
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Novel Geometric-Programming Formulations
in Computer-Aided Design of Integrated Circuits

Adam Bosák

Supervisor: Mgr. Jakub Mareček, Ph.D.
Supervisor–specialist: Dmytro Mishagli, Ph.D.
May 2022



ii







v

Acknowledgements
I would like to express my considerable appreciation to Dr. Jakub Mareček and
Dr. Dmytro Mishagli for their valuable and constructive suggestions during the planning
and development of this research work. Their willingness to give their time so generously
has been very much appreciated. The access to the computational infrastructure of
the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for
Informatics” is also gratefully acknowledged.



vi

Declaration
I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of the university thesis.

20. May 2022 ...............



vii

Abstract
Geometric programming is often used in the layout and timing problems of circuit design.
The gate sizing problem is perhaps the best known special case. To the best of our
knowledge, the literature has used either deterministic delay models or approximating
statistical models, so far. A significant part of the thesis includes the solution to finding
a multiplication of two numbers using only optimization variables that can then be used
in the SSTA algorithm. This thesis also presents two new solutions of the statistical
approach to the gate sizing problem using mixed-integer programming and geometric
programming. In particular, a histogram approximation of the statistical approach is
employed. We apply our proposed algorithms to the ISCAS benchmark circuit and
compare the results with the deterministic approach.

Keywords: Mixed–Integer Programming, Geometric Programming, Gate Sizing,
Statistical Static Timing Analysis

Supervisor: Mgr. Jakub Mareček, Ph.D.



viii

Abstrakt
Geometrické programování se často používá při problémech s uspořádáním a časováním
při návrhu obvodů. Problém velikosti hradel je možná nejznámějším speciálním případem.
Literatura dosud buď používala deterministické modely nebo aproximující statistické
modely zpoždění. Významnou částí práce je řešení hledání násobení dvou čísel pouze
pomocí optimalizačních proměnných, což lze následně použít v algoritmu SSTA. Tato
práce také představuje dvě nové řešení statistického přístupu k problému velikosti hradel
pomocí smíšeného celočíselného programování a geometrického programování. Zejména
se používá aproximace histogramem statistického přístupu. Aplikujeme námi navržené
algoritmy na obvod rodiny ISCAS a porovnáváme výsledky s deterministickým přístupem.

Klíčová slova: Smíšené Celočíselné Programování, Geometrické Programování,
Optimalizace Hradel, SSTA
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Chapter 1
Introduction

The Integrated Circuits (ICs) must work at expected frequencies with respect to the timing constrains
specified in their designs, which is checked by Computer–Aided Design (CAD) tools. At the same
time, designers want to minimize the area taken by the designs on a chip and the power consumption.
This leads to a particular class of optimization problems. The gate sizing is one of such problems.

There have been many approaches introduced since 1980s to tackle the gate sizing. This was
summarized in a seminal paper by Boyd et al. in 2005 [8], where a critical assessment of the field
was done as well as the general statement of the gate sizing problem as a Geometric Program (GP)
was made. However, in that paper as well as in subsequent ones up to the most recent work [28],
a deterministic models of a gate delay are used. Such models while give advantage it terms of
low algorithm complexity and, thus, high overall speed of computations, give too pessimistic (i.e.
overestimated) delays of Very Large Scale Integration (VLSI) designs. An attempt to mitigate this
brought to a rise of a new field, Statistical Static Timing Analysis (SSTA). A novel approach within
the SSTA was recently developed at University College Dublin (Ireland) [20, 25, 26]. This approach
allows one to consider non-Gaussian distributions of the gates’ delays without any loss of information
while keeping complexity low enough to use it for the circuit optimization problems.

In this thesis, a histogram–based version of the approach [20, 26] is presented. We use histogram
approximations of the distribution functions and show their potential in the evaluation of the SSTA
and further VLSI optimization. We present two formulations of the problem. We use mixed-integer
programming for the first and geometric programming for the second. We introduce more effective
relaxations and solutions to their drawbacks. We then show how to formulate and solve the gate
sizing problem using the histogram–based approach to SSTA.

The thesis is organized as follows.
Chapter 2 gives and an introduction to Geometric Programming and Generalized Geometric

Programming. The Chapter is a useful handout for the basics of the Geometric Programming.
Chapter 3 introduces a formulation of the SSTA in terms of histograms. In this Chapter, it is

shown how the SSTA can be formulated as an optimization problem. Two formulations are given,
using (i) a mixed–integer programming and (ii) geometric programming.

Chapter 4 is dedicated to the gate sizing problem. The problem is stated and the background
review is given. The problem is then solved using two approaches to the SSTA developed in the
previous Chapter. The results are compared with the deterministic approach.

Chapter 5 presents conclusions and critical overview of the work.

5
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Chapter 2
Related Work: Geometric Programming for Circuit Design

This chapter introduces geometric programming. In the first section, monomial and posynomial
functions are presented. Geometric program is defined in the second subsection with a quick note
on how geometric program is solved. In the following subsections, some extensions to geometric
programming and generalized geometric programs are discussed.

It has been observed ([7]) that GP or Generalized Geometric Program (GGP) either approximate
very well or is equivalent to circuit design optimization problems.
GP and GGP can be converted into a nonlinear convex program using logarithmic transformation
of the variables, objective and constraint functions. Fortunately, convex programs can nowadays
be very efficiently solved. Furthermore, GP always finds a global optimum solution for a feasible
problem, requires no parameter tuning and no starting point. In addition, the strong duality holds
for any GP in convex form and so the duality gap is zero1.
These facts implicate that GP modelling gives us a very powerful tool for solving various optimization
problems.

2.1 Monomials and posynomials

Let us first define monomial and posynomial functions as these are used in the GP. According to [7],
monomial is a function: Rn

++ → R++
2

f(x1, x2, ..., xn) = cxa1...
1 xan

n , (2.1)

where c > 0 and ai ∈ R. We call c coefficient of the monomial and ai exponents of the monomial.
We refer to a sum of monomials as a posynomial ([7]), i.e., function in the form

f(x1, x2, ..., xn) =
K∑

k=1
ckxa1k...

1 xank
n . (2.2)

It is clear from the definitions that for the set of all monomials A and for the set of all posynomials B,
it holds that A ⊆ B. One should also note that posynomials are closed under addition, multiplication,
positive scaling and results in posynomial when divided by a monomial.

1Please see [14] for proof.
2The domain of the monomials is the non-negative quadrant of Rn. We assume that the optimum values cannot be

zero and so the domain is in the form Rn
++.

7



2. Related Work: Geometric Programming for Circuit Design ..........................
2.2 Geometric Program

Based on [7], geometric program is an optimization problem in the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, ..., n (2.3)

gi(x) = 1, i = 1, ..., p,

where xi are optimization variables, fi are posynomial functions, and gi are monomials. We call (2.3)
a geometric program in a standard form. One should distinguish geometric optimization from the
geometric programming defined in (2.3). Geometric optimization is referred to the optimization of
parameters driven by the geometry of a system.

It is sometimes easy to transform a program that does not look like a GP into one using some
elementary operations, such as division or inverse. Time showed that more complex extensions are
needed for the optimization of real-world problems. For example, for the digital circuit gate sizing
problem on which we concentrated. This lead to the idea of generalized posynomials and GGP which
is further discussed in (2.4).

2.3 Solving a GP

As is widely known [14], minimization of a general polynomial optimization problem is NP-Hard.
This is due to the fact that the objective function is non-convex. Even deciding the local optimality
of a non-convex quadratic program is NP-Hard. However, in geometric programming, we consider a
very special, posynomial objective. With a logarithmic change of all variables, GP in standard form
can be turned into a convex program which can be solved with polynomial-time algorithms. The
change of variables is yi = log xi, bik = log cik and bl = logcl. Program is then in the form 3

minimize log
K0∑
k=1

exp(aT
0ky + b0k)

subject to log
Ki∑

k=1
exp(aT

iky + bik) ≤ 0, i = 1, ..., n (2.4)

aT
l y + bl = 0, l = 1, ..., p,

where n is a number of inequalities, p is a number of equalities, aik = [a(1)
ik , a

(2)
ik , ..., a

(m)
ik ]T , i.e.,

exponents of the k-th monomial of the i-th posynomial in a vector. Notice that this can be an
abitrarily close approximation of the original posynomial problem.

2.3.1 How MOSEK solves GP

Solver MOSEK has been used for gate sizing optimization. Having a deeper understanding of how
the GPs are solved in MOSEK will be important in the section about relaxation of the problem
3.4.2.

3Proof for 2.4 being a convex program is located in [14].

8



................................ 2.4. GP extensions and generalized posynomials

According to the [4, 13] the exponential cone is defined as a convex subset of R3 as

Kexp = {(x, y, z) : x ≥ yez/y, y > 0} ∪ {(x, 0, z) : x ≤ 0, z ≥ 0},

as shown in [13], such set is the closure of the following points

{(x, y, z) : x ≥ yez/y, x > 0, y > 0}.

The proof of the convexity of the cone is the positive semidefinite Hessian of f(y, z) = yez/y for
y > 0. We can now clearly see that the inequality from (2.4)

log
Ki∑

k=1
exp(aT

iky + bik) ≤ 0,

can be written using

uk ≥ exp(aT
iky + bik), (equiv. (uk, 1, aT

iky + bik) ∈ Kexp), (2.5)∑
k

uk =1. (2.6)

Minimization of the posynomial leads to a minimization of the
∑

k uk. Note that for each monomial,
we need to introduce 1 exponential cone and 2 new variables: auxiliary variable uk and a slack
variable s such that −aT

iky + s = bik and 2 new constraints: (2.5) and constraint for the slack.

2.4 GP extensions and generalized posynomials

According to the definition in [7], generalized posynomials are functions formed from posynomials
using the following operations: addition, multiplication, positive fractional power, and maximum.
By the definition, one can see that generalized posynomials are closed under all operations from the
previous sentence.

In order to be able to transform generalized posynomial into a posynomial or a program into a
standard-GP-compatible form, some basic GP extensions need to be addressed.

Unless specified otherwise, f denotes posynomials and g monomials in the next subsections.

2.4.1 Simple extensions

The following two trivial extensions are possible due to the already mentioned fact, observed in [7],
that posynomials are closed under division. The inequality constraint

fi(x) ≤ gi(x),

can be changed into
fi(x)/gi(x) ≤ 1, (2.7)

using the fact that fi(x)/gi(x) is a posynomial. We can also similarly transform the equality
constraint

gi(x) = gj(x)

9



2. Related Work: Geometric Programming for Circuit Design ..........................
into

gi(x)/gj(x) = 1. (2.8)

Finally, the maximization of the objective monomial function is equivalent to the minimization of
the inverse.

2.4.2 Fractional powers

By the definition of standard GP (2.3), we already know that decimal powers of posynomials are
standard-GP-compatible inequalities. However, it would not be valid for some fractional powers.
In [7], a broadly used trick is introduced that is typically used in linear programming. For every
posynomial fi powered by fraction z, we can introduce new auxiliary variable si. These should act
as upper bounds and substitutions for the functions fi. From

f1(x) + ... + fi(x)z + ... + fn(x) ≤ 1,

we get

fi(x) ≤ si (2.9)
f1(x) + ... + sz

i + ... + fn(x) ≤ 1,

which are standard-GP-compatible inequalities.

2.4.3 Maximum of posynomials

Very similar trick in [7] is used when minimizing the maximum of a finite number of posynomials.
From

minimize max{f1(x), ..., fn(x)},

we get

minimize s (2.10)
subject to fi(x) ≤ s, ∀i
variables s, x,

which is again in a valid standard form.

2.4.4 Other non-trivial extensions

In [7], some more extensions are introduced. Since they are not needed for the digital circuit gate
sizing problem that we concentrated on, we will just mention them and not dive deeper.

First extension is an approximation and fitting of the non-posynomial objective function using the
first-order Taylor expansion.

Next is the so-called Signomial Program (SP). SP subject / objective function s : Rn
++ → R, is in

the form

s(x1, x2, ..., xn) =
N∑

i=1
cigi(x1, x2, ..., xn). (2.11)

10



..................................... 2.5. Generalized Geometric program

Note that c ∈ Rn. Signomial subject function allows to express not only upper bound inequalities
but also lower bound inequalities or equalities. Equality constraints are used in network modelling4.
It is important to note that compared to GP, a signomial program cannot be transformed into a
convex one and the dual gap is non-zero.

2.5 Generalized Geometric program

Based on the informations and definitions in [7], the GGP is in the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, ..., n (2.12)

gi(x) = 1, i = 1, ..., p,

where g1, ..., gp are monomials, f0, ..., fn are generalized posynomials. Using the GP extensions
in 2.4, GGP can be transformed into an equivalent GP which has already all the good qualities
described in 2. This transformation can be easily done during the parsing of the program. Using the
previous fact, solvers do not need to have any transformations from GGP into GP implemented.

4Please see [14].
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Chapter 3
Statistical Static Timing Analysis

In this chapter, the delay of a signal in digital circuits is calculated using the SSTA. Finding a
delay of the circuit is critical for the gate sizing problem. First, general principles of SSTA are
outlined. Then, a histogram approximation to SSTA with exact numbers is discussed. Finally, two
SSTA algorithm formulations as an optimization problem are presented. This constitutes one of the
original contributions by the Author.

3.1 Introduction

Deterministic Static Timing Analysis (STA) is a standard way to take into account systematic process
variations [29]. At the same time, the delay values computed in such a way are too pessimistic [6].
This results in increased chips’ cost, when these delays are attempted to mitigate [31]. In modern
ultra-VLSI circuits (5nm and below), the impact of random correlated processes and fluctuations is
significant and cannot be neglected. That is why the SSTA is been developed.

SSTA addresses randomness in a natural way, treating the delays in a system as Random
Variables (RVs). The analysis then allows one to determine the mean value of the delay across
selected paths. The maximum delay corresponds to the critical path. Current industrial realizations
of SSTA allow one to determine moments of delay distributions and/or their quantiles [10, 11, 12].
In principle, SSTA can give a slack1 distribution of the whole circuit, i.e., Probability Density
Function (PDF) and/or Cumulative Distribution Function (CDF). This makes SSTA comparable to
Monte Carlo simulations in terms of accuracy. At the same time, SSTA algorithms are much less
resourceful.

In this work, we use a simplified version of the approach to SSTA proposed in [20, 26]: a
histogram approximation. Only in the estimation of the maximum, we assume that the inputs are
uncorrelated. The same code of the general SSTA algorithm is used for all the exact computation 3.2
and both optimization formulations (3.3, 3.4). Crucial parts of the algorithm are the computations
of maximums and convolutions. Their solutions are presented in the next sections. One can see in
the Algorithm 1 the general version of the algorithm2 based on [20].

1A slack is defined as a difference between the required arrival time of a signal and its actual arrival time.
2Full algorithm is at © or can be found in the repository https://github.com/bosakad/GP-Optimization.
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Algorithm 1: General SSTA algorithm
Data: Histogram approximation of N gates, number of gates N
Result: A histogram of the delay of a circuit
for i← 1, ..., N do

M ← max of input gates;
C ← convolution of gate(i) and M;
propagate C further as input PDF;

D ← max of output PDFs;

3.2 Exact computation

In this section, we will present the exact computation of the maximum and the convolution. We will
not dive too deeply into its problematic, as its purpose is mainly for comparison and explanation of
the optimization problem. In this section, PDFs are represented by the histogram approximation.
Each histogram is represented by a pair of NumPy array of individual bin values and a NumPy array of
edges. General assumption for the histograms is to have the same array of edges. This assumption
also holds for both optimization problems.

Unless specified otherwise, N denotes the number of bins for each histogram in the following
subsections.

3.2.1 Maximum

We will try to find the histogram approximation of the maximum ξ of two independent random
variables η, ζ. We assume set of bins M = {0, 1, ..., N − 1}, the histogram samples ηi and ζi take
the value in the interval [A, B] ∀i. Given the edges interval [A, B], we partition R into N -intervals
n1, n2, ... nN with points e1, e2, ... eN+1 such that ei is the start of the interval ni and ei+1 is the end
of ni, e1 = A, eN+1 = B and |ni| = |B −A|/N , ∀i. The midpoints of the intervals m1, m2, ... mN

are also given. The maximum can be formulated as

ξ =
{

η, if η ≥ ζ,

ζ, if η < ζ.
(3.1)

Using the law of total probability, the probability at realization z ∈ [A, B] can be written as

p(ξ = z) = p(ξ = z, η ≥ ζ) + p(ξ = z, η < ζ). (3.2)

Using the definition in (3.1), we can change (3.2) to

p(η = z, η ≥ ζ) + p(ζ = z, η < ζ). (3.3)

In our case of independent RVs η and ζ, we can make the final changes. The probability of a
maximum is

p(ξ = z) = p(η = z) · p(ζ ≤ z) + p(ζ = z) · p(η < z). (3.4)

The discrete random variable formulation and histogram estimations hη, hζ and hξ are now easily
expressed as follows at i ∈M
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hξ[i] = hη[i] ·
i∑

k=1
hζ [k] + hζ [i] ·

i−1∑
k=1

hη[i]. (3.5)

Note that the upper bound of the second sum is i− 1. This is due to the fact that in (3.3) in the
second term there is a strict inequality as one part of the joint probability.

A big advantage of this formulation is its speed-up potential. The first part of the optimization
could be the precomputation of the cumulative sum for both histograms. The cumulative sum
represents the cumulative distribution function, so 3.4 could be used. The cumulative sum can be
easily computed in linear time. The second part of the speed-up could be a vectorization of the
algorithm. Note that in (3.4) only 1 index is used for all functions and all values of the functions
are independent of each other. The calculation of (3.4) can then also be done in linear time
with vectorized instructions. The total time complexity of the optimized maximum algorithm is
θ(2 ·N) = θ(N).

The unoptimized version of the algorithm of this method is shown in the Algorithm 2 in pseudocode3

and will be important when formulating the maximum as an optimization problem in 3.3.

Algorithm 2: Maximum
Data: Number of bins N , two vectors x, y of histogram values
Result: Maximum of two histograms in m
m← 0;
for i← 1, ..., N do

for j ← 1, ..., i do
m[i]← m[i] + x[i] · y[j];
if i != j then

m[i]← m[i] + x[j] · y[i];

3.2.2 Convolution

The convolution of two histograms can be performed using the convolve function from the NumPy
library, which uses Fast Fourier transform. However, this solution cannot be used in the optimization
formulation of the problem, so a general convolution has been used instead:

(f ∗ g)(z) =
∞∑

−∞
f(k) · g(z − k), (3.6)

where f , g are some functions. The time complexity of the convolution is θ(N2). The pseudocode4

can be seen in Algorithm 3. The formula (3.6) implies that the values of the edges must be changed.
The value of the first edge has to be added to all other edges. This can be done in many ways and is
discussed in the following subsections.

3Full code of maximum is at ©, vectorized version at © or can be found in the repository https://github.com/
bosakad/GP-Optimization.

4Full code of the convolution can be seen at ©, or can be found in the repository https://github.com/bosakad/
GP-Optimization.
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Algorithm 3: Convolution
Data: Number of bins N , two vectors x, y of histogram values
Result: Convolution of two histograms in c
c← 0;
for z ← 1, ..., N do

for k ← 1, ..., z do
c[z]← c[z] + x[k] · y[z − k];

3.2.3 New edges

As already discussed, we need to add the first value of the interval to all edges after each convolution.
The first option is to add the first value to all edges and unite them during the SSTA algorithm
when the edges of the second histogram differ. The receipt is simple: find the new array of edges e
and modify the PDFs of histogram approximations fα, fβ with the new changed edges. The array of
edges of fα is given as eα, similarly eβ denote the array of edges of fβ.

To find the e, we partition R into N -intervals n1, n2, ... nN with points e1, e2, ... eN+1 such that ei

is a start of the interval ni and ei+1 is the end of the ni, e1 = min{eα
0 , eβ

0}, eN+1 = max{eα
N+1, eβ

N+1}
and ∀i : |ni| = |eN+1 − e1|/N .

The easiest way to do this modification is to use the function rv_histogram from scipy.stats
library. This function finds a distribution function that fits the given histogram. Let us say that F
is the fitted cumulative distribution function of the fα. Then PDF at the realization z ∈ ni of the
new histogram fα′ with the desired edges e is

fα′(z) = F (ei+1)− F (ei). (3.7)

Another way to do so is by exact integration over the bins of the histogram:

fα′(z) =
∫ ei+1

ei

fα(x) dx. (3.8)

The same would be done for fβ′ . Solution (3.8) gives more precise results and bypasses the problem
of fitting functions, which is relatively computationally demanding, all at the cost of a slightly longer
code. Exact integration can be performed in O(N) for the whole histogram5.

5Full code of (3.8) can be seen at ©, and (3.7) at ©, or can be found in the repository https://github.com/
bosakad/GP-Optimization/ .
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Figure 3.1: Sketch demonstrating the integration over the fitted function (3.7) (yellow surface) and the
exact integration (3.8) (red surface). Blue function represents the fitted PDF.

When one looks at the SSTA algorithm in Alg. 1, a problem with such a union of edges is evident.
After convolutions of the input gates, every time a maximum and then convolution should be
computed, the edges will differ and have to be united. Taking into account the two inputs for each
gate, the function (3.7) or (3.8) is called twice per gate. Moreover, more problems are to come when
trying to solve a convolution optimization problem.

A different and more straightforward solution is presented in the next subsection.

3.2.4 Shifting a histogram

A second solution to the problem of adding a value to the edges is a simple shifting. We can shift
the whole histogram to the left or right by the number of bins determined by a value that is to
be added to all edges divided by the length of the bins and floored. Shifting the value of a bin by
such a number simulates the addition of the first value to all edges. We assume n bins, set of bins
B = {0, 1, ..., n− 1} the identical edges array of the histograms is given as e ∈ R(n+1)×1, histograms
as hα, hβ, s denotes the shift. The shift can be computed as 6

s = ⌊ | e0 |
e1 − e0

⌋. (3.9)

In the case of e0 > 0, the new changed histogram hα′ (equivalently for hβ′) at point x ∈ B will look
like

hα′ [x + s] = hα[x] (3.10)

In the case of e0 < 0, the shift is very similar:

hα′ [x] = hα[x + s] (3.11)

When shifting to the right, there are s unoccupied positions on the left. These are nullified.
Similarly, done when shifting to the left. Having the starting interval set correctly, this does not

6Please see the code at ©, or can be found in the repository https://github.com/bosakad/GP-Optimization/.
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have any effect on precision as the starting and ending bins should always be zero. If the interval
is small, the accuracy increases, since the bins can encode more information in a smaller interval.
However, if it is too small, then we cut some information by this shift. Furthermore, the more bins
we add, the more precise this shift will be.

The mentioned shifting method gives exactly precise solutions as the one with union. It is extremely
easy to implement, can be done in linear time with just load/store vectorized instructions, and can
be used nearly without any change in the optimization problem. Therefore, this method is used
better than the union method. A further comparison will be shown in the next chapter in 3.3.2.

3.3 SSTA as Mixed-integer problem

For the optimization process, the SSTA algorithm must be formulated using optimization variables.
There are many tools that can be used. Two modeling languages for Python were chosen. First, the
Python-embedded modeling language CVXPY [3, 18], has been used for its simplicity, which allows
fast debugging and implementation. Both the GUROBI and MOSEK solvers have been used for
the optimization itself. After having a functional CVXPY version of the SSTA, we switched to the
matrix-oriented optimization interface of MOSEK called MOSEK Optimizer API for Python [4].
This swap gives us a much faster compilation of the problem at the cost of longer and less clear code.
All data sets used in plots in this chapter for mixed-integer formulation were computed using the
MOSEK Optimizer API for Python.

Each histogram is represented by a pair of a NumPy array of edges and a dictionary of CVXPY
variable structures in the case of CVXPY. In the case of MOSEK, bin probabilities are saved as
indices of the variables in the MOSEK internal matrix structure.

In the first subsection, an idea of the mixed-integer solution is presented, followed by extensions
of the convolution and the maximum with exact numbers and their further improvements. Finally,
the formulation of the SSTA as a minimization problem will be shown.

3.3.1 Unary encoding

Taking a closer look at the Algorithms 2 and 3, one can see that a multiplication of two non-negative
real numbers occurs in both of them. Such a multiplication is a non-convex function, which cannot
be used as a constraint or as an objective function. A first solution could be the usage of McCormick
envelopes. These require setting the lower and upper bounds of the factors. The only way to compute
these bounds is by the exact computation of the problem using the methods in 3.2. Another option
is to change the problem to unary notation. The second option will be discussed in this section,
and a significant part of this work aims to address its problems and benefits. The last option is to
address this problem as GP. This will be presented in 3.4.

The idea behind the unary encoding is straightforward. Instead of representing histogram bins as
an array of real values, we can represent them as a matrix of binary values. Each bin is expressed by
one row in the matrix. Its probability can be encoded as a sum of the row elements divided by both
a sum of the matrix elements and a width of the bin (for normalization purposes). Let me show this
on a toy example.
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Figure 3.2: Histogram with 5 bins and width of the bin is 1

The histogram in Figure 3.2 can be represented by a 5x3 matrix:

h =


0 0 0
1 0 0
1 1 0
1 0 0
0 0 0

 .

It is evident that not all real values can be encoded by a finite number of binary values. The more
columns we have, the more precise the encoding will be.

In the next subsections, N denotes the number of rows (bins) and M denotes the number of
columns (unary variables).

3.3.2 Maximum and Convolution

In this section, a procedure is presented on how to find the multiplication of two real numbers
encoded in the unary notation and how it can be used in the convolution and the multiplication.

The best way to explain this is to look at an example. Let us have two natural numbers α, β
encoded in unary notation in vectors a, b. By definition, the multiplication of two numbers is equal
to repeated addition: α · β = (β(1) + β(2) + ... + β(α)). This can be used in vector parallel. Each 1 in
the multiplier a can be interpreted as one addition of all ones in the multiplicands vector b and can
be easily written as matrix multiplication:

1T

1×α

[
a a ... a

]
α×β

b
β×1

(3.12)

Having this explained, we can move on and show how we can enforce the multiplication of two
unary variables. We are given two unary variables x and y, our goal is to find their product. To do
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so, we can introduce a new auxiliary variable s, in which we will find the final result. Finally, we can
introduce the needed constraints

s ≤x

s ≤y (3.13)
s ≥x + y − 1.

The last constraint is not necessary in all situations. For the maximization problem of the sum of
all variables, the third constraint is redundant. However, in the case of optimization of only some
variables, a good example is a minimization of a conditional value at risk, the inequality is needed.

In Algorithm 4, one can find the convolution designed in the CVXPY modeling language7. Please
note that the algorithm is heavily inspired by Algorithm 3. The maximum algorithm is not listed
here as it is exactly the same as the convolution, only it is based on Algorithm 2.

Algorithm 4: Convolution using CVXPY modeling language
Data: Number of bins N , number of unary variables M , two N ×M bins matrices of

histograms X,Y
Result: Convolution of two histograms in 1-D array C
R← 0;
for z ← 1, ..., N do

for k ← 1, ..., z do
for i← 1, ..., M do

for j ← 1, ..., M do
C[z]← C[z] + s;
x← X[k, i];
y ← Y [z − k, j];
introduce unary constraints (3.13) for x, y, s;

To optimize the code, we can reduce the two most inner cycles and instead perform very efficient
matrix multiplications, as shown in (3.12).

As a last step, we need to find a new unary matrix that represents the convolution using the sum
of these variables s. This can be easily done by introducing new constraints bound to N ·M new
variables. Let us say that we introduce a new matrix Z ∈ {0, 1}N×M with unary variables. The
auxiliary variables s in the sum of the bin q are stored in the vector vq. New constraints would look
like

7CVXPY convolution is at ©, CVXPY maximum at ©, MOSEK API convolution at ©(vectorized version at ©),
MOSEK API maximum at ©(vectorized version ©), or all can be found in the repository https://github.com/
bosakad/GP-Optimization/.
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Z1,:1 ≤1T v1

... (3.14)

...

ZN,:1 ≤1T vN ,

we then propagate Z further in the SSTA. It is important to bear in mind that the constraints (3.14)
will work only for a maximization problem. Inequality signs should be flipped for the minimization
problem. These particular constraints bring us a new problem and will be discussed in section 3.3.3.

Let me end this subsection with a quick discussion about edge modifications. We can add a new
argument on why to use histogram shift (3.2.4) over the computation of the histogram with new
edges (3.2.3). In order to simulate the integration over the bins to find the new histogram (3.8), we
would need to introduce new constraints. In contrast, the shift of the bins can be done very quickly
and without any new constraints.

3.3.3 Normalization

Using the same notation as in the previous subsection, we can find a large problem in (3.14). Knowing
the elements of the matrix Zi,j take only the value 0 or 1. Thus, the maximum possible value reached
on the left side of the inequality is M . However, the other side of the inequality can reach even
larger values than M . This would lead, in the case of a minimization problem, to infeasibility in
certain situations as the inequality sign would be flipped in (3.14). This is why a maximization
problem is more suitable.

So what happens if the right side of the constraint (3.14) for the i-th bin takes the value M + a,
where a ∈ N? This becomes infeasible for the minimization, for the maximization, the maximum
possible value M is set for Zi,1 + ... + Zi,M (if other constraints allow it), and the information about
a ones is cut. This information-cut leads to many problems and will be called an overflow. The
obvious first problem is an unnatural cutting of high peaks at some height. Secondly, we already
know from the section 3.3.1 that the probability of each bin is calculated as a ratio of the number of
non-zero elements in the row and the number of overall non-zero elements times the width of the
bin. Therefore, not only will the mean value change but also the standard deviation will increase
drastically.
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Figure 3.3: Maximum of 2 histograms with 200 bins and 200 unary variables with overflow

The solution to this is a normalization of the histogram. Using the notation of (3.14), we can
divide each sum of the row vq for the bin q by a parameter x ∈ R++, constraints (3.14) will change
in the following

Z1,:1 ≤1T v1 ·
1
x

+ 0.5

... (3.15)

...

ZN,:1 ≤1T vN ·
1
x

+ 0.5,

where the scalar 0.5 rounds the right side as it becomes a positive real number after division
by x ∈ R++. We denote wi = 1T vi, then the parameter x should have properties such that
max{w1,...,wN }

x ≤M . Too large x prevents overflow, but also loses some information by rounding the
divided rows with small sums. Too small x does not cut any information at the cost of a possible
overflow. Taking the ideal (minimal possible) x we get

max{w1, ..., wN}
M

= x. (3.16)

So, theoretically, such a perfect x can be found. Can it also be done for the optimization scenario?
Assuming that we are solving a minimization problem, finding a maximum of integer variables wq

should not be a problem. Dividing it by a scalar constant M is also not a problem. Thus, the answer
is yes, we can find such x, but we cannot use it for the division, as wq ·M

max{w1,...,wN } is yet again not a
convex function.

We now have two options on how to solve this. First, we can take the maximal possible value
of wq and not let any overflow happen even in the worst case. This would be N ·M2 + (N − 1) ·M2

for a maximum and N ·M2 for a convolution (derived from Algorithms 4 and 2). Such values are
unfortunately too large, and we would lose too much information by division.
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The second option is to set x as a parameter. For demonstration purposes, x = 1
30 ·N ·M and

x = 1
22 ·N ·M were set for the maximum and the convolution consecutively.

Figure 3.4: Maximum of 2 histograms with 200 bins and 200 unary variables with normalization.

3.3.4 Problem Tightening

In order to speed up the convergence rate of the optimization algorithm, we need to introduce
constraints that tighten the problem as much as possible. An ideal tightening should be performed
with a minimal number of new variables and constraints.

Good tightening constraints in our case of convolution and maximum are constraints that enforce
a separation of zeros and ones in the matrix row. We denote the new matrix representing the
convolution / maximum by Z ∈ {0, 1}N×M with N ·M unary variables, we introduce (3.15), and for
each row i we introduce

Zi,1 ≥Zi,2

Zi,2 ≥Zi,3 (3.17)
...

...

Zi,N−1 ≥Zi,N .

Such constraints give a solver a good starting point, thus having this done for all rows, the convergence
is drastically faster for more complex problems.

We do not have to concentrate on the separate maximums and convolutions and instead use
the steps in SSTA algorithm to tighten our problem. Rather than finding a {0, 1}M×N matrix,
as presented in (3.15), after each convolution and maximum, we can keep cb pairs of variable
indices for each bin b after performing the maximum without introducing any constraints. We
further propagate the list of the indices as one of the inputs for the convolution and use these
pairs to introduce three-term multiplication constraints after the convolution. We denote ζ, η and
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ξ the random variables, their histogram approximations by ζ̂, η̂ and ξ̂. Let X = {(x, y, z)|(x, y)
are variables saved after the maximum of ζ̂ and η̂, z is a variable saved after convolution of the
maximum with ξ̂ }. For each triplet (x, y, z) we can find s, new constraints similar to (3.13) are:

s ≤x,

s ≤y,

s ≤z, (3.18)
s ≥x + y + z − 2.

Again, the last constraint is not needed for the maximization problem in all cases. Next, we can
create a new matrix Z ∈ {0, 1}N×M with N ·M unary variables, introduce constraints (3.15) using
the new variables s, also constraints (3.17). We then propagate Z further. One can see in Figure 3.5
the comparison of the relaxed problems with the original problem8.

Figure 3.5: Comparison of 3 methods of the SSTA realization. The methods are tested on a “ladder”
of maximums and convolutions with 10 bins, 10 unary variables, and a time limit of 20 minutes (1200
seconds). The blue line indicates the original method, the orange line indicates a method with separation
constraints (3.17) and green line a method with separation constraints and a three-term multiplication
model (3.18).

3.3.5 Scalability

If we look at the algorithms and their solutions, we will find that the number of variables and
constraints introduced for each convolution/maximum is very large. Even more so in the case of a
tightened problem with separation constraints and a three-term multiplication model. However, if
we look at the Figure 3.6, we can see that the number of constraints and variables scale linearly with
the number of gates.

8Full code of three-term multiplication model with separation constraints in MOSEK API is at ©, its vectorized
version at © or all can be found in the repository https://github.com/bosakad/GP-Optimization.
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Figure 3.6: Scalability of a three-term multiplication model (3.18 and 3.17) tested on a ladder of maximums
and convolutions with 20 bins, 10 unary variables, and no time limit. The subplots show: (a), the increase
in the number of non-zeros (blue line), variables (orange line), and constraints (green line). (b), MIP gap
at a root node in percentage, MIP gap tolerance is set to 1%; (c), time in seconds; (d), Mean Absolute
Percentage Error (MAPE) of the standard deviation (orange line) and mean (blue line) compared to
Monte Carlo.

Please pay attention to the number of non-zeros indicating that the problem was presolved. Also,
having only 10 unary variables causes a higher error in standard deviation. The sign of a good
relaxation is a nearly zero relative (MIP) gap at the root node in a relaxation tree, enabling us to
solve even a problem with 232475400 constraints and 77506400 variables.

3.3.6 SSTA as an optimization problem

Having the convolution and the maximum functional, we can dive into the SSTA as an optimization
problem. We assume N gates, n bins, and m unary variables. First, we need to enforce the
variables to fit the Gaussian distribution. To do so, we can generate numbers with the probability of
normal distribution with a given mean value and standard deviation, create a histogram using these
numbers, and represent it in unary encoding using the receipt 3.3.1. For each input gate g, we have
a matrix Eg ∈ {0, 1}n×m created from generated numbers with Gaussian probability and a matrix
Zg ∈ {0, 1}n×m of binary variables. For each gate, for each pair i, j ∈ N, i ≤ N, j ≤M , we introduce

Eg
i,j ≤ Zg

i,j . (3.19)

We can introduce all needed constraints and matrix variables mentioned in (3.15) and (3.17) as
we traverse the circuit. We can then specify the objective function. The objective is the sum of all
the variables of the last (sink) gate. This function is minimized. Flip the inequality of (3.19) for the
maximization task.
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3.4 SSTA via Geometric Programming

In this section, a better solution to the convolutions and maximums is presented. Such a solution
includes geometric programming. All data sets used in plots in this chapter were computed using
the CVXPY modeling language [2] with a use of MOSEK solver. Each histogram is represented by a
pair of a NumPy array of edges and a dictionary of CVXPY variable structures.

First, we will show the formulation of the geometric program, then we will show its relaxation,
and, finally, its scalability.

3.4.1 Maximum, Convolution and SSTA

Quite naturally, we can treat the probability of each bin as a positive number in the range [ϵ, 1],
where ϵ is a very small number. The multiplication of two bins leads to a monomial function of two
variables and a neutral coefficient. The convolution / maximum is then the sum of the multiplications,
thus a posynomial. Using the CVXPY modeling language, both convolution and maximum are then
in the same form as for the exact computation (Algorithms 3 and 2)9. If the start of the interval we
represent the histogram on is nonzero, we need to shift the histogram according to 3.2.4.

To find the result of the SSTA algorithm, we need to set the bounds of all variables to fit the
Gaussian distribution. We assume n gates, m bins, for each input gate g, we have a vector eg ∈ Rm×1

++
created from generated numbers with Gaussian probability and a vector zg ∈ Rm×1

++ of positive
variables representing the bin probabilities. The vector of posynomials obtained from the last gate
as an output of the SSTA is denoted as s ∈ Rm×1

++ . Similarly to 3.3.6, the final program is

minimize 1T s
subject to eg ≤ zg ≤ 1, g = 1, ..., n. (3.20)

Note that 1T s is a posynomial, bounds of the variables are standard-GP-compatible inequalities,
this is a standard geometric program.

3.4.2 Problem relaxation

The posynomial function at (3.20) does not seem to be problematic in any way. However, the
opposite is true. Here we present its problem with scaling and the solution. We will concentrate
only on convolution; the procedure is the same for the maximum.

We assume n gates connected in the line one by one, m bins for each histogram, set of gates
G = {1, ..., n}, set of bins M = {1, ..., m}, vector eg ∈ Rm×1

++ created from generated numbers with
Gaussian probability, vector zg ∈ Rm×1

++ of positive variables representing bin probabilities of gate
g ∈ G with constraints mentioned in (3.20). We do not consider maximums. At the start of the
circuit traverse, for all gates g ∈ G, every component of zg is a monomial with a neutral coefficient
and one variable. Derived from Algorithm 3, after the first convolution in the last bin, we have
a posynomial with 1 ·m terms (monomials with two variables). After the second convolution, we
will have in the last bin a posynomial with m ·m monomials each with three variables, and for

9Code of the convolution is at © and maximum at ©, or can be found in the repository https://github.com/
bosakad/GP-Optimization/.
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the N -th gate we will have mN−1 monomials in the last bin, each with N variables. This clearly
leads to an exponential growth in monomials after each convolution and maximum for a constant
number of bins. As shown in 2.3.1, for each monomial in the posynomial we need to introduce an
exponential cone, two continuous variables, and two constraints. Thus, for a constant number of
bins, the growth of variables, cones, and constraints is exponential with the number of gates. For
constant number of gates N + 1, the growth in variables, cones, and constraints with number of bins
can be computed as the sum of all bins

∑m
i=1 iN , we know thanks to Faulhaber’s formula10 that this

sum can be expressed as a polynomial of degree N + 1, and so is the growth.
We can reduce this by a very simple trick: we can introduce m new positive variables (monomials)

and set appropriate constraints. At the beginning of the traverse, we initiate two empty sets of
vectors Nsucc and Npred of the successor and predecessor vectors of variables. We denote the function
fpred : G→ Npred that maps the predecessor posynomials and fsucc : G→ Nsucc that maps the new
created monomials. After the convolution of the gate i, we save the result vector of posynomials xi

in Npred, we also create a new vector of one-variable monomials ni ∈ Rm×1
++ and store it in Nsucc.

We then use this vector ni as a new vector representing the gate histogram and further propagate it
in the SSTA. We also update the functions fpred(i) = xi and fsucc(i) = ni. For the last gate l, we
save the vector ni and denote it by s. Relaxed SSTA is in the form11

minimize 1T s
subject to fpred(g) ≤ fsucc(g), ∀g ∈ G (3.21)

eg ≤ zg ≤ 1, g = 1, ..., n.

Such relaxation gives the exact same solution as the non-relaxed version. For each convolution, we
introduce (m/2)(1 + m) new exponential cones, thus (2m/2)(1 + m) help variables, and m new upper
bound variables. We just decreased the exponential growth of variables, cones and constraints to a
linear one with the number of gates, and a high-degree polynomial growth with the number of bins to
always quadratic. The numbers are a little different for the maximum; however, the growths before
and after relaxations are identical. The scalability of the GP model with the relaxation constraints
is shown in Figures 3.7 and 3.8.

10See [24] for more details.
11Full code of the optimized convolution can be seen at ©, optimized maximum at ©, or can be found in the

repository https://github.com/bosakad/GP-Optimization/.
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Figure 3.7: Scalability of a GP model with relaxation constraints (3.21) tested on a ladder of maximums
and convolutions with fixed 60 bins and no time limit. The subplots show: a, the increase in the number of
cones (blue line), variables (orange line), and constraints (green line - overlapped with blue line); b, time
in seconds; c, MAPE of the standard deviation (orange line) and mean (blue line) compared to Monte
Carlo.

Figure 3.8: Scalability of a GP model with relaxation constraints (3.21) tested on a ladder of maximums
and convolutions with fixed 8 gates and no time limit. The subplots show: a, the increase in the number of
cones (blue line), variables (orange line), and constraints (green line - overlapped with blue line); b, time
in seconds; c, absolute relative error of the standard deviation (orange line) and mean (blue line) compared
to Monte Carlo.

One should pay attention to the fact that (3.21) can be changed into a standard–GP–compatible
inequality using the simple extension (2.7) as ∀i : yi is a monomial. Thus, relaxed (3.20) is a
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generalized geometric program.

3.5 Discussion and Conclusions

In this chapter, we presented a solution to finding a delay distribution using the SSTA algorithm in
terms of histogram approximations.

(i) Firstly, we introduced and derived the general algorithms for the maximum and the convolution.
We also showed its speed-up potentials and their implementation in Python language.

(ii) We expanded these to be solvable as an optimization problem. First formulation uses mixed-
integer programming. We presented how scalability issues of such formulations can be addressed.
We introduced two relaxations to this problem, (3.17) and (3.18), and the error-resolving
constraints (3.15). Despite NP–hardness of the computation of the general mixed–integer
program, we computed the delay distribution even for 28 gates using the relaxation constraints.

(iii) Second formulation uses the geometric programming. We derived the scalability problem, its
solution (3.21), and showed its potential (3.7–3.8),

We can now compute the delay distribution of the whole circuit for at least 400 gates under 7 minutes
using the GP model, and 28 gates in 34 minutes using the mixed-integer model. Delay is a vital part
of the gate sizing problem, which is discussed in the next chapter.
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Chapter 4
Gate Sizing

In this chapter, we will introduce an example of a real-world geometric optimization problem. In
particular, we focus on the digital circuit gate sizing problem. In the first subsection, we show
various deterministic formulations of the problem. In the second subsection, we present some other
reviews and two of our formulations with a histogram approximation of SSTA using the mixed-integer
programming and geometric programming.

Our goal is to minimize the worst-case circuit delay, also called a critical path, under the maximum
area and circuit power consumption constraints. The main optimization variable is a vector x of
sizing parameters. Sizing parameter xi ≥ 1 is a scale factor of the i-th gate, i.e. a scale factor of
transistors the i-th gate is made from. In the case of xi = 1, the gate is at its minimal possible size.
As the number of transistors increases, so does the speed, size, and consumption of the circuit.

For the demonstration purposes, let me use the circuit c17 shown in Fig. 4.1 from the 1985
International Symposium on Circuits And Systems (ISCAS-85) benchmark family [9, 21].

Figure 4.1: A high-level diagram of c17 circuit from ISCAS-85. A circuit has 6 gates, 5 inputs and 2
output gates.

General convention is that digital circuits are represented in the following way. Each circuit has a
single source and a sink. Fan-out gates of the source are called primary input gates. Fan-in gates of
the sink are called primary output gates. From the mathematical point of view, digital circuits can
be described by Directed Acyclic Graphs (DAGs). Such graphs have the following properties:. DAG is formed by vertices and edges.
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. Each vertex (logic gate) is connected by edges to another vertex.. Each edge has an orientation..Graph has no cycles.

Figure 4.2: The digital circuit c17 expressed by a Directed Acyclic Graph.

These requirements are needed so the logic works as expected.
A standard-cell-based methodology is used: each gate (square) in Fig. 4.1 represents a generalization

of the logical elements, so-called logic cells. Some particular examples are NAND, AND, and OR
gates.

4.1 Background review: Deterministic approach

To our knowledge, the best–known formulation is Boyd’s deterministic gate sizing model [7] that uses
the so-called RC-model of a delay. This is our main inspiration and will be discussed in more detail in
Subsections about delay (4.1.1), area and power consumption models (4.1.2) and final program (4.1.3).
It is appropriate to say that Joshi and Boyd [23] introduced a more efficient formulation of Boyd’s
model: a reformulation of the [7] using soft-max, soft-min and timing constraints, suitable for
pseudo-Newton methods. This seems too complicated to extend to the SSTA, and so our main
inspiration remains Boyd’s original model.

A classic, simple model [15] used signal arrival times (AT ) and required time (RT ) for each gate
of the circuit to analyze the delay. A slack is defined as S(n) = AT (n) − RT (n) for each gate n.
The critical path has the minimal sum of slacks. This leads to maximization of the slacks1. The
hindrance of such a method is that each time a sizing parameter is changed for some gate, time
expensive re-evaluation of the whole circuit has to be done in some cases. The same area model as
in Boyd’s approach [7] was used. The power in a gate is P = Pload + Pinternal + Pleakage, where Pload
is power lost in charging and discharging of the gate, Pinternal depends on the transition time and on
the internal loads and Pleakage is due to a leakage of a current.

1Note that depending on definition, the problem can be either to minimize or to maximize the delay or slack. In
this thesis, we speak of minimization of the maximum delay in a circuit.
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Similarly old approach introduced in [5] formulated the gate sizing problem as a linear program.
They linearized the delay model for this purpose. The main aim was to minimize power consumption
and tune the delay by adapting the load drive capabilities. The introduced linear program has always
a global optimum and can be solved very quickly using the Simplex method. Nevertheless, the delay
model can lack accuracy.

Three years later, in a paper [30] the RC delay model mentioned above was introduced together with
the first usage of posynomial functions. The gate sizing problem was formulated as a minimization
of the area subject to a given maximal delay; however, other formulations are possible. A method to
finding a global optima of the equivalent constraints in the form of a sum of exponentials is presented.
We show in 2.3.1 better ways of solving this.

A more complex solution called NP-Separate has been recently introduced in [17] that sizes not
only cells of the circuit but also PFET and NFET transistors of each cell. The drawbacks of such
method are: unlike our approach, type of cells matter - ideally they should have regular, symmetric
layout patterns (such inverters XOR, NAND, NOR, ...); Secondly, overlapping of NP cell instances
can occur leading to unroutable layout. However, taking a ’closer’ look at the problem might,
as shown, yield better results. This is a completely different approach from standard cell-based
methodology, but is worth reading for an interested reader.

Another approach has been published in [16], where is a min-max resource usage formulated as
the resource sharing problem where each gate is a customer. A parallelization of the method has
been presented in the paper as well. A typical delay RC-model was selected. Their results compared
to those presented at International Symposium on Physical Design (ISPD) 2013 are significantly
faster and reduce total power consumption better.

A similar approach to Boyd’s model was presented in [27]. The area and delay model is again the
same as in Boyd’s approach [7]. Power consumption is not taken into account. Naidu adds pipelining
constraints enforced by a 0− 1 variables for each gate representing presence of the pipelining register.
This complicates and changes the delay model in some ways and is not taken into account in our
formulation. See also a promising new improvement of such a formulation with the convex first-order
methods in [28] for more information.

4.1.1 Formulating the delay

In case of RC-model, to formulate the delay objective function, we need to compute the input
capacitance of each gate, the load capacitance of each gate, the driving resistance, the delay of each
gate and lastly find the maximum expected delay of the circuit. Following [7, 8], we choose the input
capacitance Ci and driving resistance Ri as follows

Ci = αi + βixi, (4.1)
Ri = γi/xi, (4.2)

where α is the internal capacitance, β is the wire load capacitance and γ is a gate resistance constant.
Load capacitance is computed as a sum of the fan-out input capacitances. If it is an output gate,

the load capacitance C load
i should be given. In our case (Figure 4.1) we have
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C load
1 = C input

5

C load
2 = C input

3 + C input
4

C load
3 = C input

6 (4.3)
C load

4 = C input
5 + C input

6

With C load
5 and C load

6 given, we have all load capacitances computed. Delay of a gate is a product
of its driving resistance and its load capacitance:

Di = RiC
load
i . (4.4)

As a last step, we express the maximum of all possible paths in the circuit.

D = max{D1 + D5, (4.5)
D2 + D4 + D5,

D2 + D4 + D6,

D4 + D5,

D4 + D6,

D2 + D3 + D6,

D3 + D6}.

Note that (4.1) is a posynomial, (4.2) is a monomial, (4.3) is a sum of posynomials, (4.4) is a
posynomial, and hence the maximum delay is a generalized posynomial (because of the maximum).
A good solution to finding a maximum delay (4.5) is using the dynamic programming.

4.1.2 Formulating the upper bounds

In Boyd’s formulation, the upper bounds are given as a scalar of maximum area and as a scalar of
maximum power consumption. The total area can be computed as

A =
n∑

i=1
aixi, (4.6)

where ai is the area of gate i with unit scaling. Total power can be expressed as

P =
n∑

i=1
fieixi, (4.7)

where fi is a frequency of transition of the i-th gate and ei is the energy loss of the gate transitions.

4.1.3 Formulating the GGP

We already know that delay (4.5) is a generalized posynomial. Area (4.6) and power consumption
(4.7) are posynomials. Let us formulate the Boyd’s gate sizing GGP then
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minimize D (4.8)
subject to A ≤ Amax

P ≤ Pmax

xi ≥ 1, i = 1, ..., n.

Let me now show this procedure on a specific example. Consider the following scenario: maximum
area is 35, maximum power consumption is 55, and the gate parameters can be seen in Table 4.1.

Paramater Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 6

Frequency 4 0.8 1 0.8 1.7 0.5
Energy Loss 1 2 1 1.5 1.5 1
Area scale 1 1 1 1 1 1

Output Capacitance - - - - 7 5

Table 4.1: Input gate parameters of the ISCAS-85 c17 circuit

The MOSEK solver has been used for the optimization. The optimal value was reached after 23
iterations and 8.5 milliseconds. The value of the primal problem (maximal delay) is 4.07 with a zero
duality gap. The optimal sizing parameters for the gates are listed in Table 4.2.

Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 6

Sizing parameters 2.38 13.19 3.13 7.21 4.33 3.09

Table 4.2: Optimal sizing parameters of the ISCAS-85 c17 circuit using the deterministic model

4.2 Statistical approach

In the previous sections, the gate sizing problem was considered for the case of deterministic delays,
i.e. each delay was given by a single scalar value. In this section, and this is the main goal of the
thesis, we discuss the statistical formulation of the problem.

In the case where delays in an integrated circuit cannot be determined precisely, they are given by
random variables. Thus, one should speak of statistical properties of circuits: delays can be described
in terms of their moments (mean value, standard deviation) or by corresponding distributions.

We are not the first to solve the gate-sizing problem using a statistical approach. The first
statistical attempts occurred even in the year 2000 in [22]. Jacobs and Berkelaar approximated
the distribution of the maximum by a normal distribution and found an analytical expression of
mean and standard deviation of the maximum of two normal distributions. After the traverse, they
use these moments to minimize the delay of the circuit. The benefit of such a solution is that the
gate sizing problem can be formulated as a nonlinear program and is very quick due to the formulas
of the moments — they presented feasibility for up to a few thousand gates. On the other hand,
they also lose a lot of information by matching moments of the normal distribution of the maximum,
as the distribution of the of two RVs is not a normal one.

Five years later, a sensitivity based statistical solution was presented in [1]. Their theory is based
on the perturbation bounds of the delay of the circuit. One can identify by using the bounds the
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highest sensitive gate for sizing and prune out the less sensitive ones without explicitly propagating
their effect. The optimization objective is defined on these upper bounds. The runtime of such a
method is linear with the circuit size.

Very recently, the two-phase gate sizing method was introduced in [19]. In the first phase, the
timing yield of the circuit is optimized by computing the criticality of each gate, ranking them by
this criticality and gate size the group of gates with the highest level of criticality. In the second
phase, the incremental method finds the group of most effective gates to size by the probabilities
of aging–induced delay degradation and position on the critical path due to process variation and
aging. Such a method should result in lower area overhead.

The hindrance behind all these previous statistical methods is that they either use the so-
called canonical first-order (or second-order) delay model, or approximate the non-Gaussian delay
distribution by a Gaussian one. This is what we do differently: we consider the whole distribution
instead of some parameterized function, and the only information loss is caused by the assumption of
the uncorrelated RVs and by the histogram approximation. This loss can be reduced by an increase
in the number of bins and by setting the correct interval. The idea of our approach is identical to
Boyd’s RC-model (4.8). We want to minimize the critical path of the circuit, i.e. minimize the
maximum delay of all possible paths. In statistical formulation, this maximum delay is represented
by the sink node distribution. PDF of the sink node distribution is given to us as an output of the
SSTA algorithm after the circuit traverse.

In this section, we will formulate the gate sizing problem as that for exact statistical optimization.
The first formulation is the so-called mixed-integer formulation, the second one is the model using
geometric programming.

4.2.1 Regression model

As a first step, we have to find a model that can change parameters of the distribution of the delay
according to the change in area and power. The easiest way to do so is to use linear least squares
regression. We assume the same model for each gate. Our methods are not explicitly restricted to
these models, and so other more efficient models can be used. Using the simulations, we can find n
distributions of 1 gate, each differing from others in area and power. Then, using the linear least
squares for each bin b we can find for the mixed-integer model an affine function φb : R2

++ → R such
that

φb(a, p) = z + xa + yp. (4.9)

By restricting the function to a set X = {(a, p) | a ∈ R++ , p ∈ R++} ⊆ R2
++ of area and power

around given data points, we can assume the function to be φb : X → [0, 1], also the histogram built
using these functions with the same area and power should integrate to 1 and thus generate us a
distribution.

Affine function works great for the mixed-integer model. However, we need to have all coefficients
of the function positive for the GP. An affine function with positive coefficients cannot decrease. We
would like the probability of last bins to decrease with increase in area and power. A better fit was
used instead for the GP formulation, we have n distributions, we denote data points of area and
power for distribution i by ai and pi, vector c contains consecutive probabilities of bin b for each
distribution, x is an optimization variable:
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min ||

a1 p1 1/a1 1/p1
... ... ... ...
an pn 1/an 1/pn

 x− c||22 (4.10)

s.t. x > 0.

Fig. 4.3 shows results of the simulation of an inverter gate synthesized using 28 nm technology
with Cadence Virtuoso RF Solution Circuit Simulation tool. The results were kindly provided by
Pierre Bisiaux (UCD, Dublin). One can see that the delay distribution of a gate can be approximated
by a normal distribution. We shall take this as an evidence of a Gaussian distribution of delays of
individual logic gates (at least for 28 nm technology and above).

Figure 4.3: Delay simulation of the 28 nm inverter (purple histogram) and fitted PDF of a Gaussian
distribution using norm.fit from scipy.stats library (black function). The estimated mean of the
Gaussian distribution is 1.18× 10−11 s, estimated standard deviation is 3.93× 10−13 s.

To demonstrate the validity of the proposed methods, we use synthetic data. We generated
7 Gaussian distributions and 7 Lognormal distributions, then applied (4.10) on both data sets.
In the following subsections, we will call the model gained from Gaussian distributions as the
’Gaussian model’, similarly will be called the ’Lognormal model’. In Fig. 4.4, we can see how the
distributions change according to the sizing parameter. We will use these two plotted models when
demonstrating the final GP on the c17 circuit.
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Figure 4.4: Change in the distributions of the gate delay according to the sizing parameters. The gate
frequency is set to 0.5, energy loss to 1, and area coefficient to 1. The subplots show: a-f, consecutive PDFs
of a Lognormal model according to the chosen sizing parameters (1, 2, 5, 10, 15, 25); a’-f’, consecutive
PDFs of a Gaussian model according to the chosen sizing parameters (1, 2, 5, 10, 15, 25).

4.2.2 Distribution bounds

Before we dive into the final gate sizing program, at the beginning of the SSTA, we have to express
the bounds of the PDFs using the regression model discussed above. In this subsection, ai refers
to the area of the gate i with unit scaling, fi to the frequency of the transition of the gate i, ei its
transitions energy loss, and xi gate sizing variable. Let us start with the bounds for the mixed-integer
formulation. We restrict regression functions to the set X as mentioned in the previous subsection.

We denote the model (4.9) for each bin b by φb : X → [0, 1], number of unary variables M , number
of bins N and we denote the matrix of unary variables representing the histogram approximation of
the gate i as A ∈ {0, 1}N,M . For each gate i and its matrix A, for each bin b, we introduce:

p̂(b) =φb(ai · xi, fi · ei · xi), (4.11)
M∑

u=1
Ab,u ≤M · p̂(b) + 0.5, (4.12)

M∑
u=1

Ab,u ≥M · p̂(b)− 0.5. (4.13)

Please note the similarity of (4.13) and (3.19). It is appropriate to point out that (4.13) is sufficient
and (4.12) is just for the purposes of a faster convergence.

For the GP model, we assume the model (4.10) for each bin b to be φ′
b : X → [0, 1] , number

of bins N , vector of positive variables representing the histogram approximation of the gate i as
a ∈ RN×1

++ . For each gate and its vector a, for each bin b we introduce:
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p̂(b) =φ′
b(ai · xi, fi · ei · xi), (4.14)

ab ≥p̂(b). (4.15)

Note that ab is a monomial and p̂(b) is a posynomial. Using once again trivial extension (2.7), we
can say that this is a GGP–compatible inequality.

Also, the similarity of (4.15) and the inequalities in (3.20) is obvious.

4.2.3 Objective function

Ideally, we would like to minimize the mean value of the sink node. However, we cannot express the
mean value as a convex function for both mixed-integer model and GP model. Let us first formulate
the objective function for the mixed–integer model.

We assume n number of bins and m number of unary variables. We denote a set of unary variables
by U and a set of bins by B, d ∈ Rn×1 midpoints of the bin intervals, and the variable matrix of
the sink gate by S ∈ {0, 1}n×m given to us as an ouput of the SSTA. We can minimize a rough
approximation of the mean

D =
∑

b:b∈B

(
∑

u:u∈U

Sb,u) · db. (4.16)

Another option is to minimize the tail of the distribution. This would minimize the expected value
of the distributions tail, also known as the Conditional Value-at-Risk (CVaR). It is appropriate to
note that we can minimize the CVaR only to some level, for example we cannot say we minimize the
typical 99% CVaR as the position of the Value-at-Risk (VaR) depends on the yet not known number
of ones in the last few bins. Let B(k) be the set of the last k bins of the histogram:

D =
∑

b:b∈B(k)

(
∑

u:u∈U

Sb,u) · db. (4.17)

The objective for the GP model is very similar. Despite restricting the regression model, after
some convolutions and maximums, the histogram does not integrate to one, and so we cannot speak
of the mean minimization. For such problem, the minimization of the CVaR is ideal. Let s ∈ Rn×1

++
be the vector of positive variables representing the sink gate histogram given to us as an output of
the SSTA, the objective is

D =
∑

b:b∈B(k)

sb · db. (4.18)

This gives us a correct answer for the optimization variables; however, the distribution is in the first
n − k bins set to 1 (maximum possible). Let ϵ be a very a small number. We can overcome this
problem by setting the objective to:

D =
n−k∑
b=1

sb · ϵ +
∑

b:b∈B(k)

sb · db. (4.19)
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4.2.4 Final Mixed-Integer Program

We denote the number of gates n, set of gates G = {1, ..., n}, number of bins m, set of bins
M = {1, ..., m}, number of unary variables u, correctly set interval I = [h, k] partitioned into m equal
subintervals each corresponding to 1 bin, variable matrix of the gate i by Bi, set B = {B1, ..., Bn},
set of vectors R = {r1, ..., rn} of the corresponding right sides without the rounding scalar as
mentioned in (4.13). We denote the i-th standard-basis vector by ei.

At first, we initiate two empty sets X and Nsucc. We denote the functions ftrip : G×M → X that
maps the triplets and auxiliary variables for each gate and bin, fsum : G → Rm×1 that maps the
sum of all auxiliary variables for each gate in the vector, and fsucc : G→ Nsucc that maps the new
created matrix variables. We initialize for all gates g and bins b: ftri(g, b) = {} and fsum(g) = 0.

After performing the maximum and saving the pairs of unary variables for each bin, we per-
form the convolution with the gate g and store the corresponding l-th triplets (w, y, z) together
with new auxiliary variable s for each bin b in the set X. Finally, we update the functions
ftrip(g, b) = ftrip(g, b) ∪ {(w, y, z, s)} and fsum(g) = fsum(g) + s · eb.

After each convolution at the gate g, we create a new matrix N ∈ {0, 1}m×u with unary variables,
update the function fsucc(g) = N and propagate N further. We also perform the histogram shift
after each convolution according to 3.2.4 if h is nonzero. We use the matrix L created after the
maximum of the output gates to express the delay D from (4.16) or (4.17).

We use standard Boyd’s RC model for area(4.6) denoted A and power consumption(4.7) denoted P .
Amax denotes the maximum possible area, similarly Pmax maximum possible power consumption,
and xi the sizing variable of gate i. The mixed-integer linear program is in the form2

minimize D (4.20)
subject to Bj1 ≤ rj + 0.5 · 1, j = 1, ..., n,

Bk1 ≥ rk − 0.5 · 1, k = 1, ..., n,

s ≤ w, ∀g ∈ G : ∀b ∈M : ∀(w, y, z, s) ∈ ftrip(g, b),
s ≤ y, ∀g ∈ G : ∀b ∈M : ∀(w, y, z, s) ∈ ftrip(g, b),
s ≤ z, ∀g ∈ G : ∀b ∈M : ∀(w, y, z, s) ∈ ftrip(g, b),
s ≥ w + y + z − 2, ∀g ∈ G : ∀b ∈M : ∀(w, y, z, s) ∈ ftrip(g, b),

Nb,:n−1 ≥ Nb,2:, ∀g ∈ G : ∀b ∈M : N = fsucc(g),

N1 ≥ s · 1
d
− 0.5, ∀g ∈ G : N = fsucc(g), s = fsum(g),

A ≤ Amax,

P ≤ Pmax,

xi ≥ 1, i = 1, ..., n.

The gate sizing mixed-integer program adds to the plain SSTA 3.3.6 new continuous variables.
This complicates the convergence and could not finish with the c17 circuit. The largest circuit it
could optimize was with 3 gates: 2 input gates and 1 output gate.

2Full mixed-integer program optimizing a toy circuit formulated in MOSEK API is at © or can be found in the
repository https://github.com/bosakad/GP-Optimization.

40

https://github.com/bosakad/GP-Optimization/blob/600ed5a34e04a14760b61b51e6bb9b8465eecf80/src/gateSizing/optimizeGates.py#L37
https://github.com/bosakad/GP-Optimization


.......................................... 4.2. Statistical approach

4.2.5 Final geometric program

We denote the number of gates n, set of gates G = {1, ..., n}, number of bins m, correctly set
interval I = [h, k] partitioned into m equal subintervals each corresponding to 1 bin, variable vector
of the gate i by bi, set B = {b1, ..., bn}, set of vectors R = {r1, ..., rn} of the corresponding
right sides as mentioned in (4.15), at the beginning we initiate two empty sets of vectors Nsucc

and Npred of the successor and predecessor vectors of variables. We denote the set of operations
by O = {0, 1}, 0 represents the convolution and 1 represents the maximum. We denote the function
fpred : G×O → Npred that maps the predecessor posynomials and fsucc : G×O → Nsucc that maps
the new created monomials.

After the convolution of the gate i, we save the result vector of posynomials xi ∈ Rm×1
++ in Npred,

we also create a new vector of one-variable monomials ni ∈ Rm×1
++ as in (3.21) and store it in Nsucc.

We update the functions fpred(i, 0) = xi and fsucc(i, 0) = ni. Similarly, for the maximum, we update
fpred(i, 1) = xi and fsucc(i, 1) = ni. We also perform the histogram shift after each convolution
according to 3.2.4 if h is nonzero. We then use this vector ni as a new vector representing the gate
histogram and propagate it further in the SSTA. We use the vector n created after the maximum of
the output gates to express the delay D from (4.19).

We use the standard Boyd’s RC model for area (4.6) denoted A and power consumption (4.7)
denoted P. Amax denotes again the maximum possible area, similarly Pmax maximum possible power
consumption, and xi the sizing variable of gate i. The final program is in the form3

minimize D (4.21)
subject to bj ≥ rj , j = 1, ..., n,

fpred(g, o) ≤ fsucc(g, o), ∀g ∈ G : ∀o ∈ O,

A ≤ Amax,

P ≤ Pmax,

xi ≥ 1, i = 1, ..., n.

Note that D is a sum of monomials, thus a posynomial; GP-compatibility of constraints (3.21), (4.15)
has already been discussed. Therefore, this is a generalized geometric program.

Let us show the GP model on ISCAS-85 c17 circuit. Consider the same input values as for the
deterministic model (Table 4.1). We used both the Gaussian model and Lognormal model for the
optimization. Using 35 bins, the minimum has been reached after 34 iterations and 1.18 seconds
for the Gaussian model (similarly for the Lognormal model), the sizing parameters can be seen in
Table 4.3. Note the difference of the results for different models. However, the significance of each

Sizing parameters Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 6

Gaussian 2.89 5.30 6.39 6.04 4.14 10.23
LogNormal 2.69 6.10 5.99 6.40 4.18 9.64

Table 4.3: Optimal sizing parameters of the ISCAS-85 c17 circuit using the statistical GP model and two
regression models

gate remains almost the same for both of them.
3Full geometric program optimizing the c17 (4.1) formulated in CVXPY is at © or can be found in the repository

https://github.com/bosakad/GP-Optimization.
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It is clear, in the case of the final program (4.21), that we just add a few new constraints compared

to the plain relaxed SSTA (3.21). As expected, the scaling will be again quadratic with the number
of bins and linear with the number of gates. The scalability of (4.21) compared to the relaxed SSTA
problem (3.21) can be seen in Figure 4.5.

Figure 4.5: Scalability of the final geometric program (4.21)(blue line) compared to the plain SSTA using
the GP model with relaxation constraints (3.21) (orange line) tested on the "ladder" of maximums and
convolutions. The number of bins is set to 20 for both algorithms. The subplots show: a, the increase
in the number of cones; b, the increase in the number of variables; c, the increase in the number of
constraints.

In Figure 4.6, we can see the optimal delay distribution compared to the delay computed using
Monte Carlo. Inputs for Monte Carlo were generated according to the optimal distributions
precalculated by (4.21).
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Figure 4.6: Comparison of the optimal delay distribution computed by (4.21) (blue distribution) with the
delay distribution computed by Monte Carlo (orange distribution). The number of bins was set to 35.
The subplots show: a, comparison of the optimal delay distributions computed using the Gaussian model;
b, comparison of the optimal delay distributions computed using the Lognormal model.

4.3 Discussion and Conclusions

In this Chapter, we presented two statistical approaches to the gate sizing problem, namely:

(i) The first approach, the so-called mixed-integer model, exhibits global convergence in theory and
relatively good results for the SSTA computation in practice. Test circuits have been optimized
using this formulation with correct results. It seems, however, that introducing constraints with
continuous sizing variables adds too much complexity and is not usable for practical examples.

(ii) The second approach uses geometric programming to compute the SSTA and further minimize
the conditional value-at-risk (CVaR) of the circuit delay. This approach shows very promising
results. The model scales better than the mixed-integer formulations. Additionally, the further
constraints do not complicate the problem substantially, compared to the mixed-integer model.

One can see from the comparison of the statistical result (Table 4.3) with the deterministic one
(Table 4.2) that the difference is significant. Our results are expected to be more accurate.
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Chapter 5
Conclusions and Critical Overview of the Thesis

In this work, the statistical gate sizing problem for the Very Large Scale Integration (VLSI) circuits
has been studied. Since the calculation of a delay is a crucial step for the sizing problem, the problem
of Statistical Static Timing Analysis (SSTA) has also was addressed. For the latter, two approaches
were used, mixed–integer and geometric programming, which resulted in two different formulations
of the gate sizing problem.

Chapter 3 studies the problem of the maximum delay calculation in a digital circuit taking into
account statistical nature of delays, the so-called SSTA problem. Using a histogram representation
of delays’ probability density functions, we proposed two formulations of the SSTA algorithm as
an optimization problem. The first formulation uses mixed–integer programming and the second
one uses geometric programming. The so-called GP model scales significantly better after the
relaxations (3.21) than the relaxed mixed–integer model (3.17) —(3.18), and gives more precise
results because there is no loss of information caused by the unary encoding used in mixed–integer
formulation.

The main achievement of Chapter 3 is the SSTA formulated as the Geometric Program. For the
relaxed problem, we have demonstrated linear scaling with the number of gates and the quadratic
scaling with the number of bins. The SSTA has been successfully computed using 30 bins for a circuit
with 400 gates in 440 seconds on the RCI cluster. It should be noted that correlations between the
delays were not taken into account.

Chapter 4 continues its predecessor are makes use of the two proposed formulations of the SSTA
for the gate sizing problem. Thus, we propose two formulations of the statistical sizing problem
via: (i) mixed–integer programming, and (ii) geometric programming. The general statement of the
gate sizing problem is motivated by Boyd et al. [8] but extends that for the case of delays given by
distributions (hence the name statistical).

The mixed-integer model works in theory; however, it cannot scale and is therefore not suitable
for real-world circuits. The second of the proposed approach, the GP model (4.21), gives promising
results, and we believe that this might serve as a new direction for the community on how to solve
the gate sizing problem in a statistical domain.

One should note that the histogram approximation, which is used in this work, has clear disadvan-
tages: (i) as we increase the number of gates, we have to increase the size of the interval, and with
that the number of bins; (ii) we also have to know the interval before the computation (trial and
error methods worked well to prove the concept, however, this is a clear limitation that needs to be
addressed). On the other hand, such an approach allowed us to (i) perform the robust optimization
of delays’ distributions (unlike other statistical approaches, where only the statistical moments are
taken into account), and (ii) perform computations in polynomial–time using GP. Last but not
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least, histogram formulation of the SSTA makes the results transparent and is easy to understand.
The generalization of this work to the Radial Basis Functions (RBFs) mixture model [20, 26] is
straightforward.

Future steps will include: (i) solving the problem with the need to increase the interval by dividing
the computation of the SSTA algorithm into more parts with small subintervals; (ii) extension of
the computation of the maximum and the gate sizing program for the case of correlated random
variables; (iii) implementation of the SSTA algorithm using RBF kernels and, therefore, extension of
the gate sizing problem to this Gaussian mixture model.
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Appendix A
Source Code

. Project.zip.Github: https://github.com/bosakad/GP-Optimization
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