
Bachelor’s thesis

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Measurement

Car-to-Robot
communication using a
mobile phone

Lukáš Maruniak

Supervisor: Ing. Michal Sojka, Ph.D.
Field of study: Open Informatics
Subfield: Internet of Things
May 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

491941Osobní číslo:LukášJméno:MaruniakPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra měření

Otevřená informatikaStudijní program:

Internet věcíSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Car-to-Robot komunikace pomocí mobilního telefonu

Název bakalářské práce anglicky:

Car-to-Robot communication using a mobile phone

Pokyny pro vypracování:
Cílem práce je vytvořit prototyp integrace „chytrého mobilního robotického asistenta“ s automobilem Škoda.
1. Seznamte se s existujícími komunikačními protokoly pro komunikaci mezi mobilním telefonem a autem (Android Auto,
MirrorLink, OBD) a pro tzv. Car-to-X komunikaci (např. ITS-G5, 5G, CAM, DENM,…). Rovněž se seznamte s komunikačním
middlewarem DDS.
2. Na základě komunikace s firmou Škoda Auto vyberte vhodnou technologii pro propojení mobilního telefonu a auta
Škoda. Cílem bude zobrazování informací pro řidiče na palubní desce.
3. Implementujte na mobilním telefonu komunikaci s mobilním robotem (roverem), který bude monitorovat prostor na ulici
a vysílat vozidlům informace. Ke komunikaci bude pravděpodobně použita komunikace DDS (implementace Fast DDS
nebo Cyclone DDS) přes 4G/5G mobilní síť.
4. Ve spolupráci se zaměstnanci Škoda Auto implementujte GUI, které bude informace z roveru zobrazovat na palubní
desce auta. Otestujte funkčnost ve vozidlech Škoda Auto.
5. Výsledky pečlivě zdokumentujte.

Seznam doporučené literatury:
- Intelligent Pedastrian Assistant to Everyone, EIT UM project proposal, 2021
- eProsima Fast DDS Documentation: https://fast-dds.docs.eprosima.com/en/latest/
- ETSI EN 302 571 Intelligent Transport Systems (ITS); Radiocommunications equipment operating in the 5 855 MHz to
5 925 MHz frequency band; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Michal Sojka, Ph.D. vestavěné systémy CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 31.01.2022

Platnost zadání bakalářské práce:
do konce letního semestru 2022/2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Michal Sojka, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank Ing. Michal Sojka,
Ph.D., for his supervision and help with
the problems I encountered. I would also
like to thank David Košťál for his help in
processing the graphic side of this work
and Adrien Michaut for helping with test-
ing. Last but not least, I must thank my
family and friends for their support.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

v

Abstract
Road accidents caused by distracted
drivers are a serious problem in our mod-
ern society. The aim of this work is to
develop an Android application that will
warn drivers when pedestrians cross the
street guarded by a robotic rover. This
application uses the Fast DDS library that
runs on the phone as native code and uses
JNI to communicate with the user inter-
face. The application communicates with
the rover guarding the crossing and also
with the vehicle whose infotainment unit
displays a warning in case of imminent
danger. The result is a working proto-
type for the possible future integration
of similar technology directly into vehicle
systems. We not only succeeded in ful-
filling our task, but we also enriched the
community by fixing a bug in the main
development branch of the Fast DDS li-
brary.

Keywords: Android, road safety, v2x
communications, DDS, Android Auto

Supervisor: Ing. Michal Sojka, Ph.D.
místnost: A-517a,
Jugoslávských partyzánů 1580,
Praha 6

Abstrakt
Dopravní nehody způsobené nepozornými
řidiči jsou vážným problémem dnešní doby.
Cílem této práce je vyvinout Android apli-
kaci, které bude řidiče varovat před chod-
cem na přechodu střeženém robotickým
roverem. Tato aplikace využívá knihovny
Fast DDS, která běží na telefonu jako na-
tivní kód a používá JNI ke komunikaci
s uživatelským rozhraním. Aplikace ko-
munikuje s roverem hlídajícím přechod
a také s vozidlem, na jehož infotainment
jednotce se zobrazí varování v případě
hrozícího nebezpečí. Výsledkem je fungu-
jící prototyp pro budoucí možné začlenění
podobné technologie přímo do systémů
vozidla. Podařilo se nám nejen uspět v
plnění našeho úkolu, ale také jsme obo-
hatili komunitu o opravu chyby v hlavní
vývojové větvi knihovny Fast DDS.

Klíčová slova: Android, bezpečnost v
silniční dopravě, v2x komunikace, DDS,
Android Auto

Překlad názvu: Car-to-Robot
komunikace pomocí mobilního telefonu

vi

Contents
1 Introduction 1
1.1 Goals . 2
1.2 Thesis structure 2
2 Background 3
2.1 Android . 3

2.1.1 Applications 3
2.2 Java Native Interface 4
2.3 Kotlin . 5

2.3.1 Kotlin samples 6
2.4 MirrorLink . 6
2.5 Android Auto 8

2.5.1 Testing . 9
2.6 AA Mirror 10
2.7 OBD-II . 10
2.8 CAN . 12
2.9 ELM327 . 12

2.9.1 Reading data from a vehicle . 13
2.9.2 Testing 14

2.10 5G cellular network 14
2.10.1 Testing 16

2.11 DDS . 16
2.11.1 Discovery 17
2.11.2 Fast DDS 18

3 Design & Analysis 19
3.1 Requirements 19
3.2 Selected technology 20

3.2.1 Backwards compatibility 20
3.2.2 Programming language 20
3.2.3 Connection to the vehicle . . . 20
3.2.4 DDS . 20

3.3 Architecture 21
3.3.1 Model . 21
3.3.2 Communication 22
3.3.3 Support components 22

4 Implementation 23
4.1 User interface 23
4.2 Main Activity 23

4.2.1 onCreate 23
4.2.2 onDestroy 24
4.2.3 onConfigurationChanged 24
4.2.4 onLocationChanged 24
4.2.5 drawDanger 25

4.3 Handlers . 26
4.3.1 InfoHandler 26
4.3.2 CrossingHandler 26

4.3.3 JNI . 26
4.4 Native Publisher and Subscriber 27

4.4.1 CarInfo publisher 27
4.4.2 CrossingInfo subscriber 30

4.5 Networking 33
4.5.1 Local network 33
4.5.2 Discovery server over the

Internet . 33
4.5.3 VPN . 33
4.5.4 Solution 33

4.6 Supplemental files 33
4.6.1 IDLs . 34
4.6.2 Generated files 35

4.7 Installation guide 35
4.7.1 Compilation from sources . . . 36
4.7.2 Launch from Android Studio 38

4.8 Shapes . 39
4.9 Supporting software 40

4.9.1 Publishers 41
4.9.2 Subscribers 41

5 Evaluation 43
5.1 Performance 43
6 Conclusion 47
6.1 Future work 47
Bibliography 49

A Latency Measurements 57

vii

Figures
1.1 Demonstration of autonomous

rover protecting pedestrian crossing
[1] . 1

2.1 JNI native method 4
2.2 JNI Interface pointer [2] 5
2.3 Calling Java method from JNI . . . 5
2.4 Simple “Hello world” example . . . 6
2.5 Function with multiple parameters

and return value Int 6
2.6 Variables in Kotlin 6
2.7 For cycles in Kotlin 7
2.8 Original Android Auto interface [3] 8
2.9 Android Auto interface after

redesign . 9
2.10 OBD connector pinout [4] 11
2.11 Measurement of RPM and speed

via Car Scanner using OBD-II 15

3.1 Communication schema. 19
3.2 Android application structure . . 21
3.3 Typical Model–View–Controller

scheme [5] . 22

4.1 Landscape mode layout 24
4.2 Portrait mode layout 25
4.3 Kotlin-side JNI functions in

CarInfoPublisher 27
4.4 Publisher variables 27
4.5 Init function 29
4.6 JNI Wrapper for initInfoPublisher

function . 30
4.7 Thread scheme 31
4.8 Attaching current thread 32
4.9 Global reference creation 32
4.10 Thread destructor we passed to

the pthread_key_create function 32
4.11 Coordinates structure 34
4.12 CarInfo message structure 34
4.13 CrossingInfo message structure 35
4.14 Generated files 36
4.15 CMake with added check for API

versions . 39
4.16 Shapes user interface 40
4.17 CrossingInfo publisher and

subscriber . 42
4.18 CarInfo publisher and subscriber 42

5.1 Orange warning screenshot from a
mobile phone 44

5.2 Orange warning displayed on
vehicle infotainment unit 45

5.3 Red warning displayed on vehicle
infotainment unit 45

viii

Tables
2.1 Descriptions of message fields . . 13
2.2 Descriptions of communication

modes . 13
2.3 Request message structure 14
2.4 Response message structure 14
2.5 Measurements using Samsung

Galaxy A52s 17

4.1 Descriptions of used datatypes [6] 28

5.1 Latency measurement results . . . 44

A.1 Latency measurement with
hotspot inside the vehicle 57

A.2 Latency measurement with
hotspot outside the vehicle 58

ix

Chapter 1
Introduction

Today, the intensity and demands of transport are still growing. This has
negative effects on traffic safety. One important factor is the lack of attention
as a significant factor in the causes of traffic accidents. Often trivial and
easily avoidable situations can be fatal. Various modern technical approaches
are offered as a possible solution to eliminate transport hazards. This thesis is
a part of a bigger project of the IPA2X consortium’s – to protect pedestrians
as the most vulnerable traffic participants. The IPA2X consortium wants to
demonstrate that adopting intelligent solution on an autonomous rover will
make it possible to improve safety, reduce noise and pollution and promote
active mobility. IPA2X consortium promotes walking and allows rethinking
the urban space focusing on user-centric instead of vehicle-centric use [1].

Figure 1.1: Demonstration of autonomous rover protecting pedestrian crossing [1]

1

1. Introduction
1.1 Goals

The goal of our work is to create a prototype for vehicle communication with
a rover. Instead of the vehicle itself, we will use a mobile phone that will
communicate with the rover and also with the car. This allows us to display
a warning to the driver without having to intervene directly in the systems
running inside the vehicle.

The partial goals are:. Getting familiar with the existing technologies applicable to this project.. On the basis of communication with partners select suitable technologies.. Implement these technologies and create a prototype for communication
using a mobile phone.. Test the functionality in a Škoda Auto vehicle.

1.2 Thesis structure

This bachelor thesis is divided into four main chapters. Each chapter repre-
sents a part of our work over the last year.. Chapter 2 (Background) deals with a search for applicable technologies

for this project.. Chapter 3 (Design & Analysis) deals with selected technologies and
application design.. Chapter 4 (Implementation) describes the parts of the application itself
and other auxiliary software that was created during the work.. Chapter 5 (Evaluation) reports the results of testing the developed
solution with a vehicle.

2

Chapter 2
Background

The first part of this work consists of technology research for this project.
We consulted the project partners with the research results and selected the
most suitable options (see section 3.2). In the following sections, we present
the results of the research and introduce individual technologies.

2.1 Android

Android is an open-source, Unix based mobile operating system developed
by Google. It targets touchscreen devices such as mobile phones and tablets
primarily. Its core (AOSP) is free and open-source.

Android was originally developed by Andy Rubin, Rich Miner, Nick Sears
and Chris White. In October 2003, they founded Android Inc. in Palo Alto,
California, USA [7]. The first intentions for Android were that it should be
an operating system for digital cameras. However, later they changed their
target and directed Android to mobile phones. Later in 2005, Android Inc.
was acquired by Google [8].

The first Android mobile phone was HTC Dream [9]. It was released in
June 2009 with Android 1.0. New devices and new versions soon followed.
Notably, Android 2.3 Gingerbread, which powered such classics as Samsung
Galaxy S [10], HTC Desire S [11] or the entry-level Samsung Galaxy Y [12].
New versions were released at least yearly. Notable versions are 4.x (Ice Cream
Sandwich, Jelly Bean and KitKat) from 2011–2014, Android 7 (Nougat) from
2016, Android 8 (Oreo) from 2017, and Android 11 (from 2020). The latest
version is Android 13, which will be released in 2022 [13].

2.1.1 Applications

Android applications are developed using the Android SDK1, which contains
the Android API. It is a set of instructions and standards. Google addresses
API compatibility using versions. Each version of Android has its respective
API revision according to the capabilities of that version of Android [14].

1Software development kit - collection of software development tools in one installable
package

3

2. Background
Initially, Android applications were written in Java, but since 2019, Kotlin

(see fig. 2.3) has been the primary language. In addition to these languages, it
is also possible to use native C/C++ code using JNI (see fig. 2.2). Individual
applications consist of so-called activities. We can describe them as individual
“screens” of applications the user communicates. Usually, one activity is for
single functionality [15].

Applications have traditionally been distributed in the form of apk packages,
but today the industry is moving to the more economical aab [16]. However,
the user rarely encounters the package itself. The search and installation of
applications is usually done using the app store. Dominant is the Google
Play store. An app store directly from Google. There are already over 3.48
million [17] apps on Google Play.

2.2 Java Native Interface

Java Native Interface (JNI) is a technology that enables the connection of
Java and native code (namely C, C++ and even assembly). It can be helpful
when a programmer needs to implement a portion of time-critical code, when
Java does not support required features, or when existing code needs to be
integrated into the Java project [18]. Another typical usage is mobile gaming.
Graphics engines such as Unity [19] or OpenGL [20] use JNI.

Java code can call native function, and native function can call back Java
code. Native code can create and work with Java objects and even modify
existing ones. A disadvantage of using JNI is losing Java’s multiplatform
abilities [21]. Significant overhead hides in resources marshalling and callbacks
from native code to Java. It is both slow and error-prone. Recommended
practice is to reduce such interaction to a minimum [22].

extern "C"
JNIEXPORT jboolean JNICALL
Java_cz_cvut_fel_marunluk_ipa2xwarning_CrossingHandler

_killCrossingSubscriber(JNIEnv *env, jobject thiz, jlong
pointer) {

↪→

↪→

// do some stuff
return true;

}

Figure 2.1: JNI native method

Native functions called from Java must be in a particular form (see fig.
2.1. Such form is called a wrapper, and it provides 1:1 mapping of native
functions. These functions always take one special parameter. It is called
JNIEnv, the “JNI Interface Pointer” – a pointer to pointers in a table, pointing
to JNI interface functions. (see fig. 2.2) This JNIEnv pointer is valid only
for the current thread [23]. When interacting with Java from a different

4

....................................... 2.3. Kotlin

thread, that thread must be registered with JVM. This is done by calling
AttachCurrentThread(). It is possible to call AttachCurrentThread() from
the same thread multiple times. Subsequent calls perform no operation.
However, before exiting, all manually attached threads must be detached.
This can be done either by calling DetachCurrentThread() manually or by
setting thread “destructor” using pthread_key_create() [24].

Figure 2.2: JNI Interface pointer [2]

Calling native methods from Java is not difficult, but the opposite direction
(Java methods from native code) might be required. Calling in this direction is
possible but not as straightforward. It is done through JNI Interface functions
provided through JNIEnv. To call a Java method, reference to the method
itself and to the class it belongs to is needed. Java Class reference is in the form
of jclass, and it is reachable through the function FindClass(). Method
reference, jmethodID, is provided by GetMethodID(). In the case of a non-
static method, its associated object reference is also necessary (represented
as a jobject). [2]. Non-void method call is demonstrated in figure 2.3.

jclass lClass = env->FindClass("cz/cvut/fel/marunluk/
ipa2xwarning/CrossingHandler");↪→

jmethodID warningMethod = env->GetMethodID(lClass,
"parseCrossing", "(ZZDD)V");↪→

env->CallVoidMethod(object, warningInfoMethod,
<params>)↪→

Figure 2.3: Calling Java method from JNI

2.3 Kotlin

In 2011, JetBrains announced the development of a new programming lan-
guage, which was released on February 15, 2015 under the name Kotlin.
Kotlin is an open-source cross-platform statically typed programming lan-
guage distributed under the Apache 2.0 license. Kotlin can run both natively
(Kotlin/Native), compiled into JVM bytecode (Kotlin/JVM) or to Javascript
(Kotlin/JS). The design took into account 100% interoperability with the

5

2. Background
Java language. Therefore, it is possible to use libraries written in Java in
Kotlin and vice versa [25].

At the I/O 2019 conference, Google declared Kotlin the official language
for developing mobile applications on the Android platform. Thanks to
interoperability with Java, the transition is simple and allows developers
to combine components written in Java and Kotlin [26]. Although Kotlin’s
syntax is similar to other languages, it is different enough to be confusing
for those switching from traditional programming languages such as C. The
following snippets demonstrate Kotlin syntax (see figs. 2.4, 2.5, 2.6 and 2.7).

2.3.1 Kotlin samples

fun main() {
println("Hello world!")

}

Figure 2.4: Simple “Hello world” example

fun sum(a: Int, b: Int): Int {
return a + b

}

Figure 2.5: Function with multiple parameters and return value Int

val a: Int = 1 // immediate assignment
val b = 2 // `Int` type is inferred
val c: Int // Type required without initializer
c = 3 // deferred assignment
c += 4 // invalid -> val cannot be reassigned

var x: Int = 5 // `Int` type is inferred
x += 1 // valid -> var can be reassigned

Figure 2.6: Variables in Kotlin

2.4 MirrorLink

MirrorLink is one of the technologies that allow mobile phones and cars to
communicate. It is an open standard connecting allowing access to appli-
cations running on a mobile phone through vehicle infotainment. Created
by the Nokia development centre, it is now maintained by CCC (Car Con-
nectivity Consortium). Today, it is a declining technology. South Korean

6

..................................... 2.4. MirrorLink

if (i in 1..4) { // equivalent of 1 <= i && i <= 4
print(i)

}

repeat(2) { index ->
println("Cycle no. ${index + 1}")

}

for (i in 1..4) {
print(i)

}

for (item in items) {
println(item)

}

Figure 2.7: For cycles in Kotlin

Samsung traditionally supported this technology in its devices, but even this
manufacturer ended support in 2020 (Galaxy S8) [27][28]. On 8th September
2021, CCC announced that they are shutting down MirrorLink operations by
30th September 2023 [29].

MirrorLink must be supported both on the mobile phone and infotainment
unit of the vehicle. When connected to the onboard system via a USB
cable, the phone automatically pairs. The system automatically verifies the
certification required to run the application in the MirrorLink system when
the application starts [30].

The CCC sets out the requirements for applications to follow in order to
obtain a certificate. It is a matter of traffic safety – the driver must not be
distracted. CCC distinguishes between two levels of certification. One allows
the application to be used in park mode (when the vehicle is not moving),
and the other while driving (drive mode). The requirements [30] are:.Display Minimal Text – do not display a lot of text or complex

messages.Do not use Text Input – Though allowed in some regions it is a bad
practice in drive mode. Use park mode for text entry or voice input if
possible..Use Park Mode for Additional Functionality – Since a MirrorLink
app is aware if it is in drive or in park mode, you can offer additional
features or information to the driver while stopped. When the car goes
into drive mode you switch to the simpler UI..Use High Contrast – The UI must be legible in a variety of lighting
conditions, even in direct sunlight. To achieve this, all foreground/back-
ground text combinations must have a minimum contrast level.

7

2. Background
.Use Big Fonts – Large font sizes are required in order to be easily

readable on all displays. Use a standard Android stock font for good
legibility. Note that the minimum size will be measured on the display
of the in-vehicle screen..Use Giant Buttons – buttons must be large enough to be usable during
driving. The minimum edge length for a button is 10 mm with an area
of 200 sq mm.

2.5 Android Auto

Android Auto is an application that allows running mobile phone applications
on the infotainment unit in the car. Google presents this service as an easy
way to use applications on the vehicle display. However, all applications
are subject to strict safety regulations and can only enter the Google Play
Store (as the only official software source on Android Auto) when certified
by Google. A mobile phone with the Android operating system (version 6.0
and higher) and the Android Auto mobile application are required to connect
to the vehicle. Phones with Android 10 and later already have the Android
Auto app integrated. Furthermore, this technology must be supported by
the other party, i.e. the vehicle’s infotainment system or multimedia unit
(there are car radios that support Android Auto and can be retrofitted to
older vehicles). Most existing devices require a USB cable connection, but
some vehicle/phone combinations can also support wireless communication
over a WiFi connection [31].

Figure 2.8: Original Android Auto interface [3]

8

....................................2.5. Android Auto

Figure 2.9: Android Auto interface after redesign

In 2019, Google came up with a significant user interface redesign. Instead
of Google Now-style categories and tabs (see Fig. 2.8), Android Auto now
resembles a standard interface on a mobile phone or a competing Apple
CarPlay (see Fig. 2.9). User interaction with the system is severely limited
for safety reasons [32]. Calls or music playback work normally (in most
modern cars, this is already handled by the onboard infotainment system),
but notifications or other information are only available through Google
Assistant [33]. Although the system displays the notification and concentrates
it in the “notification centre”, the only option is to have it read through the
voice assistant. In the same way, answering is possible only using voice [34].

2.5.1 Testing

The goal of testing was to test the applications and functionalities of the
Android Auto system. Testing took place on Samsung Galaxy A52s and
Samsung Galaxy S10e mobile phones. The tested applications were Google
Maps, Mapy.cz, Phone, SMS, WhatsApp and Facebook Messenger. Testing
took place on two Volvo XC90 cars (MY20192 and MY2020).

It turned out to be essential during testing to have enabled Google Assistant,
to which Android Auto is linked. Android Auto will not work as expected if
information settings are further restricted in the name of privacy. However,
even if the user approves all requests, the system response is insufficient. The
system announces notifications with a voice assistant. However, its interaction
causes problems and reacts poorly to user input. We tried to set up and speak
with the assistant in Czech and English. The relatively popular Facebook

2Model year 2019

9

2. Background
Messenger application was a surprising failure, which stopped working for
more users around the turn of 2020 and 2021 [35][36].

The Android Auto user experience is poor, and despite Google’s commit-
ment to traffic safety, I was overly distracted by the system’s problems, even
though I drove about 10 km/h on an empty road. In addition to this, the
integration of this system closer to the voice assistant, the inability to run
user interface applications without significant restrictions, and the need for
certification from Google make the Android Auto system relatively unsuitable
for the planned use in this project.

2.6 AA Mirror

AA Mirror is an Android application that enables mirroring of Android
phone screen to the infotainment unit of a car that runs Android Auto.
But, applications providing full screen mirroring are unacceptable service for
Google and its safety policies [32]. This application lets users watch YouTube
on the infotainment screen while driving. This results in constant efforts
from Google to stop such applications. Developers try to fight back, but
the outcome is a product with intermitted functionality and an uncertain
future. As of May 2022, the only working way to get AA Mirror working
is through AAAD – an installer for Android Auto application. Neither AA
Mirror nor AAAD is in the Google Play store, and they are not even in any
reputable alternative app sources such as F-Droid. This casts a bad light on
these applications and their legitimacy. Furthermore, the possibility of this
application stopping working is likely. Unfortunately, we do not yet know of
a better screen mirroring solution.

2.7 OBD-II

OBD-II (On-Board Diagnostics) is a vehicle diagnostic protocol and interface.
It is an improvement over its predecessor – OBD-I. OBD-II allows service
technicians worldwide to access vehicle condition data and quickly diagnose
faults for which a mere engine fault indicator light is not enough. The system
was standardized in 1994 and has been a mandatory part of all passenger
cars sold in the United States since 1996. In 1998, the obligation to equip
cars with this system was extended to Canada. In 2001 EU required this
protocol in petrol cars and since 2004 in diesel cars [37]. The standard defines
five communication protocols, of which the vehicle must support at least one.
Those protocols are [4]:.CAN (ISO 15765-4). It is used in most cars today. Since 2008, its support has been mandatory in cars sold in the USA

10

....................................... 2.7. OBD-II

.KWP2000 (ISO 14230-4). To be found usually in cars manufactured after 2003 in the USA
and Asia.VPW (SAE J1850) & PWM (SAE J1850). Today used rarely. Used in older Ford and General Motors vehicles.K-Line (ISO 9141-2). Used mainly in cars from EU countries from 2000-2005. It is the European equivalent of the KWP2000 protocol

Standard SAE J1962 also defines a standard connector for such diagnostic
devices (see Fig. 2.10). The connector exists in two variants, “A” and “B”.
They differ from each other in communication speed (baud rate) and especially
in power voltage, where variant A (designed for passenger cars) is powered
by +12V and variant B (designed for heavier vehicles) has a power supply
of +24V. There are 16 pins, of which pins 16 (power +), 4 (ground), and
5 (power −) will undoubtedly be used. Other pins can be used depending
on the supported protocol. Most likely, pins 6 and 14 will also be active on
which communication via the CAN bus occurs. Unspecified pins might be
used at the manufacturer’s discretion for their own communication solutions
[38].

Figure 2.10: OBD connector pinout [4]

Although the OBD-II was designed primarily to assist technicians in diag-
nosing vehicle faults, the ability to read up-to-date driving information has
helped expand all sorts of devices for ride monitoring or monitoring technical
vehicle parameters. Unfortunately, this does not appeal to automakers, which
are increasingly inclined to restrict and close their vehicles. According to
Christoph Grote (BMW Vice President of Electronics), the German carmaker
BMW plans to disable OBD-II communication while driving [39].

11

2. Background
2.8 CAN

The CAN (Controller Area Network) bus was developed by Bosch and intro-
duced in 1986. First implemented was in the Mercedes-Benz W140 (1991)
[40]. The primary motivation was to get rid of a complicated model with
many wires connecting directly all units that needed to communicate with
each other. Thanks to low price, reliability and simplicity, the CAN bus has
spread from cars to other means of transport, including trucks, trains and
airliners. Apart from transport, the CAN bus is also popular in industrial
automation and can be found in some operating rooms [41].

Via the CAN bus, nodes (individual components) can communicate serially
at speeds of up to 1 Mbit/s using broadcast packets [42]. Each node evaluates
whether the message is addressed to it and whether it is not corrupted (CRC
check). Each message also has its priority, which ensures that a large number
of less critical messages won’t block the delivery of critical information. For
example, fuel injection errors must be delivered as soon as possible, while
outdoor temperature change information can wait [38].

Today, CAN FD is primarily used in vehicles. It is an extension of the
classic CAN bus. The main benefits are larger data frames, higher speeds (up
to 5–15 Mbit/s) and better reliability. In addition, backward compatibility
allows cars to move to a new standard gradually [43].

2.9 ELM327

ELM327 is a chip developed by ELM Electronics, and it is a converter
between OBD-II and RS232 communication. It supports 9 OBD-II protocols,
including all five mandatory ones [38]. Due to this chip’s incredible popularity
and broad applicability, many cheap clones arose (especially from Chinese
manufacturers). We can find them in many devices at a lower price than the
chip itself from ELM Electronics. When buying more than 1000 pieces, one
original ELM327 chip costs ~12US$ [44], but one finished Bluetooth dongle
is priced at ~4US$).

I bought such a small ELM327 adapter with Bluetooth connectivity. These
devices are popular among car enthusiasts and do-it-yourselfers. They use
those devices when servicing their vehicles at home or use them to collect
driving data. Thanks to the broad adoption, many applications for OBD
communication using such devices are on the market. However, according to
internet discussions, the quality and compatibility of these low-cost devices
vary from piece to piece.

12

...................................... 2.9. ELM327

2.9.1 Reading data from a vehicle

The adapter communicates with the vehicle using OBD2 messages with a
precisely defined structure. Each message begins with a CAN ID (an identifier
that determines whether it is a request or response). It is an 11-bit field
containing the value 7DF for requests and 7E8–7EF for responses (see Table
2.1) [4][45]. For example see Tables 2.3 and 2.4.

Identifier Size Mode PID A B C D

Field Description

Identifier message identifier (7DF = request, 7E8–7EF = response)

Size message size (in bytes)

Mode communication mode (01–0A for requests, 41–4A for responses)

PID standardised parameter ID3

A–D values

Table 2.1: Descriptions of message fields

Mode Description

01 Show current data

02 Show freeze frame data

03 Show stored Diagnostic Trouble Codes

04 Clear Diagnostic Trouble Codes and stored values

05 Test results, oxygen sensor monitoring (non CAN only)

06 Test results, other component/system monitoring (oxygen for CAN
only)

07 Show pending Diagnostic Trouble Codes (detected during recent
driving cycle)

08 Control operation of on-board component/system

09 Request vehicle information

0A Permanent Diagnostic Trouble Codes (DTCs) (Cleared DTCs)

Table 2.2: Descriptions of communication modes

13

2. Background
Example

7DF 02 01 0D XX XX XX XX

7DF outgoing request

02 message size (bytes)

01 show current data

0D current speed

XX unused

Table 2.3: Request message structure

7E8 03 41 0D 40 XX XX XX

7E8 incoming response

03 message size (bytes)

41 current data response

0D current speed

40 0x40 = 64 km/h

XX unused

Table 2.4: Response message structure

2.9.2 Testing

The purpose of testing the ELM327 dongle was to verify the reading of
values from the vehicle. We tested it using cheap ELM327 clone with the
Samsung Galaxy A52s phone and on the Volvo V70 (MY2001) and Volvo
XC70 (MY2015) cars. Among the applications used were AndrOBD, Tourque
Lite, Car Scanner and Obd Arny. We encountered difficulties connecting to
the dongle, and application compatibility was not 100%. Otherwise, readings
were as expected. See fig. 2.11.

2.10 5G cellular network

5G networks represent the 5th generation of mobile data networks. 5G
networks were first deployed in South Korea by SK Telecom [46]. Compared
to the previous generation, 5G brings a significant increase in speed and
a decrease in latency. Theoretically, speeds can reach 20 Gbit/s, and the
latency can be in the range of milliseconds. It is essential in the industrial

14

................................ 2.10. 5G cellular network

use of this technology. For example, in autonomous transport or industrial
automation (local networks covering the production plant or logistics centres).
5G networks also provide more significant potential to serve a large number of
clients connected to a single station—for example, a sports match or several
IoT devices in a building [47].

Figure 2.11: Measurement of RPM and speed via Car Scanner using OBD-II

We divide 5G networks into three categories depending on the frequency
used (and the resulting speed) [48][49].. Low-band (<1 GHz) It is similar to the existing 4G/LTE and is designed

to cover larger areas with lower speeds (relative to other bands – it still
beats older generations).Mid-band (2.3–4.7 GHz) frequency is in a similar range as Wi-Fi
technology. Both in the 2.4GHz and 5GHz bands. It is designed for
small and medium-sized cities, providing a balanced coverage:speed ratio.
5G in these bands can reach speeds between 100 Mbit/s–1 Gbit/s. Most
5G networks deployed today are of this category

15

2. Background
.High-band (24–47 GHz) Uses frequencies, which are already in the

lower range of millimetre waves. This category offers very high speeds
and low latency. They are used mainly in large cities and places where
it is necessary to serve a large number of clients.

5G networks also present specific problems. One of the obstacles in the lower
distance that one transmitter can cover. Therefore, it is necessary to build a
much denser network of transmitters, which results in higher infrastructure
prices [49]. It is also possible to monitor the movement of devices (and
thus their users) much more accurately than in the case of networks of
previous generations. Together with the fact that critical infrastructure
(Integrated Rescue System) will soon likely rely on 5G networks, it forces
NÚKIB (National cybersecurity office of the Czech Republic) to consider
5G networks as critical infrastructure4 [50]. The US government reached
the same conclusion and therefore decided to make it impossible for Chinese
company Huawei to supply any 5G-related technology to the US [51].

Concerns about the health risks of 5G networks are also a significant
problem. Although the health problems associated with 5G networks are
at least heavily disputed, supporters of these conspiracy theories, convinced
of the harmful nature of 5G technology, sometimes go very far in their
fight against 5G. There are several recorded cases of arson directed against
5G transmitters [52][53][54].

2.10.1 Testing

We first tested the 5G network in the CIIRC lab on Samsung Galaxy S21 5G.
The phone has connected to the local network without any issues. However,
it was impossible to connect the Samsung Galaxy A52s 5G phone to this
closed network due to incompatible firmware. So we got a 5G Vodafone SIM
card that could be used outside the school lab.

The coverage of 5G internet in Prague is not dazzling. All transmitters
use the 2100 MHz band, i.e. mid-band. Vodafone promises speeds of up to
330 Mbit/s, but speeds of around 100 Mbit/s are most common. However,
sometimes happen that 4G is a better choice in signal strength and even
internet speed (see Table 2.5). In these cases, the phone automatically selects
the 4G network connection. When we try to force the phone to switch to 5G,
the speed on the 5G network is lower than on 4G.

2.11 DDS

DDS is a datacentric, event-driven middleware protocol developed by OMG
(Object Management Group) standards consortium. It provides low-latency,
reliable data sharing between many endpoints [55]. Thanks to the absence
of a centralised controller, DDS is easily scalable and lacks the single point

4Critical infrastructure is a term used by governments to describe assets that are essential
for the functioning of a society and economy

16

....................................... 2.11. DDS

Measurement Download Mb/s Upload Mb/s Ping ms Jitter ms

Dejvice 5G 27.9 18.7 25 105

Dejvice 4G 42.3 17.9 62 39

D. Břežany 5G 97.0 8.45 17 7

D. Břežany 4G 77.5 9.4 21 8

Table 2.5: Measurements using Samsung Galaxy A52s

of failure – a central controller. DDS eliminates the need for complicated
communication development and allows the developer to focus directly on
the application and takes care of communication through many supported
means of transport [56]. Communication is possible via UDP, TCP or even
shared memory.

Its event-driven publisher/subscriber structure reduces application and
integration complexity and ensures the performance required for real-time
applications. Furthermore, its “global data space” makes it seem like you
are accessing local memory via an API. On the back-end, DDS manages
to transport data to its destination. Communication happens on domains.
One registers into the domain as a publisher, and the application that wants
such data becomes a subscriber. Then when the publisher sends a message
(updates data), it is delivered to all subscribers. Thanks to isolated domains,
communication can be separated from other traffic, avoiding overcrowding or
even collision. Endpoints can communicate only when being in one domain
[57].

DDS enables custom settings for liveliness, reliability and security. It can
be configured in QoS (Quality of Service) based on the current application
requirements. Not all endpoints need all messages. DDS can dynamically
filter data and modify transport reliability as the situation requires [57].

2.11.1 Discovery

Dynamic Discovery greatly simplifies the issue of finding other counterparts.
It ensures automatic discovery of endpoints, whether they are subscribers,
publishers, and what communication parameters they provide. This means
that DDS supports “Plug’n’Play” for connecting new endpoints [57]. Discovery
consists of two parts. Participant discovery and Endpoint discovery. In
Participant discovery, participants recognize other participants [58].

By default (defined by DDS), each participant sends “announcement mes-
sages” in which it announces its IP address and the port on which it listens.
The two participants match when they catch their message and are in a
common domain. These messages are (like most of this protocol) configurable
via QoS [58]. Fast DDS, one of DDS implementations (see 2.11.2), also offers
another type of discovery. The so-called Discovery server. It is a discovery
mechanism with a central element [59]. Individual participants can be:

17

2. Background
. SERVER – Concentrates and redistributes DDS Discovery information.BACKUP – Backs up server information to the database.CLIENT – The participant receives only the necessary information

from the server. SUPER_CLIENT – The subscriber who receives all the information
from the server

Endpoint discovery is the part where already paired participants share
their topics and decide whether to start communication.

2.11.2 Fast DDS

Fast DDS is an implementation of DDS. It comes bundled with Fast DDS-
Gen. Java tool for generating interface code between application and DDS
middleware. It generates code based on data types defined in .idl file. IDL,
being developed by OMG, is a descriptive language used to define data
structures that will be communicated via DDS [60].

18

Chapter 3
Design & Analysis

In this chapter, we analyze the assignment and present overall design of the
final mobile application as well as helper tools.

The mobile application communicates with the rover, which guards the
pedestrian crossing (see Fig. 3.1). The moment the rover detects that the
crossing state has changed, i.e., pedestrian entered the crossing, it sends a
message to the surrounding cars. The rover distinguishes three states of
the crossing: free, crossing, and danger. The mobile phone will display an
appropriate warning on the infotainment unit based on crossing status. The
phone also sends back information about the speed and position of the vehicle.

Figure 3.1: Communication schema

3.1 Requirements

Here are listed the application requirements:. Receive information about crossing status. Notify the driver visually and audibly about impending danger. Send current information (position and speed) about the vehicle. Use Android OS. Use DDS communication protocol. Display warnings on the onboard infotainment system

19

3. Design & Analysis..................................
3.2 Selected technology

This section describes the technologies that have been chosen for this project.

3.2.1 Backwards compatibility

When developing an Android application, it is necessary to choose the lowest
supported Android version. Choosing the lowest possible version is usually
the best, ensuring maximum backwards compatibility. Android version 7.0
suits well this application. It is a version where 94.4% of the market is covered,
which is more than sufficient. At the same time, it is the oldest version where
there are no compatibility issues. One of the system functions (ifaddrs) used
in this project (by fastDDS library) is available only from the API24 version,
i.e. Android 7.

3.2.2 Programming language

Java is a traditional choice as a programming language for Android applica-
tions. However, as mentioned in section 2.3, since 2019, Google recommends
Kotlin. This recommendation and Kotlin’s interoperability with Java were
the main reasons in the decision for Kotlin. Even if using an older version of
Android was necessary, Kotlin would be compatible. According to Google,
Kotlin supports all versions of Android [25]. The native part of this project is
in C++ because it is the language for which the Fast DDS library is intended.

3.2.3 Connection to the vehicle

Another requirement is to display a warning on the vehicle’s infotainment unit.
Android Auto was the first to be eliminated from the possible technologies list.
User interface possibilities are limited, and all applications must go through a
complex approval process in order to be included in the Play Store. Another
option is MirrorLink. Although this technology allows working more with the
user interface, it is already a dying technology. As announced by its developer
(CCC), as of July 31, 2021, they stopped certifying new applications and will
soon cease operations altogether. The phone display mirroring application
AA Mirror was chosen as a suitable solution. So we go back to Android Auto,
but using a screen mirroring application outside the Play Store.

3.2.4 DDS

The task assignment also implies a need for usage of DDS protocol. This
project will use Fast DDS implementation. The decision emerges from project
partners who are in charge of other project parts.

20

.................................... 3.3. Architecture

3.3 Architecture

The overall architecture of the project is depicted in Fig 3.2. The rover uses
DDS to send pedestrian crossing status information to the application. This
message is received by the native part of the application via Fast DDS and
forwarded to the user interface using JNI. A warning animation appears on
display, and an audible alert sounds. This image is further transmitted using
the AA Mirror application to the display of the vehicle’s on-board unit. The
application also informs the rover about the current position and speed of the
vehicle. Currently, the source of information about the location and speed
is the cell phone. Assuming that the user will place it in the vehicle, the
information it provides is sufficient. It is planned to obtain speed information
directly from the car in the future.

Figure 3.2: Android application structure

3.3.1 Model

The application consists of three main parts that follow the Model-View-
Controller layout (see fig. 3.3). This layout is natural to Android applications
and is a common approach.

The most important part is the Model part. In this case, it consists of two
layers. The Kotlin layer manages and communicates with the native layer,
and together they cater to the application’s external communication using
the Fast DDS library, which runs as a native C++ code under JNI. This
JNI interconnection is specific for this application. When sending vehicle
information, the Kotlin layer calls the native layer. On the contrary, the Kotlin
layer receives a callback from the native layer when receiving information.

The last part, the Controller, besides connecting the previous two parts,
also handles the retrieval of the vehicle’s position and velocity. The View
(user interface) defines the GUI elements and layout.

21

3. Design & Analysis..................................

Figure 3.3: Typical Model–View–Controller scheme [5]

3.3.2 Communication

The discovery mechanism of Fast DDS (see section 2.11.1) ensures that
the Android application can communicate with other applications on the
same network. As mentioned previously (2.11.1), there are several possible
configurations of discovery mechanism. This application uses the default
setting, Simple discovery, for connecting inside the local network. Future
plans are to move to a Discovery server to allow more appropriate device
interconnection.

3.3.3 Support components

Several test versions and experiments were developed apart from this applica-
tion (IPA2X Warning). Worth mentioning is the FastDDS Shapes application.
Most implementations of the DDS protocol (FastDDS, rti DDS, openDDS)
use the “Shapes” application as a demonstration. It consists of moving shapes
on a canvas. This app is a sort of port of such app for Android. Even though
it was a way to learn how to work with JNI and the FastDDS library, it
turned out to be a working app.

22

Chapter 4
Implementation

This section describes the individual parts of the IPA2X Warning application
implementation. Each part of the application or accompanying software that
we have also developed will be covered in a subchapter.

4.1 User interface

The application’s user interface consists of two parts: portrait mode (see fig
4.2) and landscape mode (see fig 4.1). Landscape mode is designed for in-
vehicle operation, while additional information in portrait mode is mainly for
debugging. In landscape mode, the elements intended for portrait mode are
hidden. Only the canvas for warnings is present. The individual components
are:. imageView – displays the graphical part of the warning. labels – display speed, GPS coordinates of the vehicle and the crossing,

as well as the number of connected CrossingInfo publishers. button – closes the application

4.2 Main Activity

Android applications can define system callbacks. Some of them (specifically
onCreate) even have to define. The following sections will present callbacks
implemented in the IPA2X Warning application.

4.2.1 onCreate

onCreate function is one of the system callbacks. Android calls it when
the application is starting [61]. It initializes the View, and further calls
the configure function, which sets up the user interface elements. It also
checks if location access rights are allowed (those must be declared in the
AndroidManifest.xml file as well) and asks the system for periodic location
information. It furthermore creates media player objects for playing audio

23

4. Implementation

Figure 4.1: Landscape mode layout

alerts. Two separate players are chosen because switching an audio track is
not a trivial matter. Finally, it starts threads with Fast DDS communication
handlers.

4.2.2 onDestroy

onDestroy is in charge of the final cleanup when closing the application. It
is designed specifically for releasing system resources such as threads [62]. In
this case, it sends termination information to both handler threads and waits
for them to complete their termination. In the meantime, it turns off and
releases media players.

4.2.3 onConfigurationChanged

onConfigurationChanged is a function that the system calls when the con-
figuration change has occurred. In our case, it is a layout change – the user
rotated the phone from portrait mode to landscape mode or vice versa. This
feature is called only if the app in Android Manifest announces that it will
process the changes itself. Android’s standard behaviour is to destroy existing
activity and restart it with the new configuration [63]. In this application,
the onConfigurationChanged function performs the same initial UI configu-
ration as the onCreate [61] function. Because onConfigurationChanged is
called when the application is running, we need to assume that warning was
already displayed. Therefore, the warning graphics will be restored according
to the stored status in an internal variable.

4.2.4 onLocationChanged

onLocationChanged is a callback that the system calls after registering the
Location Listener. In our case, the registration takes place in the onCreate
function. In this function, we request updates in the interval of 500 ms.

24

....................................4.2. Main Activity

Figure 4.2: Portrait mode layout

This function is therefore called in this same interval, but only if there is a
change in location [64]. When calling this function, our application saves the
delivered location and displays it on the screen (only in portrait mode). At
the same time, it displays and saves the current speed, if available.

4.2.5 drawDanger

Task of drawDanger function is to render and display warnings to the user. It
plays the appropriate animation and sound (or lack of such) based on incoming
information from the rover (the Crossing Handler primarily calls this function).
The animation is an SVG animation converted to AnimatedVectorDrawable

25

4. Implementation
using shapeshifter.design1 online tool. This function uses the supplemental
functions stopPlayer (which stops and rewinds the warning sound) and
drawDangerImage (which is responsible for drawing graphics on the screen).

4.3 Handlers

Handlers start, terminate and communicate with the native part of the
application. They implement the Runnable interface because they run on
separate threads. They, therefore, contain a run method – a method that the
system starts when the thread starts.

4.3.1 InfoHandler

The InfoHandler initializes the CarInfo publisher in the run method and, in
a loop, periodically calls the publish function into native code every 500 ms.
The loop runs conditioned by the boolean function running, which can be
flipped to false by calling the terminate() method. The publisher destroys
when the loop ends, and the thread ends.

4.3.2 CrossingHandler

CrossingHandler has a rudimentary structure identical to InfoHandler.
The only difference in the run loop is that it does not call the publish()
function. It just waits. Receiving information takes place in the form of
callbacks. CrossingHandler has two functions for these callbacks.. parseCrossing – called when CrossingInfo is received. updateCrossingPublisherInfo – called when the number of connected

publishers changes

4.3.3 JNI

For JNI, there are function declarations whose implementations are available
through JNI from native code. These declarations are marked with the
keyword external in Kotlin (see fig 4.3). Next, the system must load the
JNI library, which is done using System.loadLibrary("library"). Loading
the JNI library into the class must be static2. But Kotlin does not have
a static keyword. It solves this functionality using companion object (see
fig 4.3). If JNI functions should be static, the programmer must also declare
them in this object.

1https://shapeshifter.design/
2static means that this method is now a class method. It is not connected to object,

but its class.

26

https://shapeshifter.design/

.......................... 4.4. Native Publisher and Subscriber

external fun initInfoPublisher(): Long

external fun killInfoPublisher(pointer: Long): Long

external fun sendInfoPublisher(pointer: Long, longitude:
Double, latitude: Double, speed: Int): Boolean↪→

companion object {
init {

System.loadLibrary("ipa2xwarning")
}

}

Figure 4.3: Kotlin-side JNI functions in CarInfoPublisher

4.4 Native Publisher and Subscriber

Publisher and subscriber are written in C++ and contain JNI wrappers –
functions called by Kotlin (Java) and have a particular format for this purpose.
IPA2X Warning application includes publisher for the CarInfo messages and
a subscriber for CrossingInfo. Both are based on the HelloWorld example
given in the Fast DDS library documentation [6].

4.4.1 CarInfo publisher

CarInfo publisher consists of the CarInfoPublisher class. It contains the
variables necessary for running the FastDDS library. All variables and their
types can be seen in Fig. 4.4 and they are described in Tab. 4.1.

CarInfoType message_;
DomainParticipant* participant_;
Publisher* publisher_;
Topic* topic_;
DataWriter* writer_;
TypeSupport type_;

Figure 4.4: Publisher variables

Init function

The CarInfoPublisher class contains an init() function (displayed in
Fig. 4.5) that ensures the initialization of the whole publisher. The workflow
follows the recomendation in [6], i.e.:

27

4. Implementation1. Assigns a name to the participant through the QoS of the DomainPar-
ticipant...2. Uses the DomainParticipantFactory to create the participant...3. Registers the data type defined in the IDL...4. Creates the topic for the publications...5. Creates the publisher...6. Creates the DataWriter with the listener previously created.

CarInfoType Type of current message

DomainParticipant Acts as a container for all other Entity objects and
as a factory for the, subscriber, and Topic objects.

Publisher It is the object responsible for the creation of
DataWriters.

Topic Represents the fact that both publications and sub-
scriptions are tied to a single data-type [65].

DataWriter Allows the application to set the value of the data
to be published under a given Topic.

TypeSupport Provides the participant with the functions to seri-
alize, deserialize and get the key of a specific data
type.

Table 4.1: Descriptions of used datatypes [6]

A check is made between each step where an element is created or initialized
to see if the task was completed.

In this function, modification occurs in the case of switching to another
type of discovery protocol or another QoS parameter. This is the part of
the program where these parameters are set. In the code above, we can see
the init participant receives a custom QOS as a parameter, but others (e.g.
Topic) receives the default QoS.

Publish function

bool publish(int speed, double latitude, double longitude) {
message_.speed(speed);
message_.coords().latitude(latitude);
message_.coords().longtitude(longitude);
writer_->write(&message_);
return true;

}

28

.......................... 4.4. Native Publisher and Subscriber

The publish function takes GPS coordinates and speed as parameters.
It writes them to the message and then submits the message itself to the
DataWriter. The approach of the DDS library can be seen here, that it
appears to the programmer (user of the library) as a write to local memory.

bool init() {

DomainParticipantQos participantQos;
participantQos.name("ANDROID PUBLISHER");

participant_ = DomainParticipantFactory::get_instance()->
create_participant(0, participantQos);↪→

if (participant_ == nullptr) { return false; }

type_.register_type(participant_);

topic_ = participant_->create_topic("CarInfoTopic",
"CarInfoType", TOPIC_QOS_DEFAULT);↪→

if (topic_ == nullptr) { return false; }

publisher_ =
participant_->create_publisher(PUBLISHER_QOS_DEFAULT,
nullptr);

↪→

↪→

if (publisher_ == nullptr) { return false; }

writer_ = publisher_->create_datawriter(topic_,
DATAWRITER_QOS_DEFAULT);↪→

if (writer_ == nullptr) { return false; }

return true;
}

Figure 4.5: Init function

JNI Functions

At the end of the file are three JNI functions that can be called from the
InfoHandler. From the name of these functions, we can read the complete
path to the function in Java. See Fig. 4.6. We can see there the full name of
the Java package. In our case cz.cvut.fel.marunluk.ipa2xwarning, which
translates to Java_cz_cvut_fel_marunluk_ipa2xwarning in the JNI func-
tion name. Then the name of the class the function belongs to InfoHandler
and finally the name of the Kotlin counterpart of this function initInfoPublisher.
In this application, no complicated conversion between data types is necessary.
Here, we only see a trivial cast between pointer and jlong (Java Long).

29

4. Implementation
extern "C"
JNIEXPORT jlong JNICALL
Java_cz_cvut_fel_marunluk_ipa2xwarning_InfoHandler

_initInfoPublisher(JNIEnv *env, jobject thiz) {↪→

CarInfoPublisher* publisher = new CarInfoPublisher();
if (publisher->init()) {

return (jlong) publisher;
}
delete publisher;
return 0;

}

Figure 4.6: JNI Wrapper for initInfoPublisher function

initInfoPublisher. function (displayed above) creates a new instance of
CarInfoPublisher and runs the init() function. It returns a pointer to the
created instance of the CarInfoPublisher object, or 0 if initialisation is not
successful.

killInfoPublisher. function is a wrapper for the JNI object destructor.
When called, it releases an instance of the object, if it exists.

sendInfoPublisher. function serves as a wrapper for the Publish function
belonging to the CarInfoPublisher class.

4.4.2 CrossingInfo subscriber

CrossingInfo subscriber is based on the same basis as CarInfoPublisher.
the fundamental part of the code is very similar, with the only difference
that some components have unique variants for subscribers and publishers.
However, CrossingInfo subscriber is more complex, both from the point of
view of the Fast DDS library and JNI.

Listener

The CrossingInfoSubscriber class contains an instance of the SubListener
class that contains the on_subscription_matched and on_data_available
functions. These are functions that the Fast DDS library calls. As the name
suggests, on_subscription_matched responds to a change in the number of
connected publishers, and on_data_available is called when data arrives.
This listener is registered when creating the reader in the init function.

JNI Callbacks

Unlike in CarInfo publisher, in CrossingInfo subscriber, we use the JNI
interface in the opposite direction. We call the Kotlin function from C++.

30

.......................... 4.4. Native Publisher and Subscriber

Communication in this direction is more complex and requires extra code.
First, we need to get the class to which the called function belongs. The
JNIEnv pointer is used for this, thanks to which we get a jclass – reference
to the class.

jclass lClass = env->FindClass("cz/cvut/fel/marunluk/
ipa2xwarning/CrossingHandler");↪→

In our case, when we call a function that is not static, we also need an
instance of that class. However, we already got this as a parameter during
JNI Call. Lastly, we need a reference to the function itself. We get this
reference again via JNIEnv by calling the GetMethodID function with the
already found class and name parameters.

jmethodID warningMethod = env->GetMethodID(lClass,
"parseCrossing", "(ZZDD)V");↪→

Now, all that is left to do is to call the function:

env->CallVoidMethod(object, warningInfoMethod, <params>);

Threading

Figure 4.7: Thread scheme

During callbacks, we encounter the problem that on_data_available
and on_subscription_matched are called from a different thread than we
initiated the subscriber. It poses a problem because it is not a thread
created by the Java Virtual Machine (JVM) but by the native code itself, and
therefore the JVM does not allow the thread to interact with itself (see Fig.
4.7). Consequently, it is necessary to register this thread in the JVM using
function AttachCurrentThread(). Also, a new JNIEnv pointer is needed
because each thread needs a distinct value. See Fig. 4.8

31

4. Implementation
java_vm->GetEnv(reinterpret_cast<void **>(&env),

JNI_VERSION_1_6);↪→

java_vm->AttachCurrentThread(&env, NULL);

Figure 4.8: Attaching current thread

gObject = env->NewGlobalRef(thiz);

Figure 4.9: Global reference creation

Also, the reference to the called object is thread-specific. We solve this by
creating a new, global reference (see Fig. 4.9).

The other required variables are already valid for all threads, and one only
needs to share them with the new thread. We do this here in the form of a
global variable.

Our code already works as expected, but as found on the Android developer
website [24], we must also detach each thread after manually attaching it.
We do this by calling the DetachCurrentThread() function. However, this
function is called often, and we would create too significant an overhead
by repeatedly attaching and detaching threads. Therefore, we will create
a “thread destructor”, with which we will call the disconnect only once, at
the end of the thread. Even though we call AttachCurrentThread() several
times in the body of the function, it does not pose a problem because repeated
calls of the AttachCurrentThread() function are NOP3 [24]. We create the
destructor using thread-specific variables. We can store some data here, but
we will use the fact that we can define a destructor (see Fig. 4.10). for this
data. This destructor will be called when the thread exits.

We will store some thread specific data there. And in their destruction, we
will also disconnect the current thread from the JVM.

pthread_key_create(&key, thread_destructor);

static void thread_destructor(void* ptr) {
JNIEnv* env = static_cast<JNIEnv *>(ptr);
java_vm->DetachCurrentThread();
__android_log_print(ANDROID_LOG_VERBOSE, "Sub

attached", "Detached!");↪→

}

Figure 4.10: Thread destructor we passed to the pthread_key_create function

3no-operation

32

.................................... 4.5. Networking

We store some value in the variable in the code. Here it is a pointer to
JNIEnv. So we know that this thread will eventually call the destructor we
created.

4.5 Networking

In this section, we will describe the network solution of the project.
Fast DDS Discovery needs to somehow connect with its counterparts for

its operation. It is primarily designed for local communication. Namely
same-host delivery, e.g. shared memory (see sect. 2.11). However, Fast DDS
can also communicate over IP networks using UDP or TCP.

4.5.1 Local network

The local network is the simplest solution for Fast DDS discovery communica-
tion. We need the device to reach others and the broadcast domain to work.
Internet is not needed in this case. A typical local network allows all this.

4.5.2 Discovery server over the Internet

The Discovery server should eliminate the need for a broadcast domain, as all
devices query a specific point (see sect. 2.11.1). Unfortunately, the Discovery
server is riddled with issues. We encountered problems compiling with the
new compiler versions. Moreover, even when we managed to compile it,
most of the features did not work. The only thing that did work was the
communication within the localhost. We failed to make further progress on
local network attempts.

4.5.3 VPN

Another option is to emulate the local network using a VPN. VPN will allow
the devices to see each other, but we need to set up a broadcast domain for
the discovery protocol. Then we came across a WireGuard VPN test that
does not support broadcasts.

4.5.4 Solution

Based on these facts, we have decided to use a local WiFi network for the
time being. To connect a mobile phone from a moving vehicle using a mobile
4G/5G network, it is necessary to configure a VPN with a functional broadcast
domain.

4.6 Supplemental files

These are files required by the Fast DDS library. Namely, the IDL files and
the source code generated from them. They represent a link between the

33

4. Implementation
internals of the library and the application (and its developer).

4.6.1 IDLs

IDL files declare the data structure of forwarded messages via the DDS
protocol. IDL supports most data types. In this application, we use two
types of messages.

GPS

struct gps {
double longitude;
double latitude;

};

Figure 4.11: Coordinates structure

This file (see Fig. 4.11) contains GPS coordinates in the form of two
figures – latitude and longitude. Both are saved in floating-point format.
Double is used as the data type because the float data type is insufficient for
its accuracy, and any errors could be too significant for our use.

CarInfo

#include "Gps.idl"

struct CarInfoType {
short speed;
string dummy;
gps coords;

};

Figure 4.12: CarInfo message structure

It contains the GPS coordinates of the vehicle (struct imported from gps.idl)
and the car’s current speed (see Fig. 4.12). This file defines the messages sent
by the application (running on a phone inside a vehicle) back to the rover.

CrossingInfo

This message (see Fig. 4.13) is sent by the rover and received by the
application. Like CarInfo, we find GPS coordinates here. This time these
are the coordinates of the crossing that the rover guards. Furthermore, two
booleans carrying information about the state of the pedestrian crossing.

34

................................. 4.7. Installation guide

#include "Gps.idl"

struct CrossingInfoType {
boolean danger;
boolean crossing;
string dummy;
gps coords;

};

Figure 4.13: CrossingInfo message structure

. crossing – in case of a pedestrian crossing the street. danger – for another dangerous situation (e.g. when a child runs into
the road)

Dummy

Both messages (CarInfo and CrossingInfo) contain a “dummy” string. The
application does not use this string in any way, but the library contains a bug
where it is not possible to initiate an Android application without a more
complex C++ datatype (e.g. string or hashmap). This error does not occur
on a regular computer (Linux on x86-64 architecture). The library error
could not be located yet. Therefore, this is a temporary workaround for this
issue.

4.6.2 Generated files

From IDL files, the Fast DDS Gen tool will generate auxiliary files for the
required platform and programming language. Our generated files can be
seen in Figure 4.14.

Files can be generated with the command [66]:

/path/to/Fast-DDS Gen/scripts/fastddsgen yourFile.idl

4.7 Installation guide

The reader can install this application directly from the .apk package or
compile the project. In the case of custom compilation, the reader will
need to compile the application’s libraries. These are specifically Fast DDS
and its pre-requisites (Foonathan Memory and Fast CDR). The compilation
instructions are a modified version of the Fast DDS library installation
instructions [67].

35

4. Implementation
cpp

carinfo
CarInfo.cxx
CarInfo.h
CarInfoPubSubTypes.cxx
CarInfoPubSubTypes.h
Gps.cxx
Gps.h
GpsPubSubTypes.cxx
GpsPubSubTypes.h

crossing
CrossingInfo.cxx
CrossingInfo.h
CrossingInfoPubSubTypes.cxx
CrossingInfoPubSubTypes.h
Gps.cxx
Gps.h
GpsPubSubTypes.cxx
GpsPubSubTypes.h

Figure 4.14: Generated files

4.7.1 Compilation from sources

Prerequisites

The project has been compiled several times during development on Ubuntu
20.04.3 and 21.04. Since we are cross-compiling for Android on the aarch64
architecture, we use the Android NDK cross-compiler, which can be down-
loaded from the Google website4. Should the reader decide to use Windows
Subsystem for Linux (WSL) for compilation, we recommend to extract the .zip
file directly from the command line. We encountered errors when unpacking
the compiler in Windows. Several packages, mainly libraries, are required for
compilation. These are:. cmake, g++, pip3, wget and Git. Asio library, TinyXML2 library, OpenSSL, Libp11

When using Debian, or Debian based Linux distros (i.e. Ubuntu) you can
use:

sudo apt install cmake g++ python3-pip wget git
sudo apt install libasio-dev libtinyxml2-dev libssl-dev

libp11-dev libengine-pkcs11-openssl↪→

4https://developer.android.com/ndk/downloads

36

https://developer.android.com/ndk/downloads

................................. 4.7. Installation guide

Compilation. Create a directory for this library and its dependencies. Recommended
is ~/Fast-DDS (please note, that this directory is used in this guide)

mkdir ~/Fast-DDS. Install and cross-compile Foonathan Memory with following commands:

cd ~/Fast-DDS
git clone

https://github.com/eProsima/foonathan_memory_vendor.git↪→

mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install

-DBUILD_SHARED_LIBS=ON
-DCMAKE_TOOLCHAIN_FILE=path/to/android-ndk-r23b/
build/cmake/android.toolchain.cmake
-DANDROID_ABI=arm64-v8a -DANDROID_NATIVE_API_LEVEL=24

↪→

↪→

↪→

↪→

cmake --build . --target install. Install and cross-compile Fast-CDR library

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install

-DCMAKE_TOOLCHAIN_FILE=path/to/android-ndk-r23b/
build/cmake/android.toolchain.cmake
-DANDROID_ABI=arm64-v8a -DANDROID_NATIVE_API_LEVEL=24

↪→

↪→

↪→

cmake --build . --target install. Clone and cross-compile Fast DDS itself

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install

-DCMAKE_TOOLCHAIN_FILE=path/to/android-ndk-r23b/
build/cmake/android.toolchain.cmake
-DANDROID_ABI=arm64-v8a -DANDROID_NATIVE_API_LEVEL=24
-DCMAKE_BUILD_TYPE=Release -DTHIRDPARTY=FORCE
-DCMAKE_FIND_ROOT_PATH=~/Fast-DDS/install

↪→

↪→

↪→

↪→

↪→

cmake --build . --target install. Compiled library can be found in ~/Fast-DDS/install.

37

4. Implementation
CMake arguments

Some critical parameters for cross-compilation that we pass to CMake are:.CMAKE_TOOLCHAIN_FILE tells CMake which compiler to use.
In our case, we do not want to compile using the standard Linux compiler
but the cross compiler for Android..ANDROID_ABI determines for which platform we will compile. An-
droid supports four architectures: armeabi-v7a, arm64-v8a, x86, and
x86_64 [68]. We are interested in arm64-v8a, so we chose the aarch64
instruction set that arm64-v8a uses..THIRDPARTY allows us to choose whether we want CMake to down-
load the libraries or provide them ourselves. In OFF mode, it searches
libraries only locally. In ON mode, it downloads them, but only if it
does not find them locally. FORCE mode ensures that it downloads and
compiles libraries itself [69]. Therefore, there is no collision where CMake
would try to link a library intended for another instruction set..ANDROID_NATIVE_API_LEVEL (or ANDROID_PLATFORM) Spec-
ifies the minimum API level supported by the application or library. This
value corresponds to the application’s minSdkVersion [70].

ifaddrs

During development, we encountered a problem with the android-ifaddrs
library. Android previously did not support the features from ifaddrs.h, it
was necessary to develop an alternative solution. That alternative became
the android-ifaddrs library.

In the Android API24 (Android 7.0), Google has added official support
for ifaddrs. So the android-ifaddrs library has become redundant. How-
ever, in API30 (Android 11), Google removed the functionality on which
android-ifaddrs relied. Then this library became undesirable because it broke
functionality when targeting newer versions [71][72]. Therefore, we have
updated the CMake file not to include this library when compiling for specific
versions (see Fig. 4.15). We also sent this change as a pull request5 to the
Fast DDS repository, and this request was accepted.

4.7.2 Launch from Android Studio

To work with the application in the Android Studio development environment,
open the application source codes in Android Studio (File -> Open). Select
the IPA2XWarning folder. The project folder should have a green Android
icon. It indicates that Android Studio has recognized it as a project. If it was
not recognized or the folder is missing, restart Android Studio. Sometimes it
takes several attempts until the folder appears.

5https://github.com/eProsima/Fast-DDS/pull/2677

38

https://github.com/eProsima/Fast-DDS/pull/2677

...................................... 4.8. Shapes

if(ANDROID)
if((ANDROID_PLATFORM LESS_EQUAL 23) OR

(ANDROID_NATIVE_API_LEVEL LESS_EQUAL 23))↪→

eprosima_find_thirdparty(android-ifaddrs
android-ifaddrs)↪→

endif()
endif()

Figure 4.15: CMake with added check for API versions

Next, open the CMakeLists.txt file located in the app/cpp folder and on
line 5, edit the path to the directory with the library we compiled in the last
step. It can be ~/Fast-DDS/install or another location where the library
was compiled or copied to.

The application can be launched with a green arrow in the upper right
corner of Android Studio. The launch is possible only on a mobile phone
with the Android operating system version 7.0 and higher. The cell phone
must be of the aarch64 architecture. Reader can find out if their phone is
compliant using the CPU-Z6 application. Please note that Android Studio’s
default emulated devices run on x86 architecture. Therefore launch on these
is not possible

4.8 Shapes

Shapes application was developed as a prototype to test Fast DDS library
and JNI. The IPA2X Warning application is based directly on the Shapes
application.

The concept of the Shapes Demo consists of shapes moving on the screen,
which are also shared via Fast DDS to other devices. This is a common demo
that uses all major DDS implementations (Fast DDS, openDDS, rti DDS).

This Android Shapes implementation connects via UDP over a local network
to another instance of the same application, or with Fast DDS Shapes on a
PC.

The user interface of Shapes Demo application (see Fig. 4.16) is straight-
forward. The individual elements are. Canvas on which the individual shapes move. Subscriber switches for individual shapes.Menu for creating a new shape for the publisher

6https://play.google.com/store/apps/details?id=com.cpuid.cpu_z

39

https://play.google.com/store/apps/details?id=com.cpuid.cpu_z

4. Implementation

Figure 4.16: Shapes user interface

4.9 Supporting software

To test the Android application, we developed simple console applications
for testing applications, which replace the function of a rover. The code is
based on the same base as the native part of the Warning application. There
are a total of 4 programs. It is a pair of publishers and subscribers for both
CarInfo and CrossingInfo.

Due to the fact that these are applications for testing during development
and are not intended for the end-user, the sanitisation of inputs or the
graphical aspect of the user interface was not taken into account.

40

................................ 4.9. Supporting software

4.9.1 Publishers

CrossingInfo publisher (see Fig. 4.17) waits for keyboard input, where it
sends a message based on the key pressed. It also sends coordinates, which
are hardcoded. The keys that control the program are:. x – crossing. d – danger. c – clear. q – quit

CarInfo publisher (see Fig. 4.18) is also waiting for keyboard input. It
awaits integer input to be sent as the speed value. Geolocation will also be
adjusted based on this value (+5/speed).

4.9.2 Subscribers

CarInfo subscriber (see Fig. 4.18) always listens for a certain number (100)
of messages that it writes to the console. It will end after the writing of the
100th message. CrossingInfo subscriber (see Fig. 4.17) works on the same
principle.

41

4. Implementation

Figure 4.17: CrossingInfo publisher and subscriber

Figure 4.18: CarInfo publisher and subscriber

42

Chapter 5
Evaluation

This chapter discusses the evaluation and testing of the IPA2X Warning
application together with other components of the project (such as in-vehicle
use and rover communication).

To evaluate the functionality of the developed solution, we integrated all
the developed components and tested them together with a Škoda vehicle,
as shown in Fig. 3.1. However, we simulated the rover with the supportive
CrossingInfo publisher application (see Section 4.9).

The user interface was, after consultation, accepted by the project partner
(Škoda Auto). A comparison between the user interface appearance on a
mobile phone and the vehicle’s infotainment unit can be seen in Figures 5.1,
5.2 5.3.

The overall functionality is demonstrated in the video available in the
attached data files. To evaluate the performance, we measure the latency
between sending the crossing state change and displaying the warning on the
car screen.

5.1 Performance

We measured latency by recording the screens of a phone, infotainment and
a laptop representing the rover. All these elements are part of the shot. We
obtain the times by subtracting the difference between the timestamp of
pressing the key (sending a message) and the display of warnings on the
mobile screen and the vehicle’s infotainment unit. We get three results. Total
latency (between sending and display in the vehicle), latency between rover
(substitute laptop) and display on the mobile phone, and latency between
phone and vehicle displays. Our testing setup consists of:. Samsung Galaxy S10e mobile phone for recording (1080p 60fps). Samsung Galaxy A52s mobile phone connected to the infotainment unit

via AA Mirror. Škoda vehicle (Škoda Superb). Samsung Galaxy S10e and Xiaomi Redmi Note 7 served as hotspots

43

5. Evaluation

Figure 5.1: Orange warning screenshot from a mobile phone

. HP EliteBook 8470p running rover substitute application

Testing took place in two instances. In one case, the router (hotspot on the
mobile phone) was placed in the vehicle. In the second case, it was outside
the vehicle behind a wall. In both cases, comparable values were measured
(see Table 5.1). A complete table of measured values is in the appendix A
(see Tables A.1 and A.2).

Attempt Overall [s] Network [s] Android Auto [s]

1 0.293 0.197 0.096

2 0.289 0.193 0.096

Table 5.1: Latency measurement results

44

....................................5.1. Performance

Figure 5.2: Orange warning displayed on vehicle infotainment unit

Figure 5.3: Red warning displayed on vehicle infotainment unit

45

46

Chapter 6
Conclusion

In this thesis, we designed and developed the IPA2X Warning application,
which warns drivers audibly and visually via Android Auto (AA Mirror).
We used the chosen technologies. We imported the Fast DDS library into
the Android operating system using the Java Native Interface. We tested
the IPA2X Warning application in a car from Škoda Auto company, which
approved our GUI design.

A particular success is the Fast DDS Shapes Demo for Android application,
which was created as a prototype to test Fast DDS on Android. We presented
this application to the developers of the Fast DDS library (eProsima), and
we received positive feedback.

Another success is finding and fixing a bug in the Fast DDS library. Af-
ter review, our patch has been approved and incorporated into the main
development branch of the Fast DDS library.

6.1 Future work

There are still opportunities to develop this project. Despite our efforts, we
were unable to establish communication over the open Internet using mobile
4G/5G networks.

We are still waiting for the possibility of integrating this application directly
with the rover.

During development, we encountered several bugs, such as the need for
dummy strings in IDL files. There is an opportunity to thoroughly debug
this error and develop further patches for the Fast DDS library.

47

48

Bibliography

[1] “IPA2X Project — rtsl.cps.mw.tum.de.” https://rtsl.cps.mw.tum.de
/ipa2x. [Accessed 20-May-2022].

[2] “Java Native Interface Specification: 2 - Design Overview – docs.ora-
cle.com.” https://docs.oracle.com/en/java/javase/17/docs/spe
cs/jni/design.html. [Accessed 18-May-2022].

[3] https://www.facebook.com/d4nny.cz, “Do hry vstupuje Volkswagen,
Android Auto bude ve většině modelů 2016 | Svět Androida — svetan-
droida.cz.” https://www.svetandroida.cz/volkswagen-android-aut
o/. [Accessed 20-May-2022].

[4] “OBD2 Explained - A Simple Intro [2022 | The #1 Tutorial] – csselec-
tronics.com.” https://www.csselectronics.com/pages/obd2-explai
ned-simple-intro. [Accessed 18-May-2022].

[5] “File:MVC Diagram (Model-View-Controller).svg - Wikimedia Commons
— commons.wikimedia.org.” https://commons.wikimedia.org/wiki/F
ile:MVC_Diagram_(Model-View-Controller).svg. [Accessed 20-May-
2022].

[6] “1.3. Writing a simple C++ publisher and subscriber application ; Fast
DDS 2.6.0 documentation – fast-dds.docs.eprosima.com.” https://fa
st-dds.docs.eprosima.com/en/latest/fastdds/getting_started
/simple_app/simple_app.html. [Accessed 18-May-2022].

[7] “Cell Phone News - PhoneArena – phonearena.com.” https://www.ph
onearena.com/news/Googles-Android-OS-Past-Present-and-Futu
re_id21273. [Accessed 18-May-2022].

[8] “Android founder: We aimed to make a camera OS – pcworld.com.”
https://www.pcworld.com/article/451350/android-founder-we-
aimed-to-make-a-camera-os.html. [Accessed 18-May-2022].

[9] “The first Android phone was announced 13 years ago today – android-
police.com.” https://www.androidpolice.com/2021/09/23/the-fir
st-android-phone-was-announced-13-years-ago-today/. [Accessed
18-May-2022].

49

https://rtsl.cps.mw.tum.de/ipa2x
https://rtsl.cps.mw.tum.de/ipa2x
https://docs.oracle.com/en/java/javase/17/docs/specs/jni/design.html
https://docs.oracle.com/en/java/javase/17/docs/specs/jni/design.html
https://www.svetandroida.cz/volkswagen-android-auto/
https://www.svetandroida.cz/volkswagen-android-auto/
https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/simple_app/simple_app.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/simple_app/simple_app.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/simple_app/simple_app.html
https://www.phonearena.com/news/Googles-Android-OS-Past-Present-and-Future_id21273
https://www.phonearena.com/news/Googles-Android-OS-Past-Present-and-Future_id21273
https://www.phonearena.com/news/Googles-Android-OS-Past-Present-and-Future_id21273
https://www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-camera-os.html
https://www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-camera-os.html
https://www.androidpolice.com/2021/09/23/the-first-android-phone-was-announced-13-years-ago-today/
https://www.androidpolice.com/2021/09/23/the-first-android-phone-was-announced-13-years-ago-today/

6. Conclusion
[10] “Samsung I9000 Galaxy S - Full phone specifications – gsmarena.com.”

https://www.gsmarena.com/samsung_i9000_galaxy_s-3115.php.
[Accessed 18-May-2022].

[11] “HTC Desire S - Full phone specifications – gsmarena.com.” https:
//www.gsmarena.com/htc_desire_s-3776.php. [Accessed 18-May-
2022].

[12] “Samsung Galaxy Y S5360 - Full phone specifications – gsmarena.com.”
https://www.gsmarena.com/samsung_galaxy_y_s5360-4117.php.
[Accessed 18-May-2022].

[13] E. Belinski, “Android API Levels – apilevels.com.” https://apilevels.
com/. [Accessed 18-May-2022].

[14] “Android API Levels | Android Developers – dre.vanderbilt.edu.” http:
//www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/
target/common/docs/doc-comment-check/guide/appendix/api-le
vels.html. [Accessed 18-May-2022].

[15] “Activity | Android Developers – developer.android.com.” https://de
veloper.android.com/reference/android/app/Activity. [Accessed
18-May-2022].

[16] “About Android App Bundles | Android Developers – developer.an-
droid.com.” https://developer.android.com/guide/app-bundle,
2022-03-17. [Accessed 18-May-2022].

[17] https://www.facebook.com/avi.it.128, “Key Google Play Store Statistics
in 2022 You Must Know – appinventiv.com.” https://appinventiv.co
m/blog/google-play-store-statistics/. [Accessed 18-May-2022].

[18] “Java Native Interface Specification: 1 - Introduction – docs.oracle.com.”
https://docs.oracle.com/en/java/javase/17/docs/specs/jni/i
ntro.html. [Accessed 18-May-2022].

[19] U. Technologies, “Unity - Manual: Building Plugins for Android –
docs.huihoo.com.” https://docs.huihoo.com/unity/5.5/Document
ation/Manual/PluginsForAndroid.html. [Accessed 18-May-2022].

[20] “OpenGL ES | Android Developers – developer.android.com.” https://
developer.android.com/guide/topics/graphics/opengl. [Accessed
18-May-2022].

[21] “JNI tips | Android NDK | Android Developers – developer.android.com.”
https://developer.android.com/training/articles/perf-jni#j
class,-jmethodid,-and-jfieldid. [Accessed 18-May-2022].

[22] “What makes JNI calls slow? – stackoverflow.com.” https://stackove
rflow.com/questions/7699020/what-makes-jni-calls-slow/7809
300#7809300. [Accessed 18-May-2022].

50

https://www.gsmarena.com/samsung_i9000_galaxy_s-3115.php
https://www.gsmarena.com/htc_desire_s-3776.php
https://www.gsmarena.com/htc_desire_s-3776.php
https://www.gsmarena.com/samsung_galaxy_y_s5360-4117.php
https://apilevels.com/
https://apilevels.com/
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/app-bundle
https://appinventiv.com/blog/google-play-store-statistics/
https://appinventiv.com/blog/google-play-store-statistics/
https://docs.oracle.com/en/java/javase/17/docs/specs/jni/intro.html
https://docs.oracle.com/en/java/javase/17/docs/specs/jni/intro.html
https://docs.huihoo.com/unity/5.5/Documentation/Manual/PluginsForAndroid.html
https://docs.huihoo.com/unity/5.5/Documentation/Manual/PluginsForAndroid.html
https://developer.android.com/guide/topics/graphics/opengl
https://developer.android.com/guide/topics/graphics/opengl
https://developer.android.com/training/articles/perf-jni#jclass,-jmethodid,-and-jfieldid
https://developer.android.com/training/articles/perf-jni#jclass,-jmethodid,-and-jfieldid
https://stackoverflow.com/questions/7699020/what-makes-jni-calls-slow/7809300#7809300
https://stackoverflow.com/questions/7699020/what-makes-jni-calls-slow/7809300#7809300
https://stackoverflow.com/questions/7699020/what-makes-jni-calls-slow/7809300#7809300

.................................... 6.1. Future work

[23] “JNI tips | Android NDK | Android Developers – developer.android.com.”
https://developer.android.com/training/articles/perf-jni#j
avavm-and-jnienv. [Accessed 18-May-2022].

[24] “JNI tips | Android NDK | Android Developers – developer.android.com.”
https://developer.android.com/training/articles/perf-jni#t
hreads. [Accessed 18-May-2022].

[25] “Kotlin on Android FAQ | Android Developers – developer.android.com.”
https://developer.android.com/kotlin/faq.html#android. [Ac-
cessed 18-May-2022].

[26] “Android’s Kotlin-first approach | Android Developers – developer.an-
droid.com.” https://developer.android.com/kotlin/first. [Ac-
cessed 18-May-2022].

[27] A. a.s., “Co je MirrorLink? | Alza.cz – alza.cz.” https://www.alza.cz/
slovnik/mirrorlink. [Accessed 18-May-2022].

[28] “Seznam kompatibility – compatibilitylist.skoda-auto.com.” https://co
mpatibilitylist.skoda-auto.com/. [Accessed 18-May-2022].

[29] “MirrorLink® Operations Sunsetting by September 30, 2023. - Car
Connectivity Consortium – carconnectivity.org.” https://carconnect
ivity.org/press-release/mirrorlink-operations-sunsetting-b
y-september-30-2023/. [Accessed 18-May-2022].

[30] “MirrorLink – mirrorlink.com.” https://mirrorlink.com/Developers.
[Accessed 18-May-2022].

[31] “Android Auto | Android – android.com.” https://www.android.com/
auto/. [Accessed 18-May-2022].

[32] “Interaction principles | Design for Driving | Google Developers – devel-
opers.google.com.” https://developers.google.com/cars/design/
design-foundations/interaction-principles#avoid_hazardous_o
r_distracting_activities. [Accessed 18-May-2022].

[33] 24net s.r.o., “Test Jak se posunulo Android Auto? – V něčem lepší, v
něčem horší | fDrive.cz – fdrive.cz.” https://fdrive.cz/clanky/test-
jak-se-posunulo-android-auto-v-necem-lepsi-v-necem-horsi-5
530. [Accessed 18-May-2022].

[34] N. Garun, “Google has made Android Auto work more like your phone
— for better or worse – theverge.com.” https://www.theverge.com/2
019/7/30/20746885/google-android-auto-2019-review-features
-app-phone. [Accessed 18-May-2022].

[35] “r/AndroidAuto - Facebook messenger completely disappeared from
Android Auto – reddit.com.” https://www.reddit.com/r/AndroidAu
to/comments/kxygj7/facebook_messenger_completely_disappear
ed_from/. [Accessed 18-May-2022].

51

https://developer.android.com/training/articles/perf-jni#javavm-and-jnienv
https://developer.android.com/training/articles/perf-jni#javavm-and-jnienv
https://developer.android.com/training/articles/perf-jni#threads
https://developer.android.com/training/articles/perf-jni#threads
https://developer.android.com/kotlin/faq.html#android
https://developer.android.com/kotlin/first
https://www.alza.cz/slovnik/mirrorlink
https://www.alza.cz/slovnik/mirrorlink
https://compatibilitylist.skoda-auto.com/
https://compatibilitylist.skoda-auto.com/
https://carconnectivity.org/press-release/mirrorlink-operations-sunsetting-by-september-30-2023/
https://carconnectivity.org/press-release/mirrorlink-operations-sunsetting-by-september-30-2023/
https://carconnectivity.org/press-release/mirrorlink-operations-sunsetting-by-september-30-2023/
https://mirrorlink.com/Developers
https://www.android.com/auto/
https://www.android.com/auto/
https://developers.google.com/cars/design/design-foundations/interaction-principles#avoid_hazardous_or_distracting_activities
https://developers.google.com/cars/design/design-foundations/interaction-principles#avoid_hazardous_or_distracting_activities
https://developers.google.com/cars/design/design-foundations/interaction-principles#avoid_hazardous_or_distracting_activities
https://fdrive.cz/clanky/test-jak-se-posunulo-android-auto-v-necem-lepsi-v-necem-horsi-5530
https://fdrive.cz/clanky/test-jak-se-posunulo-android-auto-v-necem-lepsi-v-necem-horsi-5530
https://fdrive.cz/clanky/test-jak-se-posunulo-android-auto-v-necem-lepsi-v-necem-horsi-5530
https://www.theverge.com/2019/7/30/20746885/google-android-auto-2019-review-features-app-phone
https://www.theverge.com/2019/7/30/20746885/google-android-auto-2019-review-features-app-phone
https://www.theverge.com/2019/7/30/20746885/google-android-auto-2019-review-features-app-phone
https://www.reddit.com/r/AndroidAuto/comments/kxygj7/facebook_messenger_completely_disappeared_from/
https://www.reddit.com/r/AndroidAuto/comments/kxygj7/facebook_messenger_completely_disappeared_from/
https://www.reddit.com/r/AndroidAuto/comments/kxygj7/facebook_messenger_completely_disappeared_from/

6. Conclusion
[36] “r/AndroidAuto - Facebook Messenger not working correctly? – red-

dit.com.” https://www.reddit.com/r/AndroidAuto/comments/j3
hzd3/facebook_messenger_not_working_correctly/. [Accessed
18-May-2022].

[37] “How Do I Know Whether My Car is OBD-II Compliant? – scantool.net.”
https://www.scantool.net/blog/how-do-i-know-whether-my-car
-is-obd-ii-compliant. [Accessed 18-May-2022].

[38] “The Car Hackers Handbook – opengarages.org.” http://opengarages.
org/handbook/ebook/. [Accessed 18-May-2022].

[39] “German car industry plans to close OBD interface eeNews Automotive
– eenewsautomotive.com.” https://www.eenewsautomotive.com/en/
german-car-industry-plans-to-close-obd-interface/. [Accessed
18-May-2022].

[40] “can-newsletter.org - Applications – can-newsletter.org.” https://ca
n-newsletter.org/engineering/applications/160322_25th-anni
versary-mercedes-w140-first-car-with-can/. [Accessed 18-May-
2022].

[41] “Controller Area Network (CAN) Overview – ni.com.” https://www.ni
.com/cs-cz/innovations/white-papers/06/controller-area-net
work--can--overview.html. [Accessed 18-May-2022].

[42] “Sbernice CAN – elektrorevue.cz.” http://www.elektrorevue.cz/cl
anky/03021/index.html. [Accessed 18-May-2022].

[43] “CAN FD Explained - A Simple Intro [2022 | The #1 Tutorial] – csselec-
tronics.com.” https://www.csselectronics.com/pages/can-fd-flex
ible-data-rate-intro. [Accessed 18-May-2022].

[44] “ELM327 v2.3 #x2013; Elm Electronics – elmelectronics.com.” https:
//www.elmelectronics.com/ic/elm327/. [Accessed 18-May-2022].

[45] Wikipedia contributors, “Obd-ii pids – Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.php?title=OBD-II_PIDs&old
id=1086105625, 2022. [Online; accessed 14-May-2022].

[46] D. Slížek, “Jižní Korea spustí první komerční 5G sítě, operátoři už
oznámili ceny balíčků - Lupa.cz – lupa.cz.” https://www.lupa.cz/ak
tuality/sk-telecom-spusti-prvni-komercni-5g-sit-oznamil-uz
-take-ceny-balicku/. [Accessed 18-May-2022].

[47] “From 1G to 5G: A Brief History of the Evolution of Mobile Standards
– brainbridge.be.” https://www.brainbridge.be/en/blog/1g-5g-bri
ef-history-evolution-mobile-standards. [Accessed 18-May-2022].

[48] “5G Spectrum Guide - Everything You Need to Know – gsma.com.”
https://www.gsma.com/spectrum/5g-spectrum-guide/. [Accessed
18-May-2022].

52

https://www.reddit.com/r/AndroidAuto/comments/j3hzd3/facebook_messenger_not_working_correctly/
https://www.reddit.com/r/AndroidAuto/comments/j3hzd3/facebook_messenger_not_working_correctly/
https://www.scantool.net/blog/how-do-i-know-whether-my-car-is-obd-ii-compliant
https://www.scantool.net/blog/how-do-i-know-whether-my-car-is-obd-ii-compliant
http://opengarages.org/handbook/ebook/
http://opengarages.org/handbook/ebook/
https://www.eenewsautomotive.com/en/german-car-industry-plans-to-close-obd-interface/
https://www.eenewsautomotive.com/en/german-car-industry-plans-to-close-obd-interface/
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can/
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can/
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can/
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
http://www.elektrorevue.cz/clanky/03021/index.html
http://www.elektrorevue.cz/clanky/03021/index.html
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.elmelectronics.com/ic/elm327/
https://www.elmelectronics.com/ic/elm327/
https://en.wikipedia.org/w/index.php?title=OBD-II_PIDs&oldid=1086105625
https://en.wikipedia.org/w/index.php?title=OBD-II_PIDs&oldid=1086105625
https://www.lupa.cz/aktuality/sk-telecom-spusti-prvni-komercni-5g-sit-oznamil-uz-take-ceny-balicku/
https://www.lupa.cz/aktuality/sk-telecom-spusti-prvni-komercni-5g-sit-oznamil-uz-take-ceny-balicku/
https://www.lupa.cz/aktuality/sk-telecom-spusti-prvni-komercni-5g-sit-oznamil-uz-take-ceny-balicku/
https://www.brainbridge.be/en/blog/1g-5g-brief-history-evolution-mobile-standards
https://www.brainbridge.be/en/blog/1g-5g-brief-history-evolution-mobile-standards
https://www.gsma.com/spectrum/5g-spectrum-guide/

.................................... 6.1. Future work

[49] “5G spectrum bands explained— low, mid and high band | Nokia –
nokia.com.” https://www.nokia.com/networks/insights/spectrum
-bands-5g-world/. [Accessed 18-May-2022].

[50] J. Sedlák, “O Huawei bez Huawei. V Praze se řešila bezpečnost 5G
sítí - Lupa.cz – lupa.cz.” https://www.lupa.cz/clanky/o-huawei-
bez-huawei-v-praze-se-resila-bezpecnost-5g-siti/. [Accessed
18-May-2022].

[51] K. Wolf, “Spojené státy varují před nasazováním Huawei i do nekritických
součástí 5G sítí - Lupa.cz – lupa.cz.” https://www.lupa.cz/aktualit
y/spojene-staty-varuji-pred-nasazovanim-huawei-i-do-nekrit
ickych-soucasti-5g-siti/. [Accessed 18-May-2022].

[52] C. Reichert, “5G coronavirus conspiracy theory leads to 77 mobile towers
burned in UK, report says – cnet.com.” https://www.cnet.com/healt
h/5g-coronavirus-conspiracy-theory-sees-77-mobile-towers-b
urned-report-says/, 2020. [Accessed 18-May-2022].

[53] “Burning Cell Towers, Out of Baseless Fear They Spread the Virus
(Published 2020) – nytimes.com.” https://www.nytimes.com/2020/0
4/10/technology/coronavirus-5g-uk.html. [Accessed 18-May-2022].

[54] A. News, “Conspiracy theorists burn 5G towers claiming link to virus –
abcnews.go.com.” https://abcnews.go.com/Health/wireStory/cons
piracy-theorists-burn-5g-towers-claiming-link-virus-702588
11. [Accessed 18-May-2022].

[55] “How Does DDS Work? – dds-foundation.org.” https://www.dds-foun
dation.org/how-dds-works/. [Accessed 18-May-2022].

[56] R.-T. Innovations, “Data Distribution Service (DDS) for Complex Sys-
tems | RTI – rti.com.” https://www.rti.com/products/dds-standard.
[Accessed 18-May-2022].

[57] “What is DDS? – dds-foundation.org.” https://www.dds-foundation
.org/what-is-dds-3/. [Accessed 18-May-2022].

[58] “5. Discovery; Fast DDS 2.6.0 documentation – fast-
dds.docs.eprosima.com.” https://fast-dds.docs.eprosima.c
om/en/latest/fastdds/discovery/discovery.html. [Accessed
18-May-2022].

[59] “5.3.4. Discovery Server Settings; Fast DDS 2.6.0 documentation – fast-
dds.docs.eprosima.com.” https://fast-dds.docs.eprosima.com/en/
latest/fastdds/discovery/discovery_server.html#discovery-s
erver. [Accessed 18-May-2022].

[60] “DDS API; Fast DDS 2.6.0 documentation – fast-dds.docs.eprosima.com.”
https://fast-dds.docs.eprosima.com/en/latest/. [Accessed 18-
May-2022].

53

https://www.nokia.com/networks/insights/spectrum-bands-5g-world/
https://www.nokia.com/networks/insights/spectrum-bands-5g-world/
https://www.lupa.cz/clanky/o-huawei-bez-huawei-v-praze-se-resila-bezpecnost-5g-siti/
https://www.lupa.cz/clanky/o-huawei-bez-huawei-v-praze-se-resila-bezpecnost-5g-siti/
https://www.lupa.cz/aktuality/spojene-staty-varuji-pred-nasazovanim-huawei-i-do-nekritickych-soucasti-5g-siti/
https://www.lupa.cz/aktuality/spojene-staty-varuji-pred-nasazovanim-huawei-i-do-nekritickych-soucasti-5g-siti/
https://www.lupa.cz/aktuality/spojene-staty-varuji-pred-nasazovanim-huawei-i-do-nekritickych-soucasti-5g-siti/
https://www.cnet.com/health/5g-coronavirus-conspiracy-theory-sees-77-mobile-towers-burned-report-says/
https://www.cnet.com/health/5g-coronavirus-conspiracy-theory-sees-77-mobile-towers-burned-report-says/
https://www.cnet.com/health/5g-coronavirus-conspiracy-theory-sees-77-mobile-towers-burned-report-says/
https://www.nytimes.com/2020/04/10/technology/coronavirus-5g-uk.html
https://www.nytimes.com/2020/04/10/technology/coronavirus-5g-uk.html
https://abcnews.go.com/Health/wireStory/conspiracy-theorists-burn-5g-towers-claiming-link-virus-70258811
https://abcnews.go.com/Health/wireStory/conspiracy-theorists-burn-5g-towers-claiming-link-virus-70258811
https://abcnews.go.com/Health/wireStory/conspiracy-theorists-burn-5g-towers-claiming-link-virus-70258811
https://www.dds-foundation.org/how-dds-works/
https://www.dds-foundation.org/how-dds-works/
https://www.rti.com/products/dds-standard
https://www.dds-foundation.org/what-is-dds-3/
https://www.dds-foundation.org/what-is-dds-3/
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery_server.html#discovery-server
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery_server.html#discovery-server
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery_server.html#discovery-server
https://fast-dds.docs.eprosima.com/en/latest/

6. Conclusion
[61] “Activity | Android Developers – developer.android.com.” https://de

veloper.android.com/reference/android/app/Activity#onCreat
e(android.os.Bundle). [Accessed 18-May-2022].

[62] “Activity | Android Developers – developer.android.com.” https://de
veloper.android.com/reference/android/app/Activity#onDestr
oy(). [Accessed 18-May-2022].

[63] “Activity | Android Developers – developer.android.com.” https://de
veloper.android.com/reference/android/app/Activity#onConfi
gurationChanged(android.content.res.Configuration). [Accessed
18-May-2022].

[64] “LocationListener | Android Developers – developer.android.com.” https:
//developer.android.com/reference/android/location/Locatio
nListener. [Accessed 18-May-2022].

[65] “17.1.5.4. Topic ; Fast DDS 2.6.0 documentation – fast-
dds.docs.eprosima.com.” https://fast-dds.docs.eprosima.c
om/en/latest/fastdds/api_reference/dds_pim/topic/topic_cla
ss.html. [Accessed 18-May-2022].

[66] “1. Introduction ; Fast DDS 2.6.0 documentation – fast-
dds.docs.eprosima.com.” https://fast-dds.docs.eprosima.c
om/en/latest/fastddsgen/introduction/introduction.html.
[Accessed 18-May-2022].

[67] “3. Linux installation from sources; Fast DDS 2.6.0 documentation –
fast-dds.docs.eprosima.com.” https://fast-dds.docs.eprosima.com
/en/latest/installation/sources/sources_linux.html. [Accessed
18-May-2022].

[68] “Android ABIs | Android NDK | Android Developers – developer.an-
droid.com.” https://developer.android.com/ndk/guides/abis.
[Accessed 18-May-2022].

[69] “6. CMake options; Fast DDS 2.6.0 documentation – fast-
dds.docs.eprosima.com.” https://fast-dds.docs.eprosima.com
/en/latest/installation/configuration/cmake_options.html.
[Accessed 18-May-2022].

[70] “CMake | Android NDK | Android Developers – developer.android.com.”
https://developer.android.com/ndk/guides/cmake#android_pla
tform. [Accessed 18-May-2022].

[71] “ifaddrs.h header not found when compiling SDL for android – stack-
overflow.com.” https://stackoverflow.com/a/57112520/18940278.
[Accessed 18-May-2022].

54

https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onDestroy()
https://developer.android.com/reference/android/app/Activity#onDestroy()
https://developer.android.com/reference/android/app/Activity#onDestroy()
https://developer.android.com/reference/android/app/Activity#onConfigurationChanged(android.content.res.Configuration)
https://developer.android.com/reference/android/app/Activity#onConfigurationChanged(android.content.res.Configuration)
https://developer.android.com/reference/android/app/Activity#onConfigurationChanged(android.content.res.Configuration)
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/topic/topic_class.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/topic/topic_class.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/topic/topic_class.html
https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html
https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html
https://fast-dds.docs.eprosima.com/en/latest/installation/sources/sources_linux.html
https://fast-dds.docs.eprosima.com/en/latest/installation/sources/sources_linux.html
https://developer.android.com/ndk/guides/abis
https://fast-dds.docs.eprosima.com/en/latest/installation/configuration/cmake_options.html
https://fast-dds.docs.eprosima.com/en/latest/installation/configuration/cmake_options.html
https://developer.android.com/ndk/guides/cmake#android_platform
https://developer.android.com/ndk/guides/cmake#android_platform
https://stackoverflow.com/a/57112520/18940278

.................................... 6.1. Future work

[72] “NETLINK_ROUTE socket binding not available on Android 11+, can
we live without it for Android? · Issue #6251 · arvidn/libtorrent –
github.com.” https://github.com/arvidn/libtorrent/issues/6251.
[Accessed 18-May-2022].

55

https://github.com/arvidn/libtorrent/issues/6251

56

Appendix A
Latency Measurements

Overall [s] Network [s] Android Auto [s]

0,233 0,133 0,100

0,233 0,133 0,100

0,500 0,367 0,133

0,267 0,167 0,100

0,300 0,167 0,133

0,200 0,100 0,100

0,250 0,167 0,083

0,233 0,167 0,067

0,233 0,100 0,133

0,183 0,117 0,067

0,200 0,100 0,100

0,400 0,300 0,100

0,200 0,133 0,067

0,267 0,133 0,133

0,633 0,567 0,067

0,233 0,133 0,100

0,367 0,300 0,067

0,317 0,217 0,100

0,317 0,250 0,067

Table A.1: Latency measurement with hotspot inside the vehicle

57

A. Latency Measurements

Overall [s] Network [s] Android Auto [s]

0,250 0,083 0,333

0,150 0,108 0,258

0,433 0,083 0,517

0,100 0,117 0,217

0,400 0,100 0,500

0,117 0,083 0,200

0,100 0,083 0,183

0,300 0,083 0,383

0,150 0,100 0,250

0,183 0,100 0,283

0,133 0,067 0,200

0,083 0,117 0,200

0,083 0,100 0,183

0,150 0,100 0,250

0,133 0,100 0,233

0,317 0,117 0,433

Table A.2: Latency measurement with hotspot outside the vehicle

58

	Introduction
	Goals
	Thesis structure

	Background
	Android
	Applications

	Java Native Interface
	Kotlin
	Kotlin samples

	MirrorLink
	Android Auto
	Testing

	AA Mirror
	OBD-II
	CAN
	ELM327
	Reading data from a vehicle
	Testing

	5G cellular network
	Testing

	DDS
	Discovery
	Fast DDS

	Design & Analysis
	Requirements
	Selected technology
	Backwards compatibility
	Programming language
	Connection to the vehicle
	DDS

	Architecture
	Model
	Communication
	Support components

	Implementation
	User interface
	Main Activity
	onCreate
	onDestroy
	onConfigurationChanged
	onLocationChanged
	drawDanger

	Handlers
	InfoHandler
	CrossingHandler
	JNI

	Native Publisher and Subscriber
	CarInfo publisher
	CrossingInfo subscriber

	Networking
	Local network
	Discovery server over the Internet
	VPN
	Solution

	Supplemental files
	IDLs
	Generated files

	Installation guide
	Compilation from sources
	Launch from Android Studio

	Shapes
	Supporting software
	Publishers
	Subscribers

	Evaluation
	Performance

	Conclusion
	Future work

	Bibliography
	Latency Measurements

