
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

EV manager development

Jiří Jirák

Supervisor: doc. Ing. Tomáš Haniš, Ph.D.
Field of study: Cybernetics and Robotics
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492369Personal ID number:Jirák JiříStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

EV manager development

Bachelor’s thesis title in Czech:

Vývoj manageru elektromobilu

Guidelines:

The goal of the thesis is to develop and implement a Matlab & Simulink based framework for electric vehicle high level
functionality management system. The thesis results will be implemented and tested on full-scale vehicle dynamics
verification platform.
Following points will be addressed:
1) Review EV manager systems.
2) Define system requirements and test requirements.
3) Implement EV manager system for experimental platform.
4) Test and validate the implementation with respect to system requirements and test specification.

Bibliography / sources:

[1] Hans-Leo Ross, Functional Safety for Road Vehicles – Subtitle New Challenges and Solutions for E-mobility and
Automated Driving, Springer, Cham, ISBN: 978-3-319-33360-1
[2] Wei Liu, Hybrid Electric Vehicle System Modeling and Control, 2nd Edition, Wiley, ISBN: 978-1-119-27932-7
[3] Dieter Schramm, Manfred Hiller, Roberto Bardini – Vehicle Dynamics – Duisburg 2014
[4] Robert Bosch GmbH - Bosch automotive handbook - Plochingen, Germany : Robet Bosch GmbH ; Cambridge, Mass.
: Bentley Publishers

Name and workplace of bachelor’s thesis supervisor:

doc. Ing.Tomáš Haniš, Ph.D. Department of Control Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 28.01.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
doc. Ing. Tomáš Haniš, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I would like to express my thanks to all
people who helped me during my bache-
lor studies. Especially to my family and
friends for their support, to doc. Ing.
Tomáš Haniš, Ph.D. for supervising this
thesis and for regular consultations, to Ing.
David Vošahlík and Bc. Tomáš Veselý for
giving me valuable pieces of advice con-
cerning the matter of car systems.

Declaration

I hereby declare that this thesis and the
work presented in it are all my own, and
all used sources are listed in the bibliog-
raphy section.

Prague, 20. May 2022

v

Abstract

This thesis describes development of an
electric vehicle high-level functionality
management system for a project led by
Smart Driving Solutions - a research cen-
ter at the Department of Control Engi-
neering at FEE, CTU. It focuses mainly
on designing the management system with
respect to functional and safety require-
ments of an electric vehicle, implementing
a Matlab & Simulink based framework,
and testing and validating the developed
system.

Keywords: electric vehicle, high-level
management system, Model-Based
Design approach

Supervisor: doc. Ing. Tomáš Haniš,
Ph.D.

Abstrakt

Tato práce se zabývá návrhem vysoko-
úrovňového řídicího systému elektromo-
bilu pro projekt vedený výzkumným stře-
diskem Smart Driving Solutions na Ka-
tedře řídicí techniky na FEL, ČVUT. Za-
měřuje se především na tři části - vlastní
návrh systému s ohledem na funkční a bez-
pečnostní požadavky elektromobilu, jeho
implementaci v programu Matlab & Si-
mulink a na následné otestování a validaci
vyvinutého systému.

Klíčová slova: elektromobil,
vysoko-úrovňový řídicí systém,
Model-Based Design přístup

Překlad názvu: Vývoj manageru
elektromobilu

vi

Contents

Acronyms . 1

1 Introduction 3

1.1 Smart Driving Solutions 3

1.2 Drive-by-wire Concept 3

1.3 Why Use an Electric Vehicle 4

1.4 What EV Manager Is 5

1.5 Commercial EV Managers 5

1.6 Problem Formulation 6

1.7 Objectives of Thesis 6

2 Full-scale Vehicle Dynamics
Verification Platform 7

2.1 Architecture 8

2.2 System Bus - CAN. 9

2.3 Human-Machine Interface 10

2.4 Electronic Control Unit 11

2.5 Vehicle Measurement System . . . 12

2.6 Brake-by-wire System 12

2.7 Steer-by-wire and Camber-by-wire
System . 12

2.8 Powertrain 13

2.9 Battery Management System . . . 13

2.10 Power Supply Architecture 14

3 Developed EV Manager 17

3.1 An Important Note 18

3.2 Model-based Design Approach . . 18

3.3 Stateflow . 18

3.4 Important Signals and their
Meaning . 20

3.5 EV Manager Design 23

3.5.1 State Communication 24

3.5.2 State Diagnostics 25

3.5.3 States BBW and SBW 28

3.5.4 State Warning 29

3.6 State MainStateMachine 30

3.6.1 State Start 33

3.6.2 State LV 34

vii

3.6.3 State Battery 36

3.6.4 State Motors 38

3.6.5 State CarRunning 40

3.6.6 State HV_SD 42

3.6.7 State Charging 44

3.6.8 State Error 45

4 Testing the EV Manager 55

4.1 Test Harness 55

4.2 Testing Process 56

5 Conclusion 61

A Bibliography 63

viii

..
Acronyms

BBW Brake-by-wire

BMS battery management system

CBW Camber-by-wire

DBW Drive-by-wire

ECU electronic control unit

EV electric vehicle

EVM electric vehicle manager

HMI Human-Machine Interface

IMU inertial measurement unit

MBD model-based design

FSVDVP full-scale vehicle dynamics verification platform

SBW Steer-by-wire

SDS Smart Driving Solutions

SOC state of charge

VMS vehicle measurement system

1

2

Chapter 1

Introduction

1.1 Smart Driving Solutions

Smart Driving Solutions (SDS) is a research center at the Department of
Control Engineering at FEE, CTU. According to [9], its main objectives are:

. Developing new vehicle control concepts that would provide full separa-
tion of the driver from the car in tasks of dealing with vehicle dynamics.. Building a full-scale vehicle dynamics verification platform (FSVDVP)
on which all newly developed concepts will be tested.

Currently, building FSVDVP is in progress and Drive-by-wire concept is
being worked on.

1.2 Drive-by-wire Concept

Drive-by-wire (DBW) is a concept inspired by Fly-by-wire system developed
in 1960. It is based on mechanical decoupling of the driver from motors, brakes
and wheels. Instead of it, a signal provides the coupling. The driver still

3

1. Introduction
sets the speed and direction of travel by sending control signals to electronic
control unit (ECU) via Human-Machine Interface (HMI) and ECU controls
wheels and brakes in the best way possible, concerning the current state of
vehicle dynamics. As mentioned in [6], this could improve the safety of car
systems because ECU can process much more information in a shorter period
than a human driver. DBW is composed of Motor-by-wire for setting speed
of travel, Brake-by-wire (BBW) for braking, Steer-by-wire (SBW) for
setting the direction of travel, and Camber-by-wire (CBW) for controlling
camber of wheels.

1.3 Why Use an Electric Vehicle

Receding glaciers, bleached corals, acidifying oceans, killer heat waves, fauna
and flora in the process of extinction - all those are consequences of global
warming. How to improve the situation?

“Even in the worst-case scenario, an electric car with a battery produced in
China and driven in Poland still emits 22 % less CO2 than diesel and 28 %
less than petrol, the tool shows. In the best-case scenario, an electric car
with a battery produced in Sweden and driven in Sweden can emit 80 % less
CO2 than diesel and 81 % less than petrol.”[5]

According to [5], replacing petrol and diesel cars with electric ones
might make a significant change. That is the main reason why one
should use electric cars. Except for the ecological benefits, they provide
decent acceleration and pleasant driver experience.

(a) : Receding glaciers (b) : Bleached corals

Figure 1.1: Consequences of global warming[7]

4

................................. 1.4. What EV Manager Is

1.4 What EV Manager Is

According to [8], automobiles are becoming less mechanical devices and more
electronic appliances every day, resulting in modern electric cars having, on
average, between 25 and 50 central processing units (CPUs). How to merge
all those CPUs, each determined for one single purpose, into one system,
providing the functionality of an electric vehicle (EV)?

The solution is to use a central management system that builds the
overall functionality of an electric vehicle by joining together lower-
level functional system blocks - electric vehicle manager (EVM). It
is not trivial to design such a management system, for it must provide not
only the overall functionality but safe behavior of EV defined by ISO 26262
as well.

Someone might ask: “I worked in the automotive industry back in the ’80s,
and I have never heard of such a management system, how come there did
not have to be any?” The answer is simple: the number of electronics in cars
then was much smaller, making the driver such a management system.

1.5 Commercial EV Managers

Since different systems are used in every vehicle and the overall functionality
is highly dependent on requirements specified by the customer, there is no
general method for designing EVM. Nevertheless, there is a need for such
a management system in every vehicle. Some companies that offer high-level
management systems will be listed below:

.Porsche Engineering - according to [1], Porsche Engineering offers
development of high-level management systems providing energy man-
agement and cooperation of electronics in the vehicle as well..Valeo - according to [2], Valeo offers interior management systems that
use a camera in combination with artificial intelligence algorithms to
improve driver’s safety.. Elaphe - according to [3], Elaphe offers EV propulsion management
systems.

5

1. Introduction
1.6 Problem Formulation

In SDS group, EV described in Chapter 2 is being developed. It includes many
systems which have to cooperate to provide the overall car functionality. For
such a case, there is a need to develop EVM, a central control management
system that merges lower-level functional blocks into one system, providing
the overall car functionality and safe, deterministic behavior of FSVDVP as
well.

1.7 Objectives of Thesis

To create an electric car with many concepts new to automotive industry, many
challenges must be overcome. Crucial is to obtain safe and deterministic
behavior of the vehicle. The main objective of this thesis is to develop
EVM - a central control management system that builds the overall car-like
functionality by joining together lower-level functional system blocks, and
ensure safe, deterministic behavior of FSVDVP.

According to [20], to develop a safety-related system such as EVM is, the
development at system-level has to cover following points:

. Creating a technical safety concept, both on hardware and software level.. System integration and testing.. Safety validation.

Accordingly with the points above, objectives of this thesis were defined as
the following:..1. Designing EV manager for FSVDVP...2. Implementing a Matlab & Simulink based framework...3. Testing and validating the implementation.

6

Chapter 2

Full-scale Vehicle Dynamics Verification
Platform

There is a need to build FSVDVP in order to be able to demonstrate the
Drive-by-wire concept described in Section 1.2 on a real-world hardware
system. This chapter aims to provide an overview of the current FSVDVP
design from the point of view of EVM development. In Figure 2.1, expected
appearance of FSVDVP may be seen.

Figure 2.1: Expected appearance of FSVDVP[10]

7

2. Full-scale Vehicle Dynamics Verification Platform
2.1 Architecture

Current FSVDVP architecture may be seen in Figure 2.2

CBW

SBW

BBW

CBW

SBW

BBW

HMI

LV bat. LV bat.

BMS ECU VMS

HV battery pack

CBW

SBW

BBW

CBW

SBW

BBW

Mot.+inv. Mot.+inv.

Mot.+inv. Mot.+inv.

Figure 2.2: FSVDVP architecture

There may be seen the following building blocks in Figure 2.2:..1. Human-Machine Interface - HMI..2. Electronic control unit - ECU..3. Vehicle measurement system - VMS..4. Brake-by-wire system - BBW..5. Steer-by-wire system - SBW..6. Camber-by-wire system - CBW..7. Powertrain - motors + inverters..8. Battery management system - BMS..9. Power supply - high-voltage battery pack + low-voltage batteries

CAN Bus is used for communication between ECU and other systems.
Description of the main building blocks may be seen in following sections.

8

.................................. 2.2. System Bus - CAN

2.2 System Bus - CAN

CAN (Controller Area Network) protocol provides efficient and reliable
communication between sensors, actuators, controllers, and other network
nodes.[15] CAN has become an automotive standard thanks to its advantages
such as electromagnetic noise resistance and wiring simplicity. Due to this
fact, many components already have a CAN interface from the manufacturer,
which is highly beneficial when building FSVDVP.

Current version of Can Bus architecture is composed from three CAN net-
works:..1. CAN1 - connects battery management system (BMS) and ECU...2. CAN2 - connects motors (inverters) and ECU...3. CAN3 - connects low-voltage systems (BBW, SBW, CBW), HMI, vehicle

measurement system (VMS) and ECU.

Schematic drawing of CAN Bus architecture may be seen in Figure 2.3. CAN1

CBW

SBW

BBW

CBW

SBW

BBW

BMS ECU VMS

CBW

SBW

BBW

CBW

SBW

BBW

CBW

SBW

BBW

HMI

LV bat. LV bat.

BMS ECU VMS

HV battery pack

CBW

SBW

BBW

CBW

SBW

BBW

CBW

SBW

BBW

CAN1 CAN2

CAN Bus Architecture

CAN3

Mot.+inv. Mot.+inv.

Mot.+inv. Mot.+inv.Mot.+inv. Mot.+inv.

Mot.+inv. Mot.+inv.

Figure 2.3: Schematic drawing of CAN Bus architecture

9

2. Full-scale Vehicle Dynamics Verification Platform
and CAN2 dbc files may be found at [4]. CAN3 dbc is not available yet
because low-voltage systems are in the process of development.

2.3 Human-Machine Interface

Human-Machine Interface enables the operator to express their intention
to ECU. A schematic drawing how HMI could look like when FSVDVP is
finished may be seen in Figure 2.4.

Infotainment

Parking brake

Brake Accelerator

Pedals

ECU panel switch

Reset button

Start button

Steering wheel

Drive mode selector

display

Human-Machine Interface

Figure 2.4: Schematic drawing of HMI

HMI contains the following essential control elements:

. Steering wheel - for setting the direction of travel of FSVDVP..Drive mode selector - enables the operator to choose among three
modes:.Neutral mode - tires are allowed to spin freely, pushing down the

accelerator pedal has no effect..Drive mode - this mode enables the operator to move FSVDVP
forward by pushing down the accelerator pedal..Reverse mode - this mode enables the operator to move FSVDVP
backward by pushing down the accelerator pedal.

10

................................ 2.4. Electronic Control Unit

.Accelerator and brake pedal - for setting the speed of FSVDVP.

.Parking brake - for keeping FSVDVP securely motionless.

. ECU panel switch - for turning ON/OFF FSVDVP low-voltage power
supply, and therefore switching ON/OFF ECU.

. Start button - for starting the motors.

.Reset button - for resetting the system after an error occurs, to fully
understand its meaning, see Chapter 3.

On top of that, HMI contains an infotainment display to provide the operator
all necessary information about the state of FSVDVP.

2.4 Electronic Control Unit

An electronic control unit is a device responsible for controlling the main
car systems. Used ECU is VTC 7230. According to [18], it is an Intel i3
dual-core-based embedded computer. RTLinux is be used as the operating
system of ECU, for it is suitable for real-time applications.

Electric vehicle manager, developed as the main objective of this thesis, will
be running on this ECU and controlling the vehicle behavior when the car
is assembled. In order to be able to run EVM on ECU, Simulink coder will
be used to generate C/C++ code from Matlab & Simulink based framework
developed as a part of this thesis. The embedded computer may be seen in
Figure 2.5.

Figure 2.5: VTC 7230 embedded computer [18]

11

2. Full-scale Vehicle Dynamics Verification Platform
2.5 Vehicle Measurement System

For obtaining information about vehicle dynamics, inertial measurement unit
(IMU) + GPS needs to be used. The used system will be VBOX 3iS.

2.6 Brake-by-wire System

Building BBW system is in progress. When finished, it will provide the
functionality of braking with no mechanical linkage between brake pedal and
brakes. A signal with braking intensity is sent from the pedal to ECU which
calculates optimal input to brake actuators with respect to the current state
of vehicle dynamics. A system prototype may be seen in Figure 2.6.

Figure 2.6: A BBW system prototype [22]

2.7 Steer-by-wire and Camber-by-wire System

Building SBW and CBW systems are planned for the next phase of FSVDVP
development, so no details about it will be presented in this thesis. The basic
principle of the concepts may be seen in Section 1.2.

12

......................................2.8. Powertrain
2.8 Powertrain

As may be seen in Figure 2.2, there will be four electric motors with invert-
ers in FSVDVP, providing an option to set speed or torque reference for
each wheel separately. HyPer 9HV motors with HyPer-Drive SRIPM-X144
controller/inverter will be used. Motor peak power is 90 kW at 170 V and
efficiency peaks at 95 %. For more details about the motors and inverters,
see [17]. SRIPM-X144 controller/inverter may be seen in Figure 2.7a, HyPer
9HV motor may be seen in Figure 2.7b.

(a) : SRIPM-X144 controller/inverter (b) : HyPer 9HV motor

Figure 2.7: FSVDVP powertrain

2.9 Battery Management System

According to [16], using an intelligent battery management system is desirable
for the following reasons:

. BMS provides monitoring of battery parameters in real time.. BMS ensures safe and reliable use of battery.

13

2. Full-scale Vehicle Dynamics Verification Platform
EMUS G1 BMS with CAN interface is used in FSVDVP. Used configuration
may be seen in Figure 2.8.

Figure 2.8: EMUS G1 BMS used configuration

2.10 Power Supply Architecture

One of the most crucial things in FSVDVP is power supply architecture -
almost nothing can work without electricity in EV. The current version of
power supply architecture may be seen in Figure 2.9. HV battery pack provides
170 V power supply for the powertrain system described in Section 2.8 and
for recharging LV batteries with the help of DC/DC converters. LV batteries
provide 12 V power supply necessary for DBW systems. BMS contactor can
be controlled via BMS.

Low-voltage Batteries

There will be used two VARTA BLUE Dynamic E11 batteries as a power
supply for DBW systems, BMS, HMI, VMS and ECU in FSVDVP.

14

.............................. 2.10. Power Supply Architecture

CBW

SBW

BBW

CBW

SBW

BBW

LV bat. LV bat.

HV battery pack

CBW

SBW

BBW

CBW

SBW

BBW

Mot.+inv. Mot.+inv.

Mot.+inv. Mot.+inv.

DC/DC conv. DC/DC conv.

BMS contactor

Power Supply Architecture

+170 V+12 V

Figure 2.9: Current version of FSVDVP power supply architecture

High-voltage Battery Pack

There will be used seven Tesla battery modules based on Panasonic NCR-
18650B Lithium-Ion rechargeable batteries in FSVDVP. According to [19],
each battery nominal capacity (at 25 ◦C) is minimally 3250 mAh and nominal
voltage is 3.6 V. HV battery pack may be seen in Figure 2.10.

Figure 2.10: HV battery pack used in FSVDVP

15

16

Chapter 3

Developed EV Manager

As mentioned in Section 1.6, EVM is a high-level central control management
system that merges lower-level functional blocks into one system, providing
the overall car functionality and safe, deterministic behavior of EV as well.

Developing such a system is not trivial. It is not only necessary to have
at least basic knowledge about all FSVDVP architecture building blocks
described in Chapter 2 but also the exact behavior of FSVDVP must be
defined to obtain a safe, deterministic system.

According to [20], the development should cover the following points:

. Creating a technical safety concept, both on hardware and software level.. System integration and testing.. Safety validation.

In this chapter, EVM developed as the main objective of the thesis will
be presented. In the beginning, model-based design (MBD) approach will
be explained, emphasizing the benefits of using such an approach when
developing EVM. Then all signals important for developed EVM will be
presented. And then, as the main part of this chapter, developed EVM in the
form of a finite-state machine will be described in detail, including system
and test requirements.

17

3. Developed EV Manager
3.1 An Important Note

Before describing developed EVM, an important note must be stated. Due
to the early phase of FSVDVP development, current version of EVM
does not include CBW, yet integration of CBW would be analogical to
the way BBW and SBW are integrated in EVM . Accordingly with the thesis
specification, only a framework without concrete implementations of
using lower-level functions was developed, yet the design provides their
easy integration when the lower-level functions are finished.

3.2 Model-based Design Approach

According to [14], model-based design is an approach where engineers define
a model of the system with advanced functional characteristics using building
blocks in an integrated software environment, where the model may be
immediately simulated without any extra work. That can lead to effective
prototyping, easy software testing, and simple verification of the developed
system.

Stateflow from Matlab & Simulink family was used for EVM development.
That is highly beneficial since all lower-level functional control blocks will
be developed in Matlab & Simulink, simplifying the integration of various
functional blocks into one system. Models developed in Simulink may be
easily deployed on hardware via Simulink coder, which is also advantageous.
Using Stateflow for MBD of EVM provides merging theoretical design and
software implementation together.

3.3 Stateflow

Stateflow is part of Matlab & Simulink family and provides modeling systems
in the form of finite-state machines. Its basics will be described in this section
to provide enough knowledge to understand the developed EVM.

Every state has three types of actions:

18

...................................... 3.3. Stateflow..1. entry - entry actions are performed only in the simulation step when
the state is entered...2. during - during actions start being executed one step later the state
was entered and end being executed one simulation step after the state
is marked for exit (i. e., their last execution is in the simulation step
when the state is marked for exit)...3. exit - exit actions are performed one simulation step after the state was
marked for exit, i. e. one step after the last execution of during actions
of the state. Entry actions of the new state and transition actions are
executed in the same simulation step as exit action of the state that is
being exited.

After executing states’ actions, outgoing transition conditions are evaluated,
and states are marked for exit if transition conditions were evaluated true.
If a state has a substate, actions of both are performed - first actions of the
state and then of the substate. Evaluating outgoing transitions is performed
after it, resulting in executing the actions of the substate even when the state
is marked for exit in the same simulation step.

There are two types of decomposition in Stateflow:..1. Exclusive - during one simulation step, actions of only one state are
executed. When the simulation is started, a state with default transition
(the arrow with blue dot, see Figure 3.1) is entered...2. Parallel - during one simulation step, actions of all parallel states are
executed depending on the chosen execution order. First, actions of
all parallel states are executed. After it, all states are tested for exit
accordingly with the chosen execution order.

At the beginning of a new simulation step after the state was marked for exit,
transition actions are performed, exit actions of the state marked for exit are
performed. The new state is entered, and entry actions of the new state are
executed. A demonstration of Stateflow basics may be seen in Figure 3.1.

19

3. Developed EV Manager
Parallel_decomposition

B 2A
during:
x=8;

1

Exclusive_decomposition

B
exit:
x=6;

A
entry:
x=3;

[condition]
{action}

Figure 3.1: Demonstration of Stateflow basics

3.4 Important Signals and their Meaning

In this section, all signals important for the current version of EVM will be
listed, and their meaning will be explained. Constants are typeset in capital
letters. Their value will not be presented if not necessary for the description
of EVM.

Definitions of signals with the same meaning, even when related to different
systems, are below.
Definition 3.1. Let buttonSignal be a signal obtained from a button. Then

buttonSignal =
{

1, if button is being pressed
0, otherwise.

Definition 3.2. Let statusSignal be a status signal of any system. Then

statusSignal =
{

1, if the system is ON
0, otherwise.

Definition 3.3. Let faultSignal be a fault signal of any system. Then

faultSignal =
{

1, if the system reports an error
0, otherwise.

All important signals are stated below:

. heartbeatMsgsCame - denotes if all periodically broadcast messages
have come since the last time they came.

heartbeatMsgsCame =
{

1, if all periodically broadcast messages came
0, otherwise

20

.......................... 3.4. Important Signals and their Meaning

.HMI.ParkingBrakeStatus - state of parking brake.

ParkingBrakeStatus =
{

1, if parking brake is engaged
0, otherwise.DriveMode - a signal from Drive mode selector, for meaning of

the drive modes see Section 2.3.

DriveMode =


N_MODE, if neutral mode is requested
D_MODE, if drive mode is requested
R_MODE, if reverse mode is requested.Reset - state of Reset button, see Definition 3.1.. buttStart - state of Start button, see Definition 3.1.. status - see Definition 3.2.. fault - see Definition 3.3.. IMU. speed - the current speed of FSVDVP.. status - see Definition 3.2.. fault - see Definition 3.3..BBW. status - see Definition 3.2.. fault - see Definition 3.3.. SBW. status - see Definition 3.2.. fault - see Definition 3.3..BMS - all those signals are based on G1 Unit CAN Protocol described

in [12].. contactorStatus - state of BMS contactor, schematic drawing of
FSVDVP power supply architecture may be seen in Figure 2.9.

contactorStatus =
{
CONT_CLOSED, if contactor is closed
CONT_OPEN, if contactor is open.Charging related signals:. chargingInterlock

chargingInterlock =
{

1, if charger is connected
0, otherwise

21

3. Developed EV Manager
. chargingStage - charging stage, for details see [13] and [12].

For purpose of developed EVM, only value CHARGER_ERROR
is important. This value denotes error in charging.. SOC - state of charge of HV battery pack..Protection flags - BMS protection status signals. Their definition

is taken from [12]. If value of any of those signals is 1, problem
defined by the description of the signal occurred.. underVoltage - some cell is below critical minimum voltage.. overVoltage - some cell is above critical maximum voltage.. dischargeOverCur - discharge current (negative current) ex-

ceeds the critical discharge current setting.. chargeOverCur - charge current (positive current) exceeds
the critical charge current setting.. cellModOverheat - cell module temperature exceeds maxi-
mum critical temperature setting.. Leakage - leakage signal was detected on leakage input pin.. noCellCom - loss of communication to cells.. cellOverheat - cell temperature exceeds maximum cell tem-
perature threshold.. noCurSens - no current sensor.. packUnderVoltage - HV battery pack under-voltage..Warning flags - BMS warning status signals. If value of any of

those signals is 1, problem defined by the description of the signal
occurred.. lowVoltage - some cell is below low voltage warning setting.. highCurrent - discharge current (negative current) exceeds

the current warning setting.. highTemp - cell module temperature exceeds warning temper-
ature setting..Motors - definitions of motor signals were taken from [21]..MainsState - status of a motor is determined by value of this

signal.

MainsState =


ALARMED, if motor is OFF
PWR_RDY, if motor is ON
START_UP, if motor is ready to be switched ON

. FaultLevel - anomalous working conditions are indicated by differ-
ent alarm levels, classified by Table 3.1, depending on their effects
on the system.

22

................................. 3.5. EV Manager Design

FaultLevel Motor main contactor Motor Motor outputs

BLOCKING Opened Disabled Disabled
STOPPING Closed Stopped Enabled
LIMITING Closed Limited Enabled
WARNING Closed Enabled Enabled
READY Closed Enabled Enabled

Table 3.1: Table of motor alarm levels.

3.5 EV Manager Design

In this section, the implemented finite-state machine model of EVM will be
presented, including defined system and test requirements. The overall design
may be seen in Figure 3.2. All states will be explained thoroughly in this
Chapter. In the figure, Blue boxes with a number denote the execution order
of the parallel states.

The overall design is divided into several parallel state machines, their main
tasks are the following:..1. Communication - decides, if communication between ECU and other

systems in FSVDVP works...2. Diagnostics - decides, if any error occurred...3. MainStateMachine - provides the overall FSVDVP functionality...4. BBW - provides the BBW functionality...5. SBW - provides the SBW functionality...6. Warning - to provide a piece of information to human operator if any
system is reporting a warning.

It is highly recommended to take a look at figures relating to the state
which is being described, to understand the state’s function and principle of
implementation fully.

23

3. Developed EV Manager

Warning
6BBW

4 SBW
5

Communication
1

Diagnostics
2 MainStateMachine

3

1 2 3

4 5 6

Figure 3.2: Overall EVM design

3.5.1 State Communication

The main task of this state is to decide if the communication between ECU
and all other systems works. Communication is declared working, if variable
comm_status equals to ON. Otherwise, it is declared not working.

The decision is made based on the value of heartbeatMsgsCame signal which
denotes if all periodically broadcast messages have come since the last time
they came. Communication is checked, and a new decision is made every
TO_BROADCAST_MS, which is a certain timeout until all status and
heartbeat messages were supposed to come since the last time they came.
State Communication may be seen in Figure 3.3.

Communication

Com_off
entry:
comm_status=OFF;

Com_on
entry:
comm_status=ON;

[heartbeatMsgsCame==0]
1

[heartbeatMsgsCame==1]

2
{comm_status=OFF;}[heartbeatMsgsCame==1]

1

2

after

Communication

_MS,(TO_BROADCAST msec)

Figure 3.3: State Communication

24

................................. 3.5. EV Manager Design

3.5.2 State Diagnostics

The main task of this state is to decide if any error occurs. For such a case,
the following states of diagnostics were defined.
Definition 3.4. Let diagnostics be a variable defining state of the system.
Then its value can be one of the following:

diagnostics =


BLOCKING = 1
STOPPING = 2
LIMITING = 3
NORMAL = 5

depending on the current state of FSVDVP.

BLOCKING and STOPPING value of diagnostics variable denotes a severe
error (see Subsection 3.6.8), LIMITING denotes a minor error, which leads
only to limiting motors power (see Subsection 3.6.5) and NORMAL value of
diagnostics variable means all systems in FSVDVP work without any error.

This state also decides if any system reports a warning, storing the decision into
variable warning. The following variables play a crucial role in determining
values of diagnostics and warning:

. charging_allowed - for determining if connecting a charger leads to
an error.. contactor_allowed - for determining if CONT_CLOSE state of con-
tactorStatus leads to an error.. diagnose_comm - for determining if communication is supposed to be
diagnosed.. diagnose_BMS - for determining if BMS is supposed to be diagnosed.. diagnose_lv - for determining if LV systems (SBW, BBW, HMI, IMU)
are supposed to be diagnosed.. diagnose_motors - for determining if motors are supposed to be diag-
nosed.

Values of these variables, and therefore the decision, what systems are sup-
posed to be diagnosed, are determined in MainStateMachine (see Section 3.6).

25

3. Developed EV Manager
Before functions crucial for determining values of diagnostics and warning
variables will be presented, a definition must be stated.
Definition 3.5. Let C be set of conditions. Any(C) is true when any of the
conditions in C is true. None(C) is true when none of the conditions in C is
true.

All the functions are characterized by sets of conditions stated in their
description and return two values - diag, warn - accordingly with the following:

diag =


BLOCKING, if Any(B)
STOPPING, if Any(S) and None(B)
LIMITING, if Any(L) and None(S) and None(B)
NORMAL, otherwise,

warn =
{

1, any(W)
0, otherwise,

where B, S, L, W are sets of conditions. Those return values are assigned to
diagnostics and warning variables every simulation step, for details see the
implementation in Figure 3.4. The functions are the following:

. LV_check - checks if there is an error concerning LV systems. Sets of
conditions characterizing the function are:

B = {any from LV systems is OFF; any LV system’s fault signal equals to 1}
S = ∅
L = ∅
W = ∅.

.BMS_check - checks if there is an error or warning concerning BMS.
Sets of conditions characterizing the function are:

B = {any from BMS Protection flags signal equals to 1;
BMS contactorStatus equals to CONT_OPEN}

S = {BMS SOC < SOC_STOP_THRESHOLD}
L = ∅
W = {any BMS Warning flags signal’s value equals to 1;

SOC_STOP_THRESHOLD < BMS SOC < SOC_WARN_THRESHOLD.}

.MOT_check - checks if there is an error or warning concerning motors.

26

................................. 3.5. EV Manager Design

Sets of conditions characterizing the function are:

B = {any motor is OFF; any motor’s FaultLevel equals to BLOCKING}
S = {any motor’s FaultLevel equals to STOPPING}
L = {any motor’s FaultLevel equals to LIMITING}
W = {any motor’s FaultLevel equals to WARNING}

. LV_BMS_check - checks if an error or warning concerning LV systems
or BMS occurred. It is characterized by:

diag = min{diag from LV_check, diag from BMS_check}
warn = max{warn from LV_check,warn from BMS_check}.BMS_MOT_check - checks if an error or warning concerning BMS

or motors occurred. It is characterized by:

diag = min{diag from BMS_check, diag from MOT_check}
warn = max{warn from BMS_check,war from MOT_check}. LV_BMS_MOT_check - checks if an error or warning concerning

LV systems or BMS or motors occurred. It is characterized by:

diag = min{diag from LV_check, diag from BMS_check,diag from MOT_check}
warn = max{warn from LV_check,warn from BMS_check,war from MOT_check}

State Diagnostics may be seen in Figure 3.4. Transition conditions and actions
were removed from the figure and are the following:..1. transition: [diagnose_lv==ON && diagnose_BMS==ON && diag-

nose_motors == ON] {diagnostics, warning = LV_BMS_MOT_check;}
comment: LV systems, BMS and motors are being diagnosed...2. transition: [diagnose_lv==ON && diagnose_BMS==ON] {diagnos-
tics, warning = LV_BMS_check;}
comment: LV systems and BMS are diagnosed...3. transition: [diagnose_lv==ON && diagnose_motors == ON] {diag-
nostics = BLOCKING;}
comment: Not supposed to happen, motors are not supposed to be
diagnosed without BMS being diagnosed...4. transition: [diagnose_BMS==ON && diagnose_motors == ON] {di-
agnostics, warning = BMS_MOT_check;}
comment: BMS and motors are diagnosed, may happen when LV sys-
tems have been switched OFF before motors are switched OFF and
before BMS contactor is opened, for details see Subsection 3.6.8.

27

3. Developed EV Manager5. transition: [diagnose_LV==ON] {diagnostics, warning = LV_check;}
comment: Only LV systems are being diagnosed...6. transition: [diagnose_BMS==ON] {diagnostics, warning = BMS_check;}
comment: BMS is diagnosed, may happen when motors and LV systems
have been switched OFF before BMS contactor is opened, for details see
Subsection 3.6.8...7. transition: [diagnose_motors==ON] {diagnostics = BLOCKING;}
comment: Not supposed to happen, motors are not supposed to be
diagnosed without BMS being diagnosed...8. transition: [(HMI status==ON && HMI fault==1) || (IMU sta-
tus==ON && IMU fault==1)] {diagnostics = STOPPING;}
comment: May happen when LV systems except HMI and IMU were
shut down in Blocking error (see Subsection 3.6.8) and HMI or IMU
reports an error...9. transition: [charging_allowed==0 && BMS chargingInterlock==1]
{diagnostics = STOPPING;}
comment: Charger has been connected when not supposed to be....10. transition: [diagnose_comm==ON && comm_status==OFF] {diag-
nostics = BLOCKING;}
comment: Communication stopped working, see Subsection 3.5.1....11. transition: [contactor_ allowed==0 && BMS contactorStatus==CONT_
CLOSED] {diagnostics = BLOCKING;}
comment: BMS contactor is closed when not supposed to be....12. transition: [entry action]{warning = 0; charging_allowed = 0; contac-
tor_allowed = 0; diagnostics = NORMAL; diagnose_comm = OFF;
diagnose_lv = OFF; diagnose_BMS = OFF; diagnose_motors = OFF;}.
comment: Initialize variables.

3.5.3 States BBW and SBW

State BBW provides the BBW functionality. Since BBW lower-level system
functions have not been finished yet, only empty substates where those
functions will be inserted are present in the state. When bbw system is ON
and reports no error, its functionality will be being used. State SBW provides
the SBW functionality. The principle of the state is analogical to state BBW,
therefore will not be commented again. To fully understand the principle of
states BBW and SBW, see Figure 3.5.

28

................................. 3.5. EV Manager Design

Diagnostics
entry:

Decision

21

11 1
22

2

2 22
1

2

1

1
11

2

2

1

1
2

Diagnostics
entry:

1 2 3 4 5 6 7

8

9

10

11

12

Figure 3.4: State Diagnostics

BBW

BBW_active

Not_active

[BBW status==ON ...
&& BBW fault==0]

1

[BBW status==ON ...
&& BBW fault==0]

2

[BBW status==OFF...
|| BBW fault==1]

BBW SBW

SBW_active

Not_active

[SBW status==OFF...
|| SBW fault==1]

[SBW status==ON ...
&& SBW fault==0]

2

[SBW status==ON ...
&& SBW fault==0]

1

SBW

Figure 3.5: States BBW and SBW

3.5.4 State Warning

When a system reports a warning, this state will provide information about
the warning to the human operator. The exact form of the information has
not been chosen yet. It will probably be displaying a warning message on the
Infotainment display in HMI (see Subsection 2.3).

29

3. Developed EV Manager
Warning

no_warning warning

[warning==OFF]

[warning==ON]

Figure 3.6: State Warning

3.6 State MainStateMachine

As the name indicates, State MainStateMachine is the main state machine
that determines the behavior of FSVDVP. Its design may be seen in Figure 3.7.
All substates of MainStateMachine will be described in this section. Error
detection is performed in state Diagnostics, parallel to MainStateMachine, for
details see Subsection 3.5.2. Transition conditions and actions were removed
from the figure and are the following:..1. transition: {limited_mode = OFF; state = NO_VALUE;}

comment: Default transition. Variable limited_mode is for limiting
motors power by software...2. transition: after(TO_COM_ON_ MS, msec) {diagnostics = BLOCK-
ING; }
comment: Communication has not been established until defined time-
out...3. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: An error occurred...4. transition: Empty.
comment: An empty transition. Communication has been established.
See state Start (Subsection 3.6.1) for details...5. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: An error occurred...6. transition: after(PERIOD_LV_ON_MS, msec) [count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request to switch ON LV systems has not been followed
until PERIOD_LV_ON_MS timeout for N_TRIES times. For details
see state LV (Subsection 3.6.2).

30

............................... 3.6. State MainStateMachine..7. transition: [BMS chargingInterlock == 1]
comment: A charger has been connected...8. transition: [BMS chargingInterlock == 0]
comment: A charger has been disconnected...9. transition: Empty.
comment: An empty transition. LV systems have been switched ON.
See state LV (Subsection 3.6.2) for details....10. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: An error occurred....11. transition: after(PERIOD_CLOSE_CONT_MS, msec) [count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request to close BMS contactor has not been followed un-
til PERIOD_CLOSE_CONT_MS timeout for N_TRIES times. For
details see state Battery (Subsection 3.6.3)....12. transition: Empty.
comment: An empty transition. BMS contactor has been closed. See
state Battery (Subsection 3.6.3) for details....13. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: An error occurred....14. transition: Empty.
comment: An empty transition. Request to reset motors or to start
motors has not been followed for N_TRIES times. For details see state
Motors (Subsection 3.6.4)....15. transition: Empty.
comment: An empty transition. Motors have been started. See state
Motors (Subsection 3.6.4) for details....16. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: An error occurred....17. transition: [HMI buttStart==1 && IMU speed < STOPPED_THRESHOLD
&& HMI parkingBrakeStatus == 1]
comment: Follow a request to shut down motors from the human
operator....18. transition: Empty.
comment: An empty transition. Request to shut down motors or to
open BMS contactor has not been followed for N_TRIES times. For
details see state HV_SD (Subsection 3.6.6)....19. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: An error occurred.

31

3. Developed EV Manager20. transition: Empty.
comment: An empty transition. Motors have been shut down and BMS
contactor has been opened. See state HV_SD (Subsection 3.6.6) for
details....21. transition: [BMS chargingStage == CHARGER_ERROR || HMI park-
ingBrakeStatus == 0 || IMU Speed > STOPPED_THRESHOLD] {di-
agnostics=STOPPING;}
comment: BMS reports an error in charging process or FSVDVP is not
standing or the parking brake is not engaged....22. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: An error occurred....23. transition: [error_resolved==1] {diagnostics=NORMAL;}
comment: Reset of FSVDVP. See state Error (Subsection 3.6.8) for
details.

MainStateMachine

HV_SDCarRunning

MotorsError

LV

Battery

Charging

Start

12

3

1

2
3

5

6

10
11

13

14

4

9

12

15

17

18 19

23

7
8

20

2221

MainStateMachine

16

Figure 3.7: State MainStateMachine

32

............................... 3.6. State MainStateMachine

3.6.1 State Start

State Start is determined for establishing communication between ECU and
all systems in FSVDVP meant to communicate with it - SBW, BBW, IMU,
HMI, BMS, and motors (inverters).

Start is entered when:..1. ECU is switched ON from OFF...2. Reset from state ERROR is performed.

After entering Start, wait until the communication is established. Change
state to LV when the communication is established.

Change state to Error when any of the following conditions is met:

. Charger is connected.. BMS contactor is closed.. Communication is not established until defined timeout.. All LV systems are supposed to be ON (after reset from Stopping error -
see Subsection 3.6.8) and any is OFF or any is reporting an error.. HMI is ON and reports an error or IMU is ON and reports an error
(HMI and IMU may be ON without other LV systems being ON after
reset from Blocking error - see Subsection 3.6.8)

Implementation of state Start may be seen in Figure 3.8. Due to the parallel
state Diagnostics, its execution order (actions of state Diagnostics are per-
formed before actions of MainStateMachine) and Stateflow workflow for state
chart execution, Go_to_LV substate had to be inserted into state Start to
ensure communication is diagnosed (thanks to diagnose_comm = ON;) before
entering state LV. If diagnose_comm = ON; were performed as transition
action when exiting Start and entering LV, communication would not be
diagnosed until the next simulation step. The analogical principle will be
used in some of the other states and not commented again.

33

3. Developed EV Manager

Error

LV

Start

after(TO_COM_ON_MS, msec)
{diagnostics = BLOCKING;}

[diagnostics==BLOCKING ...
|| diagnostics==STOPPING]

(a) : Outer view

Start

Go_to_LV
entry:
diagnose_comm = ON;

Establish_com

[comm_status==ON]
2

after(TO_COM_ON_MS, msec)
{diagnostics = BLOCKING;}

1

Start

(b) : Inner view

Figure 3.8: State Start

3.6.2 State LV

State LV is determined for switching LV systems ON and then waiting for
further action requested by the human operator.

LV is entered when:..1. Previous state was Start and communication was established...2. Previous state was Charging and the charger was disconnected...3. Previous state was HV_SD and motors were shut down and BMS con-
tactor opened.

When LV is entered, switch ON all LV systems (SBW, BBW, HMI, IMU) that
are OFF. Then wait until a charger is connected - change state to Charging -
or the Start button is pressed - change state to Battery.

Change state to ERROR when any of the following conditions is met:

. BMS contactor is closed.. Communication stopped working.. LV systems have not been switched ON yet and charger is connected.

34

............................... 3.6. State MainStateMachine

. Request for switching ON LV systems has not been followed until defined
timeout for defined number of times.. Before switching ON LV systems, only HMI pedal unit and IMU are ON
(after reset from Blocking error - see Subsection 3.6.8) and HMI or IMU
reports an error.. After switching ON LV systems, any reports an error or any is OFF.

State LV may be seen in Figure 3.9. Transition conditions and actions were
removed from the figure and are the following:..1. transition: [Entry action] {state = STATE_LV; count = 0;}.

comment: Variable count is for determining how many times a request
has been sent...2. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: Do not send request request if an error is diagnosed in the
same simulation step as LV is entered. See Section 3.3 for details about
Stateflow substates and their execution order...3. transition: [all_LV_ON(IN) == ON]
comment: Do not switch LV systems ON if they are all ON yet...4. transition: after(PERIOD_LV_ON_MS, msec)
comment: Request to switch on LV systems has not been followed until
timeout PERIOD_LV_ON_MS. The request has been sent less than
N_TRIES times yet so send it again if no error occurred. If an error
occurred, wait for exit and do not send a new request...5. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: Do not send a request if an error is diagnosed in the same
simulation step. See Section 3.3 for details about Stateflow substates
and their execution order...6. transition: after(PERIOD_LV_ON_MS, msec) [count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request for switching ON LV systems has not been followed
until PERIOD_LV_ON_MS timeout for N_TRIES times so change
state to Error...7. transition: [all_LV_ON(IN) == ON]
comment: LV systems have been switched ON...8. transition: [BMS chargingInterlock == 1]
comment: A charger has been connected.

35

3. Developed EV Manager9. transition: [BMS chargingInterlock == 0]
comment: A charger has been disconnected....10. transition: [HMI buttStart == 1]
comment: HMI Start button has been pressed. Go close BMS contactor
- change state to Battery....11. condition: [Exit action] {count = 0;}
comment: Variable count is for determining how many times a request
has been sent.

HV_SD

LVError Charging

Start

Battery

after(PERIOD_LV_ON_MS, msec)
[count==N_TRIES]
{diagnostics=STOPPING;}

[BMS chargingInterlock==1]

[BMS chargingInterlock==0]

[diagnostics==BLOCKING ...
|| diagnostics==STOPPING]

(a) : Outer view
LV

Go_to_battery
entry:
charging_allowed=0;

LV_on_req
entry:
send_LV_req(ON);
count = count + 1;

LV_ready
entry:
diagnose_lv=ON;
charging_allowed = 1;

Wait_for_exit

2

1

1

2
1

2

2

1

1

3

2

LV
entry:
exit:

1
11 2

3

7
4

6
10

8

9

5

(b) : Inner view

Figure 3.9: State LV

3.6.3 State Battery

This state is determined for closing BMS contactor. State Battery is entered
after waiting in state LV and pressing Start button. After entering Battery,

36

............................... 3.6. State MainStateMachine

close BMS contactor. After it is closed, change state to Motors.

Change state to ERROR when any of the following conditions is met:

. Charger is connected.. Communication stopped working.. Request to close BMS contactor has not been sent so far, yet the contactor
is closed.. Any LV system reports an error or any is OFF.. Request to close BMS contactor has not been followed until defined
timeout for defined number of times.

State Battery may be seen in Figure 3.10. Transition conditions and actions
were removed from the figure and are the following:..1. transition: [entry action] {count = 0;}

comment: Variable count is for determining how many times a request
has been sent...2. condition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: Do not send request request if an error is diagnosed in the
same simulation step as Battery is entered. See Section 3.3 for details
about Stateflow substates and their execution order...3. transition: after(PERIOD_CLOSE_CONT_MS, msec)
comment: Request to close BMS contactor has not been followed until
timeout PERIOD_CLOSE_CONT_MS. The request has been sent less
than N_TRIES times yet, so send it again if no error occurred. If an
error occurred, wait for exit and do not send a new request...4. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: Do not send request request if an error is diagnosed in
the same simulation step. See Section 3.3 for details about Stateflow
substates and their execution order...5. transition: after(PERIOD_CLOSE_CONT_MS, msec)[count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request for closing BMS contactor has not been followed un-
til PERIOD_CLOSE_CONT_MS timeout for N_TRIES times. Change
state to Error.

37

3. Developed EV Manager6. transition: [BMS contactorStatus==CONT_CLOSED]
comment: BMS contactor has been successfully closed, go to state
Motors...7. transition: [exit action] {count = 0;}.
comment: Variable count is for determining how many times a request
has been sent.

Motors

Error Battery

LV

[diagnostics==BLOCKING...
|| diagnostics==STOPPING]

after(PERIOD_CLOSE_CONT_MS, msec)
[count==N_TRIES]
{diagnostics=STOPPING;}

(a) : Outer view

Battery

Go_to_start_motors
entry:
diagnose_BMS = ON;

Bat_on_req
entry:
send_BMS_cont_req(CONT_CLOSED);
contactor_allowed = 1;
count = count + 1;

Wait_for_exit

1

2

3

2

1

1

2

Battery
entry:
exit:

1
7

2

5
6

3

4

(b) : Inner view

Figure 3.10: State Battery

3.6.4 State Motors

This state is determined for switching ON motors. It is entered after closing
BMS contactor in Battery. After entering Motors, start motors. Motors
MainsState must be START_UP to be able to start them. If it is not,
resetting motors is necessary to be able to start them. Change state to
CarRunning when all motors are successfully switched ON.

Change state to Error when any of the following conditions is met:

. Charger is connected.. Communication stopped working.. Any LV system reports an error or any is OFF.. BMS reports an error.. Very low state of charge (SOC) of battery.. BMS contactor is open.

38

............................... 3.6. State MainStateMachine

. Request to reset motors has not been followed until defined timeout for
defined number of times.. Request to switch motors ON has not been followed until defined timeout
for defined number of times.

State Motors may be seen in Figure 3.11. Transition conditions and actions
were removed from the figure and are the following:..1. transition: [entry action] {count = 0;}

comment: Variable count is for determining how many times a request
has been sent...2. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: Do not send request request if an error is diagnosed in the
same simulation step as state Motors is entered. See Section 3.3 for
details about Stateflow substates and their execution order...3. transition: [all_motors_mainsState(IN)==START_UP]
comment: MainsState of all motors is START_UP, so motors are ready
to be started...4. transition: after(PERIOD_MOT_ON_MS, msec)
comment: Request to start motors has not been followed until time-
out PERIOD_MOT_ON_MS. The request has been sent less than
N_TRIES times yet, so send it again if no error occurred. If an error
occurred, wait for exit and do not send a new request...5. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: Do not send request request if an error is diagnosed in
the same simulation step. See Section 3.3 for details about Stateflow
substates and their execution order...6. transition: [all_motors_mainsState(IN)==START_UP] {count = 0;}
comment: MainsState of all motors is START_UP, so motors are ready
to be started...7. transition: after(PERIOD_MOT_RESET_MS, msec)
comment: Request to reset motors has not been followed until timeout
PERIOD_MOT_RESET_MS. The request has been sent less than
N_TRIES times yet, so send it again if no error occurred. If an error
occurred, wait for exit and do not send a new request...8. transition: [diagnostics==BLOCKING || diagnostics==STOPPING]
comment: Do not send request request if an error is diagnosed in
the same simulation step. See Section 3.3 for details about Stateflow
substates and their execution order.

39

3. Developed EV Manager9. transition: after(PERIOD_MOT_RESET_MS, msec) [count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request for resetting motors has not been followed until
PERIOD_MOT_RESET_MS timeout for N_TRIES times....10. transition: after(PERIOD_MOT_ON_MS, msec) [count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request for switching motors ON has not been followed until
PERIOD_MOT_ON_MS timeout for N_TRIES times....11. transition: [all_motors_mainsState(IN)==PWR_RDY]
comment: MainsState of all motors is PWR_RDY, so all motors are
ON....12. transition: [exit action] {count = 0;}.
comment: Variable count is for determining how many times a request
has been sent.

CarRunning

MotorsError

Battery

[diagnostics == BLOCKING...
|| diagnostics == STOPPING]

(a) : Outer view

Motors

Start_motors
entry:
send_motors_req(ON);
count = count + 1;

Reset_motors
entry:
motors_reset_req();
count = count + 1;

Wait_for_exit

Wait_for_exit2

All_motors_started
entry:
diagnose_motors = ON;

2

1

2

3

2 2

1

1

2
1

1

3

12

Motors
entry:
exit:

1
12 2

3

4

5

10 911

6

7

8

(b) : Inner view

Figure 3.11: State Motors

3.6.5 State CarRunning

This state is determined for providing full car functionality of FSVDVP. It is
entered after all motors are successfully turned ON in state Motors. After
entering state CarRunning, FSVDVP starts in neutral mode.

Purposes of the modes are the following:

40

............................... 3.6. State MainStateMachine

.Neutral mode - this mode allows tires to spin freely and might come
in handy when there is a need to push the car or have it towed..Drive mode - this mode allows the driver to move FSVDVP forward,
setting its speed via accelerator pedal. The power of all motors may
be limited in this mode when the state of motors requires it (diagnos-
tics == LIMITING)..Reverse mode - this mode allows the driver to move FSVDVP back-
ward, setting its speed via accelerator pedal. The power of all motors is
limited in this mode.

Switching mode may be performed only when driver sends request to do so
via drive mode selector and FSVDVP is standing.

Change state to HV_SD when in neutral mode, FSVDVP is standing and
the human operator presses Start button.

Change state to Error when any of the following conditions is met:

. Charger is connected.. Communication stopped working.. Any LV system reports an error or any is OFF.. BMS reports an error.. Very low SOC of battery.. BMS contactor is open.. Any motor reports an error or any is OFF.

State CarRunning may be seen in Figure 3.12. Transition conditions and
actions were removed from the figure and are the following:..1. transition: [HMI DriveMode == R_MODE

&& IMU speed < STOPPED_THRESHOLD]
comment: Switch to reverse mode...2. transition: [HMI DriveMode == N_MODE
&& IMU speed < STOPPED_THRESHOLD]
comment: Switch to neutral mode.

41

3. Developed EV Manager3. transition: [HMI DriveMode == D_MODE
&& IMU speed < STOPPED_THRESHOLD]
comment: Switch to drive mode...4. transition: [diagnostics==LIMITING || limited_mode==1]
comment: Switch to drive mode with limited power of motors...5. transition: [diagnostics==LIMITING || limited_mode==1]
comment: Switch to drive mode with limited power of motors...6. transition: [HMI DriveMode == N_MODE
&& IMU speed < STOPPED_THRESHOLD]
comment: Switch to neutral mode...7. transition: [HMI DriveMode == N_MODE
&& IMU speed < STOPPED_THRESHOLD]
comment: Switch to neutral mode...8. transition: [HMI buttStart==1
&& IMU speed < STOPPED_THRESHOLD]
comment: Go shut down motors and open BMS contactor.

CarRunning

Motors HV_SD

Error

[diagnostics == BLOCKING...
|| diagnostics == STOPPING]

(a) : Outer view

CarRunning

R_mode D_mode_limD_mode_norm

N_mode

2

2

3

1

2

1

1

CarRunning
entry: 8

7

3

4

5

6
1

2

(b) : Inner view

Figure 3.12: State CarRunning

3.6.6 State HV_SD

This state is determined for shutting down HV systems - i. e., turning OFF
motors and opening BMS contactor. It is entered after the human operator
requests turning OFF motors when in State CarRunning via pressing Start
button. Change state to LV when motors are OFF, and BMS contactor is
closed.

Change state to Error when any of the following conditions is met:

42

............................... 3.6. State MainStateMachine

. A charger is connected.. Communication stopped working.. Any LV system reports an error or any is OFF.. Before a request to open BMS contactor is sent, BMS contactor is open
or BMS reports an error.. Before a request to switch OFF motors is sent, any motor reports an
error or any is OFF.. Any LV system reports an error or any is OFF.. Request to open BMS contactor has not been followed until defined
timeout for defined number of times.. Request to shut down motors has not been followed until defined timeout
for defined number of times.

State HV_SD may be seen in Figure 3.13. Transition conditions and actions
were removed from the figure and are the following:..1. transition: [entry action] {count = 0;}.

comment: Variable count is for determining how many times a request
has been sent...2. transition: [all_motors_mainsState(IN)∼=ALARMED]
comment: Not all motors are OFF, shut down the ones that are ON...3. transition: [all_motors_mainsState(IN)==ALARMED] {count = 0;}
comment: All motors are OFF, open BMS contactor...4. transition: after(PERIOD_MOT_OFF_MS, msec) [count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request for shutting down motors has not been followed
until PERIOD_MOT_OFF_MS timeout for N_TRIES times...5. transition: after(PERIOD_MOT_OFF_MS, msec)
comment: Request to start motors has not been followed until time-
out PERIOD_MOT_OFF_MS. The request has been sent less than
N_TRIES times yet so send it again if no error occurred. If an error
occurred, wait for exit and do not send a new request...6. transition: BMS contactorStatus == CONT_CLOSED
comment: Send request to open BMS contactor.

43

3. Developed EV Manager7. transition: after(PERIOD_OPEN_CONT_MS, msec) [count==N_TRIES]
{diagnostics=STOPPING;}
comment: Request for opening BMS contactor has not been followed un-
til PERIOD_OPEN_CONT_MS timeout for N_TRIES times. Change
state to Error...8. transition: after(PERIOD_OPEN_CONT_MS, msec)
comment: Request to open BMS contactor has not been followed until
timeout PERIOD_OPEN_CONT_MS. The request has been sent less
than N_TRIES times yet so send it again if no error occurred. If an
error occurred, wait for exit and do not send a new request...9. transition: [BMS contactorStatus == CONT_OPEN]
comment: BMS contactor has been opened, HV is shut down, go to
state LV....10. condition: [exit action] {count = 0;}.
comment: Variable count is for determining how many times a request
has been sent.

Error

CarRunningHV_SD

LV

[diagnostics==BLOCKING ...
|| diagnostics==STOPPING]

(a) : Outer view

HV_SD

Go_to_LV
entry:
diagnose_motors=OFF;
diagnose_BMS=OFF;
contactor_allowed=0;

BMS_contactor
entry:
diagnose_BMS=OFF;
send_BMS_cont_req(CONT_OPEN);
count = count + 1;

Motors
entry:
diagnose_motors=OFF;
send_motors_req(OFF);
count = count + 1;

2 3

2
1

3

2

2

1

2

HV_SD
entry:

exit:
1

10

6

3

5

9

8

4

7
1

1

(b) : Inner view

Figure 3.13: State HV_SD

3.6.7 State Charging

State Charging is determined for charging FSVDVP. It is entered if a charger
is connected while waiting in state LV. Parking brake must be engaged,
and FSVDVP must be standing while in this state. When the charger is
disconnected, change state to LV.

44

............................... 3.6. State MainStateMachine

Change state to Error when any of the following conditions is met:

. BMS contactor is closed.. BMS reports an error in the charging process.. Communication stopped working.. Parking brake is disengaged.. FSVDVP is moving.. Any LV system reports an error or any is OFF.

State Charging may be seen in Figure 3.14.

Error

LV Charging

[diagnostics==BLOCKING ...
|| diagnostics == STOPPING]

1[BMS chargingInterlock==0]

3

[BMS chargingInterlock==1]

[BMS chargingStage == CHARGER_ERROR ...
|| HMI parkingBrakeStatus==0 ...
|| IMU speed > STOPPED_THRESHOLD]
{diagnostics=STOPPING;}

2

(a) : Outer view

Charging

(b) : Inner view

Figure 3.14: State Charging

3.6.8 State Error

State Error is entered after an error occurs in any other state. Parallel state
Diagnostics (see Subsection 3.5.2) is used for error detection. When a request
to switch a system ON/OFF is not repeatedly followed until a defined timeout
for a defined number of times, state is also changed to Error. See previous
parts of this section for details.

Two types of errors were defined:

45

3. Developed EV Manager
.Blocking errors - when such an error occurs, SBW, BBW, and motors

must be shut down, BMS contactor must be opened.. Stopping errors - when such an error occurs, motors must be shut
down and BMS contactor must be opened.

When all systems that are supposed to be shut down (depending on the error
severity - described above) are shut down, FSVDVP was stopped, parking
brake is engaged and no charger is connected, change state to Start on
pressing Reset button. State Error may be seen in Figure 3.15. Substates
Blocking_error and Stopping_error provide resolution of the error depending
on its type.

Error

Stopping_error

Blocking_error

[diagnostics==BLOCKING]

2

[diagnostics==BLOCKING]

1

Error
entry:
error_resolved = 0;

Blocking_error

Stop_and_reset 3

HV_SD1 LV_SD2

Blocking_error

Stopping_error

Stop_and_reset2

HV_shutdown 1

Stopping_error

Figure 3.15: State Error

State Blocking_error

When a blocking error occurs, SBW, BBW and motors must be shut down,
BMS contactor must be opened. That provides state Blocking_error which
may be seen in Figure 3.16.
It contains three parallel substates:..1. HV_SD - switches motors OFF and opens BMS contactor...2. LV_SD - switches SBW and BBW systems OFF.

46

............................... 3.6. State MainStateMachine

Blocking_error

Stop_and_reset 3

HV_SD1 LV_SD2

Blocking_error

Figure 3.16: State Blocking_error..3. Stop_and_reset - waits until BMS contactor is opened, SBW and
BBW systems are switched OFF, the car is stopped (slowing down
is performed by the human operator pressing brake pedal - back-up
mechanical brakes), and parking brake is engaged. Then state may be
changed to Start on pressing Reset button if no charger is connected,
SBW and BBW systems are OFF, BMS contactor is open and parking
brake is engaged.

Substate HV_SD may be seen in Figure 3.17. Transition conditions and
actions were removed from the figure and are the following:..1. transition: [entry action] {count = 0; diagnose_motors=OFF; diag-

nose_BMS=OFF; diagnose_lv=OFF; diagnose_comm=OFF;}
comment: Variable count is for determining how many times a request
has been sent. Switch OFF diagnosing of all systems, error can not be
more severe...2. transition: [all_motors_mainsState(IN)∼=ALARMED]
comment: At least one of the motors is not OFF. Go switch it OFF...3. transition: [all_motors_mainsState(IN)==ALARMED] {count=0;}
comment: All motors have been switched OFF...4. transition: after(PERIOD_MOT_OFF_MS, msec)[count==N_TRIES]
{count=0;}
comment: Switching motors OFF has been unsuccessful for N_TRIES
times. Go open BMS contactor...5. transition: after(PERIOD_MOT_OFF_MS, msec)
comment: Try again to switch motors OFF...6. transition: after(PERIOD_OPEN_CONT_MS, msec) [count==N_TRIES
&& all_motors_mainsState(IN)∼=ALARMED] {count=0;}
comment: Switching motors OFF had been unsuccessful for N_TRIES

47

3. Developed EV Manager
times, opening BMS contactor was unsuccessful for N_TRIES times, so
try again to switch motors OFF...7. transition: [BMS contactorStatus==CONT_CLOSED]
comment: Go open BMS contactor...8. transition: [BMS contactorStatus==CONT_OPEN]
comment: BMS contactor has been successfully opened...9. transition: after(PERIOD_OPEN_CONT_MS, msec)
comment: Try again to open BMS contactor....10. transition: [BMS contactorStatus==CONT_OPEN] {count=0;}
comment: BMS contactor is open, go close it....11. transition: [BMS contactorStatus==CONT_CLOSED]
&& all_motors_mainsState(IN)∼=ALARMED {count=0;}
comment: Motors are not OFF, go turn them OFF....12. transition: [exit action] {count = 0;}.
comment: Variable count is for determining how many times a request
has been sent.

HV_SD

HV_down
entry:
contactor_allowed = 0;

Motors
entry:
send_motors_req(OFF);
count = count + 1;

BMS_contactor
entry:
send_BMS_cont_req(CONT_OPEN);
count = count + 1;

1

2

2
2

2

1

1

2

1

1

3

3

HV_SD
entry:
exit:

1

12

2

7

3 4

5

6

8 10
9

11

Figure 3.17: State HV_SD

Substate LV_SD may be seen in Figure 3.18. Transition conditions and
actions were removed from the figure and are the following:..1. transition: [all_LV_toGoOFF_OFF(IN) == 0]

comment: There is a LV system that needs to be shutdown.

48

............................... 3.6. State MainStateMachine..2. transition: [all_LV_toGoOFF_OFF(IN) == 1]
comment: All LV systems supposed to be switched OFF have been
switched OFF...3. transition: after(PERIOD_LV_OFF_MS, msec)
comment: Send request to shut down LV systems again...4. transition: [all_LV_toGoOFF_OFF(IN) == 0]
comment: Some of the LV systems supposed to be OFF has been
switched ON, go switch it OFF.

LV_SD

LV_off_req
entry:
send_LV_req(OFF);

LV_down
1

2

1
2

1
3

2

4

Figure 3.18: State LV_SD

Substate Stop_and_reset may be seen in Figure 3.19. Transition conditions
and actions were removed from the figure and are the following:..1. transition: [BMS contactorStatus == CONT_OPEN

&& all_LV_toGoOFF_OFF(IN) == 1]
comment: BMS contactor is open, SBW and BBW is OFF, go wait
until the car is standing and parking brake is engaged...2. transition: [IMU speed < STOPPED_THRESHOLD && HMI park-
ingBrakeStatus==1]
comment: FSVDVP is standing and parking brake is engaged...3. transition: [BMS chargingInterlock==1]
comment: A charger is connected, wait until it is disconnected...4. transition: [HMI parkingBrakeStatus==0]
comment: The parking brake has been disengaged...5. transition: [BMS chargingInterlock==0]
comment: The charger has been disconnected...6. transition: [BMS contactorStatus == CONT_CLOSED
|| all_LV_toGoOFF_OFF(IN)==0]
comment: BMS contactor has been closed or SBW or BBW has been
switched ON, go wait until it is resolved by states HV_SD and LV_SD.

49

3. Developed EV Manager7. transition: [HMI parkingBrakeStatus==0]
comment: The parking brake has been disengaged...8. transition: [BMS chargingInterlock==1]
comment: A charger has been connected...9. condition: [HMI Reset==1]
comment: SBW, BBW and motors are OFF, BMS contactor is open,
parking brake is engaged, no charger is connected and Reset button has
been pressed. Therefore perform reset - change state to Start.

Stop_and_reset

WaitForReset

Exit_error
entry:
error_resolved=1;

ChargerDisc

WaitForStop

WaitForSD

1

3

1

1

4

2

2

2

Stop_and_reset

1

2

8 9

5

3

4

7
6

Figure 3.19: State Stop_and_reset

State Stopping_error

When a stopping error occurs, motors must be shut down and BMS contactor
must be opened. That provides state Stopping_error. It may be seen in
Figure 3.20.

Stopping_error

Stop_and_reset2

HV_shutdown 1

Stopping_error

Figure 3.20: State Stopping_error

50

............................... 3.6. State MainStateMachine

It contains two parallel substates:..1. HV_shutdown - switches ON safestop mode to slow down FSVDVP,
after the vehicle is standing, switches motors OFF (and therefore safestop
mode as well) and opens BMS contactor...2. Stop_and_reset - waits until BMS contactor is opened, car is stopped
(slowing down is performed by motors safestop mode and human operator
pressing brake pedal - BBW system) and parking brake is engaged. Then
state may be changed to Start on pressing Reset button if no charger is
connected, BMS contactor is open and parking brake is engaged.

Substate HV_shutdown may be seen in Figure 3.21. Transition conditions
and actions were removed from the figure and are the following:..1. transition: [entry action] {count = 0;}

comment: Variable count is for determining how many times a request
has been sent...2. transition: [all_motors_mainsState(IN)∼=ALARMED]
comment: At least one motor is not OFF...3. transition: [IMU speed > STOPPED_THRESHOLD
&& all_motors_mainsState(IN)==PWR_RDY]
comment: FSVDVP is moving and safestop mode may be switched ON
on all motors...4. transition: [all_safestop_ON(IN)==1] {count=0;}
comment: Safestop mode has been successfully switched ON on all
motors...5. transition: after(PERIOD_SFSP_ON_MS, msec)[count==N_TRIES]
{count=0;}
comment: Failed to turn ON safestop mode until PERIOD_SFSP_ON_MS
timeout for N_TRIES. Go switch motors OFF...6. transition: after(PERIOD_SFSP_ON_MS, msec)
comment: Try again to turn safestop mode ON...7. transition: [IMU speed < STOPPED_THRESHOLD]
comment: FSVDVP has been stopped, switch motors OFF...8. transition: [all_motors_mainsState(IN)==ALARMED] {count=0;}
comment: All motors have been switched OFF.

51

3. Developed EV Manager9. transition: after(PERIOD_MOT_OFF_MS, msec)[count==N_TRIES]
{count=0;}
comment: Failed to switch motors OFF until PERIOD_MOT_OFF_MS
timeout for N_TRIES times....10. transition: after(PERIOD_MOT_OFF_MS, msec)
comment: Try again to switch motors OFF....11. transition: [BMS contactorStatus == CONT_OPEN]
comment: BMS contactor has been successfully opened....12. transition: after(PERIOD_OPEN_CONT_MS, msec)[count==N_TRIES
&& all_motors_mainsState(IN)∼=ALARMED] {count=0;}
comment: Switching motors OFF had been unsuccessful for N_TRIES
times, opening BMS contactor was unsuccessful for N_TRIES times, so
try again to switch motors OFF....13. transition: after(PERIOD_OPEN_CONT_MS, msec)
comment: Try again to open BMS contactor....14. transition: [BMS contactorStatus == CONT_CLOSED]
comment: BMS contactor is closed, go open it....15. condition: [BMS contactorStatus==CONT_CLOSED
&& all_motors_mainsState(IN)∼=ALARMED] {count=0;}
comment: BMS contactor must have been closed and at least one motor
switched ON, go turn motors OFF again....16. transition: [BMS contactorStatus==CONT_CLOSED] {count=0;}
comment: BMS contactor has been closed, go open it again....17. Transition: [exit action] {count=0;}
comment: Variable count is for determining how many times a request
has been sent.

Substate Stop_and_reset of Stopping_error is same as the one of Block-
ing_error (see Figure 3.19) except for transitions no. 1 and 6, those are the
following:

. transition no. 1: [BMS contactorStatus == CONT_OPEN]
comment: BMS contactor is open, go wait until FSVDVP is stopped
and parking brake is engaged.. transition no. 6: [BMS contactorStatus == CONT_CLOSED]
comment: BMS contactor has been closed, wait until it is opened again.

52

............................... 3.6. State MainStateMachine

HV_shutdown

BMS_contactor
entry:
diagnose_BMS = OFF;
send_BMS_cont_req(CONT_OPEN);
count = count + 1;

HV_down
entry:
diagnose_motors = OFF;
diagnose_BMS = OFF;
contactor_allowed = 0;

Sfsp_active

Motors_shutdown
entry:
diagnose_motors = OFF;
send_motors_req(OFF);
count = count + 1;

Sfsp_on_req
entry:
set_safestop_req(ON);
count = count + 1;

1

2

2

1

2

3

2

3

1

1
2

1

2

1

3 1

2

HV_shutdown
entry:

exit:
1
17

2

3

5
4

6

7
10

12 8 9

13
11

16

15

14

Figure 3.21: State HV_shutdown

53

54

Chapter 4

Testing the EV Manager

According to [20], there is need to test the developed EVM to reveal possible
bugs and fix them. Also EVM design must be validated to be sure it behaves
accordingly with the system requirements described in Chapter 3.

Matlab & Simulink Test Harness was used for software testing and valida-
tion of the implementation. Tests were also automated with the help of
Matlab & Simulink Test Manager.

In this chapter, EVM testing process will be described. Designed test series
will be presented, and an example will be explained in detail.

4.1 Test Harness

According to [11], a test harness is a test-specific simulation environment
where models may be isolated for unit testing. Inputs may be easily designed
with many tools. I used Signal Editor Block for such a case, for it provides
a user-friendly graphical interface for creating and analyzing input signals.
The user interface of Signal Editor Block may be seen in Figure 4.1.

55

4. Testing the EV Manager................................

Figure 4.1: User interface of Signal Editor Block

4.2 Testing Process

I designed five test series, each covering a part of EVM design, to validate
the overall functionality of EVM specified in Chapter 3:..1. Start_error_test - for verifying state is changed from Start to Error

when any error associated with state Start occurs (described in Subsec-
tion 3.6.1), and state is changed from Error to Start when all conditions
for system reset are fulfilled (see Subsection 3.6.8)...2. Lv_charge_error_test - for verifying state is changed from Start to
LV when communication is established, state is changed from LV to
Error when any error relating to state LV occurs (see Subsection 3.6.2),
state is changed from LV to Charging when all LV systems are ON and
a charger is connected, state is changed from Charging to Error when
any error relating to state Charging occurs (see Subsection 3.6.7) and
state is changed from Charging to LV when the charger is disconnected.
Also, for verifying state is not changed from Error to Start when Reset
button is pressed and SBW or BBW is ON...3. Bat_mot_error_test - for verifying state is changed from LV to
Battery when LV systems are ON and Start button is pressed, state is

56

................................... 4.2. Testing Process

changed from Battery to Motors after BMS contactor is closed, state is
changed from Battery to Error when any error associated with state Bat-
tery occurs (see Subsection 3.6.3), state is changed from Motors to Error
when any error relating to state Motors occurs (see Subsection 3.6.4).
Also, for verifying state is not changed from Error to Start when Reset
button is pressed, and BMS contactor is closed...4. Running_error_test - for verifying state is changed from Motors to
CarRunning when all motors are successfully started, state is changed
from CarRunning to Error when any error relating to state CarRunning
occurs (see Subsection 3.6.5). Also, for verifying requests to switch
mode are followed only when FSVDVP is standing, switching from
Drive mode to Reverse mode and conversely might be performed only
through switching to Neutral mode first. Also, for verifying that the
mode is switched from normal Drive mode to limited Drive mode when
diagnostics is LIMITING or variable limited_mode equals to 1, and
switching back is not performed when diagnostics equals to NORMAL
but Neutral mode is not switched to first...5. Shutdown_error_test - for verifying state is changed from CarRun-
ning to HV_SD when in Neutral mode, FSVDVP is standing and Start
button is pressed, and it is not changed on pressing Start button when
any of those conditions is not fulfilled. Also, for verifying state is changed
from HV_SD to Error when any error associated with state HV_SD
occurs (see Subsection 3.6.6) and state is not changed from Error to
Start when motors are ON and BMS contactor is closed.

Those test series were also automated with the help of Simulink Test Manager.
How it looks in Test Manager when all those tests are passed may be seen in
Figure 4.2.

Figure 4.2: Simulink Test Manager - automated tests results

57

4. Testing the EV Manager................................
A part of Lv_charge_error_test will be described thoroughly here. Input sig-
nals of LV systems and signal heartbeatMsgsCame may be seen in Figure 4.3,
HMI reset signal may be seen in Figure 4.4, and state of MainStateMachine
may be seen in Figure 4.5.

0 1 2 3

t [s]

0

0.5

1

V
a

lu
e

 [
-]

BBW fault

0 1 2 3

t [s]

0

0.5

1

V
a

lu
e

 [
-]

HMI status

0 1 2 3

t [s]

0

0.5

1

V
a

lu
e

 [
-]

BBW status

0 1 2 3

t [s]

0

0.5

1

V
a

lu
e

 [
-]

SBW status

0 1 2 3

t [s]

0

0.5

1

V
a

lu
e

 [
-]

IMU status

0 1 2 3

t [s]

0

0.5

1

V
a

lu
e

 [
-]

Sig. heartbeatMsgsCame

Figure 4.3: A part of Lv_charge_error_test - various input signals

0 0.5 1 1.5 2 2.5 3

t [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

V
a

lu
e

 [
-]

HMI Reset Signal

Figure 4.4: A part of Lv_charge_error_test - HMI Reset signal

58

................................... 4.2. Testing Process

0 0.5 1 1.5 2 2.5 3

t [s]

Start

State of MainStateMachine

LV

Battery

Motors

CarRunning

HV_SD

Charging

Error

S
ta

te

Figure 4.5: A part of Lv_charge_error_test - state of MainStateMachine

Communication is established at 0.5 s, therefore state is changed from Start to
LV in the next simulation step. IMU, HMI, BBW and SBW are switched ON.
BBW reports an error at 1.4 s, therefore state is changed to Error. Pressing
Reset button has no effect until BBW and SBW are switched OFF - that
happens at 2 s. At 2.4 s, Reset button is pressed and BBW and SBW are
OFF, therefore state is changed to Start where EVM waits for communication
to be established until TO_BROADCAST_MS timeout, which was defined
as 2 s for the test.

The designed test series validate the developed EVM. It provides the full
EV functionality and also deterministic behavior specified in Chapter 3.
Nevertheless, testing process never ends. New test series will have to be made
when EVM design is modified.

59

60

Chapter 5

Conclusion

Within this thesis, a Matlab & Simulink based framework for electric vehicle
high-level functionality management system was developed, implemented,
and tested.

Model-based design approach was chosen for the development because it pro-
vides an easy option to simulate the behavior of the developed system without
any extra work and combines overall concept design and implementation. EV
manager systems were reviewed in Chapter 1. In Chapter 3, system and test
requirements were defined, and implementation and the overall concept of
developed EVM were presented. The testing and validation process of the
implementation was described in Chapter 4.

All of the objectives were met in this thesis, yet the current design of EVM is
not the final one since FSVDVP design will be updated many times in the
future. Even though it has to be altered when new systems are added to
FSVDVP, it provides a solid design that is easy to modify.

As a future work proposition, hardware-in-the-loop testing should be per-
formed.

61

62

Appendix A

Bibliography

[1] https://www.porscheengineering.com/peg/en/services/
engineeringservices/electronics/. Accessed: 13. 5. 2022.

[2] https://www.valeo.com/en/interior-cocoon/. Accessed:
13. 5. 2022.

[3] https://in-wheel.com/en/solutions-2/
vehicle-electrification-and-prototyping/. Accessed: 13. 5. 2022.

[4] https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/tree/
main/Communication.

[5] Does an electric vehicle emit less than a petrol or
diesel? https://www.transportenvironment.org/discover/
does-electric-vehicle-emit-less-petrol-or-diesel/. Accessed:
4. 5. 2022.

[6] Drive-by-wire is born. https://sds.fel.cvut.cz/home. Accessed:
29. 4. 2022.

[7] Greenhouse effect. https://www.nationalgeographic.org/
encyclopedia/greenhouse-effect/#on-thin-ice. Accessed:
4. 5. 2022.

[8] How cars have become rolling computers.
https://www.theglobeandmail.com/globe-drive/
how-cars-have-become-rolling-computers/article29008154/.
Accessed: 4. 5. 2022.

[9] Research motivation. https://sds.fel.cvut.cz/research. Accessed:
29. 4. 2022.

63

https://www.porscheengineering.com/peg/en/services/engineeringservices/electronics/
https://www.porscheengineering.com/peg/en/services/engineeringservices/electronics/
https://www.valeo.com/en/interior-cocoon/
https://in-wheel.com/en/solutions-2/vehicle-electrification-and-prototyping/
https://in-wheel.com/en/solutions-2/vehicle-electrification-and-prototyping/
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/tree/main/Communication
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/tree/main/Communication
https://www.transportenvironment.org/discover/does-electric-vehicle-emit-less-petrol-or-diesel/
https://www.transportenvironment.org/discover/does-electric-vehicle-emit-less-petrol-or-diesel/
https://sds.fel.cvut.cz/home
https://www.nationalgeographic.org/encyclopedia/greenhouse-effect/#on-thin-ice
https://www.nationalgeographic.org/encyclopedia/greenhouse-effect/#on-thin-ice
https://www.theglobeandmail.com/globe-drive/how-cars-have-become-rolling-computers/article29008154/
https://www.theglobeandmail.com/globe-drive/how-cars-have-become-rolling-computers/article29008154/
https://sds.fel.cvut.cz/research

A. Bibliography.....................................
[10] Stavby aut a motorek. http://www.ponda.cz/stavby-aut-a-motorek.

Accessed: 1. 5. 2022.

[11] Test harnesses. https://www.mathworks.com/help/sltest/
test-harnesses.html. Accessed: 11. 5. 2022.

[12] EMUS. EMUS G1 Control Unit CAN Protocol. https://gitlab.fel.
cvut.cz/jirakji1/bc_thesis_doc/-/blob/main/Communication/
CAN_protocol_datasheets/EMUS-G1-BMS-CAN-Protocol-v2.0.12.
pdf, 2021. Original document from EMUS.

[13] EMUS. G1 Battery Management System - User Man-
ual. https://emusbms.com/wp-content/uploads/2020/12/
G1-BMS-User-Manual-2.7.0-2.pdf, 2021. Original document
from EMUS.

[14] T. Kelemenová, M. Kelemen, L. Miková, V. Maxim, E. Prada, T. Lipták,
and F. Menda. Model based design and HIL simulations. American
Journal of Mechanical Engineering, 1(7):276–281, 2013.

[15] R. Li, C. Liu, and F. Luo. A design for automotive CAN bus monitoring
system. 2008 IEEE Vehicle Power and Propulsion Conference, pages
1–5, 2008.

[16] K. Liu, K. Li, Q. Peng, and C. Zhang. A brief review on key technologies
in the battery management system of electric vehicles. Frontiers of
Mechanical Engineering, 14:47–64, 2019.

[17] Net Gains Motors, Inc. HyPer 9HV IS. https://www.go-ev.com/PDFs/
HyPer_9HV_Sales_Sheet.pdf, 2021. Original document from Net Gains
Motors, Inc.

[18] NEXCOM International Co., Ltd. VTC 7230. http://files.nexcom.
com/Driver/VTC72xx_Series/User_Manual_VTC72xx-BK_170303.
pdf, 2017. Original document from NEXCOM International Co., Ltd.

[19] Panasonic. NCR18650B. https://www.tme.eu/Document/
3e0170a1e089819f286f7066e69035b4/NCR18650B.pdf, 2021. Original
document from Panasonic.

[20] H. L. Ross. Functional Safety for Road Vehicles. Springer, 2016.

[21] TAU. TAU Generic Slave Interactive Documentation for Asynchronous
Motors. https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/
-/blob/main/00_Doc/Data_sheets/EV-europe/TAU_ACGSL_HELP.chm,
2021. Original document from TAU.

[22] T. Veselý. Brake-by-wire system development. Master’s thesis, Czech
Technical University in Prague, Czechia, 2022.

64

http://www.ponda.cz/stavby-aut-a-motorek
https://www.mathworks.com/help/sltest/test-harnesses.html
https://www.mathworks.com/help/sltest/test-harnesses.html
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/blob/main/Communication/CAN_protocol_datasheets/EMUS-G1-BMS-CAN-Protocol-v2.0.12.pdf
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/blob/main/Communication/CAN_protocol_datasheets/EMUS-G1-BMS-CAN-Protocol-v2.0.12.pdf
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/blob/main/Communication/CAN_protocol_datasheets/EMUS-G1-BMS-CAN-Protocol-v2.0.12.pdf
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/blob/main/Communication/CAN_protocol_datasheets/EMUS-G1-BMS-CAN-Protocol-v2.0.12.pdf
https://emusbms.com/wp-content/uploads/2020/12/G1-BMS-User-Manual-2.7.0-2.pdf
https://emusbms.com/wp-content/uploads/2020/12/G1-BMS-User-Manual-2.7.0-2.pdf
https://www.go-ev.com/PDFs/HyPer_9HV_Sales_Sheet.pdf
https://www.go-ev.com/PDFs/HyPer_9HV_Sales_Sheet.pdf
http://files.nexcom.com/Driver/VTC72xx_Series/User_Manual_VTC72xx-BK_170303.pdf
http://files.nexcom.com/Driver/VTC72xx_Series/User_Manual_VTC72xx-BK_170303.pdf
http://files.nexcom.com/Driver/VTC72xx_Series/User_Manual_VTC72xx-BK_170303.pdf
https://www.tme.eu/Document/3e0170a1e089819f286f7066e69035b4/NCR18650B.pdf
https://www.tme.eu/Document/3e0170a1e089819f286f7066e69035b4/NCR18650B.pdf
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/blob/main/00_Doc/Data_sheets/EV-europe/TAU_ACGSL_HELP.chm
https://gitlab.fel.cvut.cz/jirakji1/bc_thesis_doc/-/blob/main/00_Doc/Data_sheets/EV-europe/TAU_ACGSL_HELP.chm

	Acronyms
	Introduction
	Smart Driving Solutions
	Drive-by-wire Concept
	Why Use an Electric Vehicle
	What EV Manager Is
	Commercial EV Managers
	Problem Formulation
	Objectives of Thesis

	Full-scale Vehicle Dynamics Verification Platform
	Architecture
	System Bus - CAN
	Human-Machine Interface
	Electronic Control Unit
	Vehicle Measurement System
	Brake-by-wire System
	Steer-by-wire and Camber-by-wire System
	Powertrain
	Battery Management System
	Power Supply Architecture

	Developed EV Manager
	An Important Note
	Model-based Design Approach
	Stateflow
	Important Signals and their Meaning
	EV Manager Design
	State Communication
	State Diagnostics
	States BBW and SBW
	State Warning

	State MainStateMachine
	State Start
	State LV
	State Battery
	State Motors
	State CarRunning
	State HV_SD
	State Charging
	State Error

	Testing the EV Manager
	Test Harness
	Testing Process

	Conclusion
	Bibliography

