
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Ryze Tello drone tracking

Bekhzod Masharipov

Supervisor: RNDr. Petr Štěpán, Ph.D.
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483818Personal ID number:Masharipov BekhzodStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Open InformaticsStudy program:

Internet thingsSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Ryze Tello drone tracking

Bachelor’s thesis title in Czech:

Sledování dronu Ryze Tello

Guidelines:

1) Learn about the Ryze Tello drone and how to control it from your computer using the ROS.
2) Test existing Ryze Tello drone simulators and modify them for your work if necessary.
3) Design a marker for the drone that would be detectable and allow this drone to be tracked by another drone. Test the
accuracy of the marker detection.
4) Design a drone tracking algorithm and test it in a simulator and in a real experiment.

Bibliography / sources:

[1] Ryze Tech. TELLO SDK 2.0 User Guide. Online:
https://dbl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf 2018, verze 1.0 .
[2] David, Pařil. Autonomní řízení dronu Ryze Tello. BS thesis. České vysoké učení technické v Praze. Vypočetní a
informační centrum., 2021
[3] Dyachenko, R. A., et al. "On the approach of synchronous control of robotic systems." Journal of Physics: Conference
Series. Vol. 2032. No. 1. IOP Publishing, 2021

Name and workplace of bachelor’s thesis supervisor:

RNDr. Petr Štěpán, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 18.01.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureRNDr. Petr Štěpán, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor for his
guidance and consistent support during
this thesis. Furthermore, I want to thank
my family and girlfriend for their support
and care.

Declaration
I declare that I have prepared the submit-
ted work independently and that I have
indicated all information sources used in
accordance with the Methodical guideline
for adhering to ethical principles when
elaborating an academic final thesis.

Prague, May 20, 2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 20. května 2022

v

Abstract
This thesis aims to build a visual tracking
system with a leader-follower formation
for a pair of inexpensive DJI Ryze Tello
drones. To keep the formation, only a
video stream from the follower camera was
used. For algorithm development and test-
ing, a simulation of Ryze Tello drones was
set up in Gazebo simulator. A Kalman
filter was used to suppress the noise in the
leader pose estimations and allowed for
predicting the leader pose when the visual
tracking algorithm temporarily failed to
work.
The complete algorithm has been tested
both in simulation and with real drones
and has proven to work satisfactorily. The
program code is delivered in the form of
ROS packages.

Keywords: Autonomous UAV, Ryze
Tello, Visual Tracking, Leader-Follower
Formation, Kalman Filter, ROS, Gazebo

Supervisor: RNDr. Petr Štěpán, Ph.D.

Abstrakt
Cílem této práce je vytvořit vizuální sle-
dovací systém s formací vedoucího a ná-
sledovníka pro dvojici levných dronů DJI
Ryze Tello. Pro zachování formace byl po-
užit pouze přenos videosignálu z kamery
následovníka. Pro vývoj a testování algo-
ritmu byla v simulátoru Gazebo vytvořena
simulace dronů Ryze Tello. Kalmanův filtr
byl použit k potlačení šumu v odhadech
polohy vedoucího a umožnil předpovídat
polohu, když vizuální sledovací systém do-
časně nefungoval.
Celý algoritmus byl testován jak v simu-
laci, tak se skutečnými drony a ukázalo se,
že funguje uspokojivě. Programový kód je
dodáván ve formě balíčků ROS.

Klíčová slova: Autonomní UAV, Ryze
Tello, Vizuální sledování, Formace
leader-follower, Kalmanův filtr, ROS,
Gazebo

vi

Contents
1 Introduction 1
1.1 Scope . 1
1.2 Goals . 2
1.3 Terminology 2
2 Ryze Tello drone 3
2.1 Tello characteristics and features . 4
2.2 Measuring camera latency 5
2.3 Tellopilots . 6
3 Robot operating system 7
3.1 ROS architecture 7
3.2 Containers . 8
3.2.1 LXD Containers 8
3.2.2 Setting up a new container for
ROS development 10

3.2.3 Port forwarding 11
3.3 Ryze Tello ROS driver 12
4 UAV Simulation 13
4.1 Introduction 13
4.2 Gazebo . 13
4.3 URDF . 13
4.4 hector_quadrotor package 16
4.5 Simulating Tello UAV using
hector_quadrotor package 17

4.6 Extending the simulation with
ArUco marker 18

5 Pose estimation using ArUco
markers 21
5.1 ArUco markers 21
5.2 Pose Estimation 22
5.3 Detection of ArUco markers in
ROS using aruco_detect package . 23

5.4 Pose estimation accuracy 25
6 Kalman filter 27
6.1 Objective . 27
6.2 Choice of Kalman filter type . . . 27
6.3 Design Kalman filter 28
6.4 Adaptive filter 30
6.5 Results . 32
7 Controlling the drone 35
7.1 PID Controller 35
7.2 Overview . 37
8 Implementation 39
8.1 Assesment 40

9 Conclusion 43
A Bibliography 45
B Attachment 49

vii

Figures
2.1 Source: [24]. Ryze Tello drone . . . 3
2.2 Source: [14]. Robomaster Tello
Talent . 4

2.3 Source: [24]. Bottom part labeling
of the Ryze Tello 4

2.4 Ryze Tello camera latency 6

3.1 Source:[6]. Difference between
virtual machines and containers. . . . 8

3.2 Source: [1]. Application and
System containers. 9

4.1 Source: [10]. Structure of a URDF
file. 14

4.2 Rendered model in RViz 16
4.3 Outdoor simulation with Hector
quadrotor in RViz 17

4.4 Rendered 3D model of Ryze Tello
from [25], which was extended with
propellers and the "Tello" label in
Blender [39]. 18

4.5 Complete simulation with two
drones and ArUco marker attached
to the leader. 19

5.1 4x4 ArUco marker with id = 3.
The first corner of the marker is
highlighted in red. 22

5.2 Source: [13]. Projection of 3D
points in world coordinate system
into the 2D image plane. R, t are the
rotation matrix and the translation
that describe transformation from
world to the camera coordinate
system. 22

5.3 The leader drone with attached
ArUco marker 24

5.4 ArUco marker pose estimation
accuracy. Z, X axes and Yaw angle
estimation errors are shown. 25

5.5 Height estimates between the
center of ArUco marker and the
camera of Tello drone. 26

6.1 Kalman filter predict and update
pipeline with pose measurements. . 29

6.2 The stationary follower tracks the
ArUco marker attached to the leader
using 3 different Kalman filters. The
leader was manually controlled with
smooth movements in the y direction
and short maneuvers in the x
direction to simulate the bounces
that occur for the reasons described
at the beginning of the chapter. . . 32

7.1 Closed loop system overview. e is
the error between desired point r and
the feedback ym . u is the control
output and y is the system output. 35

7.2 Overview of the PID Controller
used to track the leader drone. The
controller output is sent to the
follower drone in the form of velocity
command along an axis. 36

7.3 High level view of the main control
loop. The loop is set to run every 100
ms. 37

7.4 Hyperbolic tangent function 38

8.1 Recorded route of the leader and
follower in the simulator. 40

8.2 Detailed view of the flight from the
previous graph. 41

viii

Tables
2.1 Source: [29]. Physical and flight
characteristics of the Ryze Tello
drone. 5

3.1 Basic commands to set up a new
container . 9

7.1 Empirically derived PID controller
constants for each control axis of real
Tello drone. 37

ix

Chapter 1
Introduction

The popularity of unmanned aerial vehicles (UAVs) has been increasing
rapidly. UAV can be defined as an aircraft without a pilot on board, which is
either controlled remotely or able to fly autonomously to some extent [40].
Micro aerial vehicles (MAVs) are a class of UAVs appealing because of their
smaller size and weight, making them more suitable for indoor flying, lower
production costs, and more natural for forming a swarm of multiple aircraft.
Since MAVs are very popular in the consumer market, they are better known
as drones, and this term will be used in the following chapters.
The price and size advantages of drones come at the cost of low payload
capacity, short operating time, and a smaller set of sensors to equip the drone
with. A swarm of drones allows for broader coverage when exploring the
environment and increases the amount of cargo carried. Use cases of a drone
swarm are expanding into many areas such as surveillance, transportation,
land inspection, data collection, and many more.

1.1 Scope

This thesis focuses on the use of inexpensive and commercially available
DJI Ryze Tello drones to implement a leader and follower formation. This
configuration can be advantageous, since only a leader drone must perform
computationally intensive tasks, such as localization, obstacle avoidance, while
a follower drone has to track the leader drone. Implementing autonomous
navigation of the leader is beyond the scope of this thesis, so only tracking
the leader is the main interest of future chapters.
The leader is expected to be manually controlled at slow speeds of up to
0.5 m/s, although there is no limitation that the drone leader can operate
autonomously if the speed requirement is met.
Most inexpensive drones, including the Ryze Tello, have a minimal number
of sensors, such as a monocular camera, IMU, and altitude sensor. Therefore,
it is essential to rely only on this set of sensors when developing an algorithm
for leader tracking.

1

1. Introduction
1.2 Goals

Goals of this thesis can be described as:..1. Explore capabilities of the Ryze Tello drone. Use Robot operating system
(ROS) to control the drone...2. Create a model of the Ryze Tello drone in Gazebo simulator [7]...3. Detect and estimate a pose of the leader drone using the follower’s camera.
Choose the appropriate solution to achieve this and test its accuracy...4. Design a Kalman filter to track the leader’s pose, reduce measurement
noise and predict a future pose...5. Control the follower drone such that the distance to the leader is at the
desired value...6. Provide all solutions as ROS packages. Conduct experiments in the
simulator and verify with real drones.

1.3 Terminology

The term leader in this paper refers to the leader drone that is assumed to
be manually or autonomously controlled. The term follower refers to the
follower drone whose task is to follow the leader.
Tello refers to the basic edition of Ryze Tello drone [24].
ROS is an abbreviation for Robotic operating system [16].

2

Chapter 2
Ryze Tello drone

Ryze Tello is a low cost drone developed by a tech startup Ryze Technology
[23]. Priced at $99, it features DJI flight control system and an Intel image
processor.

Figure 2.1: Source: [24]. Ryze Tello drone

It is important to note that Ryze Tello is available on the market in several
editions, which can be confusing. In addition to the original and basic version
of the Tello drone, there is a Ryze Tello EDU edition. The main difference is
the ability to use the latest SDK, which has the following features:. control multiple drones in a swarm mode. A major drawback is the lack

of video output in a swarm mode.. access the downward facing camera. Only one video stream can be
transmitted at a time.. shut down the motors preventing a drone from overheating in stationary
mode. plan missions using special patterns called mission pads.

More advanced and the latest drone edition is Robomaster Tello Talent (TT)
[14]. This edition is based on the Tello EDU and extended using Robo-
master TT expansion kit (RMTT) [15], which contains an ESP32 module,
programmable 8x8 LED dot matrix screen and LED indicator, a single-point
ToF sensor, 5.8-GHz WiFi module and special extension adapter to connect
additional sensors. It is possible to upgrade an existing Tello EDU drone
with RMTT expansion kit.

3

2. Ryze Tello drone

Figure 2.2: Source: [14]. Robomaster Tello Talent

Remaining editions, such as a Ryze Tello Boost Combo [26] and Iron Man
edition [27] are Ryze Tello drones, which include an extra set of batteries and
other accessories.

Since the availability of Tello EDU and Robomaster TT models is limited at
the time of writing, this thesis uses a more affordable Ryze Tello drone in the
basic version.

2.1 Tello characteristics and features

Figure 2.3: Source: [24]. Bottom part labeling
of the Ryze Tello

Tello uses a visual position-
ing system (VPS) consist-
ing of a pair of infrared sen-
sors (IR) and a pointing-
down camera to ensure a sta-
ble flight and prevent drift
when hovering. However, it
can be affected if Tello flies
over monochrome, highly re-
flective, transparent surfaces
without patterns or when fly-
ing in dark or poorly lit en-
vironments. If the VPS fails,

Tello goes into Attitude mode and is no longer stable, which may be unsafe
when flying indoors. Despite the VPS, Tello has a collision detection system
that shuts down the engines in the event of a collision with an obstacle.
Tello has no built-in cooling system and is only cooled by the airflow during
flight. When taking measurements, this can be a problem and is solved by
using external cooling, e.g., a fan. There is also a built-in IMU sensor and
barometer.

4

............................... 2.2. Measuring camera latency

Aircraft
Weight 80g
Dimensions 98×92.5×41 mm
Camera 720p 30 FPS
Photo 5MP (2592x1936)
Field of view 82.6◦

Battery 1.1 Ah/3.8 V
Flight characteristics
Max flight distance 100 m
Max speed 8 m/s
Max flight time 13 min
Max flight height 30 min

Table 2.1: Source: [29]. Physical and flight characteristics of the Ryze Tello
drone.

It is necessary to be connected to an access point hosted by Tello to
communicate with it. This creates a limitation of being able to connect to
only one drone at a time.
Tello uses UDP packets to receive and send information.

2.2 Measuring camera latency

The Tello’s camera stream is encoded in H264 format. The Tello ROS driver
described later does not decode a video stream by default. In order to enable
stream decoding, it is necessary to modify the launch file by setting the
parameter stream_h264_video to false.
The final decoded stream has a relatively high latency, which has a significant
impact on the performance of the visual tracking algorithm. Therefore, it
was necessary to measure and determine the camera latency.
For this purpose, Tello’s camera recorded a running stopwatch while an
external camera with 240 fps recorded the stopwatch and the decoded stream
received from Tello.

5

2. Ryze Tello drone

0 10 20 30 40 50 60 70
Frame count

100

150

200

250

300

D
ela

y(
m

s)

Figure 2.4: Ryze Tello camera latency

Average latency of 171.30 milliseconds was calculated from the measured
data in Figure 2.4.
It is worth mentioning that the delay between frames may become significantly
bigger than stated before if WiFi connection is weak or the machine controlling
the drone overloads. Also, right after the ROS driver is connected to the drone,
approximately 3 seconds of delay is present in the video stream. This can be
explained by filling the video buffer while the driver is being initialized. To
reduce the aforementioned issue, the first 270 frames are skipped to minimize
the lag of the video stream.

2.3 Tellopilots

One of the significant advantages of the Ryze Tello drone is the vast community
of users who share ideas and projects with Tello. There is a community forum
called Tellopilots[31], where one can find solutions to problems or find helpful
information related to the Tello drone when official documentation is not
enough. Another resource is a Thingverse website [35], where a large number
of 3D print-ready prototypes are available that extend Tello’s capabilities.

6

Chapter 3
Robot operating system

“ROS (Robot operating system) is an open source software development kit for
robotics applications. ROS offers a standard software platform to developers
across industries that will carry them from research and prototyping all the
way through to deployment and production” [16].

ROS is not an operating system but a software platform that significantly
simplifies the development of algorithms to control robots. One of the main
benefits of ROS is a large number of ready-made packages for most tasks
created by a large community.
There are multiple ROS distributions available on different OS versions. The
choice of a particular distribution depends on the operating system as well
as on the desired packages to be used as the basis. In order to solve this
problem and provide an opportunity to switch between different distributions
quickly, it is possible to use system containers, which will be described in the
following sections.

3.1 ROS architecture

A source code in ROS is divided into packages. Each package addresses a
particular concern and may include nodes, launch files, scripts, and configu-
ration metadata. For instance, it is reasonable to have a package to control a
robot and a distinct package to process images obtained from an onboard
camera. These various parts of a system may be implemented and distributed
independently. Consequently, packages are placed in a workspace, which is a
single folder designated for a specific project.
Basic working units in ROS are nodes. A node performs computations and
communicates with other nodes via topics and services. Each topic has its
subscriber and publisher, where the former receives information and the latter
transmits it, with no explicit link between them. There are other types of
communication - services - through which a node can request information
from another node and receive it in a response.
A launch file is widely used for starting multiple nodes all at once. Bag files
can be used to record and later replay selected topics. More information

7

3. Robot operating system
about ROS and its applications can be found on [43], [44].
It is worth mentioning a few tools that can come in handy when developing
ROS applications:. Rviz [22] is a 3D visualization tool that can be used to visualize robot

position and path, map of an environment, sensor output such as 3D
point cloud from a LiDAR, depth map from a stereo camera, etc.. Rqt [20] is a software platform consisting of many plugins for visualizing
and debugging applications in the ROS environment.. PlotJugger [12] is a lesser-known but nevertheless powerful tool. It allows
to visualize topics in real-time in the form of time series, plus apply
built-in functions such as converting angles in the form of quaternions
to Euler angles.

3.2 Containers

“A container is a lightweight form of operating system virtualization. A
single container might be used to run anything from a small microservice or
software process to a larger application. Inside a container are all the necessary
executables, binary code, libraries, and configuration files. Compared to server
or machine virtualization approaches, however, containers do not contain
operating system images. This makes them more lightweight and portable,
with significantly less overhead. In larger application deployments, multiple
containers may be deployed as one or more container clusters” [38].

Figure 3.1: Source:[6]. Difference between virtual machines and containers.

3.2.1 LXD Containers

“LXD is a next generation system container and virtual machine manager.
It offers a unified user experience around full Linux systems running inside
containers or virtual machines” [11].

LXD was designed as an extension for LXC - well-known Linux container
runtime. It comes with a back-end daemon and CLI, which make usage of

8

......................................3.2. Containers
containers straightforward. LXD is image-based and it provides a wide range
of Linux-based distributions through the remote repository.

It is worth noting a difference among other Container systems like Docker
or Rkt, which considered to be application containers whereas LXD provides
support for system containers.
“Application containers package a single process or application. System
containers, on the other hand, simulate a full operating system and allow to
run multiple processes at the same time.” [1]

Figure 3.2: Source: [1]. Application and System containers.

The latest LXD version can be installed on different Linux distributions as
a snap package. There are few commands needed to set up a new container
for ROS development.

Command Description

lxc ls List all available container instances
lxc launch imageserver:imagename in-
stancename

Create a new container instance based
on image

lxc start instancename Start an instance
lxc stop instancename Stop an instance
lxc exec containername – /bin/bash Run a shell inside a container
lxc profile create profilename Create a new profile
lxc profile assign containername p1,p2 Assign profiles p1, p2 to a container

Table 3.1: Basic commands to set up a new container

Before going to set up a new container, it is necessary to understand what
LXD profile is. Each container instance has its own configuration file in the
form of namespaced key values. Container configuration includes properties
like the number of CPU cores exposed to a container, memory limits, and
pass-through devices. Profiles are named collections of configurations that can
be applied to more than one container. Whenever a new container instance
is created LXD applies default profile, which contains basic configuration
including network interface eth0.

9

http://www.docker.com
https://cloud.redhat.com/learn/topics/rkt

3. Robot operating system
3.2.2 Setting up a new container for ROS development

First, start by pulling an Ubuntu 18.04 image and creating an empty container
instance. Give it a name to associate with a specific ROS version, in this
example - ROS Melodic distribution [18].

$ l x c launch ubuntu : 1 8 . 0 4 rosme lod ic

Then create two profiles:

$ l x c p r o f i l e c r e a t e gui
$ l x c p r o f i l e c r e a t e ro s

. gui - enables GUI and GPU support. ros - adds ros repositories

Use following configuration for gui:

config:
environment.DISPLAY: :0
environment.PULSE_SERVER: unix:/home/ubuntu/pulse-native
nvidia.driver.capabilities: all
nvidia.runtime: "true"
user.user-data: |
#cloud-config
runcmd:
- ’sed -i "s/; enable-shm = yes/enable-shm = no/g" /etc/pulse/client.

conf’
packages:
- x11-apps
- mesa-utils
- pulseaudio
description: GUI LXD profile
devices:
PASocket1:

bind: container
connect: unix:/run/user/1000/pulse/native
listen: unix:/home/ubuntu/pulse-native
security.gid: "1000"
security.uid: "1000"
uid: "1000"
gid: "1000"
mode: "0777"
type: proxy

X0:
bind: container
connect: unix:@/tmp/.X11-unix/X1
listen: unix:@/tmp/.X11-unix/X0
security.gid: "1000"
security.uid: "1000"
type: proxy

mygpu:

10

......................................3.2. Containers
type: gpu
name: x11

used_by: []

Listing 3.1: Source: [21]. GUI profile, which enables graphical user output in
containers

use along with GUI profile for rviz and other graphic programs
config:
raw.idmap: both 1000 1000 # needed for container to have write

permissions in shared disk
user.user-data: |
#cloud-config
runcmd:
- "apt-key adv --fetch-keys ’https://raw.githubusercontent.com/ros/

rosdistro/master/ros.asc’"
- "apt-add-repository ’http://packages.ros.org/ros/ubuntu’"
- "apt-add-repository ’http://packages.ros.org/ros2/ubuntu’"
description: ROS
if not set with: lxc config device add [<remote>:]instance1 <device

-name> disk source=/share/c1 path=opt
devices:
share-dir:
path: /home/ubuntu/
source: /home/nick/Projects/ros/melodic-moveit
type: disk
name: ros

Listing 3.2: Source: [9]. ROS profile, which adds the repositories necessary to
install ROS distributions

Now that the profiles have been created, add them to the existing container:
$ l x c add p r o f i l e ro sme lod ic gui , ro s
To test the newly created container, run the following commands:
[host] $ l x c exec rosme lod ic −− /bin /bash
[rosme lod ic] $ g l xg ea r s
[ro sme lod ic] $ xc lock
If everything went correctly, there should be both glxgears and xclock
windows.

At this point, it is possible to create containers and install any ROS
distribution, including GUI tools such as Rviz or RQT.

3.2.3 Port forwarding

Ports are often used when communicating with commercial robots; e.g., a
stream with camera images of a Ryze Tello drone is published on a particular
port. Since containers are in their own local subnet by default, there is no
access to ports within the container. Port forwarding can be used to solve
this problem. LXD provides a simple way to forward ports and supports

11

3. Robot operating system
several types of protocols, including UDP and TCP.
To forward UDP port 5555 to the same port number in a container, one can
use the lxc device add command along with a name of the target container,
name of a device(forwarding rule), source port and target port.

l x c c on f i g dev i ce add conta ine r port5555 proxy l i s t e n=
udp : 0 . 0 . 0 . 0 : 5 5 5 5 connect=udp : 1 2 7 . 0 . 0 . 1 : 5 5 5 5

3.3 Ryze Tello ROS driver

One of the goals of the thesis was to find a suitable ROS driver to control a
Ryze Tello drone. The driver refers to a middle software layer that allows
control and communication with a drone within the ROS. Upon research, two
of the most popular drivers were identified:..1. Tello_ros [34] based on ROS2 and uses the official SDK [28]. The

distinguishing advantage of this driver is it comes with a ready-to-use
model of Ryze Tello drone for simulation...2. Tello_driver [33] is a wrapper over the unofficial library [32] and is based
on ROS 1. It supports ROS Noetic distribution [19].

Since neither driver has complete documentation, it was necessary to try each
of them and eventually choose the most suitable. For this purpose, containers
were used, which allowed to test the drivers with two different versions of
ROS thereby isolating the host operating system and eliminating possible
conflicts.
According to the tests conducted with the first driver, the flight with the
simulation model was too perfect and different from the real drone flight
experience.
The second driver was chosen for more features such as the availability of
odometry data and the ability to set the camera bitrate. Also, the amount of
resources and documentation on ROS 1 is larger and more accessible.

12

Chapter 4
UAV Simulation

4.1 Introduction

Testing algorithms on a real UAV during the continuous development phase
can be quite tricky, as it often requires access to expensive equipment and a
dedicated workspace. When it comes to working with robots, a simulator is
often used. The simulator must meet specific requirements. First, it must
model the imperfect dynamics of a robot and a real-world environment as
closely as possible. Further, it must enable an expansion of the robot using
standard onboard sensors like LiDAR, Inertial measurement unit(IMU), IR
or sonar sensor, and a camera. Lastly, it should be relatively easy to use and
set up, so a user can focus on tackling higher-level tasks such as autonomous
navigation, collision avoidance, path planning, visual tracking, etc.

In this thesis Gazebo simulator [7] was chosen as it is open source and well
documented.

4.2 Gazebo

Gazebo [7] is a open source 3D simulator developed by Open Robotics. With
Gazebo it is possible to accurately simulate complex robots and access physics
engines including ODE, Bullet, DART and Simbody Simbody. It provides
SDF [30] - declarative format language to describe robots and environments.
With the use of Gazebo plugins, it is possible to mount a wide range of
sensors. It offers great integration with ROS, which means very few changes
have to be done to the main program to switch from a simulation to real
hardware.

4.3 URDF

URDF [36] is a standard format language defined by ROS with the same
purpose as SDF. This format will be used to describe a drone model and
launch it with Gazebo, which internally will convert it to SDF.

The building blocks of a URDF file are links and joints.

13

https://www.openrobotics.org/
http://opende.sourceforge.net/
http://bulletphysics.org/wordpress/
http://dartsim.github.io/
https://simtk.org/home/simbody/

4. UAV Simulation

Figure 4.1: Source: [10]. Structure of a URDF file.

A link describes a rigid body by its physical properties (dimensions, position
of its origin, color, etc.). The link tag in URDF may contain:. Visual - the visible part of a rigid body. This could be a geometric

primitive like a sphere, box, or external mesh file. A link may contain
many visuals.. Collision - boundaries of a body used for collision checking. A link may
contain many collision elements. Inertia - dynamic properties such as 3x3 rotational inertia matrix and
mass.

Links are connected together by joint components. A joint describes the
kinematic and dynamic properties of the connection (type of joint, axis of
rotation, friction and damping, etc.). URDF code below describes the simplest
model of a quadcopter using primitive geometric shapes.

14

....................................... 4.3. URDF

<?xml version="1.0"?>
<robot name="uav">

<material name="red">
<color rgba="1.0 0 0 1"/>

</material>
<link name="base_link">

<visual>
<origin xyz="0 0 0.01"/>
<geometry>

<box size="0.07 0.02 0.02"/>
</geometry>
<material name="red"/>

</visual>
<visual>

<origin xyz="0.05 -0.05 0"/>
<geometry>First

<cylinder length="0.01" radius="0.045"/>
</geometry>

</visual>
<visual>

<origin xyz="-0.05 0.05 0"/>
<geometry>

<cylinder length="0.01" radius="0.045"/>
</geometry>

</visual>
<visual>

<origin xyz="-0.05 -0.05 0"/>
<geometry>

<cylinder length="0.01" radius="0.045"/>
</geometry>

</visual>
<visual>

<origin xyz="0.05 0.05 0"/>
<geometry>

<cylinder length="0.01" radius="0.045"/>
</geometry>

</visual>
<inertial>

<mass value="0.1"/>
<inertia ixx="0.000290833" ixy="0" ixz="0" iyy="0.00054"

iyz="0" izz="0.000290833"/>
</inertial>
<collision name="collision">

<geometry>
<box size="0.18 0.18 0.05"/>

</geometry>
</collision>

</link>
</robot>

Listing 4.1: Primitive 3D model of a drone

15

4. UAV Simulation

Figure 4.2: Rendered model in RViz

To make the drone fly, it is required to create a model plugin that will
apply forces on the model based on the rotors speed. As this would be a
time-consuming task, it was decided to use an off-the-shelf solution.

4.4 hector_quadrotor package

Hector_quadrotor [46] is a comprehensive UAV simulation system developed
by a team from TU Darmstadt. It comes as a set of ROS packages related to
modeling, controlling, and simulating quadrotor systems in ROS environment
using Gazebo simulator [8]. The following packages are included:. hector_quadrotor_description contains URDF files with a description

of Hector quadrotor UAV with various sensors. hector_quadrotor_gazebo contains launch files for running a complete
simulation of an environment and spawning an UAV.. hector_quadrotor_controllers provides velocity, position and altitude
controllers.. hector_quadrotor_gazebo_plugins provides plugins that are specific to
the simulation of quadrotor UAVs in gazebo simulation.. hector_quadrotor_demo contains launch files for executing indoor and
outdoor simulations with hector quadrotor.

Executing the outdoor scenario from the hector_quadrotor_demo will launch
RViz and Gazebo. Gazebo will display a hector quadrotor equipped with the
Hokuyo UTM-30LX sensor in hilly terrain.

16

.................. 4.5. Simulating Tello UAV using hector_quadrotor package

Figure 4.3: Outdoor simulation with Hector quadrotor in RViz

At the moment of writing the package is available for the Kinetic [17] and
Melodic [18] distributions, whereas the newer ROS Noetic [19] has been
chosen as the main distribution to communicate with the real Tello drone.
This can easily be solved by using the containers presented earlier, thereby
having two distributions on the same physical machine and quickly switching
between them to the desired environment.

4.5 Simulating Tello UAV using hector_quadrotor
package

With the hector_quadrotor package, a custom UAV model can be built with
the desired set of sensors. For this purpose, a URDF file of a Ryze Tello
drone is provided.
The URDF file contains a basic reference with visual, collision, and inertia
tags. An approximate 3D model of the Tello drone provided in [25] was
extended with propellers and used for better visualization in the simulation.
The simulated drone was then augmented with the necessary sensors from the
gazebo and hector plugin packages. A sonar sensor for altitude measurement
was used instead of the IR sensor built into the real Tello, as it is it is not
available for a simulation. A camera with the same resolution, frame rate,
and viewing angle was attached to the front side of the simulated drone.

17

4. UAV Simulation

Figure 4.4: Rendered 3D model of Ryze Tello from [25], which was extended
with propellers and the "Tello" label in Blender [39].

A simulation can be started by executing the launch file in the description
package, which will create an instance of Gazebo simulator and RViz. The
simulation will spawn a Tello drone in an indoor environment. To start,
the drone /enable_motors service has to be called with a value set to True.
Moving the drone is possible via /cmd_vel topic by specifying velocities along
the x,y,z axes and yaw velocity. The value of the current altitude can be read
from the topic /sonar_height.

4.6 Extending the simulation with ArUco marker

To complete the picture, it is necessary to simulate the ArUco marker described
in the following chapter. First, a 3D cube covered with the ArUco marker was
created in Blender [39]. Then the URDF file of the Tello drone was extended
with a link containing a reference to the 3D marker mesh model. Finally, a
fixed joint is used to attach the marker’s link to the drone body.

18

.......................4.6. Extending the simulation with ArUco marker

Figure 4.5: Complete simulation with two drones and ArUco marker attached
to the leader.

19

20

Chapter 5
Pose estimation using ArUco markers

In order to keep the leader-follower formation, it is necessary to identify the
leader in the first place, then determine the follower’s relative pose to the
leader and, on the basis of this, direct the follower.
One approach would be to use convolutional neural networks for drone recog-
nition. Although this solution does not require the use of unique markers to
indicate the leader, it is computationally intensive and time-consuming.
Therefore, it was decided to use a special pattern to tag the leader, which
can be accurately localized in an image captured by the follower.
First attempts were made using colored geometric objects but were unsuccess-
ful due to many false positives, time-consuming operations for more accurate
recognition, and being too dependent on good lighting.
A common approach is to use binary square fiducial markers. They have
four edges to make camera pose estimation available, and each marker is
associated with a unique identifier, which can be used in multiple leaders and
followers scenarios.

5.1 ArUco markers

In this work, ArUco markers presented in [41] are used to detect the leader
and extract its pose. As per the [2], ArUco markers are fiducial markers
consisting of an inner binary matrix with black boundaries. The inner matrix
pattern is what makes each marker unique and black background facilitates
fast localization of a marker.
ArUco markers come in different sizes, which determine number of blocks
in inner matrix, e.g. 4×4, 6×6 and with different dictionary sizes composed
by markers. There is also an important parameter, which is physical size of
a marker that should be measured accurately to improve pose estimation.
Bigger sizes will result a better detection.

21

5. Pose estimation using ArUco markers
Y

Z

X

Figure 5.1: 4x4 ArUco marker with id = 3. The first corner of the marker is
highlighted in red.

5.2 Pose Estimation

After a marker is detected, the transformation from the marker frame to the
camera frame is computed. As shown on figure 5.1 the marker coordinate
frame origin is located at the center of the marker. Complete description of
how the transformation is computed can be found in [3]. To briefly summarize,
it can be presented as:
Given a 3D point Pw in the world coordinate frame and 2D point p in
the image plane, the task is to find the rotation and translation vectors
transforming coordinates from the world to the camera frame. For this task
a pinhole camera model is most commonly used.

Figure 5.2: Source: [13]. Projection of 3D points in world coordinate system
into the 2D image plane. R, t are the rotation matrix and the translation that
describe transformation from world to the camera coordinate system.

s

px

py

1

 = K [R | t]


Xw

Yw

Zw

1

 (5.1)

22

.............. 5.3. Detection of ArUco markers in ROS using aruco_detect package

where s is the projection scaling,
[
px py 1

]T
is 2D point in the image

plane represented in homogeneous coordinates. K =

fx 0 cx

0 fy cy

0 0 1

 is the

camera intrinsic matrix that projects a 3D point in the camera frame into the
image plane, fx and fy are focal lengths, (cx, cy) is the principal point. The
intrinsic matrix along with distortion coefficients are obtained by calibrating
the camera [5]. The tello driver [33] used in this work provides required
camera parameters. R and t are the rotation matrix and the traslation vector,
which transforms homogeneous vector

[
Xw Yw Zw 1

]T
from the world to

the camera coordinate system.
Thus the estimated pose is represented by the rotation matrix R and the
traslation vector t: 

Xc

Yc

Zc

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw

Zw

1

 (5.2)

Given the detected marker, R and t are those that transform all points from
the marker coordinate system to the camera coordinate system.

5.3 Detection of ArUco markers in ROS using
aruco_detect package

Aruco_detect [4] is an open source ROS package based on OpenCV aruco
module [2] and developed by Ubiquity Robotics. It provides a node, which
detects ArUco markers from an image stream, publishes their vertices and
estimates the detected marker pose with respect to the camera frame.
There are two categories of parameters that can be used to configure the node
- global and detection. Global parameters specify dictionary and marker size,
marker’s physical length in meters, enable pose estimation, one or range of
marker IDs to be ignored and whether the node should publish images with
detected markers. Detection parameters allow to adjust underlying detection
algorithm.
The node subscribes to two topics - image stream and camera information.
Camera information is a an intrinsic parameter of the camera. As already
mentioned, the tello driver provides the camera intrinsic matrix along with
distortion coefficients and publishes on the topic /tello/camera/camera_info.
To use the node it has to be added in a launch file and provided with
parameters. Listing 5.1 depicts how the aruco_detect node configured in the
launch file.

23

5. Pose estimation using ArUco markers
<node pkg="aruco_detect" name="aruco_detect"
type="aruco_detect" output="screen" respawn="false">

<param name="image_transport" value="raw"/>
<param name="publish_images" value="true" />
<param name="fiducial_len" value="0.048"/>
<param name="dictionary" value="0"/>
<param name="do_pose_estimation" value="true"/>
<param name="ignore_fiducials" value="1-2,4-50"/>
<param name="fiducial_len_override" value=""/>
<remap from="/camera" to="/tello/camera/image_raw"/>
<remap from="/camera_info"

to="/tello/camera/camera_info"/>
</node>

Listing 5.1: Configuration of aruco_detect [4] node in launch file

With this configuration, only the marker with id = 3 is not ignored. An
important part is remapping the node topics so that it is possible to use it
directly with the tello driver.
Due to physical limits of the Tello drone, 4×4 ArUco marker with a side length
of 48 mm was taped to a hard cardboard 5.3, which is in turn attached to the
back of the leader drone so as not to interfere with propellers. White border

Figure 5.3: The leader drone with attached ArUco marker

around the marker increases number of detections, especially in low-light
environments.

24

............................... 5.4. Pose estimation accuracy

5.4 Pose estimation accuracy

The aruco_detect node publishes transformations between the detected
marker and the camera frame into the fiducial_transforms topic. A trans-
form message contains translation vector and rotation in quaternion form.

Several tests were conducted to measure an accuracy of pose estimation.

0.6 0.7 0.8 0.9 1.0 1.1
Distance from the marker in Z axis (m)

0.0

0.5

1.0

1.5

M
ea

n
ab

so
lu

te
er

ro
r

(c
m

)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Distance from the marker in X axis (m)

0.0

0.5

1.0

0 10 20 30 40 50 60 70 80
Yaw angle(rotation around Y) of the marker (°)

2

4

6

M
ea

n
ab

so
lu

te
er

ro
r

(°
)

Figure 5.4: ArUco marker pose estimation accuracy. Z, X axes and Yaw angle
estimation errors are shown.

The first test was organized in such a way that the follower was fixed on a
certain point, and the stationary leader with the attached ArUco marker was

25

5. Pose estimation using ArUco markers
moved along the Z-axis from the marker with steps of 60 cm to 1.1 meters in
10 cm increments. In addition, at each step, the leader was moved along the
X-axis from 0 cm to 0.5 cm in both directions. Results obtained from this
test are shown in Figure 5.4:
The first graph shows the mean absolute errors of measured and true marker
Z-axis distances, where each measurement was taken at different X-axis
positions and then the average value was calculated. The same applies to
the second graph, where the X-axis distances are taken at different Z-axis
positions, the average value is calculated, and then average absolute errors
are plotted. On the last graph the leader was rotated from 0 to 80 degrees
towards the leader in 10 degree increments. During the test the follower’s
camera captured the marker for 5 seconds.

Figure 5.5 shows measured values along the Y axis of the marker from
the second test. These measured values depend on the distance of the marker
from the camera. In order to describe this dependence a straight line was
fitted using the least squares method. The height between the center of the
marker and the camera was 8 cm.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Distance from the center of marker in Z direction (m)

−0.225

−0.200

−0.175

−0.150

−0.125

−0.100

−0.075

−0.050

D
ist

an
ce

fro
m

th
e

ce
nt

er
of

m
ar

ke
r

in
Y

ax
is

(m
)

Fitted line using
the LSM y = -0.228*x + 0.079
Measured data

Figure 5.5: Height estimates between the center of ArUco marker and the
camera of Tello drone.

26

Chapter 6
Kalman filter

“The problem of state estimation concerns the task of estimating the state of
a process while only having access to noisy and/or inaccurate measurements
from that process. It is a very ubiquitous problem setting, encountered in
almost every discipline within science and engineering” [47].
A wide variety of filters such as g-h, Bayes, Particle, Kalman, and H-infinity
filters can be used to tackle this problem. The most common one is the
Kalman filter and it is the central concern for this chapter.

6.1 Objective

Although the marker pose estimation seems to be precise, it has a few issues.
First, the marker could be easily occluded and thus the pose estimation will
fail. Second, the camera output of the drone has noise and some frames
could be corrupted, which also results in losing the target. Based on the
measurements from the previous chapter, it is essential to emphasize that
the marker pose estimation provides relatively accurate results, that is the
main cause of the noise in pose measurements is the drones themselves, whose
flights are accompanied by not negligible oscillations. This factor is amplified,
given that both drones may contribute to the noise, depending on the correct
operation of the VPS used to stabilize the drone.
The primary objective is being able to predict the marker pose when it is
partly occluded or the camera stream becomes unavailable, and to reduce a
noise in the marker’s pose estimates.

6.2 Choice of Kalman filter type

The basic Kalman filter can be used only for linear state-space models.
However, most real systems are nonlinear and modified versions of the Kalman
filter were developed, such as an extended Kalman filter(EKF) and unscented
Kalman filter(UKF). EKF allows using nonlinear models by computing a
linear approximation at the point of the current estimate. UKF, on the other
hand, samples a set of points with specific properties and passes it through a
nonlinear function.

27

6. Kalman filter.....................................
The basic Kalman filter with Newtonian motion model has been selected to
track the marker due to its simplicity and computational ease.

6.3 Design Kalman filter

There are 2 phases involved in Kalman filter:..1. Prediction

Predict next state
x̂ = Fx + Bu (6.1)

where x̂ is predicted state at the next time step. F is a state transition
function. x is a state estimate from the update phase. B is control
function, which incorporates a control input u into the predicted state.
Predict state covariance

P̂ = FPFT + Q (6.2)
where predicted state covariance P̂ shows how much uncertainty there is
in the prediced state x̂. Q is a covariance of the process noise. Greater
values would mean for the filter to favor measurements more rather than
the dynamic model...2. Update

Compute Kalman gain
K = P̂HT(HP̂HT + R)−1 (6.3)

where the Kalman gain K is a number between 0 and 1, which repre-
sents a ratio between the measurement and prediction. H is state to
measurement space mapping. S = (HP̂HT + R)−1 is the innovation
covariance. R is the measurement covariance.
Compute state estimate

x = x̂ + K(z−Hx̂). (6.4)
where z is measurement. z −Hx̂ is a residual between the predicted
value and measurement.
Compute estimated state covariance

P = (I−KH)P̂ (6.5)
where I is an identity matrix

A state is represented as 12 dimensional vector with x, y, z, yaw angle θ and
its corresponding first and second derivatives:

x =
(
x y z θ ẋ ẏ ż θ̇ ẍ ÿ z̈ θ̈

)
28

................................. 6.3. Design Kalman filter

Since the leader is not expected to fly at high speeds, roll and pitch angles
are not monitored. From Newton’s laws of motion, a state transition function
is defined:

F =



1. 0. 0. 0. dt 0. 0. 0. 0.5dt2 0. 0. 0.
0. 1. 0. 0. 0. dt 0. 0. 0. 0.5dt2 0. 0.
0. 0. 1. 0. 0. 0. dt 0. 0. 0. 0.5dt2 0.
0. 0. 0. 1. 0. 0. 0. dt 0. 0. 0. 0.5dt2
0. 0. 0. 0. 1. 0. 0. 0. dt 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. dt 0. 0.
0. 0. 0. 0. 0. 0. 1. 0. 0. 0. dt 0.
0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. dt
0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.


State to measurement space mapping is defined as:

H =


1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0


Discrete white noise with a variance of 0.012 was used to model the process
noise Q. Based on results obtained from ArUco pose detection measurements
and imperfect flight dynamics of Tello drones affecting pose estimation, the
measurement noise R has been set to a variance of 0.022

After initialization, the filter is updated with the latest marker pose. Since
there is no fixed rate at which poses are received the time step dt is calculated
and the state transition matrix is updated accordingly. The whole pipeline is
depicted in the figure 6.1

Predict pose

Receive
RGB image

Extract pose
estimate

Update pose

Figure 6.1: Kalman filter predict and update pipeline with pose measurements.

29

6. Kalman filter.....................................
6.4 Adaptive filter

After evaluating the Kalman filter initialized according to the previous section,
the major problem was a significant noise in the filter’s output when the
leader was flying with a constant velocity or hovering. This was consistent
with the simulation, where no speed limit was set for safety reasons, and
noise in the leader poses contributed to the acceleration of the follower,
resulting in the drone starting to oscillate. The reason is the second-order
system used to model the motion of the leader with attached marker, which
performs well tracking maneuvers and a sharp increase in the velocity of
the target. However, it falsely interprets the noise in measurements as an
acceleration of the target. By contrast, the first-order motion model reduced
noisy measurements but had a lag when the target started accelerating. It
should be mentioned the second-order Kalman filter performs well with the
real drones if there are no oscillations in a flight of both drones and the
video stream from the follower’s camera is not delayed or corrupted, which is
hard to achieve due to many conditions — sufficient lightning, strong WiFi
signal and minimal interference by other wireless networks, a flooring with
non-regular patterns. The last condition is especially crucial since the VPS
system uses the downward camera to stabilize the drone, and if it fails, the
drone starts drifting.
One solution would be to use first- and second-order filters together by
switching to a first-order filter when the target is flying at a constant speed and
a last-order filter when maneuvering. There are multiple approaches based on
using multiple filters, one of which is Interacting Multiple Models(IMM) [45].
Briefly, it allows defining a set of Kalman filters with different configurations
for each mode of the target. Then the output of a filter producing better
estimates is used to adjust the one which performed worse at the current
step and the other way around. Finally, a weighted estimate of both filters’
output is made.
This study uses a more straightforward solution called an adaptive filter with
adjustable process noise presented in [45]. Instead of multiple filters, a single
filter with a constant velocity model is used. The basic principle is based on
the continuous adjustment of the process noise depending on the size of a
residual defined as a difference between a measurement and prediction.
The residual is squared to avoid negative values and normalized by the
covariance matrix such that significant changes are distinguishable from the
measurement noise.

ε = yTS−1y (6.6)
where
y = z−Hx̂ is a residual,
S = HPHT + R is covariance matrix representing the system uncertainty.

ε is the key value based on which the process noise is adjusted. Whenever
ε exceeds some predefined limit caused by rapid increase of measurements

30

.................................... 6.4. Adaptive filter

the process noise P of Kalman filter is gradually increased. After, when ε
becomes smaller than the limit the process noise is again decreased. The
code below depicts how the process noise is adjusted.

epsilon = square_and_normalize(residual)
if epsilon > epsilon_max:

count += 1
Process_noise *= noise_multiplier

else if count > 0:
count -= 1
Process_noise /= noise_multiplier

Listing 6.1: Source: [45]. Adjusting the process noise of the Kalman filter.

Constants ε_max = 2 and noise_multiplier = 100 have been chosen empiri-
cally to compensate for noise and lag at the filter output.
The equation 6.6 has been modified to adjust the noise of the individual state
variables subjected to a significant change:

ε = y� S−1y (6.7)
where
ε is a vector of squared and normalized residuals for each state variable
� means elementwise vector multiplication
This modification was necessary because a drone can change position in
different axes independently.

Finally, the state vector was reduced to position and velocity for each dimen-
sion, and the state transition with dimension space mapping was updated
accordingly.

31

6. Kalman filter.....................................
6.5 Results

To test the impact of the Kalman filter a test flight was recorded using
rosbag. The main result is that the marker poses could be predicted when
it is occluded and reduced noise in the output of the filter.

0.5

1.0

D
ist

an
ce

fro
m

ca
m

er
a

ce
nt

er
(m

)

Y axis

0.05

0.10

0.15

0.20
X axis

0 50 100 150 200 250 300 350 400
Frame number

−0.2

−0.1

0.0

0.1

An
gl

e
be

tw
ee

n
ca

m
er

a
an

d
m

ar
ke

r(
ra

d)

Yaw angle

First order Kf
Second order Kf
Adaptive Kf
Measurements

Figure 6.2: The stationary follower tracks the ArUco marker attached to the
leader using 3 different Kalman filters. The leader was manually controlled with
smooth movements in the y direction and short maneuvers in the x direction to
simulate the bounces that occur for the reasons described at the beginning of
the chapter.

32

....................................... 6.5. Results

According to the graph in Figure 6.2, the second-order Kalman filter per-
formed well in tracking the marker in the y direction. This can be explained
by the low amount of noise in the marker pose measurements along the y
direction. However, when the marker was obscured, predicted second-order
filter poses diverged too quickly from the actual pose. Measurements of yaw
angles are very noisy due to imperfect flight and the second order filter treats
noise as acceleration thus increasing noise even more. As a result, the control
algorithm issues inefficient commands with frequent interruptions to rotate
the drone to adjust the heading.
The first-order filter does an excellent job of handling the noise in measure-
ments, but at the cost of lagging from the actual value. Both the first order
and adaptive filters reduced noise of measured yaw angles.
The adaptive filter seems to combine both filters and produces the best
estimate, although it will produce noise when the target accelerates rapidly.

To summarize, the first-order Kalman filter is best at reducing noise, but
its output is delayed when the target accelerates, the second-order Kalman
filter can track maneuvers but is heavily affected by measurement noise, and
finally, the first-order Kalman filter with adjustable process noise attempts to
combine the best of both filters - reducing measurement noise and minimizing
the filter output delay when the target accelerates.

33

34

Chapter 7
Controlling the drone

Once the target’s pose is estimated the drone has to smoothly navigate itself
towards it preventing overshooting and undershooting. To achieve this a
control loop system can be used.
According to [42] Control systems are classified into two general categories:
open-loop and closed-loop systems. The dependence of the control action on
the feedback is the distinction between these two categories...1. Open control loop system is one in which the control action is inde-

pendent of the output...2. Closed control loop system is one in which the control action is
somehow dependent on the output.

“Closed-loop control systems are more commonly called feedback control
systems”[42]. They are well suited for the processes, where measurements
are feasible, process disturbances are not rare and human intervention is not
required allowing high degree of autonomy.

Controller System

Disturbances

u

Feedback

r e = r − ym y

−

ym

Figure 7.1: Closed loop system overview. e is the error between desired point r
and the feedback ym. u is the control output and y is the system output.

7.1 PID Controller

Since drone control is best suited to a closed-loop system, that is what is
used in this project. Common example of the closed loop algorithms is a
combination of P,I,D controllers, further PID controllers.
“The term controller in a feedback control system is often associated with

35

7. Controlling the drone
elements of the forward path, between the actuating(error) signal e and the
control output variable u” [42].

P controller is proportional to the error:

u(t) = KPe(t) (7.1)

I controller is proportional to the integral of the error:

u(t) = KI

∫
e(t)dt (7.2)

D controller is proportional to the derivative of the error:

u(t) = KD
de
dt (7.3)

PID controller combines all three terms:

u(t) = KPe(t) + KD
de
dt + KI

∫
e(t)dt (7.4)

P KP e(t)

I KI
∫
e(t)dt

D KD
de
dt

∑

Marker
pose

Velocity
commands

−
e(t) ++

+

Setpoint

Figure 7.2: Overview of the PID Controller used to track the leader drone. The
controller output is sent to the follower drone in the form of velocity command
along an axis.

The PID controller is initialized for each of the control axes - x, y, z, θ. In
order to achieve desired performance and stability of the PID controller, it
has to be tuned first. Tuning the controller means selecting optimal gain
constants used in P,I,D terms - KP ,KI ,KD. There are several methods to
tune the controller. In this work the trial and error method used, which
involves manual calibration and testing the impact on the real model. Other
methods propose less manual work and possible more optimal results, but
require additional information of the drone’s configuration model.

36

...................................... 7.2. Overview

Control axis KP KI KD

x 1.5 0.001 0.5
y 1.5 0.001 0.5
z 1.5 0.001 0.5

θ(Yaw angle) 1 0.0001 0.5

Table 7.1: Empirically derived PID controller constants for each control axis of
real Tello drone.

Initialize
control
system

Marker
not seen >

1s

Reset
Kalman
filter

Hover
the drone

Is leader
accelerat-

ing?

Predict
pose

Get last
pose

Run pid
controller

Publish to
/cmd_vel

no
yes

no

yes

Figure 7.3: High level view of the main control loop. The loop is set to run
every 100 ms.

7.2 Overview

To control the follower, a loop with a period of 100 ms was created.
According to the figure 7.3, if the marker is not observed for more than 1
second, it is considered lost, and the follower must stop moving in either
direction and hover waiting for the leader to reappear. Whenever the leader
is marked as lost, the Kalman filter and the PID controllers will be reset.
To compensate for the delay from camera stream and marker detection, the
pose at the next time interval is predicted using the Kalman filter. This also
solves the problem when the marker is temporarily occluded. The prediction
step is canceled if the leader accelerates and the last detected pose is used
instead to prevent collisions, since drones mostly operate indoors. Once the
final marker pose is obtained, it is passed to the PID controllers to calculate
velocities to achieve the desired pose relative to the leader. It is required for
the follower to be 70 cm away from the leader in the y direction, 0 cm in the
x direction, and at a 0 radian angle between the camera and the marker. The

37

7. Controlling the drone
height between the follower’s camera and the marker center is set according
to the fitted line in the figure 5.5. This configuration allows to keep drones
at a safe distance, avoid obstacles by following the leader’s trajectory, and
add more follower drones using different markers.

Tello accepts velocity com-
mands in a range from [−1, 1].
To convert the PID controller
output to the acceptable ve-
locity command the hyperbolic
tangent function is used.

y = tanh x

−2 −1 1 2

−1

−0.5

0.5

1

x

y

Figure 7.4: Hyperbolic tangent function

For safety reasons, the function output is limited to an interval of -0.5
to 0.5 to prevent the follower from accelerating too fast and colliding with
obstacles. Once the correct velocities are calculated, they are applied all at
once, since a drone is able to fly in all directions independently of each other.

38

Chapter 8
Implementation

Since the simulation and the ROS driver of Tello require separate distributions
of ROS - Melodic and Noetic, respectively, they are separated into two distinct
workspace folders. All software implemented in the thesis is provided in a
ROS package named "follower". Each workspace has its own copy of the
package due to differences in Python version and control interface of the
simulation and real Tello.
The structure of the follower package is shown below. Some parts may vary
in the package used for Tello drone simulation, but the underlying logic is
the same:. launch. tello.launch used to start a simulation or connect the Tello ROS

driver.. follower.launch used to launch nodes for detection and following
the leader with ArUco marker by the follower.. single.launch is a single launch file used to start both tello and
follower launch files. To visualize the leader and follower the
tf2_odom_broadcaster.py and tf2_aruco_broadcaster.py are started
to define transformations between map, odometry and leader frames.
Finally, rviz node will show position and orientation of drones. In
a simulation ground truth values are used to visualize poses of
drones and additional node is started, which takeoffs and generates
a circular movement for the leader..msg. Pose3D.msg is a message definition for the filtered poses from
Kalman filter used to send via a ROS topic to the control node.. rviz contains a configuration file for rviz with plugins used for the

visualization.. src contains Python scripts defining ROS nodes:. flight_control.py defines a node for controlling the drone

39

8. Implementation....................................
. aruco_filter.py defines a node for filtering poses of the ArUco marker

using the Kalman filter from previous chapter.. tf2_odom_broadcaster.py defines a node for publishing corrected
odometry transformations. This node is borrowed from David Pařil’s
bachelor thesis [48]. Not presented in the simulation package.. tf2_aruco_broadcaster.py defines a node for publishing transfor-
mations between the odometry and the ArUco marker poses. Not
presented in the simulation package.. ROS package specific files used to define dependencies and declarations.

https://youtu.be/n8WVKc7n2FE contains recorded screen with complete
simulation of Tello drones.

8.1 Assesment

To assess the performance of the algorithm, a test flight was conducted in
the simulator. Ground truth positions of both the leader and follower drones
were collected.
The leader launched from position (-5, 0, 0) and the follower from (-5,-1,0).
Desired distances of the follower from the leader were 0 cm in X axis, 0 cm in
Z axis(Y axis in the marker frame) and 70 cm in Y axis(Z axis in the marker
frame). Figure 8.1 depicts a 3D flight path in the simulator, and Figure 8.2
shows a more detailed view with individual axes.

X

−5.0
−4.5

−4.0
−3.5

Y
−1

0

1

Z

0.5
1.0
1.5
2.0
2.5

leader
follower

Figure 8.1: Recorded route of the leader and follower in the simulator.

40

https://youtu.be/n8WVKc7n2FE

......................................8.1. Assesment

−5

−4

X axis

−1

0

1

D
ist

an
ce

fro
m

th
e

m
ap

or
ig

in
(0

,0
,0

)
(m

)

Y axis

0 25 50 75 100 125 150 175
Timestamp (second)

0

1

2

Z axis

Leader
Follower

Figure 8.2: Detailed view of the flight from the previous graph.

Based on the ground truth values of both drones from the described test
flight and desired distance in each axis mean absolute errors(MAEs) were
calculated:

Axis MAE (cm)

X 4.4
Z 7
Y 4

Multiple flights with real drones were carried out, however, it was not possible
to quantitatively assess the performance of the algorithm because a global
positioning system such as Vicon [37] was not available and the odometry
data are highly inaccurate. To demonstrate the algorithm, a flight with real
drones was recorded, available at https://www.youtube.com/watch?v=V-9
W5hL1Efo.

41

https://www.youtube.com/watch?v=V-9W5hL1Efo
https://www.youtube.com/watch?v=V-9W5hL1Efo

42

Chapter 9
Conclusion

To summarize, the Tello drone was presented with its main technical charac-
teristics. Tello ROS driver [33] was used to communicate with the drone in
the ROS [16] ecosystem.
System containers were used to isolate the main operating system from the
development and to quickly switch between different ROS distributions. This
is a lightweight solution that allows the graphical output of tools such as Rviz
[22], Gazebo Simulator [7], and RQT [20].

The only way to locate the leader is by detecting from the camera image.
In the beginning, colored markers were used to achieve this by attaching them
to the leader and allowing it to be identified. However, this was unsuccessful
because of the many incorrect identifications, which required perfect illumi-
nation in the environment to solve. Instead, it was decided to use ArUco
markers [2], which are relatively easy to identify and have fewer false positives
compared to colored markers. These markers also provide a pose estimation
with 6 degrees of freedom, which allows for determining the position of the
leader relative to the follower.
Measurements were taken to determine the accuracy of the marker pose
estimations, which were subsequently used to set the measurement noise in
the Kalman filter. In most measurements, the estimation error did not exceed
1 cm.

A simulation model of the Tello drone with similar characteristics as the
real version was created. The simulation was based on the hector_quadrotor
[8] package, which contains many modules, including a set of sensors to extend
the drone, flight controllers, and plugins that use physical engines to simulate
the drone. Next, the Tello model was augmented with an ArUco marker,
which acts as the leader drone. Although the flight in the simulator is not
entirely identical to the real one, it allows the vast majority of development
to take place in the simulator, which is a safer and more convenient solution
when working with drones.

A Kalman filter was used to smooth out the noise in the marker pose esti-
mations caused by most non-ideal drone movements, as well as the prediction

43

9. Conclusion......................................
of the pose in the case of marker occlusions.
Initially, a Kalman filter was proposed with a second-order state transition
that considers the acceleration of the following target. This made it possible
for the follower to react quickly to abrupt changes in the leader’s pose. A
significant drawback was that the filter interpreted the noise as acceleration,
which could lead to oscillations and collisions. To solve this problem, an
adaptive first order filter with adjustable process noise presented in [45]
was used. The outputs of the filters with different configurations were com-
pared at the end of chapter 7, where the adaptive filter showed the best results.

A flight in the simulator was carried out to evaluate the performance of
the algorithm, and ground truth values were used to obtain a quantitative
assessment. The algorithm was also verified in a real drone flight, and its
behavior was robust and predictable.

44

Appendix A
Bibliography

[1] Application containers vs system containers. https://linuxcontain
ers.org/lxd/introduction/#application-containers-vs-system-
containers. Accessed: 2022-14-04.

[2] Aruco markers. https://docs.opencv.org/3.1.0/d5/dae/tutoria
l_aruco_detection.html. Accessed: 2022-03-03.

[3] Aruco pose. https://docs.opencv.org/3.4/d9/d0c/group__calib
3d.html. Accessed: 2022-05-03.

[4] aruco_detect. http://wiki.ros.org/aruco_detect?distro=melodic.
Accessed: 2022-01-05.

[5] Camera calibartion. https://docs.opencv.org/4.x/dc/dbb/tutoria
l_py_calibration.html. Accessed: 2022-05-03.

[6] Docker vs virtual machines (vms) : A practical guide to docker containers
and vms. https://www.weave.works/blog/a-practical-guide-to-
choosing-between-docker-containers-and-vms. Accessed: 2022-14-
04.

[7] Gazebo simulator. https://gazebosim.org/home. Accessed: 2022-15-
04.

[8] Hector_quadrotor package. http://wiki.ros.org/hector_quadrotor.
Accessed: 2022-01-02.

[9] Installing ros in lxd containers. https://ubuntu.com/blog/installi
ng-ros-in-lxd. Accessed: 2022-09-05.

[10] Links and joints. http://library.isr.ist.utl.pt/docs/roswiki/
urdf(2f)Tutorials(2f)Create(20)your(20)own(20)urdf(20)file.
html. Accessed: 2022-01-01.

[11] Lxd. https://linuxcontainers.org/#LXD. Accessed: 2022-14-04.

[12] Plotjuggler. https://www.plotjuggler.io/. Accessed: 2022-16-05.

45

https://linuxcontainers.org/lxd/introduction/#application-containers-vs-system-containers
https://linuxcontainers.org/lxd/introduction/#application-containers-vs-system-containers
https://linuxcontainers.org/lxd/introduction/#application-containers-vs-system-containers
https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
http://wiki.ros.org/aruco_detect?distro=melodic
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms
https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms
https://gazebosim.org/home
http://wiki.ros.org/hector_quadrotor
https://ubuntu.com/blog/installing-ros-in-lxd
https://ubuntu.com/blog/installing-ros-in-lxd
http://library.isr.ist.utl.pt/docs/roswiki/urdf(2f)Tutorials(2f)Create(20)your(20)own(20)urdf(20)file.html
http://library.isr.ist.utl.pt/docs/roswiki/urdf(2f)Tutorials(2f)Create(20)your(20)own(20)urdf(20)file.html
http://library.isr.ist.utl.pt/docs/roswiki/urdf(2f)Tutorials(2f)Create(20)your(20)own(20)urdf(20)file.html
https://linuxcontainers.org/#LXD
https://www.plotjuggler.io/

A. Bibliography.....................................
[13] Projection. https://docs.opencv.org/4.x/d5/d1f/calib3d_solve

PnP.html. Accessed: 2022-04-05.

[14] Robomaster tt. https://www.dji.com/cz/robomaster-tt. Accessed:
2022-10-05.

[15] Robomaster tt expansion kit. https://store.dji.com/cz/product/r
obomaster-tt-expansion-kit. Accessed: 2022-04-05.

[16] Ros. https://www.ros.org/blog/why-ros/. Accessed: 2022-01-05.

[17] Ros kinetic kame. http://wiki.ros.org/kinetic. Accessed: 2022-16-
05.

[18] Ros melodic morenia. http://wiki.ros.org/melodic. Accessed:
2022-16-05.

[19] Ros noetic ninjemys. http://wiki.ros.org/noetic. Accessed: 2022-
16-05.

[20] Rqt. http://wiki.ros.org/rqt. Accessed: 2022-16-05.

[21] Running x11 software in lxd containers. https://blog.simos.info/ru
nning-x11-software-in-lxd-containers/. Accessed: 2022-01-05.

[22] Rviz. http://wiki.ros.org/rviz. Accessed: 2022-11-05.

[23] Ryze technology. https://www.ryzerobotics.com/about. Accessed:
2022-02-03.

[24] Ryze tello. https://www.dronekenner.nl/images/ab__webp/detail
ed/7/DJI-drones-kopen-online-dronekenner-Tello-Ryze-fun-ca
mera-VR-headset-10306-99_f1uu-j3_449d-89_jpg.webp. Accessed:
2022-02-03.

[25] Ryze tello 3d model. https://www.halfchrome.com/downloads/dji
-tello-cad-model/. Accessed: 2022-01-03.

[26] Ryze tello boost combo. https://www.robotworld.cz/dji-ryze-tel
lo-boost-combo. Accessed: 2022-04-05.

[27] Ryze tello iron man edition. https://www.ryzerobotics.com/ironman.
Accessed: 2022-04-05.

[28] Ryze tello sdk 1.3.0. https://terra-1-g.djicdn.com/2d4dce68897
a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%
E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1
122.pdf. Accessed: 2022-04-03.

[29] Ryze tello specs. https://www.ryzerobotics.com/tello/specs.
Accessed: 2022-01-01.

46

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://www.dji.com/cz/robomaster-tt
https://store.dji.com/cz/product/robomaster-tt-expansion-kit
https://store.dji.com/cz/product/robomaster-tt-expansion-kit
https://www.ros.org/blog/why-ros/
http://wiki.ros.org/kinetic
http://wiki.ros.org/melodic
http://wiki.ros.org/noetic
http://wiki.ros.org/rqt
https://blog.simos.info/running-x11-software-in-lxd-containers/
https://blog.simos.info/running-x11-software-in-lxd-containers/
http://wiki.ros.org/rviz
https://www.ryzerobotics.com/about
https://www.dronekenner.nl/images/ab__webp/detailed/7/ DJI-drones-kopen-online-dronekenner-Tello-Ryze-fun-camera-VR-headset-10306-99_f1uu-j3_449d-89_jpg.webp
https://www.dronekenner.nl/images/ab__webp/detailed/7/ DJI-drones-kopen-online-dronekenner-Tello-Ryze-fun-camera-VR-headset-10306-99_f1uu-j3_449d-89_jpg.webp
https://www.dronekenner.nl/images/ab__webp/detailed/7/ DJI-drones-kopen-online-dronekenner-Tello-Ryze-fun-camera-VR-headset-10306-99_f1uu-j3_449d-89_jpg.webp
https://www.halfchrome.com/downloads/dji-tello-cad-model/
https://www.halfchrome.com/downloads/dji-tello-cad-model/
https://www.robotworld.cz/dji-ryze-tello-boost-combo
https://www.robotworld.cz/dji-ryze-tello-boost-combo
https://www.ryzerobotics.com/ironman
https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://www.ryzerobotics.com/tello/specs

..................................... A. Bibliography

[30] Simulation description format (sdf). http://sdformat.org/. Accessed:
2022-14-04.

[31] Tellopilots comunity forum. https://tellopilots.com/. Accessed:
2022-12-05.

[32] Tellopy. https://github.com/hanyazou/TelloPy. Accessed: 2022-02-
03.

[33] tello_ros1. https://github.com/appie-17/tello_driver. Accessed:
2022-15-05.

[34] tello_ros2. https://github.com/clydemcqueen/tello_ros. Accessed:
2022-15-05.

[35] Thingverse ryze tello. https://www.thingiverse.com/tag:tello.
Accessed: 2022-10-05.

[36] Unified robot description format (urdf). http://wiki.ros.org/urdf.
Accessed: 2022-14-04.

[37] Vicon - award winning motion capture systems. https://www.vicon.
com/. Accessed: 2022-16-05.

[38] What are containers. https://www.netapp.com/devops-solutions/
what-are-containers/. Accessed: 2022-14-04.

[39] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amsterdam,
2018.

[40] Bart Custers. Drones Here, There and Everywhere Introduction and
Overview, volume 27, pages 10–11. 10 2016.

[41] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco Madrid-Cuevas,
and Manuel Marín-Jiménez. Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recognition,
47:2280–2292, 06 2014.

[42] I. J. Williams J. J. DiStefano, A. R. Stubberud. Feedback and control
systems. McGraw-Hill, 1967.

[43] Lentin Joseph. Robot Operating System (ROS) for Absolute Beginners.
Apress, Berkeley, CA, 2018.

[44] Anis Koubaa. Robot Operating System (ROS). Springer, Cham, 2017.

[45] Roger Labbe. Kalman and bayesian filters in python, chapter 14 -
adaptive filtering. https://github.com/rlabbe/Kalman-and-Bayes
ian-Filters-in-Python/blob/master/14-Adaptive-Filtering.ip
ynb, 2020.

47

http://sdformat.org/
https://tellopilots.com/
https://github.com/hanyazou/TelloPy
https://github.com/appie-17/tello_driver
https://github.com/clydemcqueen/tello_ros
https://www.thingiverse.com/tag:tello
http://wiki.ros.org/urdf
https://www.vicon.com/
https://www.vicon.com/
https://www.netapp.com/devops-solutions/what-are-containers/
https://www.netapp.com/devops-solutions/what-are-containers/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/14-Adaptive-Filtering.ipynb
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/14-Adaptive-Filtering.ipynb
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/14-Adaptive-Filtering.ipynb

A. Bibliography.....................................
[46] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf,

and Oskar von Stryk. Comprehensive simulation of quadrotor uavs
using ros and gazebo. In 3rd Int. Conf. on Simulation, Modeling and
Programming for Autonomous Robots (SIMPAR), 2012.

[47] Fredrik Orderud and Sem Sælands. Comparison of kalman filter esti-
mation approaches for state space models with nonlinear measurements.
2005.

[48] David Paril. Autonomous Control of Drone Ryze Tello. Czech Technical
University in Prague. Computing and Information Centre., 2021.

48

Appendix B
Attachment

Below is the contents of the attached source code.. tello_real - ROS workspace folder with packages for real Tello drone. readme.md - description of how to build and run the source code in
src folder. src - ROS packages with simulation and implemented algorithms
for tracking and following.. tello_simulation - ROS workspace folder with ready to use simulation of

Tello drones.. readme.md - description of how to build and run the source code in
src folder. src - ROS packages with Tello ROS driver and implemented algo-
rithms for tracking and following.

49

	Introduction
	Scope
	Goals
	Terminology

	Ryze Tello drone
	Tello characteristics and features
	Measuring camera latency
	Tellopilots

	Robot operating system
	ROS architecture
	Containers
	LXD Containers
	Setting up a new container for ROS development
	Port forwarding

	Ryze Tello ROS driver

	UAV Simulation
	Introduction
	Gazebo
	URDF
	hector_quadrotor package
	Simulating Tello UAV using hector_quadrotor package
	Extending the simulation with ArUco marker

	Pose estimation using ArUco markers
	ArUco markers
	Pose Estimation
	Detection of ArUco markers in ROS using aruco_detect package
	Pose estimation accuracy

	Kalman filter
	Objective
	Choice of Kalman filter type
	Design Kalman filter
	Adaptive filter
	Results

	Controlling the drone
	PID Controller
	Overview

	Implementation
	Assesment

	Conclusion
	Bibliography
	Attachment

