value of explained instance x (xi ) for
features in the coalition (i ∈ S) and the donor’s value (yi) for features, which
we want to represent as missing (i /∈ S). The result can be misleading because
a) the process can generate unlikely instances, b) some donor’s values can be
the same as the values in the instance x, therefore there will be no difference
for prediction with and without the feature. However, we can repeat the
sampling and average the contribution to get a more precise estimate of the
true value.

Shaply values for text. For text data, each token is one feature, its value
is simply present, 1 (0 would represent a missing value). Depending on
the tokenizer, this can be problematic, because it is common to tokenize
on the level of words or even subwords (SHB16). And since the number of
possible coalitions increases exponentially with the number of features, the
computation of Shapely value is very expensive.

On the other hand, the conceptual simplicity is an advantage when using
Shapely values for textual data. Since the model input is defined as a string
sequence, we do not need to bother with the problem of feature removal
as described above and we can simply mask the feature (token) from the
sequence. Therefore we can calculate Shapley values as described in 2.5, with
the original model, without integrating over the dataset.

Advantages drawbacks. The main advantages of the Shapley method are
the guarantee of fair distribution among features and a strong theoretical
groundwork. The fundamental problem of the technique is its complexity.
The computational time increases exponentially with the number of features,
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therefore for more than a few features, calculation of the full exact solution
becomes problematic and for real-life in bulk use cases potentially infeasible.
Therefore instead of computing Shapley values, we often chose to estimate
them.

Shaply value estimation. There are several estimation approaches and
algorithms. For instance, instead of calculating the marginal contribution
of a feature for all possible coalitions, we could only compute it only for a
sampled subset of coalitions. Alternatively, there is a popular algorithm by
Štrumbelj and Kononenko proposed in (ŠK14), which approximates Shapley
values based on Monte-Carlo integration. Or we can use SHAP with its
approximation methods.

2.4.3 SHapley Additive exPlanations (SHAP)

SHapely Additive exPlanations (SHAP) is a local, model-agnostic inter-
pretability technique based on Shapley values (section 2.4.2). It was first
introduced by Lundberg and Lee in 2017 in (LL17), where the authors
propose the main concept, describe its properties and introduce six SHAP
approximation methods.

Additive feature attribution method. Before we dive into SHAP itself, it is
worth pointing out an innovative view on Shapley value explanations, that
Lundberg and Lee pose, which combines Shapley value with LIME (will be
further elaborated in Kernel SHAP). They represent Shapley value explanation
as an additive feature attribution method (method whose explanation model
is a linear function with binary variables), which in is defined as:

g(z′) = ϕ0 +
M∑

j=1
ϕjz′

j (2.7)

where g is explanation model. M is a number of simplified input features.
And z′ ∈ {0, 1}M corresponds to the coalition of simplified input features
present.

Simplified input features. The simplified input features x′ map to the
original model features x given simplified input mapping hx; x = hx(x′).
Therefore they can but do not have to be the same as the original features.
They provide an option to reduce the feature space for explanation purposes.
An example could be image input, the original model might process the
image on the pixel level, however explanation with pixel granularity is too
complicated and hard to read for most users. Therefore for the sake of clarity,
for explanations, pixels might be grouped into superpixels, which would then
become the simplified input features and an input of the explanation model
g. Another, for our project more appropriate, example is text processing.
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The original text processing model might require text tokenized (split) into
word pieces and relies on abstract embeddings. That would be too expensive
to calculate and complicated to explain. Therefore, we might decide to set
simplified input features as words or even sentences and calculate Shapley
values for them.

Properties. Shapley values are the only additive possible additive feature
attribution method with the following properties:..1. Local accuracy - The explanation model g(x′) matches the original

model f(x). ϕ0 represents model prediction with all features missing.

f(x) = g(x′) = ϕ0 +
M∑

i=1
ϕix

′
i (2.8)..2. Missingness - If a feature is missing, it has no impact to the model.

x′
i = 0 ⇒ ϕi = 0 (2.9)..3. Consistency - If a contribution of feature i is higher or the same in

model f ′ than in model f ,

f ′
x(z′) − f ′

x(z′
\i) ≥ fx(z′) − fx(z′

\i) (2.10)

then Shapley value ϕi should also be higher or equal in model f ′ than in
model f .

ϕi(f ′, x) ≥ ϕi(f, x) (2.11)

SHAP. Now let us turn our attention to SHAP itself. We can look at
SHAP as an alternative approach to Shapley values computation. Its goal
is to preserve desirable properties of Shapely values while applying several
approximations which enable more feasible computation time.

Since SHAP is based on Shapley value computation, its narrative is similar.
As for all local interpretability methods, SHAP’s purpose is to explain the
prediction of a selected instance x. It does so by computing feature importance
- the contribution of each feature to the prediction. In the previous section we
described how we can measure feature importance with Shapley values and
the SHAP paper proposes to measure feature importance with SHAP values.

SHAP value is a Shapley value of a conditional expectation function of the
original model. Since for most models, it is impossible not to provide features
value to emulate them missing, SHAP approximates f(zS) with E[f(z)|zS ],
where zS are features in the set S with the corresponding value from instance
z.

As visualized in fig. 2.1, ϕi (SHAP value of a feature i) is the change in the
expected model prediction when conditioning on the feature i. We define a
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base model value E[f(z)] as a value which would be predicted if there were
no features present in the coalition z ∈ {0}M . SHAP values explain how to
get from the base value to the predicted output value f(x).

For non-linear models or models where input features are not independent,
the order of the features matters, therefore SHAP value is then the average
across all possible orderings.

Figure 2.1: SHAP values depict how to get from base value E[f(z)] to the actual
predicted value f(x). Figure from (LL17)

Besides approximating f(zS) by conditional expectation as E[f(x)|zS ], SHAP
offers two further optional approximations, which simplify the computation of
the expected values - assumption of feature independence and model linearity.
These two assumptions combined allow SHAP to replace expensive integration
over samples by directly inserting the mean value of the feature in the dataset.

Since the exact computation of SHAP values is challenging, the authors
in (LL17) introduce six approximation methods to estimate SHAP values.
Two model-agnostic - Shapley sampling values (already known for Shapley
values) and Kernel SHAP (novel method) and four model-specific - Linear
SHAP, Low-Order SHAP, Max SHAP and Deep SHAP. Later in (LEL18),
there was another model-specific approximation method - Tree SHAP. From
the perspective of this project, we want to explain neural network models.
Therefore only sampling SHAP values, Kernel SHAP and Deep SHAP methods
are applicable.

Kernel SHAP

Kernel SHAP is a method which combines Shapley values and LIME. Or
more precisely, it is an extended method from LIME, which due to its kernel
function approximates SHAP values with much fewer coalitions than required
for their full computation.

Since it is an approximation method for the calculation of SHAP values,
we shall use notations and definitions which were defined and explained in
SHAP sections section 2.4.3 - e.g. coalition of simplified input features |z′|,
or simplified features mapping hx(x′).
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Same as LIME, Kernel SHAP uses linear explanation model g to locally
approximate the original model f . And the formulation is also the same as
in LIME eq. (2.2) with the following specifications:

There is no penalisation for the complexity of the explanation model g.

Ω(g) = 0 (2.12)

Loss function is as in LIME eq. (2.3) weighted square loss, weighted by kernel
πx′(z′).

L(f, g, πx′) =
∑

z′∈Z

[f(hx(z′)) − g(z′)]2πx′(z′) (2.13)

Here however comes the biggest difference compared to LIME - in the kernel
function, which assigns weight to each sample. While in LIME the kernel
weights samples according to their proximity to the instance of interest x
(based on a heuristically chosen kernel width), SHAP chooses the kernel
analytically. It assigns weight to the sample according to the Shapley value
estimation of the coalition z′.

πx′(z′) = (M − 1)( M
|z′|

)
|z′|(M − |z′|)

(2.14)

|z′| corresponds to the number of non-zero elements in coalition z′ and M is
a number of simplified input features.

The flow of the method is following:. Randomly sample coalitions Z.. For each sample coalition (z′) :.Map simplified input features into original model feature space. Predict sample with original model f.Weight sample with SHAP kernel πx′(z′). Fit linear model. Return the coefficients of the linear model as SHAP values

2.5 Interpretability assessment methods

While explainable AI seems to be on the rise with a ceaseless stream of new
papers introducing explainability methods, or claiming that their model is
interpretable, the situation is not so bright with interpretability assessment
methods. In fact, according to (AB18), only 5% of the papers, that they have
examined, covered evaluation of interpretability methods and quantification
of their relevance.
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Many papers we encountered approached interpretability as a qualitative
evaluation of the model and not as an independent development stage with
its objectives and the need for measurement. They would simply assume the
explanation is faithful and use it to gain insight into the model and control
how robust the model is. And while this approach can be helpful to attain
a robust and non-discriminatory model, it is highly unsuitable when the
examined subject is the interpretability method itself, such as in this work.

And even papers which focus on the evaluation of interpretability methods
usually define desiderata and properties of interpretability evaluation or
describe its taxonomy, rather than proposing a specific, well-defined and mea-
surable metric. Such finding is not surprising given the subjective character
of interpretability, however, it makes rigorous comparison and evaluation of
interpretability methods difficult.

Doshi-Velez and Kim in (DVK17) present following taxonomy of interpretabil-
ity evaluation:.Application-grounded evaluation is the most expensive to perform

but arguably provides the strongest evidence of success, especially for
human-computer interaction tasks. It requires conducting a human
experiment, in which the domain experts (target audience) use the
explanations during the exact task where the explanation method should
be applied..Human-grounded evaluation requires a human experiment where
human subjects perform a simplified task, which evaluates the explana-
tions. The experiment could be for instance binary forced choice when
subjects choose better of two explanations or forward simulation when
subjects need to correctly simulate the predicted output of the model
when presented with the explanation.. Functionally-grounded evaluation does not require a human experi-
ment and instead specifies a proxy task based on a specified mathematical
definition of interpretability, which it then measures. Since it is the sim-
plest to implement, it is possibly most suitable for feasibility studies
(MV20). The key problem of functionally-ground evaluation is the se-
lection of proxies and a specification of criteria, which generally stays
an open problem and according to (DVK17) is important for future
research.

Doshi-Velez and Kim in their paper define interpretability as "the ability
to explain or to present in understandable terms to a human." and their
evaluation for interpretability defined as such is measuring whether the
explanation brings the desirable benefits to the target audience performing
a specific task (in a real or emulated environment)2. This makes their

2Of course, in their taxonomy, there is space for a different, mathematical definition of
interpretability with functionally-grounded evaluation, but it is not defined closer in the
paper.
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evaluation approach well suited for human-computer interaction, such as ours.
And so, we are going to use this definition while designing our solution and
experiments.

However, from (not only) our point of view, there is more to explainability
than just how understandable it is to a human. The above approach to
explainability is not complete because it omits one crucial property of ex-
plainability and that is fidelity - how faithful the explanation is to the actual
model’s behavior.

Rudin in his paper (Rud19) writes: "Explanations must be wrong. They cannot
have perfect fidelity with respect to the original model. If the explanation was
completely faithful to what the original model computes, the explanation would
equal the original model, and one would not need the original model in the
first place, only the explanation."

And while that is true, fidelity to the model is often stated as desiderata of
explanation - e.g. in (ZC18). Or even LIME (section 2.4.1) in its core tries
to minimize infidelity from the original model - see eq. (2.2).

The important aspect for us and arguably the greatest weakness of human-
based interpretability evaluations is that we are unable to observe the bound-
ary between the model’s correctness and the interpretability fidelity. Consider
a scenario when the model predicts the correct output but our chosen inter-
pretability method shows that it was chosen due to nonsensical input values.
How do we decide if this occurred due to the infidelity of the explanation, or
if the explanation is reliable but it is the model that lacks robustness and
predicts based on chance and noise?

In other words, people evaluate, whether they like what the explanation says
that the model decided upon, but not whether it is consistent with the actual
model logic. Nevertheless, this weakness is hard to overcome. If we want
to assess the helpfulness of the explanation for the target user, we cannot
segregate it from the prediction itself.

That being said, the evaluation measures described above are, despite these
shortcomings, still frequently used in various forms (overview in (MZR18)).
And we are going to use them as well in this work.
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Chapter 3

Problem specification

In this chapter, we shall define the problem this work is going to solve. We
shall first introduce the datasets which we will be working with. Then we will
analyze which part of the fact-checking pipeline is most suitable for explaining.
Finally, we will describe the chosen task in more detail - outline its structure,
present the models, which we will be explaining, and clearly define their input
and output.

3.1 Datasets

During majority of this work, we worked with two datasets, which were
both created by the research group of the Czech fact-checking project and
are presented in (DUR+22). In this section we will introduce each of the
datasets.1

3.1.1 CsFEVER

The dataset, presented in (DUR+22), is an automatically generated Czech
localization of the large-scale Fever dataset (TVCM18). It contains 127,328

1In the early stages of the project, we also used the IMDb Movie Review Dataset
(MDP+11), which is one of the standard benchmark datasets used for sentiment analysis
and contains 25k positive and 25k negative film reviews. We used the dataset solely for
exploration purposes.

The input to the model, in our case, is two texts (claim and context) (as is further explained
in section 3.3.3). This often caused problems when using libraries for interpretability
methods, which usually expect a single text as an input and we were often required to edit
the library implementation. Therefore, when we wanted to first try out and observe an
explainability method, we preferred to do so on a standard binary classification of English
text. And that is when we used the IMDb dataset. Moreover, the binary outcome and the
possibility to try different models made it easier to judge the quality of the explanation.

Since there is no outcome of this work regarding the IMDb dataset, nor did we use it for
experiments, we shall not specify it any closer and in the rest of the work we will consider
only the two datasets properly presented in this chapter.
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claims annotated as SUPPORTS, REFUTES and NOT ENOUGH INFO
(NEI ), while the claims of the first two labels are verifiable.

SUPPORTS REFUTES NEI

train 53,542 18,149 35,639
dev 3,333 3,333 3,333
test 3,333 3,333 3,333

Table 3.1: Label distribution in CsFEVER dataset

EnFEVER. The original English dataset - Fact Extraction and VERification
(FEVER) (TVCM18) is a large scale dataset with 185 445 claims. It was
created based on 50k most popular Wikipedia articles using an elaborate
two-stage annotation methodology.

In the first, claim generation, stage, the annotators were asked to create
claims based on an article’s abstract (the first paragraph containing a brief
summary of the article) and a dictionary (terms hyperlinked in the abstract
with the first sentence from their corresponding Wikipedia article) and to
generate various mutations of the original claim.

In the second, claim labeling, stage, the annotators labeled each claim gen-
erated in stage one as SUPPORTS, REFUTES or NEI and if the chose
SUPPORTS or REFUTES, they were asked to select evidence for the decision
from any Wikipedia page.

CsFEVER. The Czech localization of the original dataset was created with
usage of interlanguage linking and machine translation. First, each article in
the evidence was mapped to a corresponding Czech article while all evidence
sets, where an article’s localization was not available, are deleted. All verifiable
data points with no evidence are deleted as well. Then, using a machine
translation, claims were translated and eventually the dataset was re-split
into its final form table 3.1.

id 167839
verifiable VERIFIABLE
label SUPPORTS
claim Hmotnost ledovce může být ukazatelem klimatických změn.
claim_en The mass of glacier can be an indicator of climate change.
evidence [[193217, 203804, "Ledovec", 17, "Glacier"]1]

[[193225, 203814, "Ledovec", 17, "Glacier"]1]
1 The evidence refers to a paragraph in an article

Table 3.2: Data point example of CsFEVER dataset

Validity. CsFEVER is constructed with an assumption that the abstracts of
English and Czech Wikipedia pages contain the same information. However,
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as the authors manually tested on a subset of data points, it is not always the
case and for 28% of verifiable claim-evidence pairs, the information needed
to infer the label is not provided in the Czech abstract. Further 5% of
samples were invalid due to inadequate translation. Overall, only 66% of the
claim-evidence pairs are valid.

3.1.2 CTKFacts

There are many parallels between the CTKFacts dataset and the CsFEVER
dataset section 3.1.1 because the overall creation process as well as structure
of the CTKFacts dataset were inspired by FEVER dataset (TVCM18).

Same as for the CsFEVER dataset, the CTKFacts dataset was presented
in (DUR+22). It contains 3,097 claims annotated with the same labels as
in CsFEVER - SUPPORTS, REFUTES (marked as verifiable) and NOT
ENOUGH INFO (NEI ). The label distribution can be seen in table 3.3

SUPPORTS REFUTES NEI

train 1,104 556 723
dev 142 85 105
test 176 79 127

Table 3.3: Label distribution in CTKFacts dataset

The main difference is in the corpus and by extension in the collection process.
CTKFacts was created using Czech News Agency2 corpus with 2.2M articles
as the ground-truth corpus instead of FEVER’s Wikipedia corpus. This
causes a range of differences - the articles do not contain an abstract, the
communication style is different with less self-contained sentences and there
are no hyper-links in the articles to create dictionary.

Dictionary creation. Since the dictionary has a key role in the annotation
process, the authors had to construct it. Instead of hyper-linked articles, they
used the most relevant articles, which were found using a TF-IDF document
retrieval method combined with a two-tower retrieval model.

Annotation process. The annotation process is based on FEVER’s annota-
tion process, modified to fit the corpus specification.

Before the annotation itself, the authors preselected paragraphs with check-
worthy information, which are used in the next stage.

Then in the Claim Extraction phase, the annotator is given a knowledge
scope (a random paragraph and its generated dictionary) and is asked to
produce a simple true initial claim, supported by the knowledge scope (while

2Česká Tisková Kancelář (ČTK) - https://www.ctk.cz
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disregarding their own knowledge). In the next Claim Mutation stage, they are
asked to generate various mutations from the initial claim, such as rephrasing,
negating or generalizing.

Finally, in Claim Labeling step, the annotator is presented with a randomly
sampled mutated claim m and a knowledge scope consisting of the knowledge
scope of m’s initial claim and of a newly generated dictionary for m. The
annotator is asked to select a label and if the label is verifiable, then also
select the minimum necessary evidence to deduct the label.

id 2292
verifiable VERIFIABLE
label SUPPORTS
claim "Jozef Tiso byl odsouzen za válečné zločiny."
evidence [T201604210827502_2t1]

[T201604210827502_6t1]
source T201604210827502_1t1

mutated_fromt2 2289
t1 The evidence and source refer to paragraphs in articles from the CTK database.
t2 mutated_from refers to an original claim, which this claim was created from.

Table 3.4: Data point example of CTKFacts dataset
The evidence identifier is in a format ctkId_paragraphNumber, where ctkId is
the id of the wanted article in CTK archive and paragraphNumber refers to the
paragraph in the article (0 is a headline).

3.2 Choice of task

As we illustrated in fact-checking pipeline section 1.1.1, the fact-checking
project consists of multiple components, which contain different NLP models,
whose predictions we could explain. Namely, we were deciding between
document retrieval (DR) and natural language inference (NLI) tasks.

In order to choose the most suitable task, we need to keep in mind the goal
of the fact-checking project. And that is to help journalists verify statements
(claims), to save their time, as well as mental capacity and guide them through
the quanta of text and information to the sought answer.

We believe that of the two tasks discussed, an explanation of NLI will be a
bigger help in the verification process because it is at the end of the fact-
checking pipeline, and the user can therefore see the direct contribution to
the final result.

Of course, as we stated in the Introduction chapter 1, the automated fact-
checking application should not be used as an omniscient, statement-labelling
black box, but rather as a tool guiding the user to the answer. And in this
process, document retrieval is a crucial step. However, when the user gets
a response that the fact-checked statement is or is not true, the first thing,
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they would probably want to see, is why. And since the prediction was made
with respect to the chosen background text (context), pointing out, what the
prediction was based upon in the particular text will most likely provide a
satisfactory answer.

We could argue that if there was a mistake in the earlier step – document
retrieval, then the explanation of the prediction of the NLI model is arbitrary
because the background data is noise. And in that case, the user would
possibly prefer to retrace the steps of the pipeline and choose a more suitable
background text, where the explanation of the DR task would be more useful.

And while that is true, the user first needs to discover that the chosen text
is irrelevant. And possibly seeing a nonsensical explanation would be an
indicator that something is wrong. Because while the main benefit of clear
explanations in this project is a fast look up of evidence, there is also the
benefit that seeing a nonsensical explanation should alert the user not to
automatically trust the machine.

Another reason why we chose the NLI task was its strong background, from the
perspective of both theoretical ground and already implemented frameworks.
Many interpretability methods specifically consider text classification. Papers
which propose them often dedicate a section or a paragraph to the text
classification problem and implemented libraries offer a pre-built solution.

Of course, there are implemented libraries for the interpretation of sequence-
to-sequence models (e.g.. SHAP3) as well as the theory behind them, however,
there are not as many options. And we hope that the more explored domain
will yield better results.

Nevertheless, explaining DR models would also be very beneficial for the
project and while we will not cover it in this work, we would recommend it
for future work.

3.3 Natural Language Inference

Now, that we outlined the task, we are going to focus on, let us examine it
closer in order to understand what exactly we are going to explain.

As described in section 1.1.1, in our fact-checking pipeline, when we want to
verify a claim, we start by retrieving a set of evidence relevant to the claim,
then we take the claim and the set of evidence and proceed to infer whether
the claim is supported by the evidence.

The task in which evidence is retrieved is called document retrieval and
beside a brief description in Fact-checking pipeline section 1.1.1 is not further
described in this work, it can be found in (DUR+22).

3https://shap.readthedocs.io
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The task in which we classify the veracity of the claim based on the retrieved
evidence is called Natural Language Inference (NLI).

3.3.1 Definition

Natural language inference is the problem of determining whether a natural
language hypothesis h can reasonably be inferred from a natural language
premise p. (Mac09)

In our case the hypothesis is the claim and our premise is the evidence. The
output labels of NLI can be: entailment (in our case SUPPORTS label),
contradiction (in our case REFUTES) or neutral, sometimes also undetermined
(in our case NEI). Neutral means that the hypothesis is compatible with but
not inferable from the premise.

3.3.2 Models

The NLI (or Recognizing Textual Entailment - RTE, how the task has been
previously known), has been historically solved using a range of approaches
(WJ15): shallow - relying on lexical similarities, deep - relying on full semantic
interpretation or approaches relying on formal logic. In the last decade, the
problem has been taken on by neural networks, namely with long short-term
memory networks, recurrent neural networks and in the last five years, as
nearly every task in NLP, by Transformer-based models (section 1.1.2).

The state-of-the-art NLI models used in our fact-checking pipeline (presented
in (DUR+22)) are all based on BERT (section 1.1.2). And they all rely on
transfer learning section 1.1.2.

The authors tested different models pretrained on Czech data - multilingual
(SlavicBERT or Sentence M-Bert (RG19)), crosslingual (XLM-RoBERTa) and
even multilingual Czech models (RobeCzech (SNSS21), FERNET-C5 (LŠ21)).
The best results were achieved with XLM-RoBERTa models (CKG+19).

The highest accuracy on the CTKFacts dataset was achieved with the XLM-
RoBERTa model finetuned on the NLI-related SQuAD2 (RZLL16) down-
stream task, therefore we are going to use this model.

The highest accuracy on CsFEVER data was achieved with the XLM-
RoBERTa model finetuned on the crosslingual XNLI (CRL+18) task. How-
ever, we do not have the model available, therefore we are going to use the
highest-scoring model available to us, which XLM-RoBERTa finetuned on
the NLI-related SQuAD2 as for CTKFacts.
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3.3.3 Input processing

We already stated that the output of our NLI model is a label - SUPPORTS,
REFUTES, NEI. We further wrote that the input is a claim and an evidence
(fig. 1.1). We also presented the structure and content of datasets (well visible
in table 3.4, table 3.2) and each data point contains references to the evidence,
not the evidence itself. But in what format is the data actually passed to
the NLI model? In order to be able to design our explanation, we need to
understand the structure of the input. Therefore we shall now elaborate on
the data processing and clarify the true input to the model.

For simplicity reason, we are going to use one exemplary claim - an example
from the CTKFacts dataset shown in table 3.4. The process is analogical to
CsFEVER just with a different reference system.

We start with a dataset stored in JSONL4 format with an id, label (∈
SUPPORTS, REFUTES, NEI), claim and a list of evidence sets 5. An
evidence data point can have different forms, but overall, it is a reference to
a paragraph of text. A set of evidence is then a set of paragraphs which are
together necessary to infer the output label.

Text evidence format. We retrieve the text from the evidence paragraphs
and replace the references with the real text. We call this data format a text
evidence format and a data example in this format can be seen in table 3.5.

id 2292
label SUPPORTS
claim "Jozef Tiso byl odsouzen za válečné zločiny."
evidence ["Jozef Tiso byl po druhé světové válce obviněn z plné zodpovědnosti (...) "t1

[" Esterházy byl v roce 1947 za své předválečné a válečné aktivity odsouzen (...)"t1]
t1 paragraph is truncated

Table 3.5: Data point example of CTKFacts in text evidence format with
truncated paragraphs

NLI evidence format. Finally, we transform the data into NLI evidence
format, in which we pass the data to the model. (this format was used for
model training and we, therefore, use it also for testing, production and the
explanation process.) In this format, we have one data point for each evidence
set. Therefore we might need to split the original entry and end up with a
different number of data points. Our example in NLI evidence format is split
into two - table 3.6 and table 3.7.

4https://jsonlines.org/
5We are disregarding other properties, because we do not need them.
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label SUPPORTS
claim "Jozef Tiso byl odsouzen za válečné zločiny."
context ["Jozef Tiso byl po druhé světové válce obviněn z plné zodpovědnosti (...) "t1

t1 paragraph is truncated

Table 3.6: Data point example of CTKFacts in NLI evidence format with
truncated paragraphs
The original data point was split into two - one fore each evidence set.

label SUPPORTS
claim "Jozef Tiso byl odsouzen za válečné zločiny."
context ["Esterházy byl v roce 1947 za své předválečné a válečné aktivity odsouzen (...)"t1

t1 paragraph is truncated

Table 3.7: Data point example of CTKFacts in NLI evidence format with
truncated paragraphs
Data point for the second evidence set.
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Chapter 4

Solution

In this chapter, we will present our solution - the explainability methods used
and their produced explanations. We will focus on subjectively pre-selecting
methods and their parameter settings which yield the best results. We will
later statistically evaluate the methods with their best parametrization in
chapter 5.

We also implemented and tested a different, functional, approach of method
and parametrization assessment, which does not rely on human evaluation
and is, therefore, more scalable and less subjective. This measure, however,
did not yield valid results, therefore we did not use it to select the best method
parametrizations. Its implementation details, results, as well as problems,
can be found in appendix B.

4.1 Design

In the first section, we will elaborate on the design decisions - e.i. the choice of
methods and the form of the explanation. And we will include the reasoning
behind our choices.

4.1.1 Choice of methods

For the choice of interpretability method, we considered three aspects - the
fit for our use case, the recognition of the method and its availability.

The most important aspect was the fit for the project. The goal of the
project is to explain an individual model output to a journalist, such that
it is easier for them to understand and verify the prediction. Therefore, we
limit ourselves to the local interpretability methods whose explanations come
in a form understandable to a layman (a non-machine learning professional),
preferably a list of weighted text units.
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Second, we considered how well the method is established. With explainable
AI gaining significance, there are plenty of interpretability methods. When
selecting which methods we would use, we examined the theoretical foundation
of the method as well as the quality and magnitude of its testing.

Finally, we took into account, how demanding it would be for us to apply the
method i.e. if we would need to develop the implementation ourselves or if
there were already applicable implementations available.

We found implementations for all the explainability methods we considered.
However, some were several years dead projects on GitHub. Others were
in process of heavy development with many yet unimplemented features
and weekly changes. However, we also found extended and well-developed
libraries. In these cases, we were further examining whether they provide an
implementation for text input and if they include visualization options.

Our decision. We decided to use LIME (section 2.4.1) and SHAP (sec-
tion 2.4.3). Both methods are local and both produce explanations in the
desired form of text unit and assigned significance value.

Regarding their theoretical base and testing, SHAP, together with Shapley val-
ues (section 2.4.2), which it is built upon, are possibly the only interpretability
methods with a solid theoretical groundwork (Mol22).

And while LIME does not stand on as strong background as SHAP does, it
is a well-established interpretability method, with many published use cases.
And in the paper, where the method was introduced (RSG16), the authors
test it with a human-grounded test (section 2.5).

Finally, arguably the main advantage of both methods is that they are both
provided with well-implemented libraries1, which also include explanation of
text classification and a range of visualization options.

4.1.2 Explanation content

Standard text classification is usually an assignment of a label to an input text
- e.g. sentiment analysis of reviews. However, as described in section 3.3.3, the
input into our models is two texts - a claim and a background text (context).
We were therefore considering which of the input texts should be included in
the explanation.

We eventually decided that the explanation should contain important phrases
solely from the background text (and not from the claim). Because the
end-user is interested in the evidence that the claim was supported/refuted
and the evidence must be present in the background text (that is how the
datasets were composed).

1https://www.lime-ml.readthedocs.io/ and https://www.shap.readthedocs.io/
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In comparison, if we chose to use both texts for the explanation, the user
would also see which parts of the claim led to the prediction. This could
draw the user’s attention, and they would then focus also on evaluating which
parts of the claim are most significant instead of solely searching for the key
information in the background text. The approach with both texts could be
useful for complex claims, however, all claims in our datasets are simple - by
definition in the dataset design (DUR+22).

4.1.3 Tokenization

In NLP, before we pass a text to a prediction model, we need to split it into
smaller text units. This process is called tokenization and the text units are
then called tokens.

For the interpretability methods, we also need to define the form of a token
and by extension the form of our explanation (granularity of the text units,
which we will assign weight to).

A compact and to human reader naturally understandable unit is a word. It
is so instinctive, that some interpretability libraries automatically assume
word tokenization. And we are going mainly focus on it too. However, to gain
a better, more complex overview, we will not limit ourselves only to words.

The NLI models whose prediction we are explaining use WordPiece tokeniza-
tion (WSC+16) which splits the text into sub-words. We were curious how
different the results would be if we used the model’s tokenization level which
moreover strips the word from its suffixes and prefixes.

Finally, we try tokenizing the text into sentences, because sentences can hold
context that single words cannot and we believe that a single sentence might
be more readable than ten discontinuous words.

There is another aspect to consider, which favours tokenization to coarser
units. For explanation purposes, each token represents a feature and the
smaller token, the more of them there will be in the text. A high number
of features is a problem because the computational complexity of SHAP
increases exponentially with the number of features. Hence there is a price
to pay for small tokens. Either in a form of high computation time or in the
quality of the explanation, because we will need to approximate it more.

4.2 Implementation

For each dataset (section 3.1), we set to find the ideal method and its
parametrization that would produce the best explanations. In order to do so,
we used the following approach:
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Initially, for each dataset, we randomly sampled 10 data points. We saved
the ids and kept using the fixed samples across individual methods and their
paremtrizations.

Then, for each method with specific settings, we generated explanations for
our samples and individually considered their output.

From our perspective, the evaluation of the explanations is the fundamental
problem of the whole interpretability field as we already argued in section 2.5.
Due to the absence of a functionally-ground evaluation and the high re-
quirements (on time and resources) of human evaluation, we assessed the
explanations by reviewing and comparing them in various forms - in the raw
form of a token-weight dictionary but mainly in form of visualizations. Most
frequently we used highlighted text fig. 4.1b or occasionally a bar plot fig. 4.1a.
We think that the highlighted text is the most informative presentation of
the explanations and hence we would also use it as a visualization format
presented during the experiments (and to the user).

(a) : Bar plot visualization (b) : Highlighted text visualization

Figure 4.1: Example of visualizations - produced by LIME
Claim : Kocianovo kvarteto odmítlo nahrát skladby Paula Hindemitha. = The
Kocian Quartet refused to record Paul Hindemith’s compositions.

Based on the above described individual assessment of 10 samples, we filtered
out scenarios which produced incoherent and nonsensical explanations. For
method settings with reasonable explanations, we sampled more data points
(this time new random ones) and repeated the process.

We excluded a parameter setting when out of the 10 samples it produced 2
nonsensical explanations (mainly explains against the decision or contains
only random meaningless words) or 4 poor explanations (some words are
relevant but most are not).

At this point, we had a good idea about the general quality of the explanations
and we moved to the next phase - selecting one, best, parameter setting for
both methods (per dataset), such that we could compare them between each
other in the experiments (chapter 5).
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Best parametrization. We took the remaining method settings (since they
produced steadily best results), selected those corresponding to the tokeniza-
tion level specified for the experiment and conducted a series of short pairwise
blinded tests, for which we used the settings and annotation platform designed
for the experiments (section 5.1.1).

The flow of each of the tests was following:. Randomly sample 15 data points.. Produce explanations with both compared parameter settings.. In our annotation platform (described in section 5.1.1), one sample at a
time, display the explanations side by side and let the annotator (which
was us) choose which of the explanations is more helpful.. Determine the winner of each test using majority voting.

We repeated the test until for each dataset we were left with one parametriza-
tion for LIME and one for SHAP.

4.3 Methods and parametrization results

In the following overview, we are going to present a subset of tested parameter
settings for each method, chosen to demonstrate method properties and as
well as its best results.

We are going to use the same data point2 for all showcases to make the
differences more distinctive. The sample comes from the CTKFacts dataset
but the following properties of the methods apply to explanations of the
CsFEVER dataset as well.

We did not expect to find such unity in the explanation qualities across the
datasets. We suspect that it could be caused by the fact, that both the task
as well as the explained NLI models are very similar.3.

4.3.1 LIME

As described in section 2.4.1, LIME trains a local surrogate model in the
neighbourhood of the explained prediction. It does so by generating new
data points in the proximity of the example in question and then training an
interpretable model section 2.3 on them. In the current implementation and
therefore in our project the interpretable model is a sparse linear regression
model.

2claim: V České republice osvobodili před trestem smrti Vladimíra Lulka. = In the
Czech Republic, Vladimir Lulek was freed from the death penalty.; label : REFUTES

3Both XLM-RoBERTa model finetuned on the NLI-related SQuAD2 downstream task
section 3.3.2
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We used its already mentioned library4, which provides implementation for
explaining text classification as well as visualization options. We only needed
to make minor changes to the library to fit our input and allow the changes
of some parameters. We tried various parameter settings, which we shall now
go through and present our findings. All following examples will use word
tokenization level5, which we primarily focused on6.

Volatility of explanations. As we wrote in section 2.4.1, one of the main
disadvantages of LIME is its instability. This deficiency is well illustrated in
fig. 4.2, which shows two explanations created with the exact same settings,
but a different random seed.7 The difference does not disappear even with
a substantial increase in generated samples. However, as is illustrated in
fig. 4.3, it can be diminished.

Figure 4.2: Explanations with the same parameters but a different seed with
1000 generated samples
LIME explanations with word tokenization, exponential kernel function with
cosine distance and σ = 0.3, explaining 15 significant features selected by highest-
weighst, tg = True

Kernel width. We used an exponential kernel function in which the kernel
width parameter (σ) had a significant effect on the explanation. Generally,
σ ∈ [0.2, 0.35] produced comprehensible and reasonably stable explanations.
Out of this bound, even usually even small changes had a non-trivial impact.
Figure section 4.3.1 demonstrates a difference between kernel width 0.35
(fig. 4.4a) and 0.4 (fig. 4.4b).

4https://www.lime-ml.readthedocs.io/
5LIME implementation by default tokenizes the text into words. The method automati-

cally removes non-word characters from the feature space and returns them to the modified
version of the text before it passes it to the model. However, for the Czech text, it considers
all diacritics to be non-word characters and the resulting tokenization was an unreasonable
mixture of words and sub-words. Therefore we used a wrapper around nltk word tokenizer
- https://www.nltk.org/ (BKL09), which works well also for Czech texts.

6Unlike in SHAP for reasons outlined in section 4.3.3
7We generated 5 random numbers from 0 to 2000. Then we created an explanation

by LIME with the same settings just a different random seed. And we present two, most
distinct explanations.
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Figure 4.3: Explanations with the same parameters but a different seed with
5000 generated samples
LIME explanations with word tokenization, exponential kernel function with
cosine distance and σ = 0.3, explaining 15 significant features selected by highest-
weights, tg = True
We used the same seeds as in fig. 4.2. Compared to experiment with 1000
samples, now the methods at least both refer to words "trest" = punishment
and "Českém" = czech, with reference to area. From our point of view, the right
explanation might be less helpful than when it was created with 1000 samples
because the word "oběšen" = hanged is not highlighted anymore. This further
demonstrates the volatility of LIME explanations, especially with a lower number
of samples.

We were testing each of the following scenarios with a range of different kernel
widths and we shall always present the best one.
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(a) : kernel width 0.35 (b) : kernel width 0.4

Figure 4.4: Difference in kernel width
LIME explanations with word tokenization, exponential kernel function with
cosine distance, explaining 15 significant features selected by highest-weights, tg
= True, 5000 samples
This particular instance does not show significant differences, however explanation
with σ = 0.4 is completely missing the word "poprava" = execution. Explanations
for the σ ∈ [0.2, 0.35] usually contain the same words and only vary in weight.

Token grouping. In the text, there can be multiple occurrences of a token.
We can either treat each token as a unique entity - based on its position, or
we can group them the same tokens together. In the later case, the generated
text perturbations will either contain all instances of the word or none. And
the result will contain one weight for the word in all of its occurrences. In
the method description, we refer to this property as token grouping (tg =
True if all instances of a token should be treated as one).

We expected the LIME to yield better explanations with a unique assessment
of tokens (tg = false) because the role of a token can vary depending on the
context. More importantly, it could be a distraction and lead the human eye
to the word’s insignificant occurrences. However, as is presented in fig. 4.5, the
method performed much better with the property on (tg = true) - practically
with no exceptions.
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(a) : token grouping = True (b) : token grouping = False

Figure 4.5: Difference in token grouping
LIME explanations with word tokenization, exponential kernel function with
cosine distance and σ = 0.3, explaining 15 significant features selected by highest-
weights, 5000 samples
Without token grouping LIME highlights only several words (caused by the limit
in explanation size), which are often marked as opposed to the decision and the
majority is not very informative. In this case, the only words find to support the
decision were "Zákaz" = ban, "nahradili" = replaced, and "posledním" = last.

Feature selection. LIME locally replaces our complex neural model with
a surrogate - linear regression model section 2.3, which is intuitively inter-
pretable because for each feature we see a weight. What is however crucial
for its intuitive interpretability is sparsity. When tokenizing the input text to
words, our feature space is extended and it would be easy to get lost in the
number of weights. In order to introduce sparsity, we use a feature selection
algorithm.

In figure fig. 4.6, we present the results of different feature selection algorithms
we tested - Lasso, forward feature selection and selection by the highest weights.
The best results were from our point of view generally, as well as for this
sample achieved when using features with the highest weights. We expected
better results from Lasso because it is a frequently used and bench-marked
feature selection algorithm (TLM10). However, for our textual inputs, it
produced explanations with too many tokens and not enough sparsity, which
made them less readable.

Forward feature selection algorithm produced typically similar (sometimes
the same) explanations as highest weights. However, as is shown in table 4.1,
when using forward feature selection it took on average 13.23% longer to
compute the explanation, therefore we overall preferred the highest weight
algorithm.
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(a) : Forward selection (b) : Highest weights (c) : Lasso

Figure 4.6: Feature selection algorithms
LIME explanations with word tokenization, exponential kernel function with
cosine distance and σ = 0.3, explaining 15 significant features (when applicable)
, tg = True, 5000 samples
All explanations are comparable with the same most significant words, however,
Lasso produces the most noise. Explanation created with the highest weights
feature selection is most expressive and from our point of view also most read-
able.

Forward selection Highest weights Lasso

Time per instance [s] 25.013 22.091 22.14

Table 4.1: Mean execution time for LIME with different feature selection
algorithms
LIME explanations with word tokenization, exponential kernel function with
cosine distance and σ = 0.3, explaining 15 significant features, tg = True, 5000
samples. Calculated on 50 random instances from CTKFacts dataset.
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Distance function. So far all examples used Cosine distance.8 Compared
to other tested distance functions, it consistently created the most sensible
explanations. Figure fig. 4.7 shows an example with Cosine, Euclidean and
Manhattan distances. It is however worth mentioning that Lasso feature
selection algorithm did not work at all with Euclidean distance (all features
had the same values).

Selected parametrization

The best parametrizations were compared together with Text augmented
LIME (section 4.3.2) in series of short pairwise blinded tests (described in
section 4.2). For LIME we nominated the following parametrizations:

CsFEVER. (results of the tests can be found in appendix C.1). LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.3, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.3, features selected by Lasso, 5000 samples,
tg = True. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.25, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True

The best selected parametrization (used in the experiment) is however none
of the above listed because it was produced by Text augmented LIME which
is described in the next section.

CTKFacts. (results of the tests can be found in appendix C.2). LIME explanations with word tokenization, exponential kernel
function with cosine distance and σ = 0.3, explaining 15 sig-
nificant features selected by highest-weights, 5000 samples, tg
= True. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.25, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True

The best selected parametrization (used in the experiment) is : LIME explana-
tions with word tokenization, exponential kernel function with cosine distance
and σ = 0.3, explaining 15 significant features selected by highest-weights,
5000 samples, tg = True

8Distance function is used to measure distances between original and perturbed instances
in eq. (2.4).
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(a) : Cosine (b) : Euclidean (c) : Manhattan distance

Figure 4.7: Distance function
LIME explanations with word tokenization, exponential kernel function with σ
= 0.3, explaining 15 significant features selected by highest-weights, tg = True,
5000 samples
In this case, all explanations are comparable, but Euclidean and Manhattan
distances produce noisier explanations. (In this example e.g. words "na", "kdy",
"stejný").

4.3.2 Text augmented LIME

The text implementation in the current version works as described in the
theoretical section 2.4.1. LIME splits the text into tokens and the neighbour-
hood data points are generated by erasing random tokens from the original
sequence.

We thought that there is a space for improvement in this approach. Especially
in the representation of tokens - a token (word) is expressed as a binary value.
And new variations of the data are generated by setting the word as present
(value 1) or missing (value 0).

Rather than as binary data, we prefer to approach tokens as numerical values,
which, can be changed to a different (plausible) value, not only to 0.

For comparison, for tabular data, LIME creates the perturbed input samples
by replacing some feature values with a new value - randomly drawn from a
normal distribution with the mean and standard deviation calculated from
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the feature values in the training dataset.

We cannot apply the same technique as LIME does for tabular text because
we do not have a fixed feature space. However, we suggest that instead of
removing a word, we could replace it with a similar word.

The key is to represent a token as a numerical value. In contrast to tabular
data, the numerical value of a word is not a scalar but a vector. Such vector
representation of a word is called word embedding.

We propose the following approach based on word similarity:..1. We tokenize the original text sequence s to tokens T, using a word level
tokenization...2. We randomly draw p ∗ |T | words W, where p is a proportion of tokens
which should be replaced (in original text LIME deleted)...3. For each word w ∈ W (to be mutated words) :..a. We generate m words similar to w using and external language

model...b. From the generated words, we draw a word w’. We draw w’ in
random with probabilities proportional to the similarity of each
generated word the original word w..c. We replace w by w’ in the original text sequence s and get mutated
text sequence s’...4. To further use LIME, we also calculate the distance d, between the

original text s and the mutated text s’ as d = D(s, s′) where

D is a defined distance function; vector s = [1]|T |; vector s′ = [w ∈ T :
SF (w, w′)]; SF is a defined similarity function..5. continue in LIME for text execution

One advantage is that we shall only change well-defined segments in the
process. We can therefore reuse the implementation of LIME for text.

The main implementation decision is in 3.a, in generating similar words. For
this purpose we use a fastText model (BGJM16) - a language model for text
representation which operates on a character level and represents a word as a
sum of the character n-gram vectors.9

In particular, we are using a Czech fastText model presented in (GBG+18),
trained on Wikipedia and Common Crawl10 corpora. We use cosine similarity

9We also experimented with the Word2vec (MCCD13) model which operates on a word
level and embeds words based on the context of neighbouring words. However, Word2vec
cannot produce embeddings for out-of-vocabulary words (words not present in the training
data) and therefore it was not suitable for our use case. (fastText is usable even with new
words as long as they had at least one character ngram present in the training data.)

10https://commoncrawl.org/
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as SF and (as for basic text LIME) test different distance functions D.

Results

(a) : Text augmented LIME, p = 0.3 (b) : Traditional LIME

Figure 4.8: Text augmented LIME traditional text LIME

Both LIME methods use: exponential kernel function with cosine dis-
tance and σ = 0.3, explaining 15 significant features selected by highest-weights,
tg = True, 5000 samples
In comparison with basic LIME, text augmented LIME often assigns high value
to conjunctions or prepositions, expecially those with only one letter (e.i. a, i, u,
v, k). In this example it is presented by words "a", "o", "na". The explanation is
not bad, it contains the name of the person of interest ("Lulek"), refers to the
activity in question "popravili" = executed, "potrestán" = punished and there
are references to the area searched "Králové" (a part of a name of a Czech city),
"republice" = republic. It however also contains lots of noise.

We tested the implementation with different parameter settings (as with text
LIME section 4.3.1) and the produced explanations are quite unstable. Even
more volatile compared to traditional text LIME. Sometimes, the generated
explanation works as intended and indeed marks words related to the context.
However, often the method produces a seemingly incoherent explanation
based on prepositions and conjunctions instead (fig. 4.8).

We suspect that the reason could be the fastText model used because as can
be seen in figure fig. 4.9, the similarities between words learnt by the model
can be unreasonable or even discriminatory.

We have noticed, that greater kernel width (σ = 0.5) in combination with low
p (e.g. 0.2) occasionally produced very helpful explanations. These results
were however one of the least stable explanations, we would therefore not
recommend this combination for production. Instead would prefer p[0.2, 0.5]
and kernel width σ ∈ [0.2, 0.35] which produced steadily good results. It is also
worth mentioning, that text augmentation LIME performed well only with
Cosine distance and a highest-weights or forward feature selection algorithm.
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Word
Cosine 

similarity
Trest 0.741931
tresty 0.739696
potrest 0.710362
trestem 0.636579
podmíečný 0.630155
trestu 0.625051
trest. 0.609836
postih 0.603276
doživotí 0.585734
odpykat 0.572743

(a) : "trest" = pun-
ishment

Word
Cosine 

similarity
nebyl 0.815657
Byl 0.763696
býval 0.735082
měl 0.718258
mohl 0.684727
Nebyl 0.67833
stal 0.657446
musel 0.650827
zůstal 0.639246
býval 0.639237

(b) : "byl" = was

Word
Cosine 

similarity
, 0.635318
i 0.565356
či 0.470163
ᖗ勗 0.461585
já 0.461199
4Ra 0.449055
ケ 0.446649
ᘇ厷 0.446437
ajá 0.44569
匷 0.445167

(c) : "a" = and

Word
Cosine 

similarity
islám 0.744493
Islámu 0.654754
Islamismus 0.632659
islamismus 0.62812
al-Islám 0.594323
islámu 0.593809
al-islám 0.58701
Terorismus 0.586763
Muslimové 0.561179
Islámský 0.560412

(d) : "Islám" = Islam

Figure 4.9: Most similar words and Cosine similarities to their original word
For several examples, we generated the 10 most similar words with the fastText
model used in the project to demonstrate some of its weaknesses. There are
many ordinary reasonable embedding (such as in example fig. 4.9a). However,
e.g. for the word "byl" = was fig. 4.9b the closest term found is "nebyl" = "was
not" and while this replacement would completely invert the meaning of the
sentence, the similarity between these two words is higher than the similarity
between the same word with its first letter in capital.
For many one-lettered words, such as "a" = and (fig. 4.9c), many foreign characters
are found, which do not make sense in the Czech context.
Finally, we added fig. 4.9d, which demonstrates how the model is biased and
discriminatory since the 8th closest word found for "Islám" = Islam is "Terorismus"
= Terrorism.

Compared to traditional text LIME, text augmentation LIME performed
better on CsFEVER than on CTKFacts. We believe that it could be caused
by the fastText model used, which was trained on Wikipedia corpus and
therefore it was a better fit for the lingo in CsFEVER.

Execution time. The execution time of text augmented LIME was higher
than of traditional text LIME. This is not a surprise, since retrieving closest
embeddings is an expensive operation, which we repeat many times (p ∗ |T |)
during the course of the method execution. Figure 4.10 demonstrates how
execution time grew with increasing proportion of words mutated.

From our exploration as well as conducted experiments chapter 5 we deduce
that text augmented LIME is a promising variant of traditional text LIME.
While the method currently yields explanations of fluctuating quality, for
future work we would recommend testing it with a different language model
because the unstable performance could be caused by the unreasonable
embedding model.

45



4. Solution .......................................

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of augmented tokens (p)

0

5

10

15

20

25

30

35

40

45

Ex
ec

ut
io

n 
tim

e 
pe

r e
xp

la
na

tio
n 

 [s
]

34.423
35.746 36.842 37.608 38.310 39.119 40.021

Execution time for one explanation with growing proportion of augmented tokens 

Text augmented LIME
Traditional text LIME

Figure 4.10: Execution time of Text augmented LIME with varying proportion
of words mutated in comparison to traditional LIME
Text augmented LIME explanations with word tokenization, exponential kernel
function with cosine distance and σ = 0.3, explaining 15 significant features
selected by highest-weights, tg = True, 5000 samples, p = 0.3 in comparison
with LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.3, explaining 15 significant features selected by
highest-weights, tg = True, 5000 samples Calculated on 50 random instances
from CTKFacts dataset. Time per instance.

Selected parametrization

The best parametrizations were compared together with best traditional text
LIME parametrizations in series of short pairwise blinded tests (described
in section 4.2). For Text augmented LIME we nominated the following
parametrizations:

CsFEVER. (results of the tests can be found in appendix C.1).Text augment LIME explanations with p = 0.3, word tokeniza-
tion, exponential kernel function with cosine distance and σ =
0.3, explaining 15 significant features selected by forward-pass,
5000 samples, tg = True. Text augment LIME explanations with p = 0.4, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.25, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True

The best selected parametrization (used in the experiment) is Text augment
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LIME explanations with p = 0.3, word tokenization, exponential kernel func-
tion with cosine distance and σ = 0.3, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True.

CTKFacts. (results of the tests can be found in appendix C.2). Text augment LIME explanations with p = 0.3, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.25, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True. Text augment LIME explanations with p = 0.4, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.2, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True

The best selected parametrization (used in the experiment) is however none
of the above listed because it was produced by traditional text LIME.

4.3.3 SHAP

For SHAP (section 2.4.3), we used its official library 11 but we could not use
it directly because it did not work for our input format.12

Instead, we forked the project and used our, edited, version. The development
process was challenging since the library is extensive and various (although
usually small) changes were required in different files and methods. We,
therefore, spent a considerable amount of time on making SHAP work with
our use case.

The library itself does not offer such a variety of parameters as LIME does.
This arrives from the difference between the methods themselves. As is
described in section 2.4.1 and visible in eq. (2.3) or eq. (2.4), LIME leaves a
lot of space for further specification (distance function, kernel function, even
interpretable model could be changed). SHAP, on the other hand, is strictly
defined and does not leave much for parametrization. Therefore, we did not
perform such a thorough search of the best parametrization settings as we
did with LIME.

There were only three parameters to consider - the tokenization level, masking
and the approximation algorithm. Here is where we expected to compare
different SHAP options because the library offers several estimation techniques
including Kernel SHAP and Deep SHAP. Nevertheless, none of these advanced
approaches is available for text input.

Both Deep SHAP and Kernel SHAP require, for the estimation of SHAP
values, reference feature values - mean feature values computed from the

11https://www.shap.readthedocs.io/
12Our input consists of two texts, they are both necessary for prediction but only one of

them should be used in the explanation (section 4.1.2).
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training data (or its subset). This is not possible for text input which does
not contain a fixed feature set.

(a) : 500 evaluations (b) : 1000 evaluations (c) : 5000 evaluations

Figure 4.11: Increasing number of evaluations WordPiece tokenization
SHAP with WordPiece tokenization and model mask
The text is tokenized into sub-words. The partitioning algorithm uses hierarchical
clustering to assign tokens into groups. In case of a low number of evaluations
(fig. 4.11a), there are fewer bigger text chunks which are assigned the same
Shapley value. With the growing number of evaluations, the algorithm gets to
the granularity of specified tokens (fig. 4.11c). From our point of view, subword
granularity is too fine and we get better results when we use fewer evaluations,
in this case, 1000 (visible in fig. 4.11b).

Partition explainer. We used a partition explainer, which computes Shapley
values recursively via a hierarchy of features that defines the feature coalitions.
The method uses hierarchical clustering to group features which are then
treated as one unit and the same contributions are assigned to all features
in the group. As a result, the explanations created with a low number of
executions of the model are continuous - tokens close to each other have a
similar value. And with the increasing number of evaluations, the partition
tree is deeper and the explanations become more granular. (Meaning that if
we chose a word tokenization, then there will be significant differences on the
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level of words.) This is well illustrated in figure fig. 4.11 where we increase
the number of evaluations performed.

The runtime of the exact algorithm is quadratic to the number of features
which is a great advantage compared to the exponential complexity of the
Kernel SHAP (section 2.4.3) or the Shepley sampling values section 2.4.2.
However, unless tokenizing on a very coarse level, such as sentences, we not
going to compute true Shapley values but only their approximation.13

It is worth mentioning that the effect of the increasing number of evaluations
was lower for coarser tokenization levels (comparison of fig. 4.11 and fig. 4.12).
It is logical because for fewer features we need fewer evaluations to compute
their exact value. Therefore, considering how the partitioning explainer works,
the changes in the explanation will be diminishing with the increasing number
of evaluations.

13The parameter which we describe as a number of evaluations is actually the maximum
number of evaluations (max evals). If the algorithm needs fewer executions to compute the
exact values, then it will only perform the evaluations necessary.
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(a) : 500 evaluations (b) : 1000 evaluations

Figure 4.12: Increasing number of evaluations word tokenization

SHAP with word tokenization and model mask
With coarser granularity of tokens, the differences between explanations
diminish. For some explanations, these two settings produced completely the
same results. This explanation well demonstrates the bias (most likely in the
model), which could also confuse the user. The most significant phrases found
are "vrah Vladimír Lulek" = murderer Vladimír Lulek and "Rozsudek smrti" =
death sentence. The second term is however in the article used in reference to a
different person and while provides context what the article is about, it does not
contain any information about the truthfulness of the claim. Nevertheless, the
next significant term is "popravili Vladimíra Lulka" = "they executed Vladimir
Lulek", which leads us back to the right track.
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Tokenization level. Figure 4.11c demonstrates well that sub-words are not
very suitable for interpretability purposes. It benefits from the grouping
SHAP makes for a fewer number of evaluations because then the text units
are more coherent. In comparison, we reached steadily good results with
word tokenization (fig. 4.12).

In fig. 4.13 we can see the results of the coarsest tokenization tested - sentence
and sub-sentence. We started with MorphoDiTa sentence tokenizer for the
Czech language from (SSH14), whose output we wrapped, such that it worked
with SHAP. Its results were pleasing. In many cases, the explanation contained
only one sentence which14 held all the crucial information. However, in other
cases, the explanation contained most of the original text. That is mainly
because the articles use primarily compound sentences. Therefore, next, we
implemented a sub-sentence tokenizer, which further splits the outcome of
the sentence tokenizer on conjunctions, which are in the Czech language used
between sentences.15 The results are presented in fig. B.1b and we consider
it to be the best explainer we found.

Nevertheless, we did not include this parametrization in the experiments. The
experiments contain only parametrizations with word tokenization because
we wanted to ensure blinding and for text augmented LIME (which proved
to be the best variant for LIME for CsFEVER dataset) we could not use any
other tokenization level then word tokenization16.

Selected parametrization

The following parametrizations were compared in series of short pairwise
blinded tests (described in section 4.2) to find best parametrization for the
experiments.

CsFEVER. (results of the tests can be found in appendix C.1). SHAP with word tokenization, model mask, 1000 maximal evaluations. SHAP with word tokenization, model mask, 5000 maximal
evaluations

14SHAP calculates values for all tokens, therefore the explanation contained all sentences
but only to one of them assigned a significant value.

15Our pragmatic approach turned out to work well but it does not separate clauses
which are connected by a comma or conjunction often used to separate words (e.g. "a" =
and). We would prefer to tokenize compound sentences into individual clauses. However,
that is a complex linguistic task not within the scope of this thesis.

16For text augmented LIME, WordPiece tokenization did not make much sense because
the majority of the "words" created from the mutated sub-words did not exist in the Czech
language. We would like to test text augmented LIME with the sentence and sub-sentence
tokenization, however, it is a complex task, out of the scope of this work. It would require
a sentence embedding model and a base of similar sentences.
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(a) : Sentence SHAP (b) : Sub-sentence SHAP

Figure 4.13: Increasing number of evaluations word tokenization

SHAP with model mask and 1000 maximal evaluation

The best selected parametrization (used in the experiment) is SHAP with
word tokenization, model mask, 5000 maximal evaluations.

CTKFacts. (results of the tests can be found in appendix C.2). SHAP with word tokenization, model mask, 500 maximal evaluations. SHAP with word tokenization, model mask, 1000 maximal
evaluations

The best selected parametrization (used in the experiment) is SHAP with
word tokenization, model mask, 1000 maximal evaluations.
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Chapter 5

Experiments

In this chapter, we are going to compare explainability methods (which we
presented in section 4.3). We will now describe the design and methodology
used for our experiments and later present their results.

5.1 Design

The one objective we essentially want to achieve with this project is to enable
people to find the key information in text as effortlessly and quickly as possible.
Therefore, we decided to design our experiments with respect to this objective
and measure the contribution of the explanation for the end-user.

Since the task of helping human fact-checkers verify claims relies on human-
computer interaction, we use human-based evaluation, which is well suited
for such tasks, as we explained in section 2.5. The strongest evidence would
be provided with an application-grounded evaluation. However, conducting
such an experiment would require engaging the target audience - journalists,
and we do not have the resources necessary for that.

Therefore, we are going to administrate human-ground evaluation and conduct
experiments with non-professional human subjects.

Binary forced-choice experiment. On both, CsFEVER and CTKFacts
datasets, we will conduct an experiment in which a human subject is presented
with two explanations for a given claim - one generated by best parametrized
LIME and one by best parametrized SHAP, its correct label and is asked to
choose which explanation is more helpful.

5.1.1 Binary forced choice experiment

In this experiment we are going to compare how helpful explanations produced
by SHAP and LIME methods are to the human audience.
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Design decisions

Choice of method settings. Since the experiment requires human annotators
(and thus is demanding to administer), we decided to conduct it only once
for each dataset - with a single, best applicable method setting from both
LIME and SHAP. We also wanted the test to be blinded, therefore we had to
decide on a common token granularity for both these methods.1 with us as
annotators.

We decided to use word granularity because it provided reasonable but varying
results and it could be used by all tested methods.

Next, we had to choose one, best, parameter setting for both methods (and
word tokenization), such that we could compare them with each other in the
experiment.

We realise, that a robust solution would be to perform this experiment
repeatedly for each explanation method, such that we could compare different
parameter settings until we found the best one. However, that was not a
feasible solution due to the capacity of annotators. Therefore, instead, we use
procedure described in section 4.2, which is basically a small and less formal
version of this experiment2.

Sampling. Once we established which methods and their settings we would
use, we were able to use them to compute explanations. We decided to focus
only on verifiable correctly predicted examples, i.e. we filtered out data points
for which the model to be explained predicted an incorrect label or the correct
label was NEI. For each dataset, we randomly shuffled such explanations,
divided them into multiple groups, and passed each to a different annotator.
Each example would therefore be evaluated only once. This way we can cover
more examples (and get more conclusive results). However, it comes at the
cost of the ground truth being based on one opinion. Furthermore, it made
us unable to investigate whether annotators generally agreed on the same
data points and as such better judge their objectivity.

Realization

To conduct the experiment, we created a simple annotation platform which
is shown in fig. 5.1.

The annotator is presented with a claim, its predicted label and two explana-
tions side by side. And they are asked to choose which explanation they find

1An annotator would probably notice a difference in explanations and after a few
examples, they could decide based on experience, or their preference for a granularity level
could decide instead of the suitability of the whole explanation.

2We use the same settings and annotation platform as for the experiment itself (sec-
tion 5.1.1)
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Figure 5.1: Annotation platform. An annotator is presented with claim, its label
and two explanations side by side and is asked, which they find more helpful to
guide them to the correct label.

more helpful to correctly decide whether the claim is supported or refuted by
the background text. Choosing neither is not an option, user must always
pick one or the other.3

The explanation itself has a form of highlighted background text. Not to
influence the annotator with different visualization forms, we first unified the
visualization to text plot from SHAP. An example of such a transformation
for LIME explanation can be found in the appendix. (appendix D.1)

For each example, we randomly assign right and left position to SHAP and
LIME, such that the annotator cannot rely on the explanation position.

The answer is recorded with the name of preferred method.

3If the explanations were exactly the same or the data point was corrupted and the
background text did not contain the information necessary, the annotator marked the
instance id and we removed the instance from the evaluated data.
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Formal assignment

We denote a discrete random variable x = number of times SHAP produced
more helpful explanation than LIME.

The random variable x then has a binomial distribution x ∽ B(n, π) (Joh16).

n is number of independent experiments. In our case number of evaluated
claim-context pairs.

π is the population parameter and corresponds to the probability of SHAP
producing more helpful explanation in any trial.4

To determine, whether we can conclude that either SHAP or LIME produce
better explanations more often, we are going to perform two exact one-tailed
binomial hypothesis tests (Joh16) with significance level α = 0.05 and the
following settings:..1. We test, whether SHAP produces more helpful explanation than LIME

in more then 50% of cases.

H1
0 : π ≤ 0.5

H1
A: π > 0.5..2. We test, whether LIME produces more helpful explanation than SHAP

in more then 50% of cases.

H2
0 : π ≥ 0.5

H2
A: π < 0.5

5.2 Results

5.2.1 Binary forced choice experiment for CsFever data

The experiment as described in section 5.1.1 was conducted on 515 samples
randomly pulled from the dataset of verifiable correctly predicted explanations.

The compared methods are SHAP with sampling approximation and maximum
of 5000 evaluations (further just SHAP) and Text augment LIME explanations
with p = 0.3, word tokenization, exponential kernel function with cosine

4Percentage of all claim-context pairs (in the entire population) for which SHAP
produces better result.

5In total, the annotators assessed 115 samples, as can be seen in appendix D.2. However,
the sampled subset contained many samples, for whom the background text did not contain
the information needed, e.i. the label of the data point was incorrect, it was marked as
verifiable instead of NEI. This is a known problem in CsFEVER dataset as described in
section 3.1.1.
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distance and σ = 0.3, explaining 15 significant features selected by highest-
weights, 5000 samples, tg = True (further just LIME). They were chosen
according to the plan described in the experiment design section (section 5.1.1)
- e.i. is with a series of short tests described in section 4.2 whose results are
available in the appendix C.1.

The collected and anonymized data can be found in appendix D.2.

LIME SHAP Total

18 33 51

Table 5.1: Binary forced-choice experiment to compare LIME and SHAP
methods for CsFEVER dataset

As specified in section 5.1.1, we denote a discrete random variable x = number
of times SHAP produced a more helpful explanation than LIME.

We are now going to perform two one-tailed exact binomial tests x ∽ B(51, π)
with significance level α = 0.05 :..1. H1

0 : π ≤ 0.56

H1
A: π > 0.5 7

p-value = 0.0244 < 0.05

Since the p-value is less than α, we reject the null hypothesis and therefore
conclude that SHAP produces a more helpful explanation more frequently
than LIME...2. Considering the significant result from the previous test, refusing that
LIME produces better explanations as often, or more often than SHAP,
the following test is redundant.

H2
0 : π ≥ 0.5

H2
A: π < 0.5 8

p-value = 0.98795 > 0.05

We do not reject the null hypothesis.

6SHAP produces a more helpful explanation than LIME in 50%, or less than 50% of
cases. Therefore either LIME is a more suitable method or both methods are equal and
their choice is arbitrary.

7SHAP produces better results more frequently then LIME.
8SHAP produces a more helpful explanation than LIME in less than 50% of cases.

Therefore by extension LIME produces a more helpful explanation more frequently than
SHAP.
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5.2.2 Binary forced choice experiment for CTKFacts data

The experiment as described in section 5.1.1 was conducted on 75 samples
randomly pulled from the dataset of verifiable correctly predicted explanations.

The compared methods are SHAP with sampling approximation and maximum
of 1000 evaluations(further just SHAP) and LIME with exponential kernel
function with kernel width 0.25 and cosine distance (further just LIME). They
were chosen according to the plan described in the experiment design section
(section 5.1.1) - e.i. is with a series of short tests described in section 4.2
whose results are available in the appendix C.2.

The collected and anonymized data can be found in appendix D.3.

LIME SHAP Total

13 62 75

Table 5.2: Binary forced-choice experiment to compare LIME and SHAP
methods for CTKFacts dataset

As specified in section 5.1.1, we denote a discrete random variable x = number
of times SHAP produced a more helpful explanation than LIME.

We are now going to perform two one-tailed exact binomial tests x ∽ B(75, π)
with significance level α = 0.05 :..1. H1

0 : π ≤ 0.56

H1
A: π > 0.5 7

p-value = 4.20e-9 < 0.05

Since the p-value is less than α, we reject the null hypothesis and therefore
conclude that SHAP produces a more helpful explanation more frequently
than LIME...2. Considering the significant result from the previous test, refusing that
LIME produces better explanations as often, or more often than SHAP,
the following test is redundant.

H2
0 : π ≥ 0.5

H2
A: π < 0.5 8

p-value = 0.99999999915308 > 0.05

We do not reject the null hypothesis.
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Chapter 6

Conclusion

In this work, we have explored interpretability methods and the possibilities
of their application to the state-of-the-art natural language processing (NLP)
models used within fact-checking pipeline.

We assessed which of the pipeline tasks is most beneficial and suitable for
interpretation and concluded that it is the natural language inference (NLI)
task, which is at the end of the pipeline and infers whether a claim is supported,
refuted or unverifiable from the textual context.

Further, we focused on the application of interpretability methods on NLI
models fine-tuned for claim verification on two Czech datasets - CsFEVER
and CTKFacts.

More specifically, we compared two local model-agnostic interpretability
methods - LIME and SHAP. For this task, we used and edited partition
explainer from SHAP library1 and text explainer from LIME library2. For
LIME we also designed and implemented a text-augmented version, that
mutates the textual input based on word similarities in a fastText model.

We assessed different characteristics of the methods and compared many
different parameter settings to find the best parametrization for each method
and dataset, which we then compared in binary forced-choice experiments
using a human-grounded evaluation.

The results of the tests were statistically evaluated and show that for both
datasets SHAP is the better-suited method because the explanations it
produces were found more helpful for the majority of instances.

All methods that we tested in the experiments used word tokenization. How-
ever, from our, subjective, perspective sub-sentence tokenization for SHAP
yields better results. We did not include this setting in the experiment to
ensure blinding but we propose it for further testing.

1https://shap.readthedocs.io/, available under MIT license
2https://lime-ml.readthedocs.io, available under BSD 2-Clause "Simplified" License
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6. Conclusion......................................
Future work

. Extend testing to application-grounded test, which provides stronger
evidence for human-computer interaction and allows testing of methods
with very different explanations, e.g. with varying tokenization. This
would require real domain professionals (e.g. students of journalism) and
a real task. We propose the following design:. For a series of claims, the annotator is instructed to verify, whether

the claim is supported or refuted based on a provided context.. For each instance, they are presented with a claim and an explana-
tion (generated by one of the randomly chosen compared methods)..We measure the correctness of their choices (using standard metrics
- accuracy, recall...) and the time required for the task..We statistically evaluate which method produced explanations which
helped annotators be more efficient.. The text-augmented LIME rely on embedding model used. We propose

training our own fastText model on our available training data.. Interpret explanations of the document retrieval task.
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Appendix A

Abbreviations used

BERT Bidirectional Encoder Representations from Transformers

ČTK Czech Press Agency

DR Fact Extraction and Verification

FEVER Fact Extraction and Verification

Lasso Least Absolute Shrinkage and Selection Operator

LIME Local Interpretable Model-agnostic Explanations

NEI Not Enough Info (label)

NLI Natural Language Inference

NLP Natural Language Processing

RNN Recurrent Neural Networks

RTE Recognizing Textual Entailment

SHAP SHapley Additive exPlanations

TF-IDF Term Frequency - Inverse Document Frequency
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Appendix B

Functional evaluation metric

When we started searching through literature for information about inter-
pretability assessment measures, we hoped to find a metric, which we could
apply to the gained explanation results and rigorously compare the results of
individual methods and their parameters among each other without the need
for human evaluation.

However, as we wrote in section 2.5, automatic evaluation of explanations
is problematic, presumably due to the subjective nature of explainability.
Therefore, throughout the work, we have used human-based evaluations, even
though, we think that it could be biased, due to the discussed imperceptible
line between the model’s correctness and the interpretability fidelity.

To gain another perspective, we developed a functional evaluation metric,
which we could compare with our human-based experiment results. It is a
modification of an unsupervised approach from (GG21) and it measures the
consistency of explanations produced by the interpretability method - how
well the methods are able to define distinct groups of observations.

The authors compare LIME and SHAP explanations for tabular data. They
use both methods to produce explanations for a constant set of input instances.
They then cluster the explanations, which have a format of feature-weight
pairs1 into k groups and measure Silhouette coefficient (Rou87) and the
Davies–Bouldin index (DB79) which both reflect the within-cluster cohesion
and between-clusters separation. The intuition behind the method is that
there should be a single or a few patterns within the explanations within
the explanations created by the same method and parameter setting (some
features are constantly more important than others).

In the paper, the method was used on tabular data, i.e. with a constant
feature set. Therefore, to use the method with our textual input, we had to
transform our text tokens2 into a fixed feature space.

1For tabular data, we can imagine a table with a row for each explanation, a column
for each feature and a weight assigned to the feature in the explanation as the value.

2Since we apply the metric only to methods using word tokenization, we use token and
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B. Functional evaluation metric ..............................
Transformation into fixed feature space. We decided to cluster the tokens
into n groups.3 In order to do so, we needed to represent the words as
numerical values - word embeddings4. For this purpose, we used the same
fastText model as we did for Text augmented LIME (section 4.3.2). We
clustered the normalized embeddings using clustering algorithms (Optics,
DBSCAN, Spectral clustering) but the best results were reached with K-
means. Most other algorithms usually contained one giant cluster with the
majority of all tokens.

Then we mapped the explanations into the new feature space - each expla-
nation had n features, whose values were aggregations of the original values
assigned to features which were now grouped together. We used maximum
as an aggregation function.5

Finally, we applied the clustering as described in the paper - using K-means
and spectral clustering and Euclidean distance.

Results. While results, which can be found in table B.1 and table B.2 look
overly well for LIME, from fig. B.1 we see that the high Silhouette coefficient
and low Davies–Bouldin index is caused by the fact that for LIME nearly all
explanations are grouped in the same cluster.

The original paper does not consider such eventuality. We assume one or
more of the following reasons:. The explanations produced by LIME are all very consistent assigning

similar values to similar words. Our experience and used literature
however do not support such findings.. LIME explanations are so chaotic that no patterns among them could be
found. We also find this strange because while the results of LIME were
inconsistent the method did not perform so much worse than SHAP for
whom the metric worked.. The approximations, made to unite the feature space and transform the
explanations, result in losing too much information and the whole metric
is futile. This is possible. However, for SHAP we obtain reasonable,
consistent results (compared to the paper). Therefore, we do not un-
derstand why the metric does not work properly for LIME only. When

word interchangeably in this section.
3We initially tested using a large feature space with all tokens with a LIME weight

or SHAP value. This approach however did not yield good results because the number of
features significantly exceeded the number of data points and the resulting dataset contained
mainly missing values.

4Given the nature of embeddings, the idea was that semantically similar words would
be clustered together, which matches them - on text meaning level - representing a similar
feature.

5We tested summing the values, or their absolute values, however maximum resulted in
the most stable results.
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.............................. B. Functional evaluation metric

often the words highly evaluated in the explanations were the same for
both methods.

Since we do not understand what exactly the results represent and further
research is needed, we do not draw any conclusions from this experiment.

(a) : LIME (b) : SHAP

Figure B.1: CsFEVER : Size of clusters
Silhouette visualization of clusters with k = 2, k = 4 and k = 6. We see that
while SHAP’s explantations are reasonably distributed in all k clusters, LIME’s
explanations are nearly all grouped in one.
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B. Functional evaluation metric ..............................

Method Sil. K-means DBI K-means Sil. Spectral DBI Spectral
TA LIME1 0.818 0.485 0.759 1.172
TA LIME2 0.68 0.86 0.679 0.943
LIME3 0.909 0.763 0.902 0.722
LIME4 0.862 1.003 0.86 1.018
LIME5 0.856 0.877 0.863 0.929
SHAP6 0.276 1.238 0.286 1.172
SHAP7 0.244 1.235 0.28 1.149

1 Text augment LIME explanations with p = 0.4, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.25, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True

2 Text augment LIME explanations with p = 0.3, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.3, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True

3 LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.25, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True

4 LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.23, features selected by Lasso, 5000
samples, tg = True

5 LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.3, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True

6 SHAP with word tokenization, model mask, 5000 maximal evaluations
7 SHAP with word tokenization, model mask, 1000 maximal evaluations
Table B.1: CsFEVER: Functional evaluation of interpretability consistency
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.............................. B. Functional evaluation metric

Method Sil. K-means DBI K-means Sil. Spectral DBI Spectral
LIME1 0.826 1.001 0.837 1.003
LIME2 0.802 1.039 0.803 1.144
TA LIME3 0.89 0.45 0.722 1.35
TA LIME4 0.968 0 0.847 3.012
SHAP5 0.338 1.163 0.386 1.267
SHAP6 0.297 1.373 0.341 1.457

1 LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.3, explaining 15 significant features
selected by forward-pass, 5000 samples, tg = True

2 LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.25, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True

3 Text augment LIME explanations with p = 0.3, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.25, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True

4 Text augment LIME explanations with p = 0.4, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.2, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True

5 SHAP with word tokenization, model mask, 1000 maximal evaluations
6 SHAP with word tokenization, model mask, 500 maximal evaluations
Table B.2: CTKFacts: Functional evaluation of interpretability consistency
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Appendix C

Choice of the best parametrization

C.1 CsFEVER

For CsFEVER we often had to exclude multiple examples because the data
was corrupted and the context did not contain the information needed to
verify the claim. In other words, the label was incorrect and it was supposed to
be NEI. We did not sample new examples and only evaluated valid responses.

LIME..1. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.3, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True..2. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.23, features selected by Lasso, 5000
samples, tg = True..3. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.25, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True..4. Text augment LIME explanations with p = 0.3, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.3, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True..5. Text augment LIME explanations with p = 0.4, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.25, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True

Setting 1 Setting 2 Total

8 3 12

Table C.1: CsFEVER: Compare LIME parametrizations

75



C. Choice of the best parametrization ...........................
Setting 3 Setting 5 Total

4 9 12

Table C.2: CsFEVER: Compare LIME parametrizations

Setting 4 Setting 5 Total

8 4 12

Table C.3: CsFEVER: Compare LIME parametrizations

Setting 1 Setting 4 Total

2 13 15

Table C.4: CsFEVER: Compare LIME parametrizations

SHAP..1. SHAP with word tokenization, model mask, 1000 maximal evaluations..2. SHAP with word tokenization, model mask, 5000 maximal evaluations

SHAP max_evals 5000 SHAP max_evals 1000 Total

10 4 14

Table C.5: CsFEVER: Compare SHAP parametrizations

C.2 CTKFacts

LIME..1. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.3, explaining 15 significant features
selected by forward-pass, 5000 samples, tg = True..2. LIME explanations with word tokenization, exponential kernel function
with cosine distance and σ = 0.25, explaining 15 significant features
selected by highest-weights, 5000 samples, tg = True..3. Text augment LIME explanations with p = 0.3, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.25, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True..4. Text augment LIME explanations with p = 0.4, word tokenization, expo-
nential kernel function with cosine distance and σ = 0.2, explaining 15
significant features selected by highest-weights, 5000 samples, tg = True
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Setting 1 Setting 2 Total

6 9 15

Table C.6: CTKFacts: Compare LIME parametrizations

Setting 3 Setting 4 Total

4 11 15

Table C.7: CTKFacts: Compare LIME parametrizations

Setting 1 Setting 4 Total

8 7 15

Table C.8: CTKFacts: Compare LIME parametrizations
We selected Setting 1 according to the methodology specified prior to the
experiment, but with such close voting, we would appreciate more samples.

SHAP

. SHAP with word tokenization, model mask, 500 maximal evaluations. SHAP with word tokenization, model mask, 1000 maximal evaluations

We excluded two samples because both methods produced the exactly same
results. Overall, the explanations were often very similar and we decided
based on nuances in the explanations. However, the results in table C.9 shows,
that SHAP with max_evals 1000 produced more helpful explanations.

SHAP max_evals 500 SHAP max_evals 1000 Total

6 9 15

Table C.9: CTKFacts: Compare SHAP parametrizations
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Appendix D

Experiments

D.1 Transformation of LIME to SHAP

An example of an explanation in LIME, visualized with LIME visualization
of highlighted text (fig. D.1), transformed into SHAP explanation visualized
with SHAP visualization of highlighted text (fig. D.2).

Figure D.1: LIME visualization

Figure D.2: SHAP visualization
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D. Experiments .....................................
D.2 Binary forced choice experiment for CsFEVER
data

claim answer user
4828 SHAP user00

5013 SHAP user01

19863 LIME user01

19197 SHAP user01

4871 LIME user01

11533 LIME user01

18517 LIME user01

15363 LIME user01

1288 SHAP user01

18402 LIME user01

6217 LIME user01

20882 LIME user01

9293 SHAP user01

6038 LIME user01

1602 SHAP user01

17846 SHAP user01

9158 SHAP user01

claim answer user
1134 SHAP user01

4033 SHAP user01

16167 SHAP user01

4187 LIME user01

6182 SHAP user01

19228 SHAP user01

6120 LIME user01

18888 SHAP user01

10920 SHAP user01

9133 SHAP user01

8894 SHAP user01

8996 LIME user01

18330 SHAP user01

6150 LIME user01

12958 SHAP user01

11366 SHAP user02

8637 SHAP user02

claim answer user
4452 SHAP user02

9762 SHAP user02

3749 SHAP user02

14077 LIME user02

1892 LIME user02

14935 LIME user02

3473 SHAP user02

5261 SHAP user02

8946 SHAP user02

17449 SHAP user02

13756 SHAP user02

2310 LIME user02

18907 SHAP user02

3696 SHAP user02

14055 SHAP user02

11015 SHAP user02

127 LIME user02

Table D.1: Collected anonymized data for CsFEVER experiment

D.3 Binary forced choice experiment for CTKFacts
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..................... D.3. Binary forced choice experiment for CTKFacts

claim_id answer user_name
207 SHAP user01

44 SHAP user01

409 SHAP user01

347 SHAP user01

201 SHAP user01

326 SHAP user01

350 LIME user01

294 SHAP user01

60 SHAP user01

266 SHAP user01

23 SHAP user01

379 SHAP user01

331 SHAP user01

339 SHAP user01

204 SHAP user01

151 SHAP user01

437 SHAP user01

68 LIME user01

297 SHAP user01

268 SHAP user01

407 LIME user01

48 SHAP user01

387 SHAP user01

433 SHAP user01

406 SHAP user01

claim_id answer user_name
451 SHAP user01

82 LIME user01

59 SHAP user01

257 SHAP user01

27 SHAP user01

470 SHAP user01

97 SHAP user01

271 SHAP user01

249 SHAP user01

107 SHAP user01

262 SHAP user01

334 SHAP user01

100 SHAP user01

284 LIME user01

182 SHAP user01

338 SHAP user01

408 SHAP user01

135 SHAP user01

9 SHAP user01

340 SHAP user01

126 SHAP user01

244 SHAP user01

360 SHAP user01

56 SHAP user01

385 SHAP user01

Table D.2: Collected anonymized data for CTKFacts experiment - part I
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D. Experiments .....................................

claim_id answer user_name
369 SHAP user01

265 SHAP user01

282 SHAP user01

21 LIME user01

186 SHAP user00

259 SHAP user00

187 SHAP user00

475 LIME user00

217 LIME user00

33 SHAP user00

341 SHAP user00

41 SHAP user00

289 LIME user00

211 SHAP user00

325 SHAP user00

80 SHAP user00

458 LIME user00

205 LIME user00

128 LIME user00

66 SHAP user00

54 SHAP user00

24 SHAP user00

415 LIME user00

288 SHAP user00

469 SHAP user00

Table D.3: Collected anonymized data for CTKFacts experiment - part II
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Appendix E

List of Attachements

. Source code for the thesis.

The enclosed source code does not contain models due to their size
and the fact, that they were not trained as a part of this work.
The explained models can be found on https://huggingface.co/ctu-aic
and the used fastText model on https://fasttext.cc/docs/en/crawl-vectors.
html
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