
Faculty of Electrical Engineering
Department of Measurement

Bachelor’s thesis

FPGA-based Processing of LiDAR Data
Filip Kučera

May 2022
Supervisor: Ing. Petr Čížek

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492267Personal ID number:Kučera FilipStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Open InformaticsStudy program:

Internet thingsSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

FPGA-based Processing of LiDAR Data

Bachelor’s thesis title in Czech:

Zpracování dat z laserového skeneru pomocí FPGA

Guidelines:

1) Get familiar with development for FPGA boards such as DE10 nano [1] with a focus on the High Level Synthesis using
C code [2].
2) Get familiar with the Ouster OS-0 LiDAR [3] and its communication interfacing.
3) Propose and develop FPGA-based reading of the raw data stream of the LiDAR sensor and its processing to point
cloud for single and multiple LiDAR units.
4) Benchmark the developed architecture in terms of processing speed, latency, and power consumption and compare
its performance with the baseline CPU-based implementation [4].
5) Investigate existing localization techniques based on LiDAR data processing, such as [5,6] and FPGA implementations
[7,8] and select a suitable method of LiDAR-based incremental localization for the deployment on the FPGA.
6) Deploy the selected localization method on the FPGA.

Bibliography / sources:

[1] DE10 nano get started guide, available:
https://software.intel.com/com/content/www/us/en/develop/articles/terasic-de10-nano-get-started-guide.html [cited on
2022-14-01].
[2] Intel High Level Synthesis Compiler Pro Edition - User Guide, available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls.pdf [cited on 2022-14-01].
[3] Ouster OS0 lidar documentation, available: https://ouster.com/downloads/ [cited on 2022-14-01].
[4] Ouster OS0 lidar drivers, available: https://github.com/ouster-lidar/ouster_example.git [cited on 2022-14-01].
[5] F. Pomerleau, F. Colas, R. Siegwart, 'A Review of Point Cloud Registration Algorithms for Mobile Robotics,' Foundations
and Trends in Robotics, 4 (1): 1–104, 2015.
[6] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,“ Robotics: Science and Systems (RSS),
2(9), 2014.
[7] M. Eisoldt, M. Flottmann, J. Gaal, P. Buschermöhle, S. Hinderink, M. Hillmann, A. Nitschmann, P. Hoffmann, T.Wiemann,
and M. Porrmann, “HATSDF SLAM – Hardware-accelerated TSDF SLAM for Reconfigurable SoCs,” European Conference
on Mobile Robots (ECMR), 2021.
[8] M. Palieri et al., ”LOCUS: A multi-sensor lidar-centric solution for high-precision odometry and 3D mapping in real-time,”
IEEE Robotics and Automation Letters, 6(2):421-8, 2021.

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Čížek Department of Computer Science FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 09.02.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Petr Čížek
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZBP-2015.1

Declaration
I declare that the presented work was developed independently and that I have listed all sources
of the information used within it in accordance with the methodical instructions for observing
the ethical principles in the preparation of university theses.

Prague, May 20, 2022

. .
Filip Kučera

i

Acknowledgement
I would like to thank Ing. Petr Čížek for supervising me and guiding me through the interesting
field of robotics and perception. Also, I’d like to thank my mom for always supporting me.

ii

Abstrakt
Tato práce se zabývá zpracováním dat z 3D laserového skeneru pomocí programovatelného
hradlového pole (FPGA). Práce předkládá kompletní návrh pipeline pro zpracování surových
dat z 3D laserového skeneru až do podoby point cloudu a využití dat v odhadu odometrie robota,
efektivně využívající hradlovou (FPGA) i procesorovou (CPU) část vývojové desky DE10-Nano.
Pro zrychlení vývoje jsme využili nástroje High Level Synthesis, umožňující napsat jádro algo-
ritmu v jazyce C++ a přeložit ho do HDL.

Jádrem práce je implementace metody odhadu odometrie založená na použití surových
hloubkových obrazových dat z LiDARu za účelem nalezení nejvhodnějšího rešení pro architek-
turu FPGA a také ukázání slibného směru v této oblasti. Navrhovaná architektura je modulární
a není tak limitována na specifický výběr algoritmu nebo senzoru. V závěru práce demonstru-
jeme funkčnost námi navrhované architektury a ukazujeme, že navzdory využití relativně levného
FPGA dokáže soupeřit i s modernímy CPU.

Klíčová slova: Programovatelná Hradlová Pole, Odometrie, Point Cloud, High Level Synthesis,
LiDAR

iii

Abstract
In this thesis, we propose a general purpose sensor data processing pipeline, implemented as a
SoPC utilizing both the FPGA and the CPU part of the DE10-Nano Development Board. The
proposed pipeline processes LiDAR data and outputs a 3D point cloud and an odometry esti-
mate. To accelerate the development we used the High Level Synthesis toolchain allowing us to
write core algorithm in C++ and translate it into HDL. In this work, we study all the necessary
steps of the LiDAR point cloud processing pipeline and we explore an unconventional way of
approaching the odometry estimation by using the raw depth image data from the LiDAR, in
order to find a best fit solution for the FPGA architecture and also to show a promising direction
to the field. We also discuss the steps necessary to gain the biggest advantage from the use of the
FPGA over the traditionally used CPU(s). We also show that the pipeline design is modular and
thus isn’t limited to any specific choice of algorithm(s) or sensor(s). In the last section, we show
that the pipeline is functional and that even when using relatively cheap FPGA, the results are
competitive with modern CPU(s).

Keywords: Field Programmable Gate Array, Odometry, Point Cloud, High Level Synthesis,
LiDAR

iv

Contents

1 Introduction 1

2 Problem Statement and Background 3
2.1 LiDAR Depth Image to Point Cloud Transform 3
2.2 Odometry . 4

2.2.1 LiDAR Odometry . 4
2.2.1.1 Feature Based Methods . 4
2.2.1.2 Grid Based Methods . 4
2.2.1.3 Dense Methods . 5

2.2.2 Features from Accelerated Segment Test 5
2.2.3 Binary Robust Independent Elementary Feature description 5
2.2.4 Least Squares Fitting of Two 3D Point Sets 6

3 Hardware & Software Setup 8
3.1 Ouster OS0-128 . 8
3.2 Field Programmable Gate Array . 9

3.2.1 DE10-Nano Development Board . 10
3.3 High Level Synthesis . 11

3.3.1 Intel HLS . 12
3.4 u-dma-buf . 12

4 Architecture 13
4.1 Point Cloud Generator . 13

4.1.1 HPS Part . 13
4.1.2 FPGA Part . 15

4.1.2.1 lidar2pntcloud . 16
4.2 LiDAR Odometry . 16

4.2.1 Data Preprocessing . 17
4.2.2 FAST feature detector . 18
4.2.3 Binary Robust Independent Elementary Feature description 18
4.2.4 Feature matching & tracking . 18
4.2.5 Feature Registration . 19

5 Results 20
5.1 Latency Experiments . 20

5.1.1 Receiveing the LiDAR Data . 20
5.1.2 Point Cloud Generation in FPGA . 20
5.1.3 Feature Detection in FPGA . 22
5.1.4 Feature Description . 22
5.1.5 Feature Matching . 23
5.1.6 SVD Solver . 23
5.1.7 Comparison to the CPU Reference Implementation 24

5.2 Odometry Experiments . 25
5.2.1 Translational error evaluation . 25
5.2.2 Rotational error evaluation . 26

5.3 FPGA Resource Usage, Precision & Frequency Ratings 27

6 Conclusion 30
v

References 31

A Content of the Attachment 35

vi

List of Figures
1 Pixels used by the FAST detector. 6
2 Schema of the switched network. 8
3 The used Ouster OS0 LiDAR. 9
4 Simplified schema of the logic block. 10
5 The used DE10-Nano devlopment board. 11
6 Overview of the architecture of the proposed pipeline. 13
7 Results of the proposed point cloud generating pipeline. 14
8 Screenshot of the ModelSim simulation of the lidar2pntcloud component. 16
9 Screenshot of the Quartus Platform Designer showing the SoPC schema. 17
10 Depth image before (top) vs. after (bottom) data skew correction. 18
11 Boxplots of the latency measurements. 22
12 Boxplot of the description times using various hyperparameters. 23
13 Boxplot of the matching times using various hyperparameters. 24
14 Photos of the used robotic platform and total station. 26
15 Trajectories as measured by a total station and estimated by our odometry pipeline. 26
16 The RPEtrans of the second trajectory experiment. 27
17 The Clearpath Husky A200™ robotic platform inside a hallway. 28
18 Measured and estimated orientations of the robot along with their respective RPEs. 29

vii

List of Tables
1 Latency statistics . 21

viii

List of Abbreviations
ADC Analog to Digital Converter

AHRS Attitude Heading Reference Sensor

ALM Adaptive Logic Module

API Application Programming Interface

ATE Absolute Trajectory Error

BRIEF Binary Robust Independent Elementary Features

CPU Central Processing Unit

CSR Control & Status Register

DFF D-Flip Flop

DMA Direct Memory Access

FAST Features from Accelerated Segment Test

FIFO First In, First Out

FSM Finite State Machine

FoV Field of View

FPGA Field Programmable Gate Array

GPIO General Purpose Input & Output

GPU Graphics Processing Unit

HDL Hardware Description Language

HDMI High-Definition Multimedia Interace

HPS Hard Processor System

HW Hardware

IC Integrated Circuit

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IO Input & Output

LB Logic Block

LE Logic Element

LED Light Emmiting Diode

LiDAR Light Detection and Ranging

ix

LUT Look-Up Table

mSGDMA Modular Scatter & Gather Direct Memory Access

NIR Near Infrared

PC Point Cloud

RAM Random Access Memory

RGBD Red, Green, Blue, Depth

RPE Relative Pose Error

RTL Register Transfer Level

RaDAR Radio Detection and Ranging

SDRAM Synchronized Dynamic Random Access Memory

SLAM Simultaneous Localization and Mapping

SoPC System on Programmable Chip

SVD Singular Value Decomposition

SW Software

TCP Transmission Control Protocol

UDP User Datagram Protocol

VHDL Very High Speed Integrated Circuit Hardware Description Language

XOR eXclusive OR

x

Chapter 1

Introduction

Light Detection and Ranging (LiDAR) sensors are one of the key elements of robotic sensing hard-
ware. They provide 3D scans of their surroundings in a form of a "cloud" of 3D points, called "point
cloud" (PC). Point cloud plays a major role in many higher level robotic algorithms such as localiza-
tion and mapping, odometry, planning, detection and collision avoidance, to name a few. It allows the
robot to perceive the notion of depth, distance and 3D shapes in its surroundings as opposed to the
data provided by the often used 2D cameras. Another key benefit to using the LiDAR(s) is the fact
that their output is almost completely light invariant, meaning the change in lighting (e.g. during day
& night cycles) doesn’t affect the perceiveing ability of the sensor, as opposed to cameras in which the
same scene can look drastically different under various lighting conditions [1].

The LiDAR doesn’t provide only the 3D point cloud though. It produces raw data in a form of a
depth map, intensity image and ambient light image. The depth map is usually the most interesting,
as it can be fused with a known intrinsic parameters of the LiDAR unit to produce the expected point
cloud. The other information provided can also prove useful, especially the intensity image, as it
provides an idea of a detected material’s reflectance, which can be used to distinguish objects and
deepen the understanding of the sensor’s surroundings; e.g., in the automotive industry where vehicle
registration plates are usually highly reflective and can be used as a clue that the perceived object is a
car [2].

Aquiring all of the above described information does come at a cost of highly demanding compu-
tations required, as the LiDAR produces data at a rate of hundreds of Mbits per second and to provide
us with the point cloud, it needs to be processed first using non-trivial projection calculations. Even
when all of the data is processed in time, the resulting point clouds contain such a big number of
points that often up to 90% of the points are not considered during the execution of the higher level
algorithms [3].

This is where we saw the opportunity for Field Programmable Gate Array (FPGA) technology to
be utilized to exploit the highly parallelizable nature of the above described task. The FPGA is a tech-
nology that slowly becomes more and more adopted by various fields, robotics included, for its ability
to implement custom hardware design for solving specific tasks efficiently, with a comparatively low
cost and power usage, which are often among the major considerations of various battery powered
systems. The power of the FPGA for the task of generating point clouds comes mainly from the fact
that all of the LiDAR measurements are independent of each other and thus can be projected simul-
taneously, which the FPGA can encompass by implementing multiple point projection components
running in parallel. This is in contrast to the traditionally used CPUs, as their nature of execution is
"step-by-step"; i.e., point-by-point (excluding the comparatively little parallelism provided by multi-
ple hardware threads). This parallelism provided by the FPGA can in turn bring power consumption
and speed improvements, even though the frequency of the FPGA fabric is usually orders of magni-
tude slower than that of the traditionally used CPUs (50 MHz vs. 4.7 GHz in our case). Also, another
key motivation for the usage of the FPGA for this task is to free up the CPU resources, which can then
be utilized for the higher level tasks, which often better fit the CPU architecture. This in effect makes
the entire system more efficient.

However, the goal of this work is twofold. Not only we aim to process the incomig LiDAR data
into a resulting point cloud using the FPGA, we also explore an unconventional way of estimating
odometry from the LiDAR data. As described in Section 2.2.1, most ego-motion estimating algo-

1

1. Introduction

rithms utilize the point cloud for that purpose. We, inspired by [1], wanted to explore the odometry
computed on the raw, depth image data from the LiDAR, as it’s a perfect fit for the FPGA architecture
due to its simple, low latency pipeline, low memory requirements, and high paralellizability potential.
We thus propose a general odometry pipeline for solving this task in Section 4.2. The goal of the
pipeline design was to not be reliant on a specific algorithmic choice but rather to prove the concept
of the odometry pipeline as suitable for the FPGA & CPU combination we used in this work.

We structured this work to present the above described goals as follows: Next Chapter 2 states
the problem and describes the background necessary to understand the presented problems. Chap-
ter 3 describes the hardware & software setup used to accomplish the set goals, after which the main
Chapter 4 describes our proposed architecture in detail. Results of the experimental evaluation are
dedicated to Chapter 5 which demonstrates the real-world performance under various experimental
setups and with different measurements executed. The end is marked by a conclusion Chapter 6 in
which we reflect back at the work we did in the past year while working on this thesis, and propose
areas and ideas for future work.

2

Chapter 2

Problem Statement and Background

The goal of this thesis is twofold - processing raw data from LiDAR unit(s) to produce 3D point
cloud and utilize the raw sensor data to implement odometry. The raw 2D LiDAR scan that the LiDAR
produces doesn’t carry all the available information as it doesn’t encompass the sensor’s intrinsic
parameters. Therefore, the 2D scan is fused with the LiDAR’s intrinsics via a 2D to 3D transform to
produce precise reconstruction of the sensor’s surroundings in the format of cloud of points with XYZ
coordinates - the Point Cloud. This process is described in Section 2.1. The point cloud is then used
by other, higher level algorithms for; e.g., localization, planning, mapping, etc.

On the other hand, the raw depth data can also be used, on its own. Inspired by the localization
method [1] we chose to explore this area by implementing proof of concept (PoC) odometry via clas-
sical image methods (e.g., the FAST feature detector) which later utilize the LiDAR’s capability of
providing 3D coordinates of a given feature to solve the odometry task. The description of the odom-
etry task is in Section 2.2 including the review of the existing LiDAR based localization approaches
in Section 2.2.1 and the description of the used visual feature based detection and description method
Features from Accelerated Segment Test (FAST) (Section 2.2.2) and Binary Robust Independent El-
ementary Feature description (BRIEF) (Section 2.2.3) used to implement the odometry in this thesis.

2.1 LiDAR Depth Image to Point Cloud Transform
Raw LiDAR data comes in a form of 2D depth (or intensity, near-infrared, etc.) image that needs to be
transformed into 3D Point Cloud via a projection parametrized by the LiDAR’s intrinsic parameters.
This poses a huge problem for power constrained robots running on batteries. But even without this
constraint it’s hard to process such amount of data in real time on a CPU, given it’s non-parallel
procedural nature of execution. This makes solving of the above described problem inefficient as the
points could all be independently transformed at once as opposed to the linear "step by step" way of
computing on a classical CPU.

FPGA and other highly parallel architectures, such as GPUs are thus more suitable for such task.
We opted for the FPGA because it allowed us to tailor the hardware to match our needs exactly, keep
the power consuption low and provide us with a complete design freedom.

The parallelizability of the projection comes mainly from the fact that the measurements (points)
are independent and thus can be computed simultaneously. The projection from depth image into the
3D point cloud is done by utilizing the measured range at each LiDAR beam, the beam’s location at
the time of measurement, and known intrinsic parameters of the LiDAR, which describe the beam’s
physical placement and angle inside the LiDAR unit. With this knowledge, the transform is specified
in the Ouster’s datasheet [4] and the intrinsics are queryable via the LiDAR’s TCP API. To calculate
the measured point’s XYZ coordinates, the necessary calculations are given:

x = (r− |⃗n|)cos(θencoder +θazimuth)cos(φ)+ |⃗n|cos(θencoder),

y = (r− |⃗n|)sin(θencoder +θazimuth)cos(φ)+ |⃗n|sin(θencoder),

z = (r− |⃗n|)sin(φ),

(1)

where r is the distance measured by the LiDAR’s beam, n⃗ is the distance vector pointing from the
LiDAR’s coordinates’ origin to the LIDAR’s front optics, θencoder is the angle of rotation of the inner

3

rotor, θazimuth is the angle of the beam source as physically angled and mounted to the LiDAR’s rotor
and φ is the pitch angle of the beam.

The developed architecture that computes the projection is described in Section 4.1.

2.2 Odometry
Odometry is the task of understanding robot’s position change in time using various sensor data, such
as camera(s), LiDAR(s), RaDAR(s) etc. [5] It’s one of the fundamental tasks to be solved on robotic
platforms to fulfill the need for ego-motion understanding to further utilize this knowledge in higher
level algorithms, such as localization and mapping. There are many ways of approaching this task,
depending on the sensors available and data in general, computing resources as some methods are more
computationally demanding than others, power capacity (similar to the aforementioned constraint),
precision required, and so on. The result of the odometry estimation is a 3D transform encompassing
the rotation and translation between two time frames.

In this work we focus mainly on the odometry computed purely from LiDAR data and we explore
a rather unconventional way of approaching it. We hope for it to be a proof of concept necessary for
the field to grow in this direction and explore new possibilities which this approach opens up.

2.2.1 LiDAR Odometry

LiDAR odometry is odometry done from LiDAR data. This is usually but not necessarily approached
by first projecting the raw sensor data into 3D point cloud upon which various odometry methods are
applied. In general, we can categorize these approaches into feature based, grid based and dense [3].

2.2.1.1 Feature Based Methods

Feature based LiDAR odometry works by finding various features in the LiDAR scans and matching
them together to yield odometry estimate. The features can be calculated using the raw data or more
conventionally, the calculated 3D point cloud. The raw data is in a form of 2D depth image, simi-
lar to what; e.g., RGBD camera would produce so all the classical image algorithms can be utilized.
Algorithms for calculating the features on the raw LiDAR data include detectors such as FAST [6],
SURF [7], SIFT [8] and matched using descriptors such as BRIEF [9] in combination with their prox-
imity in the depth image. [1] Point cloud features include edge features [10], ellipsoidal surfels [11]
and ground features [12] and can be matched based on their proximity [13], type [10], or descrip-
tor [11].

Our proposed solution fits into this category as we’re using FAST feature detector to find and
register features using the LiDAR depth image. We chose this approach because it’s been successfully
applied in the past by [1], to prove the concept and also because it’s the perfect fit for the FPGA
architecture, given it’s low memory requirements and simplicity of the feature extraction pipeline [14].
Also, our pipeline serves the purpose of a proof of concept (PoC) and the individual elements, such
as the FAST feature detector, can be readily exchanged for other feature detectors, such as the above
mentioned point cloud feature detectors. In this work, we show that the pipeline is working and is
highly modular and thus does not rely on any given algorithmic choice.

2.2.1.2 Grid Based Methods

Grid based registering methods build discrete grids estimating the probability of occupancy from the
LiDAR point clouds and use Newton’s optimization method to estimate the ego motion change in
between consecutive scans [15]. The Newton’s method searches for a root of a function f (i.e., find
xr such that f (xr) = 0) by an iterative process xn+1 = xn − f (xn)

f ′(xn)
, with some initial guess x0 until

4

2.2 Dense Methods

f (xi) approaches 0 (or maximum iterations is reached, signifying the algorithm failed to find the root).
Because Newton’s method uses division, it’s not well suited for the FPGA architecture as divider
circuit is both resource demanding and slow (with an exception to division by a factor of 2n for n ∈Z).
This can be overcome by using a look-up table (LUT) - a precomputed array of values for 1

x with
precision depending on given requirements and memory available inside the FPGA. The value y

x can
then be calculated as y · 1

x where 1
x will be a value from the precomputed LUT. The multiplication is

usually accelerated by digital signal processors (DSPs) inside the FPGA (as described in Section 3.2).
The multiplication can be precomputed as well, although the memory available in the FPGA is usually
very constrained and might be insufficient.

2.2.1.3 Dense Methods

Dense methods’ name is derived from the fact that they utilize the point cloud itself rather than the
information extracted from it, thus working with dense cloud of points. Dense methods are usually
based on a variation of Generalized Iterative Closest Point (GICP) algorithm [16], which iteratively
finds the least-squares solution of fitting two point clouds onto each other. There are also non-iterative
algorithms such as [17] that solve the point cloud matching in terms of least-squares using singular
value decomposition (SVD) [18]. Dense methods are the most common but also computationally
demanding and usualy, only a fraction of points from point clouds are considered [3].

We didn’t choose this method because we didn’t deem it a good fit for the FPGA architecture
given its memory requirements and computational requirements. We chose to pursue performance,
latency and low power usage and chose to implement efficient FAST feature detector from [19] inside
the FPGA pipeline, track the features frame-to-frame and then use the SVD to find the best fit (in the
sense of least-squares) transform to match the set of points as descibed in [17].

2.2.2 Features from Accelerated Segment Test

Features from Accelerated Segment Test (FAST) [6] is an image corner detection algorithm designed
to be lightweight and fast, hence the name. It works by comparing the intensity difference between
pixels lying on the Bresenham circle [20] with the radius of 3 and their center pixel (see Fig. 1). When
this difference is bigger than the set threshold t, the pixels are counted as a 1 and when a large enough
consecutive set of 1s is found, the center pixel is considered to be a corner.

The architecture implementing the FAST feature detector has been adapted from [19] and it is
described in Section 4.2.2. We are also aware of the fact that the corners are error-prone for the
LiDAR sensors as the laser beam can easily miss the corner and return a distance measurement of an
object behind the corner. This can have negative impact on the odometry as the features, paired with
the noise of the sensor can become unstable and inconsistent. This theoretical flaw is also deemed
in the odometry results Section 5.2 to be one of the key sources of imprecision. As the architecture
proposed in Chapter 4 is designed to not rely on a specific algorithmic choice, this can be easily fixed
by different choice of a feature detector, which can be swapped with the FAST; e.g. the maximally
stable extremal regions (MSER) [21] which would search for stable surfels.

2.2.3 Binary Robust Independent Elementary Feature description

The Binary Robust Independent Elementary Feature description (BRIEF) [9] algorithm is a feature
description method which works by comparing pairs of pixels in a window surrounding a found feature
and producing a descriptor vector, which can later be utilized to measure the similarity of found
features on the scan-to-scan basis. This allows us to track their motion in time and calculate the
sensor’s ego-motion in time. The choice of pairs can impact the performance of the description and

5

2.2.4 Least Squares Fitting of Two 3D Point Sets

Figure 1: Pixels used by the FAST detector. [22]

is usually randomly generated, but can even be genetically optimized for a specific environment, as
shown in [23].

2.2.4 Least Squares Fitting of Two 3D Point Sets

The task of odometry is to find a linear 3D transform expressing the rotation and translation of the
sensor between two time frames. After we successfully match the features found by the feature de-
tector like the one described in Section 2.2.2, we can proceed onto the odometry estimation. We
chose to follow the work of [17] and implement their solution to this task. For that, we first project
the depth image 2D features into 3D and then try to find the optimal (in the sense of least squares)
rigid body transform between the two sets of points, from the previous and the last scans. We do this
non-iteratively, as opposed to the traditionally used GICP as partially described in Section 2.2.1.3.

Let AAA,BBB ⊆ R3×n be matrices consisting of n 3D projected feature coordinates of the features
matched in the previous and last LiDAR scan, respectively. Then, we assume that the only difference
between these matrices is a rigid body transform with the addition of a noise produced by the sensor;
i.e., it holds that BBB=RRRAAA+ttt+NNN, where RRR is the rotation matrix, ttt is the translation vector (note: we use
matrix-vector addition as a shorthand for adding the vector to the matrix column wise; i.e., to each in-
dividual column. In other words, the addition can be expressed as + : AAA⊆Rm×n×ttt ⊆Rm →BBB⊆Rm×n

and AAA+ ttt 7→ BBB such that it holds that BBBi = AAAi + ttt for i = 1,2, ...,n, where AAAi and BBBi are the columns of
matrix AAA and BBB, respectively.) and NNN is the noise matrix between the two frames. Our task is to find
the best fit (in a sense of least-squares) matrix RRR and vector ttt to provide us with the rotation and trans-
lation part of the motion of the sensor between the two consecutive frames. This can be formulated as
finding the least-squares solution to the task

argmin
RRR∈R3×3,ttt∈R3

∥BBB− (RRRAAA+ ttt)∥2. (2)

It was shown in [24] that RRR′′′ccc+ ttt ′′′ = ccc′′′ where

ccc =
1
N

N

∑
n=1

AAAn,

ccc′′′ =
1
N

N

∑
n=1

BBBn,

(3)

and RRR′′′ and ttt ′′′ are the optimal solutions to eq. 2; i.e., the mean of the columns of BBB equals to the
transformed mean of the columns of the matrix AAA. Therefore, we can subtract the means from the
points in matrix AAA and BBB and reformulate the task in eq. 2 as

6

2.2 Least Squares Fitting of Two 3D Point Sets

argmin
RRR∈R3×3

∥(BBB− ccc′′′)−RRR(AAA− ccc)∥2 (4)

where we use a matrix-vector subtraction similarly to the matrix-vector addition described above. This
divides finding the optimal RRR and ttt into two tasks. First we find the optimal RRR′′′ using eq. 4 and then
calculate the optimal ttt ′′′ as ttt ′′′ = ccc′−RRRccc. As derived in [17], the optimal matrix RRR′′′ can be found with
the following steps:

Step 1: Calculate HHH = AAABBBT .

Step 2: Find the SVD decomposition of HHH so that HHH =UUUΛΛΛVVV T .

Step 3: Calculate XXX as XXX =VVVUUUT .

Step 4: Calculate the determinant of XXX det(XXX).

Step 5: If det(XXX) = 1, then RRR′′′ = XXX . Else if det(XXX) = −1 and one of the singular values found by the
SVD is zero, then VVV ′′′ = [vvv1vvv2 − vvv3] where vvvi for i = 1,2,3 are the column vectors of the matrix
VVV and RRR′′′ =VVV ′′′UUUT . Else the algorithm failed (see [17] for details).

After sucessfully finishing the above listed steps, we use the optimal rotation matrix RRR′′′ to find the
optimal translation vector as ttt ′′′ = ccc′′′−RRR′′′ccc.

7

Chapter 3

Hardware & Software Setup

Figure 2: Schema of the switched network hosting the DE10-Nano board, Ouster OS0 LiDAR and
Intel NUC. (Images from [25], [26], [27], [28].)

This Chapter describes the hardware and software used to develop the proposed system. Our
hardware setup consists of the FPGA board DE10-Nano connected to the Ouster OS0-128 LiDAR, and
debugging and programming computer Intel NUC connected using switched gigabit ethernet network
as it is shown in Fig. 2. As the development of a custom FPGA processing cores is challenging
and often also time consuming process, we have opted to prospect the possibility of rapid FPGA
prototyping using the High Level Synthesis (HLS) toolchain. The HLS allows for the description
of the architecture (respectively the dataflow) using the C++ programming language which is then
translated into a functional FPGA design. The following sections list the properties of the Ouster
OS0 LiDAR (Section 3.1) and the DE10-Nano development board (Section 3.2.1) together with the
description of the High Level Synthesis principles (Section 3.3), and u-dma-buf DMA buffers (Section
3.4) that has been used in the development process of this thesis.

3.1 Ouster OS0-128
Light Detection And Ranging (LiDAR) sensor is one of the key sensors when it comes to robot’s
orientation in 3D space. It actively scans its surroundings using lasers and after projection outputs 3D
coordinates of obstacles it detected. The Ouster OS0-128 LiDAR depicted in Fig. 3 actively fires near
infrared laser beams around itself to scan its surroundings. It provides a large vertical field of view
(FoV) of 90◦ - 45◦ up and down - and a range of approx. 50 meters. It provides up to 2,621,440 points
per second in a format of 128 rows by 512, 1024 or 2048 columns at a rate of 10 Hz or 20 Hz. The
standard deviation of the Ouster OS0’s measurements is specified by the manufacturer to be ±3 cm
for lambertian targets and ±10 cm for retroreflectors. In our testing, we used the maximum resolution
available (128 by 2048) at 10 Hz, as the 20 Hz is only available for lower resolutions. This means that
we need to process approx. 254Mbits of data per second [4]. This data comes in a raw form that can
be treated as a 128 rows by 2048 columns image, which needs to be transformed according to intrinsic
parameters of the LiDAR to produce the desired cloud of 3D points (Point Cloud). Because of the
sheer amount of the data received, the computing requirements are not negligible and can impose a
big challenge for battery powered robots. That’s where our custom FPGA solution comes in to tackle

8

Figure 3: The used Ouster OS0 LiDAR. [29]

this challenge by utilizing the parallelizability of the operations to free up expensive CPU and power
resources for other tasks such as odometry / SLAM, planning, movement control, detection from
cameras, etc.

The Ouster LiDAR comes packed with an inertial measurement unit (IMU) which we didn’t use
in our tests as our robots usually have dedicated, more precise IMUs and it’s data is utilized in higher
level algorithms, running on the CPU. The IMU is capable of providing measurements of forces acting
upon the device and describe them in terms of rotation and translation in 3D space.

The Ouster data comes in a form of UDP packets of 24,896 bytes in our case, containing 16
columns of 128 measurements. This means that to cover one revolution of the LiDAR, it takes 2048 /
16 = 128 of those packets. The packet contains information about range in millimeters (32 bit number,
only 20 bits used) of the hit surface, signal photons intensity of the return signal, and near infrared
(NIR) natural environmental illumination. We considered only the depth data in our work but others
can be utilized for other similar tasks as well and their addition would follow similar procedure as
shown in this thesis. The Ouster provides the necessary steps to project the 2D points into 3D Point
Cloud and the necessary intrinsic parameters are available via TCP API from the LiDAR unit itself.

3.2 Field Programmable Gate Array
Field Programmable Gate Array (FPGA) [30] is a circuit that can be (re)configured to serve specific
computing needs. Unlike traditionally used integrated circuits (ICs) like the CPU or GPU, the FPGA
isn’t constrained to any specific subset of functions it can provide and can be configured to provide
specifically needed capabilities. This is done by the means of Hardware Description Language (HDL)
such as Verilog or as in our case, VHDL. HDL is used to describe specific digital circuit made up
from simple logic gates and memory elements (usually D-Flip Flops). This provides very wide range
of potential use cases and allows us to highly accelerate the tasks at hand as opposed to general pur-
pose processing units. FPGAs can even implement CPUs or GPUs, albeit it will be significantly less
performant than using the in-sillicon implemented hardware. FPGA provides this reconfigurability
by allowing the designer to configure so called Logic Blocks (LBs) or Logic Elements (LEs) and the
interconnection in between these LBs. Logic Blocks can function as a simple logic function (e.g.,
XOR, NOR, ...) or a memory element (usually few bits in size). With the capability of expressing
logic functions, memory elements and connecting them in fully configurable fashion, the FPGA is
able to implement wide range of digital circuits. In addition to this, many FPGAs as well as the one

9

3.2.1 DE10-Nano Development Board

Figure 4: Simplified schema of the logic block. Four input LUT can be seen as well as 1 bit flip flop
(FF) and SRAM controlled multiplexor at the output of the LB. [31]

we used (described in Section 3.2.1) hosts various digital signal processors (DSPs) to accelerate tasks
such as integer multiplication and addition. We took advantage of those using fixed point arithmetic,
as described in 4.1.2.1.

The logic blocks are usually made up from a look-up table (LUT) and a D-Flip Flop (DFF). The
LUT is a small, usually SRAM memory capable of emulating any logical function of 4 to 8 binary
inputs. It works by specifying values of the function for every possible input encoded as a memory
address. For example, the 2-input AND function would have the value ’1’ written on the address of
0x3 as it’s ’11’ in binary and the AND is ’1’ if both of the inputs are ’1’. The logic block can also be
configured to function as a memory element by utilizing the in-sillicon made D-Flip Flop. Simplified
schema of the LB can be seen in Fig. 4.

We chose this technology for it’s powerful ability to solve computing tasks in parallel, from which
both of our tasks can benefit immensely. It also allowed us to keep the power consumption low and
free up resources of the CPU, which was traditionally used to perform the described tasks.

3.2.1 DE10-Nano Development Board

For our implementation we chose the Terasic DE10-Nano Development Board [32] depicted in Fig. 5
for its small power footprint and reasonable cost. In spite of the small cost, the Cyclone V
5CSEBA6U23I7NDK [33] chip features sufficiently large number of 41 910 adaptive logic modules
(ALMs) - the basic element of the Cyclone’s FPGA fabric equaling to roughly 110K logic blocks -
which allowed us to design the custom hardware without any performance hurting compromises in
mind. The Cyclone V also hosts 553 M10K memory blocks, each 10 kB in size. There are also 112
DSPs accelerating integer multiplications. The FPGA, running at 50 MHz is accompanied by two
ARM A9 cores running at 925 MHz, 1 GB of DDR3 SDRAM memory, and 64 kB of low latency on-
chip memory. The chip is semantically divided into FPGA and Hard Processor System (HPS - Arm
cores) area. The FPGA is connected to GPIO ports, LEDs, HDMI, ADC, and buttons. The HPS is
connected to all the other peripherals, including the DDR3 memory and an ethernet port. This de-
sign constrained us to utilize the Linux running HPS for all of the necessary communications via the
ethernet port and leave to the FPGA only the sole computations.

All the HPS-FPGA communication is done via DMA thanks to bridges. The Cyclone V features
three distinct bridges to utilize HPS-FPGA communication - HPS-to-FPGA bridge, its lightweight
variant and FPGA-to-HPS brigde. The reason for having two bridges in one direction (HPS-to-FPGA
and Lightweight HPS-to-FPGA) is to distinguish between full-fledged high-bandwith DMA transfers
and low-bandwith Control & Status Register (CSR) reads and writes. CSRs are special purpose regis-
ters exposed by various hardware (be it ’real’ HW such as network cards or GPUs or ’soft’ hardware,
such as ours implemented on the FPGA) to provide means of communications between software and
hardware. CSRs are used to control the hardware (e.g. send commands or pointer to memory area) and
read it’s state (e.g. various errors, busy & free flags, etc.). This kind of communication is extremely

10

Figure 5: The used DE10-Nano devlopment board. [28]

common in hardware that the Cyclone V has a specific low-latency low-bandwith (up to 32 bits as
opposed to 1024 bits in the normal HPS-to-FPGA) bridge to provide means for this kind of commu-
nication. We use only the two above mentioned HPS-to-FPGA bridges in our architecture as the data
transfers from FPGA to HPS are done via DMA directly connected to the external DDR3 SDRAM.
More detailed info can be found in [34].

3.3 High Level Synthesis

High Level Synthesis (HLS) is a way of converting code written in high level programming language
into Hardware Description Language (HDL). It allows designers to be freed of low-level details and
hardware considerations when tackling a problem and focus solely on its efficient algorithmic solv-
ing. HLS toolchain then converts the high-level design, usually written in C(++) to Register Transfer
Level (RTL) [35] design expressed in HDL. One of the main benefits of HLS, apart from its huge
development time savings and scalability and maintainability is the ease with which the developed
components can be unit tested by utilizing pure C(++) and thus all the software methods normally
employed in SW development. It can be used to determine accuracy, latency, the ability to efficiently
pipeline the operations and overall correctness of the design. The tests can be run in pure software
emulation, which is many times faster (similar to classical software speeds) than the HDL synthesis
and RTL simulation inside a tool such as ModelSim. This boosts the development time and provides
advanced debugging and profiling abilites. Only after all the necessary tests are done and constraints
fulfilled, the RTL simulation is run to make sure everything will work after implemented inside the
FPGA fabric.

Because we used the Intel’s Cyclone V chip, we were bound to the Intel’s software / hardware
development toolchain, including the Intel HLS [36]. This also determined our HLS language of
choice - C++. We chose the HLS for implementing the 2D to 3D transformation as it allowed us to
write very readable and scalable code in C++, which clearly computed the transformation by the steps
described in the official Ouster OS0 documentation [4] and stay clear of low-level details like timing
closures and pipelining while doing so. It also allowed us to use preimplemented Intel libraries for
sine and cosine calculations which saved us a considerable amount of development time. It does all
of this by making every designated C++ function an independent HDL component, which can then be
"plugged" into an existing HDL design by; e.g., VHDL’s structural modeling.

11

3.3.1 Intel HLS

3.3.1 Intel HLS
The desired component to be compiled into HDL is written in C++ as an ordinary function, marked
with the "component" keyword in front of the declaration. The parameters to this function are trans-
lated into input ports on the resulting component. Basic types (or structures consisting of basic types,
such as integers or floats) are translated as an input of the necessary width. Pointers or arrays are
translated into Avalon memory-mapped interface. The return value is translated similarly to the input
parameters.

The Intel also provides basic HLS libraries, such as definitions of datatypes for fixed-point arith-
metic, basic linear algebra and trigonometric functions. We used the datatype "ac_fixed" extensively
and all the necessary trigonometric functions (as described in Section 2.1) were implemented in the
HLS libraries using fixed point arithmetic (see Section 4.1.2.1 for details). Another advantage to us-
ing Intel HLS is the automated report generation that provides readable, HTML formatted information
about the pipeline order, maximum frequency rating, logic block usage, DSP usage as well as line by
line analysis of the resource usage.

One downside of the Intel’s HLS toolchain is the fact that it hasn’t got robust linear algebra li-
braries (apart from a simple matrix multiplication and Cholesky’s decomposition), which posed a
challenge on us as we relied on the SVD in our odometry. We were thus limited to computing the
SVD inside of the HPS as implementing it in the HLS or the VHDL from scratch is well outside of
the scope of this thesis and is unnecessary for the proof of concept. The details of the developed
architecture are further described in Section 4.1.

3.4 u-dma-buf
U-dma-buf is a Linux kernel module designed to allocate physically contiguous memory chunks in-
tended to be used as a direct memory access (DMA) memory buffers [37]. These buffers can then be
used from Linux user space as a regular files and their physical address can be retrieved and used by
the FPGA to access it. The module also ensures that the buffer is contiguous in physical address space
and not only in virtual, otherwise the memory would be unusable for the FPGA as it uses physical
memory addressing directly. Another necessary funcionality of this module is the ability to disable
the CPU cache and thus keep the memory consistent between the HPS and FPGA without the neces-
sity of flushing the cache periodically. We used the u-dma-buf allocated buffers to store the incoming
LiDAR data and the FPGA outputs (point cloud and feature coordinates). The details of the usage
follows in Chapter 4.

12

Chapter 4

Architecture

This section introduces our custom designed architecture meant both as a production ready and
proof of concept design. We utilized both the HPS and FPGA parts to build a system on programmable
chip (SoPC). We divided the processing pipeline into part that makes sense to be implemented in the
FPGA and part that should be processed in the HPS.

The architecture’s overview can be seen in Fig. 6. It comprises of two parallel pipelines - point
cloud generation and odometry estimation. The leftmost block represents the connected LiDAR unit
(described in Section 3.1) which sends its data over UDP to the HPS (described in Section 3.2.1)
which then parses it into the DMA buffers for point cloud generation, described in Section 4.1.1
and preprocesses it for the FAST feature detector using process described in Section 4.2.1. Then
the data is transferred using a DMA into the FPGA pipeline, marked in the schematic as a yellow
box, described in Section 4.1.2. The two units - "lidar2pntcloud" generating point cloud, described
in Section 4.1.2.1, and FAST feature detector, described in Section 4.2.2 - are running in parallel
and transferring the results via DMA back to the HPS. The resulting point cloud is then visualized
using Intel NUC 10i7FNK and the features found by the feature detector are used in the rest of the
odometry pipeline. The HPS implemented feature description, matching and registration are described
in Sections 4.2.3, 4.2.4, and 4.2.5, respectively.

Figure 6: Overview of the architecture of the proposed pipeline.

4.1 Point Cloud Generator
This section describes the architecture of the point cloud generation pipeline in greater detail. The
pipeline is divided into a HPS and FPGA part. The HPS implements the LiDAR communication itself
as well as orchestration of the DMA transfers. The FPGA then hosts a "lidar2pntcloud" component
developed using the HLS implementing the projection described in Section 2.1.

4.1.1 HPS Part

The HPS part consists of a software running on the CPU that would be too complex or too expensive;
e.g., in terms of development time or resources used to be deployed in the FPGA fabric. Also, because
the ethernet port is connected directly to the HPS, it’s necessary for receiveing the LiDAR data.

13

4.1 HPS Part

(a) Point cloud depicting a person standing near the LiDAR unit and
leaning on a chair.

(b) Point cloud depicting our laboratory as seen from above.

Figure 7: Results of the proposed point cloud generating pipeline visualized by custom visualization
software.

First, four u-dma-buf buffers are instantiated - one 1 MB for the raw LiDAR data, second 4 MB
for the resulting Point Cloud, third 1 MB for the LiDAR’s geometry induced skew compensated raw
data and fourth 4 MB for the odometry output. After that, a Python script runs to query the LiDAR’s
intrinsic parameters. It parses the response and converts all the angles from floating point degrees
to a custom fixed point integer representation. The fixed point representation works by rescaling
the degrees from a range of 0 – 360 to 0 – 128 and multiplying it by 4096, before casting them to
integers. This provides sufficient accuracy while keeping the number width at 20 bits. After parsing
the intrinsics it stores them in a binary file to later be used by the main Orchestrator script written in
C.

Then the main Orchestrator script can be run. It memory maps all the CSRs exposed by the

14

4.1.2 FPGA Part

FPGA into its virtual memory space, as well as the on-chip RAM and the u-dma-buf buffers for array-
like access. It also resets the SDRAM controller and initializes it for the FPGA to be able to use
it. It then retrieves the DMA buffers’ physical addresses available as a text file at "/sys/class/u-dma-
buf/<buffer_name>/phys_addr", where "buffer_name" is a name chosen for the buffer at an instanti-
ation time. It writes this address to a CSRs of mSGDMA components, used for managing the DMA
transfers inside the FPGA. The mSGMDA IP developed and maintained by Intel provides scalable
and standardized way of implementing a DMA. It provides many useful capabilities, such as read &
write buffering, scatter & gather modus operandi, burst mode, streaming or memory-mapped transfers,
aligned / un-aligned memory accesses, error readings, packet mode, and FIFO-like execution of mul-
tiple DMA requests. The main motivation behind using the mSGDMA IP was to stay abstracted from
the low-level details of the SDRAM controller and the fact that it uses the standard Avalon interface,
integrating seamlessly into our design which already uses Avalon, the standard bus developed by Intel
specifically for use in their FPGAs. The mSGDMA instances in our SoPC design and their respective
Avalon interfaces are visible in Fig. 9.

After the u-dma-buf addresses are written in the mSGDMA CSRs, the Orchestrator transfers the
intrinsic parameters onto the FPGA’s on-chip memory for use by the "lidar2pntcloud" component.
The Orchestrator also uses the intrinsics for skew correction of the raw LiDAR data, necessary for the
odometry pipeline (further detailed in Section 4.2.1). After that, it starts an infinite loop of listening to
LiDAR data sent over the UDP on port 7501, parsing them in real time and starting the DMA transfers
of the data into the FPGA fabric. It’s also capable of sending the resulting point cloud over the UPD
to the Intel NUC for visualization using our custom Python visualizer.

4.1.2 FPGA Part

The FPGA hosts the main component "lidar2pntcloud" for calculating the raw data projections, de-
veloped using the HLS toolchain. The FPGA system implements a simple finite state machine (FSM)
with two states: Reading the intrinsics and processing the incoming LiDAR data. Upon initial con-
figuration of the FPGA fabric by the bootloader, the FSM starts in the intrinsics state and waits for a
signal from the HPS notifying it about the intrinsics being written in the on-chip RAM. After that, it
reads the intrinsics into separate arrays for faster and parallel access, dividng the intrinsic parameters
into azimuth and altitute angles, both of which need to be accessed in parallel by the "lidar2pntcloud"
component. After finishing reading the intrinsics, it writes a specific sequence (0x101010) into the
on-chip RAM at the address of 0x0, which is used by the HPS as a signal that it can start receiving
the LiDAR data itself. The FSM also changes its state to LiDAR data processing and waits until the
DMA transfer of the LiDAR data is started.

After the HPS parses the LiDAR UDP packets, it starts the DMA transfers of those data into the
FPGA and the "lidar2pntcloud" component immediately starts processing it and, with deterministic
pipeline delay of 61 cycles, as measured by the GHDL simulation (presented in Fig. 8), outputting
the projected data via DMA back to the HPS. The component processes the LiDAR data in a batch
manner of 32 size each, after which it pauses the pipeline for 22 cycles to buffer in another batch
of the necessary intrinsics that it needs for computing the transform. The HLS generated component
exposes its Input / Output (IO) as a standard Intel Avalon bus interface which is almost seamlessly
incorporated into the system, which uses the Intel’s mSGDMA IP Core as a DMA processor, that also
uses Avalon to communicate, as seen in Fig. 9.

After each point is calculated it’s immediately transferred via DMA into the SDRAM and available
to the HPS. The result of processing a single LiDAR scan can be seen in Fig. 7a and Fig. 7b.

15

4.1 lidar2pntcloud

Figure 8: Screenshot of the ModelSim simulation of the lidar2pntcloud component, showing the
pipeline propagation delay using two cursors with space of 61000 ps, equating to 61 cycles at a simu-
lation frequency of 1 GHz.

4.1.2.1 lidar2pntcloud

In this section, we present the HLS created, point cloud processing component "lidar2pntcloud" in
greater detail. To implement the equations as stated in Section 2.1, we opted to use fixed-point arith-
metic, as the floating point arithmetic requires hardware support from the FPGA fabric, otherwise it is
very demanding in terms of logic block usage and propagation delays through the generated circuits.
Fixed point arithmetic allowed us to use integer multiplication accelerating DSPs of the Cyclone V
(see Section 3.2 for details) as well as simple full adders instantiated from the logic blocks. The num-
ber of bits to respresent the fixed point numbers and its integer / fractional part ratio was determined
by extensive unit testing of the developed component and examining its error rate. Most of the fixed
point numbers were 32 bits wide with 20 bits of integer part. The result is resource utilization / speed
tradeoff rated at ±2mm error on approx. 1 km distance, which our LiDAR (described in Section 3.1)
will never produce but which is the theoretical maximum distance expressed in the Ouster’s UDP
packets (see Section 3.1 for details). This allows for swapping the LiDAR unit for a different one
without having to recompile the FPGA configuration files.

We also implemented an optional parameter to the component allowing the origin of the LiDAR
coordinate frame to be translated in space, allowing to use the same component for multiple LiDAR
units and only specifying their relative offset to the component in order to produce a correctly merged
point cloud.

4.2 LiDAR Odometry
This subsection introduces our custom designed odometry pipeline, running in parallel to our Point
Cloud generating pipeline. With this architecture, we show modular, highly modifiable odometry
pipeline which can be easily modified to suite various odometry needs and constraints (e.g., different
feature detector, different data pre/post-processing, etc.). We thus propose a general-purpose odometry

16

4.2.1 Data Preprocessing

Figure 9: Screenshot of the Quartus Platform Designer showing the SoPC schema interconnected
using the Avalon bus. The Avalon interface generated by the HLS can be seen on the lidar2pntcloud
component (bottom).

pipeline capable of meeting the power-constrained robotic needs. We also show unconventional way of
estimating LiDAR odometry by utilizing the raw depth images, instead of the projected point clouds.

4.2.1 Data Preprocessing

Even though we aim to utilize only the raw, unprojected 2D LiDAR data scans, we still needed to
compensate for the Ouster’s induced scan rows skew. Because of the LiDAR’s internal structure,
the columns arriving in each data packet aren’t consecutive and has to be shifted by utilizing the
OS0’s intrinsic parameters, otherwise all the vertical lines become spread out and unrecognizable for
any feature detector utilizing the data later in the pipeline. Interestingly, compensation of the Lidar
intrinsics as seen in Fig. 10 still results in artifacts, especially visible on close vertical edges, that
represent a hardware limitation of the given LiDAR type. Note that the offical Ouster driver provides
a similar result.

Nevertheless the preprocessing can be approached in multiple ways and we propose two of those
and implementing and discussing only one as a proof of concept. The most simple way is to pre-
compute the shift table for each row based on the LiDAR’s intrinsic parameters and use those as the
UDP data packets are parsed to have the data corrected by the time they are written into the u-dma-
buf buffer. The other, more involved but more efficient way would be to utilize more FPGA on-chip
memory FIFOs to buffer 132 columns of the image (as the skew ranges from -66 to +66) and have
the incoming data written into the correct place during the DMA reading phase. We opted for the first
option, as the second is deemed as a mere optimization of the first variant and isn’t really providing
much of a value to our proposed proof of concept pipeline.

17

4.2.2 FAST feature detector

Figure 10: Depth image of our lab before (top) vs. after (bottom) data skew correction. The vertical
edge inconsistency on a close object is still visible.

4.2.2 FAST feature detector
After the data is corrected and transferred onto the FPGA fabric, FAST computing component based
on the implementation [19] immediately starts to buffer 7 columns of the depth image to produce
feature detections. Once a feature is located, its location is immediately transferred via the DMA back
to the Linux-running HPS, where it’s later utilized for the rest of the odometry pipeline. The feature
detector features quick eight steps detection pipeline ended with a non-maxima suppresion module
to filter out false-positive feature clusters. The simplicity of the FAST algorithm allows us to detect
features in real-time without introducing any noticeable lag or pipeline stalls. It’s also very lightweight
on the FPGA resource usage and allows a fair bit of parallelization, which makes it perfect fit for the
FPGA architecture.

We had to change the original design described in [19] in a few ways to fit our needs. First by
changing the expected image width and height, then exchange the original Cyclone IV FIFO memory
elements to use the Cyclone V provided ones and also change the image data from 8 bits to 16 bits
as the depth measured by the LiDAR ranges from 0.3 m up to approximately 50 m and is expressed in
millimeters as specified by [4]. This also meant changing the dynamically chosen detection threshold
to 16 bits and increase the steps in which it changes the threshold to increase the convergence speed.
The adaptive thresholding is used to keep the number of detected features between 128 and 256 to keep
the pipeline running in real-time as bigger number of features would result in longer computation times
of the rest of the odometry pipeline.

4.2.3 Binary Robust Independent Elementary Feature description
Once we have the raw LiDAR image paired with coordinates of FAST-found features, we can proceed
to the feature description step. We chose the BRIEF description algorithm, descibed in Section 2.2.3.
We generate the compared pair coordinates randomly at the beginning of our program based on the
window size parameters and the number of pairs required. We then iteratively calculate the descriptor
vector for each of the found features. This algorithm could greatly benefit from FPGA implementation,
but as a proof of concept it’s still reasonably fast even when running on the CPU(s). Also, with the
regions usually being rather large (even 128x128 or more), the memory requirements are often too
big for the usually small memory available within the FPGA fabric, thus leaving us no choice when it
comes to the HPS vs. FPGA implementation.

4.2.4 Feature matching & tracking
Once we identified and described all the features in the current & previous LiDAR scan, we can
move onto the feature matching and tracking. Feature descriptors are compared and the number of
differences is counted. The comparison is done using eXclusive-OR (XOR) [38] operation, which

18

4.2.5 Feature Registration

yields a binary vector with 1s in places where the two vector differed. The number of 1s is summed
and is considered as the distance between the two descriptors (it can actually be viewed as the L2-
squared distance between the descriptors). If this distance is small enough, the features are considered
to be the same and matched together, with an exception to features which are too far away from each
other in the depth image. The maximum distance allowed is controlled by a parameter which we
evaluated at different values in the Results Chapter 5. This process is done for each pair of features
with an algorithmic complexity of O(n2 · k), where n is the number of features and k is the length of
the descriptors. Such process could benefit from architectures such as FPGA because of it’s ability
to compute things in parallel and the efficiency of operations such as XOR and counting the number
of 1s in the difference vector. On the other hand, in our case we would have to implement another
two DMAs to transfer the descriptors onto the FPGA fabric and then the results back to the HPS,
given the previous step of feature description would remain implemented in HPS for its high memory
requirements. These transfers would then impose additional static overhead. Even with that in mind,
it might be worth pursuing this implementation in a future work as it has been shown to be the single
slowest part of the entire pipeline, as further described in the Results Section 5.1.5.

4.2.5 Feature Registration
Once we identify feature matches in the subsequent LiDAR scans, we can proceed to the registration
phase in which we try to estimate the 6 degrees of freedom (DoF) pose change based on the change
in positions of the tracked features. To accomplish this task we first project the features from the raw
2D scans into their 3D coordinates (we use the already projected point cloud to find the coordinates of
those features) and then we use the two sets of points from the previous and the last scans to estimate
the ego-motion. For this we chose to implement the [17] described in Section 2.2.4.

Once we have the 3D coordinates of the matched features, we can follow the steps described in
Section 2.2.4 to estimate the 3D rotation and translation of the sensor between the two consecutive
scans. To implement these steps we used the C++ Eigen library [39] to calculate all the necessary
matrix multiplications, SVD and matrix determinant.

19

Chapter 5

Results

In this chapter we show the results of our experiments in which we showcase the functionality of
our proposed solution and in the case of point cloud generation a direct comparison with its prior CPU
implementation in terms of the data throughput and power consumption. Two sets of experiments were
done for this purpose: Latency measurements of various parts of the pipeline as well as benchmarking
the reference CPU solution, and benchmarking the odometry pipeline by deploying our solution onto
a robotic platform and compare the absolute and relative errors of our estimates to a ground truth.
Last but not least, we evaluate the FPGA resources utilized for the individual blocks of the developed
architecture.

5.1 Latency Experiments
In this section, we present experimental results of the real-world performance of our architecture by
measuring the time it takes to finish various parts of the pipeline and thus giving us a precise idea
about its performance. We follow the architecture as illustrated in Fig. 6 and start by presenting
the time requirements of receiving the LiDAR data itself, then we move onto measuring the latency
of feature detection and point cloud generation after which comes a section about all the odometry
blocks running on the HPS - namely the description, matching and registration by the SVD described
in Section 4.2.5. All of the results are based on at least 70 measurements unless stated otherwise.
Latencies measured on the HPS were done using C++ steady_clock class and were measured with a
microsecond precision. All of the statistics from the measured times are presented in Table 1 using
various BRIEF window width & height and descriptor length. Boxplots are also presented in Fig. 11a,
11b, 12, 13, and 11c. The detailed description and discussion of the performed experiments follow.

5.1.1 Receiveing the LiDAR Data
In this subsection we present the timing requirements for receiveing the LiDAR data over the UDP
and writing it into the u-dma-buf buffers. The results are based on 80 measurements and are presented
in Table 1 and in a boxplot graph in Fig. 11a. Because the LiDAR was running at 10 Hz, we expect the
time to receive one complete LiDAR scan to have a mean near tenth of a second, or 100000 µs, which
is almost exactly what we’ve measured. As we will see, our pipeline is bottlenecked by the HPS and
thus runs at a slightly lower rate than 10 Hz depending on various hyperparameters. Because the rate
of execution is lower than the LiDAR scan rate, we find the receiveing UDP buffers in Linux to be
already filled with the data as we call C recv() function to retreive them, thus resulting in a slightly
lower time than expected.

5.1.2 Point Cloud Generation in FPGA
In this subsection, perhaps the most interesting results are presented, describing the time required for
the FPGA to produce a point cloud from a single LiDAR scan. The time is measured from the time
the HPS starts the DMA transfer, after having prepared the raw data in the buffers, and up to the point
where the FPGA finishes the transfer of the resulting XYZ coodrinates. The design produced by our
high-level design, written in C++ using HLS (see Section 3.3) and described in Section 5.1.2, after
compilation using the Intel’s i++ compiler results in a pipeline which computes the points in bursts

20

5.1 Point Cloud Generation in FPGA

of 32 points, after which it pauses to buffer intrinsic parameters to later utilize them to compute next
points. From ghdl simulations, we measured the pause be 22 cycles long on Cyclone V. Because
of this, we should see latency of 2048× 128 points being slowed by the 22 cycle buffering pauses,
thus yielding approximately 2048×128× ([32+22]/32) = 442368 cycles. We confirm this estimate

Table 1: Latency statistics

Length Width Height Mean [ms] Median [ms] Std.Dev. [ms] Min [ms] Max [ms]

Data receive times

– – – 91.50 91.38 0.88 90.76 98.49

DMA Start to finish times

– – – 10.54 10.52 0.07 10.52 10.89

Description times

16 64 32 1.00 0.93 0.21 0.82 1.61
32 64 32 1.87 1.62 0.47 1.34 3.01
64 64 32 3.12 3.03 0.42 2.60 5.59
128 64 32 6.32 5.87 1.48 4.54 10.92
256 64 32 11.30 10.27 2.75 8.94 20.44
512 64 32 24.85 23.16 5.49 19.20 43.13
1024 64 32 49.03 43.73 13.08 37.21 83.77
16 128 32 1.01 0.96 0.19 0.84 1.63
32 128 32 1.92 1.71 0.44 1.53 3.15
64 128 32 3.63 3.16 0.96 2.73 5.90
128 128 32 7.43 6.21 2.40 5.26 20.84
256 128 32 13.24 12.07 3.25 9.96 21.93
512 128 32 28.14 23.94 7.82 21.04 46.63
1024 128 32 58.20 48.91 16.59 41.55 93.19
16 256 32 1.13 1.00 0.28 0.85 2.02
32 256 32 2.10 1.77 0.56 1.54 3.31
64 256 32 3.71 3.31 0.94 2.79 6.17
128 256 32 6.98 6.36 1.85 5.54 15.45
256 256 32 14.58 12.70 3.89 10.88 23.01
512 256 32 26.55 24.39 6.34 21.56 44.13
1024 256 32 53.29 48.96 13.02 43.67 92.62

Matching times

16 – – 2.14 2.12 0.19 1.79 2.75
32 – – 5.27 4.62 1.44 3.70 12.26
64 – – 9.05 8.39 2.03 6.96 15.85
128 – – 16.19 15.47 2.99 12.03 27.16
256 – – 36.06 31.69 10.24 27.03 68.86
512 – – 72.55 66.55 18.13 57.94 136.61
1024 – – 166.88 144.11 46.16 120.56 274.52

SVD solver times

– – – 0.15 0.13 0.08 0.11 0.50

CPU point cloud generation times

– – – 10.85 13.18 4.05 3.27 17.28

21

5.1.3 Feature Detection in FPGA

91000

91500

92000

T
im

e
[u

s]

(a) Boxplot of data receiveing
times.

10516

10518

10520

T
im

e
[u

s]

(b) Boxplot of DMA start to finish
times.

120

140

160

180

T
im

e
[u

s]

(c) Boxplot of measured SVD
solver times.

Figure 11: Boxplots of the latency measurements.

by measuring it to be precisely 524254 cycles, which at the frequency of 50 MHz that the FPGA is
running at equals to 10485 µs and that is almost exactly the latency we measured from the HPS as
seen in Table 1.

Table 1 and boxplot in Fig. 11b show a statistics of 167 measurements of the latency as seen from
the HPS between starting the DMA transfers to them being finished. Be aware of the latency including
both point cloud generation and feature detection. The point cloud generation is slightly slower, but
takes similar time as the feature detection as seen in Section 5.1.3.

5.1.3 Feature Detection in FPGA

In this subsection we present results of time taken to produce coordinates of FAST features found in
the LiDAR’s depth image as described in Section 4.2.2. The measurement was carried out similarly
to Section 5.1.2 and is only slightly faster, measured at 520192 cycles, which is about twice as much
as we would’ve expected and is likely due to the two parallel pipelines of feature detection and point
cloud generation taking turns in the SDRAM accesses as there is only one physical DDR interface
in the SDRAM controller subsystem [40]. We would expect it to take around 128× 2048 = 262144
cycles with a small but deterministic pipeline delay. From our measurement it takes approx. 10403 µs.

5.1.4 Feature Description

In this subsection we show measured times taken by the description block of our pipeline running
in the HPS (see Fig. 6). We see that it is one of the biggest bottlenecks of the pipeline. As the
speed of the description is influenced by the parameter choice, we present it under various settings.
The BRIEF (described in Section 2.2.3) feature description algorithm is parametrized by the window
size (centered at the found feature and in which the pairwise comparisons are computed) and the
number of pairs determining the descriptor vector length. In Table 1 and a boxplot graph in Fig. 12
we show statistics of time measurements with various hyperparameter tunings and see the resulting
difference. The BRIEF algorithm’s algorithmic complexity is O(n) where n is the descriptor length;
i.e., the number of pairwise comparisons. Because of this, we expect the time to grow linearly with
the increase of n, with slight and usually constant overhead added to it and being more prominent in
smaller choices of n. This was empirically confirmed by the results in Table 1 and boxplot graph of
the measurements in Fig. 12. The choice of the window size has no algorithmic complexity impact,
but in real-world, bigger windows will be marginally slower because of worse cache utilization and
non-sequential memory access patterns. Our choice of the window size was always non-square as

22

5.1.5 Feature Matching

the image dimensions 2048 by 128 were highly non-symmetrical. Thus, we tended to choose higher
values in width of the window as opposed to its height.

16 32 64 12
8

25
6

51
2

10
24

BRIEF Pairs

103

104

105

L
og

.
T

im
e

[u
s]

Width = 64

Width = 128

Width = 256

Figure 12: Boxplot of the description times using various hyperparameters.

5.1.5 Feature Matching

In this subsection, we present the measured times required to sucessfully match features found and de-
scribed by previous steps as per Fig. 6. We found this step to be the most computationally demanding
and one which would benefit the most from FPGA implementation, as the comparison of vectors and
counting the differences can be implemented very efficiently using combinational logic. The match-
ing’s complexity is O(n) where n is the length of the descriptor vectors to be compared. Because of
this, we expect to see linear growth with the increase in the n parameter and that is exactly what can
be seen in the statistics Table 1 and a boxplot graphed version in Fig. 13.

5.1.6 SVD Solver

In this subsection, we present the measured times of the rigid transform solver utilizing singular value
decomposition as described in Section 2.2.4. We used the C++ Eigen library [39] to calculate all the
necessary vector & matrix calculations. Because the FAST component in the FPGA fabric as described
in Section 4.2.2 changes its detection threshold to keep the feature count between 128 and 255, the
times presented in Table 1 are representative of the average performance as the feature count is going
to be similar at all times. Also, because the first matrix multiplication AB⊺ yields a 3 by 3 matrix upon
which the rest of the calculations is done, the times aren’t much affected by the feature count found in
the depth image. The SVD is also calculated from 3 by 3 matrix and so is the determinant necessary
to check the rotation / flip condition. We thus didn’t expect much time spent on those calculations
and our expectations are verified by the measurements in Table 1, also visualized using boxplot in
Fig. 11c.

23

5.1.7 Comparison to the CPU Reference Implementation

16 32 64 12
8

25
6

51
2

10
24

Descriptor vector length

103

104

105

106

L
og

.
T

im
e

[u
s]

Width = 64

Width = 128

Width = 256

Figure 13: Boxplot of the matching times using various hyperparameters.

5.1.7 Comparison to the CPU Reference Implementation

In this subsection, we present perhaps the most interesting results - the comparison with the currently
used CPU implementation of the point cloud generation unit. Currently, all the robots in our laboratory
with attached LiDAR unit use the Robot Operating System (ROS) [41] and the official Ouster driver
to compute the point cloud and publish into a ROS topic. The ROS is running on the Intel NUC
10i7FNK [42]. We measured both the power draw and times taken while calculating the point cloud.
The power draw fluctuated alot but the mean was found at around 300 mA, which at 15 V amounts
to 4.5 W. On the FPGA side we did the same procedure and found the increase in power draw to
be 65 mA, which at 5 V amounts to 0.35 W, so around 13 times less power than the reference CPU
implementation. In total, the CPU was drawing around 12 W whereas the FPGA drew only around
3.5 W.

The time taken was also measured on the CPU (for the FPGA timing see Section 5.1.2) and the
resulting statistics are presented in Table 1. During the experiment, the CPU was running at 2 GHz
to 3 GHz with mean around 2.3 GHz. We can see that the time necessary on the CPU has mean of
10.85 ms, which is approx. 0.31 ms slower than the 50 MHz running FPGA as described in Section
5.1.2. One thing to note here is the fact that the FPGA implementation has also deterministic and
constant delay, with fluctuations happening only in the HPS subsystem, whereas the CPU reference
implementation fluctuated significantly more, which can be seen by comparing the standard deviations
or minimas and maximas. Also, even the relatively cheap Cyclone V FPGA we used in this work can
house multiple point cloud generating units and thus can in theory process many more LiDAR units
with very similar speed as it does with only one unit attached, as all of the components would run in
parallel and the only bottleneck would be the DMA accesses. The reason we didn’t manage to process
multiple LiDAR units was the fact that the UDP packets have to go through the HPS running Linux, in
which the receiving buffers were found to be overflowing and thus didn’t allow us to receive multiple
LiDAR units’ data. FPGAs with more network endpoints and direct connection of the endpoint to the
FPGA fabric wouldn’t suffer from this limitation at all.

24

5.2 Odometry Experiments
In this section we present the results of the odometry estimation pipeline. To benchmark our solution
we conducted multiple experiments with our development board attached to a Husky A200™ robotic
platform [43] depicted in Fig. 14a, which we drove through various environments and measured the
ground truth using the Leica TS16 [44] total station depicted in Fig. 14b for the translation offsets.
Then we conducted a second set of experiments in which we used the XSense MTi-30 [45] attitude
heading reference sensor (AHRS) to measure the rotational offsets. We then computed the absolute
trajectory error (ATE), introduced in [46] and the relative pose error (RPE), introduced in [47] to
draw conclusions on the performance of our design, with translational and rotational ATE for the
time synchronized ground truth trajectory PPP = {ppp111, ppp222, . . . , pppnnn; pppiii ∈ SE(3)} and estimated trajectory
QQQ = {qqq111,qqq222, . . . ,qqqnnn;qqqiii ∈ SE(3)} calculated as:

AT Etrans =
n

∑
n=1

∥trans(qqq−1
i pppi)∥,

AT Erot =
n

∑
n=1

∥rot(qqq−1
i pppi)∥,

(5)

where trans() is the translational part of the resulting matrix and rot() is the rotational part.
Similarly for the RPE with a predefined interval ∆:

RPEtrans =
n

∑
n=1

∥trans((qqq−1
i qqqi+∆)

−1(ppp−1
i pppi+∆))∥,

RPErot =
n

∑
n=1

∥rot((qqq−1
i qqqi+∆)

−1(ppp−1
i pppi+∆))∥,

(6)

where SE(3) is a special Euclidean group SE(3)= {AAA |AAA=

([
RRR ttt
000 1

])
, RRR ∈ R3×3, ttt ∈ R3,det(RRR) = 1},

where RRR is a 3D rotation matrix and ttt is a 3D translation vector.
The results of the estimated trajectories are presented in Subsection 5.2.1 and the results of the

rotational estimation are presented in Subsection 5.2.2. All of the experiments were conducted inside
or outside the Faculty of Electrical Engineering building E of Czech Technical University in Prague.

5.2.1 Translational error evaluation
For the trajectory measurements, we drove the Husky around a parallelogram-shaped courtyard in
front of our building in two successive runs. Our pipeline ran at about 5 Hz due to the feature matching
time requirements being too high for the pipeline to run at 10 Hz of the LiDAR, and we logged the
relative translational changes both using our odometry estimating pipeline and the Leica TS16 Total
Station, which we then integrated and plotted in Fig. 15, depicting the ground truth trajectories as
PPP1 and PPP2, and estimated trajectories as QQQ1 and QQQ2. It’s clearly visible that our results diverged
significantly from the ground truth trajectory, thus yielding high translational ATE. The trajectories
are not similar, closed, symmetrical, or "correct" in any other notion, apart from perhaps few points at
the start of the trajectories.

However, upon closer inspection of the data, we suspected the errors to be caused by a relatively
few big outlier errors throughout the measurement which then made the rest of the data incorrect. We
thus chose to calculate the RPEtrans which is not affected by the outliers in this way and the results are
promising as depicted in Fig. 16, showing the RPEtrans values throughout the second experiment and
having a mean and median of 0.624 m, and 0.077 m, respectively. The first experiment lost timestamps
due to technical errors and thus failed to be correctly aligned with the ground truth measurements, so
only an upper bound on the RPEtrans is produced with mean of 0.463 m and median of 0.049 m.

25

5.2.2 Rotational error evaluation

In the second, correctly carried experiment the RPE analysis show that the majority of the odome-
try estimates were less than 7.7 cm off of the ground truth and that during the first experiment, majority
of the odometry estimates were less than 4.9 cm off. These results show that the proposed pipeline
is working and that it could greatly benefit from RANSAC [48] algorithm to filter out the outliers
ruining the results. This is deemed to be a possible direction of the future work, as well as optimizing
the various parameters of the algorithms used in the pipeline.

(a) The Husky A200™ robotic platform. (b) The Leica TS16 Total Station aimed at the Husky
A200™ robotic platform.

Figure 14: Photos of the Husky A200™ robotic platform and the Leica TS16 Total Station.

−200 −150 −100 −50 0
x[m]

−50

0

50

100

150

y[
m

]

P1

P2

Q1

Q2

Figure 15: Trajectories from the two runs around the courtyard from the Leica TS16 Total Station (PPP1
and PPP2, respectively) and as estimated by our odometry pipeline (QQQ1 and QQQ2, respectively).

5.2.2 Rotational error evaluation

In the second set of experiments we logged the estimated temporal changes of the yaw, pitch and roll
angles and compared them to the ground truth provided by the precise XSense MTi-30 AHRS. We ran
four experiments in total, two of which inside a hallway with the surroundings close to the robot as
seen in Fig. 17 and two near the open spaced yard in front of our building, similar to the trajectory

26

0 200 400 600 800 1000
Time [s]

0

2

4

6

8

10

R
P
E
tr
a
n
s

[m
]

Figure 16: The RPEtrans of the second trajectory experiment, limited to 10 m at the RPErot axis, with
few large outlier peaks visible.

experiment shown in Fig. 14b. In both of the locations, we ran two experiments with different values
for the maximum allowed pixel distance to the matched featuers in the depth image, described in
Section 4.2.4. In both locations, we set the parameter to 16 pixels and 64 pixels and evaluated the
AT Erot and RPErot . The four experiments - hallway with 16px maximum distance, then with 64px
max. distance and similarly for the outside experiments - are presented and the graphs of the yaw,
pitch and roll angles are visualized in Fig. 18 for individual experiments, respectively. During the
experiments, we remotely controlled the robot’s yaw angle.

We can see that the trajectories are similar in the case of the hallway experiments but vastly dif-
ferent in the case of the outside experiments. We suspect the latter is due to the fact of bad feature
matching that can ruin the absolute error. Also, people movement around the robot might be causing
the issues. The non-compensable vertical edge unalignment in the data provided by the Ouster OS0
which is more prominent on the nearby data is also suspected as a source of this issue, as the "fake
corners" it generates on vertical edges might actually help the odometry in the close quarters.

However, comparing trajectories directly is prone to outliers in the data as a single outlier can ruin
the rest of the data. To counter this effect and understand the results better, we calculated the RPErot

and the plots of the RPErot for the respective experiments can be seen in Fig. 18. The mean RPEs
for the respective experiments is 0.54◦, 0.69◦, 7.39◦, and 13.35◦. The medians of the RPEs of the
experiments are 0.43◦, 0.46◦, 2.68◦, and 7.20◦. In the hallway experiments, this translates to less than
±3px offset in the image, in terms of the LiDAR’s resolution, as the depth image spans the 360◦ in
2048px, equaling to approx. 0.18◦ per pixel. In other words, a noise shifting the tracked feature by
less than 3 pixels is enough to cause error of this magnitude. Also, the difference between means and
medians in the outside experiments hints that the majority of the error is caused by the outliers. We
consider addresing the outlier rejection; e.g., by utilization of RANSAC [48], to be the future work.
Nevertheless, the trend in the results shows that with a smaller tracking distance (16 pixels vs. 64
pixels) the resulting RPE is lower. That indicates that the performance of the pipeline can be further
improved by changing the parametrization of individual blocks in the processing pipeline.

5.3 FPGA Resource Usage, Precision & Frequency Ratings
In this section we bring an overview of the resulting resource utilization of the used FPGA chip
Cyclone V 5CSEBA6U23I7NDK in terms of adaptive logic elements (ALMs), memory elements and
digital signal processors (DSPs). Number of available ALMs, memory elements, and DSPs were

27

5.3 FPGA Resource Usage, Precision & Frequency Ratings

Figure 17: The Clearpath Husky A200™ robotic platform inside a hallway.

presented in Section 3.2.1. In case of the point cloud generation unit, we also present its precision as
compared to the ground truth calculated using double precision reference implementation on the CPU
as it’s using fixed point arithmetic and trigonometric functions, both of which are a source of rounding
errors.

Without any specific pipeline optimizations or synthesis settings, the lower bound on maximum
frequency of the entire pipeline within the FPGA fabric is 66 MHz.

The point cloud generator component was tested on random distance data generated in the range
of 0 to 220mm and its absolute difference from the ground truth was on average 1.5mm in the X axis,
2.68mm in the Y axis and 3.49mm in the Z axis. The worst absolute differences were measured to be
2.03mm, 3.4mm and 4.13mm in the X, Y and Z axis, respectively.

The resulting logic element usage of the "lidar2pntcloud" component is found at 5887 adaptive
logic modules (ALMs), 21 DSPs (integer multiplication accelerators implementing the fixed point
arithmetic) out of the total 112 of the Cyclone V. To buffer the intrinsics and implement various FIFOs
throughout the pipeline, it requires 11 M10K memory blocks out of the total 553.

The FAST detector described in Section 4.2.2 requires only 830 ALMs, 0 DSPs and 11 M10K
memory blocks. As the component doesn’t do any calculations apart from simple comparisons and
additions, there are no DSPs required.

Overall, the architecture utilizes 13131 ALMs, 21 DSPs and 242 M10K blocks equaling to approx.
1880 Mbit.

28

5.3 FPGA Resource Usage, Precision & Frequency Ratings

0 100

Time [s]

−5.0

−2.5

0.0

A
n

gl
e

[r
ad

]
Yaw

0 100

Time [s]

Pitch

0 100

Time [s]

Roll

P
Q

0 100

Time [s]

0.00

0.02

0.04

R
P
E
ro
t

[r
ad

]

The first experiment in the hallway, with max. feature dist. of 16px.

0 200

Time [s]

−6

−4

−2

0

A
n

gl
e

[r
ad

]

Yaw

0 200

Time [s]

Pitch

0 200

Time [s]

Roll

P
Q

0 200

Time [s]

0.00

0.05

0.10

R
P
E
ro
t

[r
ad

]

The second experiment in the hallway, with max. feature dist. of 64px.

0 100

Time [s]

−5

0

5

A
n

gl
e

[r
ad

]

Yaw

0 100

Time [s]

Pitch

0 100

Time [s]

Roll

P
Q

0 100

Time [s]

0

1

2

3

R
P
E
ro
t

[r
ad

]

The first experiment outside, with max. feature dist. of 16px.

0 100

Time [s]

−5.0

−2.5

0.0

A
n

gl
e

[r
ad

]

Yaw

0 100

Time [s]

Pitch

0 100

Time [s]

Roll

P
Q

0 100

Time [s]

0

1

2

R
P
E
ro
t

[r
ad

]

The second experiment outside, with max. feature dist. of 64px.

Figure 18: Measured and estimated orientations of the robot throughout the four conducted experi-
ments along with their respective RPEs.

29

Chapter 6

Conclusion

In this work we study the utilization of the FPGA architecture for a LiDAR data processing accel-
eration. We used two tasks to demonstrate the feasability of using the FPGA for this purpose - point
cloud generation and ego-motion estimation from the depth image data provided by a LiDAR sensor.
We approached this task by developing a custom and general purpose SoPC pipeline running in both
the FPGA and the HPS part of the DE10-Nano development board. We provide results based on the
proof of concept architecture as described in Chapter 4, yet we establish that the specific choice of
algorithms is not important for the PoC as the individual blocks in the pipeline can be swapped for
another blocks, hosting a different implementation or different algorithm altogether, and the pipeline
would remain working correctly. This, combined with the promising results presented in Chapter 5, is
considered by us to be the most important output of this thesis.

We also showed promising results of the unconventional way of estimating odometry, although
outliers in the data and non-optimal parametrization makes it one step away from being deployable
in production. However, upon inspecting the relative pose error we established that the approach is
working well in certain scenarios and that a future work might overcome the limitations discussed in
the results Chapter 5.

For a future work we deem the most important steps to be the FPGA implementation of the entire
odometry pipeline, including feature description and most importantly the feature matching, as op-
posed to only a part of it as we present in this work. Another step would be to use FPGA only, from
end-to-end, without relying on the Linux running HPS for the UDP communications. This would
bring our results few steps forward and only increase the efficiency of the entire system. After that,
many of the higher level algorithms or their parts could be also accelerated using the FPGA fabric.
Part of the output of this work is to also demonstrate and prove the efficiency that can be achieved
with the FPGA technology and to show that future research in this area is relevant.

30

References

[1] Colin McManus, Paul Furgale, Braden Stenning, and Timothy D. Barfoot. Lighting-invariant
visual teach and repeat using appearance-based lidar. Journal of Field Robotics, 30(2):254–287,
2013.

[2] Wikipedia contributors. LIDAR traffic enforcement — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=LIDAR_traffic_
enforcement&oldid=1065293118, 2022. [Online; accessed 15-May-2022].

[3] Matteo Palieri, Benjamin Morrell, Abhishek Thakur, Kamak Ebadi, Jeremy Nash, Arghya
Chatterjee, Christoforos Kanellakis, Luca Carlone, Cataldo Guaragnella, and Ali-akbar Agha-
mohammadi. LOCUS: A Multi-Sensor Lidar-Centric Solution for High-Precision Odometry
and 3D Mapping in Real-Time. IEEE Robotics and Automation Letters, 6(2):421–428, 2021.

[4] Ouster OS0 Datasheet, revision 04/20/2022. https://data.ouster.io/downloads/
datasheets/datasheet-rev06-v2p3-os0.pdf. [Online; accessed 26-April-2022].

[5] Wikipedia contributors. Odometry — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Odometry&oldid=1060816258,
2021. [Online; accessed 26-April-2022].

[6] Wikipedia contributors. Features from accelerated segment test — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Features_from_
accelerated_segment_test&oldid=1059161063, 2021. [Online; accessed 29-
April-2022].

[7] Wikipedia contributors. Speeded up robust features — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Speeded_up_robust_
features&oldid=1053072748, 2021. [Online; accessed 11-May-2022].

[8] Wikipedia contributors. Scale-invariant feature transform — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Scale-invariant_
feature_transform&oldid=1084345813, 2022. [Online; accessed 11-May-2022].

[9] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. BRIEF: Binary robust
independent elementary features. In European Conference on Computer Vision (ECCV), volume
6314, pages 778–792, 09 2010.

[10] Ji Zhang and Sanjiv Singh. LOAM : Lidar odometry and mapping in real-time. Robotics: Science
and Systems Conference (RSS), 2:109–111, 2014.

[11] Michael Bosse and Robert Zlot. Continuous 3D scan-matching with a spinning 2D laser. In 2009
IEEE International Conference on Robotics and Automation (ICRA), pages 4312–4319, 2009.

[12] Tixiao Shan and Brendan Englot. LeGO-LOAM: Lightweight and ground-optimized lidar odom-
etry and mapping on variable terrain. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4758–4765, 2018.

31

https://en.wikipedia.org/w/index.php?title=LIDAR_traffic_enforcement&oldid=1065293118
https://en.wikipedia.org/w/index.php?title=LIDAR_traffic_enforcement&oldid=1065293118
https://data.ouster.io/downloads/datasheets/datasheet-rev06-v2p3-os0.pdf
https://data.ouster.io/downloads/datasheets/datasheet-rev06-v2p3-os0.pdf
https://en.wikipedia.org/w/index.php?title=Odometry&oldid=1060816258
https://en.wikipedia.org/w/index.php?title=Odometry&oldid=1060816258
https://en.wikipedia.org/w/index.php?title=Features_from_accelerated_segment_test&oldid=1059161063
https://en.wikipedia.org/w/index.php?title=Features_from_accelerated_segment_test&oldid=1059161063
https://en.wikipedia.org/w/index.php?title=Speeded_up_robust_features&oldid=1053072748
https://en.wikipedia.org/w/index.php?title=Speeded_up_robust_features&oldid=1053072748
https://en.wikipedia.org/w/index.php?title=Scale-invariant_feature_transform&oldid=1084345813
https://en.wikipedia.org/w/index.php?title=Scale-invariant_feature_transform&oldid=1084345813

[13] Kamak Ebadi, Yun Chang, Matteo Palieri, Alex Stephens, Alex Hatteland, Eric Heiden, Ab-
hishek Thakur, Nobuhiro Funabiki, Benjamin Morrell, Sally Wood, Luca Carlone, and Ali-akbar
Agha-mohammadi. LAMP: Large-scale autonomous mapping and positioning for exploration of
perceptually-degraded subterranean environments. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 80–86, 2020.

[14] Petr Čížek, Jan Faigl, and Diar Masri. Low-latency image processing for vision-based navigation
systems. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
781–786, 2016.

[15] Peter Biber and Wolfgang Straßer. The normal distributions transform: A new approach to laser
scan matching. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
volume 3, pages 2743 – 2748 vol.3, 2003.

[16] Aleksandr Segal, Dirk Hähnel, and Sebastian Thrun. Generalized-ICP. In Proceedings of
Robotics: Science and Systems, 2009.

[17] K. S. Arun, T. S. Huang, and Steven D. Blostein. Least-squares fitting of two 3-D point sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence, (PAMI)(5):698–700, 1987.

[18] Wikipedia contributors. Singular value decomposition — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Singular_value_
decomposition&oldid=1087254983, 2022. [Online; accessed 15-May-2022].

[19] Petr Čížek. Embedded module for image processing. Master’s thesis, Czech Technical Univer-
sity, May 2015.

[20] Wikipedia contributors. Midpoint circle algorithm — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Midpoint_circle_
algorithm&oldid=1073593456, 2022. [Online; accessed 29-April-2022].

[21] Jiří Matas, Ondřej Chum, Martin Urban, and Tomáš Pajdla. Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 22(10):761–767, 2004.

[22] Wikimedia Commons. File:FAST Corner Detector.jpg — Wikimedia Commons, the free media
repository, 2021. [Online; accessed 29-April-2022].

[23] Tomáš Krajník, Pablo De Cristóforis, Matias Nitsche, Keerthy Kusumam, and Tom Duckett.
Image features and seasons revisited. In European Conference on Mobile Robots, 09 2015.

[24] TS Huang, SD Blostein, and EA Margerum. Least-squares estimation of motion parameters
from 3-D point correspondences. In Proceedings IEEE Conference Computer Vision and Pattern
Recognition, volume 10, pages 112–115, 1986.

[25] Officeo. File:netgear-gs308e-8-port-gigabit-plus-managed-switch-default.jpg, 2022. [Online;
accessed 16-May-2022].

[26] Bechtle. File:5f4ddefd4c2f853e71dbe7e4-900Wx900H-820Wx820H.jpeg, 2022. [Online; ac-
cessed 16-May-2022].

[27] Atyges. File:ouster-os0-atyges.png, 2022. [Online; accessed 16-May-2022].

[28] Mouser Electronics. Mouser DE10-Nano. https://cz.mouser.com/
images/marketingid/2017/img/112951626_TerasicTechnolgies_
DE10-NanoDevelopmentKit.png. [Online; accessed 12-May-2022].

32

https://en.wikipedia.org/w/index.php?title=Singular_value_decomposition&oldid=1087254983
https://en.wikipedia.org/w/index.php?title=Singular_value_decomposition&oldid=1087254983
https://en.wikipedia.org/w/index.php?title=Midpoint_circle_algorithm&oldid=1073593456
https://en.wikipedia.org/w/index.php?title=Midpoint_circle_algorithm&oldid=1073593456
https://cz.mouser.com/images/marketingid/2017/img/112951626_TerasicTechnolgies_DE10-NanoDevelopmentKit.png
https://cz.mouser.com/images/marketingid/2017/img/112951626_TerasicTechnolgies_DE10-NanoDevelopmentKit.png
https://cz.mouser.com/images/marketingid/2017/img/112951626_TerasicTechnolgies_DE10-NanoDevelopmentKit.png

[29] OS0 ultra-wide field-of-view LIDAR sensor for Autonomous Vehicles and Robotics. https:
//ouster.com/products/scanning-lidar/os0-sensor/. [Online; accessed 26-
April-2022].

[30] Wikipedia contributors. Field-programmable gate array — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Field-programmable_
gate_array&oldid=1080736735, 2022. [Online; accessed 26-April-2022].

[31] Mahmoud Khaled. Enhancing the Performance of Digital Controllers using Distributed Multi-
core/Heterogeneous Embedded Systems. PhD thesis, 01 2014.

[32] Terasic Technologies. SoC platform - cyclone - DE10-Nano kit. https://www.terasic.
com.tw/cgi-bin/page/archive.pl?Language=English&No=1046. [On-
line; accessed 26-April-2022].

[33] Intel Corporation. Intel Cyclone V. https://www.intel.com/content/www/us/en/
products/details/fpga/cyclone/v.html. [Online; accessed 26-April-2022].

[34] Intel Corporation. DE10-Nano computer system with ARM* Cortex* A9. https:
//ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/
Computer_Systems/DE10-Nano/DE10-Nano_Computer_ARM.pdf. [Online;
accessed 26-April-2022].

[35] Wikipedia contributors. Register-transfer level — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Register-transfer_
level&oldid=1041916723, 2021. [Online; accessed 26-April-2022].

[36] Intel Corporation. Intel® High Level Synthesis Compiler. https://www.intel.
com/content/www/us/en/software/programmable/quartus-prime/
hls-compiler.html. [Online; accessed 26-April-2022].

[37] u-dma-buf. https://github.com/ikwzm/udmabuf. [Online; accessed 26-April-2022].

[38] Wikipedia contributors. Exclusive OR — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=Exclusive_or&oldid=1080943142,
2022. [Online; accessed 26-April-2022].

[39] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[40] Intel Corporation. Cyclone V Hard Processor System Technical Reference Manual.
https://www.intel.com/content/dam/support/us/en/programmable/
support-resources/bulk-container/pdfs/literature/hb/cyclone-v/
cv-54001.pdf. [Online; accessed 11-May-2022].

[41] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger,
Rob Wheeler, and Andrew Ng. ROS: an open-source robot operating system. In Proceedings of
the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics,
May 2009.

[42] Intel Corporation. Intel® NUC products. https://www.intel.com/content/www/
us/en/products/details/nuc.html. [Online; accessed 26-April-2022].

[43] Clearpath Robotics. Husky UGV. https://clearpathrobotics.com/
husky-unmanned-ground-vehicle-robot/. [Online; accessed 17-May-2022].

33

https://ouster.com/products/scanning-lidar/os0-sensor/
https://ouster.com/products/scanning-lidar/os0-sensor/
https://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=1080736735
https://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=1080736735
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/v.html
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/v.html
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/Computer_Systems/DE10-Nano/DE10-Nano_Computer_ARM.pdf
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/Computer_Systems/DE10-Nano/DE10-Nano_Computer_ARM.pdf
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/18.1/Computer_Systems/DE10-Nano/DE10-Nano_Computer_ARM.pdf
https://en.wikipedia.org/w/index.php?title=Register-transfer_level&oldid=1041916723
https://en.wikipedia.org/w/index.php?title=Register-transfer_level&oldid=1041916723
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://github.com/ikwzm/udmabuf
https://en.wikipedia.org/w/index.php?title=Exclusive_or&oldid=1080943142
https://en.wikipedia.org/w/index.php?title=Exclusive_or&oldid=1080943142
http://eigen.tuxfamily.org
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/hb/cyclone-v/cv-54001.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/hb/cyclone-v/cv-54001.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/hb/cyclone-v/cv-54001.pdf
https://www.intel.com/content/www/us/en/products/details/nuc.html
https://www.intel.com/content/www/us/en/products/details/nuc.html
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

[44] Leica Geosystems. Leica TS16 Total Station. https://leica-geosystems.com/
products/total-stations/robotic-total-stations/leica-ts16. [Online;
accessed 17-May-2022].

[45] Xsense. Xsense MTi 10-series. https://www.xsens.com/products/
mti-10-series. [Online; accessed 17-May-2022].

[46] Oliver Wulf, Andreas Nüchter, Joachim Hertzberg, and Bernardo Wagner. Benchmarking ur-
ban six-degree-of-freedom simultaneous localization and mapping. Journal of Field Robotics,
25(3):148–163, 2008.

[47] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Giorgio Grisetti, Cyrill
Stachniss, and Alexander Kleiner. On measuring the accuracy of SLAM algorithms. Autonomous
Robots, 27(4):387–407, 2009.

[48] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Communications of
the ACM, 24(6):381–395, jun 1981.

34

https://leica-geosystems.com/products/total-stations/robotic-total-stations/leica-ts16
https://leica-geosystems.com/products/total-stations/robotic-total-stations/leica-ts16
https://www.xsens.com/products/mti-10-series
https://www.xsens.com/products/mti-10-series

Appendix A

Content of the Attachment

/
orchestrator.c
lidar2pntcloud.cpp
System.vhd
thesis.pdf

35

	1 Introduction
	2 Problem Statement and Background
	LiDAR Depth Image to Point Cloud Transform
	Odometry
	LiDAR Odometry
	Feature Based Methods
	Grid Based Methods
	Dense Methods

	Features from Accelerated Segment Test
	Binary Robust Independent Elementary Feature description
	Least Squares Fitting of Two 3D Point Sets

	3 Hardware & Software Setup
	Ouster OS0-128
	Field Programmable Gate Array
	DE10-Nano Development Board

	High Level Synthesis
	Intel HLS

	u-dma-buf

	4 Architecture
	Point Cloud Generator
	HPS Part
	FPGA Part
	lidar2pntcloud

	LiDAR Odometry
	Data Preprocessing
	FAST feature detector
	Binary Robust Independent Elementary Feature description
	Feature matching & tracking
	Feature Registration

	5 Results
	Latency Experiments
	Receiveing the LiDAR Data
	Point Cloud Generation in FPGA
	Feature Detection in FPGA
	Feature Description
	Feature Matching
	SVD Solver
	Comparison to the CPU Reference Implementation

	Odometry Experiments
	Translational error evaluation
	Rotational error evaluation

	FPGA Resource Usage, Precision & Frequency Ratings

	6 Conclusion
	 References
	A Content of the Attachment

