
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

Infrastructure for networked root
filesystems of Linux-based
embedded systems

Martin Škoudlil

May 2022
Supervisor: Ing. Michal Sojka, Ph.D.

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492308Osobní číslo:MartinJméno:ŠkoudlilPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Infrastruktura síťových kořenových souborových systémů pro Linuxové embedded systémy

Název bakalářské práce anglicky:

Infrastructure for networked root filesystems of Linux-based embedded systems

Pokyny pro vypracování:
Mounting the root file system over the network simplifies the development of Linux-based embedded systems. The NFS
file system is well suited for this task, but running the NFS server requires root privileges to configure it and manipulate
the files on the exported file system.
The goal of this work is to allow users without root privileges to control the NFS server and the files it serves and to build
an efficient server infrastructure that facilitates embedded systems development.
1. Become familiar with the Linux network booting process and the novaboot tool.
2. Review userspace NFS servers such as unfs3 and Ganesha.
3. Extend the unfs3 server to be compatible with modern Linux systems (libtirpc) and integrate it with the server part of
the novaboot tool.
4. Investigate the possibility of using NixOS to prepare cross-compiled NFS-mounted root file systems. This will require
read-only NFS-mounting of the Nix store and extending the Nix daemon to support cross-compilation on the remote builder.
5. Evaluate the resulting infrastructure with Buildroot, Yocto, and NixOS distributions. Document the results thoroughly.

Seznam doporučené literatury:
1. Mounting the root filesystem via NFS (nfsroot):
https://www.kernel.org/doc/html/latest/admin-guide/nfs/nfsroot.html
2. Novaboot documentation:
https://github.com/wentasah/novaboot/blob/master/README.pod
3. Nix Manual: https://nixos.org/manual/nix/stable/
4. Nix Pills: https://nixos.org/guides/nix-pills/

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Michal Sojka, Ph.D. vestavěné systémy CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 02.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Michal Sojka, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

Foremost, I would like to thank my
supervisor Ing. Michal Sojka, Ph.D.
for all the valuable information and
the guidance he provided. I am also
grateful for the moral support provided
by my family.

I declare that I elaborated this thesis
on my own and that I mentioned all the
information sources that have been used
in accordance with the Guideline for ad-
hering to ethical principles in the course
of elaborating a final academic thesis.

In Prague 20.05.2022

. .

v

Abstrakt / Abstract

Tato bakalářská práce se zabývá po-
užitím protokolu NFS pro připojování
kořenových souborových systémů. Cílem
je usnadnění vývoje větších vestavěných
systémů založených na jádře Linux. K
tomu je použit nástroj Novaboot, který
integrujeme s NFS serverem běžícím
v uživatelském prostoru (UNFS3). Vý-
sledkem je možnost nabootovat cílový
systém z lokálního obrazu, aniž by uži-
vatel musel konfigurovat NFS, TFTP či
DHCP servery.

Dále se v práci zabýváme Linuxovou
distribucí NixOS a analyzujeme mož-
nosti bootování této distribuce pomocí
NFS a nástroje Novaboot. Zaměřujeme
se na křížovou kompilaci a porovná-
váme varianty vzdáleného kompilování
potřebných balíčků.

Při testování jsme zjistili, že výsledný
systém je použitelný, ale má drobné ne-
dostatky.

Klíčová slova: bootování, embedded
systémy, křížová kompilace, Novaboot,
NFS, Nix remote builds, Nix daemon,
NixOS, UNFS3

Překlad titulu: Infrastruktura síťo-
vých kořenových souborových systémů
pro Linuxové embedded systémy

The aim of this bachelor thesis is the
usage of the NFS protocol for mounting
root filesystems. The goal is to facilitate
the development of larger embedded sys-
tems based on the Linux kernel. To do
this, we use the Novaboot tool, which
we integrate with NFS server running
in the userspace (UNFS3). The result
is the ability to boot the target system
from a local image without the user hav-
ing to configure NFS, TFTP, or DHCP
servers.

Furthermore, this thesis examines the
Linux distribution NixOS and analyzes
the possibilities of booting this distribu-
tion using NFS and the Novaboot tool.
We focus on cross-compilation and com-
pare options for remotely compiling the
necessary packages.

In our testing, we found that the re-
sulting system is usable but has minor
shortcomings.

Keywords: booting, embedded sys-
tems, cross-compilation, Novaboot,
NFS, Nix remote builds, Nix daemon,
NixOS, UNFS3

vi

Contents /

1 Introduction 1

2 Background 2
2.1 Requirements 2
2.2 Buildroot 2
2.3 Novaboot 3

2.3.1 The main script 3
2.3.2 The server-side part 3

2.4 Network File System 3
2.4.1 Kernel NFS server 4
2.4.2 User-Space NFSv3 Server . . 4
2.4.3 NFS Ganesha 5

2.5 Faking file permissions 5
2.5.1 Fakeroot 5
2.5.2 Fakeroot NG 5
2.5.3 User namespaces 6

2.6 Systemd services 6
2.7 Nix and NixOS 7

2.7.1 Nix store 7
2.7.2 Nixpkgs 7
2.7.3 Nix configuration file 7
2.7.4 Remote Builds 7
2.7.5 Nix daemon 8
2.7.6 Cross compilation 8
2.7.7 Nix booting stages 8

3 Analysis 9
3.1 Choosing NFS server 9

3.1.1 Kernel NFS server 9
3.1.2 NFS Ganesha 9
3.1.3 UNFS3 9
3.1.4 UNFS3 with a Database . . 10
3.1.5 Wrapped UNFS3 10
3.1.6 Final choice 10

3.2 Creation of user namespaces . . 11
3.3 Novaboot server with NFS . . . 11

3.3.1 Enabling and disabling
the NFS support 11

3.3.2 Integrating UNFS3
with novaboot-shell 11

3.3.3 Copying root filesys-
tems to Novaboot server . . 12

3.4 NixOS 12
3.4.1 Background 12
3.4.2 NixOS through NFS 12
3.4.3 Remote builds 13
3.4.4 NixOS – remote daemon . 13

3.4.5 Remote cross-builds 14
3.5 Novaboot and NixOS 14

4 Implementation 15
4.1 Changes to UNFS3 15

4.1.1 Port file 15
4.1.2 Modifying time on symlink 15

4.2 User namespace creator 16
4.3 Integration of UNFS3 with

Novaboot-shell 16
4.3.1 Novaboot NFS config-

uration file 16
4.3.2 UNFS3 systemd service . . 17
4.3.3 The core integration

of Novaboot-shell with
UNFS3 17

4.4 NixOS image for Novaboot . . 20
4.4.1 Modifying the NixOS’

stage 1 init 20
4.4.2 Creating the filesys-

tems entry for NixOS . . . 21
4.4.3 Cross-compiling and

using the image 21
4.5 Remote builds on NixOS 21

4.5.1 Using nix daemon and
NFS 22

4.5.2 Patching the Nixpkgs . . . 23
5 Evaluation 25

5.1 UNFS3’s compilation 25
5.2 Booting a Buildroot-based

system with Novaboot 25
5.2.1 Booting on a virtual

device (QEMU) 25
5.2.2 Booting on Raspberry

Pi 4 26
5.3 Bootnix NixOS with Nov-

aboot and UNFS3 server 27
5.3.1 Failing to start Nix-

daemon 27
5.3.2 Failing to use Nix daemon . 27

5.4 Booting NixOS with Nov-
aboot and kernel NFS server . . 28

5.5 Remote Nix daemon 28
5.5.1 Missing Nix store paths . . 28

5.6 Performance test of differ-
ent NFS servers 29

vii

6 Conclusion 31
6.1 Future work 31

A Git repositories 33
A.1 Integration repository 33
A.2 UNFS3 33
A.3 User namespace creator 33
A.4 Novaboot 33
A.5 Nixpkgs 33
A.6 Cross-system 34

B Contents of the attached archive35

References 36

viii

Tables / Figures

5.1 Performance test of NFS
servers . 30

2.1 Typical Novaboot setups3
2.2 User namespaces example6
3.1 Novaboot setups with NFS 10
3.2 Remote build with NFS re-

dundant transfers 13
4.1.1 Example UNFS3 port file 15

4.1 Error state file handle when
changing m time 16

4.2.1 Example usage of userns 16
4.3.1 Example .novaboot-nfs file . . 17
4.3.2 Command to start the UN-

FS3 systemd service. 17
4.3.4 New NFS swithes in get-

config . 17
4.3.3 novaboot-unfsd@.service

unit file . 18
4.2 novaboot-shell communi-

cation sequence diagram 19
4.4.1 Example NixOS root filesys-

tem configuration using NFS . . 20
4.4.2 Example usage of nfsPefix

and nfsOptions 20
4.3 Remote Nix daemon deploy-

ment diagram 22
4.5.1 Copying Nix profile, channels

and system to server 22
4.5.2 Mounting NFS exported re-

mote Nix store 22
4.5.3 Creating missing result link

and gc root . 23
4.5.4 Cross compilation command

with Nix deamon 23
4.5.5 Cross compilation com-

mand with Nix daemon and
patched Nixpkgs 23

5.1 Terminal output after boot-
ing the Buildroot system in
QEMU with NFS 26

5.2.1 File config.txt for the
Raspberry Pi 4 26

5.3.1 Error messages in journal for
nix-daemon.socket 27

5.3.2 Start Nix daemon 27
5.3.3 Error message printed when

Nix does not use Nix daemon . 27

ix

5.3.4 Setting NIX_REMOTE to tell
Nix to use Nix daemon 27

5.4.1 Exports file used with the
kernel NFS server 28

5.6.1 Performance test command 29
5.2 Screenshot of performance

testing UNFS3 in user
namespace . 30

x

Chapter 1
Introduction

Developing software for embedded devices is becoming more and more important as the
Internet of Things devices gain popularity. This work will focus on the ones that are
running Linux and their software is implemented primarily in userspace. Developers
can download kernel sources, compile their own kernel, prepare the root filesystem,
deploy it to the device, and boot the system on the device, all by themselves. This
requires time and knowledge.

There are tools that simplify or even automate this process, such as Buildroot or
Novaboot. Buildroot1 can create simple boot images for many devices, but the booting
and testing of them often require physical access to the device. Novaboot2 is a tool that
simplifies the deployment process and also allows you to deploy it to boards connected
to the remote server. However, its main limitation is that out of the box it uses the
TFTP protocol and loads the root file system into the RAM of the board. This inherits
the problem that RAM is volatile storage, as each reboot will result in the loss of
all changes made that were not backed up elsewhere. Novaboot can boot with NFS
mounted root filesystem but requires extra configuration on the client-side, such as
setting up the NFS server. This conflicts with the premise that if the server part of
Novaboot is used, the clients can use Novaboot without any setup required. This work
aims to extend Novaboot to allow access to the root filesystem over the network via the
NFS protocol and management of its own NFS server.

Running operating systems with root filesystem mounted over NFS opens up the
possibility of using more complex systems than what is provided by, e.g., Buildroot.
Therefore, the other objective of this work is to investigate the possibility of using
NixOS because it provides a way to manage multiple software stacks, even if some of
them contain the same package but in a different version. NixOS also provides a way
to offload builds onto a more powerful machine, which can be very useful because IoT
devices are generally not very powerful.

1 Buildroot – 2.2 or https://buildroot.org/
2 Novaboot – 2.3 or https://github.com/wentasah/novaboot

1

https://buildroot.org/
https://github.com/wentasah/novaboot

Chapter 2
Background

This chapter introduces the requirements and shows existing programs and features
that are used later in this work.

2.1 Requirements
These are the requirements for this work. Many of them were collected from my super-
visor and some of them were created because this work would not be working without
them.

R1: As a server administrator, I require that the NFS server can be configured without
root privileges because giving users root privileges to users to configure the NFS
server is a security risk.

R2: As a server administrator, I require that NFS support be enabled or disabled because
I want to run the NFS servers only on some servers.

R3: As a user, I require that I can use Novaboot with the NFS server easier than I can
currently while manually configuring everything.

R4: As a user, I require that the NFS server stores the ownership of files correctly, in-
cluding root-owned files, as I intend to store the root filesystem in it and it contains
different users.

R5: As a user, I require that I can cross-compile the NixOS image because the target
devices, e.g., Raspberry Pi, are slow and I want to build the image on a fast machine
with a different architecture, e.g., x86.

R6: As a user, I require that I have an easy way of booting NixOS with the root filesystem
mounted over NFS because I do not want to configure it every time I boot the system.

R7: As a user, I want to remotely cross-build additional packages on NixOS booted over
NFS, because the remote machine is faster and because the local device might not
have enough resources, i.e., RAM, to build large packages.

2.2 Buildroot

“Buildroot1 is a tool that simplifies and automates the process of building a complete
Linux system for an embedded system, using cross-compilation” [1].

The user just needs to download the Buildroot repository, optionally select the default
configuration from the list offered by running make list-defconfigs and apply it
using make <the-defconfig>, then configure the build using make menuconfig and
finally start the build by make.

Buildroot then builds a toolchain that will be used to build the system containing a
bootloader, Linux kernel, and a root file system, depending on the configuration.

1 https://buildroot.org/

2

https://buildroot.org/

. 2.3 Novaboot

2.3 Novaboot
“Novaboot2 is a tool that automates the booting of operating systems on target hardware
(typically embedded boards) or in Qemu” [2]. It is divided into the main (client) script
and the server script. The main novaboot script is used by the client and controls the
target device. The server-side part novaboot-shell is optional and is used to proxy
all communication with the target hardware (2.1.C). Without the server-side part, the
server can still be used to host boot images through TFTP (2.1.B).

serial line
terminal

rsync (images)

TFTP (boot)

pwr on/off
relay

novaboot

TFTP server

Target device

serial line terminal

ssh
, rs
ync

TFTP (boot)
pwr on/off relay

novaboot

novaboot-shell
TFTP server

Target device

serial line
terminal

TFTP
(boot)

pwr
on/off
relay

novaboot
TFTP server

Target deviceA B C

Figure 2.1. Typical Novaboot setups. Source [2]

2.3.1 The main script
The main script manages communication with the target hardware’s bootloader either
directly via serial line (2.1.A and 2.1.B) or through the server via SSH connection
(2.1.C). Furthermore, it can toggle power to the device or reset it.

2.3.2 The server-side part
The novaboot-shell running on a server provides access to a device connected to
said server and the device’s configuration. When the server administrator configures
the device, clients can connect to the server using the main script without the need
to configure anything. Communication with the novaboot-shell is done through the
SSH protocol.

It is possible to have multiple connected devices, each with a possibly different con-
figuration. Each device has one designated Unix user on the server and the novaboot-
shell runs as the Unix user’s login shell. The client connected to the device is stored
on the server as Novaboot user.

The novaboot-shell also provides a command get-config to provide configuration
to the client novaboot.

2.4 Network File System
The Network File System protocol provides access to files shared across networks. The
NFS protocol was initially developed by Sun Microsystems for their Unix system Solaris.
The use of remote procedure calls (RPCs) allows the NFS protocol to be independent
of operating systems, network architectures, and transport protocols [3]. The NFS
protocol is often used in versions 3 and 4.
2 https://github.com/wentasah/novaboot

3

https://github.com/wentasah/novaboot

2. Background .
The NFSv3 [4] is a stateless protocol provided over TCP or UDP and requires a

supplementary MOUNT protocol to allow clients to attach directory trees to a specific
point in their local file system.

The NFSv4 [5] is, in contrast, stateful and is only provided via TCP. It does not need
the MOUNT protocol, as the NFS and MOUNT protocols are combined together into
the single NFSv4 protocol. This version also provides a way to chain operations in a
single request or delegate access to a file to a specific client.

There are multiple implementations of the NFS protocol available. We provide their
overview in the following subsections.

2.4.1 Kernel NFS server

The simplest method to use NFS on Linux is to use the Kernel NFS server, which is
already built into many popular Linux distributions, such as Ubuntu. The kernel NFS
server is usually a kernel module but it can also be compiled directly into the kernel.
The kernel NFS server supports many versions including the NFSv3 and NFSv4.

The server can be configured from the user space using the /etc/exports file or the
exportfs command. Each line in the exports file contains a directory to be exported
and clients that can access it. The client can be appended with options. The most
notable options are the ro or rw which provide the client with read-only or read-write
access, respectively, to the directory.

From the perspective of this work, the main drawback is that the kernel NFS server
requires root privileges to export files and directories and provides only limited op-
tions for the mapping of user identifiers. They can be changed in the exports file via
<...>_squash options.

2.4.2 User-Space NFSv3 Server

The User-Space NFSv3 Server (or UNFS3)3 is a userspace implementation of the NFSv3
protocol. It is primarily developed and tested on Linux but should also work on other
Unix systems [6]. The shared directories are specified in the /etc/exports file with
the same rules as for the kernel NFS server but in contrast with the kernel NFS server,
the UNFS3 does not support file locking so the client may have to mount with locking
disabled [7]. UNFS3 should be started as a root for optimal experience but does also
support running as an unprivileged user.

When stated as root, UNFS3 leaves file permission checks on the operating system by
calling seteuid/setegid with the id provided by a client. However, when the UNFS3
is started as an unprivileged user, it manages all files as that user.

UNFS3 also allows multiple instances to run at the same time. This must be done by
specifying different NFS and MOUNT ports for each instance or using the -u option,
which assigns free random ports to the server. However, only one of the instances can
be registered with rpcbind discovery service.

The implementation of UNFS3 is simple, so it would allow us to make changes or
implement new features.

Currently, UNFS3 does not compile with newer glibc (2.26+), because it dropped
support for Sun RPC and UNFS3 has to be rewritten to use the libtirpc library.

3 https://github.com/unfs3/unfs3

4

https://github.com/unfs3/unfs3

. 2.5 Faking file permissions

2.4.3 NFS Ganesha

NFS-Ganesha4 is another userspace server that uses the NFS version 3, 4, and 4.1
protocol in addition to 9P protocol. The main feature is that it supports many different
storage mechanisms, such as VFS for exporting the same file system, the kernel NFS
server is able to export, or distributed CEPH or GLUSTER, or can act as a proxy for
different NFS servers. [8]

The NFS-Ganesha is configured through the /etc/ganesha/ganesha.conf configu-
ration file which has different format than /etc/exports file. The configuration file
consists of several blocks, each for a different filesystem. Since the documentation does
not provide an example configuration it will take time to write even a working con-
figuration. Also, some aspects can be configured in multiple places so it is hard to
determine which one is active.

2.5 Faking file permissions

Neither UNFS3 nor NFS Ganesha natively supports running as an unprivileged user and
retaining the correct file ownership information. This section presents some options on
how to create a fake environment in which the NFS server thinks it has root privileges
and can store correct ownership information.

2.5.1 Fakeroot

Fakeroot5 runs a command in an environment where it appears to have root privileges
for file manipulation [9]. It was developed to allow users to create Debian packages
without the need to be root. Files created under the Fakeroot environment are saved
on the file system owned by the user running the Fakeroot (actual owner). However,
inside the Fakeroot environment, their ownership is managed by Fakeroot and can be
any arbitrary user.

Fakeroot achieves this by using the LD_PRELOAD mechanism of the dynamic loader to
wrap the file manipulation library functions. This means that Fakeroot cannot work
with statically linked binaries.

Fakeroot lets us save the state of the faked environment so that it can later be restored
later.

The main drawback for us is that Fakeroot does not enforce any permission checks on
file operations inside the faked environment. This means that the faked unprivileged
user can modify or even take the ownership of files owned by the fake root. Using
Fakeroot with UNFS3 to serve root file systems would mean, that the non-root users
on the target system could modify files owned by the root.

2.5.2 Fakeroot NG

Fakeroot NG6 is very similar to Fakeroot but differs in that it intercepts syscalls instead
of library calls. Fakeroot NG mocks system calls using ptrace system call. This allows
Fakeroot NG to work with statically linked binaries, but it is slower [10].

4 https://github.com/nfs-ganesha/nfs-ganesha
5 https://salsa.debian.org/clint/fakeroot
6 https://fakeroot-ng.lingnu.com/

5

https://github.com/nfs-ganesha/nfs-ganesha
https://salsa.debian.org/clint/fakeroot
https://fakeroot-ng.lingnu.com/

2. Background .
2.5.3 User namespaces

User namespaces are a Linux kernel feature available from version 3.8 and allow us
to isolate security-related identifiers and attributes, such as user or group identifiers
(UIDs or GIDs, respectively) or capabilities. The primary usage of user namespaces
is the separation among containers and from their host machine by docker or other
container engines.

User namespaces can be created using clone() or unshare() system calls with the
flag CLONE_NEWUSER.

1000 → 0

10000 – 19999
→ 1 – 10000

805
24
– 1
005
23
→
100
01
– 3
000
0

0 → 0

220
00
– 2
299
8 →

1 –
999

3000 – 5000 → 1000 – 3000 C

U
se
rn
am
es
pa
ce
B

U
se
rn
am
es
pa
ce
A

Figure 2.2. Example mapping by user namespaces.

Each ID (UID or GID) in a user namespace must be mapped to a unique ID in
its parent user namespace. This can be seen in the image – for example, ID 50 in
namespace C is equivalent to ID 22 049 in namespace B and 92 572 in namespace A.

2.6 Systemd services

“systemd is a suite of basic building blocks for a Linux system. It provides a system
and service manager that runs as PID 1 and starts the rest of the system.” [11]

A systemd unit refers to any resource that the system knows how to operate on and
manage, e.g., service, socket, device, mount. The resource is defined by a configuration
file called unit file.

A systemd service is a type of systemd unit. The service is responsible for managing a
program specified in the configuration – file ending with .service and must be located
in predefined locations [12]. The service can be started either automatically on boot,
user login or by other services or manually through systemctl command.

If the service name ends with @, it takes one argument that can be accessed inside the
configuration file with %i specifier. The full name of the service is then name@arg.ser-
vice.

6

. 2.7 Nix and NixOS

2.7 Nix and NixOS
Nix7 is a purely functional package manager. That means that each package is built
by a pure function called Nix expression, and once they are built, they cannot change.
Nix stores components (we will call them packages) in the Nix store [13].

NixOS is a Linux distribution based on the Nix package manager. All components
of the distribution (kernel, installed packages, and system configuration files) are built
by Nix from Nix expressions.

NixOS aims to be fully reproducible – all changes to system configuration should be
done declaratively in /etc/nixos/configuration.nix file or in its imports. With the
same configuration, anyone can build the exact same system [14].

2.7.1 Nix store
The Nix store is usually located in /nix/store directory, where each package has
its own subdirectory, such as /nix/store/b6gvzjyb2pg0kjfwrjmg1vfhh54ad73z-
firefox-33.1/. The b6gv... hash is calculated using all its static dependencies, also
called build inputs [13, 15].

The Nix store is managed by so-called garbage roots. The roots are links that point
to the packages used. Nix does not automatically remove packages once they are no
longer needed. Instead, it is required to start the garbage collection operation.

2.7.2 Nixpkgs
The Nix Packages collection (Nixpkgs) is a set of over 80,000 packages for Nix package
manager [16]. Nixpkgs contains functions that can source and build these packages and
also contains targets to build NixOS. Nixpkgs will be modified later in this work to
create a custom NixOS system (see 3.5) or to simplify remote building on systems with
different architecture (see 4.5.2).

2.7.3 Nix configuration file
The nix.conf file is located in /etc/nix/ directory on most systems [17]. The file can
only be changed directly if the user is not on NixOS and is using Nix package manager on
other operating system. On NixOS it must be configured in configuration.nix file or
one of its dependencies by setting nix.<nameOfConfigInCamelCase> to the requested
value when using NixOS 21.11 or older or nix.settings.<name-of-config-in-kebab-
case> for newer8 versions of NixOS.

2.7.4 Remote Builds
Because each build is well defined in terms of its inputs and build steps, the build
will always have the same output if built on a machine with the same platform (see
2.7.6). Nix thus allows us to offload builds from, e.g., a slow laptop or split them among
powerful servers [13].

In order to perform the build on a remote machine, Nix uploads all of the build
dependencies to the build server’s Nix store, then performs the build and downloads
the result back to the clients’ Nix store.

To use remote builds, the user needs to have ssh access to the remote machine and
be a trusted user on the remote machine. If the remote machine is specified as a builder

7 https://nixos.org/
8 At the time of writting that means only unstable 22.05pre version.

7

https://nixos.org/

2. Background .
in nix.conf (2.7.3), it will automatically be used to offload parts of the build. Another
way is to specify the builder as an option --builders 'ssh://remote-machine' in
the build command if the local user is trusted [18].

2.7.5 Nix daemon
Nix daemon is an essential part of multi-user installations of Nix. The daemon is used
automatically by other nix commands to allow non-root users to perform builds or other
operations on the Nix store. Usually, communication with the daemon is done using a
unix socket in /nix/var/nix/daemon-socket/socket but can be changed by setting
the NIX_REMOTE environment variable. Later it the work the nix demon will be used
to connect to a remote machine using the ssh-ng protocol, which supports the same
actions as the Nix daemon (see 3.4.4).

2.7.6 Cross compilation
Nix also provides mechanisms to allow cross-compilation to other platforms. Internally
Nix uses 3 different platforms: build, host and target, but provides convenient access
for only two, the build stored as system or localSystem and the host specified by
crossSystem. The build platform represents the platform that will create a package,
the host will be able to use the package, and the package will then be able to create
outputs for the target platform.

Cross-compilation can start in many ways. When using nix-build or nix build
the host platform can be specified like --argstr system x86_86-linux and defaults
to the same platform on which the command is run. The host platform can be speci-
fied as --argstr crossSystem aarch64-multiplatform and is the same as the build
platform by default.

2.7.7 Nix booting stages
The NixOS separated the booting process into two stages, stage 1 and stage 2, each
with its own init script.

The stage 1 init script is run from initrd and is used to mount the filesystem.
The stage 2 init script is located in the filesystem, manages all other setups that need

to be done, and finishes with starting systemd.

8

Chapter 3
Analysis

In this chapter, we analyze the usability of the NFS server options, analyze the cre-
ation of user namespaces, check what needs to be changed in Novaboot-shell during
integration with UNFS3 and compare possible options for NixOS’ remote builds and
its cross-compilation.

3.1 Choosing NFS server
In this section, we determine which of the NFS server solutions from the following
subsections suits our needs.

3.1.1 Kernel NFS server
Pros: The kernel server is a good choice for simple setups, such as when you are hosting
the root filesystem on your machine.

Cons: The problem occurs when you try to host the filesystem on the public server,
as you often do not have permissions to configure the kernel NFS server and as per
requirement R1 the server must be configurable without root privileges.

Even if the server administrator configured the exported folder for you, it can be a
huge security vulnerability, as you could use S_ISUID permission bit on files created
through NFS export and impersonate other users. This can be prevented by specifying
the all_squash option, but all files inside the export will be owned by one UID:GID
pair. This is a very large limitation, as this pair cannot be root:root otherwise we
would still have the S_ISUID vulnerability.

3.1.2 NFS Ganesha
The Ganesha is great if we wanted to use distributed systems, but it would not provide
us with any benefits in the context of this work. As NFS Ganesha is also harder to
configure, we will not use it.

3.1.3 UNFS3
UNFS3 on its own behaves similarly to the kernel NFS server.

Pros: UNFS3 does not need to be started as root to export the filesystem with
all_squash or if the filesystem does not need to make changes to files not owned
by the user running the server, e.g., read-only Nix store (see TODO link).

The source code for UNFS3 is available on github1 with a license that allows modi-
fications.

Cons: Running UNFS3 unprivileged prevents the NFS Client from creating or making
changes to the root-owned files.

1 https://github.com/unfs3/unfs3/

9

https://github.com/unfs3/unfs3/

3. Analysis .
3.1.4 UNFS3 with a Database

We can implement a database to store file ownership and permission information. The
user running UNFS3 will own all files on the server, but the client that accesses the
NFS storage will see them with ownership and permissions stored in the database. This
will also require implementing the permission check in UNFS3, as currently, UNFS3
can offload them onto the Linux kernel as the permissions are the same on the server
as the client.

3.1.5 Wrapped UNFS3

Because UNFS3 is a userspace program, it can be started in the custom environment
that alters the permissions and / or ownership it sees. These environments are consid-
ered:

. Fakeroot (Section 2.5.1). Fakeroot NG (Section 2.5.2). User namespaces (Section 2.5.3)

Fakeroot or Fakeroot NG would be a good choice, as they store files as a single user
on the server but do not enforce permission checks (see Section 2.5.1).

Another option is to run UNFS3 in the user namespace. Namespaces require that
each user is mapped to a unique user in the parent namespace. An unprivileged user
can only create a user namespace with a single user – current user mapped to the root,
which provides the same functionality as all_squash but all files will appear as owned
by the root. There are ways to create a namespace with more users as discussed next
in the Section 3.2.

3.1.6 Final choice

serial line
terminal

rsync (images)

TFTP (boot)

NFS

pwr on/off
relay

novaboot

TFTP server
NFS server

Target device

ssh
, rs
ync

serial line terminal

pwr on/off relay

TFTP (boot)

NFS

novaboot

novaboot-shell
TFTP server
NFS server

Target device

serial
line

terminal

TFTP
(boot)pwr

on/off
relay

NFS server

novaboot
TFTP server

Target deviceA B C

NFS

Figure 3.1. Novaboot setups with NFS server.

For the setup 3.1.A, I recommend using the kernel NFS server as you already have
root access to your machine.

For the setups 3.1.B and 3.1.C, UNFS3 with the database would be a great choice,
but UNFS3 inside the user namespace would behave nearly identically if given some
large enough range of unused UIDs and GIDs. So using the namespace is a better
option, as extending UNFS3 with a database requires time to implement.

10

. 3.2 Creation of user namespaces

3.2 Creation of user namespaces
If we use the user namespaces, the NFS server can run without root privileges but
still provide the NFS clients ability to manipulate root-owned files. Creating user
namespaces that contain more than one user requires root privileges. However, there
are two options for an unprivileged user to create such namespace.

The first option is the usage of newuidmap and newgidmap from a widely spread
package shadow-utils2 which manages accounts and password files. These commands
check if the requested namespace mapping is from a range of IDs assigned to the user
and create the mapping for them. The assigned ranges are configured in the files
/etc/subuid and subgid.

Another option is to create a program that will be owned by root and have S_ISUID
permission flag, which will cause the program to start as root even when started as
unprivileged. The program will then take the mapping from a trusted source and start
specified command in a new user namespace according to the mapping.

We choose the first option, as the security is left on the package. However, we
will implement a tool that will simplify the creation of the user namespace with the
commands newuidmap and newgidmap.

3.3 Novaboot server with NFS
In this section, we focus on:

. toggling of the NFS support in Novaboot-shell,. the integration of the NFS server with Novaboot-shell in order to serve the root
filesystem over NFS, and. copying of the root filesystem to the server.

This section assumes the setup with the novaboot server depicted in Fig. 3.1.C and
will explain what needs to be considered to extend Novaboot with the automated NFS
server functionality.

3.3.1 Enabling and disabling the NFS support
In order for the NFS support to be toggle-able as per requirement R2, we check for
presence of a specific configuration file .novaboot-nfs (see Section 4.3.1). NFS support
is only active if the file is present.

3.3.2 Integrating UNFS3 with novaboot-shell
The device needs to know the address, port, and exported path of the NFS server to
mount the filesystem. Luckily, the novaboot-shell already provides a mechanism to
pass the configuration to the main novaboot script – the command get-config. We
could provide the NFS configuration in a single entry since in most cases, the user will
mount the root file system in the kernel as nfsroot=address:/path,options, but we
opt to provide it separately with two entries (--nfsroot and --nfsopts). This lets us
use them in the mount call because it requires the options to be provided separately in
the -o argument.

For a successful integration with Novaboot, we need to run multiple instances of
UNFS3 at the same time. This is because the get-config command can be run without

2 https://github.com/shadow-maint/shadow

11

https://github.com/shadow-maint/shadow

3. Analysis .
the Novaboot user having exclusive access to the device, and thus multiple users can
use in at the same time. Running multiple instances allows us to easily separate the
data of each Novaboot user, without the need to change the exports file during the
NFS server’s runtime.

UNFS3 is a daemon that forks in the background, and we run it as a service under
the systemd user instance (see Section 2.6) of the unix user assigned to the device. The
accessing Novaboot user will be passed in the service argument. This approach also
benefits from the ability to stop all instances of UNFS3 when the device is not used.

3.3.3 Copying root filesystems to Novaboot server

To use the files on the board, the user first needs to get them on the server hosting the
NFS root. These are some options:

. access all files using rsync. access all files using NFS. upload tar and unpack it on the server

The first option is rsync; since it is already used to upload files to be accessed through
the TFTP server, it would seem like a great option. However, rsync should be restricted
only to the NFS share, and if the NFS server is run in a user namespace, the rsync also
has to run in it.

The second option is to allow access to files through NFS; it would require the NFS
server to accept connections anywhere from the Internet. This can be overcome by
exporting the share only to localhost and local forwarding the NFS connection through
SSH.

The last and the chosen option is the most restrictive since it does not allow the user
to download the filesystem back, and if the user needs to make changes, they need to
upload the modified tar to replace the whole filesystem. We choose this option because
it is the easiest to implement and does not have security issues.

3.4 NixOS
This section introduces why we chose NixOS as the operating system for the develop-
ment boards and we show how to boot it via NFS and how to use remote builds.

3.4.1 Background

We chose NixOS because it supports declarative and reproducible system configuration,
and thus building from the same configuration always produces the same system. NixOS
also supports having multiple versions of the same package, which is useful for systems
with complex software stacks.

3.4.2 NixOS through NFS

Currently, NixOS can be configured to have its root filesystem hosted through NFS in
two ways:

. in configuration.nix using the fileSystems attribute,. by specifying nfsroot parameter on the kernel command line and skipping the filesys-
tem mounting phase in NixOS stage 1.

12

. 3.4 NixOS

The first solution aligns with Nix’s ideology of a declarative system. However, the
system requires rebuilding each time something changes in the configuration of the
NFS, e.g., the server’s IP address or in our case more importantly, the port number.

The second solution requires that the kernel is compiled with the support for mount-
ing a root filesystem over NFS.

My proposed option is a combination of both solutions. We can modify stage 1
init script to support new command line arguments, most notably nfsPrefix and
nfsOptions.

3.4.3 Remote builds
When we want to build large packages (e.g. Firefox, LLVM, rustc) for an embedded
device that does not have enough memory or computation power, we need to use the
remote builds.

The first option is to use standard remote builds, which use dependencies available
locally and copy them to the build server. After the build of each package is done on
the server they are also copied back to the local device.

The main drawback is the inefficiency in using the Nix store, which needs to copy
files between the device’s store and the server’s store over the network when, in fact,
the device’s store is hosted on the server. We want to investigate whether there is a
better option.

The next option is the usage of the Nix daemon, which is discussed next in Sec-
tion 3.4.4.

3.4.4 NixOS – remote daemon
Because we host the root filesystem with the Nix store on the same server as we do
remote build, there is a lot of unnecessary copying of files over the network, as seen in
Fig. 3.2 when the files could be accessed locally on the server. This can be solved by
the Nix daemon.

NFS: read file

Nix: download file

NFS: write file

Nix: upload file

↑ for each file required by the build

↓ for each file in result

- NFS client
- Nix store mounted over NFS

- NFS server
- separate Nix store

Device Build server

Figure 3.2. Showcase of redundant file accesses during remote build with NFS.

Reducing file transfers can be done using the Nix daemon. If the Nix store of the
build server and the device is the same and the device has access to the server’s Nix
daemon, the Nix daemon accesses the files locally, and the device only transfers files
that it actually uses.

However, it comes with a limitation: The build server does not know which paths
in the Nix store are still being used by the device. These paths could then be garbage
collected because the server thinks that they are not used. The solution is to manually
create garbage roots for them on the server.

13

3. Analysis .
3.4.5 Remote cross-builds

Sometimes we want the remote machine to have a different architecture than the de-
vice (Requirement R7). But the remote machine can only build packages for its own
platform.

The solution is to request the cross-compiled version of the package. This can be
done manually for each build, or we can change the default values in Nixpkgs.

3.5 Novaboot and NixOS
NixOS has several Nix expressions for building bootable images but none of them can
be easily used with Novaboot. Closest to our target are tarballs designated for network
booting, but they rely on manual modification of the system after it is built. However,
they can be used as a template for the new Novaboot image.

The Novaboot image is configured to boot over NFS and contains all necessary files.

14

Chapter 4
Implementation

In this chapter we will implement changes to UNFS3 and how to integrate with it with
Novaboot-shell, create userns tool to help with creating user namespaces, show how
to use remote builds with remote Nix daemon and how to create a working image of
NixOS that can be used with Novaboot.

4.1 Changes to UNFS3
This section focuses on compiling UNFS3 with a new glibc library, running multiple
instances of UNFS3, or fixing changes to the modification time on a symlink.

As mentioned in Section 2.4.2, the UNFS3 does not currently compile with newer
glibc. There is an attempt to port the program to use the libtirpc library, but it contains
several bugs that prevented UNFS3 from running correctly. These bugs include missing
calls to listen() after creating TCP sockets, using old functions that do not account
for the IPv6 protocol, or not creating entries in rpcbind. I address them in my pull
request1 which is now merged into master.

4.1.1 Port file
The next change is to allow multiple instances to be run at the same time. It is
necessary to improve operation without the rpcbind service as the service can only
store information for one instance at a time. Because the rpcbind service is responsible
for providing port numbers, another method is required to extract the port numbers.
We solve this by introducing a new option -P <file> which creates the file listing all
ports used (example below in Listing 4.1.1). The syntax of the file allows it to be
sourced by a shell script or used in the EnvironmentFile directive in systemd units.

NFS_UDP=52460
NFS_TCP=54172
MOUNT_UDP=52460
MOUNT_TCP=54172

Listing 4.1.1. Example port file created by option -P <file> in UNFS3.

4.1.2 Modifying time on symlink
When the client tries to change the time on a symbolic link, the error depicted in Fig. 4.1
happens. This is because the UNFS3 changes time with utime(). This function cannot
change the time on the link and instead dereferences the link. However, the link is valid
only in the client system and not on the server, and thus utime() fails with “No such
file” error, and UNFS3 returns “Stale file handle”.

The problem has been solved by replacing the utime() function with lutimes().2

1 UNFS3 PR#20 https://github.com/unfs3/unfs3/pull/20
2 https://github.com/skoudmar/unfs3/commit/9f16aa438337548a3039f45099bce5f9f44eb3ba

15

https://github.com/unfs3/unfs3/pull/20
https://github.com/skoudmar/unfs3/commit/9f16aa438337548a3039f45099bce5f9f44eb3ba

4. Implementation .

Figure 4.1. Error state file handle when changing modification time on a symlink in NixOS.

4.2 User namespace creator
User namespace creator or userns is a tool that simplifies the creation of user names-
paces with commands newuidmap or newgidmap. The tool will request the maximum
size mapping that is available according to the first range of identifiers available to the
user in the /etc/subuid or /etc/subgid files.

The tool is used as userns <command> where the command is a list of arguments
that will be passed to execvp, the first being the name of the requested program. An
example use of the program is shown below in Listing 4.2.1.

The source code for the tool can be found at Gitlab repository A.3.

$ id
uid=1000(martin) gid=1000(martin)

$ userns id
uid=0(root) gid=0(root)

$ userns chmod +x,-w script

Listing 4.2.1. Example usage of the userns tool.

4.3 Integration of UNFS3 with Novaboot-shell
This section describes changes to the novaboot-shell to allow it to manage the UNFS3
and allow Novaboot users to host their root filesystem.

4.3.1 Novaboot NFS configuration file
The entries of this configuration file .novaboot-nfs are used to generate exports file
for NFS server and to tell the server’s address to the device in get-config. The
presence of this file in the home directory of the unix user enables the NFS support for
the device.

The file consists of lines that contain variable assignments. Empty lines or lines
starting with # are ignored and can be used to comment on the configuration file.
Other lines have form of <name>=<value>.

In order to correctly create the exports file used by UNFS3 to allow the Novaboot
target device to access the NFS server, Novaboot-shell needs to know the device’s
address – it has to be configured in the variable named allowed_clients. The entry
accepts IP address, hostname, or network. Although for security reasons only one
device should be matched, allowing the entire network might be needed, e.g., if the
device obtains a dynamic IP address through DHCP.

The entry server_addr makes it possible for the device to know the IP address of
the server as the device is sending the mount request to it. The server passes this

16

. 4.3 Integration of UNFS3 with Novaboot-shell

allowed_clients=172.17.0.0/24
server_addr=172.17.0.2

Listing 4.3.1. Example of .novaboot-nfs configuration file.

information to the Novaboot client via the get-config command, the entry accepts
anything that can be correctly resolved by the device. However, if the Linux kernel is
used to mount the root filesystem, server_addr should contain an IPv4 address [19].

4.3.2 UNFS3 systemd service

An execution of the UNFS3 server and the creation of its exports file are managed
with the systemd service – called novaboot-unfsd@.service. It it considered fatal
error to start this service without the .novaboot-nfs (see Section 4.3.1) file present
since the created exports file needs to know the allowed_clients value.

The service can be started using the command shown in Listing 4.3.2. The unit file
for the service is seen in Listing 4.3.3.

systemctl --user start novaboot-unfsd@<username>.service

Listing 4.3.2. Command to start the UNFS3 systemd service

4.3.3 The core integration of Novaboot-shell with UNFS3

The Novaboot-shell needs to start UNFS3 and then extract the ports used.
In view of the fact that we need to pass the NFS configuration through the command

get-config which allows the novaboot client to learn the configuration needed to boot
the target device properly, and the fact that the command get-config is the first
command called by the main Novaboot script as seen in Figure 4.2, the UNFS3 server
must start there. This is achieved using the command in Listing 4.3.2.

Once UNFS3 is started it will create a file containing used ports as seen in List-
ing 4.1.1. The ports with other options are then returned in the response of the get-
config command as the --nfsopts switch to the main Novaboot client. The server
address from server_addr in .novaboot-nfs file is then concatenated with exported
path and returned as --nfsroot switch. An example response of the novaboot-shell to
the get-config command is shown in Listing 4.3.4.

--nfsroot=10.0.0.1:/home/rpi/nfsroot/<username>/root
--nfsopts=v3,tcp,port=54172,mountport=54172

Listing 4.3.4. New switches from get-config

17

4. Implementation .

[Unit]
Description=UNFS3 daemon running as user %u and NB_USER %i
AssertPathExists=%h/.novaboot-nfs

[Service]
Type=forking
EnvironmentFile=%h/.novaboot-nfs
Environment="NB_UNFSD_EXPORT_FILE=%h/.cache/unfsd/%i.export"
Environment="NB_UNFSD_PORT_FILE=%h/.cache/unfsd/%i.ports"
Environment="NB_NFS_EXPORT_PATH=%h/nfsroot/%i/root"

ExecStartPre=mkdir -p %h/.cache/unfsd %h/nfsroot/%i/root

generate an export file for the unfsd
ExecStartPre=sh -c 'echo "\
generated by novaboot-unfsd@.service\n\
$NB_NFS_EXPORT_PATH/ ${allowed_clients:?}(rw,no_root_squash,insecure)\
" > $NB_UNFSD_EXPORT_FILE'

Start unfsd
-p: do not register with portmapper
-u: use random ports
ExecStart=unfsd -p -u -e ${NB_UNFSD_EXPORT_FILE} -P ${NB_UNFSD_PORT_FILE}

Remove the export and port file when the service is stopped
ExecStopPost=rm -f ${NB_UNFSD_EXPORT_FILE} ${NB_UNFSD_PORT_FILE}

Listing 4.3.3. Unit file for novaboot-unfsd@.service.

18

. 4.3 Integration of UNFS3 with Novaboot-shell

opt

[.novaboot-nfs file exists]

opt

[received --nfsroot]

opt

[received --nfsopts]

loop

[device is used]

Client novaboot script

novaboot-shell UNFS3 starting
process

UNFS3 daemon
process

DeviceUNFS3 systemd
service

The rest is left unchanged:

The device loads kernel, initrd and device tree from the TFTP server and boots the kernel with provided bootargs.

:port file

read config
from .novaboot-shell file

rsync(files to TFTP storage)

request exclusive access to the board

create exports file

reset

read config
from .novaboot-nfs

start UNFS3

open serial connection

:connection

replace $NB_NFSOPTS with
value of --nfsopts in script

:board access granted

reset device

:port file

start UNFS3

:configuration

:connection

fork to background

read config
from .novaboot-nfs

get-config

replace $NB_NFSROOT with
value of --nfsroot in script

console

print device queue

Figure 4.2. novaboot-shell communication sequence diagram.

19

4. Implementation .

4.4 NixOS image for Novaboot
The goal is to create a NixOS image that can be directly booted with Novaboot. To
do that, we need to create a new Nix expression that builds an image, which:

. can easily be deployed to the Novaboot server,. have its root filesystem mounted over NFS,. reads the information about the NFS server and options from the kernel command
line, and. contains a pre-configured Novaboot script with its dependencies.

Because NixOS is only officially supported on a handful of embedded devices such as
Raspberry Pi3, I have chosen to create a target for the Raspberry Pi 4 board. Modifying
it should be easy enough to support other devices in the future.

4.4.1 Modifying the NixOS’ stage 1 init
This subsection will describes the implementation of kernel command line arguments
nfsPrefix and nfsOptions providing NFS server configuration without the need to
rebuild the NixOS image (see Section 3.4.2).

. nfsPrefix is used as a prefix to the path provided in the attribute fileSystems and
allows us to provide the address and even part of the path.. nfsOptions is a comma-separated list of options to be used during mounting that is
appended to the options provided in the fileSystems attribute.

In NixOS the stage 1 init script is stored in the initial RAM file system image (initrd)
manages parsing of the kernel command line arguments and mounting of the filesystem.

We extend the script in such way that while reading the kernel command line, if
the script finds the nfsPrefix or nfsOptions it will save it to a variable. During the
mounting phase, if it tries to mount the NFS filesystem, it will apply these variables if
they are set and then mounts the filesystem.

The exact changes can be seen at this link4 or in my Nixpkgs repository A.5.

fileSystems."/" = {
device = "//root/";
fsType = "nfs";
options = ["v3 "tcp"];

};

Listing 4.4.1. Example NixOS configuration specifying that root filesystem will be
mounted through NFS. In Novaboot NixOS image this generated internally (see Sec-

tion 4.4.2).

If the Linux kernel is booted with the following options (perhaps passed by the
novaboot client script):

nfsPrefix=10.0.0.1:/home/martin nfsOptions=port=54172,mountport=54172

Listing 4.4.2. Example usage of nfsPefix and nfsOptions.

3 Popular embedded device capable of running Linux.
4 https://github.com/skoudmar/nixpkgs/commit/312236bbe4838785028cf5d43e00f705687717c5

20

https://github.com/skoudmar/nixpkgs/commit/312236bbe4838785028cf5d43e00f705687717c5

. 4.5 Remote builds on NixOS

The stage 1 script will merge configuration from Listing 4.4.1 and options from List-
ing 4.4.2 and mount the NFS root file system from 10.0.0.1:/home/martin//root/
with options v3,tcp,port=54172,mountport=54172

4.4.2 Creating the filesystems entry for NixOS
This subsection will describe how the NixOS expression for Novaboot tarball creates
filesystems configuration.

By default the fileSystems entry is created that the NixOS expects the nfsPrefix
to provide full path and the nfsOptions to set all necessary options.

When the user specifies the filesystem manually as in Listing 4.4.1 the must not
start with single ‘/’ otherwise the stage 1 script will prefix the path with /mnt-root.
Because of that the new the configuration option novaboot.nfs.server.rootPath
correctly parses the paths staring with single ‘/’.

Mounting options can be specified in novaboot.nfs.server.options. There
are more configuration options available in the file nixos/modules/installer/cd-
dvd/system-tarball-novaboot.nix.5

4.4.3 Cross-compiling and using the image
The created Nix expression to build the tar can be found in the Nixpkgs repository A.5
in the file nixos/modules/installer/cd-dvd/system-tarball-novaboot.nix.6 The
archive can be built using my cross-system repository A.6.

git clone https://github.com/skoudmar/cross-system.git .
nix-build -A aarch64-linux.novaboot

The tar will be stored in the result/tarball directory. On the user’s computer,
only the boot directory of the archive needs to be extracted, as it contains a Novaboot
script (boot-rpi4), Linux kernel, and the initial RAM drive image (initrd). The
archive needs to be uploaded to the Novaboot server using rsync and then extracted.

Upload the tar
rsync --rsync-path=rsync-nfsroot <the-tar> <server>:.

Extract the tar on the server
ssh <server> untar <the-tar-name>.tar

Extract the boot directory of the tar locally
tar xf <the-tar> boot

Run the novaboot script
boot/boot-rpi4 -i --ssh=<server>

4.5 Remote builds on NixOS
There are two ways to use remote builds. First, the standard way with separate Nix
stores for client and build server, where Nix copies files between stores as documented
by Section 2.7.4. The other is to access the Nix daemon on the remote build machine
5 https://github.com/skoudmar/nixpkgs/blob/Bachelor_thesis/nixos/modules/installer/cd-

dvd/system-tarball-novaboot.nix
6 See note 5

21

https://github.com/skoudmar/nixpkgs/blob/Bachelor_thesis/nixos/modules/installer/cd-dvd/system-tarball-novaboot.nix
https://github.com/skoudmar/nixpkgs/blob/Bachelor_thesis/nixos/modules/installer/cd-dvd/system-tarball-novaboot.nix

4. Implementation .
which has direct access to the Nix store mounted via NFS as depicted in Fig 4.3. In
the following, we describe the latter option.

Device Build server

/nix/store

ProcessesProcesses

Nix daemon

Local storageMountpoints

/
/nix/store

/export

Nix

is mounted read-only from

is mounted read-write from

requests build of packages

builds
packages

in

Figure 4.3. Remote Nix daemon deployment diagram.

4.5.1 Using nix daemon and NFS

Prerequisites:

. The current user has SSH access to the build server.. Nix daemon is running on the server.. The server exports /nix/store path through NFS.

NixOS stores all programs in a Nix store. Consequently, changing to a different
store that does not have the programs would cause NixOS to break. Before mounting
the remote Nix store on the target device, the user needs to upload their profile by
the command in Listing 4.5.1 or they need to set their profile link ~/.nix-profile
and ~/.nix-defexpr/channels to valid profile and channels on the server. If the
~/.nix-profile link does not exist, it will be created if you install any package to
your environment, e.g., nix-env -i hello.

On NixOS it is also required to copy /run/current system as it contains programs
and configuration files used by the system.

nix-copy-closure --to <server> ~/.nix-profile ~/.nix-defexpr/channels*
nix-copy-closure --to <server> /run/current-system

Listing 4.5.1. Copying Nix profile, channels and system to remote server.

Now, the user should mount the remote Nix store by using the commands in List-
ing 4.5.2. Setting the environment variable NIX_REMOTE to the server tells Nix to use
the Nix daemon on the server. It is important to specify the ssh-ng protocol and not
just ssh because the legacy store used by ssh does not support all the required func-
tions, such as addToStore for adding non-store paths and files that need to be copied
from the local device.

mount <server>:/nix/store /nix/store -o ro,remount

export NIX_REMOTE=ssh-ng://<server>

Listing 4.5.2. Mounting NFS exported remote Nix store.

22

. 4.5 Remote builds on NixOS

The user can now use the remote Nix store and operate with it as if it was a local
store. This method works even when the server has a different architecture but only if
the package is in the Nix cache and the server is only downloading it. However, here
are some limitations.

Build commands do not create a link to the result and its gc root since this is done
by the server and it does not have access to the user’s device. The creation of the result
link and gc root must be done manually. Fortunately for us nix-build command prints
the path to the result on the console so that we can just copy it and create the result
link and the gc root as in Listing 4.5.3. We recommend user to create a directory on
the server such as ~/.nix-gcroots to be a personal collection of packages used and
then create links in it to serve as gc roots, but any other directory would work just fine.

Create the result link
ln -s <copiedPath> result

Create the gc root on server
ssh <server> nix-store -r <copiedPath> --add-root ~/.nix-gcroots/<name>

Listing 4.5.3. Creating missing result link and gc root.
Another limitation to consider is that the server will fail to build packages if the

package is for another platform. This can be solved by manually specifying that the
package should cross-compile.

nix-build '<nixpkgs>' -A hello --argstr system 'x86_64-linux' \
--arg crossSystem 'builtins.currentSystem'

Listing 4.5.4. Command to cross-compile the hello package on a remote machine using
remote Nix daemon.

4.5.2 Patching the Nixpkgs
To make it easier to use remote builds with remote machines of different architectures,
I have created a patch for Nixpkgs in the cross-system repository A.6 to be used with
my modified version of Nixpkgs A.5. The purpose of this patch is to make it easier
to cross-compile packages – the command 4.5.4 is equivalent to command 4.5.5 with
patched Nixpkgs.

nix-build '<nixpkgs>' -A hello

Listing 4.5.5. Command to cross-compile the hello package on a remote machine using
remote Nix daemon with patched Nixpkgs.

The patch should be used when building the NixOS image. The built system will
then contain the patched Nixpkgs and they can be used to request cross-compilation of
the requested package on a remote server.

To use the patched Nixpkgs, a user must set the path to them must be set in NIX_PATH
environment variable or must be provided to the build commands by option -I.

The patch sets the default value of attribute localSystem to the system that will
apply the patch and changes the default value of crossSystem from being the same as

23

4. Implementation .
localSystem to the system of the machine currently used. The default values used are
taken from the new file system.nix located at the root of the Nixpkgs repository.

24

Chapter 5
Evaluation

This chapter will focus on the evaluation of functionality and performance.

5.1 UNFS3’s compilation
The UNFS3 compilation was fixed and now UNFS3 successfully compiles and even sup-
ports the IPv6 protocol. Compilation can be tested by downloading the git repository
(either upstream or my fork A.2) and using the following commands.

./bootstrap

./configure
make

These options were tested and all of them :

. -u to use random ports. -d to run in foreground. -e file to specify the custom export file. -P file to generate the port file (only in my repository). -t to only provide TCP connection. -p to not register used ports with rpcind/portmapper. -n port to specify exact port for NFS protocol. -m port to specify exact port for MOUNT protocol

5.2 Booting a Buildroot-based system with Novaboot
The goal of these tests is to determine whether Novaboot can successfully boot the
system built by Buildroot.

These tests are already prepared in the integration repository A.1 and will assume
the repository is used.

5.2.1 Booting on a virtual device (QEMU)
The system is already preconfigured in the build directory. Build the system using
Buildroot running make -C build.

This test will use the novaboot-server docker container from the integration repos-
itory. The image is built by running make docker-image and is then started by make
run-docker.

In the novaboot-client/QEMU-buildroot-system there are two deployment scripts
tftp-boot and nfs-boot. The tftp-boot can be run without additional commands
by running:

./tftp-boot -i --ssh=novaboot@172.17.0.2

To boot the system using the NFS run the folowing commands:

25

5. Evaluation .
rsync --rsync-path=rsync-nfsroot -L rootfs.tar novaboot@172.17.0.2:.
ssh novaboot@172.17.0.2 untar rootfs.tar
./nfs-boot -i --ssh=novaboot@172.17.0.2

Figure 5.1. Terminal output after booting Buildroot system in QEMU with NFS.

As can be seen by the image 5.1 Novaboot can successfully boot the QEMU device
with the Buildroot system. Even though the system says the device is mounted read-
only, all changes are correctly written to the NFS server.

5.2.2 Booting on Raspberry Pi 4
The Raspberry Pi 4 system can be built similarly by the preconfigured target in the
build_rpi4 directory.

User should prepare SD card with single FAT partition. Download start4elf and
fixup4.dat from the boot directory of the official Raspberry Pi firmware repository1

to the partition. Also create config.txt file as seen at 5.2.1. At last copy u-boot.bin
from the build_rpi4/image directory.

kernel=u-boot.bin
arm_64bit=1
enable_uart=1

Listing 5.2.1. File config.txt for the Raspberry Pi 4.
The server can be configured by following the directions of the novaboot-

server/rpi/README.md file.
To connect to the server, use where <server> is replaced with the address of the

server:

rsync --rsync-path=rsync-nfsroot -L rootfs.tar rpi@<server>:.
ssh rpi@<server> untar rootfs.tar
./nfs-boot -i --ssh=rpi@<server>

1 https://github.com/raspberrypi/firmware

26

https://github.com/raspberrypi/firmware

. 5.3 Bootnix NixOS with Novaboot and UNFS3 server

Listing 5.2.2. The .novaboot-nfs configuration file for QEMU target.
The test shows that the Raspberry Pi can also use a Buildroot system that is deployed

by Novaboot and hosted on a Novaboot-operated NFS server.

5.3 Bootnix NixOS with Novaboot and UNFS3 server
When hosting the entire NixOS, the system requires to differentiate user and group
identifiers, so the only option is to run UNFS3 in the user namespace or as a root with
no_root_squash.

5.3.1 Failing to start Nix-daemon
The systemd Nix daemon socket target can fail to start with one of the following
messages.

Failed to create listening socket (/nix/var/nix/daemon-socket/socket):
File name too long

Failed to create listening socket (/nix/var/nix/daemon-socket/socket):
Input/output error

Listing 5.3.1. Error messages in journal for nix-daemon.socket.

The “File name too long” error is caused when the filename of the socket is larger
than 108 characters. This length includes the length of the exported and length of the
actual name. The solution is simple; use a shorter exported path on the server.

The IO error is caused because there already exists a socket from the previous boot
and UNFS3 reports NFS3ERR_IO instead of NFS3ERR_EXIST.

The Nix-daemon service can be started without the socket unit manually by typing
the command 5.3.2.

systemctl start nix-daemon.service

Listing 5.3.2. Start Nix daemon service

5.3.2 Failing to use Nix daemon
The Nix may fail to use the Nix daemon with the error message in Listing 5.3.3 is
printed.

error: could not set permissions on '/nix/var/nix/profiles/per-user' to
755: Operation not permitted

Listing 5.3.3. Error message printed when Nix does not use Nix daemon.

This issue can be prevented by manually setting the NIX_REMOTE environment vari-
able as shown in Listing 5.3.4.

export NIX_REMOTE=daemon

Listing 5.3.4. Setting NIX_REMOTE to tell Nix to use Nix daemon

27

5. Evaluation .

5.4 Booting NixOS with Novaboot and kernel NFS
server

During the evaluation, the only problem I encountered was the long name for the socket
described in Section 5.3.1. The test were run with exports file depicted in Listing 5.4.1.
The NixOS runs

/export *(rw,no_root_squash,insecure)

Listing 5.4.1. Exports file used with the kernel NFS server for hosting the root filesystem.

5.5 Remote Nix daemon
Accessing the Nix store through NFS works without any problems with all of the tested
NFS servers:

. UNFS3 running as a root. UNFS3 in a user namespace. UNFS3 running unprivileged. Kernel NFS server

/export *(ro,no_root_squash,insecure)

Listing 5.5.1. Exports file used with the kernel NFS server for hosting the Nix store.

/export ::/0(ro,no_root_squash,insecure)

Listing 5.5.2. Exports file used with the UNFS3 for hosting the Nix store.

Fetching packages:
The fetching can be tested by requesting a package that is in the Nix cache, for

example, hello package.

nix-build '<nixpkgs>' -A hello

The link to the result must be created manually with steps in 4.5.3.

Building packages:
The building must be manually triggered because when using the remote daemon,

Nix appears to ignore the option --substitutes ''. The test will be conveyed in Nix
repl, the interactive nix console, and will use overriding to modify the package.

5.5.1 Missing Nix store paths

During testing, if the user encounters that some paths are missing from the Nix store,
this is because they were present before mounting the remote Nix store. The fix is
simple, unmount the remote Nix store and use nix-copy-closure to copy the missing
path.

28

. 5.6 Performance test of different NFS servers

$ nix repl '<nixpkgs>'

This function modifies name of the package
nix-repl> overrideFcn = (oldAttrs: { name = "hello-world"; })

nix-repl> :b hello.overrideAttrs (oldAttrs: rec {name}

This fails because it requires that the build machine has
the same architecture as the local device.
nix-repl> :b hello.overrideAttrs overrideFcn

nix-repl> args = {
system="x86_64-linux";
crossSystem = builtins.currentSystem;

}
nix-repl> crossPkgs = (import <nixpkgs> args)

This will successfully build the package
nix-repl :b crossPkgs.hello.overrideAttrs overrideFcn

Listing 5.5.3. Using Nix repl to verify package cross-compilation.

5.6 Performance test of different NFS servers
The goal of this test is to compare the file access speed between different NFS servers.

The test will be run on a Raspberry Pi 4 with NixOS 22.05pre started with Novaboot.
The remote machine is an 8-core AMD64 machine running Ubuntu 20.04 with multi-
user installation of Nix 2.8.1. The exported directory with the root filesystem is on SSD.
The Raspberry Pi is in the same 1 Gbit/s local network as the server and configured
to use a TCP connection.

NFS servers include UNFS3 running as root or in the user namespace and kernel
NFS servers with NFS versions 3 and 4.

nix-instantiate command generates store derivations from the Nix expressions.
In the test, the Nixpkgs will be evaluated to produce store derivations for the hello
package.

The test is run by hyperfine2 100 times. The script in the preparation flushes the
caches of both the local machine and the NFS server. Remounting did not have any
effect on the times, so it is skipped.

prepare.sh file
ssh root@server 'sync; echo 3 > /proc/sys/vm/drop_caches'
sync
echo 3 > /proc/sys/vm/drop_caches

hyperfine --prepare ./prepare.sh --runs 100 \
"nix-instantiate '<nixpkgs>' -A hello"

Listing 5.6.1. Performance test command.

2 https://github.com/sharkdp/hyperfine

29

https://github.com/sharkdp/hyperfine

5. Evaluation .

NFS server Mean [s] Std. dev. [s] Min [s] Max [s]

kernel NFSv4 2.488 0.041 2.433 2.667
kernel NFSv3 2.073 0.046 2.003 2.175
root UNFS3 2.155 0.048 2.061 2.239
namespace UNFS3 2.371 0.049 2.294 2.462
local SD card 1.765 0.004 1.753 1.775

Table 5.1. Performance test of NFS servers – 100 iterations.

Figure 5.2. Screenshot of performance testing UNFS3 in user namespace.

As we can see at 5.1, the best is the kernel server operating with NFS version 3.
Running UNFS3 unprivileged in the user namespace resulted in 10 % increase in run
time.

30

Chapter 6
Conclusion

The goal of this work was to extend the Novaboot server part with the NFS server.
This was done using the UNFS3 server, which runs without root privileges as requested.
Changes made in the pull request to UNFS3 were merged into the master, and the pull
request to Novaboot is soon to be merged as well.

The other goal of this work was to cross-compile the NixOS distribution and configure
it for usage with the Novaboot tool. This was done successfully and the resulting system
can be compiled with the cross-system GitHub repository A.6. We have also analyzed
options for the remote building of packages and found that the remote Nix daemon
suits our needs.

During the evaluation, we have determined that NixOS with its filesystem hosted by
kernel NFS server, works without any issues, and with UNFS3 there are only minor
issues that have simple workarounds.

6.1 Future work
Improving the experience by providing a better way to modify files hosted on a
Novaboot-managed UNFS3 server will be the next step. This work already lists some
possibilities for how it can be done in section 3.3.3.

Fixing UNFS3 issues uncovered while evaluating the usage of NixOS is also on the
list.

31

Appendix A
Git repositories

All of my repositories contain a tag Bachelor_thesis that points to the last commit
before submitting the thesis.

A.1 Integration repository
This repository contains configurations, builders, and steps used to evaluate the correct
integration with UNFS3 with Novaboot. Buildroot system and NixOS are used with
QEMU and Raspberry Pi 4.

https://gitlab.fel.cvut.cz/skoudmar/novaboot-nfs-integration

A.2 UNFS3
This repository contains UNFS3 source code. Many of my changes have already been
merged into the upstream master branch. At the time of publication, my fork differs
from upstream by having the fix for the problem 4.1.2 and has also introduced a port
file.

Upstream: https://github.com/unfs3/unfs3
My fork: https://github.com/skoudmar/unfs3

A.3 User namespace creator
This repository contains the userns tool described in 4.2.

https://gitlab.fel.cvut.cz/skoudmar/user-namespace-creator

A.4 Novaboot
This repository contains the source code of Novaboot 2.3. My fork is used to work on
the pull request #10.

Upstream: https://github.com/wentasah/novaboot
My fork: https://github.com/skoudmar/novaboot

A.5 Nixpkgs
This repository contains the Nixpkgs. My fork adds the Novaboot tarball NixOS target
at 4.4 and modifications to the stage 1 init script at 4.4.1.

Upstream: https://github.com/NixOS/nixpkgs
My fork: https://github.com/skoudmar/nixpkgs

33

https://gitlab.fel.cvut.cz/skoudmar/novaboot-nfs-integration
https://github.com/unfs3/unfs3
https://github.com/skoudmar/unfs3
https://gitlab.fel.cvut.cz/skoudmar/user-namespace-creator
https://github.com/wentasah/novaboot
https://github.com/skoudmar/novaboot
https://github.com/NixOS/nixpkgs
https://github.com/skoudmar/nixpkgs

A Git repositories .

A.6 Cross-system
This repository publishes the internal NixOS targets from Nixpkgs. My fork adds a
build target for Novaboot tarball with configuration.

Upstream: https://github.com/samueldr/cross-system
My fork: https://github.com/skoudmar/cross-system

34

https://github.com/samueldr/cross-system
https://github.com/skoudmar/cross-system

Appendix B
Contents of the attached archive

This archive contains the following git repositories:

. Integration repository - novaboot-nfs-integration-master.tar.gz. Archive contains all submodules. This archive is tar.gz file because zip does not support symbolic links.. UNFS3 - unfs3-master.zip. User namespace creator - user-namespace-creator-master.zip. Novaboot - novaboot-master.zip. Nixpkgs - nixpkgs-novaboot.tar.gz. This archive is tar.gz file because of better compression method.. Cross-system- cross-system-master.zip

35

References

[1] Buildroot Association. The Buildroot user manual [online]. [cit. 2022-04-24].
Available from https://buildroot.org/downloads/manual/manual.html.

[2] Sojka, Michal. Novaboot. [cit. 2022-04-26]. Available from https://github.com/
wentasah/novaboot/blob/master/README.md.

[3] Sun Microsystems, Inc. NFS: Network File System Protocol specification [RFC
1094]. Available from DOI 10.17487/RFC1094. Available also from https://www.
rfc-editor.org/info/rfc1094.

[4] Staubach, Peter, Brian Pawlowski, and Brent Callaghan. NFS Version 3
Protocol Specification [RFC 1813]. Available from DOI 10.17487/RFC1813. Avail-
able also from https://www.rfc-editor.org/info/rfc1813.

[5] Haynes, Thomas, and David Noveck. Network File System (NFS) Version 4
Protocol [RFC 7530]. Available from DOI 10.17487/RFC7530. Available also from
https://www.rfc-editor.org/info/rfc7530.

[6] UNFS3 [online]. [cit. 2022-05-12]. Available from https://github.com/unfs3/
unfs3.

[7] UNFS3 manual [online]. [cit. 2022-05-12]. Available from https://github.com/
unfs3/unfs3/blob/master/unfsd.8.

[8] NFS-Ganesha [online]. [cit. 2022-05-12]. Available from https://github.com/
nfs-ganesha/nfs-ganesha/wiki.

[9] Dassen, J.H.M., Joost Witteveen, and Clint Adams. Fakeroot [online].
[cit. 2022-04-30]. Available from http://manpages.ubuntu.com/manpages/
trusty/man1/fakeroot-tcp.1.html.

[10] Shemesh, Shachar. Fakeroot NG [online]. [cit. 2022-01-09]. Available from http
s://fakeroot-ng.lingnu.com/.

[11] systemd [online]. [cit. 2022-05-02]. Available from https://systemd.io/.
[12] ArchWiki - systemd [online]. [cit. 2022-05-02]. Available from https://wiki.

archlinux.org/title/systemd.
[13] Dolstra, Eelco. The purely functional software deployment model. Utrecht Uni-

versity, 2006. ISBN 90-393-4130-3. PhD. thesis.
[14] NixOS Contributors. NixOS [online]. [cit. 2022-04-24]. Available from http

s://nixos.wiki/wiki/NixOS.
[15] NixOS Contributors. How Nix works [online]. [cit. 2022-04-24]. Available from

https://nixos.org/guides/how-nix-works.html.
[16] NixOS Contributors. Nixpkgs 21.11 manual [online]. [cit. 2022-05-15]. Available

from https://nixos.org/manual/nixpkgs/stable/.
[17] NixOS Contributors. Nix manual: nix.conf [online]. [cit. 2022-05-15]. Available

from https://nixos.org/manual/nix/stable/command-ref/conf-file.html.

36

https://buildroot.org/downloads/manual/manual.html
https://github.com/wentasah/novaboot/blob/master/README.md
https://github.com/wentasah/novaboot/blob/master/README.md
http://dx.doi.org/10.17487/RFC1094
https://www.rfc-editor.org/info/rfc1094
https://www.rfc-editor.org/info/rfc1094
http://dx.doi.org/10.17487/RFC1813
https://www.rfc-editor.org/info/rfc1813
http://dx.doi.org/10.17487/RFC7530
https://www.rfc-editor.org/info/rfc7530
https://github.com/unfs3/unfs3
https://github.com/unfs3/unfs3
https://github.com/unfs3/unfs3/blob/master/unfsd.8
https://github.com/unfs3/unfs3/blob/master/unfsd.8
https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://github.com/nfs-ganesha/nfs-ganesha/wiki
http://manpages.ubuntu.com/manpages/trusty/man1/fakeroot-tcp.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/fakeroot-tcp.1.html
https://fakeroot-ng.lingnu.com/
https://fakeroot-ng.lingnu.com/
https://systemd.io/
https://wiki.archlinux.org/title/systemd
https://wiki.archlinux.org/title/systemd
https://nixos.wiki/wiki/NixOS
https://nixos.wiki/wiki/NixOS
https://nixos.org/guides/how-nix-works.html
https://nixos.org/manual/nixpkgs/stable/
https://nixos.org/manual/nix/stable/command-ref/conf-file.html

. .
[18] NixOS Contributors. Nix manual: Remote Builds [online]. [cit. 2022-04-25].

Available from https://nixos.org/manual/nix/stable/advanced-topics/
distributed-builds.html.

[19] Torvalds, Linus. Linux kernel: linux/net/ipv4/ipconfig.c [online]. [cit. 2022-05-
14]. Available from https://github.com/torvalds/linux/blob/master/net/
ipv4/ipconfig.c.

37

https://nixos.org/manual/nix/stable/advanced-topics/distributed-builds.html
https://nixos.org/manual/nix/stable/advanced-topics/distributed-builds.html
https://github.com/torvalds/linux/blob/master/net/ipv4/ipconfig.c
https://github.com/torvalds/linux/blob/master/net/ipv4/ipconfig.c

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Background
	Requirements
	Buildroot
	Novaboot
	The main script
	The server-side part

	Network File System
	Kernel NFS server
	User-Space NFSv3 Server
	NFS Ganesha

	Faking file permissions
	Fakeroot
	Fakeroot NG
	User namespaces

	Systemd services
	Nix and NixOS
	Nix store
	Nixpkgs
	Nix configuration file
	Remote Builds
	Nix daemon
	Cross compilation
	Nix booting stages

	Analysis
	Choosing NFS server
	Kernel NFS server
	NFS Ganesha
	UNFS3
	UNFS3 with a Database
	Wrapped UNFS3
	Final choice

	Creation of user namespaces
	Novaboot server with NFS
	Enabling and disabling the NFS support
	Integrating UNFS3 with novaboot-shell
	Copying root filesystems to Novaboot server

	NixOS
	Background
	NixOS through NFS
	Remote builds
	NixOS -- remote daemon
	Remote cross-builds

	Novaboot and NixOS

	Implementation
	Changes to UNFS3
	Port file
	Modifying time on symlink

	User namespace creator
	Integration of UNFS3 with Novaboot-shell
	Novaboot NFS configuration file
	UNFS3 systemd service
	The core integration of Novaboot-shell with UNFS3

	NixOS image for Novaboot
	Modifying the NixOS' stage 1 init
	Creating the filesystems entry for NixOS
	Cross-compiling and using the image

	Remote builds on NixOS
	Using nix daemon and NFS
	Patching the Nixpkgs

	Evaluation
	UNFS3's compilation
	Booting a Buildroot-based system with Novaboot
	Booting on a virtual device (QEMU)
	Booting on Raspberry Pi 4

	Bootnix NixOS with Novaboot and UNFS3 server
	Failing to start Nix-daemon
	Failing to use Nix daemon

	Booting NixOS with Novaboot and kernel NFS server
	Remote Nix daemon
	Missing Nix store paths

	Performance test of different NFS servers

	Conclusion
	Future work

	Git repositories
	Integration repository
	UNFS3
	User namespace creator
	Novaboot
	Nixpkgs
	Cross-system

	Contents of the attached archive
	References

