Bachelor thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Human-robot collaboration for playing
checkers

Elizaveta Isianova

Supervisor: Pavel Burget
May 2022

cTU BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
e N
Student's name: Isianova Elizaveta Personal ID number: 492326

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics
_

Il. Bachelor’s thesis details
4 N\
Bachelor’s thesis title in English:

Human-robot collaboration for playing checkers

Bachelor’s thesis title in Czech:

Kolaborativni robotické pracovisté pro hru dama

Guidelines:

The purpose of this thesis is to design a robotic workplace for a human-robot collaboration that would be able to play
checkers with a human opponent. The robot would be fully autonomous in recognizing the environment, capturing the
state of the game, and manipulating the checkers.

1) Get acquainted with KUKA LBR iiwa collaborative robot and its operating system KUKA Sunrise.

2) Suggest a method how to implement recognition of the checker with a camera.

3) Design and implement the system's overall architecture (robot, camera, PLC).

4) Design user scenarios of how the checkers game will be played and implement the game algorithm. The robot will be
able to play autonomously.

5) Implement the robotic workplace and test its functionality.

Bibliography / sources:

[1] KUKA Roboter GmbH. KUKA Sunrise.OS 1.11. Operating and Programming Instructions for System Integrators.
Augsburg, Germany, 2016.

[2] John, K. & Tiegelkamp, M. IEC 61131-3: Programming Industrial Automation Systems: Concepts and Programming
Languages, Requirements for Programming Systems, Aids to Decision-Making Tools, Springer, 2013.

[3] SCHAEFFER, J., BURCH, N., BJORNSSON, Y., KISHIMOTO, A., MULLER, M., LAKE, R., LU, P. & SUTPHEN, S.,
"Checkers Is Solved", Science (American Association for the Advancement of Science), vol. 317, no. 5844, pp. 1518-1522,
2007.

Name and workplace of bachelor’s thesis supervisor:
Ing. Pavel Burget, Ph.D. Testbed CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 31.01.2022 Deadline for bachelor thesis submission: 20.05.2022

Assignment valid until:
by the end of summer semester 2022/2023

Ing. Pavel Burget, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean'’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

ii

Acknowledgements

I would like to thank Ing. Pavel Burget
Ph.D for supervising this work. I thank
Ing. Tomas Jochman for consultations on
PLC and KUKA programming. I thank
Serhii Voronov for the help in assembling
the robotic workplace and 3D printing of
parts. I would also like to thank the Czech
Institute of Informatics, Robotics and Cy-
bernetics for providing an opportunity to
work on this project.

iii

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 20, 2022

Prohlasuji, ze jsem predlozenou praci
vypracovala samostatné, a ze jsem uvedla
veskerou pouzitou literaturu.

V Praze, 20. kvétna 2022

Abstract

This thesis aims to create a collaborative
robotic workplace for playing the game
checkers with a human opponent. The
architecture of the system, consisting of a
PLC, collaborative robot, and a computer
vision system, allows the robot to be fully
autonomous in perception of the checker-
board and in playing the game. The game
algorithm is extended with artificial intel-
ligence that contributes to fast decision
making and the robot’s high win rate.

Keywords: collaborative robots,
Industry 4.0, KUKA, checkers game,
industrial robot

Supervisor: Pavel Burget

Czech Institute of Informatics, Robotics
and Cybernetics,

Testbed for Industry 4.0

Praha 6

iv

Abstrakt

Tato prace si klade za cil vytvorit kola-
borativni robotické pracovisté, na kterém
ma c¢lovék moznost zahrat si hru dama
proti robotu. Architektura systému, ktery
se sklada z PLC, kolaborativniho robota
a systému pocitacového vidéni, umoznuje
robotovi byt plné autonomni ve vnimani
sachovnice a pri hrani hry. Algoritmus hry
je rozsiten o umélou inteligenci, ktera pii-
spiva k rychlému rozhodovani a zarucuje
robotu vysokou pravdépodobnost vyhry.

Klicova slova: kolaborativni robot,
priumysl 4.0, KUKA, hra ddma,
pramyslovy robot

Pteklad nazvu: Kolaborativni robotické
pracovisté pro hru ddma

Contents

1 Introduction

1.1 Human-Robot Collaboration
1.2 Objectives

2 Checkers

2.1 Checkersrules...............
2.2 Al algorithm

3 Robotic workplace architecture
3.1 Hardware configuration.
3.2 Network configuration

4 Robot specifications

4.1 Robot description............
4.2 Robot control

4.2.1 Homography
4.3 Safe collaboration............

5 Computer vision

5.1 Test of two CV systems
5.1.1 Industrial camera and PC . ..
5.1.2 Keyence Vision System

5.2 Final choice of a CV system. ...

6 Application structure

6.1 User interface
6.2 State machine
6.3 PLC program
6.4 Java application

7 System tests

71 Final tests
7.2 Field testing

8 Conclusion

A Bibliography

Figures

2.1 Game tree representation for

Minimax algorithm.
3.1 First prototype of the system
architecture 9
3.2 Final version of the system
architecture.
3.3 Physical representation of the final
version of the system architecture .
3.4 Network topology in the project
4.1 Overview of the KUKA LBR iiwa
system: [1] 1. Connecting cable to
smartPAD, 2. KUKA smartPAD
control panel, 3. Manipulator, 4.
Connecting cable to KUKA Sunrise
Cabinet robot controller, 5. KUKA
Sunrise Cabinet robot controller, 6.
Development computer with KUKA
Sunrise.Workbench.
4.2 KUKA LBR iiwa 14 workspace
representation[I].
4.3 Checkerboard coordinate system
from the camera perspective.
4.4 Tmplementation of the coordinates
transformation. 17
5.1 Demonstration of a HSV filter
application for a white color
extraction. 20
5.2 Slider bar for configuring filters in
HSV domain.................... 20

5.3 Comparison between two
morphology operations: Opening (the
upper image) and the Closing (the
bottom image). [2]

5.4 Comparison between two basic
morphology operations: Erosion and
Dilation. [2]..........

5.5 Circle recognition outcome.
Detected circles are highlighted in
yellow and contain information about
the piece’s color, area and (x,y)
coordinates in respect to pixels.. ..

5.6 Experiment setup for estimating
the heights of two objects with CV
System.

vi

5.7 Depth measurement in 3D
capturing mode.
5.8 Visualisation of the white color
detection. The color is not defined by
a precise value, but rather with a
range of values in HSV color model.
The regions with desired hue are
automatically highlighted on a
gray-scale image.
5.9 Definition of areas used for
detecting a hand above the board.
5.10 Threshold value definition for
every side of two rectangles - inner

white one and black outer one. ...
6.1 User interface diagram, where

every block represents a screen on

HMI. ...
6.2 State machine diagram.........

6.3 Function blocks of the PLC
program.

6.4 Java application diagram
representing relation between the
classes.o i i

32

7.1 Statistics on winning rate from the
30 game outcomes.

Tables

2.1 The values of the heuristic function
coefficients. Bl

5.1 Tolerance value ranges for all three
channels of HSV filter for two colors
used in the game: white and black.

7.1 Categories of the performed system

vii

Chapter 1

Introduction

. 1.1 Human-Robot Collaboration

The relevance of the Human-Robot Collaboration has been rising exponentially
with the rapidly growing demands for robotic applications in households and
industrial workspaces. Today, the industry development trend is towards
Industry 4.0, which is based on fully automated production processes with the
human contribution set to a minimum|3]. Despite the reduced prominence of
humans at the site, their presence is not entirely eliminated. The humans’
role is now to instruct and mentor their robotic colleagues that took over the
manual work. Modern design approaches of industrial robots enable robots
not only to help employees throughout production but also to protect their
health.

However, the scope of collaborative robots application is not limited to
industrial environments. Innovative robotic design allows cobots to interact
effectively and securely with humans in other spheres. There are numerous
examples of robots taking human jobs, such as serving as a barman at a
Robobar[4] or assisting laboratory workers in taking COVID-19 tests at
Bulovka Hospital in Prague[5]. Such tasks require high cognitive abilities, so
the robot would be able to collect data about its surroundings and properly
react to a change in its environment.

The task of creating a collaborative robotic workplace for playing a game
includes adjusting the input signals from the outside world using all available
devices, such as a camera, a touch screen, and sensors of the robot itself.
Furthermore, it is necessary to take into account the psychological perception
of the game process by a human. When competing with a supposedly stronger
robotic opponent, one would expect fast decision-making, conciseness of
movements, and the impossibility of deception. Therefore, an implementation
of the game algorithm should be robust enough to take little time while
calculating an optimal move and complying with defined game rules.

1. Introduction

B2 Objectives

This Bachelor thesis aims to create a collaborative robotic workplace for the
checkers game that meets industrial standards and has a convenient user
interface. This project demonstrates the interaction of collaborative robots,
also called cobots, with humans on the site.

The work on this project has been carried out as part of an internship at
the Testbed for Industry 4.0 at Czech Institute of Informatics, Robotics and
Cybernetics (CIIRC CTU). The purpose of this work is to create a plug-and-
play robotic cell that would act as a show-case of collaborative robots for
visitors of Testbed. The game of checkers was chosen because it is a game
widely played all over the world. Thus, a robotic workplace would provide an
opportunity for the general public to get acquainted with modern industrial
technologies, collaborative robots in particular, through participation in the
well-known game.

The work on this project can be outlined into four stages.

1. The first stage consists of getting acquainted with the new software tools,
such as KUKA Sunrise.Workbench and KUKA.WorkVisual for KUKA
iiwa robot programming, Keyence CV-X Series for computer vision
system configuration, TIA Portal v16 for PLC programming, hardware
and network configuration, as well as learning a new programming
language - Java.

2. The second project phase includes designing system’s components ar-
rangement and implementation of the overall architecture, subsequent
configuration of hardware and network communication.

3. The third stage of the project includes software development, such as
implementation of state machines, creation of the game core in Java and
integrating artificial intelligence algorithms to a robot player, computer
vision setup and robot movements handling.

4. In the final work phase the system testing takes place. The performance
and robustness must be tested.

This work does not aim to develop an invincible artificial intelligence player.
The checkers game is already solved, and a program capable of this challenge
exists[6].

Chapter 2
Checkers

. 2.1 Checkers rules

Checkers is a two-player game that is widely spread around the world. Its
first mention dates from 3000 BC, when a board resembling a checkerboard
was found in ancient Mesopotamia[7]. Over the centuries, the rules of the
game have evolved, supplementing the old ones and creating the new ones.
To date, there are dozens of different versions of the game. For this project,
I chose the American version of checkers[8]. The fundamental rules of the
game are well known to the general public; however, let me recall the basis
required for a deeper understanding of this paper.

Each player starts the game with 12 pieces of their color: black or white.
Pieces can only be placed on the dark squares of the playing board. A regular
piece can only move diagonally forward, either by landing on the nearest
square if it is empty or by jumping over the opponent piece. In the second
case, the nearest square must be occupied by the opponent and the square
behind it must be empty. When a piece reaches the edge row on the opposite
side of the board, known as the king row, it becomes a king. In the Czech
and American version of the checkers the coronation of a piece occurs with
the help of an additional checker, which is placed on top of the first one, thus
increasing its height twice. Due to the impossibility of distinguishing the
height of a checker by the camera, in my version of the rules, a checker of a
different color is used to distinguish the king: the white queen is orange, the
black king is blue. Unlike the regular piece, a king can move both forwards
and backwards.

A game can end in four ways:

1. a player wins the game if all opponent pieces were captured;

2. a player wins the game if the opponent still has pieces, but all are blocked
and none can make a move;

3. a game ends in draw if there have been 50 moves from both sides without
any piece captured;

4. a game ends in draw if the same layout of the gameboard was repeated
three times in a row.

2. Checkers

Additional rules specifications:
B jumping over a piece, i.e., capturing the piece, is obligatory;

B if a player captures a piece and lands on a square with a further possibility
to jump over another opponent piece, he is obliged to do so;

® in some game interpretations, kings can "fly" - move any distance along
unoccupied paths, thereby being able to capture pieces e.g. 3 empty
squares away from them. The so-called flying kings are not used in
American, and thus my version of the game;

B 22 Al algorithm

The classic game of checkers is a two-player finite zero-sum game[9] due to
its closed system structure. It represents a situation where the gain of one
player is equal to the loss of another player. The addition of the total gains
and subtraction of the total losses will sum up to zero.

Decision-making in such games is visualized with game trees shown in
Figure 2.1. Every tree node represents a possible state of the board and
the score that the corresponding player could obtain. The current state of
the board is seen as a root node with the tree expansion depth level equal
to zero. The number of its child nodes at depth level 1 corresponds to the
number of possible moves for the current player. At the maximum depth
level, whether it is a predefined number or the end of the game has been
reached, we calculate the state score as an output of the heuristic function.

4 é T
0 /
-’ - - S N
- \\\ //, SN
! 6 | 8
AN i AN H /
MAX /' i |
/ \, / | i
w \ 1 ’ . ! Sa
4 5 -6 2 4 > 2
O Root Node Child Node Terminal Node

Figure 2.1: Game tree representation for Minimax algorithm.

2.2. Al algorithm

The heuristic function was inspired from [10], where it is calculated as a
linear combination of the following board parameters:

H(S) = w181 + w289 + w383 + WS4 + Ws5S5 + WeSe, (2.1)

where

s1: number of the current player’s regular pieces;

so: number of the opponent player’s regular pieces;

s3: number of the current player’s kings;

s4: number of the opponent player’s kings;

s5: number of pieces of the current player threatened by its opponent;

sg: number of pieces of the opponent player threatened by the current
player;

wy, ..., wg: corresponding numerical coefficients.

After investigating strategies for winning the game, I discovered that it
is more desirable for a piece to be placed in the center of the checkerboard,
rather than on the edge[l1]. In this way, a checker has a greater degree of
freedom in the next move. So two elements were added to a heuristic function:

s7: number of current player’s pieces placed on the edge of a checkerboard;

sg: number of opponent player’s pieces placed on the edge of a checkerboard;

The heuristic function was also extended with a parameter ¢ that is assigned
to 100 in case of the end of the game and the victory of the current player,
to -100 in case of the victory of its opponent, and is set to zero if the end of
the game has not been reached.

A modified heuristic function is as follows:

H(s) = w1 (s1—87)+wa-(S2—S8) +wsss+waSs+wsss+wese+wrs7+wsss+c

(2.2)

The values of coefficients wy, ..., wg were empirically established in a series
of experiments. The corresponding values are shown in the table 2.1l

w1 w2 ws W4y Ws We w7 | wg
value | 10 | -10 | 20 | -20 | -10 | 10 | 6 | -6

Table 2.1: The values of the heuristic function coefficients.

In order to win, the current player aims to maximize the function output,
while their opponent aims to minimize it. So, whether its the current player’s
or their opponent’s turn, the function output approaches its maximum,
respectively, its minimum. From the perspective of the game tree, the odd
depth level value corresponds to the current player’s move, and the even value
to their opponent’s move. This principle underlies the Minimax (also called
Minmax) algorithm.

function minimax(node, depth, maximizingPlayer) is
if depth = 0 or node is a terminal node then
return the heuristic value of node

2. Checkers

if maximizingPlayer then
value := -o0
for each child of node do
value := max(value, minimax(child, depth - 1, FALSE))
return value
else (* minimizing player *)
value := o0
for each child of node do
value := min(value, minimax(child, depth - 1, TRUE))
return value

With the initial call:
minimax(origin, depth, TRUE)
Algorithm 2.1: Minimax|[12]

The downwards of this algorithm is that its computational complexity
increases exponentially with every tree expansion into a new depth level. The
most common solution how to improve Minimax is to supplement it with
Alpha-Beta pruning algorithm described bellow.

In the process of evaluating the playing field at different depth levels of
the game tree, the player operates with two newly introduced dynamically
changing coefficients - alpha (the minimum value of the heuristic function
encountered in the branch - i.e., more favorable for the minimizing player)
and beta (the maximum value of the heuristic function encountered in the
branch - i.e. more favorable for the maximizing player). At each depth level,
the comparison of the heuristic function value of the current position with the
alpha and beta coefficients makes it possible to reject (without calculating
them completely) branches that are less beneficial for the current player
evaluating the position and/or more beneficial for his opponent. The player
discards this branch and does not waste time and resources on considering
sub-options from this obviously worst branch for him, thereby reducing the
computation time.

The Minimax with Alpha-Beta pruning underlies the implementation of
the AI checkers player. The depth of the searching tree expansion represents
the difficulty of competing with the Al player.

function alphabeta(node, depth, a, B, maximizingPlayer) is
if depth = 0 or node is a terminal node then
return the heuristic value of node
if maximizingPlayer then
value := -0
for each child of node do
value := max(value, alphabeta(child, depth - 1, «, 3,
FALSE))
« := max(w, value)
if value > [then
break (* [cutoff *)

6

2.2. Al algorithm

return value
else
value := +00
for each child of node do
value := min(value, alphabeta(child, depth - 1, «, 3,
TRUE))
B := min(f, value)
if value < « then
break (* « cutoff *)

return value
With the initial call:
alphabeta(origin, depth, -co, +oo, TRUE)
Algorithm 2.2: Alpha-Beta pruning[13]

Chapter 3

Robotic workplace architecture

B 3.1 Hardware configuration

The first prototype of the system had the following architecture. The main
core connecting the rest of the elements was the PLC. A KUKA iiwa LBR
robot, an HMI panel, and a gripper were connected to it through the Profinet
industrial communication protocol. The part responsible for computer vision
consisted of an industrial camera connected to a computing unit, a desktop
computer.

System Architecture Kk,

Profinet
)

PLC pho
ﬁ'/-; o SCHU M,

Figure 3.1: First prototype of the system architecture

One of the important conditions of the project is that this robotic station
should always be ready to work and would not require an operator even after
a power restart.

Experience has shown that the PC would not contribute to this. With

9

3. Robotic workplace architecture

the possibility of trying out the Keyence computer vision (CV) system, it
was decided to eliminate the PC from the architecture scheme and replace
the initial computer vision unit with an independent solution, where CV
functions are already built into the camera controller. The other parts
remained unchanged and the final version of the system architecture is shown

in Figure

System Architecture

Profinet

Figure 3.2: Final version of the system architecture.

The physical representation of the robot cell is shown in Figure [3.3. The
robotic manipulator is mounted vertically on a solid welding table, which
provides high stability against mechanical vibrations and ensures overall
stability of the robotic station.

The game board is placed at a distance of 40 to 60 cm from the KUKA iiwa,
so it is located in the robot’s workspace. The checkerboard is illuminated with
an LED strip whose brightness can be manually set by its remote controller.
However, the amount of light is adjusted solely for the convenience of the
player, as the industrial camera is set up in that way, that it is not highly
dependent on lighting conditions and is able to perform tasks with daylight.

The gripper, used as an end effector, is covered in a soft case and is
equipped with the grasping parts. Both elements were printed out of a plastic
containing rubber. The edges of the objects were smoothed. This material
and the design of the elements contribute to a higher safety for the human
player. In addition to safety regulations, the user is given a red emergency
stop button for an immediate shutdown of the robot’s processes.

10

3.1. Hardware configuration

IONOSAMMAMAMALL A

s
<
3

Figure 3.3: Physical representation of the final version of the system architecture

To the left of the playing board, there are four holders that are used to
arrange the locations of the unused checkers. They were printed on a powder
3D printer. These holders are located in fixed positions, so when the robot
picks up the user’s pieces, it can sort them and place them in the suitable

compartment.

The playing board itself is a standard 8 by 8 checkerboard. It has a
standard color scheme, where all squares have contrasting colors to facilitate
recognition of checkers on them. The colors of the board were chosen so that
they did not match the colors of checkers, to eliminate errors in computer

vision recognition.

In order to manage the state of the game by the human player, the robotic
cell is equipped with an HMI (Human-machine interface) screen, a touch panel
for user interface. It is a standard solution for displaying and monitoring
information in industrial environments.

11

3. Robotic workplace architecture

3.2 Network configuration

The communication network is configured in STEP 7 TIA Portal. The
Figure shows the connections between the devices used in this project.

pLC_1
CPU 15105P F-1...

HMI_1

TP900 Comfort D

PNJIE_1

Sunrise ECM-V6R-PIRT-... cv-x400
Sunrise.05-PRO... DP-NORM ECM-V6R PROFI... DP-NORM CV-X4XX %
PLC_1 0 PLC_1 PLC_1

Figure 3.4: Network topology in the project

All devices in the network are connected through the Profinet industrial
communication protocol. The devices mentioned are as follows:

PLC_ 1 is the main and only PLC of this project. It is a Siemens
CPU 1510SP F-1 PN. The letter "F" stands for Fail-safe, which means
that the safety and standard programs can be processed on the same
processor, which allowed me to implement a safety program to stop the
system processes running by pressing the emergency button. For reading
an input from the button, the PLC was extended with a digital input
module DI8 x DC24V HF;

HMI__1 is the Siemens TP900 comfort HMI screen, which enables user
communication with the system;

Sunrise represents the robot KUKA LBR iiwa, which is described in
Chapter

ECM-V6R PROFINET IRT - represents the SCHUNK EGL gripper.
Although the gripper is physically attached to the robot’s flange, the
gripper is connected to the local Profinet network and controlled by
signals from the PLC, not from the KUKA iiwa. It is a servo-electric
parallel gripper with two fingers; its gripping force is controlled by
current;

sv-x400 is a controller of the Keyence computer vision system. It is
responsible for receiving an image from the camera, processing the CV
tasks and transmitting its output to PLC.

12

Chapter 4

Robot specifications

B 4.1 Robot description

KUKA LBR iiwa 14 R820, chosen as a manipulator in the project, is a
light-weight collaborative robot. It is equipped with position, joint torque,
and temperature sensors in all seven axes, allowing precise measurement of
robot position deviation, making KUKA iiwa safely HRC compatible. The
robot’s payload capacity of 14 kg is half the weight of the manipulator itself.

Figure 4.1: Overview of the KUKA LBR iiwa system: [1]
Connecting cable to smartPAD,

KUKA smartPAD control panel,

. Manipulator,

Connecting cable to KUKA Sunrise Cabinet robot controller,
KUKA Sunrise Cabinet robot controller,

Development computer with KUKA Sunrise. Workbench.

S U W

The robot uses its own operating system KUKA Sunrise.OS of version
1.16. In this software package, the programming and operator control tasks
are separated and managed by different components.

13

4. Robot specifications

KUKA Sunrise.Workbench is a Software Development Kit (SDK)
with Java programming language, used for application programming,
station and safety settings configuration, software installation, and remote
debugging.

KUKA WorkVisual 5.0 is a software tool for bus mapping, configura-
tion and diagnosis. In this project WorkVisual is used for configuring
and mapping control signals of the Profinet communication with PLC.

KUKA smartPAD is a control panel used by the operator e.g. for
calibrating tools, axis mastering, jogging, teaching frames. Neither the
station and safety configuration, nor the application content can be
changed by the operator. The smartPAD was used during the develop-
ment of this project to start applications on the station. After project
completion, the application start-up was switched to external control via
PLC and HMI.

KUKA Sunrise Cabinet is a robot controller based on operating
system Windows 7 Embedded that manages safety, logic and process
control of the entire system.

(1306)

840 +170°
[T8
=
g
&
E:
) <
(=]
8

-170°

(a) : Workspace section in the XZ plane. (b) : Workspace section in the XY plane
Dimensions are in mm. at a height of 360 mm above the base

frame.

Figure 4.2: KUKA LBR iiwa 14 workspace representation[l].

14

4.2. Robot control

. 4.2 Robot control

There are five categories of the robot motions used in the project:
1. returning the robot to its home position,
2. picking a checker from the checkerboard,
3. picking a checker from the stack for captured checkers,
4. placing the checker onto the game board,
5. placing the checker onto the stack for captured checkers.

The home position is chosen in such a way that the robot would not disturb
neither the opponent from making a move, nor the camera from capturing a
picture.

Actions (3) and (5) differ from actions (2) and (4) in need to dynamically
change the TCP position in Z axis according to the amount of captured
checkers.

Actions (2) and (4) require from the camera the coordinates of a TCP
position in XY plane.

The rotational parameters along all axes remain unchanged, so the gripper
is always placed perpendicularly to the XY plane and does not rotate along
the Z axis.

Bl 4.2.1 Homography

A homography matrix is used to obtain a transformation of the camera coor-
dinate system to the robot coordinate system. Methods of a planar geometry
were applied to establish it.

Since the board’s position remains unchanged over time, it was decided to
set the coordinate system (CS) of the checkerboard plane from the camera
perspective in the following way. The origin of coordinates is in the upper
left corner of the board. The squares on the board represent the units of the
CS. That is, the upper left square is located at [0, 0], the adjacent square
to its right is located at [0, 1], the adjacent square to its bottom is at [1,0],
and so on. This representation of the checkerboard position simplifies the
communication set up between the computer vision unit and the PLC.

15

4.RObOtSpeCifiC3ti0nSllllIllllIlllIlllIllllllllIlllllll

Figure 4.3: Checkerboard coordinate system from the camera perspective.

A projective planar transformation of a vector X in the checkerboard CS
to its representation in the robot world X is a linear transformation defined
by a non-singular 3 x 3 matrix H[I4]:

x) hit hi2 his Ty
56/2 = |ho1 hoo hog| - |xo < ¥ =H % (4.1)
zh hs1 hsa hs3| |x3

Let us consider a 2D plane as a vector space in R?. Thus a point in a plane
is represented by a vector identified by the coordinate pair (x,y) in R?. As we
only aim to find a transformation matrix that maps between two planes at
a fixed position on the third axis in R?, we will adhere to the homogeneous
vector notation. Hereby we can simplify the desired matrix H and look for
its six entries instead of nine.

z hit hi2 his T
y'| = |ha1 hoa hos| - |y (4.2)
1 0 0 1 1

The unknown elements of the homography matrix H can be fitted in a 6
X 1 vector. Hence, the expression (4.2) can be rewritten with , where
the coordinate pairs (z;,y;) and (2}, y.) represent the positions of the i-th
point (i € { 1, 2, ..., n}) in the checkerboard coordinate system and the robot
coordinate system, respectively[15]. To estimate the components hi1, ..., hos
we solve the system of equations for h in the sense of least squares. The

16

4.3. Safe collaboration

Linear Least Squares problem is solved using the pseudoinverse or inverse of
A.

) z1 y1 0 0 1 0
/
1 L
N D B 0
. . : : . : . h12
!/
Tp| 2o yn 0 0 1 0] |hn 2 A
yll - 0 0 1 Y1 0 1 h22 d b_A h (4 3)
yé 0 0 x9 Y2 01 h13
: Dor | Ll
Y | 0 0 =, yo O 1)

I collected positions of six independent points in both coordinate systems
to fill in the expression (4.3) with numerical values. The desired components
h11, ..., hog of the homography matrix H were found using Matlab expression
h=24\hb

23.5042 20.6189 435.3667
H= [-21.0579 23.4253 —50.9534 (4.4)
0 0 1

The KUKA LBR iiwa 14 pose repeatability is £0.15 mm[l], so it only
makes sense to round up to two decimal places when assigning movement
coordinates in mm.

private void transfCoorxds(int x, int y){
x_kuka = 23.50*x + 20.62*y + 435.37;
v kuka = -21.06*x + 23.43*y - 50.95;

1
3
J

Figure 4.4: Implementation of the coordinates transformation.

. 4.3 Safe collaboration

I External control

In the final version of the robotic workplace, the station would not require
an operator for proper operation. An untrained user must be able to turn on,
restart or resume the application via HMI. Therefore, the robot station is
configured for external control. It allows the PLC to start the robot applica-
tion with the App_Start signal.[I]

B Emergency stop

The robotic cell is also equipped with an emergency button that enables the
user to stop the running processes immediately in case of abnormal robot

17

4. Robot specifications

behavior. The robot’s reaction to a falling edge on the emergency stop input
signal is of type "Stop 1 (on-path)", meaning that the power shortcut only
takes place as soon as the robot stands still, allowing it to remain on the
programmed path.

B Compliance

To ensure higher safety for a human-robot interaction, the KUKA iiwa’s
motions are made compliant and sensitive to external influences. This is
accomplished by establishing impedance control over the robot’s motors. The
Cartesian impedance controller represents a model of virtual springs and
dampers.[I] By assigning the model properties (stiffness and damping for
each Cartesian degree of freedom), we can define the robot’s response to
encountering an obstacle. The force applied by the motors is calculated on
the basis of Hooke’s law:

F=Fk Az (4.5)

An external force applied to the system causes the deviation of the robot’s
actual position from the planned path. The lower value of stiffness k leads to
greater deviations Azx.

18

Chapter 5

Computer vision

B 51 Test of two CV systems

The machine vision task is to recognize the state of the playing board, inspect
the presence and positions of all checkers, and determine whether the robot’s
opponent, completed a move. Two types of computer vision systems were
tested during the project development.

B 5.1.1 Industrial camera and PC

As the first prototype of the computer vision system, I used an industrial
camera Basler ace A4024 to capture the image and a computer for subsequent
image processing. Computer vision tasks were performed using the Python
programming language and the OpenCV library.

B Checkers detection

The challenge of detecting checkers lies in finding circles of a certain diameter
and distinguishing their color. The algorithm I used for this task is based on
detecting the edges of the objects found in the image.[16]

The first step of the image processing is to convert an image from the RGB
model to a binary representation, where the objects of a desired color (e. g.
white checkers) are white and the rest of the objects are black. As there
are two colors of checkers, two corresponding binary images are needed for
both of them. To do so, the HSV filter is applied to the image. In the HSV
representation, the picture is divided into three channels: hue, saturation,
and brightness (value). The filter specifies the tolerance for each of these
channels. In the binary image retrieved after the filter application, all pixels
that fall within this tolerance are highlighted in white, while the rest of the
pixels appear black.

19

5. Computer vision

(a) : Original raw image. (b) : Image with applied HSV filter.

Figure 5.1: Demonstration of a HSV filter application for a white color extrac-
tion.

For a convenient filter creation, I used a Python script that generates
a GUI window with six sliderbars to adjust the mentioned parameters.
The desired HSV values for a spe-
cific color are tuned only during ’ Color H H ‘ g ‘ Vv
the development stage and are then Syphite T 0-23 | 23-59 | 0 - 220
stored in the main image process- Rk 1 0-134 | 0-33 | 0- 116
ing program. To consider possible

lighting conditions in the robotic cell ~ Table 5.1: Tolerance value ranges for
environment, I used a number of im- all three channels of HSV filter for two
colors used in the game: white and
black.

ages taken under different lighting
conditions while establishing filter
values. The results are shown in
Table [5.1.

° image
highH
lows —_—

highv'

lowH

high$

Figure 5.2: Slider bar for configuring filters in HSV domain.

The obtained binary image typically contains some noise that contaminates
the picture and should be reduced for further image processing. A typical
noise reduction approach is provided with morphology transformations that
take into account the spatial structure of objects in a picture[l6]. There are
a number of various morphology operations with distinct functionalities, but
each of them examines an area around each pixel defined by the structur-
ing element and adjusts it according to the corresponding operation. The
structuring element can be compared to an image kernel sliding through an
image, and the concept of morphology transformations is similar to applying
a convolution to an image, with the difference that only simple tests on the
pixels are performed.

20

5.1. Test of two CV systems

The morphology transformations are
based on two fundamental operations with
directly opposite functionalities: Erosion
and Dilation[I7]. While the idea of Ero-
sion resembles soil erosion and diminishes
the foreground of a picture, the Dilation
does the opposite, increasing the size of fore-
ground objects, thus expanding the white
regions. These two basic operations form
the two types of morphology procedures
used for the current problem of noise re-
duction: Closing, which is a consistent ap-
plication of dilation and erosion, and Open-
ing, which is an erosion followed by dilation.
In other words, the Closing removes black

noise from the white objects, and the Open- Figure 5.3: Comparison be-
ing removes white noise on the black ob- tween two morphology oper-
jects. The corresponding OpenCV function ations: Opening (the upper
is cv2.morphologyEx(src, operation, image) and the Closing (the

kernel). The parameter src contains the Pottom image). [2]

binary image, operation is assigned to

cv2.MORPH_CLOSE or cv2.MORPH_OPEN respectively to the application of
the function, kernel defines the structuring element, which is set to 5x5 size
matrix filled with ones.

: Original picture. (b) : Erosion ap- (c) : Dilation ap-
plication. plication.

Figure 5.4: Comparison between two basic morphology operations: Erosion and
Dilation. [2]

The next step is to apply the function cv2.findContours(image, mode,
method) to the enhanced image. As the name proposes, the function detects
objects’ contours, i. e. curves that connect all continuous points along the bor-
der of the same hue or intensity. The mode of the contour retrieval algorithm
is set to RETR_LIST, thus the contours are retrieved without any hierarchical
relationships being established. The contour approximation method is set to
CHAIN_APPROX_SIMPLE for memory optimization. By compressing horizontal,

21

5.Computervision 5 B EEESEEESEESSEEESEEE S S EEESEE S

vertical, and diagonal segments, the function using this method removes all
redundant points leaving just edges of the segments. The function outputs
the detected contours, each being represented as an array of (x,y) coordinates
of the object’s edge points. Among the contours obtained, I look for those
with the desired area. As the relative position of a checkerboard and a camera
does not change over time, the diameter of a checker remains within the
constant range of values. In order to be considered as a circle, a detected
contour must contain no less than twenty edges.

To find the center of the detected circle, the edges of the corresponding
contour are first fitted into a rectangle with the function cv2.boundingRect (
contour_points), that returns the rectangle’s width w, height h, and co-
ordinates of its upper left corner x;,%;. Then the coordinates of the circle
center x,, 1y, are calculated with the help of basic geometry:

s Yo=Y+ (5.1)

B w
To = T + ’5 5

To determine whether a checker belongs to a certain position on the
checkerboard, the position of the circle center is compared with respect to 14
lines dividing the plane into 64 regions. Visualization of the image processing
result is shown in Figure |5.5

Figure 5.5: Circle recognition outcome. Detected circles are highlighted in yellow
and contain information about the piece’s color, area and (x,y) coordinates in
respect to pixels.

22

5.1. Test of two CV systems

B Depth estimation

According to the Czech version of checkers, when a regular piece becomes a
king, its height is doubled with an additional checker. This fact extends the
functionality of the CV program with the task of determining objects’ height.

There are many deep learning algorithms to estimate the depth of a single
monocular image. Most of them are based on modern convolutional neural
networks (CNNs), which are fast enough for real-time image processing
while achieving high-accuracy results. [I8] However, these methods are only
applicable to images where a human is able to recognize the objects’ geometric
perspective or correlate the type of an object with its distance from the camera,
e.g., to determine that clouds in the sky are far away but the grass underfoot
is close. On a photograph of a checkerboard plane taken perpendicularly,
it is impossible to visually distinguish the height of the checkers. This task
requires different solutions, e. g. a 3D reconstruction with structured light.
In the absence of a device enabling 3D reconstruction[19], the kings in the
game can be distinguished from regular piece in a different way, e.g. by an
additional color.

B 5.1.2 Keyence Vision System

After the test of the first computer vision system, I got the opportunity to test
another setup - newly arrived Keyence CV-450 Vision System (KVS). This
type of computer vision system is a typical industrial solution. It includes
a high-resolution industrial camera, a lighting unit, and a computing unit
with a built-in CV system. Initially, this machine vision option had several
advantages over the first one. Not only does the KVS have more advanced
CV capabilities and a more reliable setup, but it also offers a 3D shooting
mode. The possibility of measuring objects’ heights would allow me to adhere
to the standard way of a checker coronation by increasing its height with an
additional checker.

B Depth estimation

According to the user manual[20], in the 3D capture mode, the recommended
distance to an object to measure its height is ranging from 200 to 300 mm
from the vision system. However, due to the workplace layout, it would
not be possible to place the camera at a distance of 30 cm above the game
board; otherwise, the lighting panel will block the view for a human player.
Nevertheless, I examined the detecting capabilities of KVS at a longer distance
to check whether the camera combined with the structured light is able to
differentiate the ordinary checkers from the kings.

23

5. Computer vision

AZZTo T TSN

200 Reference
distance
250
300

Range

_ —— = -\

(a) : Recommended arrangement accord- (b) : Actual arrangement.
ing to a manual.

Figure 5.6: Experiment setup for estimating the heights of two objects with CV
system.

The experiment was carried out at two testing points: precisely in the
recommended area at a distance of 25 cm from the camera and in a desired
area at a distance of 100 cm from the camera. The experiment setup included
two elements: one checker and two checkers placed on each other, representing
a regular piece and a king, respectively. During the experiment, I attempted
to impact the sensitivity of the system by applying different lighting and
recalibrating the camera under various conditions. However, the results shown
in Figure N demonstrate that the accuracy of the depth measurement was
not sufficient to distinguish between the compositions of one or two checkers
at the second test point.

)

(a) : Camera is placed 25 cm from the sur- (b) : Camera is placed 100 c¢cm from

face, where the objects are placed. View the surface, where the objects are placed.
of a XZ plane. View of a XZ plane.

Figure 5.7: Depth measurement in 3D capturing mode.

24

5.1. Test of two CV systems

B Circle detection

However, even in the two-dimensional capturing mode alone, the Keyence
system includes an extensive range of functionalities for detecting objects or
their properties. The principle of most of them is based on taking a sample of
the desired result, the so-called ground truth, when initializing the function
and then comparing the subsequent samples with the desired one. When
applying the "Pattern Detection" function, for example, two regions in the
image are selected: the one having the desired pattern and the one where the
pattern must be subsequently searched. The function’s output is then the
current photo’s resemblance to the ground truth expressed as a percentage.
The KVS has a built-in function
for a circle detection. It’s opera-
tion principle is similar to the al-
gorithms I implemented using the & S |
OpenCV library, which are based on —— - S
the edge information after detecting
multiple edges in the inspection re-
gion. As the checkerboard is fixed
on a platform, the coordinates of the
dark squares, where the pieces can be
placed, are known in advance. There-
fore, the circle detecting function ex-
amines 32 regions - dark squares -
and outputs 32 boolean values rep-

°
°
°
0
0
(]
®
®

Figure 5.8: Visualisation of the white
color detection. The color is not de-

resenting the presence of a circle in
a particular area. If the circle ex-
ists, then the color detection function
checks the region’s dominant color by

fined by a precise value, but rather
with a range of values in HSV color
model. The regions with desired hue
are automatically highlighted on a
gray-scale image.

comparing the sample with four de-
fined colors used in the game: white, black, orange and blue.

By processing the image directly on the camera’s computing unit, the need
for a separate computer is eliminated and communication is simplified. The
PLC receives only information about the presence of checkers on the defined

positions and information about their colors. The communication between
KSV and PLC is carried out via Profinet.

B Move completion detection

The camera captures a photo only when there is nothing blocking the view of
a game board. Detection of the foreign objects above the board is based on
the principle of a laser fence. When a foreign object intersects the restricted
area, it interrupts the laser ray on its way from the source to a detector, thus
triggering the laser fence. This project has no physical laser, but strips on
the table surface simulate its principle. Two highlighted frames surround
the studied area of the game board; each of them is used to measure the

25

5. Computer vision

concentration of pixels of a specific color within the frame borders. Each
frame has a rectangular shape and consists of 4 separate rectangles. The
inner frame measures the amount of white color in itself, and the outer one
measures the amount of black color. If the amount of pixels in the highlighted
area is not sufficient to reach the defined threshold, then there is something
blocking the view from the camera. The use of two fences, rather than one,
is necessary to define contrasting colors and avoid the situation where, for
example, a person playing checkers will wear clothes with sleeves in the color
of the fence.

(c) : A region of white color used as a
reference of the amount of light present
in the environment.

Figure 5.9: Definition of areas used for detecting a hand above the board.

To eliminate false negative scenarios, when there are no foreign objects
between the camera and the board but the number of pixels is still insuffi-
cient due to dim lighting, I integrated a dynamic threshold definition. The
threshold value that determines the absence of foreign objects depends on the
lighting conditions. The number of pixels of one color is directly proportional
to the illumination intensity of the environment and can be expressed as a
linear relation.

To represent this dependency with a function, I performed ten measure-
ments in ten different lighting settings and noted the number of pixels in each
highlighted area. The level of intensity of illumination is represented by the
number of pixels in the highlighted area in Figure The required function
was then found using linear regression.

26

5.2. Final choice of a CV system

7 #THOLD_Left_White := 4.51 * "Brightness_Level™ - €0031.0;
8 #THOLD Right_White := 2.27 * "Brightness_Level" - 21279.0;
9 #THOLD Bottom White := 4.34 * "Brightness_Le " - ©0555.0;
10 #THOLD Top_White := 3.25 * "Brightness_Level™ - 35021.0;
11
12 #THOLD Left Black := 0.61 * "Brightness_Level™ + 50047.0;
13 #THOLD Right_Black := 0.1l * "Brightness_Level™ + 51034.0;
14 #THOLD Bottom Black := 0.58 * "Brightness_Level™ + 58084.0;
15 $#THOLD Top_Black := 1.29 * "Brightness_Level"™ + 38150.0;

Figure 5.10: Threshold value definition for every side of two rectangles - inner
white one and black outer one.

If the measured amount of pixels in the studied area is bellow the calculated
threshold value for the current lighting conditions, then there is something
blocking the view of the checkerboard in that area.

B 5.2 Final choice of a CV system

After comparing two computer vision systems, I can conclude that despite
the impossibility of using 3D shooting mode in the current workplace layout,
the Keyence unit still has a number of advantages over the first option. With
the Keyence system, I achieved better results in object detection in a shorter
amount of time than with the first mentioned setup. This system is more
resistant to changes in the surrounding environment and less sensitive to
changes in lighting. For a project that is not placed in a laboratory with
constant conditions but in a real dynamically changing environment, it is
a rather critical parameter. Another undeniable advantage is the ability to
exclude one of the system components, a computer, thereby optimizing the
system architecture. In addition, the Keyence Vision System is a typical tool
for performing computer vision tasks in industry.

27

28

Chapter 6

Application structure

The software application of the robotic workplace consists of four components
running on four devices which have their own tasks:

® PLC: manages the state machine of the application,
® HMI screen: provides the user interface,
® KUKA iiwa controller: handles game core and robot’s motions,

® Keyence CV system controller: conducts image processing.

. 6.1 User interface

One of the points of a human-robot interaction is the user interface (UI). In this
project, the Ul is implemented in HMI and is designed to be straightforward
and consistent. The HMI is used to start a new game or to end the one that
is ongoing, to keep track of the state of the board, to receive notifications
of wrong moves, and to monitor the conditions of the safety system. The
sequence of screens is shown in Figure Each screen intentionally contains
only one piece of information and avoids unnecessary elements, so its content
is convenient to interact with for the general public. The user experience
starts with the choice of their pieces’ color. The double arrows represent the
reversibility of actions. The content and the sequence of the screens were
programmed in STEP 7 Tia Portal.

y

Choose color m
‘ How to play % / \\\
I —— . , i . N
’ How game } ‘ Hel Choose Y Safety
ends P L difficulty J /, monitoring
‘Troubleshooting k Game ‘//
| representation

Figure 6.1: User interface diagram, where every block represents a screen on
HMI.

29

6. Application structure

. 6.2 State machine

Once the human player declares the beginning of the game through HMI, the
system is set to the initial state. The simplified version of the state machine
is shown in Figure [6.2. The whole process is handled by a PLC that keeps
track of the current state and sends command requests to other devices.

—)
H Game reset }—r Start new game m Game init

| S ——

HMI_Start
I 2
[Robot to photo | goToPhotoPos
1 position |
‘ Go to photo ‘
position

takePhoto [Request to take a | photoPosDone
\ photo T

piecesToMove == 0

Take a photo NOT photoValid

J' Photo done. Check
photoDone “| photo validity.

Notify about wrong

move
photoValid
0y

4
Update board view udpBoard Evaluate evalBoard evalError
M,il

Evaluate board and
find new move.
[Requesttopicka| evalDone
\ checker

goPick)
‘ Pick a checker ‘

Request to close a “ pickDone

gripper

gripClose

Request to place a| goPlace
checker | J’

closeDone

‘ Place a checker ‘

[Request to open a| placeDone |
gripper |

gripOpen

openDone Check end of
move
pieceToMove > 0 | piecesToMove == 0 AND
. gameEnd
piecesToMove == 0 AND NOT gameEnd

A4

HMI_endG
ﬂ[wmt for game resetH Game end } gameEnd

Block of this color is performed by:

PLC KUKA ‘[Gripper CV system HMI

Figure 6.2: State machine diagram.

30

6.3. PLC program

B 63 PLC program

The main organization block of the PLC program consists of four function
blocks:

® State_Machine. As the name suggests,

this function block keeps track of the
current state of the system according
to Figure 6.2, assigning output signals
and monitoring input signals from other
devices and other function blocks.

EGL_Control is an implementation of
the state machine for the gripper con-
trol that includes states "reset", "ini-
tialize", "grip" and 'release". Force_-
parameter defines the desired grip-
ping force, Position_parameter corre-
sponds to the distance between the fin-
gers, Command defines the gripper’s state.
The code of this block was provided by
my colleague and more detailed descrip-
tion on it can be found in his work [4].

Camera_Control After receiving a pos-
itive value of TakePhoto, the request
for an image update is sent to KVS.
After receiving the output of the im-
age processing, the function checks if
the image is valid (the laser fence was
not triggered by foreign objects) and ac-
knowledges the completion and validity
of the image.

HMI_Control monitors the state of the
HMI screen, resets the game (by setting
the state of the system to the initial
value), and initializes a new game (by
assigning the default values to the inter-
nal variables) as a response to a corre-
sponding input signal from the user.

31

“FenceTriggered” — photoValid

%DB5
"State_Machine_
DB"

%FB3
“State_Machine”
EN ENO

%M555.1
“PhotoDone” — photoDone

%M555.0
takePhoto —i "TakePhoto"

%M263.0 %MWO
"EGL_position_
%M8.0 command”

"EGL_done" — gripDone

gripMode

%MD12
"EGL_position_
parameter”

%M8.1
"EGL_error" — gripError
%M500.0
"HMI_Start” — HMI_Start

gripParam

%M500.1
"HMI_End" — HMI_endGame

%DB13
"EGL_Control_DB"
%FB9
"EGL_Control"

EN

%MD4
"EGL_force_

Force_
parameter”

parameter

ENO

%M8.0
Done —i"EGL_done"

%M8.1

%MWO Error —"EGL_error”

"EGL_position_

command” — command

%MD12
"EGL_position_
parameter”

Position_
parameter

%DB6
"CV_Control_DB"
%FB4
"CV_Control"
EN ENO

%M555.0
"TakePhoto" — takePhoto

%M555.1
photoDone —i"PhotoDone”

%M263.0
photovalid —“FenceTriggered"

%DB8
"HMI_Control_DB"
% FB5
"HMI_Control"
—EN ENO

%M500.0
HMI_Start — "HMI_Start"

%M500.1
HMI_endGame —i"HMI_End"

Figure 6.3: Function blocks
of the PLC program.

6. Application structure

B 64 Java application

The handling of the checkers game is implemented in the robot application. It
was developed in KUKA Sunrise.OS, and it runs by KUKA Sunrise.Cabinet
and KUKA iiwa itself. Initially, when the project’s architecture included a
computer, the idea was to implement the game application in Python pro-
gramming language and run it together with the CV program. However, after
the replacement of the CV system, the need for an external computer was
eliminated. The tests of running the game demonstrated that the computa-
tional power of the robot controller is sufficient for a real-time decision making.
Furthermore, the KUKA Sunrise.OS enables object-oriented programming
using the Java language, which is a typical and convenient tool for game
development.

The robot application consists of six Java classes: Checkers, Game, Board,
Piece, AT and Moves.

RoboticsAPIApplication

|

extends
Game
game progress
tracking

Checke rs

manages other

classes creating a
functional application

Board Moves

re regzg;:tz)onargwoves manages robot physical
? movements

handling

dECISIOn maklng in
\ the game

Piece
piece information
handling

Figure 6.4: Java application diagram representing relation between the classes.

® Class: Checkers

This class extends the KUKA RoboticAPIApplication and inherits its
features. This is the main class of the Java application and the link
between the rest of its components. Its methods provide communication
with the PLC at the application layer, receiving information about the
current state of the system, executing a corresponding task, and sending
back acknowledgments of the action taken.

® Class: Piece

As the name suggests, this class stores essential information about a

32

6.4. Java application

checker. The main methods provided in this class enable turning a piece
into a king, changing the piece’s characteristics, finding valid moves for
this piece in a given board setup, and calculating a score for the found
valid move. The score value is directly proportional to the number of
opponent pieces captured during the robot’s best move.

Class: Board

The game board is represented with a 2D array sized 8 by 8 of the Piece
data type. The instance of this class provides methods for obtaining
possible moves for a specified player; making an abstract move while
finding the optimal one with AI; examining if one of the player cannot
move or has lost the game.

Class: Game

Each new game launch creates a new instance of the Game class. This
object keeps track of the number of both black and white pieces and
kings, contains current and previous game-board states, and provides
coordinates of the next robot’s move. This class contains six main
methods:

initGame() initializes a new game by setting all variables to their
default values.

fillCurBoard() updates an instance of the Board class curBoard
that represents the current layout of the game. The method con-
verts the array received from the PLC to the current application
convention. The checkerboard representation is stored in the PLC
program as an array of 32 values (although the board consists of 64
squares, a checker can be placed on only 32 squares) ranging from
1 to 4, where 1 corresponds to a regular white checker, 2 to a black
checker, and 3 and 4 to white and black kings, respectively. This
method creates a corresponding checker for each cell on the board
and adds it to curBoard.

analizeBoard() receives a current state of the game board from
and evaluates possible moves for a robot.

validPlayersMove() inspects the completion and correctness of
the opponent’s move.

findMoveAI() sets the difficulty of the game and initializes the
AT function for searching for a best move.

makeMove () when an appropriate move is found, fills the queues
with the sequence of robot actions needed to make this move. Queues
are arrays that contain the coordinates of the positions from which
the robot picks up checkers and where it places them. The arrays
are stored in the static ArrayLists, so they are accessible from other
classes.

33

6. Application structure

Other methods are auxiliary components of the main methods and are
separated from them for a clear code arrangement, therefore are not
worth mentioning here.

® Class: Al

The Al class contains an implementation of the Minimax algorithm
with the Alpha-Beta Pruning described in the previous section. The
alphaBeta () method calculates the best move for the current state
of the game by analyzing all the possible states of the game after N
moves. The number of moves N is defined by the depth of search that
corresponds to the chosen difficulty of the game.

The "Easy" level corresponds to the depth equal to 3.
The "Medium" level to the depth equal to 5.
The "Hard" to the depth equals 7.

The method returns the score of the current game state and stores
coordinates of the position. After finding the optimal move, the method
stores coordinates of the positions from where the robot’s piece should
be picked and where it should be placed in static bestMoveStart and
bestMoveEnd respectively.

® (Class: Moves

This class provides methods for performing moves of the robot mentioned
in section |4.2. The movements consist of sequential linear motions. The
class also sets the Cartesian impedance control over the robot with
functions provided from the roboticsAPI from KUKA.

34

Chapter 7

System tests

. 7.1 Final tests

The purpose of this robotic cell is to be actively used by the general public.
Therefore, its functionality and performance should be adequately tested
before launching the product to be available to the general public.

Although most developers face such challenges while testing their robotic
systems, as the lack of confidence in the accuracy of simulation tests[21], the
problems that I have encountered are slightly different. The specificity of
this project does not contribute to the automation of the testing process,
which requires human participation. Therefore, practices such as automated
software tests could not be integrated. This aspect makes testing the same
situation numerous times in a row time-consuming. For testing purposes, I
invited a group of subjects. The group consisted of ten people aged 20 to
55 years with different backgrounds. While most of them were familiar with
robotic systems, there were 4 people who had never interacted with robots
before.

Type of test Description
Algorithm performance

Examines the robot’s winning rate

Determines how the system responds to
unpredicted scenarios.

Demonstrates the convenience of interaction
with the robotic cell

Compliance with the Inspects if the game core of the robotic
game rules application contains errors

Robustness testing

User interface clarity

Table 7.1: Categories of the performed system tests.
The overall testing process began in the development stage of the project

and lasted several months. However, this section provides data only from the
final testing.

35

7. System tests

B Compliance with the game rules

At the time of the final testing, the robot did not perform any illegal moves
that did not comply with the game’s rules. On the contrary, the robot
recognized all of its opponent’s incorrect moves.

B Algorithm performance

In order to study this category, the group of subjects played 30 games. None
of them was a professional checkers player, but everyone was familiar with
the rules and had played the game before. Each tester was asked to play
three games in all three difficulty levels. Results are shown in Figure As
anticipated, an inexperienced player cannot predict all possible states of the
game 5 or 7 moves ahead and therefore can only win in "easy" difficulty mode.

However, the draw rate turned out to be higher than was alleged. The
heuristic function of the Minimax algorithm does not take into account a
draw situation that takes place when the board state remains unchanged
three moves in a row. After discovering this feature some players kept this
strategy while playing in a harder mode, so they would at least aim for a
draw, thus increasing the draw rate.

Scenarios at the end of the game
12
10
(%]
[
S 8
(8]
Y
o 6
[
Q0
E 4
=}
z
2
0
Hard Medium Easy
Game difficulty
m Robot won m Humanwon mDraw

Figure 7.1: Statistics on winning rate from the 30 game outcomes.

B Robustness testing

Each participant was asked to perform unpredictable actions that could
possibly entail the system malfunction, but without causing serious damage
to the robotic cell. T outlined three of the most common "damaging" strategies
that were applied:

36

7.2. Field testing

® Jllegal checker placement. Every tester tried to confound the robot
by removing some checkers from the board, placing extra pieces in empty
slots, or moving a piece to a white square where it cannot be placed. In
these cases, the game application identified wrongly placed checkers as
invalid moves and notified about the mistake.

8 Disruption of normal CV system function. Some testers tried
to block regions of the checkerboard from the camera view with their
hand. These attempts did not succeed, as the presence of hand triggered
the fence around the board, so the board layout was rejected by PLC
and was not even sent for evauation to KUKA. The other participants
attempted to distract the CV system by placing foreign objects on the
game board. If the objects were of one of the colors used in the game,
the CV system occasionally identified them as checkers, but in most
cases the game application discerned the invalid move.

® Changes in lighting conditions. The robotic cell showed the worst
performance with significant changes in lighting conditions. Four partic-
ipants placed a flashlight close to the checkerboard, causing an image
overexposure. The CV system was unable to detect any objects in the
over-illuminated region. In the opposite scenario, with extremely insuf-
ficient lighting, the system also performed erratically and struggled to
detect checkers.

B User interface clarity

According to the survey participants, the setup and start of the game with
HMI were intuitive and convenient. However, some have encountered the
problem of returning the robot to working condition after releasing the red
safety button. Initially, a player had to open a safety conditions monitoring
screen and resume the game. The additional information on the state of the
robot safety system was overwhelming and irrelevant. After receiving the
feedback, I substituted the process of confirming the application resumption
with the need to press only one button on the main game screen.

B 72 Fied testing

The robotic cell was displayed at the opening of the newly renovated RICAIP
Testbed for Industry 4.0 at the Czech Institute of Informatics, Robotics, and
Cybernetics Czech Technical University in Prague (CIIRC CTU). Around
twenty people interacted with the robot during the three-day event and played
at least one game. In some cases, visitors did not have enough time to finish
the game and left the site after completing a few moves. The next version of
the project could be supplemented with a smaller version of the board, e.g.,
sized five by five, which would be used for demonstrations at such events.
The statistics of the game outcomes were similar to those obtained earlier.
Most games at the easy level ended with the victory of a human; at the other

37

7. System tests

levels, with his defeat. Unlike previous tests, the group of subjects in this case
included a professional chess player who managed to win at the average level
of difficulty in a relatively short time. Among the average players, there were
two children under the age of six whose behavior was quite challenging to
predict. Despite their attempts to deceive the robot or disrupt the system’s
stability, the game cycle proceeded as intended.

38

Chapter 8

Conclusion

The goal of this Bachelor thesis was to design and develop a robotic workplace
for human-robot collaboration for playing checkers.

The created robotic workplace meets all the requirements. The overall
architecture of the designed system enables the robot to play the game
autonomously. The concept of this robotic workplace was kept to the idea of
a "plug and play" system, whose functionality does not require any manual
setups or any operator involvement. The launch of the game takes only two
button presses on the touch panel. A player can choose between two checker
colors and three difficulty levels. The robot is set in collaborative mode, so the
risks of accidents caused by a collision of a robot with a human are negligible.
In case of an unexpected behavior, the robot can be stopped immediately
with an emergency button.

The implemented game algorithm allows the robot to be fully independent
in fast decision making while looking for an optimal next move. The robot
workplace tests have shown great performance in interacting with the general
public. The choice of parameters for the heuristic function of a Minimax
algorithm was proper, and thus the Al player was almost invincible in difficulty
modes higher than the easiest possible.

The principle of the Human-Robot collaboration implemented on the
example of the checkers game can later be integrated into any other application
of industrial robots.

39

40

[12]

Appendix A
Bibliography

KUKA Roboter GmbH, KUKA Sunrise.OS 1.14, Operating and Pro-
gramming Instructions for System Integrators, 2017.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

B. S. Sergi, E. G. Popkova, A. V. Bogoviz, T. N. Litvinova, and E. Insight,
Understanding industry 4.0: Al the Internet of things, and the future of
work. Bingley, UK: Emerald Publishing Limited, first publish ed., 2019.

T. Jochman, “Design of a workplace with two collaborative robots,” 2020.
Master’s Thesis.

“Lbr iiwa in action combating coronavirus.”
|/ /www . kuka.com/en-de/company/press/news/2020/06/ |
robot-helps-with-coronavirus-tests, Accessed on 2022-04-04.

J. SCHAEFFER, N. BURCH, Y. BJORNSSON, A. KISHIMOTO,
M. MULLER, R. LAKE, P. LU, and S. SUTPHEN, “Checkers is solved,”
Science (American Association for the Advancement of Science), vol. 317,
no. 5844, pp. 15181522, 2007.

K. Oxland, Gameplay and design. Addison-Wesley, 2004.

“Rules of draughts (checkers).” https://www.wcdf.net/rules.htm. Ac-
cessed on 2022-04-04.

G. Owen, Game Theory. Emerald Group Publishing Limited, 2013.
T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

E. Lasker, Chess and Checkers: The Way to Mastership. Blackmask
Online, 2002.

Wikipedia contributors, “Minimax — Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.php7title=Minimax&oldid= |
1076761456, 2022. [Online; accessed 1-March-2022].

41

https://www.kuka.com/en-de/company/press/news/2020/06/robot-helps-with-coronavirus-tests
https://www.kuka.com/en-de/company/press/news/2020/06/robot-helps-with-coronavirus-tests
https://www.kuka.com/en-de/company/press/news/2020/06/robot-helps-with-coronavirus-tests
https://www.wcdf.net/rules.htm
https://en.wikipedia.org/w/index.php?title=Minimax&oldid=1076761456
https://en.wikipedia.org/w/index.php?title=Minimax&oldid=1076761456

A. Bibliography

[13]

Wikipedia contributors, “Alpha—beta pruning — Wikipedia, the free en-
cyclopedia.” https://en.wikipedia.org/w/index.php7title=Alphay,
E27,80%93beta_pruning&oldid=1075297799, 2022. [Online; accessed
1-March-2022].

R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2 ed., 2004.

T. Pajdla, Elements of Geometry for Computer Vision and Computer
Graphics. 2021.

S. Suzuki and K. be, “Topological structural analysis of digitized binary
images by border following,” Computer Vision, Graphics, and Image
Processing, vol. 30, no. 1, pp. 32-46, 1985.

N. Jamil, T. Sembok, and Z. Bakar, “Noise removal and enhancement
of binary images using morphological operations,” vol. 3, pp. 1 — 6, 09
2008.

H. Ibrahem, A. Salem, and H.-S. Kang, “Dts-depth: Real-time single-
image depth estimation using depth-to-space image construction,” Sen-
sors, vol. 22, no. 5, 2022.

Z. Ma and S. Liu, “A review of 3d reconstruction techniques in civil
engineering and their applications,” Advanced Engineering Informatics,
vol. 37, pp. 163-174, 08 2018.

Keyence Intuitive Vision System CV-X Series. User’s Manual, 2021.

A. Afzal, C. Goues, M. Hilton, and C. Timperley, “A study on challenges
of testing robotic systems,” pp. 96-107, 10 2020.

42

https://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta_pruning&oldid=1075297799
https://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta_pruning&oldid=1075297799

	Introduction
	Human-Robot Collaboration
	Objectives

	Checkers
	Checkers rules
	AI algorithm

	Robotic workplace architecture
	Hardware configuration
	Network configuration

	Robot specifications
	Robot description
	Robot control
	Homography

	Safe collaboration

	Computer vision
	Test of two CV systems
	Industrial camera and PC
	Keyence Vision System

	Final choice of a CV system

	Application structure
	User interface
	State machine
	PLC program
	Java application

	System tests
	Final tests
	Field testing

	Conclusion
	Bibliography

