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Abstract

The discovery of the Higgs boson (2012)
motivated scientists searching for charged
Higgs bosons. The presence of a charged
Higgs boson is predicted by many theo-
ries that describe an extended Standard
Model, with several different Higgs bosons,
called the “extended Higgs sector”. Neural
networks (NN) have recently been a big
trend for solving classification, detection,
and segmentation tasks. The advantage
of NN is their ability to learn complex
relationships hidden in data without any
restrictions on the input data. The aim
of this thesis is to separate the Signal pro-
cess tbH+ from the Background processes.
In this thesis, two NN architectures were
tested: Multi-Layer Perceptron (MLP)
and TabNet. A good separation of Signal
and Background was obtained as a func-
tion of the charged Higgs boson mass.

Keywords: ATLAS, CERN,
classification, cross section, machine
learning, neural networks, PyTorch,
particle physics, ROOT, tbH+

Supervisor: doc. Dr. Andre Sopczak

Abstrakt

Objevení Higgsova bosonu (2012) motivo-
valo vědce k hledání nabitého Higgsova
bosonu. Přítomnost nabitého Higgsova
bosonu je předpovídána mnoha teoriemi,
které popisují rozšířený Standardní Mo-
del s několika různými Higgsovými bo-
sony, nazývaný „rozšířený Higgsův sek-
tor“. Neuronové sítě (NN) jsou v poslední
době velkým trendem pro řešení klasifi-
kačních, detekčních a segmentačních úloh.
Výhodou NN je jejich schopnost naučit se
složité vztahy skryté v datech bez jakých-
koli omezení vstupních dat. Cílem této
práce je oddělit proces Signal tbH+ od
Background procesů. V Práci byly otesto-
vány dvě NN architektury: vícevrstvý per-
ceptron (MLP) a TabNet. Bylo dosaženo
dobré separace Signálu od Background,
jako funkce hmotnosti nabitého Higgsova
bosonu.

Klíčová slova: ATLAS, CERN,
klasifikace, cross section, strojové učení,
neuronové sítě, PyTorch, částicová fyzika,
ROOT, tbH+

Překlad názvu: Aplikace strojového
učení pro hledání nabitého Higgsova
bosonu z ATLAS dat
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Chapter 1

Introduction

This thesis focuses on NN techniques for the classification task. For compari-
son of applied methods, several approximations of significance were tested.
NN output is then used in Trex-fitter [Tf] to estimate the Signal cross section
for a 95% CL detection sensitivity.

The thesis first describes particle physics as a short introduction to the
problem and then discusses neural network principles used techniques. This
is followed by the results with a detailed explanation of all experiments. The
conclusion follows with a summary and an outlook.
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Chapter 2

Particle physics

2.1 Introduction

The Standard Model (SM) of particle physics describes a relationship between
particles and the three fundamental forces (electromagnetic, weak, and strong
interactions). Nevertheless, some things remain unexplained. The SM omits
the fourth fundamental force (gravity) and does not explain dark matter.
Last but not least is the gauge hierarchy problem, which is associated with
the presence of elementary scalars (Higgs) in the SM [Csa96]. New theories
that extend the SM try to explain these mysteries. The two doublet Higgs
Model (2DHM) predicts five physical Higgs bosons [EP16]:

. two neutral CP-even Higgs bosons: h (SM Higgs) and H (heavy Higgs),. two charged Higgs bosons H±,. one neutral CP-odd Higgs boson A.

The Minimal Supersymmetric Standard Model (MSSM) is a type II 2DHM
theory. Supersymmetry theory explains presence of light Higgs boson by
predicting new particles that would cancel out the contributions to the Higgs
mass from their Standard Model partners. In addition, Supersymmetry
predicts a partner particle with a spin that differs by half a unit for each of
the particles in the standard [CER], in other words, Supersymmetry links
fermions and bosons together.
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2. Particle physics....................................
2.2 Signal

Every particle has a property called spin. In the Standard model, for spin-1
and spin-1/2, particles have charged and neutral states [Col21]. The neutral
Higgs boson is the first know particle with spin-0, discovered in 2012. Since
a charged particle with spin-0 has not yet been discovered, a charged Higgs
boson could complete this table of charged and neutral pairs.

In proton-proton collisions, charged Higgs boson can be produced associated
with the top and bottom quarks. The decay of the charged Higgs boson
depends mainly on its mass. In this analysis, the search of charged Higgs boson
focuses on decay channel H+ → hW, specifically the channel 2lSS1tau, which
requires the occurrence of two leptons of the same sign and one hadronically
decaying tau. The decay channel of interest is in particle physics called signal,
while other processes are called background. The Feynman diagram for tbH+

decay is shown in Figure 2.1. Other important decays, especially in the
low mass region, are H+ → cb and H+ → cs and the most dominant decay
channels in the high mass region are H+ → τµ and H+ → tb [EP16].

t

H+

h

W
τ

τ

W

p

p

b

q
q

ν

ν

ν
ℓ+

q q

b
νℓ+

Figure 2.1: tbH+ Feynman diagram, leading to the 2lSS1tau final state.

2.3 Background

Unfortunately, detectors cannot capture complete process information. For
example, neutrinos are undetectable. Higgs boson as a particle transforms into
lighter particles almost immediately after being produced in proton-proton
collisions [CER20]. The ATLAS and CMS detectors can detect these lighter
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..................................... 2.3. Background

particles. However, the final state of many processes can be the same, making
them difficult to distinguish.

To simulate representative conditions for classification several backgrounds
need to be considered. This analysis considers tt̄h, tt̄W, tt̄Z, tt̄, VV, and
Others processes as the Background.

The charged Higgs decays into neutral Higgs. Therefore, tt̄h is one of the
most similar processes to tbH+. Despite the rare production of tt̄h, about
1% of all neutral Higgs production, tbH+ is expected to be less frequent. The
similarities of tt̄h and tbH+ Feynman diagrams are shown in Figures 2.1 and
2.2.

t

t

h

τ

τ

W

W

p

p q
q

ν

ν

ν
ℓ+

b q q

b
νℓ+

Figure 2.2: tt̄h Feynman diagram.

Another decay channel leading to the 2lSS1tau final state is tt̄W. The W
boson decays either leptonically (into one of the three charged lepton and a
neutrino W → ℓ+µ) or hadronically (into quark-antiquark pair W → qq̄).
The tt̄W Feynman diagram is shown in Figure 2.3a.

The Z boson decays in three different ways. The decay into charged lepton-
antilepton pairs (electron-positron, muon-antimuon, and tau-antitau pairs)
leads to the same final state as tbH+. However, Z boson decaying to neutrino-
antineutrino pair or a quark-antiquark pair[Col] is more common. Figure 2.3b
shows the Feynman diagram of Z boson decaying to pair of tau-antitau.
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2. Particle physics....................................
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Figure 2.3: tt̄W and tt̄Z → tt̄τ τ̄ Feynman diagrams.

2.4 Simulated Data

2.4.1 Ntuple format

The Provided simulated data are stored in ROOT n-tuples format (.root).
ROOT is a data processing framework developed by CERN that enables fast
and efficient work with large files [ROO]. The provided data were generated
by the program PYTHIA, which is a general-purpose Monte Carlo event
generator [PYT]. In Ntuple creation, Simulated data are preprocessed, and
some of the events are removed. After that, a preselection filter is applied
to keep only events with 2lSS1tau final state. The simulation is always
based on a particular detector configuration to simulate events precisely.
The Background data were simulated for all three settings: mc16a, mc16d,
and mc16e corresponding to 2015/2016, 2017, and 2018 recorded data. The
summary of Background data is given in Table 2.1. However, Signal events
were simulated only for the latest version. Because the H+ mass is unknown,
the data were produced for four discrete mass points. The requested masses
with the number of simulated events are shown in Table 2.2.

Each file contains the events of only one process, but several files can belong
to the same process. One can distinguish files by their names, which uniquely
identify the process they contain. Table 2.3 shows the list of the file names
for the given processes. ROOT files have a tree structure with 790 features
that characterize an event. Some are low-level particle properties, such as
mass, energy, momentum, or more complex precomputed high-level features.
The files also include supporting information for the simulation that is not
useful for training NN and the true information, which is used as input for

6



................................... 2.4. Simulated Data

Process Ntuple Preselected Weight
ttH 6 060 601 29 670 22.843
ttZ 8 592 621 27 700 18.420
ttW 2 010 387 10 294 24.857
tt 19 677 014 186 22.166
VV 59 206 801 2 306 6.291
Others 1 781 273 3 192 11.471

Total 97 328 697 73 348 106.049

Table 2.1: Overview of Background events. Ntuple - number of events after
prepossessing and ntuple creation, Preselected - number of events after selecting
the 2lSS1tau channel, Weight is expected number of events.

Mass [GeV] Created Ntuple Preselected Ratio [‰]
300 1 200 000 252 981 4 401 3.668
800 800 000 198 834 5 334 6.668
1500 600 000 138 866 3 283 5.472
2000 400 000 82 449 1 339 3.348

Total 3 000 000 673 130 14 357 4.786

Table 2.2: Overview of Signal events counts. Created - number of events origi-
nally produced by the simulation, Ntuple - number of events after prepossessing
and ntuple creation, Preselected - number of events after selecting the 2lSS1tau
channel, Ratio = Preselected / Created is the preselection efficiency.

the simulation and cannot be used to train with it.

Process File IDs
tbH+ 510374, 510375, 510376, 510377
ttH 346343, 346344, 346345
tt 410470
ttW 700168
ttZ 413023
VV 364250, 364253, 364254, 364255, 364283, 364284, 364285,

364286, 364287, 363355, 363356, 363357, 363358, 363359,
363360, 363489

Others 410397, 410398, 410399, 410408, 410560, 410080, 410081,
304014, 342284, 342285, 364242, 364243, 364244, 364245,
364246, 364247, 364248, 364249

Table 2.3: The list of file data set identifiers for each process.
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2. Particle physics....................................
2.4.2 Event weight

The probability of an event’s presence in the detector represents the event’s
weight which is calculated as:

w =
∏

i=0 wi

wt
, (2.1)

w0 =


58450.1, if RunYear = 2018
44307.4, if RunYear = 2017
36207.66 otherwise

(2.2)

where w0 is luminosity scaling for the different detector configurations, and
wi is the event value for each feature listed inTable 2.4.

Variable Name
w1 custTrigSF_LooseID_FCLooseIso_DLT
w2 weight_pileup
w3 jvtSF_customOR
w4 bTagSF_weight_DL1r_70
w5 weight_mc
w6 xs
w7 lep_SF_CombinedTight_0
w8 lep_SF_CombinedTight_1
wt totalEventsWeighted

Table 2.4: List of events parameters used in weight formula.

A few issues need to be mentioned. The theoretical cross section σH+ of
the charged Higgs production is not known, and therefore the Signal weights
serve only as an initial estimate and cannot be directly compared with the
Background weights. The weight formula from the Eq. 2.1 assumes that data
are generated for all three configurations. With an assumption that the Signal
events will be generated similarly for two other detector configurations, Signal
weights are scaled as if all three parts were simulated. Table 2.5 summarizes
the Signal weights. The last problem is that the Monte Carlo simulation
often creates events with negative weight due to features weight_pileup and
weight_mc, which occasionally have a negative value. These events cannot be
easily deleted because they are already used in the preprocessing part when
creating Ntuples. However, negative weighted events would cause problems
in training, and therefore such events are excluded from the training phase
but are included in the validation phase.

8



..................................... 2.5. Significance

Mass [GeV] Original Normalised Scaled
300 4.662 · 10−2 204.24 485.57
800 3.004 · 10−3 351.89 836.61
1500 1.039 · 10−4 300.46 714.34
2000 1.087 · 10−5 204.38 485.91

Total 4.974 · 10−2 1060.96 2522.42

Table 2.5: Overview of Signal events weights, Original - initial weights estimate,
Normalised - weights are computed with cross section of one picobarn, Scaled
- normalised weights additionally scaled to compensate for the missing Signal
mc16a, mc16d data sets.

2.5 Significance

In addition to traditional machine learning metrics used in classification
tasks such as accuracy, ROC curve, F1 score, recall, or precision, statistical
significance is often used in particle physics. The concept of statistical
significance is based on hypothesis testing. Hypothesis testing is a method
for comparing null hypothesis H0 and alternative hypothesis H1. In particle
physics, the Standard Model is considered a null hypothesis, and in our case,
the alternate hypothesis predicts the presence of charged Higgs boson.

To establish a discovery [Gro18] defines statistical test q0 as follows:

q0 =

−2 L(0,
ˆ̂
θ)

L(µ̂, θ̂) if µ̂ > 0,

0 otherwise,
(2.3)

where L is profile like-hood function, µ̂ is the parameter of interest, ˆ̂
θ and

θ̂ represent the nuisance parameters. Significance Z and p-value p0 for a
one-sided test are derived from 2.3 as:

Z = Φ−1(1 − p0) = √
q0, p0 = 1 − Φ(√q0). (2.4)

A hypothesis is excluded if the p0 is below the threshold α. The α determines
the quality and consistency of the test. Therefore a small α should be
chosen as it corresponds to the probability that the null hypothesis is correct
and the observation is an arbitrary fluctuation [Sin02]. In particle physics,
a significance of 5σ is needed to confirm the discovery of a new particle.
Table 2.6 shows the relationship of p-value p0 and significance Z for a one-
sided hypothesis test.

9



2. Particle physics....................................
Significance [σ] 1 2 3 4 5

p-value [%] 16 2.3 0.14 3 · 10−5 3 · 10−7

Table 2.6: Relationship of significance and p-value.

The formula from Eq. 2.3 is complex and assumes that the observations are
integers; however, this does not apply to simulated data because event weights
are fractions. With an assumption that the observations are from the Poison
distribution and they are independent, significance can be approximated as
follows:

Z0 = S√
B

(2.5)

Z1 = S√
S + B

(2.6)

Z2 = S√
B + 1.5

(2.7)

Z3 =

√
2 · ((S + B) · log(1 + S

B
) − S) (2.8)

where S is the expected predicted Signal (true positive) and B is the expected
misclassified Background (false positive). Not to be confused with the previous
definition of Signal, Background, in this section Signal/Background refers to
the NN output while previously, Signal denotes the class of interest. Eq. 2.8
is derived as a median approximation of significance Z. Eq. 2.8 can be further
simplified to Eq. 2.5 assuming S ≪ B. Eq. 2.6 and Eq. 2.7 are special
modification for a better estimate of significance when the B is very small.

10



Chapter 3

Neural Networks overview

3.1 Introduction

Machine learning is a set of computational algorithms that can learn the
various characteristics of a given data. Neural networks are wildly used for
classification, pattern recognition, and segmentation tasks. NN training can
be supervised (data true-ground information is included) or unsupervised
(where the true-ground information is unknown). This work focuses on
supervised binary classification.

The Given data set is divided into training and validation parts. The
validation data set serves only for the model’s performance evaluation and
cannot be used for NN optimization. NN model is trained for a certain
number of epochs, in which the model classifies all events in the training data
set, and after each batch of events, based on the model output, updates its
parameters.

3.2 Cost function

The cost function, which is also referred to as the loss function or simply
the loss, is used to measure NN performance, and in the training phase,
NN weights are updated to minimize the loss. Several iterative algorithms

11



3. Neural Networks overview ...............................
based on gradient descent can be used to find the local minimum of the cost
function. This work used Stochastic gradient descent (SDG) with momentum
and an exponentially decaying learning rate. According to [HRS16], SDG
can generalize better and is more stable compared to the Adam algorithm,
although fine-tuned adaptive methods can converge faster and find a better
solution.

Cross-entropy (CE) loss is wildly used in classification tasks. This cost func-
tion builds upon the idea of information theory entropy introduced by Claude
Shannon in his 1948 paper „A Mathematical Theory of Communication“.
For binary classification, the cross-entropy is defined as:

CE(y, l) = −l · log(σ(y)) + (l − 1) · log(1 − σ(y)), (3.1)

where l ∈ {0, 1} is event label and y ∈ R is network output.

3.2.1 Focal loss

Cross-entropy loss can be extended to focal loss (FL). FL was initially designed
for image object detection with a very imbalanced data set [aa17]. FL is
defined as:

FL(y, l) = L1(y, l)γ · CE(y, l), L1(y, l) = |l − σ(y)|,

where CE, defined in Eq. 3.1, is multiplied by modular scalar with additional
hyper-parameter γ ≥ 0. The modular scalar can be written for binary
classification as the L1 loss to the power of γ. Parameter γ controls the
impact of well-classified events. For example, with γ = 2, a well-classified
event with L1 = 0.1 has a 100-fold smaller loss compared to the original CE.
On the other hand, in the case of a misclassified event with L1 = 0.5, the
loss is reduced only four times, and such events have a much bigger impact
on the NN training. When γ = 0, FL is reduced to CE. Visualisation of the
FL for γ ∈ {0, 0.5, 1, 2, 5} is in Figure 3.1.

3.2.2 Imbalanced data set methods

An imbalanced data set affects the training of NN significantly since a model
will be overwhelmed with the majority class. Another aspect is that a model
will learn the distribution of simulated data that differs from the expected
real data.

12



.................................... 3.2. Cost function
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Figure 3.1: Focal loss characteristic for different γ factors. On the left part of
the figure are well-classified events.

Cost-sensitive methods

Cost-sensitive methods take the costs of predictions into account when com-
puting the loss. The weighted loss function is defined as:

WL(y, l, w̄, α, γ) = αw̄ · FL(y, l, γ), (3.2)

where w̄ are event weights, α is the normalization factor that scales loss to
the same range to compare different methods and FL is defined in Eq. 3.2.1.
The factor w̄ does not need to be the same as weights from Eq. 2.1. Moreover,
w̄ can be implemented into the NN model structure and be optimized during
the training. However, the thesis tested only w̄ as scaled event weights for
different classes and total class weights.

Data set sampling methods

Another approach is data set sampling methods. For each epoch, events are
sampled to match the desired distribution. Event weights can be used as
probabilities of a random variable with a multinomial distribution random
variable with an exception that

∑
i pi ̸= 1.
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3. Neural Networks overview ...............................
3.3 Network Architectures

3.3.1 Multi-Layer Perception

Multi-Layer Perception (MLP) is one of the first NN architectures. MLP
is a feed-forward network with three primary layer types: a linear layer, an
activation function, and a dropout layer. The linear layer is an affine trans-
formation. The activation function can be any nonlinear function allowing
a network to learn complex problems. The dropout layer sets a portion of
input data to zero. Figure 3.2 shows schema of MLP architecture.

MLPs shows the concept of feed-forward shortcuts introduced by ResNet
and FishNet. Although both architectures are CNN, same principle can be
applied to MLP. [ea19b] states that shortcuts enable the gradient from the
very deep layer to be directly propagated to shallow layers.

MLPBlock
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Activation
Function

Dropout

Block

Input Dropout

Block

Block

Linear layer

MLPs

Block

Input Dropout

Block

Block

Linear layer

Concat

Block

Block

Concat

Figure 3.2: MLP architecture schema.
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................................ 3.3. Network Architectures

3.3.2 TabNet

TabNet is a feature attention type architecture explicitly designed for tabular
data [AP19]. The network is composed of decision blocks with feature and
attentive transformers. Each decision block outputs transformed masked
input features that are summed and fed to the final linear layer. Attentive
transformer creates feature mask from feature transformer’s output, and as
an activation function is used sparse max. Part of the feature transformers is
shared in all decision blocks, which helps the model to be more general and
saves memory. Figure 3.3 shows the TabNet model schema.
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Figure 3.3: Tabnet architecture schema.
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3. Neural Networks overview ...............................
3.4 Neural network output

The NN output is used to estimate the probability p that an event belongs
to the positive class. The event is classified as positive whether the p > t,
where t is the chosen working point to maximize significance for a given data
set.

Models can be compared via many metrics, for example, accuracy, precision,
or recall. Many of them can be computed from the confusion matrix. A
weighted confusion matrix, which contains the event’s weights (expected
number of events) instead of the number of events, is used to adopt metrics
to real data expectations. If only part of the data set is used, the event’s
weights must be scaled to represent all the data.

3.4.1 Significance computation

Below is an example of a significance computation for a given working point.
In the binary classification task the expected Signal S and Background B
are computed as:

S = TP
TP + FN · S̄, B = FP

TN + FP · B̄, (3.3)

where S̄ is total weight of Signal, B̄ is total weight of Background, TP is true
positive, FP is false positive, TN is true negative and FN is false negative
from weighted confusion matrix.

Figure 3.4 shows the Eq. 2.8 dependence on Signal and Background. A
right-top corner is a special case when the NN fails and classifies every event
as a positive class. There is also a minimal significance value that can be
achieved for the given data set.
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Chapter 4

Implementation

4.1 Environment and libraries

The implementation was tested in the following environment:

. Debian GNU/Linux 10. Python 3.8.2. PyTorch 1.11.0. Ray Tune 1.12.0. TensorBoard 2.8.0. Uproot 4.2.2. tqdm 4.64.0. sparsemax 0.1.9

PyTorch is a deep learning library mainly written in C++ with GPU com-
putation support. PyTorch enables the implementation of effective training
pipelines and NN models from predefined building blocks with automatic
gradient computation. [ea19a] shows that PyTorch outperforms Tensorflow
in all tested models.
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4. Implementation....................................
Ray Tune is a library for hyper-parameter optimization that allows running

and managing multiple training experiments. Library offers several scheduling
algorithms, such as Population Based Training or HyperBand/ASHA, and a
highly customizable system for model checkpointing and logging [ea18].

Uproot library provides faster and easier handling of ROOT Ntuples than
PyROOT, the official ROOT key binding for Python [Piv].

4.2 Code description

Project files are divided into utility files, stored in the utils directory, and
user scripts. User scripts serve as a simple user interface for common tasks,
while each utility file is dedicated to the key part of the training pipeline.

4.2.1 Utility files

. dataset_utils.py contains definitions of the Dataset, Process classes with
methods for creating and manipulating the data sets..model_utils.py provides the MLP and the TabNet definitions..metric_utils.py implements metric with the working point evaluation
and significance computation.. loss_utils.py defines the weighted focal loss implementation.. trainer_utils.py implements training pipleline as a Ray Tune Trainable
class.. root_utils.py provides utility functions for dataset creation related to
the ROOT Ntuples.. file_utils.py implements file handling.. utils.py contains common functions.
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................................... 4.2. Code description

4.2.2 User scripts

User scripts include a help option that displays a list of all available arguments
with a description.

create_dataset.py

The script creates one or two datasets from the given Ntuples. It is intended
to create a multi-class dataset and select the class of interest at the beginning
of the training. The input directory can contain subdirectories. However,
the script will only parse files whose names are listed in the process text file.
Each line in the file represents one class. The syntax is as follows:

Name : ID1, ID2, ID3;

where IDi is the file name without the .root extension, the class name and
the file IDs are separated by a colon, and each line must end semicolon. Do
not use spaces in IDi or the process names because the script removes all
whitespaces. A preselection cut can be specified using uproot or ROOT logical
syntax in a text file. The script does not support vector type features, and
it is preserved to the user to provide a text file with a list of feature names
(Names can be separated with any whitespace).

train_config.py

The script provides an interface to the NN training procedure. The script can
run multiple experiments defined in the file config.py and automatically select
the best model for each experiment. Addition evaluation can be specified for
the best-performing models.

The script requires two variables defined as a Python dictionary or a list of
dictionaries in the config.py. The configs variable contains the configuration of
training parameters for each experiment. The eval_configs variable overwrites
the best model configs configuration for additional evaluation.
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4. Implementation....................................
eval_config.py

The script evaluates trained NN using the eval_configs variable in the file
config.py.

config.py

The file serves as a configuration file for train_config.py and eval_config.py.
Ray Tune hyper-parameter search functions are used to create multiple
training configurations in the experiment. An explanation of all available
parameters for configs and eval_configs variables is given in Appendix D.
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Chapter 5

Results

This chapter summarises the performed experiments. The table headers in
this section use the following abbreviations:

. Zi - significance approximation defined in Eq. 2.5- 2.8,

. Si - number of Signal events (TP) for Wi,

. Bi - is the number of Background events (FP) for Wi,

. Si acc. - Signal accuracy for Wi,

. Bi acc. - Background accuracy for Wi,

where Wi is the working point with the maximum significance Zi. Significance
approximations are accurate only when sufficient numbers of Si and Bi are
observed; thus, an additional working point requirement of Si > 1 and Bi > 1
has been introduced.

Section 2.4.2 introduces the concept of event weights. Since the Signal
production cross section is unknown, these event weights serve only as an
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5. Results .......................................
initial estimate. The scaling of the Signal weights creates new estimates
of the expected number of events that are more similar to the Background
numbers; moreover, the Signal weight scaling factor η is used as another
model hyper-parameter. In addition, different scaling factors for different
Signal masses control the importance of the mass dependence in the NN
training.

The models were trained in two phases. The first phase performs a hyper-
parameters search and selects the best model based on the significance Z1. In
the second phase, selected model configurations are trained with fixed training
hyper-parameters for several repetitions. The second training phase shows
the dependence of the model on input data because new unique training and
validation data sets are created from simulated data for each NN training.

5.1 Methods comparison

In the first experiment, the data set contained H+ events of all four masses. In
the training, the total weight of the Signal Sall was scaled to Sall ∈ {5, 20, 80}
expected events and different scaling factors η were used to ensure that all
masses were equally represented. Different methods are comparable by
significance only whether the experiments use the same number of expected
Signal and Background events; therefore, in the validation evaluation, the
total Signal weight is set such that five events of each weight are expected.

Table 5.1 lists the mean values of significance and the Signal/Background
accuracy with standard error from the first training phase, in which one
hundred trials were trained for each experiment. The suffix in the model’s
name describes the used training method: e stands for weighted loss function
with event weights, c stands for weighted loss function with class weights, s
stands for data set sampling method. Surprisingly, the Linear model, the
simplest MLP model with only one linear layer, achieved the best mean
significance and most of the hyper-parameters result in a good model perfor-
mance. Table 5.2 lists the best results selected based on the significance Z1
for each experiment. Cost-sensitive methods outperformed traditional NN
training and data set sampling methods. The TabNet architecture is more
complex, with a significantly longer training time than the MLP, and due to
the simulation data production delays, the MLP optimization was prioritized.
Only a few experiments were performed with the TabNet architecture. That
might be the reason why the TabNet achieved the worst results of the tested
models, even though it is state of the art for the classification of tabular data.
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................................. 5.1. Methods comparison

Model Z0 Z1 S1 acc. B1 acc.
Linear 13.428 ± 0.159 3.812 ± 0.016 0.830 ± 0.006 0.977 ± 0.001
MLP 9.411 ± 0.292 3.195 ± 0.047 0.669 ± 0.014 0.962 ± 0.002
MLPc80 9.201 ± 0.295 3.176 ± 0.047 0.670 ± 0.014 0.959 ± 0.002
MLPe20 8.893 ± 0.273 3.094 ± 0.039 0.623 ± 0.012 0.965 ± 0.002
MLPe80 8.569 ± 0.225 3.044 ± 0.033 0.615 ± 0.010 0.962 ± 0.002
MLPe5 8.414 ± 0.222 3.007 ± 0.033 0.604 ± 0.010 0.962 ± 0.002
MLPc20 7.597 ± 0.176 2.892 ± 0.026 0.589 ± 0.008 0.953 ± 0.002
MLPc5 6.670 ± 0.121 2.764 ± 0.018 0.566 ± 0.006 0.947 ± 0.002
MLPs80 6.527 ± 0.099 2.756 ± 0.014 0.570 ± 0.006 0.943 ± 0.003
MLPs20 6.515 ± 0.138 2.753 ± 0.019 0.563 ± 0.007 0.946 ± 0.003
MLPs5 6.197 ± 0.093 2.709 ± 0.013 0.563 ± 0.006 0.941 ± 0.003
TabNete20 4.192 ± 0.081 2.426 ± 0.020 0.542 ± 0.007 0.905 ± 0.007
TabNet 4.325 ± 0.093 2.420 ± 0.020 0.537 ± 0.008 0.909 ± 0.006

Table 5.1: Significance and the standard error for Z0 and Z1 approximations from
the first training phase. Signal and Background accuracies with uncertainties
are also listed.

Model Z0 Z1 S1 acc. B1 acc.
MLPe20 18.37 4.22 0.94 0.99
MLPe80 17.06 4.21 0.94 0.99
MLPe5 16.53 4.18 0.93 0.99
MLPc80 17.33 4.16 0.92 0.99
MLP 18.06 4.15 0.91 0.99
Linear 16.70 4.13 0.91 0.99
MLPc20 16.56 4.10 0.93 0.98
MLPs20 14.34 4.01 0.92 0.97
TabNet 9.20 3.40 0.71 0.97
MLPc5 10.92 3.36 0.69 0.97
MLPs80 8.61 3.12 0.61 0.97
MLPs5 8.57 3.05 0.61 0.97
TabNete20 5.82 2.85 0.63 0.93

Table 5.2: Significance for Z0 and Z1 approximations of the best performing
model in terms of Z1 significance from the first training phase. Signal and
Background accuracies with uncertainties are also listed.

Table 5.3 lists the mean values of significance and Signal/Background
accuracy with standard error from the second training phase. Twenty trials
were trained for each method. The data set sampling method did not perform
well, although it significantly reduced training time and in the second training
phase was almost as good as traditional MLP.
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5. Results .......................................
Model Z0 Z1 S1 acc. B1 acc.
MLPe5 15.765 ± 0.303 4.134 ± 0.016 0.930 ± 0.006 0.984 ± 0.001
MLPc20 16.301 ± 0.368 4.123 ± 0.020 0.919 ± 0.007 0.986 ± 0.001
MLPe20 16.001 ± 0.337 4.121 ± 0.018 0.931 ± 0.006 0.983 ± 0.002
MLPe80 14.941 ± 0.420 4.108 ± 0.016 0.927 ± 0.004 0.983 ± 0.001
MLPc80 14.922 ± 0.220 4.033 ± 0.018 0.904 ± 0.010 0.981 ± 0.002
MLP 14.970 ± 0.347 4.017 ± 0.025 0.900 ± 0.012 0.980 ± 0.002
MLPs20 14.813 ± 0.357 4.000 ± 0.019 0.896 ± 0.009 0.979 ± 0.002
Linear 14.094 ± 0.409 3.900 ± 0.020 0.860 ± 0.007 0.979 ± 0.002
MLPc5 10.527 ± 0.216 3.337 ± 0.024 0.664 ± 0.010 0.976 ± 0.002
TabNet 6.751 ± 0.392 3.137 ± 0.068 0.769 ± 0.020 0.912 ± 0.012
MLPs5 8.105 ± 0.157 2.982 ± 0.023 0.575 ± 0.009 0.968 ± 0.002
MLPs80 7.906 ± 0.118 2.949 ± 0.015 0.571 ± 0.009 0.966 ± 0.002
TabNete20 4.684 ± 0.152 2.532 ± 0.032 0.552 ± 0.021 0.921 ± 0.009

Table 5.3: Significance and the standard error for Z0 and Z1 approximations from
the second training phase. Signal and Background accuracies with uncertainties
are also listed.

5.2 The best model analysis

The highest significance Z1 was achieved using the event weighted loss function
with Signal total weight scaled to twenty expected events. This section ana-
lyzes the model in more detail by performing further experiments. Figure 5.1
shows the used metrics and the normalized NN output distributions.

5.2.1 The 300 GeV mass charged Higgs boson

Figure 5.1d shows the NN output distributions. The Signal distribution
contains two local maxima, the smaller and broader peak around working
point 0.8 represents hard-to-classify events, whereas well-classified events
create the steeper peak around point one. Predominantly events of the
300 GeV mass charged Higgs boson were difficult to classify, as shown in
Figure 5.2.

The following experiment uses scaling factors η300 and η800 as hyper-
parameters to improve the separation of the 300 GeV mass charged Higgs
boson. All Signal weights were initially scaled so that there were five expected
events for each mass, and the scaling factors η300, η800 were additionally
multiplied by α ∈ (1, 2) in the training procedure. Table 5.4 lists the
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Figure 5.1: Working point characteristics of the model with the highest signifi-
cance Z1.

significance Z1 and Z300
1 . These results were for the best performing model

in terms of the significance from the one hundred trials for each test. The
Significance Z300

1 was computed for validation data set containing only 300 GeV
mass charged Higgs boson as the Signal. Scaling factors η300, η800 are also
listed. The Signal of the validation set was scaled up to twenty expected
events with equally distributed masses. The scaling factors optimization
did not improved the significance at all. Although the models focus more
on the 300 GeV mass charged Higgs boson, the efficiency of classifying
the Background is reduced, resulting in less separation power, as shown in
Figure 5.3.

Model Z300
1 Z1 η300 η800

MLPe20 4.02 4.22 428.97 6657.58
optimized η300 3.68 4.17 1247.3 6657.58
optimized η300, η800 3.61 4.10 484.24 8388.88

Table 5.4: Significance Z1 and Z300
1 for optimized scaling factors η300 and η800.
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Figure 5.2: The comparison of the normalized NN output distributions of the
hard-to-classify 300 GeV charged Higgs boson evens (blue) and the well-separated,
higher mass charged Higgs boson events (green). The Background normalized
NN output distribution (red) is also shown.
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Figure 5.3: The comparison of the normalized NN output distributions..

5.2.2 Cross section estimation

The cross section is a measure of the probability that a proton-proton collision
results in a specific process [Gra]. The unit of reaction cross section is the barn.
The main advantage of the cross section is its independence from the particle
beam’s intensity and the accelerator’s power; therefore, two experiments from
different accelerators can be directly compared. The number of expected
events of the process is a product of the cross section and the integrated
luminosity.
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................................5.2. The best model analysis

The classifier can detect a new particle only if its sensitivity is less than the
theoretical cross section of the particle production. The classifier’s sensitivity
is computed as a cross section exclusion limit at the 95% confidence level
which corresponds to significance of 2σ. In this thesis, two methods were
used to determine the classifier’s sensitivity, both of which calculate the cross
sections for each signal mass individually. The first method changes the cross
section so that a certain significance approximation from Eq. 2.5-2.8 is equal
to 2σ and the estimated cross section is shown in Figure 5.5b.

In the second method, the Trex-fitter program [Tf], which is widely used in
the ATLAS Collaboration, calculates the cross section exclusion limits at 95%
CL. Trex-fitter takes a distribution of a random variable defined as a Region
as an input and performs the CLs method. In addition to the shape of the
random variable distribution, the sensitivity mainly affects the binning option
of the Region histogram and the number of expected Signal events. Figure 5.4
shows the NN output with the Signal weights normalized to the cross section
of one picobarn and with scaled luminosity to compensate for missing mc16a,
mc16d data sets which was used as a Trex-fitter input. Figure 5.5a shows the
cross section computed by the Trex-fitter for 95% CL.

Despite the very good separation of Signal and Background and working
point with a small number of Background events for which the approximations
of significance are less accurate, the sensitivity computed with the Trex-fitter
and the Z0, Z3 significance approximations is almost identical, as shown in
Figure 5.5. The Z1, Z2 significance approximations led to lower sensitivity
close to the upper bound of the Trex-fitter’s two-sigma confidence interval.

Figure 5.6 shows the expected and observed upper limits at 95% CL on the
product of cross section and branching fraction σH±(H± −→ HW±, H −→ ττ)
from the CMS charged Higgs boson decaying into a heavy neutral Higgs
boson and a W boson analysis [Col22]. The methods proposed in this thesis
obtained better sensitivity, as shown in Figure 5.5a, than the CMS analysis;
however, the CMS analysis includes systematic uncertainties which reduce
the sensitivity and were not modeled in this analysis.

5.2.3 Feature importance

Feature importance is a valuable measurement providing an insight into the
model’s decision-making. Although the NN can classify data without any
theoretical background, scientists can use this information to improve the
measurement or the reconstruction of essential features.
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(a) : The NN output for the 300 GeV
mass charged Higgs boson and the Back-
ground.
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(b) : The NN output for the 800 GeV
mass charged Higgs boson and the Back-
ground.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NN output

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d.

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s

-1 = 13 TeV, 139 fbs
2lSS1Tau inclusive
Mass 1500 GeV
Pre-Fit

+tbH
Htt

Wtt
tt

Ztt
VV

Others
Total

Uncertainty

714.3
22.8
24.9
22.2
18.4

6.3
11.5

820.4
 

(c) : The NN output for the 1500 GeV
mass charged Higgs boson and the Back-
ground.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NN output

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d.

1−10

1

10

210

310

410

510

610

710
E

ve
nt

s

-1 = 13 TeV, 139 fbs
2lSS1Tau inclusive
Mass 2000 GeV
Pre-Fit

+tbH
Htt

Wtt
tt

Ztt
VV

Others
Total

Uncertainty

485.9
22.8
24.9
22.2
18.4

6.3
11.5

592.0
 

(d) : The NN output for the 2000 GeV
mass charged Higgs boson and the Back-
ground.

Figure 5.4: The NN output distributions. The number of expected Signal events
is normalized to the cross section of one picobarn and weights are scaled to
compensate for the missing Signal mc16a, mc16d data sets.

This thesis uses the permutation feature importance method. The impor-
tance is defined as the absolute difference of significance ∆Z1 obtained for
the default validation data set and the modified validation data set and is
computed for each feature separately. The modified data set has a changed
order of the values for the currently calculated feature, which can be inter-
preted as if the feature values were measured with noise. One of the method’s
advantages is the computation speed because the model does not need to be
retrained. Figure 5.7 shows the top twenty most important features; however,
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Figure 5.5: Expected cross section for 95% CL.
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circle markers. The median expected limit (dashed line), 68% (inner green band),
and 95% (outer yellow band) confidence intervals are also shown. Taken from
[Col22].

the top ninth most important feature already affected the resulting significance
negligibly compared to the top five most important features. The importance
of each feature was calculated as the average of ten different permutations of
values. The most important feature was the sum of transverse momentum of
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5. Results .......................................
jets HT_jets with the significance difference ∆Z1 = 2.229. Table B.3 lists
the importance of all used features.
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(a) : Top 10 most important features.
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(b) : Top 10-20 most important features.

Figure 5.7: Feature importance of the model with the highest significance Z1.
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Figure 5.8: Correlation matrix of the simulated data set.

The following experiment was performed to verify the proposed method.
The NN was optimized using a data set with all 65 features or only the five,
ten, and twenty most important features. One hundred trials in the first phase
of training and twenty trials in the second phase of training were trained
for each set of functions, Table 5.5 lists the mean significance and Signal
and Background accuracies with standard error from the second stage of the
training. As expected, even for only the top five most important features,
the model retains decent separation power. It is also worth mentioning
that the model trained with the data set containing only the top ten most
important features outperformed the original model trained with all features.
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................................5.2. The best model analysis

Table B.1 lists the definitions of the ten top most important features and
their distributions are shown in Figure C.1.

Features Z0 Z1 S1 acc. B1 acc.
top10 16.635 ± 0.221 4.143 ± 0.017 0.923 ± 0.007 0.987 ± 0.001
all 16.001 ± 0.337 4.121 ± 0.018 0.931 ± 0.006 0.983 ± 0.002
top20 15.050 ± 0.285 4.061 ± 0.013 0.937 ± 0.005 0.976 ± 0.001
top5 14.242 ± 0.479 4.025 ± 0.028 0.923 ± 0.009 0.975 ± 0.004

Table 5.5: Significance and the standard error for Z0 and Z1 approximations
for different data set feature sets from the second training phase. Signal and
Background accuracies with uncertainties are also listed.
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Chapter 6

Conclusion

The goal of this thesis was to separate the Signal tbH+ from the Background
using optimized NN and estimate the sensitivity of the classifier. The thesis
was dealing with the simulated data with preselected events of the 2lSS1tau
channel, that means two same-sign light leptons and one hadronically decaying
τ .

Two NN architectures, MLP and TabNet, were implemented, which were
optimized using data set sampling and cost-sensitive methods to overcome
imbalanced data sets. It was discovered that smaller shallow MLP results in
better significance than deeper networks. The best performing model in terms
of the Signal separation was achieved with the MLP and event weighted loss
function. Due to the delayed data set production, only a few experiments
were done with the TabNet architecture. That might be the reason why the
performance of the TabNet was much worse compared to MLP.

The Trex-fitter program was used to estimate the cross section exclusion
limit at the 95% CL of tbH+ production using the output distribution of the
best performing model in terms of significance. The results indicate a higher
sensitivity for tbH+ low masses compared to a recent CMS Collaboration
tbH+ analysis.

The permutation feature importance method was used to determine the
importance of individual features of the best MLP model, which ranked the
sum of the transverse momentum of all jets as the most important. Several
experiments were performed with a data set containing a reduced set of the
important features to verify this method. The experiment with the top ten
most important features reached better significance than the experiment with
all 65 features. The reason could be that the dimensionality of the problem
was reduced, and the remaining features have very good separation power.
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Appendix A
The Tight lepton l2SS1tau channel
preselection formula

While the preselection was applied as given below, consistent with a previous
tt̄H analysis of December 2021, it is noted here that instead of the variable
nTaus_OR, the variable nTaus_OR_Pt25 should be used.

preselection = nJets_OR_TauOR > 2 ∧ nJets_OR_DL1r_70 > 0 ∧

(lep_Pt_0 ≥ 10e3∧ lep_Pt_1 ≥ 10e3)∧((abs(lep_ID_0) = 13∧

lep_isMedium_0 ∧ passPLIV V eryT ight_0 ∧

lep_isolationFCLoose_0) ∨ (abs(lep_ID_0) = 11 ∧

lep_isolationFCLoose_0 ∧ lep_isT ightLH_0 ∧

lep_ambiguityType_0 = 0 ∧ fabs(lep_Eta_0) ≤ 2.5 ∧

lep_chargeIDBDTResult_recalc_rel207_tight_0 > 0.7 ∧

passPLIV V eryT ight_0 ∧

((¬(¬(lep_Mtrktrk_atConvV _CO_0 < 0.1 ∧

lep_Mtrktrk_atConvV _CO_0 ≥ 0 ∧ lep_RadiusCO_0 > 20) ∧

(lep_Mtrktrk_atPV _CO_0 < 0.1 ∧

lep_Mtrktrk_atPV _CO_0 ≥ 0))) ∧

(¬(lep_Mtrktrk_atConvV _CO_0 < 0.1 ∧

lep_Mtrktrk_atConvV _CO_0 ≥ 0 ∧

lep_RadiusCO_0 > 20))))) ∧ ((abs(lep_ID_1) = 13 ∧

lep_isMedium_1 ∧ passPLIV V eryT ight_1 ∧

lep_isolationFCLoose_1) ∨ (abs(lep_ID_1) = 11 ∧

lep_isolationFCLoose_1 ∧ lep_isT ightLH_1 ∧

lep_ambiguityType_1 = 0 ∧ fabs(lep_Eta_1) ≤ 2.5 ∧
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A. The Tight lepton l2SS1tau channel preselection formula ..................
lep_chargeIDBDTResult_recalc_rel207_tight_1 > 0.7 ∧

passPLIV V eryT ight_1 ∧

((¬(¬(lep_Mtrktrk_atConvV _CO_1 < 0.1 ∧

lep_Mtrktrk_atConvV _CO_1 ≥ 0 ∧ lep_RadiusCO_1 > 20) ∧

(lep_Mtrktrk_atPV _CO_1 < 0.1 ∧

lep_Mtrktrk_atPV _CO_1 ≥ 0))) ∧

(¬(lep_Mtrktrk_atConvV _CO_1 < 0.1 ∧

lep_Mtrktrk_atConvV _CO_1 ≥ 0 ∧

lep_RadiusCO_1 > 20))))) ∧ nTaus_OR = 1 ∧

lep_ID_0 · lep_ID_1 > 0
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Appendix B
Tables

Feature Name Definition
HT_jets The sum of the transverse momentum of jets.
HT The sum of the transverse momentum of all objects.
HT_inclFwdJets The sum of the transverse momentum including forward jets.
lep_Pt_0 Transverse momentum of the leading light lepton.
HT_lep The sum of the transverse momentum of light leptons.
HT_fwdJets The sum of the transverse momentum of forward jets.
lep_Pt_1 Transverse momentum of the subleading light lepton.
jet_pt0 Transverse momentum of the leading jet.
nTaus_OR_Pt25 Number of taus with at least 25 GeV transfers momentum.
lep_custTrigMatch_Loose-
ID_FCLooseIso_SLT_1

The matching of light lepton trigger condition.

Table B.1: The Definition of the top ten most important features.
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B. Tables .......................................

ID Name ID Name
1 best_Z_Mll 34 lep_Phi_1
2 DeltaR_min_lep_jet 35 lep_Pt_0
3 DeltaR_min_lep_jet_fwd 36 lep_Pt_1
4 dEta_maxMjj_frwdjet 37 lep_sigd0PV_0
5 dilep_type 38 lep_sigd0PV_1
6 DRll01 39 lep_Z0SinTheta_0
7 eta_frwdjet 40 lep_Z0SinTheta_1
8 HT 41 max_eta
9 HT_fwdJets 42 met_met
10 HT_inclFwdJets 43 met_phi
11 HT_jets 44 minDeltaR_LJ_0
12 HT_lep 45 minDeltaR_LJ_1
13 jet_eta0 46 minDeltaR_LJ_2
14 jet_eta1 47 minOSMll
15 jet_eta2 48 minOSSFMll
16 jet_pt0 49 mjjMax_frwdJet
17 jet_pt1 50 MLepMet
18 jet_pt2 51 Mll01

19 lep_custTrigMatch_Loose-
-ID_FCLooseIso_SLT_0 52 Mlll012

20 lep_custTrigMatch_Loose-
-ID_FCLooseIso_SLT_1 53 Mllll0123

21 lep_E_0 54 MtLepMet
22 lep_E_1 55 nFwdJets_OR
23 lep_Eta_0 56 nFwdJets_OR_TauOR
24 lep_Eta_1 57 nJets_OR
25 lep_EtaBE2_0 58 nJets_OR_TauOR
26 lep_EtaBE2_1 59 nTaus_OR_Pt25
27 lep_ID_0 60 Ptll01
28 lep_ID_1 61 sumPsbtag
29 lep_Mtrktrk_atConvV_CO_0 62 total_charge
30 lep_Mtrktrk_atConvV_CO_1 63 total_leptons
31 lep_Mtrktrk_atPV_CO_0 64 lep_nTrackParticles_0
32 lep_Mtrktrk_atPV_CO_1 65 lep_nTrackParticles_1
33 lep_Phi_0

Table B.2: List of used features.
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Feature Name ∆Z1 Feature Name ∆Z1

HT_jets 2.229 lep_E_0 0.028
HT 1.552 lep_Z0SinTheta_0 0.027
HT_inclFwdJets 1.498 MLepMet 0.027
lep_Pt_0 1.257 lep_E_1 0.024
HT_lep 1.039 lep_ID_1 0.023
HT_fwdJets 0.927 eta_frwdjet 0.022
lep_Pt_1 0.812 jet_eta2 0.021
jet_pt0 0.206 mjjMax_frwdJet 0.019
nTaus_OR_Pt25 0.167 nJets_OR_TauOR 0.018
lep_custTrigMatch_Loose-
-ID_FCLooseIso_SLT_1 0.074 Mllll0123 0.018

sumPsbtag 0.072 lep_Z0SinTheta_1 0.017
lep_nTrackParticles_1 0.072 lep_Phi_1 0.017
MtLepMet 0.071 lep_Eta_1 0.017
met_phi 0.068 DeltaR_min_lep_jet_fwd 0.016
jet_pt1 0.067 minDeltaR_LJ_2 0.015
Mll01 0.065 DeltaR_min_lep_jet 0.013
nJets_OR 0.062 minDeltaR_LJ_1 0.013
met_met 0.062 lep_Eta_0 0.012
lep_nTrackParticles_0 0.046 lep_Mtrktrk_atPV_CO_0 0.011
total_charge 0.046 lep_Phi_0 0.011
jet_pt2 0.045 max_eta 0.01
lep_EtaBE2_0 0.044 minOSSFMll 0.01
lep_sigd0PV_0 0.041 lep_ID_0 0.009
DRll01 0.041 minDeltaR_LJ_0 0.009
jet_eta0 0.039 lep_Mtrktrk_atConvV_CO_1 0.008
nFwdJets_OR_TauOR 0.037 minOSMll 0.008
Ptll01 0.035 total_leptons 0.008
dEta_maxMjj_frwdjet 0.035 lep_Mtrktrk_atConvV_CO_0 0.006
lep_custTrigMatch_Loose-
-ID_FCLooseIso_SLT_0 0.034 lep_Mtrktrk_atPV_CO_1 0.006

lep_EtaBE2_1 0.031 lep_sigd0PV_1 0.006
nFwdJets_OR 0.03 best_Z_Mll 0.005
dilep_type 0.029 Mlll012 0.002
jet_eta1 0.029

Table B.3: Feature importance ∆Z1.
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Appendix C
Figures

C.1 Feature distributions
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(a) : Distribution of HT_jets variable.

0 500 1000 1500 2000 2500 3000

HT [GeV]

0.5

0.75

1

1.25

 

D
at

a 
/ P

re
d. 0

2

4

6

8

10

12

14

16

18

20

22

E
ve

nt
s

-1 = 13 TeV, 139 fbs
2lSS1Tau inclusive
All masses
Pre-Fit

+tbH
Htt

Wtt
tt

Ztt
VV

Others
Total

Uncertainty

20.0
22.8
24.9
22.2
18.4

6.3
11.5

126.0
 

(b) : Distribution of HT variable.

Figure C.1: The top ten most important features for the MLPe20 model.
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(c) : Distribution of HT_inclFwdJets
variable.
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(d) : Distribution of lep_Pt_0 variable.
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(e) : Distribution of HT_lep variable.
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(f) : Distribution of HT_fwdJets variable.

Figure C.1: The top ten most important features for the MLPe20 model.
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................................. C.1. Feature distributions
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(g) : Distribution of lep_Pt_1 variable.
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(h) : Distribution of jet_pt0 variable.
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(i) : Distribution of nTaus_OR_Pt25
variable.
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(j) : Distribution of lep_custTrig-
Match_LooseID_FCLooseIso_SLT_1
variable.

Figure C.1: The top ten most important features for the MLPe20 model.
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Appendix D
Documentation

Available parameters of variable "configs"
Variable type: dict, list of dict
Usage: Variable has to be defined in the file config.py and is

used by the train_config.py to train and optimize NN.↪→

Parameters:

epochs_num - int > 0, number of training epochs
samples_num - int > 0, number of ray tune run samples

### Dataset

dataset_name - str, name of the data set, data set will be
split on training and validation set using split_divider↪→

dataset_trn_name - str, name of the training data set
dataset_val_name - str, name of the validation data set, data

set directory path can be specified letter when running
the scripts, which allows to save the configuration as a
pickle file and use it on multiple machines that have
data sets stored on different paths

↪→

↪→

↪→

↪→

dataset_path - str, absolute path to the data set, data set
will be split on training and validation set using
split_divider

↪→

↪→

dataset_trn_path - str, absolute path to the training data
set↪→

dataset_val_path - str, absolute path to the validation data
set, ray tune require absolute paths↪→

split_divider - float (0, 1), ratio of the training data set,
split_divider=0.7 means 70% training set 30% validation
set

↪→

↪→

batch_size - int > 0, number of events per one iteration,
epoch has len(data set) / batch_size iterations↪→

use_sampler - bool, use data sampling method for training,
multinomial distribution of event weights↪→
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D. Documentation....................................
samples_num - int > 0, number of sampled events per epoch if

use_sampler=True↪→

signal_weights - dict, each key is process name, value is
weights scaling factor↪→

signal_weight - float, factor that scales all signal
weights, can be used in a combination with
signal_weights, to scale the signal differently in
training and validation epoch use signal_weight_trn,
signal_weight_val or signal_weights_trn,
signal_weights_val which overwrites signal_weight,
signal_weights

↪→

↪→

↪→

↪→

↪→

↪→

signal_processes - str, list, names of signal processes, the
name format is "NAME_MASS" (select as the Signal process
with specific mass) or "NAME" (select as the Signal all
of process mass

↪→

↪→

↪→

variants), do not use process names with an underscore
remove_processes - str, list, names of processes to remove,

process is removed only if is not in signal_processes,
the name format is the same as for signal_processes

↪→

↪→

Example:
config = {

signal_processes : ["tbH_300", "tbH_800"],
remove_processes : "tbH"

}
will select process tbH_300, tbH_800 as signal and remove

all other tbH masses from the data set↪→

### Metric

use_single_threshold - bool, whether to use fixed working
point or tunable working point maximizing significance↪→

threshold_step - float > 0, resolution of tunable working
point↪→

threshold - float (0, 1), fixed working point that is used if
use_single_threshold=True↪→

### Model

model_name - "mlp" or "tabnet", whether to se MLP or TabNet
architecture↪→

## MLP

layer_sizes - list of int > 0, sizes of hidden layers
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.................................... D. Documentation

input_dropout - float (0, 1), dropout applied on input data
dropout - float (0, 1), dropout between layers
shortcut_freq - int > 0, frequency of forward pass shortcuts

## TabNet

feature_size - int > 0, output size of feature transformer
attention_size - int > 0, input size of attentive transformer
layers_num - int > 0, number of non-shared feature

transformer layers↪→

shared_layers_num - int > 0, number of shared feature
transformer layers↪→

block_num - int > 0, number of decision steps
sparse_gamma - float > 0 | coefficient of TabNet sparse loss
batchnorm_momentum - float > 0, momentum of batch-norm layers
relaxation - float > 0, priors relaxation parameter

### SDG Optimizer

lr - float > 0, learning rate
momentum - float > 0, SDG optimizer momentum
weight_decay - float > 0, model weight regularization
use_lr_scheduler - bool, use exponentially decaying learning

rate↪→

lr_scheduler_gamma - float > 0, epoch learning rate decay

### Loss

use_weights - None or "event" or "class", type of
cost-sensitive method↪→

focal_gamma - float > 0, focal loss gamma

### Utility

log_debug - bool, if occurs the error (NaN values of loss,
weights, metric) log additional training information↪→

debug_log_len - int > 0, number of iterations to log before
the error occurrence↪→

Available parameters of variable "eval_configs"
Variable type: dict, list of dict
Usage: Variable has to be defined in the file config.py and is

used by the train_config.py, eval_config.py files to
evaluate trained models. The eval_configs variable
overwrites parameters of the original configs variable.

↪→

↪→

↪→
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D. Documentation....................................
Parameters:

### Same as for configs variable

dataset_name - str
dataset_val_name - str
dataset_path - str
dataset_val_path - str

signal_weights - dict
signal_weight - float

signal_processes - str, list
remove_processes - str, list

use_single_threshold - bool
threshold_step - float > 0
threshold - float (0, 1)

### Additional parameters for train_config.py:
# The script eval_config.py modifies these parameters using

command line arguments↪→

features_importance - bool, if yes, computes feature
importance↪→

fi_repetitions - int > 0, number of permutation repetitions

store_nn_output - bool, save the network output as pickle
file↪→

store_metric - bool, save the metric as pickle file
store_root - bool, save the data set and network output as

root file↪→

store_log - bool, save the working point results as text
file↪→
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