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Abstract
Acquiring data for development and test-
ing of human motion tracking algorithms
is difficult and costly. A good alterna-
tive would be to model human motion
and generate the data instead. However,
the intrinsic complexity of the human be-
haviour makes it a challenge to develop
a model of human motion. From many
various approaches tackling this problem,
the Headed Social Force Model has been
chosen as the main algorithm for creation
of a program for generating simulation
data for the testing of a tracking algo-
rithm that takes an input in the form
of projections of humans moving thought
the indoor environment onto the ground.
The advantage of the Headed Social Force
Model lies in offering a set of parameters
that can be explicitly configured and as
a result human motion simulations can
be designed with a higher degree of va-
riety. In order to simulate also complex
scenarios, the human motion model is ac-
companied by a Probabilistic Roadmap
algorithm that computes feasible paths
through an environment cluttered with ob-
stacles, which are subsequently smoothed
out by B-spline interpolation.

Keywords: human motion, simulation,
social force model
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Czech Institute of Informatics, Robotics
and Cybernetics,
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Abstrakt
Získávání dat pro vývoj a testování algo-
ritmů pro sledování lidského pohybu je
obtížné a nákladné. Dobrou alternativou
by místo toho bylo modelování lidského
pohybu a generování dat. Avšak složitost
lidského chování činí vytvoření modelu lid-
ského pohybu výzvou. Z mnoha různých
přístupů, které tento problém řeší, byla
jako hlavní algoritmus pro vytvoření pro-
gramu pro generování simulačních dat pro
testování sledovacího algoritmu vybrána
forma modelu sociálních sil. Vstup sledo-
vacího algoritmu má podobu projekcí po-
hybujících se lidí na zem. Výhoda modelu
spočívá v nabídce sady parametrů, které
lze explicitně konfigurovat a v důsledku
toho lze simulace lidského pohybu navrho-
vat s vyšší mírou rozmanitosti. Aby bylo
možné simulovat i složité scénáře, je model
lidského pohybu doprovázen algoritmem
pravděpodobnostní cestovní mapy, který
počítá proveditelné cesty prostředím za-
plněným překážkami, následně vyhlazeny
B-spline interpolací.

Klíčová slova: lidský pohyb, model
sociálních sil, simulace

Překlad názvu: Nástroj pro modelování
pohybu lidí a generování dat pro vývoj
sledovacích algoritmů
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Chapter 1
Introduction

1.1 Overview

There are many factors that are, some consciously, some subconsciously,
taken into account and evaluated while moving by foot from one location to
another. There are obstacles to avoid, social norms to conform to, interactions
with other people, environment with own its specific topology and semantics,
possibly a need for a path planning ability, all of them contributing and
building up the complexity of the problem of modelling human motion [16].

1.2 Motivation

The impracticality of using real data from motion capture for the testing of
tracking algorithms arises from multiple points of view. Firstly, with tight
privacy laws regarding the commercial use of the recordings and many of
highly visited places being in fact privately owned, the possibilities for a
suitable venue can start getting narrowed down fast. Secondly, even with
a venue secured, another substantial deterrent is the cost of obtaining the
real data, which includes the hardware for the recording, subsequent video
processing and most importantly, the cost of the annotation of the ground
truth by people. Thirdly, it would be hard to capture human motion behaviour
highly specific to certain conditions or extreme cases, such as evacuations.
On the other hand, there is an option of going for the simulated data, where
the specific extreme conditions would be able to be configured, and that will
be the focus of this thesis.

With a goal of implementing a human motion simulator that works upon
2D data, i.e. projections of humans on the ground-level, the scope of this
work as well as the term human motion itself will be limited to 2D human
motion.

Developing models of human motion and pedestrian flow for both normal
and extreme conditions, such as crowded places, has also a multitude of other
usages. It is beneficial for evaluation of the design of pedestrian facilities[2],
navigation of robots in spaces in human domains, designing believable non-
player characters in games, or trajectory prediction of pedestrians in case of

1



1. Introduction .....................................
self-driving vehicles.

1.3 Related Work

1.3.1 Traditional Approaches

The traditional human motion microscopic models can be classified as force-
based, grid-based and agent-based. Force-based approaches like Social Force
Model (SFM)[8] and Centrifugal Force Model (CFM)[4] are based on the
idea that a motion performed by an agent is driven by the virtual forces
representing attraction towards a goal and repulsion from obstacles and other
agents. Social Forces Model has been further elaborated onto by many newer
studies that have integrated features such as group formation[5], categories
of humans[19], or more complex human representation than a particle[13]
into the model. While the forces models are instances of continuum models,
grid-based models such as Cellular Automata and Lattice Gas models offer
only a limited number of directions for movement since they represent spaces
as discretised cells. In [7] the interactions between pairs of pedestrians and
obstacles are described by a nonlinear function of the corresponding distance.
A newer work done in the area that proposes a non-Marcovian lattice-gas
cellular automata models for moving agents with memory[15]. Agent-based
approach can be represented by the C-Nav (Coordinated Navigation) model[6],
in which agents choose their velocities in such a way that they help also
other agents to move to their goals, or also by [20], where a stochastic
motion-control algorithm based on a hidden Markov model was developed. A
worth mentioning approach is also modelling human decision making during
navigation by non-cooperative game theory and theory of Nash equilibria,
trying to minimise a cost function while avoiding collisions. [17] [3].

1.3.2 Machine Learning Approaches

Rigorous research in the domain of machine learning allowed for many new
approaches to be applied to the modelling of the human motion.

[14] uses real-life dataset to train an artificial neural network with a multi-
layered perceptron to infer microscopic pedestrian movement behavior. Par-
ticularly, the recurrent neural networks, having internal states allowing for
processing a sequence of input, allowed for working training on trajectories,
as paths can be viewed as sequences of locations, velocities and accelerations.
Similarly, the machine learning approaches use long short-term memory units,
which can be considered as the upgrade of RNN units as they do not suffer
from the vanishing gradient problem. Such approach was used e.g. in [1].

Imitation learning is a technique where agents mimic human behavior in
performing a task by learning a mapping between observations and actions
from demonstrations. Its great advantage lies in teaching complex tasks
with minimal expert knowledge of the underlying decision making process

2



....................... 1.4. Evaluation of the Suitability of Approaches

model[10]. [9] comes up with a model-free imitation learning algorithm,
further improved by the framework of Social-Aware Generative Adversarial
Imitation Learning (SA-GAIL), where the social aware components in the
generator of the future trajectories are intention inference, collision avoidance
regularization and social-aware LSTMs for human-human simulation[21].
[18] shapes the reward function by combination of reinforced learning an
knowledge distillation.

The learning techniques’ weaknesses lie in that many factors affecting the
movement of pedestrians cannot be directly captured by the camera, datasets
feature only a limited number of samples, the higher the difference to the
setting and environment between the training and testing data, the lower the
success rate, do not capture the non-deterministic nature of human decision
making, i.e., there are more than one trajectories a human expert can take in
the same setting[18].

1.4 Evaluation of the Suitability of Approaches

After obtaining some understanding of possible approaches here follows
discussion on their suitability for the purpose of this work.

Multi-agent systems have shown to encompass a large number of immensely
different approaches under the one term. On one hand, there are primitive ones
where collisions are handled by backtracking or can even lead to deadlocks.

On the other hand, there are multiple very able looking machine learning
approaches, which would be, however, highly dependent on the available
datasets. Multiple of the studies presenting machine learning technique
applied to the human motion show simulations focused only on collision avoid-
ance with other agents, and with no obstacles [18], which leaves the question
open, of how good they would perform in a cluttered environment. The
negative prospects on this front are based on the exploration of the available
datasets on the human motion, which had been documented summarised
in [16]. In the study it can be seen that out of 16 well prepared and used
datasets, only 4 were made in indoor environment. Furthermore, even in
these 4 datasets, there are few if any obstacles and for the most part they
are large open spaces. Some of the studies had own self-made datasets, but
these were open not made public, included only a low number of participants,
and were too specific to the purposes of the study.

Furthermore, a common characteristics of multi-agent systems is that they
are only aware of their surroundings, about which they get information from
their sensors, and do not know of what lies behind a certain distance. This
would be undesirable for modelling situations when, for example, a customer
arrives into a shop, and already has at least some idea, where to find his
desired goal. Humans do not explore new pathways, but can visit

3



1. Introduction .....................................
1.5 Outline

As has been shown, there is a huge variety on how to grasp the topic of
human motion. However, the machine learning approaching and multi-agent
systems have been found lacking or limiting in multiple directions. For that
reason, a force-based approach will be chosen.

The reader will be acquainted with the implementation and simulation
results, which will be evaluated, whether they are suitable for the purposes
of a human motion simulator for tracking algorithms.

4



Chapter 2
Theoretical Background

From the force-based approaches, Social Force Model will be further investi-
gated, since throughout the years, it has been often picked-up and improved
in one way or another.

2.1 Social Force Model

Helbing in [8] further explores the concept formulated by Lewin[12] that
behavioral changes can be modelled by social fields, resp. social forces. He
reasons that pedestrians react to stimuli (i.e. perception of their environment
and their inner motivation) by making a certain behavioural change while
trying to maximize utility. He neglects a fact that human motion is inherently
multimodal[11], meaning that multiple futures of different probabilities are
plausible for a given state by assuming that pedestrians tend to make auto-
matic reactions based on their past experience with such situations. Based
on this premise he models the behavioural reactions of pedestrians by an
equation of motion.

Social force fi represents a motivation of an agent to act. In the case
of pedestrian motion, the force describes how does environment affect a
pedestrian’s behaviour and is formulated as a immediate change in the
desired velocity.

Social Force Model views agents as particles and describes the interactions
between agents and obstacles as a forces derived from Newton’s Law of Motion
that, which are components of the social force. The individual forces are
virtual and serve as a measure of the internal motivation of agents to make
a movement in a certain direction with certain velocity. The social force
components are namely:. attractive force acting towards the destination fg

i ;. repulsive force acting from other pedestrians fp
i ;. repulsive force acting from obstacles fobs

i .

The social force is equal to the sum of attractive force acting towards the
destination and all repulsive forces, multiplied by their respective weights:

5



2. Theoretical Background ................................
fi = fg

i + fe
i (Eq. 2.1.1)

fe
i = fp

i + fobs
i (Eq. 2.1.2)

Such design leads to collision avoidance. The model, while modelling
microscopic characteristics, such as position and velocity, belongs to those
that are capable of macroscopic emergent behaviours from a perspective, such
as lane formation or clogging effects.

2.1.1 Attractive Force Towards the Destination

Even though the model can handle avoiding collisions with small static and
dynamic obstacles, it requires a global path planning algorithm in order
to not get stuck in a local minimum, to successfully navigate in a more
complex environment. A path for agent i can be expressed as a sequence
of position vectors (w0

i , w1
i , ..., wwn

i ), which act as waypoints on the path
towards the goal. There is an underlying assumption for calculation of the
attractive force towards the destination that humans want to reach their goal
by passing the shortest distance between their current and final location,
so the desired direction of motion ei is at any moment a normalized vector
difference between the next waypoint vector wk

i and current position vector
of agent i ri:

ei = wk
i − ri

|wk
i − ri|

. (Eq. 2.1.3)

An agent of mass mi and desired velocity of magnitude vd
i is attracted to its

goal by the force

fg
i = mi

vd
i ei − vi

τi
, (Eq. 2.1.4)

where relaxation time taui characterizes the time it takes an agent i to adjust
its velocity to a new situation after changes in the environment.

2.1.2 Repulsive Forces from Other Pedestrians

The repulsive force from other pedestrians is calculated as a sum of repulsive
forces from all of them and is modelled as elliptical equipotential lines, where
the semi-major axis is aligned with the direction of the velocity vector of an
agent j, as to take into account that the agent will be making a step in that
direction. The repulsive force decrease exponentially with increasing distance
between the pedestrians.

f̂ij = −V 0∇rij e
−bij

σ , (Eq. 2.1.5)

2bij =
√

(rij + ||rij − vj∆tej||)2 − (v∆t)2, (Eq. 2.1.6)

where V 0 is a constant.

6



.................................. 2.1. Social Force Model

2.1.3 Repulsive Forces from Obstacles

The repulsive force from other obstacles and walls reflects the tendency of
humans to keep distance from walls and obstacles and is calculated as a
sum of repulsive forces from all obstacles, i.e. fobs

i =
∑

w fobs
iw . It decreases

exponentially with increasing distance ||riw|| between an agent and a nearest
point of an obstacle:

fobs
iw = −U0∇riwe

−||riw||
ri , (Eq. 2.1.7)

where U0 is a constant.

2.1.4 Attractive Forces from Other Pedestrians or Objects

There are many cases when also attractive forces between pedestrians and
objects are present, but Hilbert models only a temporary flare of attraction
that decreases both with distance and time.

2.1.5 Effective angle of sight

In order to account for the fact that pedestrians mainly accommodate to
the situation in their effective angle 2ϕ of sight, meaning that they either
interact with other pedestrians or avoid them, forces can be given directional
dependent weights that can have a value of 1 in a case that a pedestrian lies
in front of them and some constant value c with 0 < c < 1 if they lie out of
the sight:

w(e, f) =
{

1 if e · f ≥ ||f || cos φ

c otherwise
(Eq. 2.1.8)

fij = w(eg
i , −f̂ij)f̂ij (Eq. 2.1.9)

Such weights are applied only to the forces between pedestrians, as it has
been suggested that humans tend to keep distance from static obstacles.

2.1.6 Extensions to the Social Force Model

The Social Force Model has been frequently explored by others over the years
since its publication. Some of the noteworthy works:. in [19] different categories of agents – luggage-laden, ordinary and panic

pedestrians, are introduced;. in [2] Alonso-Marroquín et al. proposed a model that represents humans
as spheropolygons and add up also viscoelastic contact forces, contact
friction, and ground-reaction forces; they applied the model to the situa-
tion from 2012, when 3 persons have died in a stampede at a nightclub
in Madrid, to analyze the crowd behaviour in a dense counterflow;. in [13] humans are represented by a three-circle representation;. [5] incorporates also a concept of heading and torque.

7
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Chapter 3
Implementation

The goal of the implementation is to develop a program which for certain
input pedestrian characteristics will generate trajectories with available visual
presentation as well as in a textual form.

The designed simulator has following components:. Headed Social Force Model for local path navigation. Probabilistic Roadmap algorithm for finding a global path. Finite State Machine architecture for an agent’s behaviour

3.1 Headed Social Force Model

Proposed by Farina et al., the Headed Social Forces Model[5] further elab-
orates upon the Social Force Model by Helbing, enriching it with more
aspects of human motion behaviour, with the goal of generating more realistic
trajectories than the original Social Force Model does.

Additional features:. generation of smoother trajectories without lateral motions in open
spaces, with an ability to adapt also to a cluttered environment. possibility of modelling a group of people that moves together

For these purposes, changes in translational dynamics and rotational dy-
namics have been made to the original Social Force Model.

3.1.1 Translational dynamics

The original forces attraction force towards destination fg
i and interaction

force vbfe
i are projected on the forward direction of motion, i.e. the one where

the pedestrian is heading, and the orthogonal direction:

uf
i = (fg

i + fe
i )T rf

i , (Eq. 3.1.1)
uo

i = kofe
i

T ro
i − kdvo

i (Eq. 3.1.2)
for constants Ro > 0, kd > 0.
Addition of a term that dampens the lateral motions.

9



3. Implementation....................................
3.1.2 Rotational dynamics

A newly introduced term representing magnitude of torque is:

uθ
i = −kθ(θi − θg

i ) − kωωi. (Eq. 3.1.3)

With a dynamic model

¨̃θi + kω

Ii

˙̃θi + kω

Ii
θ̃i = −kω

Ii
θ̇i − θ̈g

i (Eq. 3.1.4)

of the orientation error ¨̃θi ≈ θi − θg
i , i.e. the angle between the heading

direction and the destination direction fg
i Farina formulated the equations

for the poles as functions of the magnitude of fg
i . Such formulation allows us

to control how susceptible to the orientation error the pedestrian will be by
configuring the constants kθ and kω:

kθ = Iik
λ||fg

i |

kω = Ii(1 + α)

√
kλ||fg

i ||
α

3.1.3 Formation of Groups

An additional term modelling an attraction force of members of a group that
holds them together was formed. A centroid of the group of pedestrians is
calculated, and the attraction force compels the individuals to stay within an
area shaped a rectangle with side df , fo that has the centroid as its center.

The centroid is the mean of all position vectors of the pedestrians in the
group. If pi is the distance of pedestrian i from the centroid, then the
projection of the group cohesion force in the forward motion is k8

2h(pi, rf
i , df )

and the its projection in the orthogonal direction: k8
2h(pi, ro

i , do), where
k8

1 > 0 and k8
2 > 0. For h(x,y,z):

h(x, y, z) =
{

1 if x · y > z

c otherwise
(Eq. 3.1.5)

3.1.4 Changes in Interaction Forces

The original interaction forces consisting of only an exponential term were
enlarged by two additional terms representing compression and friction forces.
These terms have a nonzero value only when the distance between a pedestrian
and another person dij is smaller than the sum of their radii rij , or when
the distance between a pedestrian and a nearest point of an obstacle diw is
smaller than the pedestrian’s radius rij

The Headed Social Force Model upgraded equation for the pedestrian
repulsive force from the Social Force is:

fp
ij = [Aie

(rij −dij )
Bi + k1g(rij − dij)]nij − k2g(rij − dij)∆v

(t)
ij tij, (Eq. 3.1.6)

10



.............................. 3.1. Headed Social Force Model

The upgraded equation for the obstacles repulsive force from the Social
Force Model:

fw
iw = [Awe

(ri−diw)
Bw + k1g(ri − diw)]niw − k2g(ri − diw)∆v

(t)
iw tiw (Eq. 3.1.7)

For
rij = ri + rj ,

dij = ||ri − rj||,

nij =
ri − rj

||ri − rj||
,

tij = [−nij(2), nij(1)]T ,

∆
(t)
ij = (vj − vi)T tij

g(x) = max{0, x} (Eq. 3.1.8)

3.1.5 Usage

Prior to the start of the motion simulation, initialization of the following
variables is needed:. a position vector ri,. a velocity vector vB

i = [vf
i , vo

i ]T , where vf
i and vo

i are projections of the
velocity vector vi on the forward and orthogonal direction,. a vector qi = [θi, ωi]T containing the angle θi representing the angle
between the forward motion direction and the goal destination, and
omegai representing angular velocity,

for each pedestrian. Usually these are initialized as not moving. Based on
the chosen simulation time and the desired number of generated frames we
get time duration t of one frame. In intervals t, equations of motions with be
evaluated and the respective changes integrated to the current state of the
variables.

ṙi = vi = R(θi)vB
i

v̇B
i = 1

mi
uB

i

q̇i = Aqi + biu
θ
i

A =
[
0 1
0 0

]
, bi =

[
0
1
Ii

]
(Eq. 3.1.9)
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3. Implementation....................................
3.2 Global Path Planning

Most of the human motion models take care only of the task of performing a
locally-constrained motion, meaning that they strive to keep their direction
of heading aligned with the desired direction of motion, while reacting to
stimuli in their closest neighbourhood. However, if reaching a goal requires
navigating through an environment filled with obstacles, global path planning
algorithm is needed to provide such feasible path, if any exists. Path can be
understood as a sequence of actions or points following which will lead an
agent from the starting state/point to the destination. For this path finding,
only the static parts of the environment are considered and the map with
obstacle coordinates is known.

3.2.1 Selection of the Global Path Planning Algorithm

There are search-based techniques that discretise the map to a grid and
work with a graph structure, going through reachable unvisited nodes and
calculating the cheapest way to reach the node and its cost. Then there
are sampling-based methods that do not find the optimal solution, namely
Rapidly exploring random tree (RRT), RRT with heuristics applied: RRT*,
and a Probabilistic roadmap algorithm PRM. RRT sequentially generates
sampling points and connects them to the nearest node in the graph. PRM
generates the sampling points at once and makes connections between them
by connecting the k-nearest neighbours.

Even though humans strive to reach their destination in the shortest
time possible, they do not use the optimal paths, but rather along smooth
trajectories. Therefore, a non-optimal and more time efficient algorithms
would be preferred. Between RRT and PRM, PRM holds the advantage of
generating a roadmap only once, and then a search-based algorithm is used to
find a path through this simplified roadmap of the environment. As this would
let all the pedestrians use the same generated roadmap to find their path, it
was chosen as the global path planning algorithm for the implementation.

3.2.2 Probabilistic Roadmap Algorithm Implementation

As for the specifications for this algorithm, a number of points (1/10 of the
total number of points in the map has been used) is randomly generated
within the borders of the map, and each of the points is checked, whether it
collides with any of the obstacles. Additionally, also a space of 1 meter around
the obstacles was left unexplored, in order to avoid walking right next to the
walls. On the unique uncolliding points, as well as on the all points of interests
that attract walkers, algorithm k-nearest neighbors is performed in order to
join points lying close to one another together. Value of the parameter k of the
kNN algorithm k=5 has been used. The connections between the neighbour
points as suggested by the algorithm will be candidates, from which those that
collide with any obstacle are discarded. A graph structure is generated, with
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................................. 3.2. Global Path Planning

sample points as vertices and connections as edges, with a cost proportional
to their length. On this graph, Dijkstra algorithm will be repeatedly run with
a task of finding the shortest path between two vertices. If it happens that
there is no path found, additional sample points are generated, along with
their connections once again done according to the kNN algorithm.

Figure 3.1: Probabilistic Roadmap pathways

3.2.3 Trajectory Smoothing

Since humans perform smooth trajectories, the output path by the Probabilis-
tic Roadmap Algorithm is smoothed out by B-spline interpolation performed
for each section of the path section separately, therefore the trajectory is
discontinuous at the points at which the pedestrian stops (marked red in the
image below). This reflects that once a person stops at some location and
performs an activity that takes some time, they choose their path anew.
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3. Implementation....................................

Figure 3.2: Smoothed Out Trajectory

3.2.4 Subgoals

With a more complex environment, such as a shop or a museum, while the end
goal of such visit is to get to the exit, the path itself is even more important.
Humans stop for a short time in front of display cases, shelves or even just
walls. This pattern of behaviour can be generalized to the idea of points of
interest, locations through which the walkers should pass on their way to the
end point. As a result, more diverse paths will be explored.

In the implementation, these points of interest are generated as random
point on the circumference of the selected sides of some obstacles. The sides
can marked as attractive to humans in the input file for the map of the
environment. For a randomly generated set points of interest that a walker
will have to pass through, a travelling salesman problem arises, as we have to
come up with a plan in which order to visit the desired points of interest.

Rather than searching for a path passing all selected locations repeatedly
for all agents, which would significantly increase the computation overhead, a
heuristic approach was preferred. A general path passing through the corner
points of attractive sides of obstacles is generated. For each point of interest,
its closest corner point is determined. Afterwards, the points of interest can
be sorted according to the order of the corner points, to which they belong
to.

Regarding the order of the order of the points of interest from one set,
belonging to one specific corner, their order was left as random, for the
purpose of mimicking the behaviour of humans when they stick to a section
longer time, perhaps for exploring details of a specific exhibit or searching for
a desired merchandise.
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............................ 3.3. Agent as a Finite State Machine

Figure 3.3: Pool of Generated Points of Interests

3.3 Agent as a Finite State Machine

Even though it is reasonable to assume that people try to reach their destina-
tion in the shortest time possible, they often encounter unexpected situations
as a result of which they have to alter their plans. To account for such random
actions, the agent’s behaviour is represented by a finite state machine.

After transitioning from the state absent in time t after the beginning of
the simulation, a walker starts undertaking an active part in it by passing
though a list of in beforehand planned locations. Most of the time they spend
in the normal walking state.

The state standing is entered whenever any point of an interest along the
planned path is reached.

Transitions from normal walking to States accelerated movement and freezed
are in default happening with a percentage of 1%.
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3. Implementation....................................

Figure 3.4: Finite State Machine diagram

3.4 Map

Maps consist of a set of obstacles that either have a form of a line or a
rectangle. The program accepts a text file as an input where each line
specifies points defining an obstacle, with a possibility to mark edges as the
ones that attract people.

If a new map is generated, it is written to a file in the format: 2 points
defining a line segment (the starting point and the ending point) or a rectan-
gular (any two opposite corners), with sides that should serve as obstacles
and as attraction surfaces specified. One does not exude the other, as e.g. in
a supermarket shoppers are attracted to the walls of the corridors where the
merchandise is displayed. The sides are specified by their initials: ’L’, ’R’,
’B’, ’T’ for the left, right, bottom, top. example : 0;32,25;L,T,R;L,R

3.5 Implemention Specification
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.............................. 3.5. Implemention Specification

Agent Characteristics

Parameter Name Distribution

radius N(u,sd)

mass N(u,sd)

desired speed N(u,sd)

duration of state
standing

N(u,sd)

duration of state
accelerate

N(u,sd)

duration of state
accelerate

N(u,sd)
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Chapter 4
Simulations and Results Discussion

Firstly, a methodology for the evaluation of the model with be presented,
followed by demonstrations from the simulation and their discussion.

4.1 Methodology

The evaluation of simulations will be conducted in 3 parts.
The first one will be focused on the implementation itself, how well it

models human motion in various conditions and environments, displaying
its characteristic features in specifically for that purpose tailored situations,
but also giving space to unveil errors, inconsistencies and weak spots of the
algorithm.

The second part of the evaluation will be based on comparison of the
generated data with the data generated by other models. An instance of a
multi-agent system will be provided, as well as real data.

The third part of the evaluation of the model will lie in collection of re-
sponses from real humans, how do they perceive the generated data. Multiple
people will be shown example animations of human movement generated by
various models and asked two questions.

4.2 Part I: Simulations

Descriptions of the Simulated Scenarios:..1. Scenario #1: Swap of walkers’ positions – collision avoidance.Walkers arranged in a circle at the start will trade their spots
together, meeting in the middle all at one while aiming for
their desired position. The ability to smoothly avoid other
pedestrians will be evaluated;..2. Scenario #2: Crowded corridor. The purpose of a crowded corridor is to investigate how do the
emergent properties such as line formation of the Social Force
Model hold up;
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4. Simulations and Results Discussion .............................3. Scenario #3: Open space

. In order to capture the distinctions in the movement of various
people and clearly show the differences in their behaviour,
a large area with one big obstacle in the middle will been
presented;..4. Scenario #4: Cluttered space with a shop-like structure

. To show off global path navigation, passing obstacles of various
shapes and generation.

4.2.1 Scenario #1: Swap of walkers’ positions – collision
avoidance

Ability to avoid other walkers represents the core function of any human
motion model. For human trajectory predictions implemented in robots,
errors in collision avoidance mean safety risks. In the generation of testing
data for tracking algorithms, collisions could incorrectly lead to doubts about
the performance of the tested software.

Two formats of the location swap animations were undertaken. One for 6
walkers and the other one for 12 walkers.

Both on the animations and on the trajectory plots of the walkers it is
clearly visible, the walkers just to the dynamic changes in their environment,
i.e. other walkers, by rotating their body. Also, after the collision has been
successfully avoided, the walkers do not sharply turn back to their former
path, but rather gradually rotate and walk towards their goal position.

On the other hand, it has to be mentioned that at first, head on collisions
have occurred. The walkers adjusted their paths, but only after a small
rebound caused by the collision. After this result, parameters ko and kd of
the Headed Force Model, which control how much influence does the lateral
repulsive force holds an how much is the lateral speed being suppressed, has
were changed. In general, lateral movements are undesired, since a person
under normal conditions prefers to walk forwards. However, these lateral
movements are needed in situations like collision avoidance.
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.................................. 4.2. Part I: Simulations

Figure 4.1: Location Swap Simulation: Trajectory Plot (6 walkers)

Figure 4.2: Location Swap Simulation: Trajectory Plot (12 walkers)

4.2.2 Scenario #2: Crowded corridor

In the second simulation example, collision avoidance is approached from
another perspective. Two group of walkers walking in the opposite direction
meet at the center of the corridor.
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4. Simulations and Results Discussion ...........................

Figure 4.3: Corridor Simulation: Trajectory Plot

Once again, smooth rotations are performed in order to avoid a collision,
even more pronounced in this case.

Figure 4.4: Corridor Simulation: Denser Trajectory Plot

4.2.3 Scenario #3: Open Space Simulation

A rapid movement through the space is demonstrated by the third scenario.
There is no global path finding algorithm in use yet, what has as a consequence
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.................................. 4.2. Part I: Simulations

that some walkers became stuck in the between the obstacles. Otherwise
there is almost like a bubble of unexplored space around the obstacles. If the
goal does not lie exactly on the other side of the obstacle, there is a clear
effort to avoid them. There seems to be little to none of the unnecessary
lateral movement.

Figure 4.5: Open Space Simulation: Actual Trajectory Plot

Figure 4.6: Open Space Simulation: Actual Trajectory Plot
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4. Simulations and Results Discussion ...........................
4.2.4 Scenario #4: Cluttered Space with a Shop-like
Structure

The forth category culminates with the most complex scenario: generation of
points of interest, finding a path going from the start, through the points,
and terminated at the exit. Examples of such paths are visualized 4.7, with
pink spots marking the points of interest, and green spots marking the corner
points.

As can be also seen, there is a collision on the planned path, that has likely
occurred due to the path smoothing. After path smoothing, there is a check
only for a point collision (not path line section collision), so that may be the
reason why such undesired path could be generated.

Figure 4.7: Shop Simulation: Planned Trajectory Plot

As can be seen on the image 4.8, the walker can successfully navigate
through the shop, with a smooth trajectory for the most part, with deforma-
tions near obstacles.

Figure 4.8: Shop Simulation: Trajectory by Motion Capture (1 walker)
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.................4.3. Part II: Comparison with Data Generated by Other Models

Last example is a close up on the path of a group of walkers (the lower
trajectory 4.9),

Figure 4.9: Shop Simulation: Trajectory by Motion Capture

4.3 Part II: Comparison with Data Generated by
Other Models

[18] features a scenario for which comparisons between trajectories collected
by motion capture, the model from the study - multi-agent system using
knowledge distillation, reinforced learning and optimal reciprocal collision
avoidance. This scenario has been reproduced and is displayed in figures
Figure 4.1: Location Swap Simulation: Trajectory Plot (6 walkers) and Figure
4.2: Location Swap Simulation: Trajectory Plot (12 walkers) above.

A short comparison of the data generated by our model and data from the
algorithms from the study will be supplied. It is emphasized that the purpose
of the comparison is not to compare the algorithms themselves, but rather
to provide the reader with an idea what are some shared characteristics,
advantages, or missing features of the Social Force Model, when compared
with other approaches.

While the reinforced learning model, successfully handles all the walkers
without collisions, the resulting trajectories are too well coordinated and seem
unnatural. In this regard, the unexpectedness of our model is preferred, as it
better captures the diversity in human motion behaviour.

The trajectories by the optimal reciprocal collision avoidance algorithm
feature multiple sudden changes in direction, conflicting with the human na-
ture to walk along smooth trajectories. Also, the model seemingly accelerates
all the walkers at the same time, another unnatural action.

More pronounced rotations than preformed by humans (when comparing
against the reference animation) seems to be a common feature of the multi-
agent system using knowledge distillation and the social force model.
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4. Simulations and Results Discussion ...........................
On the other hand, all 3 featured algorithms keep the walkers a greater

distance from one another, instead of the touches that occur in the social
force model.

Figure 4.10: Comparison of human motion modelling approaches by [18]

4.4 Part III: Survey

A survey has been conducted, in which each participant was shown 4 unlabeled
animations and was asked 2 questions:. to what extend they think the data could have been generated human

motion. to what extend they think the data reflects human motion

They were asked give an answer on a scale 1 to 10 so as to obtain a
quantifiable measure of the performance of the model. The survey responders
were offered no context about the background of the data in order to not give
out any hint or introduce a bias.

The first animation holds an actual trajectory of a person, while the
second one was a reproduction of the first one by using the same initial and
terminating coordinates, but generating all the in points between by the
headed social force model.

In the same manner, the second pair consists of a ground truth and its
reproduction by the Social Force Model.

Examples can be found attached in the Appendix: image A4.11, image
B4.12, image C4.13, image D4.14

Unfortunately, not enough samples had been collected to present any
meaningful drawn conclusions. However, it can be at least mentioned, that
even though the real dataset had been, as was expected, given a higher score
or the same score, the differences were not huge. As for the differences in
the scores given to the 2 questions within one dataset, all the responders
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....................................4.4. Part III: Survey

had given almost the same score, as if to express, that they do not see a
difference between what is the source of the data and whether it reflects the
characteristics of the source.

Figure 4.11: Survey: A Screenshot from Animation A (taken from [18]), i.e.
trajectory of a person

Figure 4.12: Survey: A Screenshot from Animation B, trajectory generated by
the Social Force Model
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4. Simulations and Results Discussion ...........................

Figure 4.13: Survey: A Screenshot from Animation C (taken from [18]), i.e.
trajectory of a person

Figure 4.14: Survey: A Screenshot from Animation D, trajectory generated by
the Social Force Model

Presented results will be evaluated and summarized in the following chapter.
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Chapter 5
Evaluation

In the most basic terms, the algorithm has been proved to generate human-like
trajectories. However, there are several limitations that should be kept in
mind.

5.1 Limitations of the Solution

Some of the observed weaknesses of the algorithm is that it does not reflect the
human trait that a different path might be chosen when walking between two
coordinates. Due to the use of the of the Dijkstra algorithm that goes through
the edges supplied by the Probabilistic Roadmap, for one combination of a
starting point and an end point, the same path will be always generated.

Another weakness is that in certain cases, a different parameters settings
might be required to get the best results. However, this needs to be done
manually. For example, in the case of the head on collisions simulated in
the corridor, after configuring a constant that controls how much of an
influence does the force driving the lateral movements have, the simulation
were smoother. On the other hand, in general scenarios, the lateral movements
are desired to be minimized.

As for the formations of groups, in environments as shops, with many turns,
it is unproductive to give various group members an option to have different
preferred speeds (what would reflect the reality, since, for example, family
groups consist of members with highly different characteristics), because in
the simulations, the slowest member would get sooner or later stuck behind
an obstacle due to being attracted to the center of the group, what would
deform his supposed direction around an obstacle.

5.2 Time Complexity

Regarding the time complexity, in order to calculate one frame, a system of
differential equations needs to be solved to determine the changes in position,
velocity, angular velocity and the angle between the direction of heading and
the goal position. For those calculations, we first need to find what are the
forces affecting each walker, what translates to looping through all other
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5. Evaluation ......................................
walkers and all obstacles in the environment. So need to do also all other
agents, what leads to the quadratic time complexity in the number of walkers
as well as the number of obstacles.

There is also much overhead added before the simulation event starts
despite the attempt at cutting it down, such as with the generation of the
probabilistic roadmap in path finding process and also the idea of using only
a few selected points to determine the order of the points in the path. Use
of the probabilistic roadmap lies, and relies on the fact that the examined
environments will be reasonably free to explore. There is also an assumption
that there exists a viable path between the inputted points.

The overhead might be reduced by exploring further heuristic approaches.
Instead of calculating a repulsion force from every obstacle, only those in
some close vicinity would be selected. That could be achieved by division
of the space in to smaller subsections, where each subsection would keep
knowledge about the nearest obstacles...

Additionally, this program would be suitable for parallelization, since
the time consuming calculations (forces affecting humans) are performed
independently from each other.

5.3 Ideas for Improvement

The map design offers a lot of space for improvements, namely automatic
generation of new maps based on specified characteristics that would be
inputted by the user. Also, more diverse shapes of obstacles would bring new
opportunities for actions and would expand the range of possible movements
to display, such as running around a circular obstacle.

Regarding the Headed Social Force Model, additional characteristics of hu-
man motion could be integrated from other already existing implementations
(various categories of people or more realistic shapes for people representation
other than a sphere). Furthermore, the collision avoidance does not take
into account social norms, such as preferring the right side for the process of
avoidance.

As for the possibility of the use of other algorithms for the human motion
modelling, this rather leads to the question of obtaining an appropriate
dataset. Regarding other available datasets, described in detail in [16], could
be analyzed to distinguish various types of behaviour (e.g. frantic, slow,
organized) to categorize the instances of human motion and train a learning
algorithm upon such data in order to be able to model various characteristics,
what would generate more realistic output.
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Chapter 6
Conclusion

The focus of this thesis was the problem of a lack of affordable solutions for
testing of tracking algorithms. An alternative to the costly acquisition of the
human motion data has been supplied - a simple program, that generates
human trajectories based on the input data parameters.

Based on the conducted research on the topic of how to model human
motion, various approaches were considered. Ultimately, the machine learning
approaches were rejected due their limitations caused by a small number of
datasets conducted indoors being available. Also, the existing datasets do
no focus on the distinction in the behaviour of an individuals, what would
be important for the purpose of the simulator for the tracking algorithms.
Multi-agent systems were rejected due to the fact that they do not represent
well human behaviour, as they are not aware of the environment from the
global perspective.

A popular example of the force-approach had been selected, the Social Force
Model[8], more specifically, its extension: [5]. The model describes the human
motion using Newton’s laws of motion, and adds up rotational dynamics, the
idea of a heading direction and a possibility of a group formation.

This thesis builds up on its implementation and enriches it further with
the possibility of generating points of interests to be visited in a certain order,
generating new routes from a passed map of the environment, smoothing
the paths with a B-spline interpolation, following a path and a simple user
interface for the input.

The performance of the model has been evaluated using multiple scenarios.
The model can successfully navigate through the environment and exhibits
randomized actions.

On the other hand, it has certain limitations, for example the collision
avoidance is happening too close to one another together.
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