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Abstract

Detecting dynamic objects from a 3D Point Cloud (PCL) is crucial for many modern
problems, such as collision detection for self-driving cars or mobile robotics. Cur-
rently, this field is dominated by supervised methods. However, they require a lot of
labeled data for training, and labeling a PCL is very time and resource-consuming.
This thesis proposes an offline unsupervised approach for dynamic object detection,
focusing on high precision, that can generate labels. It then explores how supervised
models can benefit from those automatically-generated labels.
We evaluate Principal Component Analysis (PCA), Random Sample Consensus
(RANSAC), range image-based method, and pillars method for ground removal,
which is crucial for good spatial separation of objects resulting in better segmenta-
tion and object detection.
Lastly, we propose a new semi-supervised method. We perform segmentation on two
consecutive frames, find point mapping between the two frames and enforce the same
classification for the corresponding points.
The results of a model trained on automatically-generated labels together with mixed
fraction of ground truth surpass the fully learned detector with fewer annotations
needed.

Keywords Point cloud, Object detection, Supervised model
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Abstrakt

Detekce dynamických objektů z 3D mračna bodů (PCL) je zásadní pro mnoho
moderních problémů, jako jsou například detekce kolize pro samořiditelná auta
nebo pohybující se roboty. V dnešní době dominují v těchto úlohách supervizo-
vané modely. Tyto modely vyžadují značné množství anotovaných dat a anotace
lidarového snímku je velmi časově náročná. Tato práce navrhuje nesupervizovaný
přístup neběžící v reálném čase pro detekci dynamických objektů, který se zaměřuje
na vysokou preciznost a který je schopen generovat anotace. Dále tato práce zkoumá
využití těchto vygenerovaných anotací při trénování supervizovaného modelu.
Vyhodnocujeme Principal Component Analysis (PCA), Random Sample Consensus
(RANSAC), metodu založenou na vzdálenostech a metodu Sloupců pro odstranění
země. Odstranění země je důležitý krok pro správné prostorové oddělení objektů,
což vede k lepší segmentaci a detekci objektů.
V neposlední řadě navrhujeme novou semi-supervizovanou metodu. Provedeme seg-
mentaci na dvou po sobě jdoucích snímcích, určíme korespondence mezi těmito
snímky a vynutíme stejnou klasifikaci pro odpovídající body.
Výsledky modelu natrénovaném na kombinaci našich automaticky vygenerovaných a
menší části originálních anotacích překonávají model plně naučený na ručně vytvořeních
anotacích.

Klíčová slova Mračna bodů, Detekce objektů, supervizovaný model
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Abbreviations

PCL Point Cloud

GT Ground Truth

PCA Principal Component Analysis

RANSAC Random Sample Consensus

BFS Breadth-First Search

CNN Convolutional Neural Network

IoU Intersect over Union

LiDAR Light Detection and Ranging

DBSCAN Density-based spatial clustering of applications with noise

KNN K-Nearest Neighbors

MOS Motion Object Segmentation
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Chapter 1

Introduction

Figure 1.1: Overview of the main pipeline of this thesis. First, we synchronize a sequence
of PCLs and remove the ground points. Then all points are labeled using our unsupervised
method. We prepare a new mixed data set for a supervised model to train from and evaluate
the model’s performance on original ground truth labels.

Computer vision is a field of computer science that focuses on exploring and enabling
computers to perceive and process images and videos measured from sensors such as
the camera. Whether in robotics or autonomous driving, computers need to under-

stand the surrounding scene to safely and correctly interact with the environment. Detecting
dynamic objects is necessary to predict and avoid collisions or track objects. In recent years,
more and more scientists and engineers have been exploring the capabilities of a Light Detec-
tion and Ranging (LiDAR) as a sensor for object detection because of its ability to measure
precise distances for each point it reaches [1, 2].

State-of-the-art methods for dynamic object detection from PCL are based on supervised
or semi-supervised approaches, creating a great need for manually labeled data [3, 4, 5]. This
work proposes a method to detect dynamic objects without the need for labels at the cost of
greater computational power.

We focus on high precision (defined in Chapter 3), as it would not be beneficial for a
model to be trained on wrongly labeled data. High precision means that almost everything
our method labels as dynamic is truly dynamic. Consequently, the method’s recall is lower -
meaning that it does not label all dynamic objects. Lower recall does not pose a significant
issue (as long as it is not close to zero) since we can alter the loss function during the training
of a neural network in such a way that we do not penalize classification on the data for which
we have no labels. We used the SemanticKITTI data set [6, 7], which provides labels for each
point in a PCL with various sequences recorded primarily in urban areas.

We explore three different approaches to solving this problem and use our best method

CTU in Prague Department of Cybernetics
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to generate labels that we use to train a Convolutional Neural Network (CNN) and evaluate
the impact of our annotations. This idea is depicted in Figure 1.1.

To decide on the motion of an object, we need to observe it in a short sequence. Had the
LiDAR sensor remained motionless during the whole recording process, we could concatenate
arrays of points and plot all frames at once to see the dynamics of the scene. This is not the
case, as the LiDAR sensor is mounted on the roof of a car, which rarely remains motionless.
To compensate for the sensor’s movement, we first have to synchronize the PCLs. This process
is explained in Chapter 2.

Because of how our methods work, we need to remove the ground, as it enables us to
perform clustering and speeds up the following processes. We know that we will not lose any
dynamic object by removing the ground from our prior knowledge of the situation. In Chapter
3 we explore multiple ground removal algorithms and compare them.

Lastly, in Chapter 8, we explore a self-supervised loss function that could be used to
improve an already trained model further using correspondences between two consecutive
frames.

1.1 Related work

Related LiDAR-based object detection work includes [5], which uses multiple LiDAR
sensors and bounding box fitting to estimate the object’s centroid, which is later used for
tracking. Kiran et al. [8] propose using a 3D prior map to obtain dynamic objects by sub-
tracting background. This approach, of course, requires a 3D prior map and does not work in
a previously unmapped location. Bogoslavskyi and Stachniss [9] perform range image-based
segmentation with an angle-based approach for ground removal, which we have evaluated in
Chapter 3. Another work [10] designed a fast fully convolutional neural network, which can
predict the road from the bird’s eye view projection of the scene. However, this approach does
not predict the road behind obstacles, e.g., vehicles, and therefore makes mistakes in these
points. Approaches [11, 12] can separate ground from non-ground points, which can be even
improved by the usage of The Jump-Convolution-Process [13].

PointRCNN [14] is a single-frame neural network that operates on raw PCL using en-
coders to improve spatial and semantic features. Yin et al. [15] work with point cloud video
and Spatio-temporal feature extraction to detect dynamic objects which may be temporarily
occluded. In [16], the authors propose an unsupervised, iterative method for object detection
that combines the LiDAR PCL and 2D images to create annotations for supervised models.
VoxelNet [17] uses voxel-based feature extraction and convolution for object detection. In [18],
the authors use two self-supervised losses for scene flow estimation, and we have also explored
this approach in Chapter 8. Chen et al.[3] propose a CNN LMNet that uses residual range
images; we use this model for evaluation of our data in Chapter 7. We distill our newly created
labels via pseudo-labelling framework [19].

In general, neural network-based methods provide accurate online results at the cost
of the loss of explainability and manual labor required to create the annotation. Our ap-
proach retains explainability and could lessen the need for labeled data in training semantic
segmentation networks [3, 20, 21].

CTU in Prague Department of Cybernetics
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Chapter 2

PCL synchronization

Figure 2.1: Schematic of the setup used for recording the KITTI [7] data set, taken from their
website.

PCL is recorded by a LiDAR sensor, described in Figure 2.2, which rotates at a certain
frequency. As a result, if the sensor is moving (e.g. mounted on the roof of a moving car, as
shown in Figure 2.1), even a static point fxt; ytg at time t has different coordinates fxt+1; yt+1g
at time t + 1, as depicted in the Figure 2.3.

Since we know in what direction the sensor moved (from the Inertial measurement unit
- IMU), this issue is solved simply by synchronizing (transforming) each PCL frame into
the same reference coordinate system with a transformation matrix M 2 R4x4, created from
calibrations and time poses.

CTU in Prague Department of Cybernetics
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Figure 2.2: Schematic for LiDAR sensor taken from [22]. The distance is calculated from the
time of flight and the speed of the light ray. From the angle of incidence, we can calculate the
position of the object the ray has ricocheted off.

Figure 2.3: Top - two unsynchronized PCLs; Bottom - the same two PCLs but synchronized.

The matrix M is obtained as shown in equation 2.1. The first three rows of the matrix
A are the calibrations of the mounted sensor, and the last row is the vector [0 0 0 1]. B is
a matrix of poses, which we obtain for each time frame, representing the movement of the
sensor between frames.

M = A�1 � (B � A) (2.1)

CTU in Prague Department of Cybernetics
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where the symbol � denotes matrix multiplication. To synchronize a PCL frame denoted
P 2 RNx3 made up of vectors of points, we add a column of ones, and transform it as follows:

Psynchronized = (M � PT )T (2.2)

and the first three rows of this transformed matrix Psynchronized are the coordinates XY Z of
the synchronized points.

CTU in Prague Department of Cybernetics
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Chapter 3

Ground removal

After synchronizing a PCL sequences, we want to remove the ground since it is not a
dynamic object. This will significantly reduce the number of points to search from, and it is
essential for a good segmentation. In this section, we compare a few algorithms we have tried
for ground removal on a single PCL frame. The comparison metrics used for evaluation are
as follows:

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

IoU =
TP

TP + FP + FN
(3.3)

where TP is the number of true positives, FP is the number of false positives and FN
is the number of false negatives. Intersect over Union (IoU) is a standard evaluation metric
for segmentation. One can see ground removal as a binary segmentation task.

All the following methods are implemented in python programming language [23] using
the NumPy library [24]. We might further speed up the methods using a lower-level language,
such as C.

We know which points belong to the ground thanks to the SemanticKITTI labels. With
this information, we can evaluate the discussed algorithms. A PCL with the ground and the
same PCL without ground can be seen in Figure 3.1.

CTU in Prague Department of Cybernetics
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