
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Action recognition system

Anastasia Ostapenko

Supervisor: Mgr. Michal Vavrečka Ph.D
May 2022

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483746Personal ID number:Ostapenko AnastasiaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Action Recognition System

Bachelor’s thesis title in Czech:

Systém pro rozpoznávání akcí

Guidelines:

The aim of the work is to create a system for action recognition, which is based on the integration of information from two
separate modules. The first module recognizes objects and their positions and the second module recognizes and
categorizes motion. Information from both modules is passed to a third module that can distinguish the type of action
based on the objects in the scene (e.g. action „hammering“ requires object „hammer“). The system will be trained on its
own dataset and tested and evaluated in real conditions.The system will be tested on the assembly task actions (hammering,
screwing, wrenching etc.) and 20 types of objects (screwdriver, hammer, wrench, screw etc.)
1. Create and annotate an action dataset with assembly actions and objects.
2. Train a visual module for object recognition.
3. Train an action recognition module.
4. Train a module that integrates information from previous modules.
5. Test the system in real conditions.

Bibliography / sources:

[1] Bolya, D., Zhou, C., Xiao, F., & Lee, Y. J. (2019).Yolact: Real-time instance segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (pp. 9157-9166).
[2] Zhang, C., Zou, Y., Chen, G., & Gan, L. (2020). Pan: Towards fast action recognition via learning persistence of
appearance. arXiv preprint arXiv:2008.03462.

Name and workplace of bachelor’s thesis supervisor:

Mgr. Michal Vavrečka, Ph.D. Robotic Perception CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 16.09.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Mgr. Michal Vavrečka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to thank my supervisor
Mgr. Michal Vavrečka, Ph.D for giving
me the opportunity to work in the
direction I wanted, and for all the useful
advice and help he provided to me.

I am also grateful to my family, espe-
cially my mother, who has always sup-
ported and encouraged me. A special
thanks goes to my friend Nikita Sokovnin,
for all the helpful advice.

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May , 2022

iv

Abstract

This thesis contributes to the field of
computer vision and focuses on the de-
velopment of an action recognition sys-
tem based on the integration of informa-
tion from two separate modules. The first
module is responsible for motion detection
and categorisation. The second module
is an instance segmentation module that
recognises objects and their position in the
scene. The information from both mod-
ules is passed to a classifier that makes
the final prediction.

To train the action recognition mod-
ule, we create our own dataset with eight
action types that include assembly ac-
tions with tools and also corresponding
"fake" actions that have similar motion but
where no tools are used. The proposed
classifier achieves 95.21% accuracy in this
dataset compared to 85.52% for a baseline
classifier. Therefore, we demonstrate that
combining data from two different sources
can improve the overall results of the ac-
tion recognition task, especially when a
small dataset is used.

Keywords: human action recognition,
classification, object detection

Supervisor: Mgr. Michal Vavrečka
Ph.D

Abstrakt

Tato práce přispívá do oblasti počíta-
čového vidění a je zaměřena na vytvoření
systému pro rozpoznávání akcí, který je
založen na integraci informací ze dvou sa-
mostatných modulů. První modul dokáže
rozpoznat a kategorizovat pohyb. Druhý
modul rozpoznává objekty a jejich polohu
na scéně. Informace z obou modulů je pře-
poslána navrženému klasifikátoru, který
udělá konečnou predikci.

Pro trénování modulu zodpovědného za
rozpoznávání akcí jsme vytvořili vlastní
dataset který obsahuje osm typů akci.
Část těchto akcí vyžaduje nástroj a část
jsou odpovídající jim „falešné“ akce, které
mají podobný pohyb, ale žádné nástroje se
nepoužívají. Navrhovaný klasifikátor do-
sahuje v tomto datasetu přesnosti 95,21%
ve srovnání s 85,52% u základního klasi-
fikátoru. Takovým způsobem demonstru-
jeme, že kombinaci dat ze dvou různých
zdrojů můžeme zlepšit celkové výsledky
úlohy rozpoznávání akcí, zvláště v přípa-
dech kdy je použita malá datová sada.

Klíčová slova: rozpoznávání akcí,
klasifikace, detekce objektů

Překlad názvu: Systém pro
rozpoznávání akcí

v

Contents
1 Introduction 1

1.1 Motivation 1

1.2 Goals 2

1.3 Overview of the chapters . . . 2

2 Related work 3

2.1 Action recognition 3

2.1.1 How common action
recognition algorithms work 3

2.2 Object detection and instance
segmentation 5

2.2.1 Early object detection
methods 6

2.2.2 Current object detection
methods 6

2.3 Multimodal integration 7

3 Methods 8

3.1 Problem definition 8

3.2 Action types 9

3.3 Suggested method 9

3.3.1 Multimodal integrator . . 10

3.3.2 Hyperparameters and
optimisation methods . . . 13

4 Implementation 16

4.1 Basic action recognition with
PAN 16

4.1.1 Dataset preparation for
PAN 16

4.1.2 Training PAN and predicting
actions in videos 17

4.2 Detecting tools with YOLACT 17

4.2.1 Dataset preparation for
YOLACT 17

4.2.2 Training YOLACT 18

4.2.3 Detecting objects in videos 19

4.3 Combining outputs from
YOLACT and PAN 20

4.4 Multimodal integrator and
advanced action recognition . 20

4.4.1 Dataset for the multimodal
integrator 20

4.5 Structure of the multimodal
integrator 21

5 Results 22

5.0.1 Dataset 22

5.1 Training and test results . . . 22

5.1.1 Evaluation Metrics 22

5.1.2 Training and evaluation
of the baseline action
recognition method 23

5.2 Detecting objects with
YOLACT 26

vi

5.3 Training and evaluation of the
proposed method 29

5.4 Comparison of the proposed
method and baseline 30

6 Conclusion and future work 32

6.1 Discussion and conclusion . . 32

6.2 Future work 33

A Bibliography 34

vii

Figures
2.1 Comparison between

estimated optical flows
using Persistence of Vision
(A), the EPE loss (B), the
recognition loss (C), and their
difference calculated by the
Euclidean distance (D), from
[10] 4

2.2 Comparison of different visual
recognition tasks in computer
vision 5

3.1 Comparison between actions
with tools and fake actions 9

3.2 Example of a neural network
architecture 11

3.3 Adjusting weights 13
3.4 Flowchart of the action

recognition process according
to our approach 15

4.1 1.car_roof, 2.cube_holes,
3.ex_bucket, 4.hammer,
5.nut, 6.peg_screw,
7.pliers, 8.screw_-
round, 9.screwdriver,
10.sphere_holes,
11.wafer, 12.wheel,
13.wrench; modified
figure from [33] 18

4.2 YOLACT Architecture based
on [23] 18

5.1 Loss and recall progress during
training PAN on both datasets
for 80 epochs, with a learning
rate of 0.01 24

5.2 Confusion matrices evaluated
on the validation datasets
using the best performing PAN
model 26

5.3 Boxplot comparison of the
moved distance of different
object classes 27

5.4 Histogram by class of the
number of objects and videos
containing at least one object
of the corresponding class 27

5.5 Confusion matrix evaluated
with YOLACT on the the
8-class validation dataset,
where all fake actions
are grouped into a single
category 28

5.6 Confusion matrices evaluated
on the validation datasets with
the best performing model of
the proposed classifier . . 29

5.7 Evolution of loss and recall
during training of the
proposed classifier on both
datasets with optimal
hyperparameters 30

viii

Tables
5.1 Results obtained with PAN,

trained for 80 epochs, with a
learning rate of 0.01 . . . 24

5.2 Metrics calculated for the best
performing model PAN for the
4-class validation dataset . 25

5.3 Metrics calculated for the best
performing model PAN for the
8-class validation dataset 25

5.4 Metrics calculated with
YOLACT for the 8-class
validation dataset, where all
fake actions are grouped into
a single category 28

5.5 Results obtained with the
proposed classifier, trained for
300 epochs, with a learning
rate of 0.002 29

5.6 Metrics calculated for the best
performing final model for the
4-class validation dataset . . 31

5.7 Metrics calculated for the best
performing final model for the
8-class validation dataset . 31

ix

Chapter 1

Introduction

1.1 Motivation

Computer vision is the field of Artificial Intelligence that focuses on recognising
and processing objects in visual scenes in the same way as humans do.
Nowadays, interest in this field is increasing and several major advances have
been made in object recognition in recent years. However, there are still areas
that have significant potential but do not have as many research contributions
as others. One of these is the area of action recognition, which goal is to
recognise and identify human actions in videos automatically without manual
operations.

Identification and classification of human actions is one of the most
important tasks in video understanding. It also has many real-world applications
such as surveillance, behavioural analysis, entertainment, content-based video
retrieval and human-computer interaction. For example, if a patient is doing a
rehabilitation exercise at home, it would be helpful if her/his robotic assistant
could recognise and correct the patient’s actions to avoid possible injuries [5].
But even though it seems to be a simple task for a human, action recognition
is quite challenging for an artificial system.

Several systems for recognising actions in videos exist, but their capabilities
are limited, especially when small datasets are used for training. Therefore,
in this work we focus on improving the overall performance of one of these
systems.

1

.. 1.2. Goals

1.2 Goals

There are several goals of our work:

. Create a dataset containing assembly actions with tools (e.g. hammering,
wrenching, etc.) and simple actions without tools (e.g. fake hammering,
fake wrenching, etc.).. Train the action recognition module on the created dataset with different
hyperparameters.. Train the visual module for object detection and extract key features.. Propose a method to integrate the information from the previous modules.. Conduct experiments to test the performance of the proposed approach.

1.3 Overview of the chapters

The text is structured as follows:

. In Chapter 2, we define the terms that are important for our work, such
as object recognition, instance segmentation and action recognition. We
also do research on these topics to provide a theoretical basis for our
method.. The formal definition of the task is given in Chapter 3, where we also
discuss our own approach.. Chapter 4 is devoted to the implementation process. We describe the
creation of the dataset, the tools used and also provide details on the
proposed method.. In Chapter 5 we discuss the results achieved and test our solution.. In the last Chapter 6 we summarise the results of our work and also
discuss possible improvements.

2

Chapter 2

Related work

2.1 Action recognition

The goal of human action recognition is to label image sequences with action
labels and extract the information about which human actions occur in videos.
Even though action recognition has been an active area of research for more
than four decades, the computer vision algorithms used fall far below human
performance on this type of task for different reasons. One of these reasons
was described in [1]. Most computer vision algorithms perform well on simple
lab-recorded datasets, but still have problems recognizing actions in more
realistic datasets that come from movies [2], TV shows [3] or web videos [4].
Another frequent problem is described in the next section.

2.1.1 How common action recognition algorithms work

The process of action recognition can be divided into two parts. The first is
action localisation, which involves finding the correct location and timestamp
in the video (when exactly the action is performed). And the second part
is the classification of the action, where the correct label is assigned to a
particular image or video.

In order to classify an action in a video, motion information should be
modeled. In general, motion is represented by optical flow [6], [7]. The
definition of optical flow was given in [7], and it states that "optical flow is
the distribution of apparent velocities of movement of brightness patterns
in an image." Most of the current action recognition methods compute the
EPE loss (the average Euclidean distance between the estimated and the
ground-truth flow) and then the estimated optical flow is transmitted to
the action recognition module. This means a two-stage procedure should
be performed. However, as it was mentioned in [8] and [9], such two-stage

3

.......................................2.1. Action recognition

paradigms are storage demanding, time-consuming, and cannot be trained
consistently.

To solve the above problems, it was recently proposed by the authors of
[9] to use Persistence of Appearance (PA) for motion representation to lift
the dependence on optical flow and achieve real-time speed. According to
[9] and [10], PA derives from optical flow and focuses on the small shifts in
motion boundaries, as these are the most important components for action
recognition.

The comparison between the described methods (using optical flow or PA)
is demonstrated on the Figure 2.1 from [10].

Figure 2.1: Comparison between estimated optical flows using Persistence of
Vision (A), the EPE loss (B), the recognition loss (C), and their difference
calculated by the Euclidean distance (D), from [10]

The authors of [9] also proved that using PA is more efficient and flexible
than what most current action recognition methods suggest. They proposed a
unified framework called Persistent Appearance Network (PAN) that achieves
the state-of-the-art recognition performance even on challenging datasets
from movies, YouTube and Google videos. And for the above reasons, we use
the PAN module in our work.

4

........................... 2.2. Object detection and instance segmentation

2.2 Object detection and instance segmentation

We begin this section by defining such important computer vision concepts as
object detection [11], semantic segmentation [12], and instance segmentation
[13].

(a) : Image Classification (b) : Object detection

(c) : Semantic segmentation (d) : Instance segmentation

Figure 2.2: Comparison of different visual recognition tasks in computer vision

Object detection [11] is the process of detecting instances of a certain
class (car, laptop, human) in images and videos and labeling them with the
associated class. Also, the location of the object is predicted by assigning a
bounding box or centroids and a confidence score.

Semantic segmentation [12] is proposed to label each pixel of an image
with a corresponding class without separating instances of the same class.
The goal of this process is to provide a better understanding of the image.

Finally, instance segmentation [13] is a combination of object detection
and semantic segmentation. It aims to separate all objects from the background
image and assign each of them a separate categorical pixel-level mask.
Moreover, instance segmentation can be viewed as a special kind of object
detection. But instead of localising an object by a bounding box, pixel-level
localisation is used.

5

........................... 2.2. Object detection and instance segmentation

2.2.1 Early object detection methods

There are different approaches to object detection and instance segmentation.
In [11] it was pointed out that the first object detection algorithms (before
deep learning) consisted of three steps: proposal generation, feature vector
extraction, and region classification. Sliding windows [14] were used to suggest
the regions where objects might have been located. A sliding window is a
rectangular box of fixed width and height that slides around an image and
classifies each image crop, as to whether or not it contains an object of interest.
To understand if there is such an object a feature vector should be obtained
from the sliding window. The feature vector is then encoded by low-level
visual descriptors such as SIFT (Scale Invariant Feature Transform), HOG
(Histogram of Gradients) or SURF (Speeded Up Robust Features). And
finally, region classifiers, such as SVM (Support Vector Machines) [15] are
used to learn how to assign categorical labels to the covered regions.

2.2.2 Current object detection methods

With the development of DCNN (Deep Convolutional Neural Networks) [16],
there was a significant advance in many pattern recognition tasks, such as
image classification and video classification. Current detector frameworks
based on deep learning can be divided into two categories: one-stage detectors
and two-stage detectors.

Two-stage detectors include, for example, Fast R-CNN (Region-based
Convolutional Neural Networks) [18], Faster R-CNN [19] and Mask R-CNN
[20]. In the first step, such detectors find regions of interest (ROI) in the image
that have a high probability of containing an object. Then, the proposed
regions are fed into the R-CNN. Classification score and spatial offsets of the
region are obtained and the category of the region is predicted.

One-stage object detectors such as YOLO (You Only Look Once) [21] or
SSD (Single Shot Detector) [22] make the categorical prediction of objects at
each location of the feature maps directly, without the region classification
step [11]. In other words, there is no intermediate task that should be
performed before producing an output. As a result, one-stage detectors have
a simpler and faster model architecture and can achieve real-time speeds, but
the accuracy of predictions also decreases. However such detectors as YOLO
or SSD are able to fill the gap in performance in some other ways (e.g., strong
data augmentation, anchor clustering, etc.)

6

.....................................2.3. Multimodal integration

A more advanced version of the YOLO detector is YOLACT (You Only
Look At Coefficients) which we will use in our work. YOLACT [23] (also
YOLACT++ [24]) is a state of the art, real-time object segmentation
algorithm, that can perform object detection and segmentation with high
accuracy and is much faster than two-stage detectors. YOLACT omits the
localisation step and divides the instance segmentation process into two
parallel tasks: generating a set of prototype masks and predicting mask
coefficients per instance. Then, according to [23] the prototypes for each
instance are linearly combined with the corresponding predicted coefficients
and then cropped using a predicted bounding box. The prediction of prototype
masks is critical to ensure high resolution of the final instance masks. The
prototype masks depend only on the input images and are independent of
categories and specific instances.

2.3 Multimodal integration

Neural networks [25] [26] have dramatically improved performance beyond the
state of the art in the fields of automated driving, medical research, industrial
automation, etc. compared to traditional machine learning techniques, such
as Naive Bayes or Support Vector Machine. They are widely used to solve
problems such as classification, prediction, optimisation, pattern recognition
and function approximation.

According to [27], the reason for such success is that conventional computers
use an algorithmic approach to problem solving and it restricts us to solving
only those problems we already know how to solve. Neural networks, on the
other hand, process information in a similar way to the human brain and can
also solve more advanced tasks.

In [31] a modular method for combining neural networks was described. The
main problem is decomposed in such a way that there are different modular
components that perform different subtasks. Therefore, each module is trained
to be a specialist for a particular task and then they are integrated into one
module. The task decomposition can be done explicitly or automatically. The
advantages of this modular approach are: efficiency, as several independent
neural networks can be trained simultaneously, reduction of model complexity
and better performance.

7

Chapter 3

Methods

3.1 Problem definition

We start this chapter with formalising our task and describing it in more
detail.

Let:

.K = {1, 2, ... N} be a set of labels (action types) with N labels.X = {(x0, y0) , (x1, y1) .. (xm, ym)} be a dataset with m observations,
where xi ∈ Rp is a video sample and yi ∈ K is a corresponding label.D = {d0 , d1, ... dm }, d1 ∈ K be a set of decisions.R: X × D → R be a reward function, where

R((xi, yi), di) =
{

1, if yi == di

0 otherwise
(3.1)

Therefore, R represents the reward obtained when the true label of the
video is yi and the decision made is di.

The task is to assign decision di to each video xi from X in such a way
that the overall ratio of correctly classified videos is maximised for the entire
dataset.

r = 100 ∗ 1
m

m∑
i=0

R(xi, di) (3.2)

8

... 3.2. Action types

3.2 Action types

For our work we decided to use eight assembly actions: hammering, fake
hammering, pliering, fake pliering, wrenching (wrenching the nut with a
wrench), fake wrenching, hand-screwing (wrenching the nut by hand), fake
hand-screwing. All action types are shown in the Figure 3.1.

The difference between "normal" and "fake" actions is that fake actions do
not require a tool. However, the motion of these two types of actions is very
similar, which is confusing for ordinary action recognition systems because
they are designed to recognise the action motion and not the objects around.
Here it especially helps to add a second module that is responsible for object
detection.

Figure 3.1: Comparison between actions with tools and fake actions

3.3 Suggested method

The main idea of our approach is based on the above fact. We assume that
associating an action with a tool can increase the overall accuracy in cases
where the action type is not well identifiable, e.g., hammering and false
hammering or wrenching and hand-screwing.

9

.......................................3.3. Suggested method

To test this assumption, we propose the following method.

First, the YOLACT module is trained on the dataset containing images
of all the tools needed for the selected actions, e.g. hammer, wafer etc.
Then, video frames from the action dataset are fed into the trained YOLACT
network. As an output of this step, we obtain the labels of all objects present
in a single video, their centroids and scores (probabilities with which the
objects were detected). This data is analysed again and, according to a
certain algorithm, an object is selected to represent the action. In addition,
the average distance that the object travels between two frames is calculated.

dist =
∑N−1

0
√

(xi+1 − xi)2 + (yi+1 − yi)2

N − 1
Here (xi, yi) are centroids of the object in frame i, and (xi+1, yi+1) are centroids
of the object in frame i+1, N is the number of frames in the video.

The PAN module is also trained with the same action dataset. Each video
is separated to image frames. Then the trained model is applied to the
dataset. As a result, we get the predicted action and the probability of this
prediction.

The data from both modules are combined and stored as a new dataset,
which is then used to train the proposed classifier.

3.3.1 Multimodal integrator

The final and most important part of our algorithm is a classifier that takes all
the preprocessed data as input and produces the final classification as output,
Figure 3.4. For this step, we have chosen to use a neural network consisting
of several layers (input, hidden and output) that convert an input vector into
an output. Each layer consists of neurons, and neurons in different layers
are connected with each other. Each of these connections has an associated
weight that represents the importance of this relationship between the units,
and it also has a bias, Figure 3.2.

Training the neural network (well described in [29]) is the process by which
the neural network learns the values of the parameters - weights and biases.
It consists of two stages: forward propagation and backward propagation.
During forward propagation the input values are fed into the neural network
and the output or predicted value is received. In general, each unit in the
layer takes an input, applies an activation function to it, and then passes
the output on to the next layer. The activation function here is a non-linear
function added to help the network learn complex patterns in the data. Some
of the most commonly used activation functions are Sigmoid 3.3 and ReLU
3.4.

10

.......................................3.3. Suggested method

sigm(V N) = 1
1 + e−V N

(3.3)

ReLU(V N) = max(0, V N) (3.4)

How neural networks learn

To explain the learning process, let us assume that our neural network has a
similar structure to the one in the Figure 3.2.

Figure 3.2: Example of a neural network architecture

Then the value transmitted from the input layer to the unit j in the hidden
layer during forward propagation can be expressed as:

nj =
∑

i

zi wij + bj (3.5)

Let’s also assume the ReLU activation function is used as it is less susceptible
to the vanishing gradients problem [28].

ReLU(n) = max(0, n) (3.6)

After that, the values should be forwarded to the output layer. This is done
in a similar way:

yj =
∑

i

ni wij + bj (3.7)

And then the output with the higher value is chosen using the argmax
function:

output = argmax(y) (3.8)

11

.......................................3.3. Suggested method

Since in our problem we also need to get the probability value of the predicted
result, we apply the softmax function at the end, which normalises the output
vector into a probability distribution.

softmax(yi) = eyi∑
j eyj

(3.9)

After the result of the forward propagation step is obtained, we need to
calculate the error, that indicates the difference between the expected and
the obtained outcome. To calculate the error, the loss function is used. As
it was pointed out in [30], cross-entropy is usually preferred while solving
classification problems. Therefore:

E = L(ŷ, y) = −
K∑

i=1
y

(k)
i log ŷi

(k) (3.10)

Here, y(k) is 0 or 1, indicating whether class label k is the correct classification.

The next step is back propagation. It aims to minimise the cost function
by adjusting the weights and biases of the network. For this purpose, the
gradient of the error value with respect to these parameters is calculated.
And then each weight is updated by an amount proportional to the partial
derivative of E with respect to the weight.

wij = wij − α
∂E

∂wij

bj = bj − α
∂E

∂bj

(3.11)

Where α is the learning rate.

The idea behind this is that the gradient indicates the slope of a function
at a certain point. And it always points in the direction in which the value of
the loss function increases. Therefore, the values of the parameters should be
updated in the opposite direction to the direction indicated by the gradient.
Also illustrated in Figure 3.3 1.

1Inspired by https://towardsdatascience.com/learning-process-of-a-deep-neural-network-5a9768d7a651

12

https://towardsdatascience.com/learning-process-of-a-deep-neural-network-5a9768d7a651

.......................................3.3. Suggested method

Figure 3.3: Adjusting weights

This process is repeated until the required number of iterations or the
target error is reached.

The whole process of video processing and producing the result is shown
in Figure 3.4. It does not include the training steps. Implementation details,
such as the training process, data collection, feature extraction, etc., are
discussed in the next chapter.

3.3.2 Hyperparameters and optimisation methods

There are various parameters and optimisation methods that can influence
the learning process and it is important to understand them in order to
achieve better results. A hyperparameter [35] is a parameter that cannot be
estimated directly from data learning (such as weights or bias) and must be
set before training a model. It is important to choose hyperparameters wisely
as their values control the learning process.

Learning rate

The learning rate is one of the most important hyperparameters in Machine
Learning, that determines how much the weights and bias of the network
should change at each iteration 5.1. The learning rate controls the speed at
which the model learns. Thus, a high learning rate speeds up the learning
process, but can also cause the model to converge too quickly to a suboptimal
solution. On the other hand, a small learning rate converges smoothly but
can lead to a long training process that could get stuck. With the right
learning rate, the objective function should be able to converge to a global
minimum in an acceptable amount of time.

13

.......................................3.3. Suggested method

Number of epochs

An epoch in machine learning is defined as one complete pass of the training
dataset through the algorithm. After one epoch, the model updates its
parameters. The number of epochs depends on the dataset. If the model
is not trained long enough it will be underfitted and will not be able to
capture the underlying trend of the data. However, if the number of epochs
is too high, the opposite problem arises. The model is then overfitted, i.e. it
learns patterns that are highly specific to the sample data. This leads to high
accuracy in the training dataset but low accuracy in the validation dataset.
Therefore, the number of epochs should be adjusted by slowly increasing its
value until validation accuracy starts to decrease.

Mini-batch size

The mini-batch size represents the number of processed samples from the
training dataset used to estimate the error gradient. While training PAN
classifier we always used batch size 2 due to limitations on the GPU side.

Dropout rate

Dropout is a regularisation method for neural network models in which
randomly selected neurons are removed from training. The method is used
to prevent overfitting. A good value for dropout in a hidden layer is between
0.5 and 0.8, where 0.0 means the layer is completely excluded from training
and 1.0 means no dropout.

Optimisation methods

An optimizer [36] is a function or algorithm that changes the neural network
parameters and learning rate to reduce loss. Some of the most popular
optimizers are SGD (Stochastic Gradient Descent) and Adam (Adaptive
Moment Estimation). The idea behind SGD was explained earlier in Section
3.3.1. Adam is a combination of the two SGD extensions Root Mean Square
Propagation and Adaptive Gradient Algorithm. It calculates individual
adaptive learning rates for different parameters. Adam is faster than SGD,
but should be fine-tuned, otherwise convergence problems may occur.

14

.......................................3.3. Suggested method

Figure 3.4: Flowchart of the action recognition process according to our approach

15

Chapter 4

Implementation

The solution is implemented in the Python 3.9 programming language. We
used an open-source machine learning framework based on the Torch library
- PyTorch 1 for the development of the learning algorithm. Python packages
seaborn 2 and matplotlib 3 were also used for visualisation of the metrics.

4.1 Basic action recognition with PAN

Based on the information described in Chapter 2 we have chosen PAN
algorithm for action recognition. The reason for this is that PAN is much
faster than other action recognition methods and in theory can reach 8000
frames per second.

4.1.1 Dataset preparation for PAN

The dataset was collected using the Intel RealSense D435 cameras. We aimed
to increase variability and reduce the overall recording time, so five cameras
were used at the same time. They recorded each action from five different
angles.

The dataset contains eight types of actions: hammering, fake hammering,
pliering, fake pliering, wrenching, fake wrenching, hand-screwing, fake
hand-screwing. And each type of action is represented in the dataset with
about 200 videos. The recorded video is then processed and splitted into
single frames. Also, each video has about 30 frames, but 3 is the minimum
number of frames a video is allowed to have in order to be processed correctly

1Available at https://pytorch.org/
2For further references see https://seaborn.pydata.org/
3For further references see https://matplotlib.org/

16

https://pytorch.org/
https://seaborn.pydata.org/
https://matplotlib.org/

................................. 4.2. Detecting tools with YOLACT

by PAN. Therefore, videos that do not have enough frames or have a low
quality (e.g. camera did not capture a tool) are filtered.

4.1.2 Training PAN and predicting actions in videos

The training of the module PAN was done according to the tutorial on the
Github page of the project. The main module is responsible for the training.
As input it takes the csv file representing the dataset. This file has three
columns: video path, number of frames in the video and the true action. As
output we get another csv file with the video path, the number of frames, the
predicted action and the probability of the prediction.

4.2 Detecting tools with YOLACT

The first step of the whole process is to train YOLACT on the dataset of
objects that will later be used in the action video dataset. Then the trained
model is used to recognise tools in that video dataset.

4.2.1 Dataset preparation for YOLACT

CROW dataset is used in our work. It was created by a team of researchers
from the Czech Institute of Informatics, Robotics and Cybernetics and consists
of high quality base objects shown in the Figure 4.1. The objects were
designed to be used in modular assembly and have a unique visual appearance
to prevent misclassification. Also, each object has a fixed color, however the
models have been trained without the texture to remain invariant to the
exact colors of the objects.

Creating an image dataset of fourteen different classes with sufficient
variability requires to take thousands of photos of different objects and label
them manually. This approach is highly inefficient, so the toolkit myGym
[34] was used instead. myGym is a modular framework for developing and
comparing reinforcement learning algorithms and imitation learning tasks
trained in a 3D simulator. The toolkit allows to generate synthetic datasets
that can be used for YOLACT. The dataset generator uses PyBullet 4 to
construct photo-realistic scenes, with rich annotations.

4See https://pybullet.org/wordpress/

17

https://github.com/zhang-can/PAN-PyTorch#training
https://pybullet.org/wordpress/

................................. 4.2. Detecting tools with YOLACT

Figure 4.1: 1.car_roof, 2.cube_holes, 3.ex_bucket, 4.hammer, 5.nut,
6.peg_screw, 7.pliers, 8.screw_round, 9.screwdriver, 10.sphere_-
holes, 11.wafer, 12.wheel, 13.wrench; modified figure from [33]

The final dataset consisted of 36k training and 4k validation images with
segmentation masks.

4.2.2 Training YOLACT

As mentioned in chapter 2, YOLACT 5 is a one-stage instance segmentation
model that generates a prototype mask and predicts the mask coefficients for
each instance based on the entire image. The fact that YOLACT belongs
to one-stage models makes the process of object detection fast, and yet the
accuracy remains high. In our work, the speed at which objects are detected
is of great importance, since even a small video dataset contains a large
number of frames.

Figure 4.2: YOLACT Architecture based on [23]

5The code is available at https://github.com/dbolya/yolact

18

https://github.com/dbolya/yolact

................................. 4.2. Detecting tools with YOLACT

Hardware requirements

The computer on which the training takes place must be equipped with
a CUDA 6 capable GPU (graphics processing unit). This is important
because GPUs can perform calculations simultaneously, increasing the speed
of computations and therefore speed computer vision applications. This fact
was also pointed out by the authors of [32].

YOLACT was trained for 24 epochs and mean average precision (mAP)
for box is 78.78% and for mask - 67.47%.

4.2.3 Detecting objects in videos

Once the YOLACT module is trained, we need to feed it the action dataset
to recognise objects in videos. The objects we used for the dataset were
3D printed and therefore have the same visual appearance as the objects
YOLACT was trained on. The process of labelling a video is as follows:

movements = {};
frames = get_video_frames();
for frame in frames do

detected_objects, centroids, scores = apply_yolact(frame);
for o, c, s in zip(objects, centroids, scores) do

if o not in movements then
init_instance(movements, o, c, s);

else
all_instances = get_instances(movements, o);
for instance in all_instances do

old_c = get_old_centroids(movements, instance);
distance = get_distance(old_c, c);
if distance < threshold then

update_instance(movements, o, instance, c, s);
else

add_new_instance(movements, o, instance, c, s);
end

end
end

end
end

Algorithm 1: Labeling a video

6For further references see https://developer.nvidia.com/cuda-toolkit

19

https://developer.nvidia.com/cuda-toolkit

........................... 4.3. Combining outputs from YOLACT and PAN

Using the algorithm, we try to recognise all the objects that appear in the
video. And we also keep track of the different instances, because there can be
several hammers in one video or part of the environment can be misclassified
with one of the objects. At the end, the movements dictionary contains all the
objects that were recognised by YOLACT, probabilities with which they were
detected and the distance they moved on average between two adjacent frames.

4.3 Combining outputs from YOLACT and PAN

This is the last stage of preprocessing the information from the videos for the
multimodal integrator. The steps for each video are as follows:..1. Using movements from the algorithm 1, select the object (if any was

detected) with the largest moved distance. Only objects associated with
specific actions should be analysed...2. Get PAN action prediction and probability...3. Write the received information in the file as: [video_number,
pan_prediction, pan_probability, yolact_prediction, yolact_probability,
mean_moved_distance].

4.4 Multimodal integrator and advanced action
recognition

The multimodal integrator consists of two main parts. The first one reads the
csv dataset and loads it to the code. And the second one is a neural network
that is trained and tested on this dataset.

4.4.1 Dataset for the multimodal integrator

The dataset for the multimodal integrator is prepared during the previous
steps. It is a csv file with six columns: video id, action prediction made
by PAN, probability of this prediction, the object detected by YOLACT,
probability of this detection, the distance it moved on average between two
adjacent frames. The CSVDataset class is responsible for processing the csv
file and loading it into the code as a python dictionary. The neural network
is later trained on this data. Video ids are removed during preprocessing
because they are unique and should not be learned by a neural network.

20

.............................. 4.5. Structure of the multimodal integrator

4.5 Structure of the multimodal integrator

The neural network for the multimodal integrator was implemented using
the pytorch framework. It has a similar structure to the one shown in Figure
3.2. Our neural network has an input layer, two hidden layers and an output
layer. The size of the input sample in the first layer is five, since we have five
features for each video. The activation function used is ReLU.

We have also created a separate module that does training or testing
depending on the requirements. As input for training it takes:

. Path to the training and validation data and path to the true values. Number of classes. Name of the output model

As output we get the best recall achieved during the training process for
both training and validation data.

For testing, the input parameters are similar. But as output we calculate
the accuracy, recall and precision for the whole dataset and also for each class
individually. These metrics are discussed in the next chapter.

21

Chapter 5

Results

In this chapter we summarise the results achieved using the method proposed
in Chapter 3 and implemented according to Chapter 4. The evaluation is
done using the data presented in the next section. We also compare the
results of the base classifier and the results of the multimodal integrator.

5.0.1 Dataset

We trained and evaluated our baseline and proposed modules on two datasets.
A larger dataset contains eight types of actions and is described in Section
4.1.1. A smaller dataset is a part of the larger dataset from which we excluded
two groups of actions that gave the best and the worst results. Therefore,
in the resulting smaller dataset we have four action labels: pliering, fake
pliering, wrenching, fake wrenching. We used two different datasets to observe
how the number of different actions in the dataset affects the results of the
classification.

5.1 Training and test results

5.1.1 Evaluation Metrics

Before we discuss the results, we need to explain the metrics we used to
evaluate our model. For the following examples, we consider ’hammering’ as
positive prediction and everything else as negative predictions.

The metrics used to evaluate the classifiers are:

. True Positive (TP) - is an outcome when the model makes a correct
positive prediction. Example: true label is ’hammering’ and the prediction
of the model is ’hammering’.

22

.................................... 5.1. Training and test results

. False Positive (FP) - is the case when the model makes an incorrect
positive prediction. Example: true label is ’fake hammering’ and model’s
prediction is ’hammering’.. False Negative (FN) - is a result when the model incorrectly predicts
the negative class. Example: true label is ’hammering’ and model’s
prediction is ’fake hammering’.. True Negative (TN) - is the case when the model correctly predicts the
negative class. Example: true label is ’fake hammering’ and model’s
prediction is ’fake hammering’.

From these we compute precision and recall as:

precision = TP

TP + FP

recall = TP

TP + FN

(5.1)

So precision measures the number of correctly identified positive cases
out of all predicted positive cases. And recall is a measure of the correctly
identified positive cases out of all actual positive cases.

Finally, we can compute accuracy as:

accuracy = TP + TN

TP + TN + FP + FN
(5.2)

Accuracy is one of the most popular metrics in classification tasks. However,
we do not consider accuracy to be very representative in our case. It can
reach high values even if the number of positive predictions is low, because
negative classes are always predicted.
We also use confusion matrices to better visualize the numeric results.

5.1.2 Training and evaluation of the baseline action
recognition method

We consider the PAN module as our baseline solution. First, we trained the
PAN classifier with the hyperparameters given in [9]. Initial learning rate
0.01, number of epochs 80 and dropout 0.5. The optimisation method used
is an SGD algorithm with a weight decay 1e-4 and a mini-batch size of 2.
ImageNet 1 pre-trained weights are used for initialisation. In the original
implementation, recall is used instead of accuracy to track progress, so we
decided to use this metric as well.

1Details here https://image-net.org/

23

https://image-net.org/

.................................... 5.1. Training and test results

4 classes 8 classes
Recall on training data 55.5% 37.82%
Recall on test data 55.0% 37.08%
Training time [h] 3.7 7.4
Best epoch 80 65

Table 5.1: Results obtained with PAN, trained for 80 epochs, with a learning
rate of 0.01

Figure 5.1 visualises the process of learning with the hyperparameters
described above. It can be seen that PAN needs about 2 times more epochs
for a larger dataset until the loss function and the recall value stabilise.

(a) : Loss, 4 classes dataset (b) : Recall, 4 classes dataset

(c) : Loss, 8 classes dataset (d) : Recall, 8 classes dataset

Figure 5.1: Loss and recall progress during training PAN on both datasets for
80 epochs, with a learning rate of 0.01

We have also experimented with the number of epochs and the learning
rate. The best result is obtained when PAN is trained for 120 epochs with a
learning rate of 0.01. The recall value on the test data increased by 5% for
both datasets in comparison with the standard hyperparametres described
earlier. However, it can be concluded that changing these hyperparameters
does not drastically improve the performance of our baseline classifier.

24

.................................... 5.1. Training and test results

We then used the best performing model to evaluate the results for each
class separately. The results are presented in Table 5.2 and Table 5.3.

Accuracy [%] Recall [%] Precision [%]
Pliering 77.5 26.67 61.54
Fake pliering 79.17 96.67 54.72
Wrenching 81.67 56.67 65.38
Fake wrenching 83.33 63.33 67.86
Total 80.41 60.83 62.38

Table 5.2: Metrics calculated for the best performing model PAN for the 4-class
validation dataset

Accuracy [%] Recall [%] Precision [%]
Hammering 87.50 0.0 N/A
Fake hammering 84.58 96.67 44.63
Pliering 82.08 23.33 25.93
Fake pliering 79.58 90.0 36.99
Hand-screwing 86.25 36.67 44.0
Fake hand-screwing 84.17 0.0 0.0
Wrenching 88.75 33.33 58.82
Fake wrenching 91.25 56.67 68.0
Total 85.52 42.08 39.76

Table 5.3: Metrics calculated for the best performing model PAN for the 8-class
validation dataset

Finally, we calculated confusion matrices for both datasets, to visualise the
results. Several things can be observed from them. First, it is interesting to
note that overall, fake actions are better detected than actions requiring a
tool. This could be due to the fact that there are more fake actions in the
datasets. However, the difference between the number of fake actions and
actions with a tool is less than 10%. Secondly, actions with tools are often
confused with the corresponding fake actions, which is reasonable since their
motion is similar.

25

................................ 5.2. Detecting objects with YOLACT

(a) : 4 classes (b) : 8 classes

Figure 5.2: Confusion matrices evaluated on the validation datasets using the
best performing PAN model

5.2 Detecting objects with YOLACT

In this section we use the already trained YOLACT model to annotate
videos in which actions are performed with tools. For each video, YOLACT
detects objects and stores the average distance they moved in the json file, as
described in Section 4.2.3. The entire evaluation was carried out with the
8-class dataset only, as the size of the dataset in this case has no influence on
the recall for each individual class. At this stage we were interested in two
things. First, how much each class of object moves, because tools naturally
move different distances for different types of actions. And secondly, how
well the different objects are recognised. This data is important because it
directly affects the results of the multimodal integrator.

We used a boxplot to visualise the distance each object class moves on
average between two image frames (Figure 5.3). The boxplot was created
from the entire action dataset. We included only the objects relevant to the
actions classification to make the plots clearer. However, if plotting all the
objects it would be noticed that the graph includes distances for objects that
never appeared in the dataset, such as wafer, ex_bucket or screwdriver. This
happens because of misclassification. For example, a hammer is misclassified
as a screwdriver and a wrench is misclassified as a wafer because they have
similar shape. It can also be noticed from the boxplot that all tools reasonably
have different distances because they are used for different actions. The cube_-
holes, for example, has a small average range of movement, since it is used
in wrenching and remains in the same place. The hammer, however, has a
large range because the movement can be done in slightly different ways (e.g.
moving arms wildly or hammering a small object into the same place).

26

................................ 5.2. Detecting objects with YOLACT

Figure 5.3: Boxplot comparison of the moved distance of different object classes

We also created a histogram showing the number of detected objects of
the different classes in the entire dataset (Figure 5.4). We have limited this
to only one class instance per video. Thus, if the algorithm detected two
different hammers in a video due to misclassification, they are counted as one
in the plot. It should also be noted that our dataset contains about 200 videos
per action and we did not use the same tools for different actions. Ideally,
the bar in the graph should be around 200 high for each object type used in
the dataset. In our case, however, this is true only for the hammer and pliers.
Other classes are represented less or, on the contrary significantly more. The
wheel class, for example, was recognised over 800 in the dataset and can be
considered an outlier in our case because of its high value. This is again due
to a misclassification, because some parts of the working environment were
wrongly classified as the class wheel. For this reason we have not used such
object classes as wheel or wrench to "represent" the action. In the case of
the action "wrenching", for example, we have chosen the object cube_holes
to represent it, because cube_holes is better recognised by YOLACT than
wrench.

Figure 5.4: Histogram by class of the number of objects and videos containing
at least one object of the corresponding class

27

................................ 5.2. Detecting objects with YOLACT

Last but not least, we evaluated YOLACT’s predictions using the same
metrics we used to evaluate PAN. This time, however, we take a different
approach. The YOLACT module can only predict five labels for our 8-class
dataset because half of the actions are "fake" and the object is not used.
Therefore, in this case, the YOLACT module classifies the video as "hammering"
if it detected a hammer, as "pliering" if it detected pliers in the scene, as
"hand-screwing" if it detected screw_round, as "wrenching" if there was cube_-
holes in the video and as "fake" if none of these objects were present in the
scene.

The results of the evaluation are shown in Table 5.4 and are also illustrated
by the confusion matrix in Figure 5.5.

Accuracy [%] Recall [%] Precision [%]
Hammering 97.5 100.0 83.33
Pliering 88.33 46.67 53.85
Hand-screwing 91.25 90.0 60.0
Wrenching 96.67 73.33 100.0
Fake actions 90.42 86.67 93.69
Total 92.83 79.33 78.17

Table 5.4: Metrics calculated with YOLACT for the 8-class validation dataset,
where all fake actions are grouped into a single category

Figure 5.5: Confusion matrix evaluated with YOLACT on the the 8-class
validation dataset, where all fake actions are grouped into a single category

28

..........................5.3. Training and evaluation of the proposed method

5.3 Training and evaluation of the proposed
method

As the last step of our solution, we trained and tested the multimodal
integrator on both datasets (four classes and eight classes). The structure of
the integrator was described in Section 4.5, however, we experimented with
the number and type of hidden layers, the type of loss function and optimizers.
The highest recall in training and testing results is obtained when our neural
network has two linear hidden layers, abd when CrossEntropy loss and Adam
optimizer are used. The best hyperparameters found are: number of epochs -
300, learning rate - 0.002, batch size - 8. The results of this training session
can be found in Table 5.5.

4 classes 8 classes
Recall on training data 97.21% 85.57%
Recall on test data 89.17% 80.83%
Best epoch 272 268

Table 5.5: Results obtained with the proposed classifier, trained for 300 epochs,
with a learning rate of 0.002

The learning process is visualised in Figure 5.7. The plot shows that
validation loss increases slightly after 250 epochs. For this reason, we limit
the training to 300 epochs to prevent overfitting.

We also calculated the accuracy, recall and precision for each class separately.
The results can be found in Table 5.6 for the 4-class dataset and in Table 5.7
for the 8-class dataset. They are also visualised with the help of confusion
matrices.

(a) : 4 classes (b) : 8 classes

Figure 5.6: Confusion matrices evaluated on the validation datasets with the
best performing model of the proposed classifier

29

......................... 5.4. Comparison of the proposed method and baseline

(a) : Loss, 4 classes dataset (b) : Recall, 4 classes dataset

(c) : Loss, 8 classes dataset (d) : Recall, 8 classes dataset

Figure 5.7: Evolution of loss and recall during training of the proposed classifier
on both datasets with optimal hyperparameters

5.4 Comparison of the proposed method and
baseline

As discussed in Section 5.1.2, the baseline method does not perform well when
many fake actions are present in the dataset. This happens due to the high
level of similarity between fake actions and corresponding actions with tools.
By adding the second module, which is responsible for object recognition,
the number of correctly classified videos increases noticeably. Recall value
for the 4-class validation dataset increases from 59.26% to 89.17% and for
the 8-class validation dataset from 41.2% to 80.83%. It can be seen that the
best improvement is obtained in the classification of non-fake actions where
a tool is present (Table 5.6 and Table 5.7). On the other hand, the recall
value for some fake actions (fake hammering, fake pliering) slightly decreases
compared to the results of the baseline classifier. Another disadvantage of
our solution is, of course, the fact that it is only applicable when actions with
tools (or a mixture of actions with tools and without tools) are used.

30

......................... 5.4. Comparison of the proposed method and baseline

Accuracy [%] Recall [%] Precision [%]
Pliering 100.0 100.0 100.0
Fake pliering 98.95 98.81 97.65
Wrenching 98.26 91.67 100.0
Fake wrenching 97.21 96.08 89.09
Total 98.6 97.21 96.68

Table 5.6: Metrics calculated for the best performing final model for the 4-class
validation dataset

Accuracy [%] Recall [%] Precision [%]
Hammering 99.58 100.0 96.77
Fake hammering 97.92 93.33 90.32
Pliering 94.58 80.0 77.42
Fake pliering 91.67 83.33 62.5
Hand-screwing 93.75 70.0 77.78
Fake hand-screwing 90.83 56.67 65.38
Wrenching 97.08 83.33 92.59
Fake wrenching 96.25 80.0 88.89
Total 95.21 80.83 81.46

Table 5.7: Metrics calculated for the best performing final model for the 8-class
validation dataset

Overall, it can be concluded that the combination of two modules for
action recognition, where the first module is a basic classifier for actions
and the second module is responsible for object recognition, can improve the
classification results in the datasets where actions requiring tools are present.

31

Chapter 6

Conclusion and future work

6.1 Discussion and conclusion

In this thesis, we propose and develop a method to combine an action
recognition module that is described in [9] with an instance segmentation
module from [23] and create an advanced version of the action classifier.

To train the first module, we create a dataset with eight different action
types. The dataset contains both assembly actions with tools and corresponding
"fake" actions without tools. We train the first module with different hyperparameters
to achieve the best performance. We also modify the second module so that
it can distinguish between different instances of the same class. We use the
information about the centroids of each object instance in the video frames to
calculate the average distance each object travels between two frames when
the action is performed. Using the data obtained from the first two modules
(predicted action by a baseline classifier, detected objects, the distance the
objects move on average) we train our final classifier.

We achieve a recall/precision score of 80.8%/81.5% for the 8-class dataset
compared to 42.0%/39.8% for a baseline solution. And a score of 97.2%/96.7%
for the 4-class dataset compared to 60.9%/62.4%. Thus, we prove that
combining an action recognition model that performs at an average level with
an object recognition model can improve the overall action classification.

32

... 6.2. Future work

6.2 Future work

Larger dataset

One of the most constructive work to be done is probably creating a larger
dataset for training the baseline action recognition module. It would be
beneficial to observe whether the basic action recognition module can be
trained well enough with a larger dataset if it still contains many actions with
a similar motion. And it would also be interesting to see how a better trained
action recognition module would affect the results of the final classifier.

Train the object recognition module better

Also, it would be worthwhile to train the object recognition module better.
When analysing the YOLACT predictions in Section 5.2, we found that some
object classes are poorly predicted. This could be due to the imbalanced
dataset or insufficient training. Increasing the size of the object dataset
and re-training YOLACT may solve this problem, which should also lead to
improved accuracy of the proposed classifier.

Real time action recognition

Apart from this, it would be interesting to see if our solution is able to
classify actions in real time. On the one hand, both PAN and YOLACT are
designed to work in real time. On the other hand, the combination of these
two modules can significantly slow down the multimodal classifier. So further
experimentation in this area is needed.

33

Appendix A

Bibliography

[1] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, M. J. Black. Towards
understanding action recognition. In IEEE International Conference on
Computer Vision, pp. 3192-3199, 2013.

[2] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld. Learning realistic
human actions from movies. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1-8, 2008.

[3] A. Patron-Perez, M. Marszalek, I. Reid, and A. Zisserman. Structured
learning of human interactions in TV shows. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, no. 12, pp. 2441-2453,
2012.

[4] K. Reddy and M. Shah. Recognizing 50 human action categories of web
videos. In Machine Vision and Applications 24, pp.971-981, 2013.

[5] Yu Kong, Yun Fu. Human Action Recognition and Prediction: A Survey.
arXiv:1806.11230 2018.

[6] Fleet D., Weiss Y. Optical Flow Estimation. In Handbook of Mathematical
Models in Computer Vision, 2006

[7] Berthold K.P. Horn, Brian G. Schunck. Determining optical flow. In
Artificial Intelligence, Volume 17, Issues 1–3, pp 185-203, 1981.

[8] J. Y.-H. Ng, J. Choi, J. Neumann, and L. S. Davis. Actionflownet:
Learning motion representation for action recognition. In IEEE Win-
ter Conference on Applications of Computer Vision, pp. 1616–1624, 2018.

[9] Z. Can, Y. Zou, G. Chen, and L. Gan. Pan: Towards fast action recognition
via learning persistence of appearance. In arXiv preprint arXiv:2008.03462,
2020.

[10] Z. Can, Y. Zou, G. Chen, and L. Gan. PAN: Persistent Appearance
Network with an Efficient Motion Cue for Fast Action Recognition. In

34

.. A. Bibliography

Proceedings of the 27th ACM International Conference on Multimedia,
pp. 500-509, 2019.

[11] X Wu, D Sahoo, SCH Hoi. Recent advances in deep learning for object
detection. In Neurocomputing, 2020.

[12] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev and J. Malik.
Semantic segmentation using regions and parts. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3378-3385, 2012.

[13] Hafiz A.M., Bhat, G.M. A survey on instance segmentation: state of the
art. In Int J Multimed Info Retr, pp 171–189, 2020.

[14] C. H. Lampert, M. B. Blaschko and T. Hofmann. Beyond sliding windows:
Object localization by efficient subwindow search. In IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[15] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf. Support
vector machines. In IEEE Intelligent Systems and their Applications, vol.
13, no. 4, pp. 18-28,1998.

[16] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu and S. Liu. Towards Better Analysis
of Deep Convolutional Neural Networks. In IEEE Transactions on Visu-
alization and Computer Graphics, no. 1, pp. 91-100, Jan. 2017.

[17] Z. -Q. Zhao, P. Zheng, S. -T. Xu and X. Wu. Object Detection With
Deep Learning: A Review. In IEEE Transactions on Neural Networks
and Learning Systems,vol. 30, no. 11, pp. 3212-3232, 2019.

[18] R. Girshick. Fast R-CNN In Proceedings of the IEEE international
conference on computer vision,pp. 1440-1448, 2015.

[19] S. Ren, K. He, R. Girshick, J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems 28, 2015.

[20] K. He, G. Gkioxari, P. Dollar, R. Girshick. Mask R-CNN. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 2961-2969,
2017.

[21] J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You Only Look Once:
Unified, Real-Time Object Detection. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 779-788, 2016.

[22] L.Wei, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and A.C.
Berg. SSD: Single Shot MultiBox Detector. In European conference on
computer vision, pp. 21-37, 2016.

[23] D. Bolya, C. Zhou, F. Xiao and Y. J. Lee. YOLACT. Real-time Instance
Segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp.9157-9166, 2019.

35

.. A. Bibliography

[24] D. Bolya, C. Zhou, F. Xiao and Y. J. Lee. YOLACT++ Better Real-Time
Instance Segmentation. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 2, pp. 1108-1121, 2022.

[25] B. Abul. Survey on evolving deep learning neural network architectures.
In Journal of Artificial Intelligence and Capsule Networks, pp. 73-82,
2019.

[26] SC. Wang. Artificial Neural Network. In Interdisciplinary Computing in
Java Programming. The Springer International Series in Engineering and
Computer Science, vol 743, 2003.

[27] S. B. Maind, P. Wankar. Research Paper on Basic of Artificial Neural
Network. In International Journal on Recent and Innovation Trends in
Computing and Communication, vol. 2, no. 1, pp. 96-100, 2014.

[28] B. Hanin. Which Neural Net Architectures Give Rise to Exploding and
Vanishing Gradients? In Advances in Neural Information Processing
Systems, 2018.

[29] G. E. Hinton. How Neural Networks Learn from Experience. In Scientific
American, pp 144–151, 1992.

[30] K. Janocha, W. M. Czarnecki. On Loss Functions for Deep Neural
Networks in Classification. In arXiv:1702.05659v1, 2017.

[31] A. Sharkey. On Combining Artificial Neural Nets. In Connection Science,
1996.

[32] A. Mouna, Y. Said, and M. Atri. Computer vision algorithms acceleration
using graphic processors NVIDIA CUDA. In Cluster Computing 23, no.
4, pp. 3335-3347, 2020.

[33] M. Vavrecka, G. Sejnova, M. Mejdrechova, N. Sokovnin. myGym’s
documentation. In https://mygym.readthedocs.io/en/latest/index.html,
2020.

[34] M. Vavrecka, G. Sejnova, M. Mejdrechova, N. Sokovnin. myGym:
Modular Toolkit for Visuomotor Robotic Tasks. In arXiv:2012.11643,
2020.

[35] L. Yang, A. Shami. On hyperparameter optimization of machine learning
algorithms: Theory and practice. InNeurocomputing, pp. 295-316, 2020.

[36] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, G. E.
Dahl. On Empirical Comparisons of Optimizers for Deep Learning.
InarXiv:1910.05446, 2020.

36

	Introduction
	Motivation
	Goals
	Overview of the chapters

	Related work
	Action recognition
	How common action recognition algorithms work

	Object detection and instance segmentation
	Early object detection methods
	Current object detection methods

	Multimodal integration

	Methods
	Problem definition
	Action types
	Suggested method
	Multimodal integrator
	Hyperparameters and optimisation methods

	Implementation
	Basic action recognition with PAN
	Dataset preparation for PAN
	Training PAN and predicting actions in videos

	Detecting tools with YOLACT
	Dataset preparation for YOLACT
	Training YOLACT
	Detecting objects in videos

	Combining outputs from YOLACT and PAN
	Multimodal integrator and advanced action recognition
	Dataset for the multimodal integrator

	Structure of the multimodal integrator

	Results
	Dataset
	Training and test results
	Evaluation Metrics
	Training and evaluation of the baseline action recognition method

	Detecting objects with YOLACT
	Training and evaluation of the proposed method
	Comparison of the proposed method and baseline

	Conclusion and future work
	Discussion and conclusion
	Future work

	Bibliography

