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Abstrakt

Vzhledem k tomu, že kvadratická složitost mechanizmu vńımańı architektury Transformer zp̊usobuje
velké náklady na zpracováńı dlouhých posloupnost́ı, ćılem dané práce je prozkoumat lineárńı
varianty architektury a implementovat několik nových metod.

Kĺıčová slova hluboké učeńı, zpracováńı přirozeného jazyka, transformer, vńımańı, neuronové
śıtě

Abstract

As the quadratic complexity of an attention mechanism in the Transformer architecture places
a high demand on processing long sequences, the goal of this research is to explore possibilities
of linear attention in Transformer-like architecture and implement new methods.

Keywords deep learning, natural language processing, transformer, attention, neural net-
works
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Chapter 1

Introduction

In this chapter we will briefly introduce the motivation standing behind the Transformer ar-
chitecture. We will quickly review RNN architectures used for machine translation, explain
difficulties corresponding to application of recurrent models in practice and will take a view on
the most advanced pre-Transformer sequence processing network. At the end of the chapter,
we will introduce an attention mechanism with an explanation how it may improve a recurrent
model, and eventually will arrive to an architecture completely built around an attention.

Recurrent neural networks have undergone many improvements throughout their existence, which
eventually led them to the state-of-the-art status for many sequence processing and transduction
tasks. They offer a natural approach to sequence processing, based on reading an input sequence
one element at time, and outputting a corresponding vector based on the current input and an
internal state.

However, the path between a theoretical formulation and an actual practical application
was long and full of engineering difficulties. While for many problems a cure was found, some
fundamental recurrent model issues could not be solved. The research eventually led to a radically
new architecture, which not only got rid of the shortcomings of the recurrent approach, but also
turned out to be universal enough to conquer the status of the most powerful model in a plenty
of domains.

In this chapter, we will approach the Transformer architecture by introducing preceding
models. A deep dive into a neural NLP history is out of scope of this work; instead, we will
introduce the state-of-the-art approaches ”right before” an emergence of attention-based models
with a necessary background on RNNs, and will illustrate attention principles and motivation
on the transition between architectures.

1.1 A recurrent approach
A Recurrent Neural Network is an architecture which relies both on input vector and an internal
state to produce an output. A hidden state is a key difference from FCNNs, which allows the cell
to operate differently after previously seeing different inputs, and thus to capture time-dependent
relations between input elements.

A RNN cell output may be generally written as a function of an input vector, its internal
state and its parameters:

RNN(xt) = ht = f(xt, st−1; θ)
st = g(xt, st−1; θ)

1



2 Introduction

which is in the most simple case a linear-and-activation relationship:

ht = σ(W [xt, st−1] + b)
st = ht

where σ is a non-linear activation function, s0 resp. st are hidden states after initialization resp.
after step t, [·, ·] is a concatenation along a hidden dimension axis and (W, b) = θ. A RNN cell
defined this way is already capable of learning complex dependencies, but suffers a variety of
problems related to its sequential nature.

1.1.1 Vanishing and exploding gradients
A single RNN cell may be unrolled to a pretty deep neural network, which applies a similar
transformation multiple times to the same input. For simplicity, we can approximate a recurrent
relationship with a simple linear transform:

st ≈ Wsst−1

Assuming a network initialization with small weights and a zero-centered input, the approx-
imation is fair for the most common choices of activation functions, namely logistic sigmoid or
tanh. After performing an eigenvalue decomposition of Ws = QΛQ−1 and a repeated application
of this transformation on s0 for t times, we obtain:

st = QΛtQ−1s0

The final result is determined by the spectral radius λ = ρ(Ws). If λ > 1, hidden state vectors
will grow in magnitude and eventually will destabilize the training. If λ < 1, than st will tend
to zero and the training will be impeded. It is also true for both cases, that a small change of
Ws will result in an exponential impact on st values.

The problem of a potential gradient explosion limits the choice of activation functions to
bounded ones. And since bounded functions are saturating, they are prone to significantly
reduce the gradient passing backwards during training, and thus make handling long inputs
intractable.

1.1.2 Gated networks
To address the issue, a RNN cell state may be updated in a more subtle way, without a major
recomputation of its values. This may be achieved via gating, and one of the most known
realisations of a gated recurrent network is the Long Short-Term Memory[1] (LSTM).

A LSTM unit detaches a cell state Ct−1 from a preceding output ht−1, and leverages five
different linear layers grouped into three gates, which determine what the cell needs to forget
and what it needs to bring along to the next step. Further in this subsection, we will refer a
[xt, ht−1] concatenation as a cell input, passing some input through a tanh-activated layer as a
transform, and a f(x, y) = x ⊙ σ(Wy + b) operation as a gating x with y, where σ is a logistic
function.

A forget gate gates a cell state with a cell input.

An input gate gates a cell input with a transformed cell input, and then adds a result to
the cell state.
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(a) RNN (b) LSTM

Figure 1.1 A comparison of RNN vs LSTM units. Converging lines denote concatenation, diverging
denote copying, dotted lines separate individual LSTM gates, rectangles denote a linear layer with a
corresponding activation function, circles denote an element-wise operation.

An output gate transforms a cell state and gates it with a cell input.

The LSTM architecture exploits an idea of ”forgetting” the unrelated information, and gets
rid of its undesired fragments by gating. After combining this approach with a minimalist cell
state update strategy, we obtain a RNN unit able to handle much longer sequences.

The LSTM had motivated a further research on gated recurrent networks[2], spawning thou-
sands of possible unit layouts, but the basic LSTM units similar to the one described were pretty
persistent in scientific publications, and served in the state-of-the-art models until Transformers
emerged.

1.2 The seq2seq architecture

The basic RNN model formulation for sequence transduction supposes first to read an input
sequence of t tokens to produce its vector representation ht. Given that representation as a
hidden state, the model should output members of another sequence one-by-one until a special
”end of sequence” token will be given.

Figure 1.2 The seq2seq architecture. Green resp. blue rectangles denote an encoder resp. a decoder.
The RNN is pictured in its unrolled form.

The Sequence-to-Sequence architecture[3] makes a one step further, and separates weights for
embedding and generating, effectively turning the architecture into a LSTM-based autoencoder.
This encoder-decoder approach is still the basis of sequence transduction architectures today.
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1.3 Attention
Despite the success of a seq2seq architecture and its further improvements (bidirectional encoder,
new recurrent units, new methods of training and regularization, . . . ), it still shared the common
shortcoming of all recurrent models: the variable-sized input was represented by a fixed-size
vector. The vector of a finite dimensionality had turned into a bottleneck, effectively preventing
a model from capturing longer contexts.

Bahdanau et al.[4] proposed to keep encoder outputs (referred as annotations of input tokens)
and aggregate them into a context vector for each decoded token. The output is then conditioned
by a previously decoded token, a hidden state and additionally by this context vector:

AttDecoderRNN(yt) = f(yt, st−1, ct; θ)
st = g(yt, st−1, ct; θ)

ct =
∑
i∈Ix

αihi

αi = exp(ei)∑
j∈Ix

exp(ej)
ei = sim(hi, st−1)

where Ix is an index set of input tokens xi, and hi are input annotations.
As we can see, a context vector is basically a convex combination of input annotations. The

coefficients are given by values of some similarity (or alignment) function between a decoder
hidden state and input annotations, normalized with a softmax. This allows to ”attend” to
relevant pieces of an input sequence and to use this information for better decoding, while also
improving a gradient flow through the model.

Figure 1.3 An attention-augmented seq2seq model. A fully-differentiable attention module dynami-
cally weights input token annotations in a data-driven way, and creates a new vector of input sequence
information for better decoding.

Bahdanau et al. proposed the following rule to compute a similarity function:

sim(st−1, hi) = vT
a tanh(Wa[st−1, hi])
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However, impressive results shown by the model motivated a further research, and quickly
spawned numerous variants of attention computation, each with their pros and cons. Since
describing all attention mechanisms is out of scope of this work, we will restrict ourselves to a
table containing several popular variants:

Name sim(hi, st−1) definition Source Note
Additive/concat vT tanh(W [hi, st−1]) Bahdanau et al.[4] -
Content-based cosine(hi, st−1) Graves et al.[5] A Neural Turing Machine uses

this attention to address exter-
nal memory.

Location-based Wst−1 Luong et al.[6] Weighting is performed only by
target location.

General hT
i Wst−1 Luong et al.[6] -

Dot hT
i st−1 Luong et al.[6] -

Scaled Dot hT
i st−1/

√
dh Vaswani et al.[7] Performs scaling to avoid soft-

max saturation.
Table 1.1 Popular attention weighting function choices with sources. v and W denote learnable

parameters, dh denotes argument dimensionality.

1.4 Attention is all you need
An attention mechanism let recurrent neural networks to strengthen their positions in machine
translation, but the essentially sequential nature precluded training parallelization. Furthermore,
an attention allowed to process longer sequences but did not solve the context forgetting problem
completely. After the work on these problems, Vaswani et al.[7] have found the solution in the
architecture completely free of recurrence, and relying only on attention and linear layers to
produce new input representations. The detailed description of the architecture is the subject of
the next chapter.
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Chapter 2

Transformer

In this chapter, we will explore the Transformer architecture in detail. We will describe the
attention operation, its information retrieval interpretation and a role of individual attention
variants used in the model. We will also show that both encoder and decoder parts of the
architecture can be used separately, and will introduce some model variants which have found
their use in practice. Finally, we will explore the theoretical background and make some
conclusions about the model operation.

The Transformer[7] is a prominent neural network architecture, which has already established
itself as a state-of-the-art model in a vast amount of tasks. While NLP and sequence processing
largely motivated its emergence, the architecture showed itself surprisingly modality-agnostic and
became a state-of-the art in language modeling[8] and text generation[9][10][11][12], as well as
in image classification[13] and object detection[14], speech recognition[15], reinforcement learn-
ing[16] and other domains.

The source of a power is an attention mechanism, which is based on pairwise matching of
input elements to discover relationships. Such a framework allows the model to handle arbitrarily
long input sequences, and to discover long-spanning dependencies without a need to squeeze all
the information into a single vector. Furthermore, the pairwise matching allowed to process data
of any modality, and eventually led to another way to look at data, as well as to a new approach
of designing neural network architectures[17].

However, everything got its own cost. Being an unbiased architecture employing pairwise
matching, Transformer also suffers from data inefficiency and high computational costs. Current
research is largely motivated by overcoming the model issues, and we can note several primary
directions of a work:

Domain adaptation. Transformers require significantly more data than competing architec-
tures to train. For the major part of tasks, it is needed to employ transfer learning tools
or advanced domain adaptation techniques to utilize the knowledge already accumulated in
large pretrained models.

Computational efficiency. Eschewing a recurrence allows to heavily parallelize both inference
and training, but the true issue lays in the asymptotic complexity. A pairwise matching
framework induces both large memory and computation costs, reducing the benefit of no
recurrence.

Generalization. While most of tasks can be solved via transferring an already pretrained
Transformer, these base models still need to be somehow trained. Advanced pretraining
techniques and a heavy use of unlabeled data allow to improve the final model performance
for future downstream tasks.

7
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Figure 2.1 The Transformer architecture.

This chapter describes all the base architecture details needed to understand the main part
of the work. The first section describes main building blocks, an information flow and individ-
ual attention variants with their designated roles in a transductive model. The second section
discusses the use of individual model parts and introduces some architectures built upon Trans-
former encoder or decoder. The third section introduces the model application in various tasks
without restriction to sequence processing only. Finally, we discuss the architecture features and
peculiarities, introduce some theoretical research and problems which are being tackled by the
models from the main part of the thesis.

2.1 Architecture details

2.1.1 A high-level view
The original model by[7], referred in the subsequent chapters as a vanilla Transformer, consists of
an input layer, an encoder, a decoder and an output layer, see Fig. 2.1. At a high level, the model
encoder processes an input sequence of L tokens into a L × d dense representation, progressively
re-encoding each token using the context of all the sequence. Given this representation, a decoder
autoregressively generates a new sequence, one token at a time.

2.1.1.1 Input layer
An input layer consists of an embedding layer and positional encodings:

Input(X) = LayerNorm(Embedding(X) + P ), X ∈ NL
0 , P ∈ RL×d

The layer borrows a lot from embedding layers of recurrent seq2seq architectures. However,
the Transformer got no recurrence nor implicit ordering, and to bring in positional signal it is
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needed to add special vectors to the input. Some architectures may further extend the layer with
additional encodings, e.g. token types.

2.1.1.2 Encoder
An encoder is composed of multiple stacked encoder blocks, each of which consumes and produces
an input sequence representation of a L × d shape. Each encoder block, in turn, consists of a
multi-head self-attention layer and a FCNN applied token-wise. A multi-head self-attention
layer exploits an idea of building a new token representation by gathering an information from
all tokens in the sequence, while a token-wise FCNN performs an additional non-linear trans-
form. There is a skip connection after each attention layer and a FCNN, followed by a Layer
Normalization.

2.1.1.3 Decoder
Similarly to an encoder, a decoder is a stack of decoder blocks, preceded by an embedding layer.
Each decoder block accepts a currently decoded sequence and an encoder output, and produces
a new decoded sequence representation.

A decoder block is similar to an encoder block, but inserts an additional layer and uses
different kinds of attention:

1. First, it performs a masked self-attention. We describe it more in detail in the next
subsection, but the role of this layer is to compute new decoded tokens representations by
aggregating an information from previous tokens, impelling an autoregressive behavior.

2. Then, it performs a cross-attention between a decoded sequence and an encoder output.
This is how the model propagates an information from an input sequence to a decoded one.

3. Finally, a position-wise FCNN is applied the same way as in an encoder.

Identically to an encoder, a decoder makes use of residual connections and LayerNorms over
each of the three layers.

2.1.1.4 Model output
An output layer is a simple token-wise linear layer with a softmax on top. In an autoregressive
setting, the model is being trained via teacher forcing, while an inference is performed in the
following way:

1. Encode an input sequence.

2. Feed a [SOS] token into a decoder.

3. Get the last generated token, append it to the decoded sequence and feed it back.

4. Repeat until a [EOS] token will be generated.

However, as we will see in the following section, the model can be trained for a remarkable
variety of tasks, and can make use of other output formulations.

2.1.2 Attention
The key module of the Transformer architecture is an attention. We have briefly noted the roles
of particular attention layers, but this subsection is dedicated to their detailed description, which
will shed some light on how actually the model utilizes the context of a token to transform it.
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sequence

to
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Input Output

Figure 2.2 An autoregressive prediction example

The authors in[7] use a specific terminology to define the operation. It may be seen as a
function mapping query, key and value to an output. Output vectors are weighted sums of
value vectors, where weights are given by some similarity function between query and key vectors.

More specifically, the authors define the attention operation this way: given queries and
keys of dimension dk and values of dimension dv, stacked into matrices by order, compute the
following:

Att(Q, K, V ) = softmax
(

QKT

√
dk

)
V

The
√

dk term is needed to avoid the softmax saturation, since a dot product of vectors with
large dk may produce large magnitudes and thus decrease a gradient flow.

Considering a query matrix of size Lq × dk, a key matrix of size Lv × dk and a value matrix
of size Lv × dv, we will refer to the intermediate result of size Lq × Lv after applying a softmax
as an attention matrix.

(a) Scaled Dot-Product Attention
(b) Multi-Head Attention running several attentions in
parallel

Figure 2.3 Attention operation described by[7]

The operation may be interpreted as a pairwise comparison of queries and keys, and a par-
ticular row of the matrix reflects how each key is related to the query vector qi. By multiplying
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a value matrix with this row, we form a new vector which will represent the ith query token at
the block output.

The Transformer architecture by[7] utilizes three slightly different attention operation variants
(see Fig. 2.4) described below:

2.1.2.1 Self-Attention
During a Self-Attention operation query, key and value come from a single source – an input
sequence, projected by three different linear layers. This operation is being performed in the
encoder and is used to re-encode input tokens considering their relevance to other tokens.

2.1.2.2 Masked Self-Attention
Masked Self-Attention works similarly to Self-Attention, but before applying a softmax the at-
tention matrix is being masked. Considering a sequence beginning at the top/left of an attention
matrix, a −∞ is being added to the elements above the diagonal before applying a softmax,
disallowing to attend ”future” tokens by previous tokens in a sequence.

A Masked Self-Attention operation is used in the decoder. Masking an attention matrix this
way forces an autoregressive behavior instead of a plain information copying on a next token
prediction.

2.1.2.3 Cross-Attention
Cross-Attention performs an attention operation on queries and key-value pairs coming from
different sources. The model by[7] performs an unmasked attention with queries being decoder
inputs and keys+values being encoder outputs. This allows to ”mix in” an information from an
encoded sequence into a decoded one.

The three described attention modules are the most common and capable of solving most
tasks, but the formulation of an attention allows further applications if any will be found useful,
e.g. by varying Q, K and V sources or mask shapes.

(a) Self-Attention (b) Masked Self-Attention (c) Cross-Attention

Figure 2.4 A scheme of Transformer attention matrices on an example of a half-done CZ-ENG
translation. We employ a color scheme from the previous chapter and denote an encoder as green and
a decoder as blue. White elements on the scheme denote zero elements (masked), while darker elements
are used to emphasize larger alignment scores given by a model.

2.1.2.4 Multiple Heads
The authors found it beneficial to project attention inputs h times with h different sets of
query, key and value matrices. The results of h individual attention operations are then being
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concatenated and projected by a linear layer of size hdv × dhidden:

MultiHead(Q, K, V ) = [head1, head2, . . . , headh]W O

headh = Att(QW Q
i , KW K

i , V W V
i )

Where W Q
i ∈ Rdhidden×dk , W K

i ∈ Rdhidden×dk , W V
i ∈ Rdhidden×dv and W O

i ∈ Rhdv×dhidden .
By using smaller values for dk and dv, the computational costs may be left similar to the single-

head attention, but with a possibility to split individual transforms between GPUs. The another
advantage is that individual heads may learn different things, since they apply different linear
transforms before constructing a non-linear attention matrix, allowing to learn more complex
functions. This can be seen as heeding different aspects of input, e.g. token semantics vs token
morphology.

2.1.3 Interpretability

(a) Attention matrix visualization as a heatmap from
[18].

(b) A per-head view on attention scores via BertViz
tool[19].

Figure 2.5 Attention scores visualisation

An attention matrix produced by all attention models is a kind of a built-in interpretation
tool. We have already mentioned that its scores represent a relevance between queries and keys,
and visualizing them may give some insights about model reasoning. The two most common
ways to visualize attention are matrix heatmaps and weighted bipartite graphs, see Fig. 2.5.
In the case of Transformer, the latter may be more preferable since it allows to depict multiple
attention heads at time.

2.2 Application

A word on operation modes. Sequence processing tasks are not limited to machine trans-
lation only; for tasks which are not built around a sequence transduction a usage of the encoder-
decoder architecture may be excessive. That is why a substantial part of Transformer-based
architectures is built over an encoder- or decoder- only.

Encoder-only models are useful for downstream tasks primarily including sequence classi-
fication or language understanding. These architectures typically leverage only self-attention,
do not perform causal masking, and make use of bidirectional token context. Before fine-tuning
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for downstream tasks, they are typically being pretrained on denoising and input consistency
objectives.

Decoder-only models are meant for autoregressive tasks. Similarly to encoder-only models,
they leverage only self-attention, but the key difference is the causal mask which does not allow
to ”peep into the future”, and given some context or control sequences allows to generate new
text. The common pretraining pipeline includes the next token prediction objective and teacher
forcing.

Encoder-decoder models are meant for sequence-to-sequence tasks, such as machine trans-
lation, text summarization or generative question answering. They generally follow the original
Transformer architecture introduced in the previous section, and may include more complex
training objectives than encoder- or decoder- only models. Due to the nature of sequence-to-
sequence tasks, encoder-decoder models typically require parallel corpora of training data, and
thus are harder to implement in practice. However, a one may partially counter the problem by
making use of unsupervised data and pretraining an encoder and decoder separately on corre-
sponding objectives.

We demonstrate a variety of Transformer-based models by introducing several examples below.

2.2.1 Natural Language Processing
Transformers were originally designed for machine translation, and due to historical reasons most
of works on them are inclined towards the NLP domain. The majority of NLP Transformers share
the pretrain-and-tune approach for particular downstream task, but fill the model capacity with
different pretraining strategies.

2.2.1.1 BERT
BERT[8] (Bidirectional Encoder Representations from Transformers) is a transformer encoder
pretrained on two tasks – masked language modeling (MLM) and next sentence prediction
(NSP). The MLM task consists of replacing some input tokens with a special [MASK] token and
training a model to predict them. The NSP task in turn consists of encoding two concatenated
input sentences and predicting whether the second sentence follows the first.

This conceptually simple pretraining strategy allows the model to yield representative input
embeddings, which unlike word2vec-based methods[20] also include contextual information. By
fine-tuning the pretrained network, we can obtain a state-of-the-art model for sequence classifi-
cation, question answering and other language understanding tasks.

The BERT architecture became ubiquitous in NLP pipelines, and its success largely motivated
a further work on its pretraining strategies (RoBERTa[21], SpanBERT[22], ELECTRA[23]),
distillation (DistillBERT[24], ALBERT[25]) and other directions. The model is still serving as a
strong text processing baseline, as well as a foundation for new architectures.

2.2.1.2 GPT
GPT (Generative Pre-trained Transformer)[9][10][11] is a decoder-based model family for text
generation. There are currently three iterations of GPT models at the moment, all of which
generally share the model architecture (stacked decoder blocks with a masked self-attention),
and place an emphasis on language understanding through generative pretraining (in contrast to
BERT), large capacity and zero-shot learning.

The first generation of GPT models[9] shars the general structure with BERT-Base. The
pretraining pipeline is built over the next token prediction task, while during fine-tuning both
the downstream objective and the generative loss are being optimized. The model also makes an
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extensive use of task-specific input transformations, so that a structured input (like a premise-
hypothesis for text entailment) can be fed as a contiguous text sequence separated by delimiter
tokens. The model became a new state-of-the-art on 9 of 12 observed tasks and achieved a decent
zero-shot accuracy on a variety of problems.

The GPT-2[10] demonstrates primarily a quantitative development rather than a qualita-
tive. However, the authors discussed and experimented with two important concepts — task
conditioning with a natural language sequence and zero-shot task transfer. The crucial part for
implementing these two concepts is the huge model capacity, and that is why the second GPT
model was roughly 10× larger than the first one, comprising 1.5B parameters.

The GPT-3[11] model is again a straight improvement of GPT-2 in terms of size and capacity.
With its astounding size of 175B parameters, it lets to further explore capabilities of large
language models. The authors discovered that LMs of such capacity are able to extract patterns
from text and to exploit them at zero-shot tasks, yielding impressive results or even beating
state-of-the art models without any tuning.

2.2.1.3 T5
T5[26], or Text-to-Text Transfer Transformer, is an encoder-decoder architecture which is based
on casting all the NLP tasks (including text classification, question answering and demasking) to
sequence-to-sequence problems. This allows to leverage the same model and training objective
for a variety of problems, and to make a use of multi-task pretraining.

Architecturally, the model is very similar to the vanilla Transformer, with some minor layer
rearrangements and simplified relative positional encodings. The main difference is the output
modality – instead of task-specific heads like softmax classifiers or scorers, the model output is
always a text, corresponding to an input task, e.g. a class label, ”negative/positive/non-TE” for
entailment tasks or masked tokens for denoising objectives.

Since the main contribution of the work is not the model itself but rather a thorough study on
objectives and training settings, we suggest the reader to refer it for more details. To conclude, we
will mention that the model performed surprisingly well on all common fine-tuning benchmarks.

2.2.2 Computer Vision
2.2.2.1 ViT

Figure 2.6 The ViT architecture.

The Vision Transformer[13] architecture is one of the first successful attempts to apply
Transformers in the CV domain. The model firstly cuts an input image into rectangular patches,
which are then being linearly projected, arranged into a sequence and summed with absolute
positional encodings. The rest of the processing pipeline is identical to the sequence classification.
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Compared to previous efforts, ViT succeeded through extracting larger image patches (16 ×
16 instead of per-pixel or 2 × 2) and an extensive pretraining – to achieve a state-of-the-art
performance on the ImageNet-1k dataset, the model was trained on significantly larger datasets,
such as ImageNet-21k or JFT-300M.

While the original ViT demonstrated a significant data inefficiency, recent works suggest
remarkably more efficient training pipelines[27], which allow to improve the model performance
and even outperform CNNs after training only on the ImageNet-1k dataset, thereby making ViT
an image classification state-of-the-art architecture at the moment.

2.2.2.2 DETR
Detection Transformer[14] is an object detection architecture, which rejects detection priors such
as anchors and non-maximum suppression. Instead, it offers a more elegant task formulation as
a set prediction using the Transformer encoder-decoder.

Figure 2.7 The DETR architecture.

The model embodies three components — a CNN backbone, a Transformer and a FCNN
prediction head. The CNN produces a feature map of low spatial resolution, which is then being
compressed along hidden dimension, summed with absolute positional encodings and fed as a
sequence to an encoder. At the same time, a high amount of dummy tokens (object queries) is
fed to a non-causal decoder. The model head predicts for each transformed object query a class
(including a ”no object” option) and a normalized bounding box. During training, the predicted
objects are being dynamically matched to ground truth boxes via the Hungarian algorithm.

The model performance turned out to be competitive with a FPN-augmented Faster R-CNN.
Interestingly, while the DETR underperformed on small objects detection, it was able to detect
large objects more successfully due to the global nature of an attention, as opposed to the locality
of convolutions.

2.3 Analysis
The architecture success in a variety of tasks has motivated a wide research on model capabilities,
both experimental and theoretic. This section tries to summarize the most important findings
along with the ones needed before moving on to the next chapter.

2.3.1 Learning and transfer capabilities
While Transformers are able to reach outstanding performance in majority of tasks, that is
significantly conditioned by the amount of data for traing. Instead of stronger assumptions
made by CNNs (equivariance in space, local correlation) or RNNs (larger relevance of the closest
context), Transformers rely only on a dot-product similarity of input elements, thus eliminating
locality bias and maintaining permutation equivariance. This allows to obtain a much more
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flexible and universal model, but demands more data to re-learn these biases where they are
needed. The ViT is a vivid example, since even 1.3M samples of ImageNet-1k were not enough
to outperform CNNs.

However, a one may mitigate the issue from two directions — by an extensive usage of transfer
learning and by employing a proper pretraining objective.

Transferring Transformers Unlike RNNs, Transformers demonstrate impressive transfer-
learning capabilities. This is being supported by an existing amount of pretrained models for
different tasks, languages, domains and input data modalities. But the architecture capabilities
go beyond that, and a model trained on a large text corpus can be transferred between modalities
even if they substantially differ from each other.

The study by Lu at al.[28] demonstrates, that Transformers trained on large text corpora
expose universal computation capabilities. It seems that a portion of knowledge, which can be
learned from large data, can be universal for all domains and sufficient to achieve a competitive
performance with self-attention and FCNN layers being frozen.

2.3.2 Theoretical studies

2.3.2.1 Approximation capabilities

It is not clear at the first glance which class of functions Transformer can approximate, since
the model heavily shares parameters along sequence dimension as well as relies on inter-token
interaction. However, the work by Yun et al.[29] gives a positive answer on the question: ”Are
Transformers universal approximators of continuous functions RL×d 7→ RL×d on a compact
domain?”.

▶ Theorem 2.1. Let th,m,r be a ReLU-activated Transformer encoder block with h attention
heads of dimension m and a FCNN hidden dimension r. Let T h,m,r be a family of functions de-
fined as compositions of th,m,r blocks. Let 1 ≤ p < ∞ and dp(f1, f2) =

(∫
||f1(X) − f2(X)||pp dX

)1/p

be a distance between f1, f2 : Rd×n 7→ Rd×n. Finally, let ϵ > 0.

1. For any continuous permutation-equivariant function f : Rd×n 7→ Rd×n there exists a Trans-
former network g ∈ T 2,1,4 such that dp(f, g) ≤ ϵ.

2. Let T h,m,r
P be a family of Transformer encoders with positional encodings defined as T h,m,r

P =
{gP = g(X + E) | g ∈ T h,m,r and E ∈ Rd×n}. Then, for any continuous function f :
D 7→ Rd×n, defined on a compact domain D ∈ Rd×n, there exists a Transformer network
gP ∈ T 2,1,4

P such that dp(gP , f) ≤ ϵ.

Proof. For a complete proof refer [29]. The key idea of the proof is that a Transformer can
implement a so-called contextual mapping, which maps each token to a unique value depending
on the whole sequence. ◀

2.3.2.2 Turing-completeness

Another work[30] introduces a proof, that under an assumption of an infinite precision the
Transformer is a Turing-complete model without an external memory. The crucial detail there is
positional encodings, since without them the model becomes permutation-equivariant and thus
unable to recognize even regular languages.



Analysis 17

2.3.3 Computational complexity
One of the reasons which led to the Transformer emergence was an inability to parallelize com-
putations of inherently sequential RNNs. Vaswani et al.[7] indeed reported that the proposed
architecture was faster than RNNs for input lengths common in practice. However, how really
fast are Transformers?

In the following analysis, for simplicity we omit biases and computational costs for vector
copying in RNNs. Unless mentioned differently, a plain ”complexity” means both time and
memory complexity.

Recurrent models Assuming the input token embedding dimensionality de and the hidden
state of size dh, the weight matrix of a RNN unit will have a shape (dh + de) × de, which leads
us to the same complexity.

LSTM decouples a previous model outuput and a hidden state. A forget gate matrix then
has the size of (dh + de) × dh, and it is being followed by an input gate of a doubled complexity.
An output gate employs two matrices of shapes (dh + de) × dh and dh × dh.

By expressing a recurrent model complexity within the O-notation, we obtain a O((dh +
de) × de) complexity for RNNs and O((dh + de) × dh) for LSTM. Since it is a common choice to
have de = d = Θ(dh), for the whole input sequence we obtain identical asymptotic complexities
O(Ld2) for both models.

Attention-augmented RNNs Let us assume a dot-product attention from the Table 1.1 as
the fastest introduced mechanism working with input annotations. Each decoding time step
then gets an additional cost of Θ(Ld), since it is needed to compute a softmax over all the dot
products of input annotations with a current hidden state vector. This leads to the O(Ld2)
complexity for an encoder versus O(L2d2) time and O(Ld2) memory complexity for a decoder.

Transformers Transformers eschew recurrence, but employ attention at both encoding and
decoding phase. Assuming an input length of L, h attention heads, block input/output dimen-
sionality of d and (for simplicity) a q-k-v dimensionality of d/h, a self-attention complexity may
be computed as 3 × L × h × d × d

h + L2 × h × d
h + L × (h × d

h ) × d = O(Ld2 + L2d). Same goes
for masked-self attention and, under an assumption of an output length Θ(L), cross-attention.

Position-wise FCNNs have complexities L × (d × df + df × d). Since most of implementations
employ df = 4d, we estimate a FCNN complexity as O(Ld2) and the whole encoder/decoder
block complexity as O(Ld2 + L2d).

For the common choices of d = 768 and L = 512, the dimensionality term dominates and Trans-
formers demonstrate significantly faster computation compared to RNNs. However, attention-
based models also demonstrate a quadratic growth of computation time with an input length,
while the memory requirements for Transformer grow quadratically as well.

To address the issue, a variety of new Transformer-based architectures were developed. We
address the motivation and approaches to processing long sequences with Transformers in the
next chapter.
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Chapter 3

Efficient Transformers

In this chapter we will overview already existing Transformer architectures maintaining linear
complexity. Moving from simpler to more sophisticated models, we will describe different
approaches to reducing an attention operation space and time complexity. We will also focus
on additional benefits or drawbacks of individual methods which are needed to be taken into
account, as well as on appropriate use cases.

As a restrictive limitation, the computational complexity of the original Transformer motivated
the community to quest for the solution in order to approximate the architecture with asymp-
totically faster models. Since the original paper[7] publication, a dizzying amount of so-called
efficient Transformers emerged[31], each of which introducing its own trade-off between speed
and performance.

While the word ”efficient” may be interpreted differently, in this work we focus on attention
linear time and space complexity. This is motivated by several reasons, but the main one is that
comprising all the architectures which accelerate the Transformer architecture is an intimidating
amount of work. To give a better view on modern efficient methods, we better focus on strictly
linear approaches, which extremely vary and are interesting subjects to compare with each other.
They are also interesting from a practical point of view, since they offer the most significant
performance boost.

From the definition of efficiency we gave also implicitly follows that we will not cover dis-
tillation and parameter sharing techniques in this work. Instead, we focus on ways to improve
the key part of the architecture – an attention mechanism – and discuss approaches rather than
particular works.

Motivation Most of NLP tasks could be solved via processing shorter segments, e.g. of length
512 or 1024. However, even between problems considered as solved a one can meet tasks which
could benefit from a longer context. Problems including document or scientific text generation of-
ten place additional constraints on style and terminology consistency, while for text classification
tasks a longer input introduces more information to eliminate noise and make a final prediction.
Even models of huge capacity, such as GPT-3, can do very little against a fundamental problem
of a fixed-length context.

The need for an efficient model becomes even more acute once we go beyond the language
processing domain. A more efficient ViT can process larger images without losing in smaller de-
tails; audio processing naturally introduces extremely long sequences, which require an extensive
pooling before applying a model; the chemical domain also demands an ability to model long
protein chains.

19
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A model both able to process very long sequences and having Transformer unbiasedness and
flexibility sounds very lucrative, and may open new horizons in data processing. As we will show
in this chapter, reducing the asymptotic complexity should not even result in a performance
decrease — in some settings the model can actually benefit from a reduced complexity, while
there exist methods which do not hurt its universal approximation capabilities.

3.1 Sparse attention
Restricting an attention only to a subset of keys is a natural way to improve performance, which
was proposed back in the original Transformer paper. Methods described in this section employ
some kind of a static pattern, which restricts an attention span from the whole sequence down
to some constant-size subset. A variety of approaches can be summarized or decomposed into
the following patterns:

(a) Full (b) Block B = 4 (c) Span K = 3

(d) Dilated K = 3, rate = 1 (e) Axial, 3 × 4 input (f) Span + random, r = 6

Figure 3.1 Sparse attention matrix schemes.

Blocks[32]. Instead of computing an attention across the whole sequence, we can split it
first into blocks of size B and compute L/B attentions instead. Each token then attends only
tokens from the same block.

Constant span[33][34], or a sliding window. Similarly to the previous method, we enforce
locality, but instead of block grouping we can restrict an attention span individually for
each token. Note that we can limit the span either in an attention matrix (considering only
diagonal band of some width) or an input sequence (considering input topology instead of
flattened representation), which is actual for two- or more dimensional inputs such as images.

Dilated[33] patterns build gaps between locally attended elements, which allow to capture
longer-spanning relationships.

For tensor inputs an axial attention may be applied, allowing only to attend elements along
axes (elements strictly above, below, left, right, . . . ). This method may be especially useful
for images or similar kinds of data, which demonstrate correlations along axes.
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A random attention[34] may be used in combination with other methods to introduce some
global information.

A fixed amount of globally attending tokens[33][34][35] may be used to exchange the infor-
mation between local blocks/groups. May be either a subset of input tokens or prependable
learnable ones, see ETC.

Attending tokens only within some local/constant span is intuitively very restrictive, but if
we take a look at the attention matrix of some trained model, we will notice that for a substantial
part of tasks a vast majority of attention scores are concentrated in the central band. Models
based on static local patterns are able to match or even exceed the base model performance
for some tasks, since they additionally introduce a bias towards a local context, which in some
settings may lead to a faster and more data-efficient convergence. On the other hand, these
methods are inherently inappropriate for tasks where a global attention is necessary, and are
significantly inferior to competing models if used on their own.

It is noteworthy that static patterns do not exclude causal masking, thus allowing to build full
encoder-decoder architectures. Furthermore, they can be easily combined with other methods
to enable them for causal prediction.

Individual patterns are rarely being used on their own; by combining them together we can
stack their benefits and eventually obtain pretty powerful models. These methods are also easy to
implement, do not require additional optimization on CUDA level (with an exception of complex
pattern combinations such as Longformer[33] or ETC[35]) and do not alter parametrization,
allowing us to efficiently use the base model weights for transfer learning.

3.2 Memory-based approaches
These approaches leverage additional memory to exchange data globally across an input sequence.
A memory can be either in a form of designated input tokens, learnable parameters or special
slots to store activations. This approach naturally complements sparse methods and allows to
propagate information between local chunks, but is generally incompatible with an autoregressive
prediction.

3.2.1 Star Transformer and ETC
Star Transformer The model[36] takes its name from a star-shaped connectivity pattern.
This is a direct extension of a sparse sliding-window model, which applies the following attention
restrictions:

A global-attending learnable token (a central vertex).

A sliding window of range 1 in a cyclic manner. It means that an ith query may attend only
the global token and keys at positions {i − 1, i, i + 1} mod L.

A central vertex (”a relay node”) is used for a global information exchange, while ”satellite
nodes” aggregate information from their immediate neighborhood. This architecture introduces
the simplest memory-based extension of static pattern models in the form of a single learnable
token. The authors also state that the ring topology allows to better propagate information
throughout the sequence.

ETC The Extended Transformer Construction[35] architecture leverages a sliding window at-
tention and a larger amount of learnable global tokens. It also proposes relative positional
encodings as a way to capture relationships beyond ordering (e.g. is-a, part-of and other), along
with additional masking of certain segments of attention matrix to represent structured inputs.
Overall, the model is quite similar to the model above.
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(a) Star (b) ETC (c) Longformer (d) BigBird

Figure 3.2 Sparse + memory attention schemes. We employ different color schemes to denote global-
to-global, local-to-local and mixed variants of an attention on the ETC figure. The ETC input is masked
with certain global-to-local and local-to-local masks to reflect its structure. We also denote with pink
the input tokens designated to global attention in Longformer.

3.2.2 Set Transformer
The Set Transformer[37] leverages the Transformer architecture to approximate a set-input func-
tion — a permutation-invariant function of input features. It may be proven that all permutation-
invariant functions may be represented in the following form:

net(x1, . . . , xL) = ρ(pool({ϕ(x1), . . . , ϕ(xL)}))

where ρ(·) and ϕ(·) are arbitrary continuous functions and pool(·) is a summation operator.
Based on that formulation and an additional notion, that ϕ(·) may be a permutation-equivariant
function, the authors implement ϕ(·) with a Transformer encoder and ρ(pool(·)) as a decoder.

The authors define the following building blocks for a network (we omit LayerNorms for
simplicity):

MAB(X, Y ) = H + FCNN(H)
H = X + MultiHeadAttention(X, Y, Y )

SAB(X) = MAB(X, X)
ISABm(X) = MAB(X, MAB(Im, X))
PMAk(X) = MAB(Sk, FCNN(X))

Multi-Head Attention Block (MAB) is basically a Transformer encoder block with a possibility to
perform a cross-attention. ISAB (Induced Set Attention Block) is a way to bypass the quadratic
complexity problem by introducing a set of m learnable tokens Im, and transforming them first
with an input sequence before using them to transform an input set. PMA (Pooling by Multi-
Head Attention) implements a parameterized pooling operation by transforming a set of k seed
vectors Sk with a projected input. Sk is somewhat similar to object queries from DETR, and
will represent a model output with k typically set to 1.

Combining it all together, we obtain a Set Transformer model which reproduces a func-
tional form above with an encoder of stacked SABs (or ISABs for large sets) and a decoder
Decoder(X) = FCNN(SAB(PMAk(X))).

3.2.3 Longformer
The Longformer[33] is a yet another model which combines sparse patterns with globally attend-
ing tokens:

First, it exploits a sliding window local attention.
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Additionally, it leverages a dilated sliding window attention with a dilation rate increas-
ing towards last layers. This should allow to efficiently capture longer contexts, since last
Transformer layers tend to be more global.

Finally, the model uses a set of globally attending tokens. Instead of prependable learn-
able memory, the model uses specially masked input tokens as global. It is important to
note that the model uses separate q-k projection weight set for global tokens, doubling the
parametrization.

The authors use a base Transformer decoder for seq2seq tasks. Despite their statement of
linear complexity in that setting, this is only true under the assumption of an output sequence
being much shorter than input (e.g. in summarization tasks). Thus, we will consider this
architecture as an encoder-only.

3.2.4 BigBird
The BigBird[34] architecture combines the three previously mentioned approaches — a sliding
window, random attention and a learnable memory. More specifically, the model leverages a
non-dilated sliding window attention of span K + r randomly attending query-key pairs + g
global learnable tokens. The paper defines both the ETC (learnable tokens) and ”ITC” (tokens
chosen by mask like in Longformer) global attention variants.

The theoretical analysis in this work is of the particular interest, because it demonstrates that
a sparse model with a learnable memory is able to preserve the original architecture universal
approximation capabilities, as well as Turing-completeness. We will take a closer look at the
theoretical findings at the end of the chapter.

3.2.5 Poolingformer
The Poolingformer[38] architecture refines a sliding window attention by constructing an addi-
tional processing level. After performing a trivial sliding window attention, an output is again
being projected by query, key and value matrices and sent into a sliding window self-attention
layer with a larger span. To be able to process very large attention spans, the authors suggest to
compress attended keys and values within this span with some pooling function of certain width
and stride:

PooledSelfAttention(qi, K, V ) = MultiHead(qi, K̃i, Ṽi)
K̃i = Pool(KN(i,w), S, K)
Ṽi = Pool(VN(i,w), S, K)

where KN(i,w) and VN(i,w) denote key and value matrices for query qi of span w, K̃i and Ṽi are
compressed key-value matrices for the query, S is a pooling stride and K is a pooling window.

Compressing keys and values this way allows to reduce a key matrix S times. Along with
mean, max and convolutions, the authors experiment with the other two functions:

LDConv(v1, . . . , vK) = softmax(Wv)T (v1, . . . , vK)

with v = vi=⌈ 1+K
2 ⌉ or 1

K

K∑
k=1

vk, W ∈ RK×d and (v1, . . . , vK) ∈ RK×d.

While the authors report solid results on question answering datasets, it is important to note
that the architecture does not allow to compute causal mask, so they used a vanilla Transformer
decoder to generate answers. The model performed best when the fraction of pooling-augmented
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layers layers was 1/4, and when layers did not share Q, K and V projection matrices between
attention levels.

3.2.6 Luna
Linear Unified Nested Attention[39], or Luna, is a recent work on reducing attention computa-
tional costs based on introducing an auxilary input sequence of a fixed length. Similarly to the
Set Transformer, this sequence acts as a proxy, allowing to factor the large attention operation
onto two smaller ones.

Figure 3.3 Luna encoder block. X denotes an input sequence, P denotes an auxiliary sequence.

Along with an input X ∈ RL×d, a Luna encoder block accepts an additional sequence P ∈
Rn×d. The model first compresses an input sequence by performing a multi-head attention
operation (”packing”) with Q = P and K = V = X. Given the YP as a compressed input
representation, the model performs then a cross attention between input X and this compressed
representation YP , ”unpacking” an input back:

YP = MultiHeadAttention(P, X, X)
YX = MultiHeadAttention(X, YP , YP )

Analogous to the vanilla Transformer, the layer output is then being given by a token-wise FCNN,
applied on summed and normalized X and YP . However, an output of the ”packing” attention
YP is then being also summed with P , normalized and sent as an auxiliary output.

Under the assumption that initial P does not contain any information about a decoder input,
Luna blocks can be modified for a causal attention implementation. The authors leverage the
kernelized attention formulation as in the Subsection 3.5.1, and factor attention matrices between
individual attention operations. This allows them to preserve a linear complexity, while also
enabling the architecture to be used as a decoder.

3.3 Low-rank approaches
Low-rank methods generally accelerate computation by downsampling or projecting queries and
keys to some lower-dimensional space. Unlike kernelized approaches, these algorithms exploit
more of linear algebra methods rather than kernel approximation theory, and understand an
input as a matrix rather than as a token sequence.

3.3.1 Linformer
The Linformer[40] stands on the assumption of a low-rankness of an attention matrix. The
authors refer to the distributional JL lemma and provide some theory to support their intuition,
which they embodied into the model, compressing keys and values along the sequence axis.
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Before applying an attention, the model linearly projects keys and values of shapes L × dk

resp. L × dv down to k × dk resp. k × dv matrices. This effectively reduces the complexity to
linear, introducing L × (dk + dv) additional parameters. Interestingly, sharing a single matrix
between queries, keys and all heads/layers does not result in the performance decrease, allowing
to restrain the parametrization growth.

The method resembles both the Memory Compressed Transformer, which applies convolutions
along sequence axis, and mixing methods[41] which rely on a concept of information mixing along
sequence axis. Due to the information being mixed along the whole axis on projection, a causal
mask cannot be applied, limiting the model to be encoder-only.

3.3.2 Nyströmformer
The Nyströmformer[42] is a Transformer architecture, which employs a strategy of an attention
matrix approximation based on a subset of (aggregated) queries and keys. Assuming an attention

matrix S =
[
AS BS

FS CS

]
split into blocks AS ∈ Rm×m, BS ∈ Rm×(L−m), FS ∈ R(L−m)×m and

CS ∈ R(L−m)×(L−m), a one can reconstruct the CS matrix according to the quadrature technique
from the Nyström method:

Ŝ =
[
AS BS

FS FSA+
S BS

]
where A+

S is a Moore-Penrose inverse of AS . If we choose m as a relatively small constant, the
attention computation can be provided in linear time and memory by utilizing the associativity
of the matrix multiplication.

A naive application of that method will result in an ability to only approximate attention
matrix logits, and will not allow to efficiently approximate the actual attention matrix since we
cannot obtain attention scores for FS without a CS construction.

The authors propose to flip the operation order, and instead compute the softmax for AS ,
FS and BS . The intuition behind that is the following: if instead of subsampling queries and
keys (called landmarks) for AS we will properly downsample them instead, the relation between
a non-landmark query and key may be interpolated with landmarks. Assuming the landmarks
Q̃, K̃ ∈ Rm×d, we obtain the following attention approximation:

Ŝ = softmax
(

QK̃T√
dq

)(
softmax

(
Q̃K̃T√

dq

))+

softmax
(

Q̃KT√
dq

)

The proposed way to compute landmarks is block-means, which yields satisfying results and
is significantly faster than K-means from concurrent works.

Causal masking The causal inference algorithm was not provided in the original work. To
prevent a causality break, the model should forbid to attend any keys/key landmarks which were
computed using over tokens subsequent to the corresponding query/query landmark. However,
we cannot build masks for AS , BS and FS due to the following reasons:

A simple rejection of ”causality breaking” landmarks will remove parts from an attention
matrix diagonal.

Even if we employ another landmarking strategy to preserve the diagonal, the resulting
attention matrix will not be lower-triangular but rather a step one, which again would break
causality.

Thus, the Nyströmformer is an encoder-only architecture with a O(Lm) complexity.
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3.3.3 Long-Short Transformer
The Transformer-LS[43] is a recent architecture, which decouples long- and short-term depen-
dencies in an input, and leverages local patterns in combination with low-rank projections to
process both.

To capture short-term dependencies, the model first applies a fixed-length attention. Unlike
the sliding window we mentioned before, the authors divide tokens into groups of size w instead,
and allow tokens only to attend within their groups + w/2 consecutive tokens to the left and to
the right of the block, 2w tokens in total. Compared to the sliding window, this pattern allows
a faster computation.

Additionally, to capture longer-spanning relationships the authors propose to project keys
and values down to a k × d fixed-length sequence, same as Linformer. However, they condition
the mapping on an input, and compute the projection matrix Pi of an ith attention head as:

Pi = softmax(KW P
i )

where the softmax is applied column-wise, K is a key matrix RL×dk and W P
i ∈ Rdk×k is a

learnable matrix.
Instead of applying two mechanisms in two attention layers, the authors simply stack for each

query an attended local window and a global low-rank projection of keys and values, obtaining
(2w + k) key-value pairs. To avoid the model bias towards the short-term processing (since
query-key product magnitudes will be higher within a local window), they additionally apply
two LayerNorms before stacking – one for keys and values coming from a local window, and one
for global projections.

(a) Non-causal local, w = 2 (b) Causal local and global

Figure 3.4 Transformer-LS attention illustrated. L stands for an input length, w stands for a local
attention span, B stands for blocks count, k stands for block size

Causal masking Causal masking is straightforward for a local attention. For a global atten-
tion, the authors suggest first to split an input sequence into blocks, and apply a projection on
each block individually. A query qi then will be only able to attend blocks, which do not contain
subsequent keys.

Note that this formulation results in a block-wise triangular matrix, which is strictly under
diagonal—for example, for blocks of size b, first b − 1 queries will not be able to attend any block
at all, while the last block will never be attended by any query except the last. This problem
bears a resemblance to Nyströmformer causal adaptation efforts. However, the Transformer-
LS supports the global attention with local attention windows—even though a global attention
matrix will be step-shaped under diagonal, a query token will always have an access to its present
and an immediate past.
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▶ Proposition 3.1. The Nyströmformer can be enabled for causal attention if we combine its
decoder with a sliding window and triangular masks.

The Transformer-LS complexity is linear both for encoding and decoding, with an additional
factor of total projected sequence length k.

3.3.4 H-Transformer-1D
The thought behind this architecture[44] is to model longer-spanning relationships with a grad-
ually decreasing precision. Instead of a low-rank approximation of the whole attention matrix
A, we can recursively partition it in the following way:

A =


A

(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

A
(1)
12

A
(1)
21

A
(0)
33 A

(0)
34

A
(0)
43 A

(0)
44


This partition allows us to make use of a notion, that a numerical rank (a rank of an approxima-
tion given some tolerance ϵ) of the off-diagonal blocks the lower the further the block is from the
diagonal. Instead of building a low-rank approximation of the whole matrix A, we can keep its
central band untouched, and approximate only A

(1)
12 and A

(1)
21 with a higher tolerance and A

(0)
12 ,

A
(0)
21 , A

(0)
34 and A

(0)
43 with a lower tolerance.

The proposed algorithm is based on this notion, along with two concepts: coarsening and
prolongation. As a part of the algorithm, coarsening consists of averaging pairs of neighboring
queries and keys, and summing (as it follows from the derivation in the paper) corresponding
pairs of values. By applying this operation l times, we can compute a coarsened attention matrix
A(l) which approximates an original attention matrix, and the algorithm uses more coarsened
representations for attention matrix blocks located further from the diagonal. Given the at-
tention operation expressed as D−1AV , where D = diag(A1), we can compute its hierarchical
approximation as:

Y = AV = Y (0) + P (0)(Ỹ (1) + P (1)(Ŷ (2) + . . . ))

where Y (0) is an attention computed within the central bend (special case), Ỹ (l) is an attention
computed using super- and under-diagonal blocks of size Nr × Nr on an attention matrix of l

times coarsened input, and P (l) ∈ RL/2l−1×L/2l is an expansion matrix, which duplicates rows
two times. Using this equation, we can similarly compute a normalization matrix D−1, and the
final output will be D−1Y .
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(a) A(0) central band for Nr = 2.


Nr

Nr Nr

Nr Nr

Nr


(b) A(l) coarsened matrix.



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1



(c) P (l) expansion matrix
8 × 4.

Figure 3.5 H-Attention illustration. Nr defines a (diagonal) block size in A(l).
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Since the model operates with conventional attention matrices (on coarsened inputs), causal
prediction is trivial. The model performs very well on all provided benchmarks, and outperforms
concurrent models of significantly larger sice. The result on the LRA ListOps task especially
indicates, that a hierarchical inductive bias may be proper for tasks with an explicit hierarchy
in input.

3.4 Recurrent approaches
Recurrent approaches take a step back from completely attention-based models, and re-introduce
such concepts as a hidden state and sequential processing. Architectures like the Transformer-XL
demonstrate, that some form of recurrence may be beneficial and can allow a model to extend its
receptive length. However, unlike the seq2seq architecture, Transformer-based recurrent models
use recurrence only to supplement an attention mechanism.

3.4.1 Transformer-XL
The Transformer-XL[12] is a generative architecture, which was designed with an aim to increase
a Transformer receptive field. One of the long text processing paradigms is to split an input
into sections of size W first, and process them independently. This leads to a receptive field
bounded by a section length, and an information never propagates between blocks. However,
the Transformer-XL overcomes that by storing the last processed section as a hidden state, and
conditions the current section keys and values by the previous section output from the previous
layer:

h̃n−1
τ+1 = [StopGradient(hn−1

τ ), hn−1
τ+1 ]

Qn
τ+1, Kn

τ+1, V n
τ+1 = hn−1

τ+1Wq, h̃n−1
τ+1Wk, h̃n−1

τ+1Wv

hn
τ+1 = TransformerBlock(Qn

τ+1, Kn
τ+1, V n

τ+1)

where StopGradient(·) means to stop backpropagation there, [·, ·] denotes stacking along the
sequence length dimension, τ and τ + 1 are previous and current input sections, hn

τ denotes an
output of the nth model layer for the section τ , Wq, Wk and Wv are the nth layer query-key-
value projection matrices. To support the recurrence, the architecture overhauls the positional
encoding mechanism, and instead of a sum with absolute encodings it dynamically injects relative
encodings directly into attention logits computation.

By stacking more layers, we gradually increase the model receptive field, while sectioning
allows to achieve a linear complexity w.r.t. to the input length. Additionally, caching allows to
speed up an inference up to three orders of magnitude, since previous activations should
not be recomputed. However, the complexity is linear only for very long inputs, and remains
O(LW 2) for a pretty large W (384 resp. 1600 for training resp. inference time).

3.4.2 Block-Recurrent Transformer
The Block-Recurrent Transformer[45] augments the Transformer-XL model with a recurrent unit,
operating on sequential states and inputs. First, the model partitions a large input into chunks
of size N (the authors used 4096), and applies a sliding window causal attention with a window
size W , allowing to attend only W previous tokens. The last W chunk outputs are being stored
and prepended as the first segment when processing the next chunk, like in the Transformer-XL.

The novelty of the work is a recurrent unit, which is placed instead of a tenth layer in a 12-
layer configuration. Unlike the LSTM, the cell operates on sequential hidden states and inputs
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(a) Path to generate an output. (b) Path to generate a new state. G is for gating.

Figure 3.6 Block-Recurrent Transformer recurrent unit. Ke, Ve and Ks, Vs are shared for both paths.

of lengths S and W respectively (the authors suggest S = W ). The layout of the cell is on the
Fig. 3.6, and employs an attention to compute interactions between an input and a hidden state.
From the LSTM the model also inherits initialization techniques and training stability issues,
while from the Transformer-XL it borrows relational positional encodings.

The additional computational overhead is comparable to an additional attention layer, but the
performance gain goes beyond that. The architecture surpasses the already solid Transformer-
XL results on generative tasks, outperforming 2× wider configurations. Given a chunk of size N ,
the architecture complexity remains O(NW 2), which is linear with respect to an input length.

3.5 Kernelized approaches
Kernelized methods understand an attention matrix as a kernel matrix of a Q-K product. As
we already mentioned in the H-Transformer-1D Subsection 3.3.4, we can rewrite an attention as
Att(Q, K, V ) = AD−1V , where A = exp ( QKT√

dqk

) and D = diag(A1).

A =


κ(qT

1 k1) κ(qT
1 k2) . . . κ(qT

1 kL)
κ(qT

2 k1) κ(qT
2 k2) . . . κ(qT

2 kL)
...

...
. . .

...
κ(qT

Lk1) κ(qT
Lk2) . . . κ(qT

LkL)


Figure 3.7 Kernel matrix of an attention operation, assuming that both queries and keys have length

L.

More generally, instead of a dot-product exponent we can employ any positive kernel κ(·, ·) :
Rdq × Rdq 7→ R+, and rewrite an attention operation for an ith query as[46]:

Att(qi, K, V ) =
L∑

j=1

κ(qi, kj)∑L
j′=1 κ(qi, kj′)

vj

A quadratic complexity is clearly seen there in a form of a double sum over L indices.
If we manage to decompose the kernel back into the dot product of query and key projections

κ(qi, kj) ≈ ϕ(qi)T ϕ(kj), we would be able to rewrite an attention to:

Att(qi, K, V ) ≈
ϕ(qi)T

∑L
j=1 ϕ(kj)vT

j

ϕ(qi)T
∑L

j=1 ϕ(kj)
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and achieve a linear complexity.
Particular methods are focusing on different approximations, starting from ordinary activa-

tion functions, proceeding with advanced mathematical approximations by Monte-Carlo methods
and arriving to parameterized functions.

3.5.1 (Kernelized) Transformers Are RNNs
In the work ”Transformers Are RNNs”[47] the authors explore the Transformer in an autoregres-
sive setting and express it as a recurrent network. They employ a simple ϕ(x) = ELU(x) + 1
function to approximate a positive kernel, and by combining it with an efficient autoregressive
prediction implementation they achieve solid sequence generation results with an up to 4000×
speedup compared to the vanilla Transformer.

The RNN formulation is based on the notion that during an autoregressive prediction for a
query qi we compute both factorized kernel attention sums up to index i:

MaskedSelfAtt(qi, K, V ) ≈
ϕ(qi)T

∑i
j=1 ϕ(kj)vT

j

ϕ(qi)T
∑i

j=1 ϕ(kj)
= ϕ(qi)T Si

ϕ(qi)T Zi

To predict the value for a query qi, we can reuse the sums up to an index i − 1, and assuming
the O(1) complexity of computing ϕ(·) we can achieve a constant memory complexity w.r.t. an
input length:

Si = Si−1 + ϕ(ki)vT
i

Zi = Zi−1 + ϕ(ki)

These computations resemble the RNN cell state update with the condition of Z0 = S0 = 0, and
are a basis for an autoregressive prediction of all kernelized models. However, the main caveat
there is that we cannot efficiently parallelize training in a teacher forcing setting, rendering
kernelized autoregressive models notably slow to train without a reconstruction of an attention
matrix.

3.5.2 Performer
”Rethinking Attention with Performers”[48] is one of the first works on kernelized transformers
with a rigorous theoretical analysis. The authors claim that the following general approximation
is able to capture most kernels used in practice:

ϕ(x) = h(x)√
m

[f1(ωT
1 x), . . . , f1(ωT

mx), . . . , fl(ωT
1 x), . . . , fl(ωT

mx)]

where f1, . . . , fl : R 7→ R and h : Rd 7→ R are properly chosen functions and w1, . . . , wi
iid∼ D ∈

P(Rd) are randomly sampled vectors from a properly chosen distribution D. By plugging in
different functions and generating random maps of Rd×m size, we can obtain approximations
of different kernels with different properties. For example, the approximation given by h(x) =
exp

( 1
2 ||x||2

)
, l = 2 and f1 resp. f2 = sin resp. cos is an unbiased random approximation of a

Transformer kernel exp(xT y).
The authors explore several possible approximations, and derive conditions under which an

approximation will be more robust. For example, the aforementioned variant may potentially
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yield negative values for a positive kernel, and thus will potentially result in an abnormal be-
havior and a numerical instability due to possible almost-zero denominator sums. The resulting
approximation should not be unbiased only, but also be positive and have its variance decreasing
once an argument approaches zero, which is a common case when attending unrelated tokens.

The main contribution of the work is the ”Fast Attention Via positive Orthogonal
Random Features (FAVOR+)” framework, which can approximate the original Transformer
kernel with an arbitrary precision and gives tight variance bounds. The framework is also based
on strong theoretical results, which allows to differentiate it from the bigger part of approaches
we reviewed before in this chapter.

FAVOR+ Summary The theoretical analysis demonstrates, that the trigonometrical approx-
imator used as an example above has its variance going to infinity once its argument approaches
zero. As a usable alternative, they suggest to force a positivity of features and employ a hy-
perbolic approximation with h(x) = 1√

2 , l = 2, f1(u) resp. f2(u) = exp(u) resp. exp(−u).
These improvements result in a strictly lower variance, which approaches zero of an argument
tends to zero. Finally, they arrive to the result that forcing a feature map orthogonality yields
exponentially lower variance bounds.

Experiments in turn demonstrate, that it is sometimes necessary to redraw a random feature
map W = [ω1, . . . , ωm] during training, since an approximation error created by some layer
propagates further and increases in following layers. Redrawing allows to mitigate the issue,
and to obtain impressive results both after training from scratch or after fine-tuning a modified
vanilla Transformer.

The work is a confident step towards the theoretic-driven research, and makes a benefit of an
outstanding speed of kernelized models. However, while the theoretical outcomes are impressive,
practical results may fall behind other approaches, often based on intuition or experimental
search.

3.5.3 Learning the kernel
In this work[49] the authors propose another way to approximate a Transformer kernel. They
refer to the Bochner’s theorem and suggest to learn a distribution, from which random projection
maps can be sampled, see Subsection 3.5.2. They employ two approximation strategies for ϕ(x)—
Random Kitchen Sink (RKS) and Positive Random Features (PRF), defined in 3.5.2:

Ω = (w1, . . . , wm)

RKS(x, Ω) = 1√
m

[cos(wT
1 x), . . . , cos(wT

mx), sin(wT
1 x), . . . , sin(wT

m, x)]

PRF(x, Ω) = exp(−||x||2)√
m

[exp(wT
1 x), . . . , exp(wT

mx)]

The main contribution of the work is a study of the methods to approximate a distribution D,
from which we sample random feature maps:

Gaussian mixtures. To simplify the method, the authors assume uniform mixture weights
and reject the imaginary part of the distribution derived from the Bochner’s theorem. The
sampled features are then Ω = (wc,1, . . . , wC,m), with wc,m = Σcnm + µc, nm ∼ N (0, I) and
with learnable covariance matrices Σc and means µc of individual components. The PRF
method may be additionally sped up by restricting covariance matrices to be diagonal.

Fast-Food[50]. To speed up an Ωx product computation for large m, the authors suggest
to approximate Ω with the product of Hadamard matrices: Ω ≈ 1

σ
√

dq

SHGΠHB. Here

Π ∈ {0, 1}dq×dq is a permutation matrix, G = diag(dg), dg ∼ N (0, Idq
), H is a Hadamard



32 Efficient Transformers

matrix, B is a random diagonal {+1, −1}dq matrix, and S is a random diagonal scaling matrix
to force the non-uniformity of row vector lengths. Such a computation is log-linear in terms
of dq. Since the resulting matrix is dq × dq, the authors of the original Fast-Food method
propose to stack several of them, considering m padded to the proper size.
To make the whole transform learnable, the authors propose to ”unfreeze” S and optionally
G and B. The experiments were conducted with all the three matrices learnable.

Generative models. The authors adapt a deep generative model (DGM), which maps
a noise sample from a prior distribution (η1, . . . , ηm) ∼ D(Rdq ) to a random feature map
Ω = (w1, . . . , wm). The experiments were conducted using the D = N (0, 1) and a four-layer
LeakyReLU-activated network + a tanh-activated output layer as a DGM.

Combining the two approximation and three sampling strategies, the authors evaluate six models
in total.

The RKS models show solid results on the LRA benchmark, while the PRF-based variants
outperform all the baseline models. The six tested architectures also perform on par with the
vanilla architecture on the GLUE benchmark, indicating that the method does not hurt the
model performance on shorter inputs. Additionally, the authors provide a proof that their model
remains Turing-complete.

3.6 Analysis
It is not an easy task to compare a performance of all introduced models. The main reason is
that there is a lack of benchmarks which can properly estimate how these models will perform
”in a battle”. The most common benchmark for efficient models is the Long Range Arena[51],
which was specifically designed to test a model inductive bias rather than a pretraining strategy.
On the other hand, the tasks in the dataset are half-artificial and do not really correspond to
practical Transformer use cases.

Instead of a direct comparison of individual architectures, we will discuss their inductive
biases and proper use cases instead. We suppose that a one willing to employ an efficient
architecture will conduct multiple experiments anyways, and instead of giving a concrete (and
probably wrong) answer on the question ”which is best” we will try to narrow the choice.

Computational complexity All the introduced models are linear in terms of memory con-
sumption or computing time, but additional factors introduced are extremely varying and may
render particular models impractical in some settings. We summarize our findings regarding the
computational complexity in the Table 3.1.

The sparse models demonstrate fast computation if their attended query-key pairs are orga-
nized block-wise. The more an attention pattern diverges from a block-wise form (which can be
easier rearranged into a dense matrix multiplication), the slower the operation goes, up to the
moment when an additional optimization at the CUDA level becomes essential (e.g. Linformer
dilated patterns).

The low-rank methods demonstrate a more complex computation FLOP-wise, but this is be-
ing mitigated by an inherently dense computation along an overall better performance, resulting
in a slightly better performance-accuracy tradeoff[43].

The kernelized methods in turn demonstrate a mediocre performance score-wise, but belong
to the fastest methods for causal inference thanks to their cumulative sum sequential computa-
tion. However, the cost may be unbearable — these architectures are exceedingly slow during
training. The the sequential inference should be conducted during training as well, disallowing
us to benefit from a parallelized teacher forcing. A possible solution could be to reconstruct an
attention matrix back, but this reintroduces again a quadratic memory complexity.
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Finally, the introduced recurrent methods demonstrate a significant speedup for autoregres-
sive tasks. However, the benefit may be primarily seen only at sequence lengths going far beyond
the standard 512 tokens, while remaining comparable with the vanilla model for shorter inputs.

We denote architecture-specific parameters in the following way: B stands for an attention
block size, K, K1 and K2 for sliding window attention spans, di for individual input tensor
dimensions, r for random query-key attention pairs amount, g for global tokens amount, P for
the Luna memory sequence length, k for the Linformer projection dimensionality, m for the
Nyströmformer landmarks count, Nr for the Hierarchical Transformer block numerical rank, W
for a segment size in the recurrence-augmented models, M for Performer feature map dimen-
sionality.

Approximation capabilities An important question is: what do we sacrifice when employing
an approximated attention mechanism? We already know that the vanilla Transformer is a
universal approximator, but will it be if we replace an attention mechanism by a sparse pattern?
Or a low-rank projection? Or any other method?

There is no exhaustive answer to these questions yet; however, a recent progress on the field
includes a work by Yun et al.[52], which extends their findings about the original architecture to
sparse attention methods. The surprising result is that under some (pretty intuitive) conditions
a sparse attention model with O(L) complex connectivity pattern can retain the original model
universal approximation capability.

▶ Theorem 3.2. (informal) A sparse Transformer remains a universal approximator if it
satisfies the following conditions:

1. Every token can attend to itself.

2. There exists a ”chain” which connects all tokens.

3. Each token is reachable from an each token within N ”hops”, where N is the model layer
count.

Proof. For a proof see[52]. ◀

All the three conditions are very intuitive, and the main contribution of the work is to confirm
and support the assumption that information needs to propagate between all the input tokens
in some way—at least between layers. However, there is no free lunch, and a sparsified model
tends to need more layers than the original Transformer to become a universal approximator.

We have not found yet any works explicitly proving a universal approximability of low-rank
or kernelized models; however, we can speculate a bit about the latter. The original model
is a universal approximator, and the kernelized methods such as Performer or aforementioned
learnable variants tend to directly approximate it; we suppose that these methods can also expose
a universal approximability property:

The Performer is claimed to approximate the softmax kernel with an arbitrary precision,
which may imply an arbitrary approximation precision for the whole model, although with
significantly worse bounds due to error propagation.

GMM and DGN models are universal approximators of distributions. This may allow them to
approximate the kernel spectral distribution with an arbitrary precision, thus the Transformer
kernel, thus the whole model.

▶ Conjecture 3.3. The Performer, PRF-GMM and Generative-PRF can be proven to be uni-
versal approximators.
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Type Model Time
Complex-
ity

Memory
Complex-
ity

Causal? Notes

Sparse

Blocks O(LB) Yes
Can be easily com-
bined together or
with other methods.

Span O(LK) Yes
Dilated O(LK) Yes
Axial O(L

∑
i
di) Yes

Random O(r) + X Yes

Memory

Global tokens O(Lg) + X No
Star/ETC O(L(K + g) + g2) No
Set O(L(m + k)) No
Longformer O(L(K + g) + g2) No
BigBird O(L(K + g) + g2 + r) No
Poolingformer O(L(K1 + K2)) No
Luna O(LP ) Yes

Low-Rank

Linformer O(Lk) No
Nyströmformer O(Lm + m3) No
Transformer-LS O(L(k + K)) Yes
H-Transformer O(LNr) Yes

Recurrence Transformer-XL O(LW 2) O(W 2) Only Linear only for very
long inputsBlock-Recurrent O(LW 2) O(W 2) Only

Kernelized
Linear O(L) Yes Slow autoregressive

training, O(1) causal
mem. comp.

Performer O(LM) Yes
Learnable - (linear w.r.t. L) Yes

Table 3.1 Computational complexities of the reviewed attention mechanisms. The ”-” instead of the
learnable kernel complexity indicate that there are multiple models with different complexities.

Use cases Here we denote possible use cases of individual architectures, based on their induc-
tive biases and performance on different tasks:

The sparse attention methods work best as an additional attention method. They may
enable the algorithm for a causal prediction, as well as introduce an explicit local attention for a
long-range attention approximation. They can also be worth to try for tasks with a low amount
of data provided, since these models consider a much lesser amount of inter-token relationships,
and should be easier to generalize.

The low-rank methods can be appropriate for tasks exposing longer-spanning relationships
with a low intrinsic dimensionality. Such tasks can be classification, text matching or any other
problems implicitly involving sparse input features (such as class-specific words in input).

The kernelized approaches are very similar to the low-rank ones, since they also create a
compressed key-value representation. Along that, they additionally offer a computationally ef-
ficient framework for causal prediction, which enables the model to output very long sequences
with minimal costs. We suppose that a proper use case would be an integration into an al-
ready deployed model as a drop-in replacement, since these methods are mostly built around
an approximation of the vanilla model attention matrix. Another potentially suitable tasks for
this class of models are sequence-to-sequence involving a very long sequence output; however, to
become applicable these methods should be additionally combined with implementation tricks
allowing to overcome training difficulties.

In this chapter, we have reviewed the bigger part of the linear attention architectures. Now,
it is time to introduce an approach by ours, which also retains a linear complexity while being
able of causal prediction.
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Proposed Variants

In this chapter we propose our variants of a linear attention mechanism. We will introduce
our approaches, explain a motivation, principles and limitations behind them. Then we will
discuss experimental setup, choose datasets and set up a pipeline for evaluating models in
different settings. We will show that our proposed models achieve a competitive performance
compared to a base model and other existing efficient approaches, while maintaining linear
complexity both in time and memory.

The main contribution of this work is a development and evaluation of some new methods. Both
described architectures are kernelized approaches and were largely motivated by the Performer
work, thus sharing their advantages and disadvantages with other models of the same category.

4.1 Feedforward Kernel

The intuition standing behind the first model is the following: if there exists a function ϕ(·), which
corresponds to a projection function of a softmax kernel κ(qi, kj) = exp (qT

i kj) = ϕ(qi)T ϕ(kj),
then it can be approximated via a universal approximator. By choosing a proper architecture to
approximate ϕ(·), we can achieve a precise approximation of a softmax function. Furthermore,
since ϕ(·) is learnable, the resulting approximation can be even more suitable for a given task.

We explore several choices of these architectures, along with some additional ways to increase
their performance and stabilize convergence. However, since we have chosen LRA[51] as a pri-
mary testing benchmark, we have an additional constraint of no more than 10% of additional
parametrization. This is a substantial limitation, but it allows to shift an attention more to the
model inductive bias.

Let us recall the kernelized model formulation:

Att(qi, K, V ) =
L∑

j=1

κ(qi, kj)∑L
j′=1 κ(qi, kj′)

vj ≈
ϕ(qi)T

∑L
j=1 ϕ(kj)vT

j

ϕ(qi)T
∑L

j=1 ϕ(kj)

The ϕ(·) in the equation above is the target function we would like to approximate. Along with
a reduced parametrization, additional contraints put on the approximator would be:

A O(1) computational complexity for a sequence element.

A relatively small multiplicative constant under the O-notation.

35
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Even though GPUs are optimized for dense neural networks (which are a foundation of the
proposed method), we still want the FCNN to be of reasonable size, since even a constant
complexity does not guarantee a fast computation.

Another important subject to consider is a final activation function. The authors of the
Performer (see Subsection 3.5.2) in their work noted, that an approximation of ϕ(·) potentially
yielding zero or negative values may result in an abnormal behavior. Indeed, even without a
rigorous mathematical analysis it may be seen, that this setup may eventually end in a denomi-
nator close to zero, destabilizing the whole network and leading to meaningless outputs (or even
NaNs). So, it is important to limit the approximator output to positive values, and preliminary
experiments supported that.

N.B.: we name our method ”Feedforward Kernel” to avoid a confusion with a learnable kernel
we reviewed in the previous chapter. However, we have experimented with neural networks going
beyond simple FCNNs.

4.1.1 Architectures
We start with the simplest neural network:

ϕ(X) = softplus(XW )

where W is a learnable matrix. A one may use linear layers which include biases, but we
prefer to disable them since they negatively interact with a regularization introduced later, and
disabling them caused no negative effect during preliminary experiments. The softplus function
was arbitrarily chosen to force a positive output; we suppose that using ELU(·) + 1 or any other
”soft” ReLU approximation instead would result in a similar performance.

Following the[53], we also experiment with orthogonal initialization and regularization as
ways to improve convergence, and to avoid possible negative effects due to parameter sharing
along sequence or layer stacking. The regularization we employ is very simple:

Reg(W ) = λ||WW T − I||22

We can further extend the neural network by stacking more modules to obtain a potentially
more powerful approximator:

ϕ(X) = softplus(FCNN(X)W )

As an alternative choice, we have also experimented with Gated Linear Unit networks:

GLU(X) = XWt ⊙ σ(XWg)
GLUout(X) = softplus(XWt) ⊙ σ(XWg)

where Wt and Wg are learnable matrices, σ is a sigmoid function, and ⊙ represents an element-
wise product. This linear layer has a doubled parametrization, but offers an activation function
which is individual per input element and is conditioned on input elements, allowing to represent
more complex functions. We force an orthogonality of this layer too by regularizing the transform
matrix Wt. We refer this unit as OGLU.

To mitigate the parametrization growth, we can assume that gating requires less information
than transforms. Thus, we can approximate the Wg ∈ Rd×d with, say, two low-rank matrices
of sizes d × r resp. r × d, where r < d

2 is the Wg approximation rank. We refer this unit as
A(pproximated)OGLU.
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Finally, we hypothesized that it may be beneficial to model query-key projection distribution
instead of a mapping, and tried a variational autoencoder as a non-deterministic approximation
of ϕ(·). In this setting the model is being trained to restore its inputs, while the projection for
a particular query or key is given by a vector sampled from a conditioned latent distribution.

For any models employed, it is beneficial to apply them individually per attention head.
The reason is that their additional parametrization and computational costs grow quadratically
with a hidden dimension; by splitting it into h heads, we obtain a O(

(
d
h

)2
h) = O( d2

h ) reduced
complexity.

4.2 SimpleTRON
The SimpleTRON stands for ”Simple Transformer with O(N) complexity”. This is the model
which was used as a baseline during preliminary experiments with other models, but promising
results attracted our attention and eventually led to the deeper research of the architecture.

(a) Transformer

(b) SimpleTRON

Figure 4.1 Transformer and SimpleTRON attention pipelines. Rejecting the softmax allows to use
the matrix associativity to compute a compressed input representation to update queries. Matrices about
to perform a product are emphasized.

The SimpleTRON eschews any nonlinearity applied on attention matrix logits. It does not
approximate a softmax or any similar function; instead, it relies on information mixing along
sequence dimension via contractive dot products. Using the kernelized Transformer formulation,
the model may be expressed as:

SimpleAtt(qi, K, V ) =
ϕ(qi)T

∑L
j=1 ϕ(kj)vT

j

ϕ(qi)T
∑L

j=1 ϕ(kj)
, where ϕ(·) is an identity

or simply in its matrix form (we omit biases for simplicity):

SimpleAtt(Q, K, V ) = 1√
L

Q(KT V ) = 1√
L

XWQW T
KXT XWV

where WQ, WK and WV are query, key and value projection matrices, and the 1/
√

L normal-
ization term is a constant we have found helping to achieve a more stable convergence. While
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WQW T
K may be replaced with a single matrix, we keep the original Q, K and V framework due

to the reason described in the experiments section.
Since the model is kernelized, this allows us to make use of the recurrent autoregressive

prediction formulation:

MaskedSimpleAtt(qi, K, V ) = qT
i Si

Si = Si−1 + kiv
T
i

S0 = 0

While this method may not seem intuitive or correct at first sight, for some tasks this may be a
beneficial inductive bias.

Reduced parametrization Additional experiments were conducted on possible block rearrangements—
for example, we observed that an attention layer is a linear map, and that value vectors undergo
three linear transforms before entering a block FCNN—value projection, attention and a projec-
tion after heads concatenation. We removed the last linear transform in a self-attention layer,
and observed a notable performance and convergence stability improvements.

Figure 4.2 Scheme of the encoder block we are considering on this work. The additional skip con-
nection is denoted with red.

Skip connections We also experiment with an additional skip connection over the whole
block, just before the last LayerNorm. Since we perform a dot product along the sequence
dim, attention outputs just before a FCNN may have a high variance, and an additional skip
connection should stabilize the model.

4.3 Experiments
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4.3.1 Setup
4.3.1.1 Dependencies and environment
All the models were implemented in PyTorch 1.11.0. Compared to Tensorflow, PyTorch does not
require building the whole computation graph before execution, which allows us to develop and
test models significantly faster. Another benefit of PyTorch is an ability to modify existing models
on-the-fly, by simply plugging in different modules into an existing model before execution.

Due to the different availability of execution environments, experiments were conducted pretty
heterogeneously:

Major fraction of experiments was executed on Google Colab, in particular in Nvidia V100
and A100 environments.

A fraction of experiments (primarily AG News setups of SimpleTRON) was executed on the
private RTX3090-equipped machine.

Since none of implemented models got BatchNormalization layers, we suppose that an effect
of different runtimes will be negligible. This also allows to leverage the gradient accumulation
technique to simulate larger batch sizes.

Additionally, we use the Huggingface library as a source of reference models for setups other
than LRA. The library provides both PyTorch and Tensorflow implementations of majority of
Transformers, as well as execution-ready tokenizers for each.

4.3.1.2 Datasets
Long Range Arena[51] We have chosen LRA as a primary testing benchmark. These tasks
were specifically designed to test an inductive bias by training a model from scratch without
sophisticated pretraining schemes, which could obscur the true model performance. The bench-
mark comprises the four primary tasks:

BPE-encoded text classification. This task is a binary classification of IMDB review
texts, encoded as byte pairs to produce long sequences. The task is more challenging than
a word-level classification, since byte pairs offer less information and it is needed to re-learn
interactions between them. Following the benchmark rules, we choose 4K as a sequence
length.

BPE-encoded text matching. The task is a binary classification, whether two BPE-
encoded input texts from the ACL Anthology Network have a citation link. Each text is
being encoded separately, and their concatenated representation is then being passed to an
output layer. We again choose 4K as a sequence length, according to the LRA challenge
setup.

ListOps. The dataset is composed of nested digit sequences, each of which is coupled with a
reduction operation (max, mean, median, . . . ). The task is a ten-class classification of a final
result prediction. We choose 2K as a seuquence length used to obtain leaderboard results.

Pathfinder. The task is to predict, whether two endpoints on a 32×32 image are connected
by a dashed line. There are also many false lines on an image, which lead to nowhere and
make the task challenging for convolutional networks too. An image is being fed per-pixel,
resulting in a sequence of length 1024.

Pixel-level image classification. The task is a CIFAR-10 image classification, but with
inputs fed into model as a sequence. A flattened 32 × 32 image results in a sequence length
of 1024.
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AG News AG News is a subset of AG’s corpus of news and articles from the four largest
categories—“World”, “Sports”, “Business” and “Sci/Tech”. Tokenized sequences mostly follow
conventional Transformer input lengths (up to 512), so we use this dataset to test architectures
in a usual text processing pipeline setting.

Due to the large number of tested models and limited computation sources, we restrict ourselves
only to ListOps, text classification and retrieval LRA tasks. Additionally, we select particular
architectures based on the performance on these tasks and test them on AG News.

4.3.2 Results

4.3.2.1 LRA
For the LRA benchmark, we have implemented our models to be as close to the original Jax
implementations as possible, in terms of a layer arrangement and applied regularizations. We also
use the same hyperparameters such as block count, query-key-value and hidden dimensionalities,
head count, optimizer, learning schedule and other. The only exception we did was the β2 set to
0.999, since with β2 = 0.98 we observed significantly worse results and convergence instabilities.

Feedforward kernel While the performance on the ListOps is a bit underwhelming, the model
performs competitively on the classification task, and beats the baseline models by 5% score on
the matching. The FCNN realizing the kernel is composed of linear/GLU layers, which use a
head dimension as their hidden width (i.e. no expansion or compression).

In the Table 4.1, we denote the architecture-dependent complexity multiplier as C. According
on the aforementioned configuration, we can expand C to O(ld2) for linear/GLU units or O(ldr)
for AGLU, where l is the layer count. We use r = d

4 , which leads to a 25% parametrization
decrease compared to the original GLU.

The preliminary experiments were conducted on the classification task, and according to the
results on it we have chosen an orthogonal regularization coefficient as λ = 0.1. However, it seems
to cause a significant performance hit on the matching task, cutting off roughly 1% of scores. We
suppose that the parameter is highly task-specific, and is easy to set into an over-regularization.

Finally, we point out to the fact that the VAE kernel did not exceed the random prediction
performance at any setup (layer count and hidden dimensions).

SimpleTRON The SimpleTRON has beaten all the baseline architectures in all three tasks.
However, the convergence could not be achieved with the basic architecture — either there should
be a skip connection or should not be a linear layer after heads concatenation.

We denote model configurations with an additional skip connection as ”-Res”, while variants
with a linear layer after head concatenation as ”-L”.

4.3.2.2 AG News
On the AG News dataset, we conducted experiments with the SimpleTRON model along with
some chosen Feedforward kernel variants. We employ the training setup from [54], and reimple-
ment our model by replicating it and the Huggingface BERT-base[55] configuration.

In contrary to the LRA results, we have found our models underperforming in this setup.
Both the Feedforward kernel and the SimpleTRON achieve 1 − 1.5% less scores than the BERT
reimplementation. Interestingly, in the from-scratch settings the SimpleTRON performs on par
with the original model — we suggest that the weight incompatibility between architectures,
while not being the only explanation, plays the role here.
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Model Complexity Classif. Matching ListOps

Random O(1) 50.00 50.00 10.00
Transformer O(L2) 64.27 57.46 36.37

Synthesizer O(L2) 61.68 54.67 36.99
Sinkhorn Trans. O(B2+(N/B)2) 61.20 53.83 33.67
Sparse Trans. O(L

√
L) 63.58 59.59 17.07

Reformer O(L log L) 56.10 53.40 37.27
Local Attention O(LK) 52.98 53.39 15.82
Longformer O(LK) 62.85 56.89 35.63
Linformer O(L) 53.94 52.27 35.70
BigBird O(L) 64.02 59.29 36.05
Linear ELU O(L) 65.90 53.09 16.13
Performer O(L) 65.40 53.82 18.01

GMM-RKS O(L) 66.20 58.74 18.15
FastFood-RKS O(L) 65.91 57.47 18.20
Generative-RKS O(L) 66.37 59.02 17.80
GMM-PRF O(L) 62.70 59.64 36.95
FastFood-PRF O(L) 64.69 67.90 37.25
Generative-PRF O(L) 62.39 67.18 37.10

Linear kernel O(CL) 65.77 73.51 18.54
1× GLU O(CL) 65.82 72.17 18.67
2× GLU O(CL) 65.99 73.36 18.42
3× GLU O(CL) 65.87 72.60 18.68

Orth. linear kernel O(CL) 65.86 72.63 18.19
1× OGLU O(CL) 65.95 72.50 18.45
2× OGLU O(CL) 66.02 72.96 18.32
3× AOGLU O(CL) 66.06 72.57 18.45

Variational O(CL) FAIL FAIL FAIL

Simple O(L) 66.75 73.92 37.45
Simple-L O(L) FAIL FAIL FAIL
Simple-Res O(L) 66.65 74.83 37.10
Simple-Res-L O(L) 66.71 73.59 37.55

Table 4.1 Baseline and proposed models on the three LRA tasks. We denote sequence length as L,
attention span as K and Sinkhorn model block size as B. C is an architecture-dependent multiplier
explained in 4.3.2.1.
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Model BERT[54] BERT (reimpl.) FFK Lin. FFK. 2× GLU Simple
Accuracy 95.2 94.2 93.0 92.7

Table 4.2 AG News fine-tuning results.

Blocks BERT SimpleTRON
1 89.12 90.90
2 90.38 90.32
3 90.28 90.44
4 90.66 90.41
5 90.11 90.35
6 90.30 90.22
7 90.68 90.19
8 90.68 89.98
9 91.13 89.95
10 91.21 89.94
11 90.78 89.43
12 90.10 89.90
6* 92.70 92.30
12* 94.20 92.70

Table 4.3 SimpleTRON training from-scratch results on AG News, with respect to the number of
layers of the model. We denote fine-tuning results with an asterisk.

4.3.3 Discussion
Computational complexity By swapping the q-k-v product matrices and avoiding any kind
of approximation we have reached a truly linear complexity with a respect to the input length.
The most of linear attention approximations are in fact omitting high architecture-dependent
multiplier, which should be taken into account in practice; however, the SimpleTRON does not
have any intermediate steps in the q-k-v product, which places it among the fastest models.

On the other hand, the most of efficient architectures are considering L >> d. For the
common choice of an input length as 512 the dimensionality term dominates in the attention
matrix computation. This results in the L × L attention matrix being significantly smaller and
faster to compute than the d × d intermediate result in the kernelized model, which makes these
models only feasible at input lengths longer than some lower bound larger than L.

Normalization The kernelized attention formulation D−1AV requires a normalization matrix
D−1 to be computed. Since we have forced a positive output of the Feedforward kernel, we can
compute it in the ordinary way, by using the factorized formulation we recalled in the Subsection
4.1.

On the other hand, we have completely rejected normalization in the SimpleTRON. Com-
puting a normalization matrix as in 4.1 results in near-zero values and invalid outputs. We have
found the model giving satisfying results during preliminary experiments on the CIFAR-10 and
LRA benchmark without it; we got no explanation for this. We can suppose that an intermediate
result computed by the SimpleTRON got very little in common with the softmax approximation
made by the Performer or RKS/PRF learnable models.

We additionally apply the 1/
√

L normalization term to keep the k-v intermediate output
variance at the same magnitude. We have found it stabilizing the convergence.

Convergence speed Compared to the vanilla Transformer, the Feedforward kernel converges
slightly faster. The SimpleTRON demonstrates an opposite, requiring ×1.5−3 steps to converge.
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On the AG News both model categories converged significantly faster than the vanilla model,
but with significantly worse results.

The SimpleTRON with a linear layer demonstrated a significant convergence instability com-
pared to the other variants. In the AG News setting it may take several attempts and reinitial-
izations to begin the training.
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Figure 4.3 SimpleTRON example training plots.

Attention matrix reconstruction Both kinds of architectures did not manage to reconstruct
the original attention diagonal pattern. Since we did not approximate the softmax directly (like
the Performer) or indirectly by applying a certain approximation strategy (like the learnable
RKS/PRF kernels), it is possible to learn a completely different pattern.

(a) 3× AGLU kernel. (b) SimpleTRON

Figure 4.4 Example reconstructions of attention matrices for a 4001 × 4001 input of the BPE clas-
sification task. The value range is approximately [0 − 0.005) for the left matrix and (−150; 150) for the
right. The right matrix was extracted as unnormalized (without the 1/

√
L term).

Backward compatibility An additional experiment was conducted with the SimpleTRON
— fine-tuning the vanilla architecture with the weights obtained from the Simple Attention
model. Within this setup, the model has shown an interesting behaviour: having about 30% less
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trainable parameters and in fact no ability to learn pairwise relation between the tokens in the
sequences, the model trained up to the original accuracy of the vanilla Transformer, in much
less number of training epochs. The result is quite surprising, given the difference of intrinsic
representations between both architectures.
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Figure 4.5 Training plot of the original Transformer fine-tuning on the LRA text classification task.
Initial weights are given by the trained SimpleTRON model.

Weight symmetry Results on the AG News demonstrate, that a successful training is possible
only in the case when the number of blocks is low (i.e. 4 blocks for the LRA text classification
task). Even though, at the very early stage of training deeper models with a base Simple
attention (with a linear layer and no skips) are on-par with the vanilla Transformer, and after
certain number of epochs work no better than a random choice.

One of the pathways in order to reach a stable and efficient training is to remove the linear
layer that follows the attention model as described before. It was empirically discovered that
for larger models which are usually applied in practice (i.e. comparable with BERT-base or
larger) the original SimpleTRON architecture shows performance lagging behind the vanilla
Transformer. Furthermore, removing the linear layer will not allow to set head dimensions other
than dmodel/h, where dmodel is the model width and h is a head count.
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Figure 4.6 Training evolution of standard deviation of attention outputs. We compare the three
models — vanilla Transformer, Simple and Simple-L.

Another option to stabilize the training is to apply an additional skip connection through the
whole Transformer block. This allows to achieve a convergence at any model depth, but does
not allow to benefit from the bigger number of stacked blocks. The reason for the deeper models
to fail on training is that the weights of the SimpleTRON tend to be symmetrical in the deeper



Experiments 45

blocks (see Fig. 4.6). Additional skip connections restrain the weight variance from degeneration
and therefore induce better inference ability of the model.

Variational kernel failure We suppose that the variational kernel failed due to the normal
distribution being a too string prior for a latent distribution; removing it and leaving the block
as an ordinary AE allowed the model to begin training. More complex and adaptable priors such
as Gaussian mixtures or Vamp[56] may achieve better results.
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Chapter 5

Summary

In this chapter we summarize the provided work. We make conclusions about individual
efficient Transformer approaches, observe model design trends and discuss their applicability.
We also discuss a broader impact of a research on efficient architectures, and a possibility to
integrate them into already existing systems. Finally, we assess the proposed architectures,
compare them to baseline models and suggest further possible improvements.

Despite the Transformer success in a widest amount of domains, the architecture itself started a
new research field on its own—a family of both faster and even more powerful architectures. As
we have already seen in the Chapter 3, recent models are a vivid example of a phenomenon,that
a reduction of computational costs should not result in a trade-off with performance; on the
contrary, a truly efficient approach can benefit in generalization by getting rid of an unrelated
signal. We can draw a parallel with gated recurrent networks there, which also increase their
performance through gating and ”forgetting” an irrelevant information.

In this work, we have tried to review as much of linear attention mechanisms as possible, as
well as to propose our own. In the following sections, we will firstly summarize our findings during
an analysis of other approaches, and then will compare and discuss the proposed architectures.

5.1 A summary on modern efficient Transformers

Local attention is not weak One of the important observations is that restricting an at-
tention to some local region introduces a bias beneficial for some tasks. This results in some
loss in generality and disables a model from being applied on specific tasks, which require a
global attention; however, the intuition standing behind is that a lower amount of relations to
consider results in lesser amounts of data needed to learn them. This allows these models to
perform better in settings with lower amounts of data provided, such as IMDB or Hyperpartisan
classification tasks.

What is even more important, these methods can be easily combined with other approaches,
especially with long-term oriented attention alternatives. The most powerful reviewed models
always include local attention patterns in some form, and this allows them to:

Back a global approximation mechanism with a precise mechanism for local relationships

Enable the model for autoregression, since a local attention allows to generate attention scores
for an immediate past (like in Transformer-LS; Nyströmformer can also be adapted to causal
prediction via AS , BS and FS triangular masks + local attention).
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Refine a global attention mechanism with a dilated sparse attention, which can improve
performance if properly tuned for a task.

Good theoretical bounds do not guarantee a good performance Another interesting
observation is that positive results given by a theoretical analysis do not guarantee anything in
practice. The simplest example is the whole class of kernelized models, which is, in theory, very
optimized for an autoregression (constant memory, linear time complexities) but is extremely
slow in practice due to the poor parallelization. Another example is sparse models, which can
be significantly slowed down by an absence of a low-level optimization for sparse operations.

A proper theoretical justification also tells very little about eventual test scoring. There is an
impressive theoretical background standing behind a Performer, but the architecture still under-
performs in some settings compared to the vanilla Transformer or concurrent models, sometimes
more primitive and based on intuitions.

Efficient models outperform Transformer We have already seen several architectures,
which demonstrate significantly better results on a wide variety of tasks compared to a vanilla
Transformer. We can interpret it as introducing a certain bias to the model, and since the original
model does not make any strong assumptions about input data, the performance gain may be
significant—compared with the models with built-in priors, namely recurrent or convolutional
architectures.

5.2 A summary on the proposed models
In the current work, we have introduced the two families of kernelized architectures — the Feed-
forward kernel and the SimpleTRON. Both models showed good results on the LRA benchmark,
and both were not that impressive on the AG News dataset. To explain why, we have conducted
additional research to support or refute our hypotheses about the performance.

A weight incompatibility may be the first issue — since we transferred initial weights from the
vanilla BERT, we were at a disadvantage when comparing our models with competing architec-
tures, which typically employ pretraining from-scratch on huge datasets such as WikiText-103.

Another issue is related to the Feedforward kernel. The hyperbolic approximation derived in
the Performer work illustrates, that the proper function to learn probably belongs to the family
of exponentials. In our experiments we employ a softplus output function, which we can assume
as linear for larger magnitudes, and significantly differing from the functions employed by other
kernelized models. By choosing a model architecture and its output according the appropriate
prior we can achieve better performance and convergence.

The SimpleTRON model is harder to analyse, since it does not resemble any architecture
reviewed in this work. The effect of the weight incompatibility may stronger there, as well as
a larger possible output instability. Since we perform a reduction of unnormalized inputs along
the sequence dimension, the assumption of a constant input variance and a sufficiency of the
1/

√
L term for normalization may be naive. For example, to enable the model for training, we

have rearranged the LayerNorm placement and put it after summation with a residual connec-
tion. Both these hypotheses are being supported by the training-from-scratch experiment, where
the model outperformed the vanilla Transformer at the shallower configurations, while getting
diminishing returns and eventually degradating with the growing depth.

So, based on the obtained results, we can make the following conclusions:
It is crucial to perform preliminary test on deeper models; The Long Range Arena[51] bench-
mark itself is not sufficient, since it offers to measure a performance of a shallow model.

A good theoretical prior, while not being comprehensive about the final model performance
on its own, is a good start and an appropriate intuition for a new architecture.
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5.3 On research trends and perspectives
A one can find an evolution pattern between the attention factorization paradigms we reviewed in
this work. The sparse attention methods were proposed yet in the ”Attention is All You Need[7]”
and were a primary direction of research for some time, spanning from locally-concentrated
mechanisms such as Blockwise[32] or Image[57] Transformers to Sparse Transformers[58] with
different patterns dedicated to capture short- and long-spanning dependencies.

The next logical step would be to move away from fixed patterns and try to learn them instead.
This can be traced in the token memory approaches such as Set[36], Star[36] and ETC[35] models.
Later methods improve the idea by grouping input tokens, namely by k-means[59] or locality-
sensitive hashing[60], and performing an attention inside an assigned bin. However, while these
models improved results and remained sub-quadratic, they were still local approaches in a sense
that they applied an attention only on subsets of input data.

As an orthogonal alternative, low-rank and kernelized methods emerged to project or factorize
an attention rather than to sparsify it. These models differ from the previous approaches in a
way they view on data—instead of token sequences with relative positional or vector distances,
they operate with inputs as matrices. This allowed to employ a rich mathematical basis and give
some guarantees about an approximation precision; however, comparing them[40][48][42] with
the most recent sparse attention models such as Longformer[33] or BigBid[34], no specific answer
can be given on the question whether this approach is practically better.

The most recent and the most performant efficient attention models belong to hybrid ap-
proaches, which try to get best from the different methods. For example, we have discussed
the Luna[39] model, which combines a Set Transformer-like factorized attention with a ”memory
tape”, or the Long-Short Transformer[43] which backs the global dynamic low-rank projection
with a fixed pattern. Along with the Hierarchical Attention[44], all these models share the N -
step paradigm of attention approximation, and we suppose that it will remain the dominant
approach for a while.

5.4 An impact of efficient architectures
We have already mentioned several reasons to conduct a research on efficient Transformers.
However, enabling the model to be applied within other domains is not the only hypothetical
contribution.

Accessibility Transformers are extremely cumbersome to train, and their extensive transfer
capabilities do not solve the problem completely. The issue is especially thorny once we arrive
to the fact, that an extensive development is still promising, what the new generations of GPT
models consistently demonstrate. End users, which apply machine learning models for practical
tasks and mostly aim to achieve a satisfying performance, are not affected by the issue as much as
smaller research communities are, and the latter cannot rely on extensive amounts of experiments
to find a better approach.

Introducing faster attention models may significantly help a research team from several di-
rections:

An efficient model can be quickly deployed and trained to ensure the correctness of a training
pipeline.

They allow to quickly establish a baseline for comparison on a new task.

They can achieve better results during a research not directly tied to an architecture.
However, the scientific accessibility is not the only reason. Making the model deployable on

end user devices (such as smartphones) may improve their functionality, as well as enable them
for federated learning.
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Upgrading existing pipelines Most of reviewed architectures more or less demonstrate a
backward compatibility with the original Transformer. That enables them to be used as a drop-
in replacement for already deployed Transformers, which can speed up an execution time of a
system by performing only a slight fine-tuning, while introducing a performance hit varying from
a minor negative to positive.



Appendix A

Training Hyperparameters

Parameter Classif. Matching ListOps

Seq. Length 4000 4000 2000
Batch Size 32 32 32
Training Steps 20 000 15 000 15 000
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Base LR 0.05 0.05 0.005
Weight Decay 0.1 0.1 0.1
Warmup Steps 8000 8000 1000
Schedule Base LR * Warmup * Sqrt Decay
Warmup Mul. min(1, Current Step/Warmup Steps)
Sqrt Decay Mul. 1/

√
max(Current Step, Warmup Steps)

Loss CCE
Blocks 4 4 6
Heads 4 4 8
Hidden dim. 256 128 512
QKV dim. 256 128 512
MLP dim. 1024 512 2048
Dropout 0.1 0.1 0.1
Activation GELU GELU

(ReLU in
output)

GELU

Pooling CLS CLS CLS
Pos. encoding Learnable Learnable Learnable

Table A.1 Hyperparameters used for the LRA experiments.
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Parameter Coarse Fine

Seq. Length 512 512
Batch Size 32 32
Training Steps 10 500 10 500
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Base LR 5e−5 5e−6
Layer-Wise LR Decay 0.9 0.9
Weight Decay 1e−4 1e−4
Warmup Steps - 525
Schedule Base LR Base*Warmup*Sqrt
Warmup Mul. min(1, Current Step/Warmup Steps)
Loss CCE
Blocks 12
Heads 12
Hidden dim. 768
QKV dim. 768
MLP dim. 3072
Dropout 0.2 0.2
Activation GELU
Pooling CLS
Pos. encoding Learnable

Table A.2 Hyperparameters used for the AG experiments. ”Coarse” stage is tuning only attention
weights, output layers and embedddings. ”Fine” is a subsequent tuning of the whole model.
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