
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Business Rules in Blockchain Smart Contracts
Bc. Ondřej Šelder
Ing. Marek Skotnica
Informatics
Managerial Informatics
Department of Software Engineering
until the end of summer semester 2022/2023

Instructions

Business rules and their execution are adopted in almost every organization. The rules
are usually expressed in a decision management notation (DMN) standardized by the
OMG organization. This thesis aims to evaluate how the business rules can be executed
in blockchain smart contracts and implement an open-source algorithm that generates
the smart contract code from the DMN format. The results will be demonstrated in a
simple case study.

Steps to take:
- Explore the DMN standard and current blockchain platforms
- Compare the suitability of different smart contract programming languages for the
execution of business rules
- Design, implement and test an algorithm to convert DMN rules to selected blockchain
programming language
- Perform a proof-of-concept case study to demonstrate the feasibility of the proposed
algorithm

Electronically approved by Ing. David Buchtela, Ph.D. on 11 January 2022 in Prague.

Master’s thesis

Business Rules in Blockchain Smart
Contracts

Bc. Ondřej Šelder

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 2, 2022

Acknowledgements

I would like to express my gratitude to the people who supported me and
helped me while I was completing my master’s thesis. First and foremost, I
would like to thank my supervisor Ing. Marek Skotnica for his help, time,
and guidance. My appreciation goes also toward my family, and friends for all
their support at the time I was working on this thesis and during my university
studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 2, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Ondřej Šelder. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šelder, Ondřej. Business Rules in Blockchain Smart Contracts. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

Abstract

Business rules now define activities throughout most organizations. Their use
leads to increased consistency of outputs, better morale of employees, and
more satisfied customers. Together with the blockchain network, they can
significantly reduce transaction costs and automatize processes.

This thesis explores the possibilities of transforming business rules written
in DMN notation to run in the blockchain. Suitable technology for the gen-
eration of smart contracts is analyzed. Then, the implementation and testing
of the conversion itself are described. The thesis also contains a simple case
study showing the benefits of the selected approach.

Keywords business rules, DMN, smart contract, Solidity, Plutus

vii

Abstrakt

Podniková pravidla dnes definuj́ı aktivity ve většině organizaćıch. Jejich použit́ı
vede ke zvýšené konzistenci výstup̊u, lepš́ı morálce zaměstnanc̊u a spoko-
jeněǰśım zákazńık̊um. Společně s technologíı blockchain s nimi lze také výrazně
sńıžit transakčńı náklady a automatizovat procesy.

Tato práce zkoumá možnosti transformace podnikových pravidel napsaných
v notaci DMN pro jejich spuštěńı v śıti blockchain. Proces generace smart
kontrakt̊u, pro který bude vybrána vhodná technologie, je následně je imple-
mentován a otestován. Práce také obsahuje jednoduchou př́ıpadovou studii,
která představuje výhody zvoleného postupu.

Kĺıčová slova podniková pravidla, DMN, smart kontrakt, Solidity, Plutus

viii

Contents

Introduction 1

1 Theoretical Foundations 3
1.1 Business Process Management 3
1.2 Business Rules and DMN . 10
1.3 Blockchain Technology . 15
1.4 Smart Contract . 21
1.5 Ethereum Platform . 25
1.6 Cardano Platform . 29
1.7 Chapter Summary . 35

2 Business Rule as Smart Contract 37
2.1 Representation of DMN Business Rule 37
2.2 Generation of Smart Contract 39
2.3 Chapter Summary . 54

3 Proof of Concept: Implemented Generator 55
3.1 Used Technologies . 55
3.2 Software Architecture . 58
3.3 Testing . 61
3.4 Chapter Summary . 62

4 Proof of Concept: Case Study 63
4.1 Asylum Procedures in Europe 63
4.2 As-Is Analysis: Collection of Resources 64
4.3 As-Is Analysis: Modeled Process 70
4.4 To-Be Analysis: Modeled Process 75
4.5 To-Be Analysis: Simulation . 84
4.6 Chapter Summary . 96

ix

Conclusion 97

Bibliography 99

A Acronyms 107

B Contents of enclosed CD 109

x

List of Figures

1.1 Business Process Management Lifecycle 4
1.2 Applicability of BPMN, BORM, and DEMO for Organizational

Management Levels . 5
1.3 Example of Communication between Pools in BPMN 6
1.4 BPMN Types of Tasks . 8
1.5 BPMN Data Objects . 9
1.6 BPMN Swimlines . 9
1.7 BPMN and DMN Modeling Aspects 11
1.8 Decision Requirements Diagram with Value Expression 12
1.9 Example of the Decision Table . 14
1.10 Technologies behind the Bitcoin . 17
1.11 Graphic Representation of Blockchain 18
1.12 Definition of the Basic UTXO . 18
1.13 Categorization of Consensus Algorithms 20
1.14 Adoption of TCP/IP and Blockchain 24
1.15 Structure of EVM Operations . 26
1.16 Code Example of the Solidity . 27
1.17 Architecture of the Plutus Platform 31
1.18 Code Example of the Plutus Tx . 32

2.1 Solidity Template: General Contract 40
2.2 Solidity Template: Output Structure 40
2.3 Solidity Template: String Comparison 41
2.4 Solidity Template: Any Hit Policy 41
2.5 Solidity Template: Unique Hit Policy 42
2.6 Solidity Template: First Hit Policy 42
2.7 Solidity Template: Main Function for Priority Hit Policy 43
2.8 Solidity Template: Helper Function for Priority Hit Policy 43
2.9 Solidity Template: Output Order Hit Policy 44
2.10 Solidity Template: Rule Order Hit Policy 45

xi

2.11 Solidity Template: Collect Hit Policy with Count Aggregation . . . 45
2.12 Solidity Template: Collect Hit Policy with Sum Aggregation . . . 45
2.13 Solidity Template: Collect Hit Policy with Min and Max Aggrega-

tions . 46
2.14 Plutus Template: General Module 47
2.15 Plutus Template: Output Structure 48
2.16 Plutus Template: Function for Rule Evaluation 48
2.17 Plutus Template: Function for Rule Evaluation of Collect (Count) 48
2.18 Plutus Template: Function for Application of Rules 49
2.19 Plutus Template: String Comparison 49
2.20 Plutus Template: Unique Hit Policy 50
2.21 Plutus Template: Any Hit Policy 50
2.22 Plutus Template: Priority Hit Policy 51
2.23 Plutus Template: First Hit Policy 51
2.24 Plutus Template: Output Order Hit Policy 52
2.25 Plutus Template: Rule Order Hit Policy 52
2.26 Plutus Template: Collect Hit Policy with Min and Max Aggregations 52
2.27 Plutus Template: Collect Hit Policy with Sum Aggregation 53
2.28 Plutus Template: Collect Hit Policy with Count Aggregation . . . 53

3.1 Interface of DasContract Editor . 56
3.2 Abstraction: Class Diagram Selection 59
3.3 Solidity Converter: Class Diagram Selection 60

4.1 Flow Chart of the Irish Asylum Procedure 65
4.2 Descriptive As-Is Model of the Asylum Procedure: Part One . . . 71
4.3 Descriptive As-Is Model of the Asylum Procedure: Part Two . . . 72
4.4 Descriptive As-Is Model of the Asylum Procedure: Part Three . . 72
4.5 Descriptive As-Is Model of the Asylum Procedure: Part Four . . . 73
4.6 Preview of the Analytic As-Is Model 73
4.7 Descriptive To-Be Model of the Asylum Procedure: Part One . . . 76
4.8 Descriptive To-Be Model of the Asylum Procedure: Part Two . . . 77
4.9 Descriptive To-Be Model of the Asylum Procedure: Part Three . . 78
4.10 Descriptive To-Be Model of the Asylum Procedure: Part Four . . . 78
4.11 Executable BPMN Model for Asylum Procedure 79
4.12 Decision Table of the Review Initial Admissibility Business Rule . 80
4.13 Decision Table of the Stream One Priority Business Rule 81
4.14 Decision Table of the Stream Two Priority Business Rule 82
4.15 Decision Table of the Final Decision Business Rule 83
4.16 Smart Contract Endpoint in Remix IDE 84
4.17 Checking Status of Tasks . 85
4.18 Invalid Task Call . 85
4.19 First Simulation Case: Preliminary Information 86
4.20 Second Simulation Case: Preliminary Information 87

xii

4.21 Second Simulation Case: Admissibility Approval 88
4.22 Second Simulation Case: Take Back Request 89
4.23 Third Simulation Case: Preliminary Information 90
4.24 Third Simulation Case: Prioritization 91
4.25 Third Simulation Case: Final Decision 92
4.26 Third Simulation Case: Final Approval 93
4.27 Fourth Simulation Case: Preliminary Information 94
4.28 Fourth Simulation Case: Final Decision 95
4.29 Fourth Simulation Case: Final Approval 95

xiii

Introduction

Business Process Modeling is a great tool to design processes in organizations
or evolve existing ones according to the management’s strategy. The moving
forces behind strategies are business rules, which are definitions of operations
and constraints. Without them, the quality of products and services may
decrease together with the morale in the organization. Business rules can be
expressed using a variety of modeling standards.

Some of such standards are Decision and Model Notation (DMN) and Busi-
ness Process Modeling Notation (BPMN). They both complement each other,
but as the name suggests, the DMN is more focused on decision management.
Business rules depicted in a certain level of DMN conformance can be made
executable which streamlines automatization.

In business and government, where many transactions are occurring be-
tween multiple interested parties, blockchain technology can reduce the cost
per transaction. Once there is this peer-to-peer network established, it is pos-
sible to enhance it with self-executing codes in the form of smart contracts.

The development of smart contracts requires a higher level of expertise.
The code must be without errors since it cannot be modified once it is de-
ployed. As the adoption of blockchain technology is spreading, many new
software solutions are developed to overcome mentioned obstacles. DasCon-
tact is a visual language based on BPMN that simplifies the creation of smart
contracts. It can also help to discover insecure parts in their design.

There are various possibilities for the selection of target smart contract
language. Solidity and Plutus are programming languages with professional
developer communities and research. Although, they are using different con-
cepts and approaches.

This thesis aims to analyze the suitability of both programming languages
for DMN business rules transformation and integrate sample generation to
DasContract Editor. The application’s offered solution is then showcased in
a simple case study exploring the improvement of asylum procedures with
generated smart contracts.

1

Introduction

Structure of the Thesis

The thesis is structured as follows:

Chapter 1 – Theoretical Foundations – describes the DMN standard
and how it can be used together with BPMN notation. Afterward, the
blockchain and smart contract technology are summarized with a focus
on Cardano and Ethereum platforms.

Chapter 2 – Business Rule as Smart Contract – explores ways of trans-
lating DMN business rules to Plutus and Solidity smart contracts. Then,
it compares their suitability for such a process.

Chapter 3 – Proof of Concept: Implemented Generator – presents own
implementation of smart contract generator from DMN business rules. It
lays out the used technologies and software architecture of DasContract
software that it extends.

Chapter 4 – Proof of Concept: Case Study – depicts the process of the
asylum procedure in the BPMN model for further improvement using
blockchain technology. The model together with business rules is then
translated to a smart contract with the use of mentioned software.

Conclusion – ends the thesis with a summary of the used solution and
evaluates the achievement of set goals. Lastly, possible directions for
future research are offered.

2

Chapter 1
Theoretical Foundations

In this chapter, the necessary background information and concepts are laid
out by the thesis to support any following exploration of methods. There are
two distinct topics in this chapter. In the first part, the DMN abstraction
of business rules that is a part of Business Process Modeling is described.
The second part of this chapter deals with the blockchain network. It starts
with the basics of the technology continuing with extensions that are currently
being worked on by Ethereum and Cardano platforms.

1.1 Business Process Management

A business process is a key tool for organizations to provide a service or
product to their customers and users. There are more definitions, but all of
them identify that it is a collection of activities that are achieving certain
objectives. [1]

Their principle was known in the past, but the need to identify and work
with such a concept was more prevalent past three decades. The field of
Business Process Management arose from the effort of businesses to gain and
maintain a competitive position in the market. The focus was on how to cre-
ate, manage and alter processes to achieve bigger quantity and better quality
of outputs, as well as reduce the cost and time to produce them. Another di-
mension in which the organizations can improve is to provide more services. [1]

1.1.1 Application of Business Process Management

Aalst et al. [2] define Business Process Management as follows: ”Supporting
business processes using methods, techniques, and software to design, enact,
control, and analyze operational processes involving humans, organizations,
applications, documents and other sources of information.”

Basically, Business Process Management is a field that utilizes information
technology to effectively organize people and introduce changes to the business

3

1. Theoretical Foundations

processes bringing improvement. Aalst et al. [2] divide the lifecycle of Business
Process Management into 4 stages.

Figure 1.1: Business Process Management Lifecycle [2]

The lifecycle that can be seen in the Figure 1.1 starts with Process design
where as-is models are designed and potentially redesigned. The second phase
called System configuration is the hardest from the view of standardization.
The information systems must be configured so that they are ready for the
execution of the models. The execution itself is done in the phase of Process
enactment. The last phase is an examination of operational processes labeled
Diagnosis. [1]

Business Process Management can be used on multiple levels and dimen-
sions of organizations but it is not limited by this view. Bandara et al. [3]
distinguish strategic, tactical, and operational levels in organizational man-
agement.

Business Process Management levels: [3]

• the strategic level – top management support, business and IT align-
ment, process organisation and governance issues

• the tactical level – process modeling, process performance measure-
ment and Business Process Management methodologies

• the operational level – technology capability, Service Oriented Ar-
chitectures (SOA) maturity in the technology landscape, use of XML
standards

1.1.2 Business Process Modeling

Business Process Modeling (BPM) is a key step in Business Process Man-
agement in depicting the current as-is or future to-be state of the processes

4

1.1. Business Process Management

in organizations. The output of this procedure is a visual representation of
the processes and it usually utilizes some modeling standard. The visualiza-
tion requires modeling in multiple iterations and collection of the information
through documentation exploration and discussions. [1]

Figure 1.2: Applicability of BPMN, BORM, and DEMO for Organizational
Management Levels [1]

Conceptualization of a process model involves identifying and representing
entities and relations between them. Aside from the BPM, the process mod-
eling can be done for multiple other reasons and different modeling standards
and methodologies were designed for them. [1]

Enterprise Modeling is a basis for Enterprise Engineering which is used
for the analysis, design, engineering, and implementation of enterprises. The
suitable methodology for it is the Design & Engineering Methodology for
Organizations (DEMO). [1]

Software Engineering utilizes process modeling for a different reason. The
Information Systems Development uses it for information systems implemen-
tation, based on understanding business processes. In this case, Business
Objects Relation Modelling (BORM) is applicable. [1]

For the BPM that serves as input for Business Process Engineering, the
reasons for process modeling are process validation, simulation, analysis, opti-
mization; Business Process Re-engineering, and knowledge management. The
useful standard for BPM is Business Process Model and Notation (BPMN). [1]
The applicability of each mentioned methodology or standard is depicted in
the Figure 1.2.

5

1. Theoretical Foundations

1.1.3 Business Process Model and Notation

In 2007, the Object Management Group created a Business Process Model
and Notation (BPMN) to provide a notation that will be readable by business
people and users or technical developers. It provides a bridge between design
and implementation that is standardized. BPMN is also designed so that
standardized formats for creating XML files are defined. Such an approach is
allowing that BPMN processes can be exchanged between different software
for visualisation. [4]

Figure 1.3: Example of Communication between Pools in BPMN [4]

Currently, the BPMN 2.0. is the actual version of the notation. A soft-
ware can claim that it is compliant with this standard only when matching the
compliance points in the specification. The software also claims compliance
toward certain conformance types. The types of conformance defined in the
specification are Process Modeling Conformance, Process Execution Confor-
mance, BPEL Process Execution Conformance, and Choreography Modeling
Conformance. BPEL is an abbreviation of Business Process Execution Lan-
guage. To claim Process Modeling Conformance the implementation must
support the BPMN core elements, process, collaboration, and conversation
diagrams.

There is also a possibility to be compliant with its Descriptive, analytical
and common executable conformance sub-classes. They are utilizing different
subsets of modeling elements and also some additional constraints. [4] An
example of a process modeled with the BPMN standard can be seen in the
Figure 1.3.

1.1.3.1 BPMN 2.0. Elements

Since the main goal of the BPMN is to create a standard visual language
that process modelers will recognize and understand, the key elements are
available graphical shapes or icons, and their semantics. Essentially, the pro-

6

1.1. Business Process Management

cess itself is modeled as a standard workflow connecting nodes with oriented
edges. There are multiple types of nodes with their graphical visualization,
rules, and constraints. The processes modeled as such are called orchestration
processes. [4]

The main building blocks are flow objects, data, connecting objects, swim-
lanes, and artifacts. More info about those elements will be provided in the
following sections. The process that is internal to a specific organization is
called private and it is contained within a pool that sets its boundaries. When
there are more participants introduced as their own processes inside the pool,
the term public process is used. [4]

Once there are multiple participants, the communication between them is
modeled in the collaboration processes with the use of message flows. The
communicating pools can be modeled as white boxes or black boxes. The
separations to pools and determination of their type depending on the modeler
and the nature of the modeled process. There are more diagrams in the BPMN
2.0. like Choreography diagrams and Conversation diagrams. Those types of
processes won’t be covered or used in this thesis. [4]

1.1.3.2 BPMN Elements: Flow Objects

The behavior of business processes is mainly defined by three flow objects:
Events, activities, and gateways. An Event is a circular symbol used in case a
certain situation occurs during the course of the process. Usually, events have
their triggers and results. Different kinds of them (message, timer, condition)
are distinguished by the corresponding internal markers inside the open center.
We are categorizing events either as Start, Intermediate, and End events or
as Catching, Throwing, and Non-interrupting. [4]

An Activity symbol is used for actual work that is performed in the or-
ganization in a process. When the Activity is atomic meaning that the work
in the process is not broken down to a finer level of detail, it is called Task.
The non-atomic Activities can be broken down into multiple types (collapsed,
expanded, call...) of sub-processes. Both atomic and non-atomic are shaped
as rounded rectangles. [4] The Figure 1.4 lists all types of Tasks.

For controlling the divergence and convergence of Sequence flows in a pro-
cess, a gateway element is used. It is used either as a fork or a join of multiple
paths. The type of behavior is indicated by internal markers inside the open
center of a Gateway that has a diamond shape. The types of Gateway activ-
ity are Exclusive, Inclusive, Event-based, Parallel, Parallel Event-Based, and
Complex. [4]

1.1.3.3 BPMN Elements: Data

Data can be defined in the diagrams with four available elements: Data Object,
Data Input, Data Output, and Data Stores. The Data Object represents either

7

1. Theoretical Foundations

Figure 1.4: BPMN Types of Tasks [4]

a singular object or a collection of objects and they provide information about
what Activities are producing or requiring to be performed. The Data Input
and Data Output are providing the same information for processes. All are
represented by a page icon with a blank arrow inside (Data Input) or a black
arrow inside (Data Output). [4] They are depicted in the Figure 1.5.

The Data Store element brings a mechanism for activities to get or set
stored information that will be persistent beyond the scope of the process.
The Data Store is visualized with a basic database icon and it can work as a
reference appearing multiple times in the same process. [4]

8

1.1. Business Process Management

Figure 1.5: BPMN Data Objects [4]

1.1.3.4 BPMN Elements: Connecting Objects

To connect multiple information in the diagram, four types of Flow Objects
are used. They are Sequence Flows, Message Flows, and Associations. [4]

The order in which the Activities are performed is defined by a Sequence
Flow that is represented by an edge with an arrowhead. The Message Flow
is visualized as a dashed edge with an arrowhead and shows the flow of send
and receive messages between two pools. [4]

An Association is depicted as a dashed edge or arrow. It links information,
data, and artifacts with other graphical elements. The arrowhead on the edge
is optional and indicates a direction of flow. [4]

1.1.3.5 BPMN Elements: Swimlines and Artifacts

Swimlines group previously described elements in two ways. A Pool represents
a participant in the Collaboration diagram or a distinctive set of activities from
other Pools. It is shaped like a rectangle with a separated section on the left
that contains its name. As mentioned, if the Pool has no internal details it can
be visualized as a black box. Lanes are sub-partitions within pools, splitting
them with vertical or horizontal lines. They are used to organize and classify
Activities. [4] The Figure 1.6 shows examples of how the swimlines can be
modeled.

Figure 1.6: BPMN Swimlines [4]

Additional information is added to the process via Artifacts. The modeler
can introduce their own set of Artifacts but the Group and Text Annotation
are standardized by the specifications. A Group is used to group graphical

9

1. Theoretical Foundations

elements within the same category and Text Annotations provide additional
information to the diagram’s reader. [4]

1.2 Business Rules and DMN

Operations, constraints that are applied to organizations are called business
rules. The reason for the necessity of business rules is to ensure consistency,
which is important for an organization to function, and evolve, but also to
deliver the products and services of the same quality. Ronald G. Ross in
his book Business Rule Concepts [5] writes that the consistency of expressing
business rules is ensured by well-defined business vocabulary.

The business vocabulary contains each noun concept and verb concept of
the operational business. The goal is that all structural components are unified
and unique. Even the best design behavior cannot work properly without good
structure. [5]

1.2.1 Decision Management and Decision Tables

Business rules directly support business operations by guiding day-to-day busi-
ness activities and shaping operational business judgments. Those two roles
coordinate business processes. There is also a role to make operational busi-
ness decisions that leads to decision management and decision tables. [5]

It is important to separate business rules from processes. When the busi-
ness rule is externalized as a separate resource, it is possible to develop them
at their own pace. The rule independence also helps to deliver better process
models that are more aligned with business bringing true agility. [5]

All business rules introduce exceptions to processes that are costly for
the organization. The costs are not due to implementations and maintenance,
but mainly because of the associated documentation, training, administration,
and time for communicating them. The effectiveness lies in having less but
well-defined and precise business rules. [5]

1.2.2 Decision Model and Notation

There are two different perspectives that are addressing decision-making.
Business process models can describe the coordination of decision-making
within business processes by defining specific tasks or activities. The decision-
making takes place within these activities and tasks. The second perspective
is a decision logic that can define the specific logic used to make individual
decisions (business rules, decision tables, or executable analytic models). [6]
The Decision Model and Notation (DMN) together with BPMN is a powerful
tool for BPM as can be seen in the Figure 1.7.

There are 3 levels of conformance after which software implementation can
claim that it is based on the DMN 1.3 Specification. [6]. The conformance

10

1.2. Business Rules and DMN

Figure 1.7: BPMN and DMN Modeling Aspects [6]

level 1 includes at least one Decision Requirements Diagram (DRD), decision
tables, and decision logic, but those models are not executable. Any natu-
ral or unstructured language can be used for definitions of expressions. The
conformance level 2 supports fully executable decision models and expressions
written in Simplified Friendly Enough Expression Language (S-FEEL). The
last conformance level 3 contains again fully executable decision models, ex-
pressions written in Friendly Enough Expression Language (FEEL), and the
full set of boxed expressions. [7]

Business analysts can use decision modeling to understand operational de-
cisions that are made on a periodic basis in an organization. Not only can
DMN be used to model human decision-making or to model requirements for
automated decision-making, but also for automated decision-making imple-
mentation itself. [6]

11

1. Theoretical Foundations

1.2.2.1 Decision Requirements Diagram

The Decision Requirements Graph (DRG) is an abstraction of decisions and
their connection rules with one another. The graph can be visualized in one
or more Decision Requirements Diagrams. The DRDs are modeling a domain
of decision-making. It contains the most important element involved in the
domain and the relations of those elements. The modeled elements are: [6]

• Decision element uses decision logic in boxed expressions to determine
an output from several inputs.

• Business Knowledge Model depicts a function encapsulating busi-
ness knowledge like a decision table, business rules, or an analytic model.

• Input Data denotes information used as an input for Decision elements.

• Knowledge Source represents authority for a Business Knowledge
Model or Decision.

• Decision Service denotes a set of internally or externally invocable
decisions that can be reused.

Figure 1.8: Decision Requirements Diagram with Value Expression [6]

The relations or more precisely dependencies represent requirements. An
Information Requirement denotes outputs of Input Data and Decisions that
are used as input to another Decision. A Knowledge Requirement is used
where the decision logic of a Decision invokes a Business Knowledge Model or
Decision Service. At last, an Authority requirement denotes a dependency of
other elements acting as a source of knowledge or guidance. DRD also contains
annotation artifacts like Text Annotation, Association, and Grouping. [6] An
example of the DRD is depicted in the Figure 1.8

12

1.2. Business Rules and DMN

1.2.2.2 DMN Boxed Expressions

Boxes expressions in DMN are graphical notations defining the logic of De-
cision elements and Business Knowledge Models. Together with DRDs, they
are forming a complete and functional DMN decision model. [7]

The decision logic model of a business rule can be decomposed using this
notation. The smaller pieces created this way can be then associated with
DRG artifacts. Boxed expression can contain other boxed expressions. They
are defined recursively. Each boxes expression shall contain its name that
serves as a visual link. [6]

The DMN 1.3 Specification defines different kinds of boxed expressions: [6]

• boxed literal expression

• boxed invocation

• decision table

• boxed FEEL expression

• boxed context

• boxed list

• relation

• boxed function

Boxed literal expressions are boxed expressions represented by their text.
There are two notational conventions provided to improve readability and
avoid confusion. Typographical string literals can be represented as initial-
ized or string literals but they should avoid commas. The specification also
describes the typographical date and time literals. [6]

Boxed invocation is a container for parameter bindings. They provide
context for business knowledge model evaluation. Such invoked model is rep-
resented by a box that contains a name and a list of bindings. Each binding
is consisting of the name of a parameter and binding expression. [6]

1.2.2.3 Decision Table

A decision table is one way how to express decision logic in DMN. An example
of such table can be seen in the Figure 1.9. The column in the table defines the
input conditions or outputs. It should contain all inputs for the determination
of the related output. [6]

The row is directly connected to one business rule that has the if-then
form. There could be a case where multiple rows match the input values.
For that, a specific hit policy has to be defined to specify which one will be
applied. The hit policies are either single or multiple. [7]

13

1. Theoretical Foundations

Figure 1.9: Example of the Decision Table [6]

There are 4 types of single hit policy. Unique hit policy states that no
overlaps are possible and all business rules should be disjoint. Any policy
type allows that multiple rows can be applied but only if they are tied to the
same output. If not, the result is undefined. [6]

Priority and First hit policies determine the output based on one matched
rule. For Priority policy, the table has to be provided with a prioritized list
of outputs in decreasing order of priority. The output is selected according
to this list if there are multiple matches. The First hit policy determines the
priority according to the order of rows. [6]

Multiple hit policies are returning a list of multiple outputs. There are 3
types with one having 5 subtypes. Output order has to be provided with a
prioritized list of outputs and the output of the table is sorted according to
this list. Rule order sorts its output according to the order of rows. [6]

If no order is applied the Collect hit policy is used and does not guarantee
the ordering of the output list. It has 4 more variants that can return the
sum, the count, the smallest, or the largest value of all the outputs. [6]

1.2.2.4 FEEL

If software states a certain conformance level, all used boxed expressions must
apply to FEEL syntax specification. Conformance level 2 requires simplified
S-FEEL syntax, which is just a subset of FEEL. This language is used for
expressions inside the boxed expressions. [6]

It was designed to be side-effect free with syntax for a wide audience.
FEEL also brings some features like a simple data model with numbers, dates,
strings, lists, and contexts and three-valued logic (null, true, false). [6]

Not only the FEEL serves as a textual notation for boxed expressions but
also as a robust language to represent the logic of DRGs. The main purpose

14

1.3. Blockchain Technology

of this is to compose the semantics simply and uniformly. [6]
Aside from alphabetical characters, the language supports whitespaces and

a few special characters. There exist various limitations that apply to variable
and function names like reserved keywords. [7]

1.3 Blockchain Technology

A great amount of today’s computing and information systems are distributed.
Once the clock speed of processors got into its physical limits, hardware archi-
tecture became distributed. Both data storage and computational power per-
form their logic on multiple machines. Another reason for distributed systems
is protection against human attacks and mistakes or geographical constraints
and risks. Summarized, current computers are distributed for geography, par-
allelism, reliability, and availability reasons. [8]

The introduction of distributed systems brings certain coordination prob-
lems that need to be dealt with. With an increasing number of nodes in the
network, the frequency of node failure is getting higher. The solution to many
of those failures is their toleration with enough redundancy. [8]

Wattenhofer [8] distinguishes two types of distributed systems that do
not have a central node: permissioned systems and permissionless systems.
As the name suggests the permissioned systems require specific permission
to access the consensus process. They are sometimes called private systems.
On the other hand, permissionless systems are public for participation in the
consensus process, which brings new coordination problems when achieving
state replication. One of such permissionless systems is blockchain. [8]

In the financial tech industry circles, the term blockchain can be viewed
as synonymous with the term state replication. Still, there are many other
usages of that word depending on the context. From a technical perspective,
the blockchain can be also described as a decentralized consensus mechanism,
distributed shared ledger, or a data structure. [9]

1.3.1 State Replication

The main problem that blockchain solves is state replication. State replica-
tion is a key property for distributed systems and Wattenhofer [8] defines it
as follows: A set of nodes achieves state replication if all nodes execute a
(potentially infinite) sequence of commands c1, c2, c3,. . . , in the same order.

The technology achieving state replication must be able to sustain both
fault-tolerance and malicious behavior of its nodes. Paxos is an algorithm
that can achieve a state replication even with a minority of crashing nodes
in the distributed system. Practical Byzantine Fault Tolerance (PBFT) is a
central protocol for asynchronous byzantine state replication. The finding of
consensus is called byzantine when it can contain any node which can have
arbitrary behavior. This includes actions like not sending any messages at

15

1. Theoretical Foundations

all or sending a wrong or false message to other nodes. Both Paxos and
PBFT are permissioned systems that enable state replication under certain
circumstances. The very first permissionless system was the Bitcoin network
which uses decentralized consensus. [8]

1.3.2 Decentralization

One of the key characteristics of blockchain technology is decentralization.
The basic idea behind decentralization is a distribution of control and author-
ity out of a centralized node in a system. In organizations, this can lead to
multiple benefits due to reduced workload from top management like increased
efficiency, quicker decision making, and better motivation. [9]

The model of blockchain allows anyone to compete to become the decision-
making authority. Thus decentralization arises from the absence of one central
authority that governs the entire system. The decentralized consensus mech-
anism of Bitcoin known as the Proof of Work algorithm enables users to agree
on something without the need for a central trusted third party, intermediary,
or service provider. [9]

1.3.3 Bitcoin Network

A significant reason for use of distributed systems and cryptography is to se-
curely store transactions. In 1971 NASDAQ used distributed ledger in the
first computerized stock market. Bitcoin was the first permissionless decen-
tralized system that was able to reliably store transactions. The introduction
of Bitcoin in 2008 [10] in the paper titled Bitcoin: Peer-to-Peer Electronic
Cash System did not bring any new technologies. Even the term blockchain
has origins in the cryptocurrency HashCash from 1997. The technologies like
Proof of Work, Merkle trees, or public-key cryptography were discovered be-
tween the 1970s and early 1990s. [8] The graphic with the technologies behind
the Bitcoin can be seen in the Figure 1.10.

The definition of the Bitcoin network provided by Wattenhofer [8] is this:
The Bitcoin network is a randomly connected overlay network of a few thou-
sand nodes, controlled by a variety of owners. All nodes perform the same
operations i.e., it is a homogenous network and without central control.

The CAP Theorem states that it is impossible for a distributed system to
provide the following characteristics at the same time:

• Consistency - All nodes in the system agree on the current state of the
system. [8]

• Availability - The system is operational and instantly processing in-
coming requests. [8]

• Partition Tolerance - It is the ability of a distributed system to con-
tinue operating correctly even in the presence of a network partition. [8]

16

1.3. Blockchain Technology

Figure 1.10: Technologies behind Bitcoin [9]

Bitcoin sacrifices consistency in favor of availability and partition toler-
ance. But it achieves eventual consistency which guarantees that the state
replication is sooner or later gained even if there could be temporarily no
consensus in the system. [8]

1.3.4 Anonymity and Irreversibility of Bitcoin

The aspects of anonymity and irreversibility of Bitcoin and blockchain, in
general, arise from the uses of cryptography in different parts of the distributed
filesystem. Anonymity in the system is achieved with the use of public-key
cryptography and the irreversibility through hashing and verification of the
blockchain’s consistency. Still, various techniques have been developed and
applied to trace the flow of transactions throughout the network and link them
to actual nodes making the system pseudo-anonymous. [9] The Figure 1.11
depicts a representation of the blockchain data structure.

Bitcoin network is dependent on the use of asymmetric cryptography, hash
functions, and digital signatures. The user of Bitcoin can generate multiple
private keys that uniquely identify the owner of funds of an address. An
address is a term interchangeable with a public key which is derived from the
private key and identifies a recipient of a transaction. [8]

The cryptographic hash functions like SHA256 and RIPEMD160 are widely
used. The other cryptographic tools that Bitcoin uses are Merkle trees and
the Elliptic Curve Digital Signature Algorithm. [8]

17

1. Theoretical Foundations

Figure 1.11: Graphic Representation of Blockchain [11]

1.3.5 Unspent Transaction Output

Unspent Transaction Output (UTXO) is a concept of Bitcoin’s distributed
ledger. It is defined in the Figure 1.12. An output is a tuple of an amount
of coins and most commonly a valid signature. The signature is associated
with the private key of an address and it can be replaced or enhanced by any
other spending condition. The output exists in an unspent state or a spent
state and every output can be spent only once. The sum of unspent outputs
associated with an address is a balance of the user’s funds. The shared state of
Bitcoin is consisting of a set of Unspent Transaction Outputs and additional
global parameters. [8]

Figure 1.12: Definition of the Basic UTXO [12]

An input is a tuple that consists of a reference to the previous output

18

1.3. Blockchain Technology

and most commonly signature that proves that the creator of the transaction
is able to prove ownership of the referenced output. The transfer of coins
from spenders to recipients is represented by a data structure. This structure
consists of inputs that are removed from UTXO and new outputs that are
added to UTXO. [8]

1.3.6 Proof of Work Algorithm

Due to byzantine nodes, there is a possibility that multiple transactions at-
tempt to spend the same output. This situation is called double-spend. The
shared state becomes inconsistent since only one transaction can be valid. Be-
cause of that, conflict resolution functionality is needed in the blockchain net-
work. This mechanism decides which of those conflicting transactions should
be accepted to achieve eventual consistency. [8]

Proof of Work (PoW) is a mechanism that allows a party to prove to an-
other party that a certain amount of computational resources has been utilized
for a period of time. A function Fd(c, x) → true, false, where difficulty d is
a positive number, while challenge c and nonce x are usually bit-strings, is
called a Proof of Work function if it has following properties:

• Fd(c, x) is fast to compute if d, c, and x are given.

• For fixed parameters d and c, finding x such that Fd(c, x) = true is
computationally difficult but feasible. The difficulty d is used to adjust
the time to find such an x. [8]

The so-called miner that finds a valid nonce for its PoW function can
accept transactions to the memory pool and broadcast them inside a block.
By doing that, he or she receives a reward transaction. This block consists of a
list of transactions, nonce, and a reference to its previous blocks. This creates
a Blockchain – the longest path from the root block. This structure functions
as a consistent transaction history on which everyone eventually agrees. The
value of the reward the miner receives is expected to be close to the energy
and infrastructure used in the PoW mechanic. [8]

1.3.7 Other Consensus Algorithms

There is some inherent characteristic of the blockchain that is difficult to
avoid. Bitcoin network is difficult to scale because it relies on confirmation in
the blockchain. Transaction history is stored on every node and reconstructed
from the root node. Another problem viewed by a part of the blockchain
community is the large energy consumption of permissionless blockchains that
are wasted because of the block validation happening in PoW. [8]

Other consensus algorithms are trying to solve the consumption problem.
The most known of them is a Proof of Stake (PoS) algorithm ad it will be

19

1. Theoretical Foundations

Figure 1.13: Categorization of Consensus Algorithms [13]

described in the next section. There are also enhanced variants of PoS like
Delegated Proof of Stake or Leased Proof of Stake that are less common. Other
ways of achieving consensus in public blockchains are Proof of Space and Proof
of Retrievability which determines the power of the miner by his or her free disk
storage. The already mentioned PBFT algorithm is suitable for permissioned
distributed systems like Hyperledger Fabric. The same suitability also applies
to Proof of Elapsed Time. [14] The Figure 1.13 contains the categorization
of the consensus algorithms.

1.3.8 Proof of Stake Algorithm

Proof of Stake is trying to avoid this consumption by removing the principle
of rewards received based on random miner solving a cryptographic puzzle.
Instead of that, the rewards are distributed proportionally to the stake of
owned funds in the system. [8]

Chain-based PoS introduced lottery tickets where accounts receive them
by their economic proportion. Then a pseudorandom lottery winner is selected
to add a block to the blockchain. This opens the problem that some actual
winners do not produce the new block in time. A voting phase was added
where the winner only proposes the new block and a committee then votes if
the block will be accepted. Still, by its nature, the PoW is prone to certain
attacks, like nothing at stake attacks or long-range attacks, that are possible in
the PoS. They are theoretically possible in both algorithms but the enormous

20

1.4. Smart Contract

amount of computing power to achieve successful attacks goes against the
attacker in the PoW algorithm. [8]

1.4 Smart Contract

A smart contract can be viewed as a small decentralized program. The concept
of smart contract was introduced independently from blockchain a does not
need it to run. The security advantages of blockchain lead to a situation that
it is becoming to be used as a decentralized execution platform for smart
contracts. [9]

It is possible to implement some business logic and a limited amount of
data in the form of a smart contract. But the nature of blockchain technology
brings some constraints to those programs. The following section will be
exploring smart contracts, their characteristics, variations, and limitations.

1.4.1 Codebase of Bitcoin

The functionality of Bitcoin can be extended beyond the transfer of funds if
enough of the miner community decides. This is possible due to a custom
scripting language called Script which supports many functions and evaluates
to true or false values. To avoid DoS attacks, some of those functions were
disabled. The Script is currently kept simple and does not have the complexity
of other programming languages. The code is executed when a new transaction
is validated. [8]

The Script is lacking loops to avoid any undesirable long-running codes in
the network. Many words, commands, or functions known as Opcodes were
also excluded throughout its existence due to found bugs. Therefore it is not
a Turing complete language. The Opcodes categories (constants, flow control,
stack, bitwise logic, splice, arithmetic, cryptography, and lock time) together
form standard transaction scripts. The most used payment transaction types
are Pay to Public Key Hash, Pay to Script Hash, and Pay to MultiSig. Null
Data transaction type enables to store arbitrary data on the blockchain up to
40 bytes. [9]

1.4.2 Concept of Smart Contract

The term smart contract was first used by Nick Szabo in 1993 in an article
discussing tools that can help small businesses to operate in multinational
markets. [15] Szabo further defines the term in the glossary as follows: A
set of promises, including protocols within which the parties perform on the
other promises. The protocols are usually implemented with programs on a
computer network, or in other forms of digital electronics, thus these contracts
are ”smarter” than their paper-based ancestors. No use of artificial intelligence
is implied [16]

21

1. Theoretical Foundations

Currently, it is strictly tied to blockchain which ensures the correct exe-
cution of an agreement between two or more parties. Special programming
languages for writing smart contracts allow the implementation of business
logic encoded in the blockchain network. Blockchain then acts as a mediator
between sides of an agreement performing an agreed-upon action. It is a code
that has associated storage in the blockchain and can execute complex logic.
Smart contracts cannot be altered once they are deployed otherwise the con-
cept is violated. There is one exception in a form of mutable storage with
which updates are possible. [8]

1.4.3 Programming Languages for Smart Contracts

The smart contract is generally written in a higher programming language like
Solidity and compiled down to Turing complete low-level programming lan-
guage. [8] The programming languages were often based on existing languages
for standard software development. The object-oriented paradigm of Python
is used in Vyper and Serpent languages. [9]

On the other hand, Plutus Tx utilizes Haskell, which is a functional pro-
gramming language, as the basis. It is basically a library for Haskell and
compiled down to multiple lower layers. The compilation pipeline ends at
Plutus Core which runs on the blockchain. [17] Nowadays there are also at-
tempts to enable compilation to the blockchain of generally known and used
languages like JavaScript. Still, Solidity is most popular for writing smart
contracts and it became almost a standard for Ethereum blockchain. [9]

1.4.4 Smart Contract Templates

Most of the current blockchain use cases are in the financial industry. There is
an idea to create domain-specific templates to make the conduction of smart
contracts easier for less technical users. Domain-specific languages are nothing
new to the financial industry and they are developed with limited expressive-
ness and specific areas of interest. [9] One of such domain-specific languages
is Marlowe and it is built as a platform for decentralized finance (DeFi). [18]

The idea of a domain-specific programming language for writing smart
contracts is further expanded in a form of graphical languages. On platforms
like Caterpillar or DasContract, it is possible to define semantics with graphic
elements that are then processed into smart contracts and possibly deployed
to the blockchain. [9]

Caterpillar is a system built on top of the Ethereum blockchain and pro-
vides modeling tools to develop smart contracts. [19] DasContract is a similar
system developed by CCMi Research at the Czech Technical University in
Prague. It aims to provide a visual language and platform that can generate
smart contracts written in multiple programming languages like Solidity or

22

1.4. Smart Contract

Plutus Tx. The DasContract is based on DEMO, BPMN, and UML modeling
standards and languages. [20]

1.4.5 Oracle

Since the technologies behind blockchain networks assure that the contracts
and transactions in it are not corrupted, the way how to read external data
is limited. The so-called Oracle is an interface that delivers external data to
smart contracts in secured channels. [9]

Oracles would be able to deliver various types of data to blockchain:
weather reports, real-world news, corporate actions, and data from the In-
ternet of Things devices. Those data cannot be altered to assure trust. The
centralization is also avoided by introducing distributed mechanisms to de-
centralized Oracles. [9]

The Oracles must be trusted entities. Even then, they are posing a security
risk to the system that cannot be disregarded. There is also a concept of Smart
Oracles which allows the execution of smart contract code by the Oracles. [9]

1.4.6 Smart Contract Platforms

This thesis will be mainly focused on the blockchain projects Cardano and
Ethereum that also provides the platforms for smart contracts. There are
other platforms supporting self-executable codes. Notable public blockchain
systems are Nem, Stellar, Waves, Neo, EOS, and RSK. Except for the RIDE
language of the Waves platform, every other utilizes existing language for
smart contracts. [21]

In terms of permissioned systems, Hyperledger Fabrics is a well-established
blockchain platform that uses Java to write codes deployed to Docker contain-
ers. It uses the PBFT algorithm as a mechanism to achieve consensus. Other
private blockchains to mention are Corda, Tendermint, and Quorum. [21]

1.4.7 Decentralized organizations

A smart contract or a set of smart contracts can be viewed as real human
organizations with people and protocols. Such a model is called Decentralized
organization and strictly relies on human input to execute business logic. [9]

The Distributed autonomous organization (DAO) also implements gover-
nance and business logic rules on top of a blockchain that are fully automa-
tized. Such a model can be applied in the real-world legal system in theory, but
currently, they have no legal status and still have some technical problems. [9]

The first implementation of DAO was the Ethereum platform. The DAO
was a venture capital fund project raising 168 million USD. A bug in the code
of The DAO caused hacking attacks on the blockchain. This opened up a
debate on the security and the quality of DAOs. Currently, formalization and
standardizations of smart contracts are trying to avoid those incidents. [9]

23

1. Theoretical Foundations

1.4.8 Adoption of Blockchain in Business

Marco Iansiti and Karim R. Lakhani [22] liken the adoption of blockchain to
the adoption of TCP/IP in an article in the Harvard Business Review mag-
azine. Communication protocol TCP/IP started in a single-use case among
researchers. Then bigger companies used it in smaller internal networks to re-
place the expensive construction of dedicated lines. The use of the protocol by
the majority of the world came after the advent of the World Wide Web and
the lowering of the connectivity cost once the infrastructure was built. There
are parallels between blockchain and TCP/IP. Both are open and shared tech-
nologies and they were started by small groups of people. Instead of lowering
the cost of connectivity, blockchain has the potential to reduce the cost of
transactions. [22]

Figure 1.14: Adoption of TCP/IP and Blockchain [22]

In the analysis of the mentioned article, two dimensions affect how a foun-
dational technology and its use cases in the business unfold. The first dimen-

24

1.5. Ethereum Platform

sion is the degree of novelty to which software is new to the world. The second
one is the amount of complexity and coordination effort that needs to be in-
vested to produce value with the technology. The adoption of applications is
then divided into 4 phases according to the levels of those dimensions. They
are Single Use, Localization, Substitution, and Transformation. [22] You can
see the examples for TCP/IP and blockchain in the Figure 1.14.

1.5 Ethereum Platform

Ethereum is a distributed state machine that allows running arbitrary com-
puter programs on top of a blockchain. It was the first blockchain to introduce
Turing complete language for writing smart contracts. The concept of this
system was proposed by Vitalik Buterin in 2013. [9]

The actual Ethereum platform is still significantly evolving because the
propositions made at the beginning are still in development. The first imple-
mentation was deployed in 2015 and it was called Frontier. Since then, 14
big releases were introduced. The initial DAO fork, Tangerine whistle, and
Spurious Dragon code upgrades were a necessary response to DAO and De-
nial of Service (DoS) attacks on the network. At first, the Ethereum network
was working with the PoW algorithm and the long-term migration to PoS is
currently in process. [23]

1.5.1 Merge into Proof of Stake

The proposed PoS algorithm was a response to the energy consumption of
the Bitcoin mining PoW consensus mechanism. Still, the Ethereum network
was first secured by the PoW because it is less complicated and easier to
implement. [24] The transition to PoS is currently in progress. To prevent
forking of the established blockchain working with PoW, the so-called difficulty
bomb was introduced that exponentially increases the computation required
to write a block. [25]

The migration to PoS was frequently postponed and with that, the diffi-
culty bomb needed to be delayed also. The Staking deposit contract upgrade
was deployed in 2020 and it introduced staking where nodes could become val-
idators of transactions after depositing some resources. This contract worked
on the main Ethereum blockchain network called Mainnet but it was the first
step toward the PoS network. [23]

There are three phases of which the transition to PoS is consisting. The
deployment of Beacon Chain happened at the end of 2020 but only as a con-
sensus layer in the network. The Mainnet was still handling the accounts and
smart contracts. The Merge of those two blockchains is planned for 2022.
Shard chains update is planned for the future to improve scalability and ca-
pacity. At first, the newly emerged blockchain was supposed to be renamed

25

1. Theoretical Foundations

Ethereum 2.0. This idea was left due to possible misunderstandings and scams
with other forked blockchains. [26]

1.5.2 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is a Turing complete machine that
transforms the system state from one state to another. It is a virtual state ma-
chine executing bytecode instructions similar to the Last in First Out queue.
One of the goals is to have the EVM instruction set natively in CPUs which
would make the smart contract execution faster and more efficient. [9]

To prevent DoS attacks through infinite loops, each instruction requires
an amount of so-called gas. The size of this resource is controlled by the EVM
based on the consumption of resources in the system. EVM measures the
consumption of gas with its accounting mechanism. [9] The gas costs are
covered with the Ethereum’s cryptocurrency called Ether. [25]

Figure 1.15: Structure of EVM Operations [9]

EVM does not have access to any external resources like networks or filesys-
tem. There are two types of storage available to contracts. The memory type
is a byte array cleared after code execution. Storage type is permanently
stored on the Ethereum blockchain. The EVM supports exception handling.
The execution halts and returns an error code in the case of not having enough
resources or invalid instrution. [9] The Figure 1.15 shows the structure of the
EVM operations.

26

1.5. Ethereum Platform

1.5.3 Solidity

Solidity is a high-level programming language created by Dr. Gavin Wood
for writing smart contracts that target the EVM. [25] This curly-bracket lan-
guage is based on the object-oriented paradigm and it is similar to C++,
JavaScript, or Python. It is a statically typed language that supports inheri-
tance, libraries, and complex user-defined types. [27]

The smart contract written in the high-level Solidity language is then
translated into Solidity inline assembly. Aside from that, the compiler gen-
erates Application Binary Interface (ABI). This is a JSON file describing the
deployed contract and its smart contract functions. [27] The example of the
Solidity code is depicted in the Figure 1.16.

Figure 1.16: Code Example of the Solidity

1 // SPDX -License - Identifier : GPL -3.0
2 pragma solidity ˆ0.8.4;
3
4 error NotEnoughFunds (uint requested , uint available);
5
6 contract Token {
7 mapping (address => uint) balances ;
8 function transfer (address to , uint amount) public {
9 uint balance = balances [msg. sender];

10 if (balance < amount)
11 revert NotEnoughFunds (amount , balance);
12 balances [msg. sender] -= amount ;
13 balances [to] += amount ;
14 // ...
15 }
16 }

1.5.4 Contract Structure and Data Types

The smart contract written in Solidity has a similar structure to classes of
other object-oriented languages. The contract can contain declarations of
state variables, functions, function modifiers, events, errors, structure types,
and enumeration types constructs. [27]

As written, Solidity is statically typed language so each variable needs to be
specified before compilation. Data of such declared variables are permanently
stored on the blockchain given by the nature of the technology. [27]

Aside from the basic data types like boolean or integer, the language also
defines address type for Solidity 20 bytes addresses. The reference type, in
which its values can be modified through multiple different names, is consisting
of structs, arrays, and mappings. The data area where the reference type has

27

1. Theoretical Foundations

its storage needs to be provided with the type definition. The data are is either
memory, storage, or call data which contains the function arguments. [27]

The mapping types can be viewed as hash tables where all keys are ini-
tialized to a default value, but the keys are not stored in the mapping type.
The value can be looked up with keccak256 hash. It is not possible to iterate
over mappings because the keys cannot be enumerated. But it is possible to
implement data structure on top of mapping type and iterate over that. [27]

1.5.5 Solidity Functions

Solidity functions are usually defined inside a contract and have public, in-
ternal or private visibility towards other contracts. Internal function calls,
direct or recursive, are translated into simple jumps inside the EVM. Because
of that that the current memory is not cleared and passing memory references
to internally-called functions is more efficient. Still, excessive recursion should
be avoided since there are 1024 available slots and each internal function uses
up one. [27]

The functions can be also called externally using the this.g() and c.g()
notation. This results in the message call being used without direct jumps
inside the EVM. Because the actual contract has not been created yet, the
function calls cannot be used in the constructor. The external calls have to
be always used for other contacts and all function arguments are copied to
memory. Those calls are part of the overall transaction but they are not
creating one. An amount of gas can be also sent with a function call. [27]

1.5.6 Function Modifiers

The semantics of functions can be altered in a declarative way using function
modifiers. They are applied to functions in a form of a list separated by
whitespaces and the modifiers are executed in the presented order. The values
of arguments are passed to modifiers explicitly at the point of invocation.
Modifiers cannot be overloaded but it is possible to override them but only
with the use of virtual and override keywords. [27]

The constant and immutable keywords can be declared for state variables
which then cannot be modified after contract construction. The value of
constant variables has to be fixed at compile-time, but the immutable vari-
ables can be assigned at construction time. The allowance of side effects on
the memory allocator should lead to the construction of complex objects like
lookup tables. Currently, only strings and value types can be immutable. [27]

When the function is marked as view, they promise not to modify the
state. This includes writing to state variables, creating other contracts, send-
ing Ether, using low-level calls, or calling a function that is neither declared
view nor pure. The pure declaration promises that the state won’t be read
from and modified. The reading from immutable variables can be an oper-

28

1.6. Cardano Platform

ation that is not pure because it is not possible to evaluate such a function
without knowledge of the current blockchain state. [27]

1.5.7 Advantages and Disadvantages of Solidity

There are some advantages of using Solidity over other smart contract pro-
gramming languages. Since it was heavily influenced by C++, the constructs
and programming style can be recognizable to new programmers. Also, the
support for inheritance properties within its constructs is borrowed from
object-oriented features. The generated ABI provides a possibility to deter-
mine if the returned data is right and valid. This also facilitates type-safe
functions within a contract. [28]

In terms of disadvantages, Solidity is not as old as the general program-
ming languages so there is less documentation and therefore a possibility of
anti-patterns within the code structures. Still, this aspect is better when
compared to other smart contract programming languages. The youth and
limited expressiveness of the language can be an obstacle when learning the
language. Also, the data can be brought into the blockchain only through
transnational operations so managing some data actual can be costly. The
nature of blockchain restrains updates of the deployed code but this will be a
common problem for all similar languages. [28]

1.6 Cardano Platform

Cardano is a blockchain platform founded in 2015 by Charles Hoskinson and
Jeremy Wood. It is one of the new generations of blockchain which allows run-
ning arbitrary computer programs on top of a blockchain. The core principle
of Cardano is identifying and overcoming cascading disruptions, perturbations
having a ripple effect on a system. [29]

The company behind Cardano is Input Output HK (IOHK) and it de-
scribes the network as the third generation of a blockchain. This distinction
is a critique of the scalability aspect of Ethereum. The core concepts of Car-
dano are scalability of transactions, self-sustainability of the project, and in-
teroperability supported by cross-chain transfers, multiple token types, and
commonly used smart contracts languages. [30]

1.6.1 Cardano Roadmap

The first version of Cardano Mainnet was deployed in 2017 and the following
phase of the project was called the Byron era. Its cryptocurrency called Ada
was introduced with a fully working blockchain secured by the Ouroboros
consensus protocol. Ouroboros is a PoS algorithm built on academic research
that came up with a mathematically-proven secure mechanism. [31]

29

1. Theoretical Foundations

The following phase called the Shelley era focused on optimizing the de-
centralization of the network where the majority of nodes would be running
less by the company’s nodes. It also introduced delegation and a reward sys-
tem to drive stake pools and community adoption. This system of incentives
was designed using game theory. [31]

The Goguen era was focused on the integration of smart contracts into
the blockchain. The peer-reviewed research and high-assurance development
brought the ability to build decentralized applications. This resulted in the
creation of the Plutus programming language. Plutus is a functional pro-
gramming language based on Haskell that supports the development of both
on-chain and off-chain code. The domain-specific programming language Mar-
lowe for financial contracts which is built on Plutus was also introduced. [31]

Future eras called Basho and Voltaire will focus on delivering the promises
of true decentralization and governance. The Basho era will introduce side-
chains with the ability to support and switch between UTXO and account-
based models. The Voltaire era will introduce voting by the stakeholders in
the existing staking and delegation process, and a treasury system of trans-
action fees distribution. After that Cardano will be no longer under IOHK’s
management. [31]

1.6.2 Ouroboros Consensus Protocol

The consensus mechanism of Cardano is based on the PoS mechanism that was
extended with rigorous security guarantees. The security aspects of the algo-
rithm are comparable to the Bitcoin properties with much better qualitative
efficiency advantages over numerous blockchains based on proof of physical
resources. [32]

The challenge to designing a secure PoS mechanism is finding out the
leader election process. Wrongly introduced entropy may result in grinding
vulnerability. In this malbehavior, the sequence to bias the leader election
is found and exploited. The concept focuses on the persistence and liveness
of honest nodes so they are adopted and become immutable. It should be
well resistant against double-spending attacks, transaction denial attacks, 51%
attacks, nothing-at-stake, desynchronization attacks, and others. [32]

The main principle is that a snapshot of the current set of stakeholders is
taken in epochs which are regular intervals. In each epoch, a set of randomly
selected stakeholders form a committee. The randomness is created by the
multiparty computation. This set participates in a coin-flipping protocol that
determines the slot leader. The slot leader has then the right to mine a block.
The mechanism was subsequently enhanced in the Byzantine Fault Tolerance,
Praos, Genesis, and Hydra implementations. [32]

30

1.6. Cardano Platform

1.6.3 Plutus Platform

Plutus Platform is a platform for writing, testing, and maintaining Plutus
smart contracts that can be then deployed to the Cardano network. The plat-
form consists of the Plutus Foundation for writing the trusted kernel of code
and its execution on the blockchain and the Plutus Application Framework
for writing Plutus applications. [33] The architecture of Plutus Platform is
depicted in the Figure 1.17.

Figure 1.17: Architecture of the Plutus Platform [33]

The actual smart contract running on the blockchain is Plutus Core. It
is a programming language that is a variant of the lambda calculus. It is
used for its simplicity, determinism, and cost control of code execution. The
lambda calculus allows Cardano to have a formally verified evaluator that is
easily targeted by compilators of functional programming languages. Plutus
Tx language then serves as a higher programming language based on Haskell
that is developed for writing smart contracts. [33]

Plutus Application Framework is a framework for developing distributed
applications with the Cardano blockchain. It contains libraries. selection
of use-cases written with the framework, and a web-based playground for
learning and writing basic applications called Plutus Playground. [33]

1.6.4 Extended Unspent Transaction Output

One of the goals of Cardano is to provide a blockchain platform that could
process multiple currencies. The standard UTXO model is strictly limited to
Ada accounting. Because of that, Cardano blockchain uses an extension of
UTXO that would also allow smart contract support. [12]

31

1. Theoretical Foundations

The Extended UTXO consists of two components. The first component is
an extension of data in transactions, and an extension of the processing scheme
performed by nodes. The second component is the off-chain extension of the
wallet backend that coordinates the execution of on-chain code. On-chain
code is the only part of the code compiled into Plutus Core. [12]

The possibility of smart contracts in UTXO is added through Plutus
scripts. Plutus scripts are Plutus Core expressions stored on the blockchain
ledger which have their addresses and can hold coins until certain conditions
and processing. There are three types of Plutus scripts. [12]

The Validator script is carried by a transaction that spends funds from a
script address. It serves as a validation of the spending and for that, it returns
a boolean value. The Data scripts hold information about the state of the
smart contract and it is carried by a transaction that is paying to a validator
script. The last type is the Redeemer script is carried by a transaction that
is spending funds from a script address. The Redeemer script represents an
action that will be taken by the wallet like collecting funds or refunding. [12]

1.6.5 Plutus Tx and Functional Principles

Plutus Tx utilizes template metaprogramming support called Template Haskell
which allows the development of source code generated from templates by
Glasgow Haskell Compiler (GHC). Because of this Plutus Tx can execute its
functions at compile time but to do that the arguments must be known at com-
pile time and the function must be pure. A functional paradigm is beneficial
when improving memory and time using this approach. [33]

Figure 1.18: Code Example of the Plutus Tx

1 {-# INLINABLE plusOne #-}
2 plusOne :: Integer -> Integer
3 plusOne x = x ‘addInteger ‘ 1
4
5 {-# INLINABLE myProgram #-}
6 myProgram :: Integer
7 myProgram = let
8 plusOneLocal :: Integer -> Integer
9 plusOneLocal x = x ‘addInteger ‘ 1

10
11 localTwo = plusOneLocal 1
12 externalTwo = plusOne 1
13 in localTwo ‘addInteger ‘ externalTwo
14
15 functions :: CompiledCode Integer
16 functions = $$(compile [|| myProgram ||])

32

1.6. Cardano Platform

The Haskell data types and pattern matching can be used normally in
Plutus Tx. Similar use can be applied for type classes but only for a subset of
standard type classes. That is because their class methods must be inlinable
so that the GHC compiler can inline the compiled function directly into the
code. The module PlutusTx.Prelude is a replacement for the standard Haskell
Prelude, but both of them can be used. [33] The example of the Plutus code
is depicted in the Figure 1.18.

1.6.6 Plutus Tx Monads and Lifting

To preserve the functional principles in Haskell but also to handle side effects
in pure functions the concept of monadic computation was introduced. For
example, it allows communication with input/output devices or exception
handling. [34] The Plutus Tx uses monads in the type class MonadWallet.
This type class and any monad which implements it represents the off-chain
code. [12]

PlutusTx also allows developers to generate code dynamically. This is
useful when applying a function to an argument at runtime. To do it, the
programmer needs to write the function as a static code and lift it using a
liftCode function. The runtime in this case means the runtime of the main
Haskell program and not the runtime of a Plutus Core program on-chain. [12]

1.6.7 Common Weaknesses and Optimization Techniques

There are some potential sources of vulnerabilities in applications in terms of
Common Weakness Enumeration. The double satisfaction weakness can occur
when payments are not correctly identified and overlap with other payments.
To solve this problem it is recommended either to make the outputs unique
or that transactions are allowing only one script. [30]

Another vulnerability can be found when exceeding certain hard limits
defined by the protocol. Resources like transaction size, block size, UTXO
size, and script execution units have their hard limits. This means that some
data can grow in an unbounded way over time and reduce the amount of
space available for other uses. There are many solutions to that like careful
testing, bounding data usage, or reducing script size costs through reference
inputs. [30]

Developers can use profiling to identify problem areas, but there are other
techniques for optimization: using strict let-bindings to avoid recomputation,
preferring higher-order functions, eliminating common sub-expressions, and
using error keyword for faster failure. Following certain practices can make
code secure and efficient, but all those recommendations make development
much more difficult. [30]

33

1. Theoretical Foundations

1.6.8 Advantages and Disadvantages of Plutus

Similar advantages and disadvantages apply both to the Plutus and Cardano.
They are backed by a strong team, financial resources, and methodology based
on academic research, prototyping, and technical specifications. Because the
Plutus Tx language is based on the Haskell language the constructs can be
mathematically verified. [31] The performance can be also a significant advan-
tage if good practices and principles are followed. [30]

But the academic research phase could be also proven as a weakness. Many
of the promises are taking longer than expected and the functional paradigm
can be less accessible for its developers. Because Cardano has a big com-
petition in terms of the development of general-purpose smart contract pro-
gramming language it can be less significant without a community that uses
it. [35]

34

1.7. Chapter Summary

1.7 Chapter Summary

The chapter Theoretical Foundations established base knowledge for the gen-
eration of DMN business rules from smart contracts. All necessary elements
were explored. First, the Business Process Management and Modeling were
presented since they are the underlying principle of DMN notation. BPMN
was also explored because together in combination with the DMN, it can sig-
nificantly facilitate and improve the way that smart contracts are conducted.

The DMN standard was chosen for the formalization of business rules. The
core element of the notation is a Decision Table which is one way of expressing
the decision logic. It consists of input and output definitions, and conditions
in a form of boxed FEEL expressions. The important output determination
called Hit Policy is also described.

Currently, the blockchain networks serve mainly as a platform for cryp-
tocurrencies. But the business, academia, and governments are exploring the
potential of this technology for implementing DAO. this would be possible due
to self-executing smart contracts stored on the blockchain system.

Two further platforms for the development and execution of smart con-
tracts were laid out. Ethereum was the first project that provided the platform
for smart contracts. Today its programming language Solidity is the leading
solution for the creation of smart contracts. Cardano is a blockchain that
chose a different approach that would improve the scalability of Ethereum.
The Plutus Platform was created to support the goals of Cardano. In the fol-
lowing chapter, both those programming languages will be compared in terms
of transformation from DMN business rules.

35

Chapter 2
Business Rule as Smart

Contract

The following chapter moves from collecting a theoretical basis to the actual
exploration of ways to represent DMN business rules as smart contracts. It
was described that for this translation, templates are generally used. This
approach was selected also in this practical section of the thesis.

In the first part of this chapter, the components of the DRG are analyzed
since they are the inputs in the process of generation. The suitability of those
components for general execution and working in blockchain differs. Because
of that, they might be excluded from the process.

The second part focuses on depicting previous components in multiple
templates. Those templates will be represented in simplified pseudo-code ex-
cerpts. Examples of those codes in their target programming languages can
be then found on the enclosed CD attached to this thesis. This part is also
divided into the exploration of generation to Plutus Tx and generation to
Solidity smart contracts. They are also compared at the end of the chapter.

2.1 Representation of DMN Business Rule

The components of the DRG or DRD models and ultimately the DMN business
rules are stored and represented in an XML format. It then depends on the
modelers how they display the data and alter their implementation but the
elements should still follow the rules of the DMN specification. [6]

The modeling tools also manage the integration of business rules with
BPMN notation since DMN itself cannot represent the full logic of processes
in the organization. This applies more to the depiction of the process in
a smart contract. The integration with BPMN won’t be described in this
chapter but will be outlined and used in the Proof of Concept part of the
thesis.

37

2. Business Rule as Smart Contract

2.1.1 DRD Elements

As described in the theoretical foundations the DRD model can consist of a
decision, business knowledge model, input data, knowledge source, or decision
service. Those elements are then connected with certain associations. The
core component that describes the decision logic is the decision element with
the decision table and the exploration will be solely focused on it.

Most of the modelers that I have worked with do not necessarily use the
other elements for the description of execution logic. The decision can also
use the literal FEEL expression to describe the logic. When using the DMN
notation with BPMN models, the same can be handled by script tasks. The
generation of decision tables is more complex and suitable for the goals of the
use of visual language.

2.1.2 Decision Table

The decision table consists of a header defining the inputs and outputs and
a body describing the rules determining the output value. There is also a
column for annotations which serves for notes. Annotations are not generally
reflected in the decision logic.

Both input and output definitions can be labeled with a name. The actual
variables and expressions used in the logic are defined in different attributes
and elements of the decision table in XML. The output is bound with a variable
in the name attribute. The input is defined in the expression input element
and can hold not only bound variables but also literal expressions for example
in the FEEL language.

The DMN provides a number, string, boolean, days and time duration,
years and months duration, time and date as FEEL data types. [6] The inputs
and outputs can have predefined values for example for string but the usage
of the valid formats is up to the person designing the model. Rules can hold
values in those data types with certain conditions. These conditions specify
the relations to the values in rules. Usually, this is possible for inequality
comparison against number and date-time data types.

2.1.3 Hit Policy

The hit policy has to be also specified possibly with Collect aggregation if
needed. By default, the outputs satisfying the rules should not overlap as the
Unique hit policy states. For the determination of output if the rules are not
disjunctive other hit policies have to be used.

The Any is one of the other hit policies returning single output. It allows
overlapping rule outputs but they have to have the same values. If not, the
outcome has to be determined either by a list of priorities as the Priority hit
policy allows or by the First hit policy. This hit policy determines the output
by the order of the rules from the top of the table to the bottom.

38

2.2. Generation of Smart Contract

The hit policies returning multiple outputs are Output order, Rule order,
and Collect hit policy. They either guarantee that the outputs will be returned
in the order given by a list of priorities, in the order of matched rules or an
unspecified order. For the Collect hit policy, four optional aggregation options
can specify that sum, minimum, maximum, or a count of matched rules will
be returned.

Here is the summarization of the hit policies:

• Single - Unique, Any, Priority, First

• Multiple - Output order, Rule order, Collect (Sum, Min, Max, Count)

2.2 Generation of Smart Contract

As was written, the generation will utilize the translation of the DMN business
rules in XML format to smart contracts through template processors. For the
target language, this section will explore the Plutus Tx based on a functional
programming paradigm and the Solidity that builds on object-oriented pro-
gramming languages. Because of that, the construction of different approaches
has to be used for the templates.

The analysis of the structure of the smart contracts templates will be
explored in the different sections starting with the Solidity language. The
examples of the templates will be written in simplified pseudo-codes where
the majority of the code will resemble the target smart contract programming
language. The values inserted by the templating processor are represented by
tags.

2.2.1 Generation of Solidity Smart Contract

In Solidity, a contract acts as a class. The decision logic of a business rule
will be only a set of functions of this class. Those functions will be written
in a procedural style. For the outputs, it was decided to provide it in a
created structure and the assignment to the right values must be done in
post-processing of the business rule task. That is because if a multiple hit
policy is applied and more than one output is defined, the result must be
wrapped in some way.

The input variables are taken from the input expressions of the decision
table’s inputs. It is assumed that the used variables were previously declared
in the contract. The inputs have to be either variables or more complex
expressions but then some additional logic has to be introduced. If the input
variables are provided in the form of accessing state variables the function has
to have a view modifier. When the inputs are provided through parameters
the function can be marked pure.

39

2. Business Rule as Smart Contract

2.2.1.1 General Templates

Generally, the function has to be contained inside a contract. The code must
also start with a pragma directive stating the version of the contract. This
simple template can be seen in the Figure 2.1 and it is the same for all following
templates. The internal code structure is then generated based on a specific
hit policy and will be explored in the next sections.

The output structure is also the same for all business rules except for the
Collect hit policy with count aggregation that always returns an integer. The
template for output structure is laid out in the Figure 2.2.

Figure 2.1: Solidity Template: General Contract

1 pragma solidity <SolidityVersion >;
2
3 contract <ContractName > {
4 <OutputStructureDeclarations >
5 <BusinessRuleFunction1 >
6 <OutputAssignment1 >
7 <BusinessRuleFunction2 >
8 <OutputAssignment2 >
9 ...

10 <BusinessRuleFunctionM >
11 <OutputAssignmentM >
12 }

Figure 2.2: Solidity Template: Output Structure

1 struct <DecisionID > Output {
2 <Type1 > <Variable1 >;
3 <Type2 > <Variable2 >;
4 ...
5 <TypeM > <VariableM >;
6 }

2.2.1.2 Adjustment of Data Types

There also has to be some conversion of data format and adjustment of value
comparison. There is no native function for the comparison of strings. The
equality of strings can be done using a comparison of their hashes that will
look like in the Figure 2.3. The date, time, and date-time data types have
to be adjusted since Solidity currently does not implement those types. They
can be represented as unsigned integers in a ”yyyyMMddHHmmss” format.

40

2.2. Generation of Smart Contract

Figure 2.3: Solidity Template: String Comparison

1 if (keccak256 (abi. encodePacked (< StringValue1 >)) ==
keccak256 (abi. encodePacked (< StringValue2 >))) {

2 ...
3 }

In Solidity, there is no null or undefined value. Because of that, the vi-
olation of the hit policy leads to a thrown revert operation. This operation
reverts all changes to the blockchain state. It is the outcome of the invalid
design of the source decision table.

Figure 2.4: Solidity Template: Any Hit Policy

1 function <DecisionID >(< InputVariables >) public pure
returns (<DecisionID > Output memory) {

2 <DecisionID > Output memory output ;
3 bool matchedRule = false;
4 // RuleCheck1
5 if (< RuleCondition1 > && ... && <RuleConditionK >) {
6 if (! matchedRule) {
7 output = <DecisionID > Output (<Value1 >, ...,

<ValueM >);
8 matchedRule = true;
9 } else if (output .<Variable1 > != <Value1 > ||

... || output .<VariableM > != <ValueM >) {
10 revert (’ Undefined output ’);
11 }
12 }
13 ...
14 <RuleCheckL >
15 if (! matchedRule) {
16 revert (’ Undefined output ’);
17 }
18 return output ;
19 }

2.2.1.3 Templates for Single Hit Policies

The implementation of Any and Unique hit policies are similar as can be seen
in the Figure 2.4 and the Figure 2.5. The rules are checked in the order of
rows of the source decision table. If the condition is satisfied, another check is
made that there was not another matched rule before. The difference between
Any hit policy is that it checks if the previously matched rule returns the same
output. If so, the function evaluation continues.

41

2. Business Rule as Smart Contract

Figure 2.5: Solidity Template: Unique Hit Policy

1 ...
2 // RuleCheck1
3 if (< RuleCondition1 > && ... && <RuleConditionK >) {
4 if (! matchedRule) {
5 output = <DecisionID > Output (<Value1 >, ..., <

ValueM >);
6 matchedRule = true;
7 } else {
8 revert (’ Undefined output ’);
9 }

10 }
11 ...
12 <RuleCheckL >
13 ...

Figure 2.6: Solidity Template: First Hit Policy

1 ...
2 // RuleCheck1
3 if (< RuleCondition1 > && ... && <RuleConditionK >) {
4 output = <DecisionID > Output (<Value1 >, ..., <ValueM

>);
5 return output ;
6 }
7 ...
8 <RuleCheckL >
9

10 revert (’ Undefined output ’);
11 ...

The template in the Figure 2.7 depicts the First hit policy which returns
the first output that meets the conditions. The test if the rule was already
matched is left out.

Again, the Priority hit policy resembles the Unique hit policy. The tem-
plate for it can be seen in the Figure 2.7. A priority list must be provided
to this function for example in the first row of the decision table. The revert
operation is exchanged with a call of a helper function resolving the priority
of two matched outputs. The template of the helper function is laid out in
the Figure 2.8.

42

2.2. Generation of Smart Contract

Figure 2.7: Solidity Template: Main Function for Priority Hit Policy

1 // RuleCheck1
2 if (< RuleCondition1 > && ... && <RuleConditionK >) {
3 if (! matchedRule) {
4 output = <DecisionID > Output (<Value1 >, ..., <

ValueM >);
5 matchedRule = true;
6 } else {
7 output = <DecisionID > decideByPriority (

priorities , output , <DecisionID > Output (<
Value1 >, ..., <ValueM >));

8 }
9 }

10 ...
11 <RuleCheckL >
12 ...

Figure 2.8: Solidity Template: Helper Function for Priority Hit Policy

1 for (uint i = 0; i < 3; i++) {
2 if (priorities [i].< Variable1 > == currentOutput .<

Variable1 >
3 && ...
4 priorities [i].< VariableM > == currentOutput .<

VariableM >) {
5 return currentOutput ;
6 } else if (priorities [i].< Variable1 > == newOutput .<

Variable1 >
7 && ...
8 && priorities [i].< VariableM > == newOutput .<

VariableM >) {
9 return newOutput ;

10 }
11 }
12 revert (’ Undefined output ’);

2.2.1.4 Templates for Multiple Hit Policies

The Output order hit policy is similar to the Priority hit policy in the terms of
the priority list that has to be provided. The helper function is not necessary
since there are multiple outputs returned. There is a list of boolean values
declared with the priority list containing flags for matched outputs. The
template for this hit policy is present in the Figure 2.9. It was decided that
the generation will use mainly native functions of Solidity so that the version
updates of the language do not require that many adjustments in the process.

43

2. Business Rule as Smart Contract

Figure 2.9: Solidity Template: Output Order Hit Policy

1 // RuleCheck1
2 if (< RuleCondition1 > && ... && <RuleConditionK >) {
3 for (uint i = 0; i < <NoUniqueOutputs >; i++) {
4 if (! existsInOutput [i]
5 && priorities [i].< Variable1 > == currentOutput .<

Variable1 >
6 && ...
7 && priorities [i].< VariableM > == currentOutput .<

VariableM >) {
8 existsInOutput [i] = true;
9 outputSize ++;

10 matchedRule = true;
11 break;
12 }
13 }
14 }
15 ...
16 <RuleCheckL >
17
18 // Put matched outputs to an array in the order of

priority list
19 <ForLoopOutputAssignment >
20 ...

The Rule order hit policy can be implemented in the same way as the
Output order but the generator will fill the priority list with the outputs in
the order of rules in the source table. Another possible way of depiction the
Rule order hit policy can be seen in the Figure 2.10. It adds matched outputs
after the last element in an array. Collect hit policy template is the same since
the output order is not guaranteed but it has to be implemented in some way.

2.2.1.5 Templates for Collect Aggregations

The template in the Figure 2.11 depicts the Count aggregation of the Collect
hit policy. It has the simplest logic, where a numeric variable is incremented
when the rule is matched. The Sum aggregation is valid only for integer
outputs and all the outputs variables are summated. The template for this
aggregation is in the Figure 2.12.

The Min and Max aggregations are almost identical differing in the inequal-
ity symbol used. The DMN documentation does not specify the selection of
extreme values when multiple outputs are defined in the table. The minimum
and maximum will be considered for each output variable. The Figure 2.13
shows both of the aggregations valid only for number and date-time values.

44

2.2. Generation of Smart Contract

Figure 2.10: Solidity Template: Rule Order Hit Policy

1 // RuleCheck1
2 if (< RuleCondition1 > && ... && <RuleConditionK >) {
3 matches [outputSize] = <DecisionID > Output (<Value1 >,

..., <ValueM >);
4 outputSize ++;
5 matchedRule = true;
6 }
7 ...
8 <RuleCheckL >
9

10 <DecisionID > Output [] memory output = new <DecisionID >
Output [](outputSize);

11 for (uint i = 0; i < outputSize ; i++) {
12 output [i] = matches [i];
13 }
14 ...

Figure 2.11: Solidity Template: Collect Hit Policy with Count Aggregation

1 ...
2 // RuleCheck1
3 if (< RuleCondition1 > && ... && <RuleConditionK >) {
4 count ++;
5 }
6 ...
7 <RuleCheckL >
8 ...

Figure 2.12: Solidity Template: Collect Hit Policy with Sum Aggregation

1 // RuleCheck1
2 if (< RuleCondition1 > && ... && <RuleConditionK >) {
3 output .<Variable1 > += <Value1 >;
4 ...
5 output .<VariableM > += <ValueM >;
6 matchedRule = true;
7 }
8 ...
9 <RuleCheckL >

10 ...

45

2. Business Rule as Smart Contract

Figure 2.13: Solidity Template: Collect Hit Policy with Min and Max Aggre-
gations

1 // RuleCheck1
2 if (< RuleCondition1 > && ... && <RuleConditionK >) {
3 if (! matchedRule) {
4 output .<Variable1 > = <Value1 >;
5 ...
6 output .<VariableM > = <ValueM >;
7 } else {
8 if (output .<Variable1 > <InequalitySymbol > <

Value1 >) {
9 output .<Variable1 > = <Value1 >;

10 }
11 ...
12 if (output .<VariableM > <InequalitySymbol > <

ValueM >) {
13 output .<VariableM > = <ValueM >;
14 }
15 }
16 matchedRule = true;
17 }
18 ...
19 <RuleCheckL >
20 ...

46

2.2. Generation of Smart Contract

2.2.2 Generation of Plutus Smart Contract

For the generation of smart contracts written in Plutus Tx, a different im-
plementation approach was used. Again, the decision logic of a business rule
will be only a set of functions of this class. In the case of Plutus, there are
much more native functions provided. There were also more helper functions
created for the templates than in the Solidity generation exploration. Those
functions are often reused for multiple different hit policies.

The approach of using a custom output structure was also used. The same
applies to the expectation of how the input variables are defined. Because the
modification of state variables is as limited as possible in the Haskell, all
generated functions are pure.

2.2.2.1 General Templates

As for the Solidity, certain parts of the code are general for all of the templates.
Module definition is similar to contract definition in Solidity. The templates
were designed so the same import clauses are required. Both of the initial
parts of the code can be seen in the template in the Figure 2.14.

Figure 2.14: Plutus Template: General Module

1 module <ModuleName > where
2
3 import Playground . Contract
4 import Plutus . Contract
5 import PlutusCore . Default qualified as PLC
6 import PlutusTx
7 import PlutusTx .Lift
8 import PlutusTx . Builtins
9 import PlutusTx . Prelude

10 import Data.Maybe
11 import Prelude qualified as Haskell (Show , show , String

)
12 import Data. ByteString .Char8 qualified as C

The Output structure definition is again the same for the templates except
for the Count aggregation of Collect hit policy. This custom data type decla-
ration together with standard instance declaration and the lifting of the value
is depicted in the Figure 2.15. The off-chain part of the code is left out from
the templates presented here but it is present in the enclosed CD to support
their testing.

The functions representing the rules and their application to a list of inputs
are a bigger exception to the similarities with Solidity. This approach would be
also possible to do in Solidity but the functional basis of Plutus Tx encourages
such design. The Figure 2.16 shows the general template for rule evaluation

47

2. Business Rule as Smart Contract

and the Figure 2.17 shows the same for the specific case of Count aggregation.
The Figure 2.18 depicts the function applying previously defined rules.

Figure 2.15: Plutus Template: Output Structure

1 data <DecisionID > Output = <DecisionID > Output
2 { <Variable1 > :: <Type1 >
3 , ...
4 , <VariableM > :: <TypeM >
5 }
6 deriving stock (Haskell .Show , Generic)
7 deriving anyclass (FromJSON , ToJSON , ToSchema ,

ToArgument)
8
9 makeLift ’’<DecisionID > Output

Figure 2.16: Plutus Template: Function for Rule Evaluation

1 // RuleCheckFunction1
2 <DecisionID >Rule1 :: <InputDataTypes > -> Maybe <

DecisionID > Output
3 <DecisionID >Rule1 <InputVariables >
4 | <RuleCondition1 > && ... && <RuleConditionK > =

Just <DecisionID > Output
5 { <Variable1 > = <Value1 >;
6 , ...
7 , <VariableM > = <ValueM >;
8 }
9 | otherwise = Nothing

Figure 2.17: Plutus Template: Function for Rule Evaluation of Collect
(Count)

1 // RuleCheckFunction1
2 <DecisionID >Rule1 :: <InputDataTypes > -> Maybe Bool
3 <DecisionID >Rule1 <InputVariables >
4 | <RuleCondition1 > && ... && <RuleConditionK > =

Just True
5 | otherwise = Nothing

48

2.2. Generation of Smart Contract

Figure 2.18: Plutus Template: Function for Application of Rules

1 <DecisionID > ApplyRules :: <InputDataTypes > -> [Maybe <
DecisionID > Output]

2 <DecisionID > ApplyRules <InputVariables > = map (\f -> f
<InputVariables >) [< RuleCheckFunction1 >, ..., <
RuleCheckFunctionM >]

2.2.2.2 Adjustment of Data Types

Plutus Tx has problems because it uses both built-in types that are easily
compilable to Plutus Core and also similar types to the ones of Haskell’s
Prelude. Because of this, off-chain strings work better with Prelude’s code
and on-chain with built-in strings. When comparing Prelude’s string with
string values defined in functions, values have to be converted as it is in the
Figure 2.19. Aside from Solidity, Plutus supports DateTime data type.

The null value in Plutus Tx is represented by the Maybe data type.
This type can be wrapped around other types returning either ”Nothing”
or ”Just a” where a represents the value of the wrapped data type. Still, the
returning ”Nothing” means an invalid design of the decision table.

Figure 2.19: Plutus Template: String Comparison

1 (toBuiltin $ C.pack <StringValue1 >) == <StringValue2 >

2.2.2.3 Templates for Single Hit Policies

As can be seen in the Figure 2.20 the Unique hit policy is the only one from
single hit policies that represent its logic only with one original function. These
functions check if the mapping function returned only one matched rule. The
Any hit policy code from the Figure 2.21 needs to have the check if all returned
outputs have the same value. For that, it needs equality instance declaration
and function for comparison of output structure.

The implementations of the First hit policy in the Figure 2.23 and the
Priority hit policy in the Figure 2.22 take multiple matched values from the
mapping function. Then the main function returns only the first element.
Except for the Priority hit policy that applies a function on this list that sorts
it according the predefined priorities.

49

2. Business Rule as Smart Contract

Figure 2.20: Plutus Template: Unique Hit Policy

1 <DecisionID >Get :: <InputDataTypes > -> Maybe <
DecisionID > Output

2 <DecisionID >Get <InputVariables >
3 | (length $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >) == 1
4 = Data.Maybe. listToMaybe $ catMaybes $ <

DecisionID > ApplyRules <InputVariables >
5 | otherwise = Nothing

Figure 2.21: Plutus Template: Any Hit Policy

1 instance Eq <DecisionID > Output where
2 a == b = ((< Variable1 > a == <Variable1 > b) && ...

&& (<VariableM > a == <VariableM > b))
3
4 anyCheck :: Eq a => [a] -> Bool
5 anyCheck outputs = and (map (head outputs ==) (tail

outputs))
6
7 <DecisionID >Get :: <InputDataTypes > -> Maybe <

DecisionID > Output
8 <DecisionID >Get <InputVariables >
9 | (anyCheck $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >) == True
10 = Data.Maybe. listToMaybe $ catMaybes $ <

DecisionID > ApplyRules <InputVariables >
11 | otherwise = Nothing

50

2.2. Generation of Smart Contract

Figure 2.22: Plutus Template: Priority Hit Policy

1 <DecisionID > PriorityCheck :: ...
2 instance Eq ...
3
4 <DecisionID >Get :: <InputDataTypes > -> Maybe <

DecisionID > Output
5 <DecisionID >Get <InputVariables >
6 | (length $ <DecisionID > PriorityCheck $ catMaybes $

<DecisionID > ApplyRules <InputVariables >) /= 0
7 = Data.Maybe. listToMaybe $ <DecisionID >

PriorityCheck $ catMaybes $ <DecisionID >
ApplyRules <InputVariables >

8 | otherwise = Nothing

Figure 2.23: Plutus Template: First Hit Policy

1 instance Eq ...
2
3 <DecisionID >Get :: <InputDataTypes > -> Maybe <

DecisionID > Output
4 <DecisionID >Get <InputVariables >
5 | (length $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >) /= 0
6 = Data.Maybe. listToMaybe $ catMaybes $ <

DecisionID > ApplyRules <InputVariables >
7 | otherwise = Nothing

2.2.2.4 Templates for Multiple Hit Policies

The Output order hit policy utilizes the same functions and instance declara-
tions as the Priority hit policy except it returns all mapped values. Its tem-
plate is in the Figure 2.24. The Rule order hit policy has its counterpart in the
First hit policy as can be seen in the Figure 2.25. Collect hit policy template
is again the same since the output order is not guaranteed but it has to have
some implementation.

The mapping functions enable the application of a simple function to the
returned list and get the desired logic. The laziness of the Plutus Tx guarantees
effective evaluation with this approach. For the Min, Max aggregation needs
for their templates in the Figure 2.26 additional function to find extreme. The
Sum aggregation from the Figure 2.27 alters this with its summation function.
The Count aggregation of the Collect hit policy returns only the length of the
mapped list. It is the simplest template as can be seen in the Figure 2.28.

51

2. Business Rule as Smart Contract

Figure 2.24: Plutus Template: Output Order Hit Policy

1 <DecisionID > PriorityCheck :: ...
2 instance Eq ...
3
4 <DecisionID >Get :: <InputDataTypes > -> Maybe [<

DecisionID > Output]
5 <DecisionID >Get <InputVariables >
6 | (length $ <DecisionID > PriorityCheck $ catMaybes $

<DecisionID > ApplyRules <InputVariables >) /= 0
7 = Just $ <DecisionID > PriorityCheck $ catMaybes

$ <DecisionID > ApplyRules <InputVariables >
8 | otherwise = Nothing

Figure 2.25: Plutus Template: Rule Order Hit Policy

1 <DecisionID >Get :: <InputDataTypes > -> Maybe [<
DecisionID > Output]

2 <DecisionID >Get <InputVariables >
3 | (length $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >) /= 0
4 = Just $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >
5 | otherwise = Nothing

Figure 2.26: Plutus Template: Collect Hit Policy with Min and Max Aggre-
gations

1 <DecisionID > Minimum :: ...
2
3 <DecisionID >Get :: <InputDataTypes > -> Maybe <

DecisionID > Output
4 <DecisionID >Get <InputVariables >
5 | (length $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >) /= 0
6 = foldl <DecisionID > Minimum Nothing $ map Just

$ catMaybes $ <DecisionID > ApplyRules <
InputVariables >

7 | otherwise = Nothing

2.2.3 Comparison between Solidity and Plutus Generation

Concerning the suitability for generation using templates, both explored lan-
guages are appropriate for this process. From the point of the design, I think
that the Solidity language leaves the developer bigger freedom for his im-

52

2.2. Generation of Smart Contract

Figure 2.27: Plutus Template: Collect Hit Policy with Sum Aggregation

1 <DecisionID > Addition :: ...
2
3 <DecisionID >Get :: <InputDataTypes > -> Maybe <

DecisionID > Output
4 <DecisionID >Get <InputVariables >
5 | (length $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >) /= 0
6 = foldl <DecisionID > Addition Nothing $ map Just

$ catMaybes $ <DecisionID > ApplyRules <
InputVariables >

7 | otherwise = Nothing

Figure 2.28: Plutus Template: Collect Hit Policy with Count Aggregation

1 <DecisionID >Get :: <InputDataTypes > -> Integer
2 <DecisionID >Get <InputVariables >
3 = length $ catMaybes $ <DecisionID > ApplyRules <

InputVariables >

plementation. It is also readable for more people due to its procedural and
object-oriented approach.

Once I’ve overcome the limitations and constraints of Plutus’ functional
paradigm, the implementation is more elegant than in the case of Solidity.
The characteristics of Plutus Tx make it more effective for the evaluation in
blockchain, but the work on it is still evolving. Because of that, the generation
would have to be adjusted more dramatically once the updates are made.

53

2. Business Rule as Smart Contract

2.3 Chapter Summary

In this chapter, the DMN business rules undergo an analysis that explored a
way to capture them in a smart contract. The logic of decision tables is mostly
defined by their rules and hit policy. Multiple pseudo-code examples for differ-
ent cases were presented. They will serve as templates in the implementation
of the process combining them with data models.

The exploration was made for two distinct programming languages. So-
lidity has its basis in the procedural and object-oriented paradigm. Unlike
that, Plutus is a functional language. In both cases, the logic is captured
by the main function and an output structure. Depending on the hit policy,
supporting helper functions are also generated.

Both Plutus and Solidity are suitable for template processors. From the
point of modeling, Solidity might be understandable to more designers when
implementing some custom scripts. On the other hand, Plutus Tx has the
potential to be a more effective language to run on a blockchain.

In the next step, the explored generation will be integrated into an already
existing tool as a Proof of Concept. The outcome will be presented in the
following chapter. As a target smart contract language, Solidity was chosen.

54

Chapter 3
Proof of Concept: Implemented

Generator

In the previous chapter, the generation of Solidity and Plutus smart contracts
was explored. This chapter will describe the implementation of the presented
approaches for Solidity. The source code together with instructions to build
and run it is present on the enclosed CD attached to the thesis.

The chapter is separated into 3 sections. The first section describes the
used technologies for the implementation. In the following section, how the
classes and packages are structured in the code and the components are de-
scribed. This section is focused mainly on the parts extended by this thesis.
The chapter is ended with a smaller section reporting the testing approach of
the implementation.

3.1 Used Technologies

For the transformation from DMN business rules to Solidity smart contract,
the use of templating processor was chosen. Liquid language together with
some of its template engines like Fluid or Scriban are solutions to achieve this
way of generation. Both engines are built for .NET with similar characteristics
differing only in popularity.

It was decided that this thesis will extend DasContract Editor since it
provides multiple tools that are useful for the generation. Development of the
modeling application and the complementary BPMN generation would be out
of the scope of his thesis and it will help when presenting the results of the
Proof of Concept. The DasContract Editor is an ongoing project to which
multiple students are contributing in their theses so the future development
is also assured.

55

3. Proof of Concept: Implemented Generator

Figure 3.1: Interface of DasContract Editor

3.1.1 DasContract Editor

DasContract editor is a tool allowing its users to design a smart contract using
DasContract visual language. The input graphical language is based on the
combination of DEMO modeling language, BPMN, and UML. It is a project
maintained by CCMi Research Group at the Faculty of Information Tech-
nologies of CTU. Currently, there is a second version of the language called
DasContract 2.0. [20] The first concepts were introduced in 2018. [36] The de-
scriptions of the language that utilized DEMO methodology [37] and BPMN
standard [38] followed. The first editor and Solidity converter was previously
worked on in bachelor’s and master’s theses. Those works were focused on
the editor: its user interface [39], redesign, additional functionalities [40], and
Solidity conversion of BPMN with other models [41].

My implementation will be developed with the new version of the editor.
There is also a Plutus convertor being implemented at the time of writing this
thesis, but it will not be a part of the source code on the enclosed CD.

3.1.2 .NET Core and Standard

The back-end of the editor is written in .Net Core 5, which is an implemen-
tation of the .NET Standard. It is an open-source development platform for
building applications. It allows writing .NET solutions in C#, F#, or Visual
Basic. [42] The logic behind DasContract Editor is written in C#. The classes

56

3.1. Used Technologies

and conversion mechanisms are written with the use of the .NET Standard,
which is a base set of APIs common to all .NET implementations.

3.1.3 Blazor Framework

The user interface in the front-end of the editor is written using the Blazor
framework. This package allows rendering HTML and CSS for hybrid desktop
and mobile applications. The developer can write both client-side and server-
side of the application using just C# language. The whole logic is then written
in .NET. [43]

To save the contract, the user can either download it to its machine or save
it in his browser. This is possible with Blazored LocalStorage which provides
access to the browser’s local storage. Not only does this saves storage on the
server-side but improves performance since the serialization and deserialization
are handled more efficiently. [44]

3.1.4 DMN and BPMN Modelers

The bpmn.io maintained by Camunda provides multiple tools to view and edit
diagrams inside other projects. The dmn-js is a library that allows embedding
the DMN modeler into applications. [45] The same applies to the bpmn-js
library. [46] These components can be dynamically attached to or detached
from any element on the page. Both modelers support current versions of the
standards, meaning BPMN 2.0 and DMN 1.3.

3.1.5 Liquid and Scriban

Liquid is a templating language that combines its own syntax with HTML.
The language is written without a concept of state so the user does not need
to know the data content. It allows data manipulation in the template us-
ing custom logic and filters. Liquid is an open-source language created by
Shopify. [47] DasContract uses a C# port of the Liquid templating language
called Liquid.NET. [48]

Scriban is a scripting language and template engine for .NET. It was
mainly developed for parsing and working with Liquid templates. Aside from
Fluid, it is not an engine specifically for Liquid, but it is compatible with it.
It efficiently works with CPU and Garbage Collector. The Lexer/Parser that
it uses is also faster than regex-based parsers. [49]

57

3. Proof of Concept: Implemented Generator

3.2 Software Architecture

Since this thesis is mainly focused on the transformation process from the
business rule, the front-end of the DasContract won’t be described. The con-
version from BPMN models to Plutus smart contracts is also available but
not discussed in this chapter.

The used technologies for the front-end were described in the previous
section. Still, to simplify it, the Blazor app consists of BPMN and DMN
modelers, an editor of data entities, custom codes, and form fields. Modules
displaying the converted codes and managing its projects are also included.

The main components that were extended are the Abstraction component
and Solidity Converter. Abstraction contains classes representing multiple
data models for form fields, DMN business rules, BPMN elements, and the
contract itself. The Solidity Converter components work with the Liquid
templates that are configured and composed based on the specific data model.

3.2.1 Abstraction Component

The root abstraction in the DasContract Editor is a contract. This class
contains all DMN and BPMN elements together with the definition of a data
model, users, and user roles. The core element for the data model is an entity.
For the Solidity generation, the root entity must exist and it serves as solidity
contracts’ state variables.

The abstraction component also contains classes for custom exceptions
and UI for user forms. The DasContracts allows definitions of form fields of
BPMN’s user task that can be then subsequently displayed as user form. The
main set of classes is the processes. They represent every BPMN element from
events, gateways, and tasks to custom elements like roles and tokens.

3.2.1.1 XML Serialization of Business Rules

Previously, there were no abstractions for the elements of DMN notation. The
DMN modeler was injected and handled all serialization and deserialization
of the decision’s XML representation. The whole business rule was stored in
the business task abstraction as a string. The whole XML definition was in
one line.

For this thesis, 32 classes representing XML elements were created for
automatic deserialization by XMLSerializer. The business rule is still stored
in the previously defined way, but the deserialization is done each time before
the conversion. The deserialized business rule is then used as a data model
for the generation. The DMN elements can be divided into elements of the
DRD diagram, elements of the decision table, and information for the visual
representation of previous elements.

58

3.2. Software Architecture

Figure 3.2: Abstraction: Class Diagram Selection

The added and modified classes of the DasContract Editor can be seen in
the Figure 3.2. They are marked with a grey color. It is only a part of the
Abstraction component. The full class diagram is stored on the enclosed CD
in the attachment.

3.2.2 Solidity Converter Component

The second component is the Solidity Converter which handles the transfor-
mation from modeled abstractions into actual Solidity smart contracts. The
first part of the converter is Solidity Components. Those classes handle the
generation of smaller Liquid templates representing Solidity constructs like
function, if-then statement, for loop, struct, and more.

59

3. Proof of Concept: Implemented Generator

Figure 3.3: Solidity Converter: Class Diagram Selection

The second part is individual converters of DasContract elements. The
contract and process converters initiate the transformation using converters
of BPMN elements like tasks, events, and gateways. Those converters then
subsequently utilize the previously mentioned Solidity Components. At the
end of the process, the final Liquid template is composed and ready for the
template engine to fill the data.

60

3.3. Testing

3.2.2.1 Conversion of DRD and Business Rule Task

To implement the generation logic from the previous chapter, the DMN con-
verters had to be implemented. Aside from that, the BPMN Business Task el-
ement was excluded from the transformation and had to be also implemented.
The BusinessRuleTaskConverter contains the abstraction of the business rule.
Just with this data, the decisions are identified and their conversion is called.

Because the DRD can obtain multiple decisions, additional logic had to be
created that generates the declaration of the decision functions in the same
order. If the DRD contains cycles, an exception is thrown and conversion is
unsuccessful. Cycles in the DRD are an invalid design of the business rule.

3.2.2.2 Conversion of Hit Policies

The main decision logic is determined by the decision table’s hit policy. For
the Collect hit policy, it is also determined by the type of aggregation. The
transformation of this logic is handled by the converter of a specific hit policy.
There is one parent class holding the general logic that is identical to other
hit policies. Another converter inherits logic from this class and extends it
with the generation of specific decision logic and helper functions.

The selection and allocation of the converter are managed by the Decision-
Converter which decides based on the abstraction of the decision. The Collect
hit policy without aggregation uses the same converter as the Rule order hit
policy. The same applies to the Min and Max aggregation of the Collect hit
policy which uses one common class.

The added and modified classes of the DasContract Editor can be seen
in the Figure 3.3. They are marked with a grey color. It is only a part of
the Solidity Converter component. The full class diagram is stored on the
enclosed CD in the attachment.

3.3 Testing

To test the proposed algorithm, two types of testing were chosen. Unit tests
were created mainly to check that the individual classes generating specific
templates are working correctly. They were also used for the testing of entities’
serialization and generation of BPMN business task elements. The unit test
is written using xUnit.NET and .NET Test SDK.

The generated smart contracts that were correctly generated then undergo
manual testing that checked that the codes can be successfully deployed to the
Ethereum blockchain. The codes that passed such testing are present on the
enclosed CD in the attachment of this thesis. The contracts can be deployed
using Ganache or Remix Environments. One of the manual testing and its
simulation will be also resented in the next chapter.

61

3. Proof of Concept: Implemented Generator

3.4 Chapter Summary

The first part of the Proof of Concept for the presented way was focused on the
implementation of an algorithm to generate smart contracts from DMN busi-
ness rules. Used technologies, the structure of the code, and the description
of the testing were described.

The solution developed in this thesis extended the already existing tool.
DasContract Editor is a project providing modeling tools for the creation of
smart contracts. The main technologies are Liquid Templates, Blazor Frame-
work, .NET Core, and .NET Standard. For the testing, manual and unit tests
were used.

62

Chapter 4
Proof of Concept: Case Study

The preceding chapters laid the theoretical basis and exploration of technolo-
gies that would allow the generation of business rules to smart contract form.
The last chapter of this thesis follows with a performance of the Proof of Con-
cept case study that should highlight the possible applications of the generated
business rule for the blockchain network.

As a process that could be improved with the use of business rules im-
plemented with blockchain technology, the asylum procedure was chosen. Its
characteristics like its international scope and the centralized identity of ap-
plicants make it ideal for blockchain applications.

4.1 Asylum Procedures in Europe

Article 14 of the Universal Declaration of Human Rights document lead to a
convention of European countries. Most world countries agreed on the defini-
tion of the term refugee and some general approaches to the problematics in
1951 in Geneva on the Convention Relating to the Status of Refugees. [50]

From this commitment, European countries devised various complex asy-
lum systems utilizing many procedural tools. European Council on Refugees
and Exiles set its goal to protect and advance human rights that were agreed
upon in 1951. [51]

It manages the Asylum Information Database mapping and collecting in-
formation about different asylum procedures in European countries. Those
countries have tools to process the application for refugee status and assess
the applicant’s claim but also tools to transfer responsibility for the applica-
tion to another European state based on the Dublin procedure. [52]

This procedure is defined in the Dublin III Regulation issued by the Eu-
ropean Parliament. It determines on which condition the application can be
transferred to a different state and in which processes those states can submit
the reasons and basis for this responsibility. The identity of applicants can be

63

4. Proof of Concept: Case Study

verified in European Asylum Dactyloscopy Database that was established for
this regulation. [53]

4.1.1 Asylum Process in Republic of Ireland

For the purposes of this thesis’s case study, Ireland’s asylum procedure was
chosen but the ties to the Dublin procedure do not limit the feasibility for
other EU member states.

The process of assessment of the application for refugee status changed
significantly after 6th January 2017, when the International Protection Act
(IPA) 2015 came into effect. The new process grew in complexity beyond its
originally defined boundaries because four years after the commencement of
this act it still has to deal with many transitional cases from the old procedure
and also it was altered due to the ongoing Covid-19 crisis. [54]

Outside the regular procedure for the applications, there is a possibility
for accelerated assessment for cases that meet the defined circumstances for
prioritization. As of December 2020, the regular processing of the application
could take up to 18 months, which is about 3 months longer than it took before
the Covid-19 outbreak. The accelerated procedure could speed the process up
to 14 months. Both processes could take even longer if the decisions are taken
to appeal courts and institutions. [54]

The number of given decisions in 2020 was 2 276 and 68% of the appli-
cations were rejected. The number of pending applications at the end of the
year is 5 279. [55]

4.2 As-Is Analysis: Collection of Resources

For the research part of this PoC case study, the resources obtained from
personal interviews, direct observations, and group meetings were skipped.
The information was mainly gained from process descriptions, surveys, laws,
and official websites of the Republic of Ireland.

The following sections will give information about how the processes begin
and what are their possible outcomes. Other than that, responsible authori-
ties for parts of the asylum procedure are identified. Subsequently, the main
procedures are described before the next documentation part of the As-Is
analysis.

The procedure had to undergo many temporary changes in its processes
because of the COVID-19 pandemic (ongoing while writing this work). Those
changes may evolve throughout time and some can even remain, but this the-
sis will take the description of the processes mainly from the time before the
disease has spread.

64

4.2. As-Is Analysis: Collection of Resources

Figure 4.1: Flow Chart of the Irish Asylum Procedure [56]

65

4. Proof of Concept: Case Study

4.2.1 Stages and its authorities

The whole procedure around the application and subsequent decision on it
can be divided into eight stages:

• Application at the border

• National security clearance

• Refugee status determination

• Dublin procedure

• Accelerated procedure

• Appeal

• Judicial review

• Subsequent application (admissibility)

Some of those stages may not have taken place in specific instances, but
this depends on the nature of the actual process. [57]

4.2.1.1 Stages under Garda National Immigration Bureau

Garda National Immigration Bureau (GNIB) is a unit of the Garda Śıochána,
which the is national police and security service of Ireland. This unit is re-
sponsible for the stage of the application at the border and national security
clearance.

The website of the GNIB currently describes one change in the process,
which is that registrations for people living in the Dublin area are newly
covered by the Naturalisation and Immigration Service. [58]

4.2.1.2 Stages under International Protection Office

International Protection Office (IPO) is a part of Immigration Service Deliv-
ery. The main responsibility of this office is an examination of the applications
and their processing. IPO is the competent authority in the stages of refugee
status determination, Dublin procedure, and accelerated procedure. [59]

4.2.1.3 Stages under International Protection Appeals Tribunal

International Protection Appeals Tribunal (IPAT) is a subject that was cre-
ated under the International Protection Act 2015. Its function is to determine
appeals to the decisions of the IPO, so its only responsibility in the description
is the appeals stage. [60]

66

4.2. As-Is Analysis: Collection of Resources

4.2.1.4 Stages under High Court

The High Court of Ireland, the first instance when dealing with the most
serious and important civil and criminal cases, is the determining authority
for the judicial review stage. This means that it serves as an appeal court for
the IPAT when its decision is challenged. [61] [62]

4.2.1.5 Stages under the Minister for Justice and Equality

In general, the Minister for Justice and Equality in the Department of Jus-
tice and Equality works to advance community and national security, promote
justice and equality, and safeguard human rights. In the asylum procedure, it
serves as the competent authority for the subsequent application (admissibil-
ity). [63]

4.2.2 Beginning of the process and its End States

There are three application points: Application at a port of entry, application
in detention, and application at IPO. [56] In general, the procedures after the
application are the same for all of the mentioned applications. For application
at the frontiers, a person must first indicate that he or she needs asylum. After
this, they are given permission to enter and remain until the procedure is over,
and a temporary residence certificate. Subsequently, they are viewed as an
applicant for international protection under Section 16 IPA. [64]

The asylum application can end in 4 states: Declaration of refugee status,
declaration of subsidiary protection, rejection of the application with permis-
sion to remain, and rejection of the application with a deportation order. [56].

4.2.3 Description of the Main Procedure

The application begins with filling out the application form. The first short in-
terview is then taken by an immigration official or an international protection
officer. This depends on the place of the application. [64]

4.2.3.1 Preliminary Interview

In the following steps, the applicant’s age must be determined. If the age is
higher than 13 years, fingerprints and photography is taken for identification
purposes. This is also done for the dependent children if there are any. The
applicant can state that he or she is under 14 years old, but this must be
believed by the IPO officer. If such an applicant is also unaccompanied, his
or her acquisition of fingerprints is skipped.

Then the actual preliminary interview is conducted, where its outcome
with the information in the application is examined for initial admissibility
of the application. The request may be decided to be inadmissible if that

67

4. Proof of Concept: Case Study

person already received refugee status or subsidiary protection in another EU
Member State. The inadmissibility decision is also taken if another Member
State is considered the first country of asylum. Also, if the applicant does
not cooperate in this interview it may lead to his or her detention. After the
interview is finished, the applicant is provided with detailed information on
the asylum process in a preferable language and he or she is also provided
with the Application for International Protection Questionnaire. [62]

4.2.3.2 Substantive Interview

After the applicant receives the Application for International Protection Ques-
tionnaire, he or she has 20 working days to complete this questionnaire. When
this is done, the questionnaire is reviewed and the application is categorized
and prioritized. Then also before the interview can be conducted, the language
interpreter has to be determined which could be difficult if the applicant uses
some narrowly used language. If the waiting time would exceed 6 months, the
applicant can ask for provisioning of the interview date.

When the substantive interview can be realized, the applicant is informed
and the interview takes place. It is possible that during the interview there
will be problems with the interpreter. In this case, a new interview must be
done. The interview is done face to face in Dublin. After it is finished the
applicant has to sign the interview’s transcript and is issued a Temporary
Residence Certificate.

At the end of the main procedure, the application is given with the final
decision by the IPO. This decision is reviewed by the Minister for Justice and
Equality who then declares the resulting status of the applicant. [62]

4.2.4 Implementation of Dublin III Regulation

After the IPO acquires the applicant’s fingerprints and his or her photography
is taken, the Dublin Unit of the IPO can start with the Dublin Procedure.
The main goal of this procedure is to find out if the applicant is not subject
to international protection in another country. The biometric information is
given to the EURODAC which analyses the identification material against
previous records in the database. If there are any, the regular process can
continue as usual.

If the applicant is subject to the Dublin III Regulation or previously lodged
in another Member State, he or she is provided with Dublin Procedure Infor-
mation Leaflet and interviewed to explain newly found information. The only
aspect that can go against the Dublin Regulation is that the applicant has
any dependent children whose interest would be against the regulation. The
interest must be consulted with Tusla Child and Family Agency.

The responsible Member State has then time to raise any objection to the
decision which has to be provided with supporting documents. This could pro-

68

4.2. As-Is Analysis: Collection of Resources

long the process by months. In the other scenario, the applicant is transferred
to the selected Member State. [65]

4.2.5 Accelerated Procedure

There are three ways that can truncate the procedure by giving certain appli-
cations higher priority. First, the Minister for Justice and Equality can take
regard and speed up the process most often in problematic cases where the
applicant cannot provide evidence to his or her claims by very specific expla-
nations. The Minister has also designated some countries as Safe Countries of
Origin which can lead to the accelerated procedure. Those countries are Alba-
nia, Bosnia and Herzegovina, North Macedonia, Kosovo, Montenegro, Serbia,
Georgia, and South Africa.

The main prioritization is done according to the IPO and the UN High
Commissioner for Refugees statement. The first division comes in the respect
of validity of International Protection Act 2015 procedures. Cases opened after
and during the commencement of the Act are put into Stream One category
and case before the commencement of the Act into Stream Two. Both streams
are processed in specific priorities and then on order of older cases first. In
the streams the priority is done in following order: [62]

• Stream One:

• subsidiary protection recommendations

• appeals at the Refugee Appeals Tribunal

• refugee status recommendations

• Stream Two:

• reasons of high/low age

• well-founded applications

• countries of origin: Syria, Eritrea, Iraq, Afghanistan, Iran, Libya
and Somalia

• applicants with severe/life threatening medical condition

4.2.6 Appeal and Judicial Review

For the decisions given by the Dublin procedure and the admissibility pro-
cedure, there is a possibility to raise an appeal to International Protection
Appeals Tribunal. This has to be done within 10 days of the decisions. The
applicant can choose if he or she wants to get an oral hearing or the decision

69

4. Proof of Concept: Case Study

over the appeal can be done behind closed doors. The IPAT either affirms or
declines the initial decision.

Again, the decisions laid out by the IPAT can be rejected by the applicant
who can challenge it a push it to the High Court. This process on a point of
law only under Irish administrative law needs special permission since it is a
costly and long process. [62]

4.2.7 Blockchain Network for the Asylum Procedure

Since the generator would only provide smart contracts (in the case of this
thesis the scope is even narrower) for the blockchain network, the actual es-
tablishment of the system and deployment of the smart contracts on it is a
different topic. For the asylum procedure, there is one blockchain solution
already being developed by institutions of the EU.

4.2.7.1 European Blockchain Services Infrastructure

European Blockchain Services Infrastructure (EBSI) is a platform enabling the
trustful sharing of evidence and credentials, which could be official documents
or others. The EBSI has been deploying a network of distributed nodes across
Europe since 2020. The main goal should be accelerating the creation of cross-
border services for public administrations. The provided solution would be
already in compliance with EU regulations. [66]

The first use-case that ESBI was focused on were self-sovereign identity,
diploma management, document traceability trust data sharing. In 2021,
three more use cases were being worked on: SME Financing, European social
security pass, and asylum process management. [66]

On the other hand, EBSI does not provide a way for its users to add their
smart contracts. They are managing their own library of smart contracts that
are being enhanced with new use cases and scripts. Those smart contracts are
using Solidity language. [67]

4.3 As-Is Analysis: Modeled Process

Previously collected and summarized description of the process was modeled
using BPMN. The focus was to model the asylum procedure as faithful as
possible. Still, the gaps in the resources were filled by this thesis and they
could differ from the real process. This is not an issue as the case study is
Proof of Concept.

4.3.1 BPMN Descriptive Model

Firstly, the described asylum procedure was captured in the Descriptive BPMN
model which can be seen in the Figures 4.2, 4.3, 4.4, and 4.5. It skips the ini-

70

4.3. As-Is Analysis: Modeled Process

tial phase of border procedure and the phase dealing with appeals and judicial
review. The main focus of the model is the information system of the IPO and
the information system of the Ministerial Decision Unit. The model considers
other sides but they are modeled as black boxes and their logic is not the focus
of this thesis.

The system of the IPO is the place where the application is created and
goes through all stages that collect the information from the applicant in the
interviews. It also communicates with the other Dublin countries through
the Dublin information system. The last task for this system is to give a
first instance decision in a form of a report. The Ministerial Decision Unit
then reviews the report and delivers the final decision. This decision is then
confirmed by the Minister for Justice.

Figure 4.2: Descriptive As-Is Model of the Asylum Procedure: Part One

71

4. Proof of Concept: Case Study

Figure 4.3: Descriptive As-Is Model of the Asylum Procedure: Part Two

Figure 4.4: Descriptive As-Is Model of the Asylum Procedure: Part Three

72

4.3. As-Is Analysis: Modeled Process

Figure 4.5: Descriptive As-Is Model of the Asylum Procedure: Part Four

4.3.2 BPMN Analytic Model

The analytic BPMN model is depicting the process on a deeper level than
the descriptive. The scope of the model is too big to be added to the text
of this thesis, but the full version can be found on the enclosed CD in the
attachment. It models all the situations that are described in the section
Collection of Resources.

Figure 4.6: Preview of the Analytic As-Is Model

Still, the preview of the model can be seen in the Figure 4.6. This preview
implies that the complete model confirms, that the communication between
other systems and sides, takes an equal part in the process. Aside from the

73

4. Proof of Concept: Case Study

processes depicted as black boxes, there are others in this model. It considers
11 sides.

The main ones are used information systems and the applicant that were
mentioned in the previous systems. There are two new roles present in the
substantive interview as can be seen also in the preview: Interpreter and
Interviewer. The model also depicts other institutions that the IPO needs to
communicate with.

4.3.3 Business Rules in such Process

Both in the new process and the old process the found business rules are the
same. It is possible that they would be refined differently once they would
have to be modeled but it is something that is not the focus of this thesis.
There were 4 business rules identified in the process:

• Review initial admissibility - Determines that the application is valid
for the process based on the information given in the preliminary inter-
view.

• Prioritize stream one application - Prioritization of the applications
made after the commencement of the IPA.

• Prioritize stream two application - Prioritization of the applications
made before the commencement of the IPA.

• Make final decision - Determines the final decision in considering both
decision of the first instance report and the decision by the IPAT.

As was mentioned, there are some gaps in the descriptions of the prioriti-
zation. The applications are prioritized under certain circumstances but they
are not disjunctive. Therefore for the DMN notation, the hit policy was set to
first meaning that the output will consider only the highest priority condition.

4.3.4 Gaps, Bottlenecks, and Weaknesses

The resources that were the basis for the previous section were mainly col-
lected from the Asylum Information Database which does detailed work in
describing procedures of different European countries in similar forms. Still,
it contains many gaps for example where certain processes start and wait for
other and non-deterministic descriptions of prioritization. Also, the imple-
mentation of the Dublin III Regulation can bring to the process more delays
due to uncertain evidence for the responsible Member State.

74

4.4. To-Be Analysis: Modeled Process

4.4 To-Be Analysis: Modeled Process

In the third section of this PoC case study, the previous process will be en-
hanced by the blockchain network and tasks that are performed by generated
smart contracts. The goal of this To-Be analysis is to show the feasibility of
generated DMN rules in the blockchain. Similar solutions are being developed
during the writing of this work, which will be described at the end of the
section.

4.4.1 Advantages of the New Procedure

As one of the disadvantages of the previous process, the delays caused by the
Dublin procedure were mentioned. This could be improved if the evidence
about who is responsible would be already available to both sides. If we
introduce a blockchain network to the system, we could not only get a trustful
system that could track all data objects throughout all asylum procedures in
Europe but also, the possibility to improve and keep the original processes
with smart contract programming.

The advantage of the approach that utilizes a blockchain network is also
implied by the use of the EURODAC database in all Member States that
verifies if the identification information was already recorded in the system.
That is what the blockchain’s original purpose is to prevent double-spending
on the same transaction or token.

The solution that uses smart contract codes generated from the DMN
notation or the BPMN model can also solve the second problem with the old
procedure. Since the processes have to be modeled first, the designer would
be pushed to model in a way that is more deterministic and understandable
for future use.

4.4.2 BPMN Descriptive Model

For a better preview of how this model would be implemented, a new BPMN
model on the descriptive level of abstraction was created. It can be seen in
the Figures 4.7, 4.8, 4.9, and 4.10. The first noticeable change is the addition
of the blockchain system. Some of the logic was moved from the IPO system
and will be handled by smart contracts.

The Ministerial Decision Unit System is removed and its logic will be
handled solely by the blockchain. Only some small application or API will be
needed for the Ministerial Decision Unit Officers and Minister for Justice to
access the data in it. In total, 10 tasks from the descriptive BPMN model of
the as-is state were migrated to blockchain which is roughly two-thirds of the
tasks. This of course doesn’t reflect the actual scope of the workload.

75

4. Proof of Concept: Case Study

Figure 4.7: Descriptive To-Be Model of the Asylum Procedure: Part One

76

4.4. To-Be Analysis: Modeled Process

Figure 4.8: Descriptive To-Be Model of the Asylum Procedure: Part Two

77

4. Proof of Concept: Case Study

Figure 4.9: Descriptive To-Be Model of the Asylum Procedure: Part Three

Figure 4.10: Descriptive To-Be Model of the Asylum Procedure: Part Four

78

4.4. To-Be Analysis: Modeled Process

4.4.3 BPMN Analytic Model

Same as for the as-is model, the size of the analytic to-be BPMN model doesn’t
allow it to be contained in the written part of the thesis. It can be found in
the attachment on the enclosed CD. This logic was similar in the as-is model
but now it is completely moved into the smart contract.

The main logic that would be handled by the blockchain system is to
reference and change the statuses of the application. This reference together
with the nature of the network provides a trusted basis for the application’s
status. Other Dublin states can avoid communication to check the status
with the other countries thus speeding up the process. The same applies to
propagating the statuses of upheld decisions by the IPAT. The logic of business
rules was also moved onto the blockchain network.

4.4.4 BPMN Common Executable Model

The common executable BPMN model should be in such status that it could
be executable by the related software for BPMN execution. The last level of
process detail was created in the DasContract Editor since the DasContracts
uses a modified version of the BPMN. The scope of the process can be seen in
the Figure 4.11. Some parts laid out in the analytic model were altered during
the creation of the executable model in the DasContract. It also contains only
the part of the process working in the blockchain.

Figure 4.11: Executable BPMN Model for Asylum Procedure

79

4. Proof of Concept: Case Study

The main process contains 5 call activities. Those processes won’t be
shown in the text of the thesis, but they can be found on the enclosed CD.
The subprocesses are the following: Application validation, Take back request,
Take charge request, Application prioritization, and Final decision taking.

4.4.5 DMN Decision Tables

There were no DRD identified in the process. Each business rule task includes
only one decision table. The identified business rules were described in the
previous sections and they were kept for the to-be model. For the tables to
be included in the text, they had to be narrowed and the names of the inputs
are not visible. They are described below.

Figure 4.12: Decision Table of the Review Initial Admissibility Business Rule

80

4.4. To-Be Analysis: Modeled Process

• Decision Table: Review initial admissibility - depicted in the Fig-
ure 4.12

• Existing international protection - Input Column

• Non-refoulement principle - Input Column

• Non-refoulement principle - Input Column

• Country of origin - Input Column

• Initial admissibility - Output Column

Figure 4.13: Decision Table of the Stream One Priority Business Rule

• Decision Table: Prioritize stream one application - depicted in
the Figure 4.13

• Pending refigee status recommendation - Input Column

• Pending appeal at the former RAT - Input Column

• Pending subsidiary protection recommendation - Input Column

• Stream one priority - Output Column

81

4. Proof of Concept: Case Study

Figure 4.14: Decision Table of the Stream Two Priority Business Rule

• Decision Table: Prioritize stream two application - depicted in
the Figure 4.14

• Threatening medical condition - Input Column

• Country of origin - Input Column

• Well-founded application - Input Column

• Age - Input Column

• Part of a family group - Input Column

• Unaccompanied minor in time of application - Input Column

• Stream two priority - Output Column

82

4.4. To-Be Analysis: Modeled Process

Figure 4.15: Decision Table of the Final Decision Business Rule

• Decision Table: Make final decision - depicted in the Figure 4.15

• Ministerial unit decision - Input Column

• Decision behind upheld appeal - Input Column

• Final decision - Output Column

83

4. Proof of Concept: Case Study

4.4.6 Generated Executable Model

The BPMN and DMN models were shown in the last sections. There is also
a data model and set of roles defined for the contract. Those elements won’t
be presented. The data model contains only basic entities and their attribute
to support the simulation.

The roles were defined and assigned to the corresponding task but the logic
was not converted to the contract. One of the reasons was that the scope of
the smart contract was too big. The generated contract has approximately
800 lines of code and its size is 34 413 bytes. This is mentioned since the
Spurious Dragon, the allowed size for a smart contract is 24 576. Still, for the
testnet, the generated code was successfully deployed.

4.5 To-Be Analysis: Simulation

The generated source code was deployed to Remix IDE. This online tool [68]
provides a Solidity compiler and smart contract deployment directly in the
browser. The process can be then simulated using a simple interface that
also allows debugging options. The following sections will describe multiple
simulation cases accompanied by adjusted excerpts from the mentioned envi-
ronment.

Figure 4.16: Smart Contract Endpoint in Remix IDE

84

4.5. To-Be Analysis: Simulation

The Figure 4.16 contains a preview of the smart contract’s endpoint that
is possible to call. There are all endpoints for corresponding calls but only
certain are available. The check if a certain call is possible is through the
methods isStateActive and the name of the task. These checks can be seen in
the Figure 4.17. If the user would call a task that is not yet active he would
receive an error message as is depicted in the Figure 4.18.

Figure 4.17: Functions for Checking Status of Tasks

Figure 4.18: Invalid Task Call

85

4. Proof of Concept: Case Study

4.5.1 First Simulation Case: Inadmissible Application

The first simulation case is the simplest one depicting a situation where the
application is rejected right after the first phase. The preliminary interview is
the first point where the information about the applicant is collected. Right
after that, the business rule determining admissibility is applied.

The Figure 4.19 shows that the application from the first case was deter-
mined as inadmissible. This is because the applicant stated the country of
origin that is defined in a list of safe countries. The case would be followed
by rejection.

Figure 4.19: First Simulation Case: Preliminary Information

86

4.5. To-Be Analysis: Simulation

4.5.2 Second Simulation Case: Overhanded Application

The second case simulates a situation where the application is deemed ad-
missible (see the Figure 4.20 and the Figure 4.21), but it is overhanded to
another Dublin country. This can occur when the applicant’s fingerprints
are already present in the EURODAC system because he already applied in
another country.

First, the IPO worker reviews the results of the EURODAC system. If
there is a matched record of fingerprints he has to create a so-called take back
request. This request is then either accepted or declined by the requested
Dublin country. This phase is depicted in the Figure 4.22. No new business
rules are triggered in this case.

Figure 4.20: Second Simulation Case: Preliminary Information

87

4. Proof of Concept: Case Study

Figure 4.21: Second Simulation Case: Admissibility Approval

88

4.5. To-Be Analysis: Simulation

Figure 4.22: Second Simulation Case: Take Back Request

89

4. Proof of Concept: Case Study

4.5.3 Third Simulation Case: Refugee Status

The third case is the first that is successfully completed. In this case, three
business rule tasks are occurring. Since the application was created recently as
can be seen in the Figure 4.23, the application will be processed in the stream
one backlog. The result of the prioritization is depicted in the Figure 4.24.

The final decision is grated after the application passes through all tasks
that can be seen in the Figure 4.25. This case simulates a situation where the
application is rejected in the first instance report. Then the appeal is upheld
and the decision is changed to Refugee status. The last confirmation of the
decision is depicted in the Figure 4.26.

Figure 4.23: Third Simulation Case: Preliminary Information

90

4.5. To-Be Analysis: Simulation

Figure 4.24: Third Simulation Case: Prioritization

91

4. Proof of Concept: Case Study

Figure 4.25: Third Simulation Case: Final Decision

92

4.5. To-Be Analysis: Simulation

Figure 4.26: Third Simulation Case: Final Approval

93

4. Proof of Concept: Case Study

4.5.4 Fourth Simulation Case: Permission to Remain

The last simulation case is similar to the previous one. It was designed to
trigger the last unused business rule assigning the priority for the stream two
backlogs. The input stating the date when the application was opened must
be set to a much older date as it is in the Figure 4.27. This situation is not
so probable but it was defined in the process for applications that are more
sporadic and hanging in the system longer time. They also include a business
case with a lot of different conditions.

The last phase of the process goes without problems and objections. The
priority is assigned for stream two as can be seen in the Figure 4.28. The final
decision (depicted in the Figure 4.29) is determined as Permission to remain
and approved by the Minister for Justice.

Figure 4.27: Fourth Simulation Case: Preliminary Information

94

4.5. To-Be Analysis: Simulation

Figure 4.28: Fourth Simulation Case: Final Decision

Figure 4.29: Fourth Simulation Case: Final Approval

95

4. Proof of Concept: Case Study

4.6 Chapter Summary

The final chapter provided a Proof-of-Concept case study in which blockchain
technology was introduced to the existing asylum management process of the
Republic of Ireland. Aside from the process’ introduction, the first part of
the chapter was functioning as a collection of resources describing the current
procedures in the asylum process. The BPMN models on multiple levels were
then created from the description.

The second part of this chapter used the BPMN models as a basis to which
the new logic utilizing blockchain network was added to improve its attributes
and characteristics. One of the old business rules was then taken described and
translated into a smart contract as a Proof of Concept. This smart contract
is then deployed and presented in a simulated blockchain environment.

96

Conclusion

The main goal of this thesis was to evaluate how smart contracts can be
generated from business rules. The source decision tables and diagrams were
captured in DMN notation. Two distinct programming languages for writing
smart contracts were compared. The implementation of the explored process
followed with its demonstration in a simple case study.

DMN notation is a standardized way to represent business rules inside
an organization. The applicability can be enhanced when the notation com-
plements BPMN process models. Cardano and Ethereum projects provide
well-established platforms for writing smart contracts. The approaches to the
development of Solidity and Plutus languages, together with big communities,
make them suitable as target languages.

The theoretical foundations were followed with the design of the conver-
sion process. During this section, the distinguishing characteristics of Solidity
and Plutus were noticeable but similar when considering the usability. The
proposed generation was then implemented and integrated into a DasContract
Editor that effectively utilizes a Liquid template processor. Solidity was se-
lected as a target language since the BPMN conversion was already present
in the editor. This was beneficial for the case study.

The developed algorithm was then tested both with manual and unit tests.
The Proof of Concept case study proposed a way to improve the existing pro-
cess of asylum procedure with blockchain technology and generated smart con-
tracts. The demonstration of the developed algorithm was successful. Using
the presented approach, operating costs of asylum procedures can be signifi-
cantly reduced.

After all goals of this thesis were completed, there are many possible di-
rections that future research could take. The smart contract platform is still
in development so the conversion mechanism will have to evolve also. Multi-
ple variations of modeling methods and target smart contract languages are
available for exploration.

97

Bibliography

[1] Vejrážková, Z. Business Process Modeling and Simulation: DEMO,
BORM and BPMN. Master’s thesis, Czech Technical University in
Prague, Faculty of Information Technology, Prague, 2013.

[2] Aalst, W. M. P.; Hofstede, A. H. M.; et al. Business Pro-
cess Management: A Survey. [online], 2003, [2022-03-05]. Avail-
able from: https://www.researchgate.net/publication/221586027_
Business_Process_Management_A_Survey

[3] Bandara, W.; Indulska, M.; et al. Major Issues in Business Process
Management: An Expert Perspective. [online], 2007, [2022-03-05].
Available from: https://www.researchgate.net/publication/
221409577_Major_Issues_in_BPM_Major_issues_in_Business_
Process_Management_an_Expert_Perspective

[4] Object Management Group. Business Process Model and Notation Spec-
ification. [online], [2022-03-05]. Available from: https://www.omg.org/
spec/BPMN/2.0/PDF

[5] Ross, R. G. Business Rule Concepts: Getting to the Point of Knowledge.
Business Rule Solutions Inc, fourth edition, 2013, ISBN 978-0941049146,
162 pp.

[6] Object Management Group. Decision Model and Notation Specification.
[online], [2022-01-09]. Available from: https://www.omg.org/spec/DMN/
1.3/PDF

[7] Red Hat. Red Hat Decision Manager Documentation: Chapter 1.
Decision Model and Notation (DMN). [online], [2022-03-05]. Avail-
able from: https://access.redhat.com/documentation/en-us/red_
hat_decision_manager/7.12

99

https://www.researchgate.net/publication/221586027_Business_Process_Management_A_Survey
https://www.researchgate.net/publication/221586027_Business_Process_Management_A_Survey
https://www.researchgate.net/publication/221409577_Major_Issues_in_BPM_Major_issues_in_Business_Process_Management_an_Expert_Perspective
https://www.researchgate.net/publication/221409577_Major_Issues_in_BPM_Major_issues_in_Business_Process_Management_an_Expert_Perspective
https://www.researchgate.net/publication/221409577_Major_Issues_in_BPM_Major_issues_in_Business_Process_Management_an_Expert_Perspective
https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/DMN/1.3/PDF
https://www.omg.org/spec/DMN/1.3/PDF
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.12
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.12

Bibliography

[8] Wattenhofer, R. Blockchain Science: Distributed Ledger Technology. In-
verted Forest Publishing, third edition, 2019, ISBN 978-1793471734, 289
pp.

[9] Bashir, I. Mastering Blockchain: Deeper insights into decentralization,
cryptography, Bitcoin, and popular Blockchain frameworks. Birmingham:
Packt Publishing, 2017, ISBN 978-1787125440.

[10] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. [online],
2008, [2022-04-28]. Available from: https://bitcoin.org/bitcoin.pdf

[11] Jimi, S. How does blockchain work in 7 steps — A clear and
simple explanation. [online], 2018, [2022-04-28]. Available from:
https://blog.goodaudience.com/blockchain-for-beginners-what-
is-blockchain-519db8c6677a

[12] Brünjes, L.; Vinogradova, P. Plutus: Writing reliable smart contracts.
Input Output HK, 2019. Available from: https://leanpub.com/plutus-
smart-contracts

[13] Chaudhry, N.; Yousaf, M. M. Consensus Algorithms in Blockchain: Com-
parative Analysis, Challenges and Opportunities. [online], 2018, [2022-
04-28]. Available from: https://www.researchgate.net/publication/
330880555_Consensus_Algorithms_in_Blockchain_Comparative_
Analysis_Challenges_and_Opportunities

[14] Wahab, A.; Memood, W. Survey of Consensus Protocols. [online], 2018,
[2022-04-05]. Available from: https://arxiv.org/ftp/arxiv/papers/
1810/1810.03357.pdf

[15] Szabo, N. Multinational Small Business. [online], 1993, [2022-04-
05]. Available from: https://nakamotoinstitute.org/multinational-
small-business/

[16] Szabo, N. Smart Contracts Glossary. [online], 1995, [2022-04-05].
Available from: https://nakamotoinstitute.org/smart-contracts-
glossary/

[17] Jones, M. P. Plutus Tx: compiling Haskell into Plutus Core. [online],
2021, [2022-04-05]. Available from: https://iohk.io/en/blog/posts/
2021/02/02/plutus-tx-compiling-haskell-into-plutus-core/

[18] Input Output Hong Kong. Learn about Marlowe. [online], [2022-
04-06]. Available from: https://docs.cardano.org/marlowe/learn-
about-marlowe

100

https://bitcoin.org/bitcoin.pdf
https://blog.goodaudience.com/blockchain-for-beginners-what-is-blockchain-519db8c6677a
https://blog.goodaudience.com/blockchain-for-beginners-what-is-blockchain-519db8c6677a
https://leanpub.com/plutus-smart-contracts
https://leanpub.com/plutus-smart-contracts
https://www.researchgate.net/publication/330880555_Consensus_Algorithms_in_Blockchain_Comparative_Analysis_Challenges_and_Opportunities
https://www.researchgate.net/publication/330880555_Consensus_Algorithms_in_Blockchain_Comparative_Analysis_Challenges_and_Opportunities
https://www.researchgate.net/publication/330880555_Consensus_Algorithms_in_Blockchain_Comparative_Analysis_Challenges_and_Opportunities
https://arxiv.org/ftp/arxiv/papers/1810/1810.03357.pdf
https://arxiv.org/ftp/arxiv/papers/1810/1810.03357.pdf
https://nakamotoinstitute.org/multinational-small-business/
https://nakamotoinstitute.org/multinational-small-business/
https://nakamotoinstitute.org/smart-contracts-glossary/
https://nakamotoinstitute.org/smart-contracts-glossary/
https://iohk.io/en/blog/posts/2021/02/02/plutus-tx-compiling-haskell-into-plutus-core/
https://iohk.io/en/blog/posts/2021/02/02/plutus-tx-compiling-haskell-into-plutus-core/
https://docs.cardano.org/marlowe/learn-about-marlowe
https://docs.cardano.org/marlowe/learn-about-marlowe

Bibliography

[19] López-Pintado, O. Caterpillar: A BPMN-based BPMS for Ethereum.
[online], [2022-04-06]. Available from: https://github.com/orlenyslp/
Caterpillar

[20] CCMi Research at the Czech Technical University in Prague. DasCon-
tract: A visual language to define contracts between people, compa-
nies, and governments. [online], [2022-04-06]. Available from: https:
//github.com/CCMiResearch/DasContract

[21] Sharma, P.; Jindal, R.; et al. A review of smart contract-based plat-
forms, applications, and challenges. [online], 2021, [2022-04-21]. Available
from: https://www.researchgate.net/publication/357850224_A_
review_of_smart_contract-based_platforms_applications_and_
challenges

[22] Iansiti, M.; Lakhani, K. R. Harvard Business Review: The Truth
About Blockchain. [online], 2017, [2022-04-06]. Available from: https:
//hbr.org/2017/01/the-truth-about-blockchain

[23] ethereum.org. The history of Ethereum. [online], 2022, [2022-04-08].
Available from: https://ethereum.org/en/history/

[24] ethereum.org. Consensus Mechanisms. [online], 2022, [2022-04-08]. Avail-
able from: https://ethereum.org/en/developers/docs/consensus-
mechanisms/

[25] ethereum.org. Ethereum Glossary. [online], 2022, [2022-04-09]. Available
from: https://ethereum.org/en/glossary/

[26] ethereum.org. Upgrading Ethereum to radical new heights. [online], 2022,
[2022-04-08]. Available from: https://ethereum.org/en/upgrades/

[27] ethereum.org. Solidity 0.8.14 Documentation. [online], [2022-04-09].
Available from: https://docs.soliditylang.org/en/latest/

[28] Quantum Systems Limited. Solidity – Ethereum’s Programming Lan-
guage for Smart Contraction. [online], 2018, [2022-04-10]. Available from:
https://www.qualium-systems.com/blog/blockchain/solidity-
ethereums-programming-language-for-smart-contraction/

[29] IOHK Limited. About Input Output - IOHK. [online], [2022-04-10]. Avail-
able from: https://iohk.io/en/about/

[30] IOHK Limited. Documentation for the Cardano ecosystem. [online],
[2022-04-10]. Available from: https://docs.cardano.org/

[31] IOHK Limited. Cardano Roadmap. [online], [2022-04-10]. Available from:
https://roadmap.cardano.org/en/

101

https://github.com/orlenyslp/Caterpillar
https://github.com/orlenyslp/Caterpillar
https://github.com/CCMiResearch/DasContract
https://github.com/CCMiResearch/DasContract
https://www.researchgate.net/publication/357850224_A_review_of_smart_contract-based_platforms_applications_and_challenges
https://www.researchgate.net/publication/357850224_A_review_of_smart_contract-based_platforms_applications_and_challenges
https://www.researchgate.net/publication/357850224_A_review_of_smart_contract-based_platforms_applications_and_challenges
https://hbr.org/2017/01/the-truth-about-blockchain
https://hbr.org/2017/01/the-truth-about-blockchain
https://ethereum.org/en/history/
https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://ethereum.org/en/glossary/
https://ethereum.org/en/upgrades/
https://docs.soliditylang.org/en/latest/
https://www.qualium-systems.com/blog/blockchain/solidity-ethereums-programming-language-for-smart-contraction/
https://www.qualium-systems.com/blog/blockchain/solidity-ethereums-programming-language-for-smart-contraction/
https://iohk.io/en/about/
https://docs.cardano.org/
https://roadmap.cardano.org/en/

Bibliography

[32] Kiayias, A.; Russell, A.; et al. Ouroboros: A Provably Secure Proof-of-
Stake Blockchain Protocol. [online], 2019, [2022-04-10]. Available from:
https://eprint.iacr.org/2016/889.pdf

[33] IOHK Limited. Plutus 1.0.0 documentation. [online], [2022-04-28]. Avail-
able from: https://plutus.readthedocs.io/en/latest/

[34] Joeris, B. Haskell Fundamentals Part 2. [online], 2014, [2022-04-11]. Avail-
able from: https://app.pluralsight.com/library/courses/haskell-
fundamentals-part2/

[35] Mike Thoma. CORE Report: Cardano (Abridged). [online], 2021,
[2022-04-11]. Available from: https://www.cryptoeq.io/corereports/
cardano-abridged

[36] Hornáčková, B.; Skotnica, M.; et al. Exploring a Role of Blockchain
Smart Contracts in Enterprise Engineering. [online], 2019, [2022-04-
30]. Available from: https://www.researchgate.net/publication/
330008379_Exploring_a_Role_of_Blockchain_Smart_Contracts_in_
Enterprise_Engineering_8th_Enterprise_Engineering_Working_
Conference_EEWC_2018_Luxembourg_Luxembourg_May_28_-_June_1_
2018_Proceedings

[37] Skotnica, M.; Pergl, R. Towards Model-Driven Smart Contract
Systems – Code Generation and Improving Expressivity of Smart
Contract Modeling. [online], 2020, [2022-04-30]. Available from:
https://www.researchgate.net/publication/338360280_Das_
Contract_-_A_Visual_Domain_Specific_Language_for_Modeling_
Blockchain_Smart_Contracts

[38] Skotnica, M.; Klicpera, J.; et al. Towards Model-Driven Smart Con-
tract Systems – Code Generation and Improving Expressivity of Smart
Contract Modeling. [online], 2020, [2022-04-30]. Available from: http:
//ceur-ws.org/Vol-2825/paper1.pdf

[39] Drozd́ık, M. Open-Source Legal Process Designer in .NET Blazor. Bache-
lor’s thesis, Czech Technical University in Prague, Faculty of Information
Technology, Prague, 2020.

[40] Ančinec, P. Domain-Specific Languages for Off-chain UI in Decentralized
Applications. Bachelor’s thesis, Czech Technical University in Prague,
Faculty of Information Technology, Prague, 2021.

[41] Frait, J. Generating Ethereum Smart Contracts from DasContract Lan-
guage. Master’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, Prague, 2020.

102

https://eprint.iacr.org/2016/889.pdf
https://plutus.readthedocs.io/en/latest/
https://app.pluralsight.com/library/courses/haskell-fundamentals-part2/
https://app.pluralsight.com/library/courses/haskell-fundamentals-part2/
https://www.cryptoeq.io/corereports/cardano-abridged
https://www.cryptoeq.io/corereports/cardano-abridged
https://www.researchgate.net/publication/330008379_Exploring_a_Role_of_Blockchain_Smart_Contracts_in_Enterprise_Engineering_8th_Enterprise_Engineering_Working_Conference_EEWC_2018_Luxembourg_Luxembourg_May_28_-_June_1_2018_Proceedings
https://www.researchgate.net/publication/330008379_Exploring_a_Role_of_Blockchain_Smart_Contracts_in_Enterprise_Engineering_8th_Enterprise_Engineering_Working_Conference_EEWC_2018_Luxembourg_Luxembourg_May_28_-_June_1_2018_Proceedings
https://www.researchgate.net/publication/330008379_Exploring_a_Role_of_Blockchain_Smart_Contracts_in_Enterprise_Engineering_8th_Enterprise_Engineering_Working_Conference_EEWC_2018_Luxembourg_Luxembourg_May_28_-_June_1_2018_Proceedings
https://www.researchgate.net/publication/330008379_Exploring_a_Role_of_Blockchain_Smart_Contracts_in_Enterprise_Engineering_8th_Enterprise_Engineering_Working_Conference_EEWC_2018_Luxembourg_Luxembourg_May_28_-_June_1_2018_Proceedings
https://www.researchgate.net/publication/330008379_Exploring_a_Role_of_Blockchain_Smart_Contracts_in_Enterprise_Engineering_8th_Enterprise_Engineering_Working_Conference_EEWC_2018_Luxembourg_Luxembourg_May_28_-_June_1_2018_Proceedings
https://www.researchgate.net/publication/338360280_Das_Contract_-_A_Visual_Domain_Specific_Language_for_Modeling_Blockchain_Smart_Contracts
https://www.researchgate.net/publication/338360280_Das_Contract_-_A_Visual_Domain_Specific_Language_for_Modeling_Blockchain_Smart_Contracts
https://www.researchgate.net/publication/338360280_Das_Contract_-_A_Visual_Domain_Specific_Language_for_Modeling_Blockchain_Smart_Contracts
http://ceur-ws.org/Vol-2825/paper1.pdf
http://ceur-ws.org/Vol-2825/paper1.pdf

Bibliography

[42] Microsoft. .NET documentation. [online], [2022-04-24]. Available from:
https://docs.microsoft.com/en-us/dotnet/fundamentals/

[43] Microsoft. ASP.NET Core Blazor. [online], [2022-04-24]. Available from:
https://docs.microsoft.com/cs-cz/aspnet/core/blazor/

[44] Chris Sainty. GitHub Repository - Blazored LocalStorage. [online], [2022-
04-24]. Available from: https://github.com/Blazored/LocalStorage

[45] bpmn-io. dmn-js - DMN for the web. [online], [2022-04-24]. Available from:
https://github.com/bpmn-io/dmn-js

[46] bpmn-io. bpmn-js - BPMN 2.0 for the web. [online], [2022-04-24]. Avail-
able from: https://github.com/bpmn-io/bpmn-js

[47] Shopify. Liquid. [online], [2022-04-24]. Available from: https://
shopify.github.io/liquid/

[48] Mike Bridge. GitHub Repository - Liquid.NET. [online], [2022-04-24].
Available from: https://github.com/mikebridge/Liquid.NET

[49] Alexandre Mutel. GitHub Repository - scriban. [online], [2022-04-24].
Available from: https://github.com/scriban/scriban

[50] The UN Refugee Agency. Convention and Protocol Relating to the
Status of Refugees. [online], [2022-01-08]. Available from: https://
www.unhcr.org/3b66c2aa10

[51] European Council on Refugees and Exiles. Our Work. [online], [2022-01-
08]. Available from: https://ecre.org/our-work/

[52] Asylum Information Database. Admissibility, responsibility and safety
in European asylum procedures. [online], [2022-01-08]. Available
from: https://asylumineurope.org/wp-content/uploads/2020/11/
admissibility_responsibility_and_safety_in_european_asylum_
procedures.pdf

[53] The European Parliament and the Council of the European Union. Reg-
ulation (EU) No 604/2013 of the European Parliament and of the Coun-
cil. [online], [2022-01-08]. Available from: https://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=OJ:L:2013:180:0031:0059:en:PDF

[54] European Council on Refugees and Exiles. Short overview of
the asylum procedure. [online], [2022-01-08]. Available from:
https://asylumineurope.org/reports/country/republic-ireland/
asylum-procedure/general/short-overview-asylum-procedure/

103

https://docs.microsoft.com/en-us/dotnet/fundamentals/
https://docs.microsoft.com/cs-cz/aspnet/core/blazor/
https://github.com/Blazored/LocalStorage
https://github.com/bpmn-io/dmn-js
https://github.com/bpmn-io/bpmn-js
https://shopify.github.io/liquid/
https://shopify.github.io/liquid/
https://github.com/mikebridge/Liquid.NET
https://github.com/scriban/scriban
https://www.unhcr.org/3b66c2aa10
https://www.unhcr.org/3b66c2aa10
https://ecre.org/our-work/
https://asylumineurope.org/wp-content/uploads/2020/11/admissibility_responsibility_and_safety_in_european_asylum_procedures.pdf
https://asylumineurope.org/wp-content/uploads/2020/11/admissibility_responsibility_and_safety_in_european_asylum_procedures.pdf
https://asylumineurope.org/wp-content/uploads/2020/11/admissibility_responsibility_and_safety_in_european_asylum_procedures.pdf
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:180:0031:0059:en:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:180:0031:0059:en:PDF
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/short-overview-asylum-procedure/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/short-overview-asylum-procedure/

Bibliography

[55] European Council on Refugees and Exiles. Country Report: Statistics.
[online], [2022-01-08]. Available from: https://asylumineurope.org/
reports/country/republic-ireland/statistics/

[56] European Council on Refugees and Exiles. Flow Chart: Re-
public of Ireland. [online], [2021-11-26]. Available from: https:
//asylumineurope.org/reports/country/republic-ireland/
asylum-procedure/general/flow-chart/

[57] European Council on Refugees and Exiles. List of Authorities Intervening
in each Stage of the Procedure: Republic of Ireland. [online], [2021-11-
26]. Available from: https://asylumineurope.org/reports/country/
republic-ireland/asylum-procedure/general/list-authorities-
intervening-each-stage-procedure/

[58] An Garda Śıochana. Immigration (GNIB). [online], [2021-11-26]. Avail-
able from: https://www.garda.ie/en/about-us/organised-serious-
crime/immigration-gnib-/

[59] International Protection Office. Our Responsibilities. [online], [2021-
11-26]. Available from: http://www.ipo.gov.ie/en/ipo/pages/
internationalprotection

[60] The International Protection Appeals Tribunal. About Us. [online], [2021-
11-26]. Available from: http://www.protectionappeals.ie/website/
rat/ratweb.nsf/page/about_the_tribunal-en

[61] Courts Service. High Court. [online], [2021-11-26]. Available from: https:
//www.courts.ie/high-court

[62] European Council on Refugees and Exiles. Regular Proce-
dure: Republic of Ireland. [online], [2021-11-26]. Available from:
https://asylumineurope.org/reports/country/republic-ireland/
asylum-procedure/procedures/regular-procedure/

[63] Department of Justice. About Us. [online], [2021-11-26]. Available from:
https://www.justice.ie/en/JELR/Pages/About_Us

[64] European Council on Refugees and Exiles. Border Proce-
dure: Republic of Ireland. [online], [2021-11-26]. Available from:
https://asylumineurope.org/reports/country/republic-ireland/
asylum-procedure/procedures/border-procedure-border-and-
transit-zones/

[65] European Council on Refugees and Exiles. Dublin Proce-
dure: Republic of Ireland. [online], [2021-11-26]. Available from:
https://asylumineurope.org/reports/country/republic-ireland/
asylum-procedure/procedures/dublin/

104

https://asylumineurope.org/reports/country/republic-ireland/statistics/
https://asylumineurope.org/reports/country/republic-ireland/statistics/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/flow-chart/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/flow-chart/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/flow-chart/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/list-authorities-intervening-each-stage-procedure/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/list-authorities-intervening-each-stage-procedure/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/general/list-authorities-intervening-each-stage-procedure/
https://www.garda.ie/en/about-us/organised-serious-crime/immigration-gnib-/
https://www.garda.ie/en/about-us/organised-serious-crime/immigration-gnib-/
http://www.ipo.gov.ie/en/ipo/pages/internationalprotection
http://www.ipo.gov.ie/en/ipo/pages/internationalprotection
http://www.protectionappeals.ie/website/rat/ratweb.nsf/page/about_the_tribunal-en
http://www.protectionappeals.ie/website/rat/ratweb.nsf/page/about_the_tribunal-en
https://www.courts.ie/high-court
https://www.courts.ie/high-court
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/procedures/regular-procedure/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/procedures/regular-procedure/
https://www.justice.ie/en/JELR/Pages/About_Us
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/procedures/border-procedure-border-and-transit-zones/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/procedures/border-procedure-border-and-transit-zones/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/procedures/border-procedure-border-and-transit-zones/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/procedures/dublin/
https://asylumineurope.org/reports/country/republic-ireland/asylum-procedure/procedures/dublin/

Bibliography

[66] CEF Digital. EBSI Documentation: What is EBSI? [online], [2022-01-
09]. Available from: https://ec.europa.eu/cefdigital/wiki/pages/
viewpage.action?pageId=381517902

[67] CEF Digital. EBSI Documentation: Smart Contracts. [online],
[2022-01-09]. Available from: https://ec.europa.eu/cefdigital/wiki/
display/EBSIDOC/Smart+Contracts

[68] ethereum.org. Remix - Ethereum IDE. [online], [2022-04-30]. Available
from: https://remix.ethereum.org/

105

https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=381517902
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=381517902
https://ec.europa.eu/cefdigital/wiki/display/EBSIDOC/Smart+Contracts
https://ec.europa.eu/cefdigital/wiki/display/EBSIDOC/Smart+Contracts
https://remix.ethereum.org/

Appendix A
Acronyms

ABI Application Binary Interface

BORM Business Objects Relation Modelling

BPEL Business Process Execution Language

BPM Business Process Modeling

BPMN Business Process Modeling Notation

DAO Distributed Autonomous Organization

DeFi Decentralized Finance

DEMO Design & Engineering Methodology for Organizations

DMN Decision Model and Notation

DoS Denial of Service

DRD Decision Requirements Diagram

DRG Decision Requirements Graph

EVM Ethereum Virtual Machine

FEEL Friendly Enough Expression Language

GHC Glasgow Haskell Compiler

GNIB Garda National Immigration Bureau

IOHK Input Output Hong Kong Limited

IPA International Protection Act

IPAT International Protection Appeals Tribunal

107

A. Acronyms

IPO International Protection Office

JSON JavaScript Object Notation

PBFT Practical Byzantine Fault Tolerance

PoS Proof of Stake

PoW Proof of Work

UML Unified Modeling Language

UTXO Unspent Transaction Output

SOA Service Oriented Architectures

S-FEEL Simplified Friendly Enough Expression Language

XML Extensible Markup Language

108

Appendix B
Contents of enclosed CD

readme.md.........................the file with CD contents description
models......................................the thesis model directory

class-diagrams...........class diagrams of the DasContract Editor
dmn-and-bpmn-models..............models for the asylum procedure

src.......................................the directory of source codes
code-examples code examples in Solidity and Plutus
dascontrac-editor.........................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

109

	Introduction
	Theoretical Foundations
	Business Process Management
	Business Rules and DMN
	Blockchain Technology
	Smart Contract
	Ethereum Platform
	Cardano Platform
	Chapter Summary

	Business Rule as Smart Contract
	Representation of DMN Business Rule
	Generation of Smart Contract
	Chapter Summary

	Proof of Concept: Implemented Generator
	Used Technologies
	Software Architecture
	Testing
	Chapter Summary

	Proof of Concept: Case Study
	Asylum Procedures in Europe
	As-Is Analysis: Collection of Resources
	As-Is Analysis: Modeled Process
	To-Be Analysis: Modeled Process
	To-Be Analysis: Simulation
	Chapter Summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

