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Abstract

This thesis covers the design, implementation, and testing of a program for the detec-
tion and localization of unmanned flying vehicles (UAVs) with the use of RGB and
thermal photos and fusion algorithms. Detection and relative localization is based
on the Faster R-CNN network with FPN as a feature map generator and ResNeXt or
ResNet as a feature extractor. A comparison of detecting and localizing UAVs with
the use of RGB photos only, thermal photos only, and different fusion architectures
is provided, and the advantages of the different approaches are discussed.

Keywords unmanned aerial vehicles, thermal camera, convolutional neural net-
work, relative localization, computer vision

Abstrakt

Tato prace se zabyva navrhem, implementaci a testovanim programu pro detekci
a lokalizaci bezpilotnich 1étajicich prostiedku (UAV) s vyuzitim RGB a termdlnich
fotografii a fuznich algoritmu. Detekce a relativni lokalizace je zalozena na Faster
R-CNN siti s FPN pro generovani ptiznakovych map a ResNeXt nebo ResNet pro
extrakci piiznaku. Na datech z praktickych experimentu jsou porovnany detekce
a lokalizace UAV s pouzitim pouze RGB fotografii, pouze termalnich fotografii a
ruznych fiznich architektur a vyhody rtznych piistupt jsou rozebirany.

Kliéova slova bezpilotni prostiedky, termdlni kamera, konvoluéni neuronova sit’,
relativni lokalizace, poc¢itacové vidéni
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1. INTRODUCTION

Chapter 1

Introduction

This thesis is focused on the detection and relative localization of drones. A drone is
an unmanned aircraft guided remotely by an operator or autonomously by some program.
Unmanned aerial vehicle (UAV) means the same, these terms are interchangeable, and both
will be used in this thesis.

Although there exist many constructions of UAVs, this thesis mainly considers quad-
copters, a type of helicopter with four rotors, as in Figure 1.1. They have a relatively simple
control system, can fly vertically, and are widely used due to these reasons.

Figure 1.1: A flying quadcopter DJI F450 used for the experiments in this thesis!.

Detection and localization of drones are important due to several reasons. It may be
used for a practical realization of cooperative exploration tasks, collision avoidance [7], or
even for the interception of non-cooperative drones [1], which can be dangerous for critical
infrastructure objects, like power plants or airports.

This problem can be tackled using different methods. The most obvious is with visual
information from a camera, processing it by a convolutional neural network (CNN). This
method leads to stable detections in good weather and lighting, but in bad weather conditions
or without sufficient illumination, the task becomes more problematic.

For this reason, many researchers use additional sources of information. For example,
some works employ acoustic sensors [14] or thermal cameras [2]. In [5], the authors process
inputs from the thermal camera with a CNN in the same way as inputs from a standard RGB
camera to obtain reliable information in more difficult lighting conditions (e.g., during the
night, in a fog, etc.). Another approach is to combine the thermal and RGB images as in [9].

1http: //mrs.felk.cvut.cz/research/micro-aerial-vehicles
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1.1. RELATED WORKS

A crucial element of this approach to drone detection is choosing a suitable network
architecture. The current state-of-the-art object detectors are Faster R-CNN [22], YOLO [20],
SSD [19], etc. This project uses Faster R-CNN due to its outperforming quality of detection
[15], especially on small objects [3]. The feature-pyramid network (FPN) was used for feature
extraction as part of the Faster R-CNN because it improves the detection of objects at different
scales while maintaining good computational efficiency [16].

Using known parameters of the camera and dimensions of the target, the 3D position of
the detected objects may be calculated from its bounding box predicted by the CNN. A 3D
position estimation method that takes advantage of this approach is proposed in this thesis.

1.1 Related works

There are no popular benchmarks for multispectral drone detection, so in this work, the
results of detection using thermal photos will be compared with the results of detection with
RGB input only.

Vrba et al. [4] proved that drones can be successfully detected with an RGB camera
without any special markers placed on the drone. They used YOLO for detection to minimize
processing delay and make it run online onboard another UAV. Relative localization was done
with the calculations using the real size of the drone (which is either known or guessed by a
neural network).

Combining information from both thermal and RGB photos in order to acquire more
data may potentially improve the robustness and precision of the detection. The fusion may
be tackled in many ways, from putting thermal photos as a fourth input channel of the CNN
in addition to the R, G, and B channels, to more sophisticated structures, including concate-
nating features or generating proposals and detections by the two sub-networks separately
and merging detection scores at the end (cascade design).

Parameters Accuracy | Miss Rate | TPR FPR | Specificity
Visible 97 34 97.05 | 3.22 | 96.6
Thermal 97.6 2.8 97.65 | 2.67 | 96.8
Feature Fusion | 99.2 0.7 99.25 | 0.59 | 98.76
Proposed 99.8 0.01 99.85 | 0.02 | 99.86

Figure 1.2: Comparison of different fusion techniques for thermal and RGB detection [8].
TPR is the true positive rate, and FPR is the false positive rate.

Khalid et al. [8] experimented with fusion using handcrafted features and fusion using
CNN on the KAIST dataset?. They showed that processing visible and thermal images sepa-
rately and fusing features at the end in ResNet-152 allows achieving better results than using
only one type of input, as seen in Figure 1.2.

Li et al. [9] performed an in-depth comparison of different ways of merging thermal and
RGB photos in their work on the detection of pedestrians on the KAIST dataset. They used
Faster R-CNN as a base network and derived six different fusion architectures from it, which
are shown in Figure 1.3.

2https: //soonminhwang.github.io/rgbt-ped-detection/
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Figure 1.3: Different architectures for thermal and RGB fusion, (a) Input Fusion, (b) Early
Fusion, (c) Halfway Fusion, (d) Late Fusion, (e) Score Fusion I, (f) Score Fusion II [9].

Halfway Fusion and Score Fusion I outperformed the other architectures. The authors
attribute it to benefiting from the balance between semantic information and low-level features
in the case of Halfway Fusion and cascade design in the case of Score Fusion I.

This thesis also explores the possibility of onboard localization, which adds stricter
requirements to the complexity of calculations because of SWaP (Size, Weight, and Power)
constraints of today’s micro-scale UAVs. In that case, using many input sources can slow
down the speed of localization up to the point of being unusable in applications where a low
delay and high update rate are crucial, such as multi-robot cooperation, collision avoidance,
or autonomous aerial interception. This also is true for artificially increasing the resolution of
the image, in [10] authors showed that it can improve recall up to 32.4%, but such a promising
technique can hardly be used for onboard application.

Svanstrom et al. [2] claim that thermal cameras are successful in UAV detection even
without any additional sensors. Drones often have metal chassis that is heated either by the
sun or by batteries (which can heat up to 60°C by themselves) and usually have noticeably
higher temperatures than their surroundings (as apparent in Figure 1.4).

In [11] a high-resolution RGB input is used for detection of a small UAV-like objects.
Later, the thermal image was used to distinguish drones from airplanes or birds, which helped
to achieve larger than 80% accuracy.

Another possibility for localizing drones is to use a depth map (which can be obtained
from a LiDAR or stereo camera). Adrian Carrio et al. [12] trained their detector to use depth
data only and achieved an average precision of 98.7% on a distance up to 9.5 meters.

3/34



1.2. CONTRIBUTIONS

Figure 1.4: Thermal image of a drone [2].

1.2 Contributions

The goal of this thesis is to establish that thermal photos can be used as a reliable
source of information about drones and their position, especially in bad weather and lighting
conditions, and to compare it with the quality of detection using RGB photos only and
different types of fusion between thermal and RGB photos. The most promising results (both
from the quality and computational efficiency sides) will be tested in real-life experiments
with real drones.

4/34



2. NEURAL NETWORK

Chapter 2

Neural Network

In this project, slightly different network architectures are used for different tasks. The
best quality is achieved by using a network based on the Faster R-CNN with FPN as a
backbone, which uses ResNeXt-101 for bottom-up feature extraction. The faster network for
real-time experiments uses a smaller feature extractor, the ResNet-50.

The network takes thermal or RGB images or both and outputs predictions of bounding
boxes of drones in the input together with their respective confidence scores.

2.1 Architecture

A neural network consists of layers of individual learning units - neurons, see Figure 2.1.
Each of these is a function that processes input and returns output. This function works by
multiplying inputs by their weights, summing them, and applying the activation function.
Weights are parameters that are changed while learning. For convolutional layers, the output
of the neuron can be interpreted as a measure of how the specific feature represented by the
neuron is present in the input (for example, a vertical line in the image).

Weights

Inputs

x1

x2

Activation

<3 Function

Xn

Figure 2.1: A model of a single neuron in a neural network!.

The activation function defines the output. The simplest activation function is the binary
step function, which returns one if the feature is detected (input passes some threshold) or
zero if not. In practice, non-linear functions are used for this because it is important to see

1h’ctps ://hackernoon.com/a-hands-on-introduction-to-neural-networks-6a@3afb468b1
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2.1. ARCHITECTURE

not only if a feature was detected but how strong it is, so results are usually a number in
the range from zero to one. Non-linearity helps to solve non-trivial problems with various
data. Typical non-linear activation functions are Sigmoid, Tanh, the most popular is ReLU
(Rectified Linear Unit) or its modifications. Sigmoid and ReLU are visualized in Figure 2.2.

. 10 4
o(z) = 1-1-% R(z) = max(0, z)
0.5 5|
~10 10 10 10

Figure 2.2: Example activation functions typically employed in neural networks, Sigmoid
(left) and ReLU (right).

A stack of neurons is called a layer. Each neuron in a layer takes input from all neurons
in the previous layer and processes it as described before. Due to this, the neural network
can recognize the smallest features first (parts of lines or edges in the image) and use them
to recognize more and more complicated concepts (circles or angles, and later even separate
details like eyes or wheels in the image), which is shown in Figure 2.3.

Hidden Hidden Hidden
Input layer 1 layer 2 layer 3
layer Y
Output
layer
.
*:
/S

Figure 2.3: Illustration of a fully connected neural network and features recognized by each
layer [26].
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2. NEURAL NETWORK

2.1.1 Convolutional Neural Network (CNN)

CNN is the most widely used way to classify images since the success of Alexnet [25].
As shown in Figure 2.4, a typical CNN architecture is a linear stack of different layers.

The core building block is a convolutional layer. Its kernels slide over the input data,
computing the dot product between itself and the input, returning a feature map for each
kernel. Feature maps capture features, preserving semantic meaning, which depends on pixel
position and its neighborhood.

Another important part of a CNN is the pooling layer. It reduces the spatial size of
feature maps. The most common pooling method is max pooling, which returns the highest
value from an area of the feature map.

— CAR
— TRUCK
— VAN

|j |:| — BICYCLE

FULLY
INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU  POOLING FLATIEN PR o SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 2.4: Illustration of a typical structure of a Convolutional Neural Network?.

A fully connected layer takes features extracted before and uses them to classify the
initial image. Its input is flattened to make it a vector instead of a 3-dimensional matrix.

Softmax is a type of multi-input activation function which converts its input to a vector
of probabilities of the output classes (makes them sum up to 1). For each z;,z; in the input,
it can be calculated using the following formula:

N exp(z;)
o(x;) = 72]’ exp(z;)’ (2.1)

2.1.2 ResNet

ResNet-50 (residual neural network with 50 layers) is a CNN backbone that is optimized
for computation-efficient feature extraction. In this work, it was used as the backbone for a
faster variant of the detection CNN. The ResNet-50 was pre-trained on the ImageNet dataset.
ResNet was created to address the accuracy saturation problem and the vanishing gradient
in deeper networks.

The accuracy saturation problem causes deeper networks to have a higher training
error rate than smaller networks. In theory, the error rate should be decreasing or at least not
changing with an increase in the network’s depth.

The vanishing gradient problem may be encountered when using gradient backpropa-
gation to train a neural network. During the backward propagation, the gradient can become

2h’ctps ://towardsdatascience.com/convolution-neural-network-for-image-processing-using-keras-dc3429056306
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2.1. ARCHITECTURE

vanishingly small, which prevents the network from updating its weights and stopping the
training process.

Instead of simply stacking layers, ResNet-50 skips some of the layers in between, which
is shown in Figure 2.5. This method is named shortcut connections, and it successfully helps
mitigate the problems described above.

identity

Figure 2.5: Illustration of the skip connection, which is a building block of the ResNet-50
CNN architecture [18].

2.1.3 ResNeXt

ResNeXt-101 [17] is a state-of-the-art network for image classification. In this work, it
was used as the feature-extraction backbone for a larger variant of the detection CNN. It was
pre-trained on the ImageNet dataset. It is a state-of-the-art network for image classification.
In our case, it is used as a feature detector. It follows the VGG strategy of repeated layers
[24] and uses shortcuts between blocks as ResNet while having comparable complexity.

256-din

256, 1x1,4 256, 1x1, 4 total 32 256, 1x1,4
- - paths v
4,3x3,4 4,3x3,4 b 4,3x3,4
- - -
4,1x1, 256 4,1x1, 256 4,1x1, 256

256-d out

Figure 2.6: A single block of ResNeXt, C = 32 [17].

The main difference from ResNet is an additional dimension called Cardinality (the
parameter C in Figure 2.6). A ResNeXt block uses a strategy similar to the Inception neural
network [13]: splitting the input into several branches with lower-dimension data, applying
convolutions, and merging them back through concatenation. Cardinality shows how many
uniform branches ResNeXt has in each block, which can be seen in Figure 2.6. Increasing
cardinality improves the network’s performance better than increasing its width or depth.

8/34



2. NEURAL NETWORK

2.1.4 Feature Pyramid Network (FPN)

FPN [16] is a modern and efficient solution to multi-scale detection. It uses an old
concept of processing differently scaled images at once, which is time and memory-consuming
compared to processing the image only once. However, instead of working with multi-scale
images, it works with multi-scale feature maps, which helps it be reasonably fast while having
better quality detections than pyramids of images. It is compared with the similar architectures
in Figure 2.7.

[ R )
(¢) Pyramidal feature hierarchy (d) Feature Pyramid Network

Figure 2.7: Comparison of FPN and similar architectures [16].

FPN has a bottom-up and top-down pathway. The bottom-up pathway is used to extract
features, decreasing spatial resolution with each layer and increasing the semantic value. The
top-down pathway utilizes both high resolution of the bottom layers and rich features from the
upper layers, creating a high-resolution feature map that allows detecting even small objects.

2.1.5 Faster R-CNN

p aeroplane? no.

- 7 :
®) |

CNNNL
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Figure 2.8: R-CNN: Regions with CNN features [23].

The need to detect not only the presence of the object but also its boundaries within
the image (bounding box) differentiates the object detection task from the image classification
task. Furthermore, images can contain multiple objects of the same class, and all of them need

9/34



2.1. ARCHITECTURE

to be detected. To tackle this task, neural networks for object detection may select multiple
areas of interest, which are later processed by a CNN to decide if there is an object inside.
Such a naive approach would produce a massive amount of these areas of different sizes and
shapes, and processing all of them would take an unreasonable amount of time.

Qutputs: bbox

softmax regressor

Rol FC FC
pooling

layer D DFCDS'

Rol feature
vector

For each Rol

Figure 2.9: Fast R-CNN [21].

To solve this problem, different algorithms were created, including the Region-CNN (R-
CNN) [23]. The main feature of this network is generating around 2000 category-independent
region proposals (much less than the naive version), using a greedy algorithm to merge similar
regions. Figure 2.8 shows the main principles of its work.

The next step to improve the detection algorithms was Fast R-CNN [21]. It generates a
feature map from the whole image and uses it to process all proposals instead of generating it
separately for each proposal as R-CNN does, which is shown in Figure 2.9. The training time
decreased 10 times, and inference time decreased more than 20 times compared to R-CNN.

. classifier

Rol pooling

[
Region Proposal Network

feature maps

conv layers i
T —, -

Figure 2.10: Faster R-CNN [22].
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2. NEURAL NETWORK

Faster R-CNN is a current state-of-the-art object detector. It succeeds Fast R-CNN,
being faster (as subtly mentioned in its name). The main difference is the use of a specialized
Region Proposal Network (RPN) instead of the slow selective search. The RPN is a small,
fully convolutional subnetwork that applies a 3x3 sliding window over the feature maps to
predict if there is an object in that box, which ensures an efficient way to compute proposals.
It uses a pre-computed feature map (in our case, pre-computed by FPN using ResNeXt or
ResNet) as the input. It returns proposals with their objectness score (probability of the
object being there). Only boxes with high objectness scores will be processed further. RPN
can be trained separately, but training it together with the whole Faster R-CNN showed up
to be more effective.

After RPN, proposals are processed by region of interest (Rol) pooling. It takes feature
maps and proposals as input, scales down proposals to the feature map level, performs max
pooling, and returns standardized boxes of features to process them by fully-connected layers
to classify them. Figure 2.10 summarizes all the descriptions above.

2.1.6 CNN architecture used in this thesis

This thesis utilizes several modifications of the standard Faster R-CNN. It uses FPN for
extracting feature maps on different scales, which in its turn uses ResNeXt-101 or ResNet-50
for extracting features itself.

color image fon
1 detecti
stack == convl =conv2 Hconv3 Sconvd =convs| B OF —>fe layersﬂ
pooling
thermal image
proposals
—>» 1pn

Figure 2.11: Input fusion in Faster R-CNN.

Firstly, several different architectures were tested to compare their effectivity and robust-
ness. These were implemented using the Detectron2? library, which provides many features
while being relatively simple. Two fusion architectures were created in addition to the existing
configurations.

fon )
roi fel detections
1 — — - - . —_—
color image convl =conv2 =conv3 =conv4 =conv5 pooling 9 eI
proposals
i = = = = 2
thermal image convl =conv2 =conv3 =conv4 =conv5 %’0/‘0 rpn

g

Figure 2.12: Halfway fusion in Faster R-CNN.

Input fusion stacks RGB and thermal images into one four-channel image that is passed
into the network, as illustrated in Figure 2.11. For pre-trained weights of the newly added

Shttps://github.com/facebookresearch /detectron2
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2.2. TRAINING

channel containing the thermal image, the mean value of the pre-trained weights of the RGB
channels was used.

Fusing images inside the FPN is slightly more complicated. Inputs of the FPN, ResNeXt
(or ResNet) networks has to be modified. On each of the five levels of the FPN, the mean
value of the extracted features is taken and feature maps with information from both images
is returned, which can be seen in Figure 2.12.

During the preliminary tests, the direct input fusion (Figure 2.11) demonstrated worse
performance than using only RGB images as the input, so this architecture was abandoned
in favor of the other variants.

For the main test were chosen the RGB only, the thermal only, and the halfway fusion
models. The first two are implemented using the MMDetection toolbox [6], which allows
conversion to TensorRT* (faster inference with NVIDIA graphic cards). The halfway fusion is
implemented with the same Detectron2 library as before due to a more complicated structure
of the MMDetection toolbox.

2.2 Training

The neural network’s output depends on its input, the architecture of the neural network
(number of layers, activation function, size of the convolutional kernels, etc.), and the weights
of the respective neurons. These weights are a parameter of the network that is typically not
manually selected but rather trained using a supervised learning approach. The training is an
optimization problem that iteratively minimizes the specified loss function.

2.2.1 Loss function

The error is calculated by the loss function (also sometimes called the cost function). A
widely used loss function for image classification is the cross-entropy loss function, which was
also used for pretrained weights in this thesis®. The formula below shows how to calculate it
for the multi-class task, M is a number of classes, y. is one the predicted class should be ¢
and zero otherwise, and p, is the predicted probability of class c:

M
L= Zyc IOg(pc)‘ (2'2)

c=1

The L1 loss function, which computes the mean absolute error (MAE), was used for
the detection training. It is a loss function commonly used when training regression neural
networks, which means it is used for the calculation of a continuous quantity instead of a
discrete class label as with the classification functions. It can be calculated using the formula:

LN
L:N;|xi_yi|a (2.3)
1=

where x; is the prediction and y; is the ground truth, N is the sample size.

The learning process is minimization of the loss function, which is typically done with
iterative algorithms, such as gradient descent.

4ht:tps: //developer.nvidia.com/tensorrt
5https: //github.com/pytorch/vision/blob/main/references/classification/
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2. NEURAL NETWORK

2.2.2 Gradient descent

Gradient descent is a commonly used optimization algorithm for training neural net-
works. In each iteration, it makes steps in the direction of a local minimum of the loss function,
which is the opposite of a function’s gradient:

ant1 = an — YV f(an), (2.4)

where v is learning rate, V f is gradient of the loss function, a, is a step of gradient descent.

The learning rate corresponds to the speed with which the network is trained. A larger
learning rate corresponds to faster training, although it also makes missing the minimum more
possible. A lower learning rate is considered to be safer, but it can be too slow or stuck in a
local minimum, see Figure 2.13. There are different techniques to avoid these problems. The
simplest example is learning rate decay, which decreases the learning rate after every n-th
iteration, allowing achieving the minimum faster but not overshoot.

loss loss

value of weight value of weight

Figure 2.13: Illustration of gradient descent with low (left) and high (right) learning rates.

Backpropagation is a differentiation algorithm for computing gradient. It calculates the
gradient of the loss function in the weights space using a chain rule®.

Neural networks in this thesis were trained using the stochastic gradient descent (SGD),
a typical choice for training Faster R-CNN models [22]. It is similar to gradient descent,
but instead of calculating the gradient from the whole set of training data, the gradient is
calculated from a random subset, significantly reducing the number of computations of one
step at the cost of slower convergence.

Momentum, an often employed modification of the SGD algorithm, adds some “mass”
to the gradient, which makes it converge faster and “roll” over small local minima. Its effect
on training is illustrated in Figure 2.14. A typical momentum value of 0.9 was used in training
in this thesis.

Weight decay is another modification of the base SGD algorithm that makes neural
networks “forget” weights during the training, decaying them in the direction towards zero.The
weight decay coefficient was set to the relatively low value of 0.0001 since weights for the
feature detector were already pre-trained.

6h’ctps ://en.wikipedia.org/wiki/chain_rule
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Figure 2.14: SGD without momentum (left) and with it (right).

2.2.3 Evaluation metrics

To compare performance of different neural networks on the testing dataset, it is nec-
essary to define some evaluation metrics. The typical metrics for object detection are average
precision (AP) and average recall (AR).

To calculate these metrics, the confidence score (probability that the bounding box
contains the object, estimated by the network) and the intersection over union (IoU) are
used. IoU is calculated using the formula:

area(By N Byt)

IoU = ———=
? area(By U Bgt)’

(2.5)

where B, is the predicted bounding box and By is the ground-truth box.

Knowing these parameters, the number of true positive results (TP) may be obtained.
A detection is counted as a true positive if its confidence score is higher than a specified
threshold, the predicted class is correct (not applicable in this case as there was only one
class), and the predicted bounding box has an IoU bigger than a specified threshold.

If a detection has the wrong class or its IoU is lower than the threshold, it is counted
as a false positive (FP), which means that the network detected something it should not have
(for example, a part of the background was detected as a drone).

A false negative (FN) is a situation when the confidence score of a detection is lower
than the threshold (for example, there was a drone, but the prediction was made with low
confidence, so it is not counted).

Using these concepts, precision P and recall R are calculated as:

TP
P: —_— 2.
TP+ FP’ (2:6)
TP
R=Tprrn (27)

The average precision (AP) is an interpolated area under the precision-recall curve
(drawing recall on the x-axis and precision on the y-axis). It shows the precision averaged
through all recall levels. Similarly, AR is the area under the recall-ToU curve.

Models in this thesis were evaluated using the AP and AR over the IoU interval [0.5,
0.95] with a step of 0.05.
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2.2.4 Datasets and epochs

Before starting the training, the whole dataset is divided randomly into three parts -
training, validation, and testing. The training part is used in training for updating the weights
by some gradient descent algorithm. The validation dataset is used to find out at which point
to stop the training to prevent overfitting (reaching a state when the model exactly fits the
training data, which hampers generalization of the neural network and its performance on
other than the training data). The testing dataset is used to compare different models after
finishing training.

Figure 2.15: Examples of input photos from the preliminary experiments with the ground
truth bounding boxes. An RGB photo is on the left, and a thermal photo is on the right.

Neural networks are usually trained by epochs. One epoch means one iteration through
the entire training dataset. The total number of epochs depends on the size of the dataset and
the variety of the data in it. In many cases, it is helpful to use pretrained weights, which are
typically pretrained on some large dataset for a long time. Using pre-trained weights helps
drastically reduce the training time because the network is then capable of detecting common
basic features already. In that case, the number of epochs needed for the training process to
converge on the desired specific domain is smaller, as well as the learning rate.

For preliminary experiments and comparisons of the considered CNN architectures, a
dataset of 1584 color and thermal photos was used, showing a single drone flying in different
positions, in the air and on a grassy surface. An example of an RGB and thermal images
from this dataset with the ground truth bounding boxes can be seen in Figure 2.15. Some
photos show the drone in front of a video billboard, which proved especially challenging to
detect for both the human eye and neural network. All photos were filmed on a sunny day.
The resolution of the thermal images is 320 px x 256 px.

For the main experiment, a larger and more challenging dataset was obtained (3754
photos). Examples of the images are shown in Figure 2.16. A single drone was flying far
away in the direction of the forest. The drone is easily visible in some RGB photos due to its
bright colors. In others, it blends with the trees perfectly. The target’s smallest ground truth
bounding box was 14 px wide with a 640 px x 512 px thermal image resolution. Photos were
filmed closer to the evening on a cloudy day.

The photos were extracted and synchronized from the thermal and color video streams.
Ground truth bounding boxes were then manually labeled with a helper script that was written
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Figure 2.16: Examples of input photos from the main experiment with the ground truth
bounding boxes, top pictures are from the RGB camera, and bottom are from the thermal
camera.

for this purpose.

The photos were split randomly into training, validation, and testing datasets using
the proportion 70% + 15% + 15%. The default training scripts from the MMDetection and
Detectron2 libraries were used, with the evaluation on a separate validation dataset during
training. Random vertical flip with the probability of 0.5 was used as an augmentation’.

Weight values pre-trained on the Imagenet dataset® were used to initialize the weights
before training.

"https://en.wikipedia.org/wiki/Data_augmentation
8https: //www.image-net.org/
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3. RELATIVE LOCALIZATION

Chapter 3

Relative localization

Relative localization of detected objects can be obtained with some trivial calculations.
Firstly, the input image has to be undistorted using radian and tangential distortion models
with the coefficients obtained by camera calibration. After this, pixels of the image can be
projected into 3D rays using the pinhole camera model'. Then, known physical dimensions
of the detected object can be used to estimate its 3D position relative to the camera from its
predicted bounding box in the image.

3.1 Calibration

To obtain the relative location of a detected object in a camera image, a camera projec-
tion model and its parameters must be known. This thesis uses data from an Intel RealSense
depth camera D435i? and from a FLIR Hadron 320 and a FLIR Hadron 6403. The Realsense
provides images with distortion already compensated, but this is not the case for the Hadron.
Its camera has a wider lens, and without calibration, outputs from both cameras cannot be
properly aligned.

Figure 3.1: Camera calibration GUI.

Yhttps://en.wikipedia.org/wiki/Pinhole_camera_model
2https://www.intelrealsense.com/depth-camera-d435i/
3h’ctps ://www. flir.com/products/hadron/

17/34


https://en.wikipedia.org/wiki/Pinhole_camera_model
https://www.intelrealsense.com/depth-camera-d435i/
https://www.flir.com/products/hadron/

3.2. RELATIVE LOCALIZATION

There are many solutions for automatic calibration of cameras. For this thesis, the ROS
Camera calibration package* was used. It utilizes the OpenCV?® library and a chessboard-
like pattern. Its graphical user interface (GUI) is shown in Figure 3.1. A special “thermal”
chessboard that was created for a different project was utilized for this task. It has squares
made from an aluminum foil to reflect the cold sky and to have a black color in the thermal
image. The chessboard background is black, which in its turn shows in white color on the
thermal image.

Images from the camera are distorted mainly by radial distortion and tangential dis-
tortion. Radial distortion makes straight lines in the image look curved. This distortion is
represented in the OpenCV library using the equations:

Tdistorted = x(l + k’17“2 + ]€2T4 + k3r6)7

Ydistorted = y(l + k17"2 + k;27"4 + k3T6)7
where Zg;istorted a0d Ygistorted are pixel coordinates in the raw image, ki, ko, k3 are parameters
of the model.

Tangential distortion adds a rotation and skew, making some parts of the image look
closer or farther away. The OpenCV library models this distortion using the equations:

Tdistorted = T + [2p1$y + P2(T2 + 2$2)], (33)
Ydistorted = Y + [pl (T2 + 292) + 2]9233‘],
where Zgistorted AN Ydistorted are pixel coordinates in the raw image, p1, po are parameters of
the model.

Aside from the five coefficients k1, ko, k3, p1, and po, it is necessary to calculate the
camera matrix, which contains focal length f,, f, and optical centers c¢;, ¢,. The camera matrix
is then used for projecting the undistorted pixel coordinates to rays in the 3D space.

3.2 Relative localization

After the calibration, pixels from the original image can be mapped to an undistorted
image using these formulas and the coefficients calculated before:

z=(u—c)/fe

y=@-c)/fy

P2 = 2 442

o' = (1 + kyr? + kor? + ksr®) 4+ 2pray + po(r? + 222) (3.5)

y =yl + kir? + kort + k3r6) + p1 (TQ + 2y2) + 2poxy
W =2'fr+cp
’U, = y/fy + Cya

where u, v are coordinats of a pixel in an undistorted image, v/, v" are coordinats of a pixel in
the original image.

*https://wiki.ros.org/camera_calibration
5https: //docs.opencv.org/4.x/index.html
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Figure 3.2: Real-world object and object in the image, distance to the object is d, distance
to the object in the image is d;, size of the object is w, size of the object in the image is w;.

For the relative localization from a monocular camera image, it is necessary to know
also the physical dimensions of the detected object. Figure 3.2 shows how a real-world object
is projected to the camera image using the pinhole camera model. Based on this geometrical
projection model, the distance of the object from the camera can be obtained using the
formula:

wdi

d= (3.6)

Wy
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Chapter 4

Implementation

4.1 ROS, the MRS UAYV system

Robot Operating System (ROS)! is an open-source framework for robots [27]. It provides
libraries, drivers, visualizers, tests, and many other necessary things to create applications to
control drones, robotic arms, automated guided vehicles, etc.

Processes in this framework are distributed and can run separately. As an example,
a camera has its own process, which reads images and can send them to other processes,
including an image rectifier that receives raw images and sends rectified images as an output.
In the context of ROS, these processes are called nodes.

Nodes communicate with each other using topics. A node can post messages on some
topic, and all other nodes who subscribed to this topic will receive them.

ROS supports different programming languages, including Python, which was used for
the implementation of the algorithms described in this thesis due to the reason that libraries
used for the object detection task have a Python API.

The software, written as part of this thesis, is designed to run with the Multi-robot
Systems (MRS) Group UAV system?, which is built using ROS. This system allows to control
multi-rotor vehicles with PX4-compatible flight controller?.

4.2 Implementation

The program was implemented to run as a node, which receives images from one or two
cameras and posts output into topics “detections”, “poses” and “visualization”. There are
two options on which feature extractor to use in the Faster RCNN: ResNet-50 or ResNeXt-
101, first one is roughly two times faster, but the second provides more accurate and robust
detections (see chapter 5). Also, the program can switch between RGB and thermal cameras
if no drone was detected for some number of received images, as shown in algorithm 1.

In the preliminary experiment, all models were implemented using the Detectron2 li-
brary, speed was not tested.

For the main experiment, models from the MMDetection toolbox were used. MMDetec-
tion provides a possibility to translate models to the TensorRT framework, which increases the
speed of inference on NVIDIA hardware. TensorRT models were tested as well as the original
PyTorch? implementations. Results of the speed test can be seen in Table 4.1. The networks

1h’ctps ://wiki.ros.org/

2h'ctps ://github.com/ctu-mrs/mrs_uav_system
Shttps://github.com/ctu-mrs/px4_firmware
4h’ctps://pytorch.org/
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4.2. IMPLEMENTATION

Algorithm 1 Main algorithm

Require: Model, Subscibers, Publishers, NoDetectionsCounter, Threshold

> Use object detection model on image

> Calculate poses from the bounding boxes

> Paint bounding boxes

1: while True do

2: if got I'mage from Subscriber then

3 Detections < INFERENCE(M odel, Image)

4 if no Detections then

5: NoDetectionsCounter < +1

6 else

7 NoDetectionsCounter < 0

8 Poses < GETPOSES(Detections)

9: Visualization < VISUALIZE(Detections, Image)
10: publish outputs

11: if NoDetectionsCounter is bigger than Threshold then
12: Model < CHANGEMODEL()

13:  else

14: wait

run on the Nvidia Jetson Xavier NX° platform that is designed for embedded neural network
inference to simulate the usage of the networks onboard a UAV. Fusion with ResNeXt-101
was not transformed to the TensorRT engine because it is implemented using Detectron2,
which does not support the translation of Faster R-CNN to a TensorRT, so its inference time

in TensorRT was not measured.

PyTorch | TensorRT
RGB with ResNet-50 2.65 3.75
RGB with ResNeXt-101 1.37 1.91
Thermal with ResNet-50 2.74 3.76
Thermal with ResNeXt-101 1.38 1.95
Fusion with ResNeXt-101 0.71 -

Table 4.1: FPS (frames per second) of the different CNN architectures from the main exper-

iment.

5https: //www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
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Chapter 5

Experiments

5.1 Thermal camera

The main aim of this thesis was to evaluate the usage of a thermal camera for drone
detection, which is a topic that is still not widely covered in the published scientific literature.
All objects emit infrared radiation. This radiation may be measured by a thermal camera
to create visual images. Such images represent the surface temperature and emissivity of
the observed objects. The higher the temperature and emissivity, the more heat the object
emits. Since thermal cameras do not need any visible light, it makes them a good choice for
object detection in challenging lighting conditions. Examples of thermal photos are shown in
Figure 5.1.

Figure 5.1: Examples of input from a thermal camera.

The main difference between the camera working in the visual light spectrum is the use of
a microbolometer. It is a sensor, which detects infrared radiation using a temperature resistive
sensing element. Changes in electrical resistance are mapped into temperatures which are
translated into an image. Microbolometer also does not require cooling, unlike older thermal
sensors.

Another difference is the lens material. Glass blocks long-wave infrared light, for this
reason lenses are usually made of special materials, such as calcium fluoride or germanium.
Due to this, thermal cameras have a low resolution, compared to RGB cameras (the thermal
camera used in the main experiment has a resolution of 640 px x 512 px).

According to the information provided by the manufacturer!, FLIR Hadron 640 used in

L https://www.flir.com/discover/rd-science/how-do-thermal-cameras-work/
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this thesis can detect differences in heat signature (radiation emitted by the object) as small
as 0.01°C.

Figure 5.2: The RGB and thermal cameras mounted together.

This camera was mounted together with an Intel RealSense D435i, as can be seen in
Figure 5.2. To achieve a proper alignment of the two types of images, the different resize,
rotation, and crop operations were applied to an RGB image. The thermal image was undis-
torted using the distortion model and parameters of this model were found using calibration
as described in section 3.1.

5.2 The preliminary experiment

Target of the preliminary experiment was to compare different fusion methods to only
using RGB or thermal images alone. Therefore, it was performed using only one feature
extractor, the ResNeXt-101.Among the compared models (subsection 2.1.6), the half-way
fusion architecture demonstrated the best results, which may be explained by the strong
features from the RGB input amplified by the same strong features from the thermal input.
All results can be seen in Table 5.1.

CNN architecture | AP AR
RGB 0.78 | 0.82
Thermal 0.757 | 0.79
Input fusion 0.769 | 0.81
Half-way fusion 0.81 | 0.85

Table 5.1: Preliminary experiment results.
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5.3 The main experiment

5.3.1 Day dataset

The different neural network architectures were tested on a separate dataset than was
used for the training. Average precision (AP), average recall (AR), and precision of the relative
localization were evaluated. AP and AR metrics are shown in Table 5.2. It can be seen that
although the CNN architectures that use ResNeXt-101 as a feature extractor show better
performance according to the AP and AR metrics, they are significantly slower (Table 4.1),
which might be critical for the onboard applications. The inference speed may be expected
to improve using a stronger computer such as the Nvidia Jetson Xavier AGX?, potentially
enabling to use of the presented system in dynamic multi-robot scenarios.

CNN architecture AP AR

RGB with ResNet-50 0.744 | 0.796

RGB with ResNeXt-101 0.773 | 0.831
Thermal with ResNet-50 0.663 | 0.723
Thermal with ResNeXt-101 0.705 | 0.767
Half-way fusion with ResNeXt-101 | 0.74 | 0.806

Table 5.2: Evaluation results of detections in the main experiment, day dataset.

For the fusion method to work well, a good alignment of the images and good time
synchronization are necessary. However, these requirements were not perfectly met in this
experiment, as can be seen in Figure 5.3 (ground truth boxes were painted using RGB images,
on some photos they were not aligned with the thermal images). This highlights the potential
problems when deploying similar methods in practice. Furthermore, using the mean value of
features from both inputs might be a too simple strategy for this more complicated dataset.
In the RGB images, the drone was not always visible which affected the fusion result.

Figure 5.3: Examples of wrong ground truth boxes due to misaligned photos.

Otherwise, all detection models showed good results on the testing dataset. As can be
seen in Figure 5.4, even the most faraway positions were detected clearly with high precision
even by the simpler detector with ResNet-50 as a feature extractor.

thtps ://developer.nvidia.com/embedded/jetson-benchmarks
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Figure 5.4: The RGB (left) and the thermal (right) detectors in the day dataset.

5.3.2 Evening dataset

Models were also tested on another dataset that was filmed later in the evening. This
dataset proved more challenging for the detectors, as illustrated in Figure 5.5. Sometimes the
drone was not detected at all because the target visually blended with the background trees
in both the visual and thermal spectra, being too distant from the cameras.

Figure 5.5: Examples of false positive results by the RGB (left) and the thermal (right)
detectors in the evening dataset.

Each 10th photo (248 in total) from this dataset were used for testing, results can be
seen in Table 5.3.

Larger networks showing worse results than smaller ones can indicate that the input was
too different from the training dataset. As an example, the training dataset did not include
a close view of a drone, which caused false positive results when the part of the drone was
detected as another drone (can be seen on the thermal image in Figure 5.5). The imprecise
bounding boxes could be explained by the drone flying up to 80 meters away, although in the
training dataset, the maximal distance was 60 meters.
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CNN architecture AP AR

RGB with ResNet-50 0.112 | 0.176

RGB with ResNeXt-101 0.109 | 0.184
Thermal with ResNet-50 0.201 | 0.280
Thermal with ResNeXt-101 0.162 | 0.266
Half-way fusion with ResNeXt-101 | 0.2 | 0.256

Table 5.3: The quality of detections in the main experiment, evening dataset.

5.3.3 Relative localization
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Figure 5.6: First row, from left to right: X, Y, Z coordinates in meters changing by time.
Second row, from left to right: top view of the ground truth and estimated trajectory of
the UAV, error of the estimated position over distance. These are the results on the evening
dataset of the CNN model using only RGB images as the input.

The quality of localization was tested using RTK (Real-time kinematic positioning)?
data as a ground truth. It was done using the evening dataset. Results of the model with the
ResNet-50 feature extractor and an RGB input are shown in Figure 5.6, results for the thermal
model are in Figure 5.7. The position error is calculated as the average of the Euclidean
distance between the predicted position of the target and the ground truth over every 3
meters.

Due to imperfect ground truth bounding boxes in the training dataset, if the drone was
more than 23 meters from the camera, the detected bounding boxes were slightly larger than
the real drone, which led to a wrong distance prediction. This problem was addressed with
an empirical correction. If e, the estimared distance, is larger than 23 meters:
+ (e —23)12,

€e=ec€

(5.1)

3h’ctps ://en.wikipedia.org/wiki/Real-time_kinematic_positioning
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Figure 5.7: Same as in Figure 5.6, for the CNN model using only thermal images.

It amplified longer distances and successfully mitigated that problem on distances up to 45
meters, as shown in Figure 5.8 and Figure 5.9.
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Figure 5.8: First row, from left to right: X, Y, Z coordinates in meters changing by time.
Second row, from left to right: top view of the ground truth and estimated trajectory of
the UAV, error of the estimated position over distance. These are the results on the evening
dataset of the CNN model using only RGB images as the input with empirical correction.

Although the evaluation metrics on the evening dataset are not too impressive, the
thermal network still was able to provide accurate localization with the mean error under 4
meters on a distance up to 40 meters. With a better training dataset (larger variety of photos
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Figure 5.9: Same as in Figure 5.8, for the CNN model using only thermal images.

and proper ground truth bounding boxes on longer distances), these results can be potentially
improved even further.
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Figure 5.10: First row, from left to right: X, Y, Z coordinates in meters changing by time.
Second row, from left to right: top view of the ground truth and estimated trajectory of the
UAV, error of the estimated position over distance. These are the results on the night dataset
of the CNN model using only thermal images as the input with empirical correction.

Finally, the thermal model was tested on a night dataset. Figure 5.11 shows that the
RGB picture on the left does not have any noticeable objects except the lights of the drone,
which is not a mandatory part of its construction, so the RGB data is (unsurprisingly) unusable
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for detection of drones during the night. On the other hand, the thermal image on the right
is not too different from the evening dataset.

Figure 5.11: An RGB (left) and thermal (right), both from the night dataset.

Results of the localization tests for the night dataset are showed in Figure 5.10. There
are more false positives than in the previous datasets, but the presented system was still able
to localize the drone with a mean error lower than 6 meters on a distance up to 20 meters.
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Chapter 6

Conclusion

The collected data has established that thermal images are a reliable source of informa-
tion about drones and their position in any lighting conditions, even at night. Furthermore,
because thermal input utilizes only one channel, potentially it can run three times faster than
an RGB network with three channels, making it a good choice for a Faster R-CNN and on-
board computer. On the other hand, it has to be trained on a wider variety of thermal photos,
because different drone components have variable temperatures and can be invisible due to
blending with different backgrounds. Thermal cameras are also more expensive than their
RGB counterparts.

An RGB input, used as a benchmark, performed well in good lighting conditions, but
much worse with insufficient light in the evening and at night.

A fusion of both networks seemed promising after the preliminary experiment with the
photos filmed in the middle of the day. Unfortunately, the employed method is not sophis-
ticated enough to handle situations in which one input has noticeably less information than
the other. The fusion method can be modified to use lighting-dependent coefficients for both
inputs, as in [9]. For onboard operations, it might not be practical to use two cameras and cal-
culate features for two images if one thermal camera provides only slightly worse results much
faster. Another challenge that was identified during the implementation is achieving proper
alignment of the images and good time synchronization, given the inherent complications of
using two input streams.

Future research might focus on implementing a one-channel TensorRT model for thermal
input, which could benefit from a superior speed. A more reliable and thorough dataset could
increase accuracy and recall against backgrounds with competing thermal signatures.
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