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Abstract

Automatic classification of defect patterns in wafer bin maps is a challenging
problem for semiconductor manufacturers. Recently, progress with supervised
approaches has been made, but labeled datasets are usually small and of
poor quality. The creation of high-quality datasets is expensive and
time-consuming, limiting early production. This work analyzes a self-
supervised/semi-supervised learning approaches that use unlabeled data.
Based on the resizing problem analysis, this thesis proposed a smaller model
that focuses on improving defect classification performance with diverse-sized
wafers. The substantial improvement was made with the minor classes, in
particular, with Scratch class.

Keywords wafer bin map defect pattern classification, semiconductor
manufacturing, convolutional neural networks, semi-supervised learning,
self-supervised learning
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Abstrakt

Automatizovaná klasifikace vzor̊u defekt̊u na deskách je náročný úkol pro
výrobce polovodič̊u. V rámci supervizovaného učeńı byl udělán velký po-
krok. Problémem je zisk olabelovaných dataset̊u. Datasety jsou malé a ne-
maj́ı dostatečnou kvalitu. Jejich vytvořeńı je drahé a časově náročné. Kv̊uli
těmto d̊uvod̊um je složité jejich použit́ı při rané produkci. Tato práce analy-
zuje nejnověǰśı př́ıstupy pro práci s neoznačenými daty. Představuje metody,
které vylepšuj́ı stávaj́ıćı modely trénované pouze na olabelovaných datech.
Na základě provedeného pr̊uzkumu navrhuji menš́ı model, který se zaměřuje
na řešeńı problému r̊uznorodosti velikost́ı jednotlivých desek. Významné vy-
lepšeńı proběhlo u minoritńıch tř́ıd, hlavně u tř́ıdy Scratch.

Kĺıčová slova klasifikace defekt̊u na deskách, výroba polovodič̊u, konvo-
lunč́ı neuronové śıtě, semi-supervizované učeńı, samo-supervizované učeńı
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Introduction

The Production of semiconductor devices is a complicated manufacturing pro-
cess that includes hundreds or even thousands of successive steps to create
integrated circuits (ICs), mainly on silicon wafers. Because this process is
both challenging and expensive, the goal is to manufacture wafers with zero
defects. The patterns of defects can occur during this complicated process at
any time. Each defect is linked to a specific step in the production process.
Thanks to the information that caused the fault, it will be easier to fix the
source of the defect faster.

This work is focused on the improvement of single-label classification of
defect patterns on wafer bin maps (WBMs), that should lead to a better yield
of the wafers. The conventional practices that rely on an experienced naked
eye are not optimal. Here the machine learning comes to play. Convolutional
neural networks (CNNs) are one of the most successful solutions for the image
classification problem. Nonetheless, their performance heavily depends on
the quantity and quality of the labeled data. This field of chip fabrication
produces very specific data in comparison to the traditional computer vision
tasks. The other problem is the lack of free labeled WBM data. In general,
creation of labeled datasets is very expensive and time-consuming.

The current state-of-the-art self-supervised and semi-supervised learning
approaches perform well against the supervised approach in basic computer
vision tasks. This work proposes methods to improve the imbalanced datasets
for supervised learning which affects the semi-supervised and self-supervised
approaches.

In this work, the dataset WM-811K with over 800,000 samples will be used,
but only 21 % of the samples have labels. In the analysis chapter, constraints
and recommendations for augmentation methods, resizing and use of transfer
learning are described. Further, I tested multiple methods of dataset balancing
to improve the supervised learning. Then, I tried to apply the same principles
to the semi-supervised (pseudo-labels) approach. I also demonstrated the use
of a smaller CNN model with self-supervised (WaPIRL) method.
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Chapter 1
Integrated Circuit

Manufacturing

This chapter briefly describes the manufacturing process of integrated circuits
and how they are tested (process control monitoring, wafer bin map). For
example, the unit probe test creates data in the form of wafer bin maps,
which are the inputs for this work.

Figure 1.1: The fabrication process of the integrated circuit. The
fabrication process of the integrated circuit starts with clean silicon wafers
that are exposed to oxygen at height temperatures creating the insulator.
The photolithography and etching creates the pattern for ion implantation
which changes the properties of silicon. The chemical deposition creates thin
film. Then, metal films and interconnections are done. The final step is the
testing of each wafer unit.

1.1 Production of Semiconductor Devices

Fabrication of semiconductor devices is a multi-step sequence of photolitho-
graphic and chemical processing steps during which electronic circuits are
slowly created on a wafer, made of pure semiconducting material. The key to

3



1. Integrated Circuit Manufacturing

successful fabrication is the ability to change the properties of semiconducting
material selectively. The following section describes the essential part of the
fabrication process [1].

1.1.1 Wafer Fabrication

Silicon is the most common material for ICs fabrication. Manufacturers also
use different materials for specific applications, such as GaN for LED diodes
or SiC for high voltage power devices. The dominant IC material is silicon
because it is inexpensive and pretty easy to work with, obtain and retain.
ICs may be simple with a small number of parts or complex with millions of
transistors [2].

1. Silicon wafer
Silicon ingot is sawed up into wafers, those are then cleaned and polished.
Their notch or flat defines the crystallographic orientation of silicon
wafers. The integrated circuit in the form of the wafer segment is referred
to as a die. The Group of wafers is called a lot, and it usually contains
25 wafers. Every wafer has its lot and wafer number.

2. Thermal oxidation
The exposure of raw silicon to oxygen or water vapor at high temper-
atures results in the formation of silicon dioxide layer, see equation 1.1
(the coating is stable at high temperatures). This creates a perfect bar-
rier which acts as an insulator.

Si + O2 → SiO2 (1.1)

3. Photolithography
Photolithography defines the patterns that are used in a combination
with etching, to pattern the deposited thin films. Combined with ion
implantation, it can change the properties of silicon. Photolithography
creates patterns in photoresist using ultraviolet light, and patterned ret-
icle, see Figure 1.2.

4. Etching
The current state-of-the-art etching method is dry etching, which uses
halogen-containing gasses. Dry etching could be non-directional or direc-
tional. Wet etching usually uses acids and is primarily non-directional.

5. Ion implantation Elements such as boron (B), phosphorus (P ), ar-
senic (Sb) or antimony (As) can be used to modify predictably the elec-
trical properties of the silicon. An ion implantation is the most common
method to introduce these dopant impurities into the wafer. Positively
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1.1. Production of Semiconductor Devices

charged ionized dopants are accelerated to have enough energy so that
when they impact on a target wafer’s surface they can penetrate to a
certain depth.

6. Chemical vapor deposition

Gases or chemical vapors react to form deposited films (at low pressure).
The thickness of these films is in the range from a few micrometers to
nanometers and are deposited/grown on a wafer surface. Reactions can
be induced by heat, high-frequency energy, or light, depending on the
enhancement type, e.g., plasma or photon.

7. Metal

There are many metals used to create thin films to provide intercon-
nections. Chemical Vapor Deposition (CVD) makes better films than
sputter deposition, but CVD cannot deposit all metals. Because of evo-
lution in development, more metal layers were needed to connect devices
in large ICs. The key for multi-layer metal scheme was the development
of chemical mechanical planarization (CMP), which creates a fully pla-
nar surface.

Figure 1.2: Fabrication process of the photo mask: A) Thin silicon
dioxide layer, B) Coating with photoressit, C) Exposure of the photoresist
with a patterned reticle, D) Developed photoresist, E) Ion implantation, F)
Striped photoresist.

Figure 1.3: None-directional vs. directional etching.
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1. Integrated Circuit Manufacturing

1.1.2 Testing

A fabricated semiconductor wafer undergoes evaluative testing to ensure the
integrated circuits are formed correctly and that they operate in a desired
manner. These testing steps are called Process Control Monitoring and Wafer
Sort.

Figure 1.4: Yield with different IC sizes is different based on the die size
and the defect density. The left wafer has 264 dice and the right wafer has
just 54 dice.

1. Process Control Monitoring (PCM) [3] measures special structures
that are used to monitor technology-specific parameters. These special
structures are fundamental parts of the final IC. The test structures are
distributed across the wafer surface, either in die sites or in the scribe
lines between dice. PCM data can be used to predict potential process
issues.

2. Wafer Sort (WS) The PCM measurement is followed by comprehen-
sive tests performed on each IC die, commonly called Wafer Sort or
Unit Probe [4]. The die may either pass or fail the testing procedure.
The information about passing/failed die is stored in an electronic file
named Wafer Bin Map (WBM). The wafer map also specifies excluded
dice as edge dice around the wafer circumference, test structures and
alignment dice. So, after cutting the wafer, failed and excluded dice can
be separated from the good dice.
In some cases, the die may not pass a test due to a problem with the
probecard setup. For example, if the probe needle is a little out, it
cannot measure the die correctly and a probe defect will occur.

Yield is a quantitative measure of the quality of a semiconductor process.
The yield at WS is calculated as the ratio of good die to all die on an individual
wafer that entered into the WS.

6



1.1. Production of Semiconductor Devices

Correctly classified defect patterns in wafer maps can help identify the
root cause of the issue and increase semiconductor productivity or even yield.
There are many types of possible defect patterns. Here, I will focus on defects
from dataset WM-811K1.

1http://mirlab.org/dataSet/public/

7
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Chapter 2
State-of-the-art methods

This chapter describes learning methods derived from the supervised and un-
supervised approaches and their basic principles. Supervised learning, ap-
proach where all the data have labels, is commonly used for classification,
regression, etc.; unsupervised learning is used for clustering, outlier detec-
tion, etc. For each method, state-of-the-art models and their performance in
various benchmarks are shown. The popular state-of-the-art deep learning
frameworks TensorFlow, Keras, and Pytorch are described below.

Convolutional neural networks (CNNs) have achieved massive success in
many computer vision tasks. A brief history of the evolution is presented in
this chapter, from AlexNet [5] through Residual blocks of ResNet [6] to the
recently published RegNet [7]. No transformers are presented here since, for
this field, those are considered as inappropriate networks, because of the lack
of large datasets needed to train the transformers.

2.1 Model Architectures

Popular CNN models, their development history and the progress that has
been made since AlexNet are described in this section. All of them are used
in solutions presented by the papers described below (except RegNet and
Xception).

2.1.1 AlexNet

AlexNet was published in 2012 in the paper named ”ImageNet Classification
with Deep Convolutional Neural Networks” [5]. The network architecture has
eight layers, five of them are convolutional, and three are fully connected.
The novelty that AlexNet paper proposed was using Rectified Linear Unit
(ReLU) [8] instead of tanh function (standard at the time). Thanks to the
multi-GPU training capability the training time was reduce. Authors also
introduce overlapping neurons for pooling which are harder to overfit.

9



2. State-of-the-art methods

Because of 60 million parameters, overfitting proved to be an issue. They
have used dropout layers and data augmentation. The dropout layer is ’turn-
ing off’ neuron sets by the probability threshold. This behavior forces the
neurons to work with more robust features. On the other hand, dropouts
increase training time.

2.1.2 VGG16

VGG16 was developed in 2014 and presented in the paper called ”Very Deep
Convolutional Networks for Large-Scale Image Recognition” [9]. VGG stands
for Visual Geometry Group, which is the research group’s name, and the
number 16 refers to the number of layers.

It has improved over AlexNet [5] by replacing the 11×11 and 5×5 kernels
with multiple 3 × 3 kernels, one after another. That increased number of
ReLU [8] units and the decision function is more discriminative. It has fewer
parameters than AlexNet [5] (27 per channel instead of 49 per channel).

VGG16 [9] uses 1 × 1 kernels to make the decision function more non-
linear without any change in receptive fields. The small-size kernels allow the
network to have many weight layers, which leads to better performance.

2.1.3 ResNet

ResNet stands for Residual Network, and it was published in 2015 in the paper
called ”Deep Residual Learning for Image Recognition” [6]. The number after
the name ResNet stands for a number of networks layers. Because of the back-
propagation and vanishing gradient problem, there were not any deeper VGG
networks than VGG19 [9] back in the day. Since the publishing of ResNet,
there have been proposed many variants of it.

The vanishing gradient problem occurs with deeper CNN because of the
back-propagating values to the input layer, and the layers become less and
less significant. They resolved the issue by by placing the skip connections
between the residual blocks, see Figure 2.1, which are repetitively used through
the network.

Two types of mapping were presented: the Identity connection and the Pro-
jection connection. The network learns the mapping using x → F (x) + G(x)
where G(x) = x is the identity function, and the shortcut is called Identity
connection. In the case of different dimensions (stride > 1), the Projection
connection is used. The function G(x) changes the dimensions of the input x
to output F (x).

2.1.4 Xception

Xception stands for ”Extreme Inception,” it was developed by Google re-
searcher Francois Chollet and proposed in the paper with title ”Xception:
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2.2. Supervised Learning

Deep Learning with Depthwise Separable Convolution” [10]. It is an interpre-
tation of the Inception model presented in the paper named ”Going Deeper
with Convolutions” [11].

Xception uses shortcuts between convolutional blocks as ResNet does and
uses the depth-wise separable convolution. The architecture is divided into
three parts: Entry flow, Middle flow, and Exit flow. The input data goes
through the Entry flow, then it repetitively goes through the Middle flow, and
then it goes through the Exit flow.

Depthwise Separable Convolution is a type of convolution which is
done separately for each channel. For example, three separate kernels are used
for each channel with RGB images.

The other difference from the Inception network is that Xception has no
non-linear function between the depth-wise and point-wise operations. They
have proven that Xception achieved better performance with no intermediate
activation function between these two types of convolutions.

2.1.5 RegNet

RegNet stands for RNN-Regulated Residual Networks, and it was submitted
in 2021 as a paper called ”RegNet: Self-Regulated Network for Image classi-
fication” [7].

The problem with ResNet skip connections is that each block focuses on
learning its residual output. If the information learned inside the block cannot
be reused again, it tends to be forgotten. See the Figure 2.1 for visualization
of this problem.

They proposed a regulatory mechanism that is parallel to ResNet skip con-
nections. Further, they used convolutional recursive neural networks (Con-
vRNNs) as the encoder of Spatio-temporal memory. The ConvRNNs are
added to the ResNet building blocks and the ”bottleneck” blocks. The de-
tailed RegNet blocks architecture is on Figure 2.1.

Best performance by error rate was achieved by RegNet-20 with ConvL-
STM (7.28 %) over ResNet-20 (8.38 %) on the CIFAR-10. This method can
also be used with other variants of ResNet architectures.

2.2 Supervised Learning

Supervised learning is a type of machine learning approach to train models.
The input data has to have a label that describes the output value. The aim of
the learning process is to learn a mapping function used to get/predict labels
of unseen data accurately. Supervised learning is appropriate for both classi-
fication and regression tasks. Labels work as a teacher who knows the correct
answers, and wrong predictions are corrected during the iterative process of
learning. The learning algorithm is stopped when the model achieves decent
performance.
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Figure 2.1: Architecture of ResNet vs. RegNet. The ResNet is build
from residual blocks with skip connections. The RegNet is also using the
ResNet’s residual blocks and adds to it the convolutional recurrent network
(ConvRNN). That should reduce the loss of information in each residual block.

2.2.1 Non-CNN Solution

Paper called ”Wafer Map Failure Pattern Recognition and Similarity Ranking
for Large-Scale Data Sets”[12] proposed a solution which uses rotation and
scale invariant features.

In Jupyter Notebook2 Ashish Patel implemented the feature extraction
from the the paper[12] but only for the labeled pattern data (25 519 samples)
from the WM-811K dataset.

1. Density-based features: The wafer is divided into 13 parts, and the
defect density is calculated for each region. For example, the center
defect has the most failures in the middle region.

2. Radon-based features: Radon transformation is used to get a 2D
image representation of the wafer from multiple projections. Because
of the difference in wafer size, he is extracting 40 features from radon
transformation.

3. Geometry-based features: The most notable region of the wafer is
extracted as a maximal component, and the features are the area, length,
etc. of this part.

2https://www.kaggle.com/code/ashishpatel26/wm-811k-wafermap/notebook
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2.3. Semi-supervised Learning

The labeled part of the dataset was split into a training, test sets in default
proportion 25 %. He achieved a training accuracy of 80.36 % and 79.04 %
on the testing dataset. The paper presented here as an option for a non-CNN
solution, and because of the type of features he used, they do not have to use
any re-scaling of the wafers.

2.2.2 CNN Baseline

The best results with supervised learning were published in the paper [13],
where they used popular CNN models (AlexNet, VGG16, ResNet18,
ResNet50) and trained them with a larger training set and only 10 % sized
test set. See the Section 3.3 for the results and more details. The best
performance has model VGG16 with macro F1 score 0.781.

2.3 Semi-supervised Learning

Humans can understand concepts after seeing just a few (labeled) examples.
Semi-supervised learning [14] is based on this principle. Semi-supervised learn-
ing describes a group of algorithms that are learning from both labeled and
unlabeled data (from the same distribution). The main difference between
semi-supervised learning techniques is how information is getting from unla-
beled data.

2.3.1 Mean Teacher

A Paper named ”Mean are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results” [15] proposes a method
that averages model weights instead of predictions. Their goal was to create
a better method than Temporal Ensembling [16]. See Figure 2.2 for the ar-
chitecture details.

Temporal Ensembling extends the Π-model that focuses on the con-
sistency of outputs between the two versions of the same network (different
dropout and augmentation) with the same input. Temporal ensembling takes
into account the predictions from previous training epochs.

Classification cost is difference between of student softmax predictions
with one-hot encoded labels. Consistency cost is difference between stu-
dents and teachers softmax predictions.

Both models predict the input label with different noise inside (dropout
layers). The student’s prediction is compared with the correct label using
classification cost and teacher output using consistency cost. In a case with
unlabeled data, the consistency cost between student/teacher models is only
calculated with different noise applied.

After the update of the student’s weights (gradient descent), the teacher
model uses the exponential moving average (EMA) of the student model’s

13
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Figure 2.2: The architecture of Mean teacher consists of two networks:
Student and Teacher. Both models predict the label for the same input but
with different noise (Dropout layers). Student’s predictions are compared
with the correct label using classification cost and with teacher’s prediction
by consistency cost. In case of unlabeled data only the consistency cost is
calculated. The student’s weights are updated by gradient descent and the
teacher’s weights are exponential moving average of the student’s weights.

weights instead of sharing them directly. With EMA, it can update its weight
every step in the epoch. The weighted average also improves all the layer’s
outputs (it has a better intermediate representation). It is better for online
learning with large datasets than temporal ensemblings. Both models can be
used for prediction, but the teacher model performs better than the student.

2.3.2 Mixed-Type Defect Patterns Classification

The paper called ”Semi-Supervised Multi-Label Learning for Classification of
Wafer Bin Maps With Mixed-Type Defect Patterns” [17] proposed a semi-
supervised solution for multi-label classification using a deep convolutional
generative model. The classification of mixed-type defects is more complex
than single defect classification because the classifier should classify each defect
without knowing the number of defects on the wafer.

They were working just with four defects and their combinations (16 cate-
gories). The SS-DGM with a single discriminative network was having a prob-
lem learning features of all 16 classes. They proposed a solution that is an
extension to the SS-DGM [18], they called it a semi-supervised convolutional
deep generative multiple model (SS-CDGMM).

The structure of SS-DGM is extended with CNN to extract local invariant
features, which together create a semi-supervised convolutional deep gener-
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ative model (SS-CDGM). They propose multiple latent class variables (each
for a different defect pattern) with multiple discriminative networks, unlike
the SS-DGM, using only one. See Figure 2.3 for the scheme of SS-CDGMM.
SS-CDGMM can be used for generating new WBMs. In the case of generating
the WBM data from a labeled sample, the real labels are used.

Figure 2.3: Architecture of SS-CDGMM. Each pattern has its own net-
work to predict its label. The final labels are concatenated together to the
inference network. Then the inference network’s latent variable is used as an
input for the generative network which reconstruct the WBM data. In case
of labeled data, the real labels are used instead of the predicted labels.

2.4 Self-supervised Learning

Self-supervised learning [19] is a general learning mechanism that uses replac-
ing/pretext tasks. These tasks are designed in such a way that solving them
requires learning helpful representation. This technique has a broad range of
applications beyond the scope of image processing. Self-supervised learning is
a sub-class of unsupervised learning.

2.4.1 Self-supervised Semi-supervised Learning

A Paper name ”Self-supervised Semi-supervised learning” [20] proposed a
method that combines both learning approaches. They developed a frame-
work of self-supervised semi-supervised learning (S4L). The main idea of
their work is to train the network only with 10 % of labeled data (in the
case of a completely labeled dataset). Next step is using one of the proposed
methods. For the final fine-tuning, they used again 10 % or 1 % of labeled
data from the ILSVRC-2012 dataset.
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Figure 2.4: Illustration of S4L Rotation. The model is using both labeled
and unlabeled data. For each image, new input images are created by rotation
(0◦, 90◦, 180◦, 270◦). The model is predicting the label and the angle of
rotation. In case of unlabeled data only the angle is predicted.

1. S4L-Rotation prediction is used as a pretext task with possible degrees
being [0◦, 90◦, 180◦, 270◦]. The network predicts the rotation angle with
unlabeled data and additionally the label for labeled data.

2. S4L-Exemplar uses cropping, random horizontal mirroring, and HSV
color space randomization to create eight different instances of one image
in a batch.

Self-supervised methods are evaluated by their learned representation and
how useful that is. They achieve this by treating the model as a fixed feature
extractor with a linear logistic regression model on top of it. The regression
model is trained on a different dataset.

They have shown that the size of the validation set is not that important,
validation sets with size of 1000, 5000, and over 50000 images from ILSVRC-
2012 were tested. The small validation set selected the same model as the best
model and the large validation set selected the same model. The evaluation
of the model works well even with a small-sized validation set.

Best results were achieved with S4L-Rotation with the improvement of
3.4 % over the supervised baseline (all methods were using the ResNet50V2
architecture). Proposed methods are complementary to each other with
pseudo samples [21], virtual adversarial training (VAT), and VAT with
entropy minimization.

They have proposed a Mix Of All Models (MOAM) which combines all
methods in three steps. MOAM has achieved a 0.5 % better top-5 score than
the Mean teacher[15].
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2.4.2 Self-Supervised Visual Representation Learning

The Paper called ”Revisiting Self-Supervised Visual Representation Learn-
ing” [22] is an overview of CNN models and pretext tasks that can be used
in visual representation methods, focusing on the architecture design and the
quality of representation.

Most pretext tasks are inspired by self-supervised methods from natural
language processing which uses missing word prediction based on the context.

Unsupervised image-based pretext tasks:

1. Patch based
It predicts the relative position of the patch. The input is two image
patches, one is the anchor, and the other is the query patch. The network
has to predict the relative position of the query patch with respect to
the anchor patch in 8-neighbors positions(eight possible positions).

2. Jig-saw
The network is learning the image representation by solving the Jig-saw
puzzle. Part of the image is split into nine tiles that are shuffled, and
the network has to put them back onto the right positions. The idea is
that network will learn high-level features/relations like the position of
the mouth with respect to the eyes without their low-level features like
color, texture, etc.

3. Fill the blank
The part of the image is hidden, and the network tries to predict the
missing part. The idea is that the network will learn repetitive structures
of the domain like buildings with windows and doors.

4. Rotation
Prediction of the image rotation is the most popular pretext task. The
network predicts which rotation from pool [0◦, 90◦, 180◦, 270◦]. It does
not make any sense to predict rotation, but it has been proven that
rotation works. The idea is that the network will understand the orien-
tation, e.g., the sky is on the top of the image, and the grass is on the
bottom.

5. Colorization
This pretext task is about the prediction of the colors from a gray-
scale image. For the object with multiple color variants, it has several
right solutions. The intuition is that the network will have the same
understating about the colors, e.g., the sky is blue, or the grass is green.
There is more pretext task-specific to video, natural language process-
ing, and sound. Also, combinations of the mentioned pretext task are
commonly used, e.g., Relative position with colorization.
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6. Their combination The jigsaw puzzle is a combination of jigsaw and
colorization. Jigsaw++ is a combination of the Jigsaw puzzle with
clustering-based pseudo labels [21].

They have tested six CNN architectures (variations of ResNet50 and VGG)
and four self-supervised approaches mentioned above. They have shown that
pretext tasks should be compared with connection to the architecture.

2.4.3 Representation Learning for WBMs

The paper called ”Self-Supervised Representation Learning for Wafer Bin Map
Defect Pattern Classification” [13] proposed a solution that consists of two
stages:

1. Self-supervised pretraining contains training of the CNN encoder to
capture high-level features in WBMs.

2. Supervised fine-tuning transfers weights of the CNN from pretraining
to the prediction of WBM pattern failures with labeled data.

The proposed framework is called wafer-oriented pretext-invariant repre-
sentation learning (WaPIRL), see Figure 2.5, and its architecture consists of
five components:

1. Data augmentation operator t(·) produce pairs of WBMs for the
self-supervised learning

2. Encoder network fΘ(·) (VGG, ResNEt, AlexNet)

3. Projection head gΦ(·)

4. Memory bank M

5. Self-supervised contrastive loss function LSSCL

They have experimented with five different options for WBM augmenta-
tion:

1. Cropping - random selection of the rectangular area [0.5, 1.0] and re-
sizing it to the original resolution.

2. Cutout - maximum of four regions were selected and removed (replaced
by zero values).

3. Noise addition - add random noise using Bernoulli distribution with
probability 0.005.

4. Rotation - random angle from range [0◦, 360◦]
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Figure 2.5: The self-supervised pretraining in the framework
WaPIRL has five main components: Data augmentation, encoder, projec-
tion head, memory bank and contrastive loss function. The original wafer and
its augmentation are trained using contrasting self-supervised learning. The
embeddings from projection heads are compared with each other. The heads
are replaced with softmax layer for the classification part.

5. Shifting - random translation in horizontal and vertical direction
[−0.25, 0.25]

See Figure 3.7 for visual examples of wafer augmentation. They have
tested its performance on the WM-811K dataset on popular CNN architec-
tures (AlexNet, VGG16 and versions of ResNet). The best performing archi-
tecture was VGG16 with crop pretext task with 5 % of labeled data and more.
Test with 1 % labeled data using the rotation as pretext task with VGG16
was the only one which was better. They were using their custom training,
test set split where the test set was only 10 % of the labeled dataset size.

2.4.4 GAN and WBM Data

The Paper named ”Using GAN to Improve CNN Performance of Wafer Map
Defect Type Classification” [23] uses the WM-811K dataset with horizon-
tal stripe (labeled WBMs only and exclusion of high/low resolutions). For
more about this dataset, see chapter Analysis and design section 3.1 Dataset.
Classes are significantly unbalanced, and many classes do not have enough
samples. They proposed a balancing by using generative adversarial networks
(GANs).
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They have used architecture with three convolutional layers with max-
pooling and one dense layer before the last layer with softmax. GAN consists
of two neural networks (Generator, Discriminator) that are trained together.
The role of the Discriminator is to tell if the input sample is real or fake.

Repetition of this process teaches Generator to generate better and bet-
ter samples that Discriminator has to distinguish. There has been massive
progress in GAN, and one of the improved versions is Deep Convolutional
GAN (DCGAN) [23]. They use the DCGAN structure to get more WBMs.

They have created custom smaller datasets for testing the augmentation
methods from the WM-811K dataset. The training set has 7 560 samples, and
the testing set has 1000 samples. Their datasets were more balanced than the
original dataset. They have generated only minor classes (Location, Edge
location, Center, Scratch, Random, Near full, and Donut) with DCGAN.

1. Original dataset (DS0)

2. DCGAN dataset (DS1) - DS0 + generated minor classes using CGAN

3. Classic augmentation dataset (DS2) - axis flip and rotation of data
from DS0

4. DCGAN with Classic augmentation (DS3, DS4) - DS0 + CGAN
data from DS2 (DS3 - all classes, DS4 - low accuracy classes only)

The most problematic classes were Location, Edge Location, and Scratch.
The accuracy of the scratch class with the DS0 dataset was only 71.7 %, and
after the augmentation, it was 88.3 %. There was no larger improvement in
other classes. For example, there was no improvement in accuracy for Edge
local defect.

2.4.5 Multi-label WBM from Single Labeled Data

The paper called ”Mixup-based classification of mixed-type defect patterns in
wafer bin maps” [24] focuses on the classification of mixed defect patterns.
Neural networks made big progress in single defect pattern classification, but
the mixed-type defects did not get much attention. The reason is the lack of
multi-labeled data, having enough data is an essential requirement for model
training. They propose a single pattern defects method for training CNN to
classify mixed-type defects. Their method generates the multi-labeled data
on the fly.

Consider single labeled WBMs, which are resized to a fixed dimension, and
all test bins are replaced with a value of one, while non-defective and outer
regions are assigned a value of zero.

Original Mixup [25] creates virtual training instances that take an average
of two training instances. They proposed Summation Mixup which is the
sum of input instances with an upper bound.
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Figure 2.6: Multi-label defect from single labeled wafers. Adding two
single-labeled wafers together creates multi-labeled wafer. This method could
be used only for suitable patterns (non-intersecting). They have also tested
this method on triple-labeled data.

They were using the dataset WM-811K for experiments. For more about
this dataset, see chapter Analysis and design section Dataset3.1. This method
needs mixed-type data only for the evaluation of final performance. See Fig-
ure 2.6 for the generation process of mixed-type defect data.

The creation of two datasets (combination of two and three defects) was
done by random sampling of two (three) WBMs from one of the classes (Cen-
ter, Donut, Edge-Loc, Edge-Ring, Loc, and Scratch). They have not used
Random and Near-Full classes because they cover a big area of WBM. Domain
experts manually sorted out the non-realistic WBMs. This process results in
a datasets consisting of 1500 and 6000 WBMs with two and three different
types of defects, respectively.

The method have been tested using five CNN architectures (AlexNet,
VGG-16, ResNet-18, ResNet-34, ResNet-50). They have created their own
test sets from single labeled WBMs (100 and 300 samples). The summation
method shows improvement across all tested architectures.
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2.5 Technology

In this section, the most popular frameworks (TensorFlow, Keras, and Py-
Torch) for deep learning are briefly described, compared and contrasted [26].

2.5.1 TensorFlow

TensorFlow presented in the paper named ”TensorFlow: A system for large-
scale machine learning” [27] is an open-source deep learning framework with
multiple levels of abstraction and support for any platform, e.g., Android.

It has the Serving framework for easier deployment of trained models to
production. Keras has been integrated into TensorFlow, and both of them
have high-level APIs. It is possible to define a model using Keras interface,
and the rest can be implemented in TensorFlow. Tensorflow is usually used
for working with large datasets where there is a need for high performance.

2.5.2 Keras

Keras [28] is an open-source library written in Python, and it is focused on
fast experiments with neural networks. It is a high-level API for TensorFlow,
The Microsoft Cognitive Toolkit (CNTK)3, and Theano4.

Keras cannot be used for low-level computing and it was integrated into
TensorFlow in 2017, but it is still able to work independently. Keras is the best
for prototyping with small datasets, and it has support for multiple back-ends.

2.5.3 PyTorch

Pytorch [29] was developed by Facebook’s AI researchers and became open-
sourced in 2017. It is a framework for machine learning based on the Torch
library using Lua language, and it has C++ and Python interfaces. It posses
pretty efficient memory usage, and it is very popular among researchers.

PyTorch implements two high-level features: tensor computing with graph-
ical processing unit (GPU) acceleration and deep neural networks based on
an automatic differentiation type-based system.

Compared to TensorFlow, Pytorch has limited visualization, and worse
model deployment, due to the lack to the Serving framework or other alter-
native. In comparison with Keras, Pytorch is faster with better debugging
options.

3https://github.com/microsoft/CNTK
4https://github.com/Theano/Theano
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Chapter 3
Analysis and Design

This chapter describes the detailed analysis of the dataset, augmentation and
preprocessing of WBM data. This chapter defines constrains and recommen-
dations for classification with partially labeled, unlabeled and heavily imbal-
anced data. In the section Transfer Learning are tested popular CNNs with
the analysis of misclassificaitons.

3.1 Dataset WM-811K

The dataset used in this work was provided by MIR lab5, and it is a rec-
ommended dataset for wafer map classification task. The dataset contains
nine classes (Center, Donut, Edge-Local, Edge-Ring, Local, Random, Scratch,
Near-full, None), see Figure 3.4 for visual examples of each defect. The wafers
have multiple sizes and resolutions (not every wafer has a square shape, which
is defined by the size of the IC). Dataset has information about die size, lot
number, index in the lot, defect type, and if the sample belongs to the training,
test set.

Table 3.1: Data samples

waferMap dieSize lotName waferIndex trainTest failureType
0 [[0,... 1683 lot1 1 [[Training]] [none]
1 [[0,... 600 lot2 24 [[Test]] [Edge-Loc]
2 [[0,... 600 lot3 4 [] []

The dataset contains 811 457 wafer bin maps from 47 543 lots (not every
lot has all 25 wafers). Only 3.1 % (25,519) wafers have pattern labels, 18.2 %
have non-pattern labels and the rest 78.7 % is unlabeled. The distribution of

5http://mirlab.org/dataSet/public/
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WBMs between pattern labels is unbalanced; see Figure 3.1 for the histogram
of classes.

Figure 3.1: Histogram of the distribution of labeled classes in the
dataset. The y-axis is logarithmic.

In total, there is 172,950 labeled samples (including the none defect),
see Table 3.2 for the class label distribution. The number of samples differs
from other papers (I assume that the dataset has been updated). Some papers
were using the same dataset, but they have one more class (Horizontal Stripe).
Others were using the dataset with the same classes, but they have created
their own dataset or have not used all defect patterns.

Table 3.2: Class label distribution

Class Sample counts
Center 4,294
Donut 555

Edge-Local 5,189
Edge-Ring 9,680

Local 3,593
Random 886
Scratch 1,193

Near-full 149
None 147,431

Initially, I thought that the train and test flag were switched because the
test set was larger than the training set. After the inspection of each set,
I have done the split between the training, test, and validation sets by myself.
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The distributions of wafers were very uneven; see Figure 3.2 for the histogram
of the area of the wafer in the original test and training set.

I have split the dataset so that the test set is 30 % (54,885 samples) of the
dataset size, and the validation set is 15 % (18,160 samples), the rest is the
training set (10,2905 samples).

Figure 3.2: Histograms of the area distribution in original test and
training sets. Because of the different distributions, I have split the dataset
by myself.

3.1.1 Defect Classes

To see a typical defect pattern except for none, go to the Figure 3.4. Some
defects are more common than others. For example, thanks to progress made
in wafer fabrication, the scratch defect is less and less frequent. It is hard to
obtain new samples of scratch defects to enlarge the dataset.

• Local is a coherent block of defective dice next to each other. This
defect can be caused by the wrong position of the stamp.

• Center is a special case of a local defect that is in the middle of the
wafer.

• Donut is a ring in the middle of the wafer with no dead dice in the
center.

• Edge-Local is type of a local defect but it only occurs on the edge of
the wafer.

• Edge-Ring is similar to a Donut defect pattern, but the defective dice
are located on the edge or near it and the middle of the wafer has mostly
good dice.

• Random defects are dead dice that do not form any pattern or shape,
which could be caused by the fabrication process.
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Figure 3.3: Histograms of the area for each defect in the training set.
The near-full defect has only samples with maximal area of 3000, but other
defects has almost ten time larger area.

• Scratch could be caused by manual handling. Wafers in one lot can
bump into each other or the defect can by caused by some particle.
Scratch are bad dice in the form of line. It could be straight line, round
shape or squiggly.
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• Near-full is a type of defect which covers almost all dice, and just a few
of them pass all tests. In the dataset are wafers that has no good dies
and they fall into this class.

• None is a class where all other defects or clear wafers are collected.
It is quite hard to tell where the boundary is between None class and
Random or even scratch. There have to be set rules that are used during
the labeling. For example, the scratch could be defined as a line with
a minimum length of five dice (based on the wafer resolution).

Figure 3.4: Example of failure patterns from each class.

The wafers from the dataset does not have the same dimensions, see Fig-
ure 3.5 for the histogram of wafer area. There are 632 types of wafer dimen-
sions and 547 different wafer areas. The smallest wafer is 15×3 with the area
of 45 and the largest wafers are 300 × 202 with the area of 60600. Because
the CNNs have limitations in the terms of the input shape, the WBMs have
to be reshaped to the same dimensions.

3.2 Preprocessing

The main task in preprocessing is the data preparation and augmentation to
obtain more data. Ideally, the data are converted to numerical representation.
Dataset WM-811K has columns lotName, trainTestLabel, and failureType,
which should be converted to numerical form. The lotName values will be
replaced with numbers instead of a combination of the word lot and its number.
See Figure 3.6 for the WBM data visualization.

TrainTestLabel should be converted into binary values, and the empty
rows will have the value -1. The last column, failureType, will be categorized
into values from 0 to 9, where the number represents the defect category or it
could be converted to one-hot encoding.
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Figure 3.5: Distribution of wafer area in dataset with the logarithmic
y-axis.

The wafers are stored in the dataset as a 1-dimensional array with discrete
values 0,1,2 where:

• 0 represents the padding area around the wafer,

• 1 stands for the die (passed all tests),

• 2 means the damaged die (have not passed all test).

Figure 3.6: WBM data representation.

In some papers, they were using just binary values to represent the wafer.
The zeros represent dice that passed all tests or empty areas around the wafer,
and the ones stand for the defects.

I have tested, if the representation of the wafer has any impact on the
model performance. I have tested both variants where the wafer is represented
only with ones and zeros and with zero, one, and two for the defective dice.
I choose the VGG16 as the model to test this because it has been used in
papers where they have used both of these representations.
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See Table 3.3 for the results of the test. There is some decrease in classi-
fication performance in defect classes Near-full, Scratch, Random, and little
worsening in Edge-local and Local. My interpretation is that the information
about the edge of the wafer is important for the model. For this test, I have
been using only axis-flip for augmentation. I suppose that information about
the edge of the wafer would be more important for wafers augmented by zoom
and shift method.

While testing smaller custom architectures, I have found out that without
a setting of padding = same in convolutional layers, the model has a problem
with the classification of defects on the edge of the wafer. It adds zeros
as a padding around the data and it will have the same output dimensions
as output.

Table 3.3: Results of wafer representation test on VGG-16

0 1 2 3 4 5 6 7 8
{0,1} 0.83 0.83 0.70 0.97 0.63 0.76 0.52 0.85 0.97
{0,1,2} 0.86 0.86 0.77 0.97 0.67 0.84 0.72 0.92 0.98

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random,
6:Scratch, 7:Near-full, 8:None. The results represents F1 score for each
class.

Almost all solutions on Kaggle6 used only part of the wafers of the same
size. They have not performed any re-scaling on the wafers, and their model
performance cannot be compared with solution which uses all wafers.

The input of my models are 2-dimensional arrays because the wafers have
only two dimensions with three possible values. In case of the transfer learn-
ing with CNNs trained on the ImageNet [30], the CNNs require 3-dimensional
input. The paper named ”An Approach to Run Pre-Trained Deep Learning
Models on Grayscale Images” [31] change the input shape of VGG16 architec-
ture with pretrained wights by averaging the weights in the input layer. There
was very little decrease in performance but the main benefit was the smaller
input size.

3.2.1 Augmentation

Dataset is very unbalanced due to significant differences in representation of
classes (see Figure 3.1 for the histogram of labeled data), so it is necessary
to balance it. The major class None has 147 431 samples, and the smallest
class Random has 149 samples. The easiest method for data balancing can
be using class weights during training, under-sampling, over-sampling [32] or
wafer augmentation. For example the rotation or patch augmentation can be
also used as pretext task for semi-supervised or self-supervised learning.

6https://www.kaggle.com/datasets/qingyi/wm811k-wafer-map/code
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The paper [23] proposed a solution that involved augmenting the dataset
using GAN to enhance the minor classes in the dataset. They were working
with the data from WM-811K with one new class Horizontal Stripe, and they
have created their custom dataset with 7,560 samples in the training set and
1000 samples in the test set. The defect distribution was not the same as the
WM-811K dataset has.

The improvement in performance with GAN augmentation was not that
significant (only for the scratch defect) because of the small custom dataset.
I decided not to use it and used only classical augmentation like rotations,
axis flip, zoom, etc. The augmentation by wafer rotation or axis flip is moving
the wafer’s base/facet. This is not a problem, especially with these types of
defects from dataset WM-811K. It could be a problem with other types of
defects that are defined by their position to the wafer facet. In case of the
WM-811K dataset, the model will probably learn some position invariant to
the facet location.

Figure 3.7: Examples of all augmentation methods on one wafer.

• Rotation
The wafer is randomly rotated in the range ⟨0◦, 360◦⟩ using a uni-
form distribution. Rotation can also be used as a pretext task for self-
supervised learning where the model is predicting the angle of rotation.

• Flip
The wafer is flipped by horizontal, vertical, and diagonal axis. In case
of different defect type, for example the horizontal stripe used in the
paper [23] would no be horizontal (parallel to the facet) after the diagonal
axis flip. It could be misclassified as vertical scratch or probe defect.
There are types of defects that have specific positions to the wafers
facet (parallel or perpendicular).

• Shift
The wafer is randomly moved in 2D space. The direction and length
are picked from a uniform distribution with range ⟨−n, n⟩ where n is
a fraction of the size of the wafer. Because of the random direction it
could move the defect pattern on the edge of wafer out of the frame.
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• Zoom
A part of the wafer is zoomed-in using a randomly selected coefficient
from uniform distribution in range ⟨1.1, 1.5⟩. The wafer is enlarged and
shifted, then the wafer is center-cropped to its original size. Zoom has
same issue as the shift augmentation and it could be more saturated by
the zoom factor.

• Patches
Random patches are generated onto the wafer. The number of patches is
random, and the size is fixed and computed from the size of the wafers.
The maximum number of patches is 3 per wafer. These patches are
often used as pretext tasks in self-supervised learning, where the model
predicts the content of the patch.

• Noise
The noise from the Bernoulli distribution is added to the wafer. The
Bernoulli distribution was selected because it fits perfectly for this task.
The wafer cannot have a large portion of noise because of the clarity of
the defect, and with big noise, there could be created new defects that
would cause misclassifications.

• Combination of multiple wafers
The paper [24] proposed a solution of combining wafers together to cre-
ate multiple defects on one wafer. I think, this approach could be used
even for the augmentation of single defect wafers, with a combination of
wafers with the same defect, or with a clear wafer (only a few damaged
dice). Not all defects could be augmented this way and this poses a prob-
lem. Another problem could involve the difference in sizes. Despite these
problems, I think that this method could be used for the augmentation
of scratch (the most problematic class) defects in the WM-811K dataset.

3.2.2 Resizing

Because of the nature of CNNs, the input vector must have the same shape
for all data (wafers in this case). WBM data has a wide range of resolutions,
from really small to large, this could turn to be problematic.

The wafers from the dataset have over 600 different sizes. The smallest one
is 15 × 3 and the largest one is 300 × 202. As you can see from the Figure 3.5
of the wafer area histogram, the range is quite wide, and smaller wafers are
more frequent. There are 19 large wafers that I have removed from the dataset
because they are not significant in this dataset.

There is a resizing problem due to the interpolation that can create ”new”
defects types or change their characteristics, as you can see in the Figure 3.8.
In this dataset, I have came across a problem regarding the downsizing of the
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scratch defect and class random, which can become more like a near-full class.
Other defects do not get that bad, but average performance is slightly worse.
There might be more possible issues with different WBM defects (different
classes).

Figure 3.8: Example of the resizing loss During the up-scaling, there is
no loss of information, same as with the down-scaling. The nearest neighbor
interpolation is used for resizing.

Papers and notebooks mentioned in the State-of-the-art methods2 chapter
proposed different reshaping sizes. Some of them use just part of the dataset
with almost the same sizes, e.g., 48×50, 50×49, 51×50, and reshape them into
similar dimensions such as 50 × 50 or use only wafers with dimension 24 × 24.
Other papers reshaped all wafers to the same dimension, e.g., 64×64, 96×96.
This results in classification problems, especially with small wafers (mentioned
sizes are larger than most of the wafers).

Table 3.4: Results of the different input size

0 1 2 3 4 5 6 7 8
64 × 64 0.83 0.86 0.71 0.95 0.66 0.84 0.53 0.94 0.97
96 × 96 0.86 0.83 0.72 0.96 0.66 0.84 0.64 0.92 0.98

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random,
6:Scratch, 7:Near-full, 8:None. Results represents the F1 score for each de-
fect class using VGG16 architecture with labeled data from the WM-811K
dataset.

I have tried working with larger wafers than 96×96, and the training time
turned out to be very long. The results were slightly better, but the training
time was too long. I have been using smaller custom CNN for reshaping
the wafers to 32 × 32, and it performed poorly because of the large downsized
wafers that were misclassified. Some users on Kaggle7 were designing networks

7https://www.kaggle.com/code/kcs93023/keras-wafer-classification-cnn2d-
with-augmentation
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only for specific shape size, e.g., 26 × 26 with no resizing and achieved really
good score.

For best result, there would be a set of networks for each wafer size, but this
is not the reasonable solution. I wanted to avoid having multiple independent
models.

In Table 3.4, there are results of testing VGG16 with different input shapes.
Because of the imbalanced character of the data, where the major class has
over 85 % of samples, I have tried four balancing techniques:

• Under-sampling and Over-sampling

Major class None makes 85 % of the dataset, and it is under-sampled for
the sake of dataset balance. The rest of the classes are still imbalanced.
I have tried image augmentation methods described above instead of
basic over-sampling (repeating the sample from minor class).

• Augmentation

The augmentation mostly helped the minor classes. In some cases, it
even decreased the performance for some classes, see section3.2.1 for
more information about augmentation and chapter5 for the test results
of augmentation methods.

• Batch balancing

For batch balancing, I have used the data generators, which enabled me
to add a number of samples from each class to the batch. The rest of
the batch is filled up randomly from all classes.
I implemented the Python class DataGenerator that is used for
real-time data that are fed into the model. The return value of the
__data_generation function are balanced batch sized data.
My custom function is called __data_generation and it generates sam-
ples from all classes in the same ratio, and the rest of the batch is
randomly filled up. See pseudo code 1 for more details. The result is
the batch with a balanced number of samples from each class.

batch = []
n_samples = int(batch_size/n_classes)
rest = batch_size%n_classes
for class_i in range(class_indicies):

batch.append(class_i.sample(n_samples))

batch.append(X[random()].sample(rest))

Listing 1: Creation of balanced batch.
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• Sample weights
In the case of an imbalanced dataset, there is an option to use weights to
apply a different level of importance to each class. Sample weights work
like a weighted mean compared to a simple mean. Sample weights can
be used in the loss function to force the model to learn minor classes.
I have implemented function for the weights computation, see the fol-
lowing pseudo code 2 for details. It is based on the inverse frequency of
each class in the whole dataset. I have found many different versions of
the normalization of these weights. I have chosen that the sum of the
weights equals one.

def class_weights(labels):
_, frequency = np.unique(labels, return_counts=True)
weights = 1. / frequency
weights /= weights.sum() # normalize
return weights

Listing 2: Class weights calculation.

3.3 Transfer Learning

Transfer learning is a method of learning that uses an already trained model
together with a new data. The learned weights can be frozen and then only
the classifier is trained for the new classification task. The CNNs, that I am
using in this thesis, are all pretrained on the ImageNet dataset [30]. To use
them for a different problem, they need just the replacement of the input and
output layers. These large networks are not appropriate for this specific task.
The input data are not classic images with three dimensions with pixel values
ranging from 0 to 255. Nevertheless, they are used in papers where WBMs
are used.

I have been using transfer learning for first testing and analyzing of the
augmentation methods and wafer resizing. It is hard to compare the results
of all the papers described in the chapter2, when they have used only part of
the dataset or different sizes of training, validation and test sets. For example,
paper [13] which presets the WaPIRL framework was using only 10 % of the
labeled data as test set which is not ideal.

In the paper [13], they have compared self-supervised learning versus su-
pervised learning with different types of pretext augmentation. The best per-
forming model was VGG16 with supervised training, which achieved macro
F1 score of 0.871 and 0.897 macro F1 score with self-supervised learning
with crop augmentation.

For better comparison, I have tested these popular architectures by myself.
I have tested these CNNs: VGG16 [9], ResNet50v2 [6] (were used in the
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paper [13]) and the Xception [10]. My priority is to make the F1 score for each
class more balanced. Many papers used the macro F1 score as a comparison
metric, but using mean of the F1 scores is a problem since it not always
represents the best result. The minor class could still have bad result, but if
larger classes achieve really good results, the macro F1 score is better, but the
model still struggles with the classification of the minor classes.

3.3.1 Configuration

The architectures of the popular CNNs require a 3-dimensional input of the
same size. All wafers are converted to the 3D image just by stacking the
2-dimensional wafers on top of each other. All the wafers were reshaped to
96 × 96 × 3. I have been using the configuration of the optimizer, learning
rate, etc., all inspired by the paper [13] described above.

Each model was tested with the same training, valid, and test sets. The
major class from dataset has been under-sampled, and minor classes have been
augmented with axis flip to create a more balanced dataset. The following
tests were performed with a batch size of 128 samples.

To save the best model, I have used the early stopping function, which
selects the best performing model based on the validation loss. I also reduced
the learning rate when the model had not improved in the last seven epochs.

I have implemented the transfer learning in Keras because it was the fastest
option for me to start first tests. Based on the first results with sample weights,
I have the added augmentation and under-sampling of training set. Next step
was adding the batch balancing, which was done by implementing the data
generator class.

3.3.2 Supervised Learning Results

In the paper [13], they tested AlexNet, VGG16, ResNet-18, and ResNet-50.
VGG16 achieved the best 0.897 macro F1 score with a self-supervised ap-
proach. All models were trained with same configuration. The only variables
that were not fixed were random selection in under-sampling and batch bal-
ancing.

Table 3.5: Results of supervised learning approaches

0 1 2 3 4 5 6 7 8
VGG16 0.92 0.88 0.81 0.98 0.74 0.88 0.74 0.86 0.99
ResNet50 0.92 0.88 0.81 0.98 0.74 0.88 0.74 0.86 0.99
Xception 0.93 0.90 0.83 0.98 0.78 0.89 0.79 0.97 0.99

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch,
7:Near-full, 8:None. The results represents average of five runs.
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The best model with a supervised learning approach was Xception which
achieved 0.894 macro F1 score (with a smaller training set and larger test set
than paper [13]). Xception showed significant improvement with classification
of the Scratch and the Edgle-Local defect patterns.

Table 3.6: Supervised learn-
ing with popular CNNs results
(macro F1 score)

Models Paper [13] Mine
AlexNet 0.840 -
VGG16 0.871 0.870
ResNet-18 0.858 -
ResNet-50 0.870 0.876
Xception - 0.894
My results are an average of five
runs, and the result from the pa-
per is the average of ten runs. My
test set is 3-times larger then the
one used in paper [13]

See Table 3.6 for results of all models with comparison of the supervised
learning results from the paper [13] and mine. I have not tested all models
because it is not the primary goal of this thesis. During the training, the
epoch of the ResNet50 and VGG16 have very similar training times, around
one minute per epoch (185ms/step), but Xception’s epoch lasted three times
longer (590ms/step).

3.3.3 Semi-supervised

I have tested the semi-supervised method with pseudo-labels as a one of the
last test in this thesis. I wanted to try if there is any room for improvement
with larger CNNs without any special settings.

The results were kind of disappointing, the Xception model have approved
only in few runs and mostly have not improve at all. After the closer inspection
of the prediction of pseudo labels I have found that the model was too much
confident with its predictions. The use of sample smoothing have not flatten
the distribution of confidence (it was only shifted to the left).

The paper named ”Being Bayesian, Even Just a Bit, Fixes Overconfidence
in ReLU Networks” [33] address this problem and propose a solution for over
confident networks8.

8I did not have time to test this solution due to the lack of time
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3.4 Misclassification

In this section are analyzed the misclassifications of the Xception[10] model on
the WM-811K dataset. The Xception model was the best performing model
from the popular CNNs with supervised training.

From the 51885 test samples Xception misclassified only 1235 samples
which is 97.6 % of accuracy. The accuracy metric is not that important
especially with the imbalanced data.

3.4.1 Confusion matrix

See Figure 3.9 for the confusion matrix. The most misclassified defects are
from the scratch class. The most common mistake is the classification as the
None class which is the biggest in the dataset.

Figure 3.9: Confusion matrix of Xception predictions. This is the results
of single run that achieved 0.898 macro F1 score. 0:Center, 1:Donut, 2:Edge-
Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch, 7:Near-full, 8:None.

There are also visible misclassifications between classes Edge-Local (2) and
Local (4) where only difference is the position on the wafer.
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Even with strong under-sampling of the major class there are many mis-
classifications. I think that is because of the None class represents all defects
that do not fit in any other class. For that reason is hard to separate this class
from the other classes.

3.4.2 Edge-Local vs. Local

The Local (4) defect pattern was the most problematic to classify for the
Xception. I have done analysis of the misclassified patterns for these two
classes. See Figure 3.10 for good example of the edge case between these two
classes.

Figure 3.10: Misclassification of Local defect pattern It is hard to dis-
tinguish what pattern falls into which category. 2:Edge-Local, 4:Local.

Based on my analysis of the misclassified wafers by my naked eye. I assume
that in the most cases the difference between Local and Edge-Local is that
the bad dies are closer to the middle of the wafer and there are some good
dies along the edge in case of the Local defect pattern. But with WBM data
of smaller resolution there are not many of good dies, Figure 3.10 shows that.

Other source of the misclassifications could be the interpolation in resizing.
In case of the smaller wafer the one bad die is interpolated into the multiple
bad dies which can change the specification of the defect pattern.

3.4.3 Scratch Defects

See Figure 3.11 for examples of misclassification of the Scratch class. The
problem with scratch defect is that it could be anywhere in the wafer and it
can be thin or thick. During the labeling there have to be set rules on how
many bad dies in a row it takes to form a scratch. This rule should changes
for different resolutions.

Because of the improvements in the fabrications process the scratch defect
is less and less common. It is hard to obtain new samples of the scratch defects
to enlarge the number of samples in the dataset.

38



3.4. Misclassification

Figure 3.11: Misclassification of Scratch defect pattern The borders
between the classes are unclear in some cases. 1:Donut, 4:Local, 6:Scratch,
8:None.
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Chapter 4
Realization

In this section, the proposed implementation of the custom model will be
described. The goal was to create a more memory-efficient and faster model
than popular CNNs because they are not appropriate for wafer classification
task. They were proposed to classify photo like images not binary data.

4.1 Technology

I have written most of the code in Jupyter Lab notebooks9 and all models
have been trained on Nvidia Tesla P100 with 16BG of memory and 64GB of
RAM. The access to the server was provided by company Inference tech10

For testing the WaPIRL11, I have been using their python scripts that need
updates of some libraries to make it all work with newer versions of libraries.
See 3for updated imports. I have implemented smaller single input model into
the WaPIRL framework.

4.1.1 Keras and Pytorch

Primarily, I have been using the Keras framework and PyTorch with
popular data science, computer vision python libraries: pandas12, NumPy13,
matplotlib14, and openCv15.

After the implementation of transfer learning with popular CNN models
with simple augmentation and batch balancing, I have not been able to create
a data generator for multiple input model in Keras, so I switch to PyTorch.

9https://jupyter.org/
10https://inferencetech.com/
11https://github.com/hgkahng/WaPIRL
12https://pandas.pydata.org/
13https://numpy.org/
14https://matplotlib.org/
15https://opencv.org/
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# file ./utils/metrics.py
# Before:
from pytorch_lightning.metrics import (

MulticlassROC, MulticlassPrecisionRecall
)
from pytorch_lightning.metrics.functional import (

auc, precision, recall
)
# After:
from torchmetrics.functional import (

auc, precision, recall
)
from torchmetrics.classification import (

ROC as MulticlassROC
)
from torchmetrics.functional import (

precision_recall as MulticlassPrecisionRecall
)

Listing 3: Update of import metrics

The other reason was the WaPIRL framework which was implemented in
PyTorch, therefore, I would have to learn PyTorch at some point.

4.1.2 Data Analysis

I have been using the pandas library for working with the dataset and basic
analysis. The original dataset was a pickled file, but I have been using the
Feather format16 for exporting the training, validation and test sets, and
other data frames.

4.2 Dataset

The dataset WM-811K is already split into the train and test sets with labeled
patterns, but their sample distribution was not good, so I have to split the
dataset by myself. The test set is 30 % of the original dataset size, and the
training set is then split to create the validation set, which is 15 % the size of
the training set. To keep the same distribution in all sets I have used the pa-
rameter stratify=True in function train test split from scikit-learn17

library.

16https://github.com/apache/arrow
17https://scikit-learn.org/stable/
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I created new columns for wafer dimension and wafer area, then I trans-
formed other columns into numeric values for better usage. Because of the
distribution of the wafers area, I have created bins to convert them to cate-
gorical data. The area was split into three normalized bins (0, 0.5, 1) with
roughly same number of samples. The number of bins is low because of

The wafer is stored as a 1-dimensional array, and the dimension informa-
tion is needed while resizing it to the 2D array. The validation set is obtained
as 15 % of the training set with the same class distribution. All sets are
exported in feather format.

4.2.1 Preprocessing

The WBM data are stored as a 1-dimensional array, and then they are re-
shaped to a 2-dimensional array with original dimensions. Before the model
input, the wafers are reshaped into the same size, e.g., 64 × 64. The augmen-
tation of the training set is performed before the final reshape.

In case of the dual input CNN model the wafer are resized to the dimen-
sions (28 × 28 and 96 × 96). With single input model only the 96 × 96 wafer
shape is used. To balance the training set, I have used multiple augmentation
techniques such as axis flip, rotation, noise addition, shift, zoom and patches.

Other balancing method was balancing the samples in batches. Because
of the imbalanced data there was big chance that even with large sized batch
it will not contain many different classes. To solve this issue I implemented
the batch balancing 1.

4.2.2 Augmentation

I implemented described augmentation methods in section 3.2.1. They were
used in paper [13] as a part of the self-supervised pretraining. The coefficients
in the augmentation methods are relative to the original wafer size, but there
is a room for improvement to find better coefficients values.

4.3 Model

All papers using the CNN approach had issues with re-scaling the input wafers
onto the same shape. Because of the wide range of shapes in the dataset,
models perform worse with smaller wafers when re-scaling to larger shapes and
vice versa. In case of down-scaling the loss in performance is more significant
because of the loss of information caused by the interpolation.

First, I wanted to proposed a model with multiple input shapes and input
for wafer area/shape. The model should learn the features on the same wafers
in different resolutions, and the information about the original size should
help choose a better representation. For example, with two input sizes and
a smaller wafer, the model will put more emphasis on the features from the
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CNN with a smaller input when the results are not clear. But my analysis
showed the area distribution and the information about the wafer size would
add bias to the model, so I left this idea.

After a closer inspection of the dataset, I have found that some defects
occur only on smaller wafers, see Figure 3.3 for the distribution of area size
for each defect. This means, the model could have some area bias. The result
could be that the model would not classify any Near-full defect for larger
wafers because the maximum wafer area for this defect is only 3000 pixels.

4.3.1 Development

At first, I started with simple 3-layered CNN architecture with two dense
layers as classifiers. This model was inspired by paper [23], where they were
using the 64 × 64 and binary preprocessing. Based on my analysis, I have
found out that this setup is worse than 96×96 wafers with bins from {0, 1, 2}.
Because of the larger wafer size, I have to make my model deeper because the
network has not been able to extract suitable features for classification.

The next step was to build a deeper CNN inspired by architecture from
the VGG network with a dual convolutional layer and one max pooling layer.
To this network, I added a smaller one for smaller inputs and input for the
wafer area. The first idea was to improve performance with smaller wafers
that suffer from re-scaling to larger sizes.

The final model is very similar to VGG16 architecture with batch nor-
malization. See Listing 4 for the architecture of one block. The input of the
network is 96 × 96 × 1 and the number of kernels in each convolutional layer
are increasing multiples of two. Final model has six convolutional layers.

----------------------------------------------------------------
Layer (type) Output Shape Param #

================================================================
Conv2d-9 [-1, 256, 24, 24] 295,168
ReLU-10 [-1, 256, 24, 24] 0

BatchNorm2d-11 [-1, 256, 24, 24] 512
Conv2d-12 [-1, 256, 24, 24] 590,080

ReLU-13 [-1, 256, 24, 24] 0
MaxPool2d-14 [-1, 256, 12, 12] 0

BatchNorm2d-15 [-1, 256, 12, 12] 512
----------------------------------------------------------------

Listing 4: Architecture a block of single input network used for self-supervised
learning.
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4.3.2 Normalization

I have tested the Batch Normalization presented in paper named ”Batch
Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift” [34]. It calculates the mean and the standard deviation of
each input variable to a layer per batch. Batch normalization has trainable
parameters that provide the standardization of the layer inputs.

Layer normalization is inspired by batch normalization and it was in-
troduced in the paper [35] named ”Layer Normalization”. It normalizes the
inputs by the features not by batches. This is a significant improvement over
the Batch normalization (removing the dependency on batches). I have used
the implementation of the paper from Github18.

Because of the strongly imbalanced dataset, I tried many balancing tech-
niques and found a batch balancing gives me the best results. Even with the
use of sample weights, I have not been able to make the result of the model
stable. All models struggled with the scratch class (even though it is not the
smallest class); it always has the lowest F1 score. For example, other classes
have F1 scores between 0.7 to 0.99, and the F1 score of the scratch class was
only 0.5.

Without any balancing, there would possibly be no samples from the minor
classes. I have implemented batch balancing in Keras using the data generator;
see 1 for the pseudo-code. The final result is that each batch contains samples
from all classes, and it is almost perfectly balanced, see Chapter 5 for the tests
and their results. Popular CNNs achieved the best-supervised performance
with batch balancing, which I have also implemented it for my small model.

4.3.3 Semi-supervised Learning

I have implemented semi-supervised learning approach using pseudo samples
from the paper [21]. The unlabeled samples are classified with a model trained
on labeled data. The predicted labels are used as normal labels, and the model
is trained with new labels and data. The final step is training the model with
the labeled samples again. I have not tested the pseudo labels with popular
CNNs because of the long training time.

Training with pseudo labels was stopped if the model did not approved
the validation loss in last 10 epochs. The same early stopping was used in
supervised pretraining.

After testing these variants, I noticed that every run has a different distri-
butions of predicted labels. Some classes had suddenly over 100 000 samples
more then in the previous runs. Based on this finding, I deduced that the
model is not able to separate the classes well or there could be many edge
cases in the unlabeled data. This unstable behavior was happening without

18https://github.com/CyberZHG/torch-layer-normalization
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batch balancing. The distribution of the pseudo label predictions were more
stable (more similar between each runs) with batch-balancing.

Because of the unstable classification of pseudo labels, I have tried to
filter them by their probability values (the confidence of the prediction). In
PyTorch, I have to use the softmax function on model predictions to get the
values. In the next step, the pseudo samples are filtered by their confidence
value. The result was the samples that were confidently predicted, see the
Figure 4.1 for the confidence histogram of the pseudo labels.

The paper named ”When Does Label Smoothing Help?” [36] shows that
it improves the generalization and the model is less confident. My idea was
to use label smoothing with classification of the pseudo labels to make the
distribution of prediction more flat. It will be easier to remove less confident
predictions.

Figure 4.1: Histogram of pseudo-labels prediction confidence.

I have been using the confidence threshold with value of 90 %. After the
filtering out the less confident predictions and under-sampling the major class
there were about 50 % of samples left. The under-sampling threshold was set
manually for each run based on the distribution of predicted labels.

During the training with all pseudo-labels the model sometimes performed
worse then the supervised version, but after the filtering out the less confident
predictions training step the performance was better. See chapter Results5
for details and results.

4.3.4 Self-supervised learning

I have been using the WaPIRL framework, proposed in the paper [13], to test
it with smaller model for self-supervised learning. The code of the framework
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is available on the author’s GitHub page19. Before trying the framework with
my custom model, I tested it with the ResNet-18 (it was the default option).
The model training consists of two phases: self-supervised pretraining and
supervised fine-tuning; see the Section2.4.3 for more information.

I implemented a smaller model with single input into the WaPIRL frame-
work with 6 convolutional layers and batch normalization. The goal was to
test it against the larger and more complex models. I changed the backbone
of the AlexNet to my small architecture. For adding the new architectures
to the framework, classes and configuration files and etc. have to be imple-
mented. The class of new architecture inherits the interface from the class
BackboneBase. There have to be set the configuration dictionaries for pre-
training and fine-tuning.

The pretraining stage took more than a 24h of training time, and the
training was for 100 epochs with multiprocessing. The batch size was 256
samples with wafer input shape 96 × 96.

19https://github.com/hgkahng/WaPIRL
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Chapter 5
Results

In this chapter, the results of the proposed implementations will be described.
The variations of the model were tested with different sizes of labeled and
unlabeled data or different augmentation methods. Testing of the popular
CNN models or the augmentation method is described above in the Analysis
and Design 3 chapter.

5.1 Supervised

Analysis showed that my custom CNN model performs similarly to some pop-
ular CNNs. My focus was to improve the F1 score, especially for minor classes.
The comparison is hard to do because they were usually presenting accuracies
or means of F1 scores. I have tested these methods with my custom model
because of the shorter training time, see Figure 5.1 for the confusion matrix
of predictions.

5.1.1 Single vs. Multiple Input

I want to create model that has a comparable performance with the state-of-
the-art models but it is smaller and faster. Based on the analysis the Xception
was the best performing model, but it was really slow to train. The best model
from the paper [13] was VGG16.

First idea was to solve the resizing problem by giving the model some
information about the original shape of wafer. Dataset analysis showed that
the range of fail pattern area differs between failures. The information about
the area would add some bias to the model. The testing did not show that the
information about the area has any significant effect on model performance,
see Table 5.1 for the results.

The second test was about trying to add normalization into the network.
I have tested two types: batch normalization [34] and layer normalization [35].
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5. Results

Figure 5.1: Confusion matrix of predictions by supervised trained
model with augmentation The classes with the worst performance are:
Edge-Local, Local and Scratch. The performance on scratch class were im-
proved by augmentation. 0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Lo-
cal, 5:Random, 6:Scratch, 7:Near-full, 8:None.

5.2 Augmentation

I wanted to test my hypothesis that using combination of augmentation meth-
ods for each class could improve the supervised learning training and perfor-
mance. All papers I have read were using only one type of augmentation,
except the paper [23] that proposed GAN augmentation. For example the
shift augmentation is not the best way how to augment a failure around the

Table 5.1: Results of model with single and multiple inputs

0 1 2 3 4 5 6 7 8
single 0.88 0.86 0.78 0.97 0.69 0.85 0.55 0.88 0.98
double 0.90 0.85 0.78 0.98 0.72 0.85 0.66 0.93 0.98
double + area 0.90 0.86 0.79 0.97 0.71 0.88 0.66 0.92 0.98

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch,
7:Near-full, 8:None. Results represents average of five runs and the models were
trained with the same set of parameters
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5.2. Augmentation

wafer edge, it could move the failure pattern out off the image.
I have done the augmentation for minor classes only three times (maxi-

mum), because the axis flip has three variants and I did not want to repeat
same wafers. It will be better for comparison that all classes has the same
number of sample frequency for all tests. The major class ”None” was under-
sampled because it was 85 % of all labeled data and to speed up the training.
All other classes were augmented using the methods mentioned above in sec-
tion3.2.1. Only the class 3 (Edge-Ring) was augmented just once because it
was the second largest class.

I used the model with dual inputs for two wafer shapes (28 × 28 and
96 × 96) and with batch normalization after every max pooling layer. The
batch size was set to 128 because I have been training multiple models at
once. I have tested the batch size 128 vs. 256 and there was no difference in
results/performance. During the training, each batch was balanced in a way
that every class has almost the same number of samples.

5.2.1 Same Method for All Classes

See Table 5.4 for the results. I have tested following augmentation methods:
axis flip, noise addition, wafer shift, rotation, zoom and patch. The none row
in the Table 5.4 shows the results for data with no augmentation (only under
sampling).

The most problematic class is scratch. Overall best result were achieved
with patch augmentation, where the patch sizes were set to the 10 % of the
wafer length. The results show that there is no single augmentation method
that is better than the others. In most cases, the result are same for all
variants.

The underlined values in Table 5.4 mark the inappropriate augmentation
methods for those failure patterns. The bold values are the methods that
achieved significant improvement over the other methods.

See Figure 5.3 for training dataset sample counts per class.
Due to the number of samples in each class, it shows that classification

of a single wafer in the smaller classes has a huge impact on the final result.

Table 5.2: Results of model with and without normalization

norm. 0 1 2 3 4 5 6 7 8
none 0.84 0.78 0.70 0.96 0.66 0.73 0.21 0.92 0.95
batch 0.90 0.85 0.78 0.98 0.72 0.85 0.66 0.93 0.98
layer 0.90 0.78 0.76 0.97 0.69 0.84 0.56 0.94 0.98

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random,
6:Scratch, 7:Near-full, 8:None. Results represents average of five runs and
the models were trained with the same set of parameters
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5. Results

Based on the results of testing, the most problematic classes are: Edge-Local,
Local are Scratch.

The best augmentation method in paper [13] was crop/zoom augmenta-
tion. In my testing the zoom augmentation showed a significant improvement
in the most problematic class (scratch), but it under-performed in other three
classes. They were using augmentation as a part of the self-supervised pre-
training rather than as a method to balance the dataset. This result may be
caused by imperfect parameter configuration for the zoom augmentation.

Based on my testing the overall best single augmentation technique was
the patch/cutout. It achieved the best score in multiple classes and most
importantly in the scratch class. The macro F1 score with patch augmentation
was 0.856, better than the none augmented version with 0.824 F1 score.

5.2.2 Different Method for Each Class

Based on my augmentation, I have tried to improve the results with simple
augmentation techniques by augmenting each defect with appropriate method.
See Table 5.4 for the results. Some classes have not shown any improvement
at all or slight decrease. I have tried the combination of patch and rotation
augmentation which achieved one of the top scores in almost all categories.
The Near-full class is the smallest class with only 45 wafers in the test set.
This means that one misclassified near-full pattern has significant influence
on the metrics.

5.2.3 Batch Generation

Because of the imbalanced dataset all models have problems with classification
of the minor classes especially the class scratch. My idea was to use sampler
to make sure that every batch contains sample from all classes to improve the
training.

Table 5.3: Class label distribution in training set (without augmentation)

Class Sample counts
Center 4,294
Donut 331

Edge-Local 3,087
Edge-Ring 5,760

Local 2,138
Random 515
Scratch 710

Near-full 88
None (under-sampling)
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5.2. Augmentation

See Table 5.5 for test results. The batch size was set to 128 samples and
sample smoothing to 0.1. The best score was achieved with batch sampler
that generates balanced batches with the same number of samples from each
class.

5.2.4 Label smoothing

I have tested different values of label smoothing described in the paper [36].
See the Table 5.6 for the test results. The label smoothing improves the

performance mostly in scratch and random classes. The test set has approx.
45 samples and it is hard to make any conclusions. But with scratch class
there is visible improvement in the F1 score.

When I tried the label smoothing set to 0.15 and higher, the performance
in supervised learning dropped significantly. In confusion matrix, more mis-
classifications were visible between the problematic classes and the None class.

5.2.5 Size of labeled data

I have tested different sizes of training set and how it affects the final predic-
tions. See Table 5.7 for the results of supervised learning. The results proofs
that the size of the dataset is very important especially for the classes that
are hard to separate.

The data were split from the training set with the same distribution. The
original training set has 102,905 samples (100 %). For the training I have used

Table 5.4: Results of supervised learning with different types of augmentation

Aug. type 0 1 2 3 4 5 6 7 8
none 0.88 0.86 0.73 0.97 0.67 0.85 0.54 0.94 0.98
axis flip 0.90 0.85 0.78 0.98 0.72 0.85 0.66 0.93 0.98
noise 0.91 0.86 0.78 0.97 0.70 0.87 0.60 0.93 0.98
shift 0.91 0.84 0.78 0.97 0.70 0.85 0.66 0.90 0.99
rotation 0.90 0.87 0.78 0.96 0.71 0.82 0.63 0.94 0.99
zoom 0.90 0.84 0.75 0.97 0.69 0.84 0.69 0.90 0.98
patch 0.91 0.84 0.79 0.97 0.71 0.87 0.69 0.94 0.99
combination 0.91 0.88 0.79 0.97 0.72 0.86 0.71 0.93 0.99

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch,
7:Near-full, 8:None. Results are the average of five runs and the models were trained
with the same set of parameters. The augmented classes were: 0, 1, 2, 4, 5, 6, 7,
8, 9. Underlined values are indicate bad results for the augmentation technique
for specific defect. Bold values are marking the good/improved results for single
augmentation methods.
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5. Results

the batch sampler and label smoothing. With less data the model performance
was unbalanced and it differs a lot for run to run.

5.3 Semi-supervised

I have implemented the pseudo-labels semi-supervised method presented
in [21]. Model was trained on labeled training set and in the next step the
training set and unlabeled data (with pseudo labels) were merged together
and the model was trained on this data.

Many papers [15, 22] that proposed semi-supervised or self-supervised
learning were using already labeled datasets and were working with the data
without the labels. I have been using only the labeled data which are around
21 % of all the data and only 3 % are the labeled patterns which is very little
data.

After the classification of unlabeled data, the None class has still over 50-
60 % of samples (the exact number depends on the model’s predictions). The
under-sampling was performed again on the pseudo labels for the major class
because of the imbalanced data.

Using the sample smoothing for supervised and unsupervised training, the
result in the Table 5.8 shows that label smoothing improves the classification
performance for the scratch class. The scratch class is the most problematic
class in this dataset.

Table 5.5: Results of data samplers test

smooth. 0 1 2 3 4 5 6 7 8
none 0.92 0.66 0.81 0.97 0.74 0.90 0.59 0.96 0.99
weight 0.91 0.87 0.80 0.97 0.72 0.86 0.61 0.94 0.99
batch 0.92 0.86 0.80 0.97 0.72 0.89 0.67 0.97 0.99

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch,
7:Near-full, 8:None. Results are the average of five runs and the models were
trained with the same set of parameters.

Table 5.6: Results of model with and without smooth labeling

label smooth. 0 1 2 3 4 5 6 7 8
0 0.92 0.86 0.79 0.97 0.71 0.86 0.63 0.91 0.99
0.05 0.91 0.86 0.79 0.97 0.73 0.89 0.64 0.95 0.99
0.10 0.92 0.86 0.80 0.97 0.72 0.89 0.67 0.97 0.99

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch,
7:Near-full, 8:None. Results represents average of five runs and the models were
trained with the same set of parameters.
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5.3. Semi-supervised

The relative average improvement in scratch class is 5 % and other classes
have not improved or worsened which is good result. The average of macro
F1 scores of five runs was 0.869 with 0.1 sample smoothing. For this testing,
I was using only pseudo labels with more then 90 % of confidence. The value
of the threshold has a big influence on how many of the pseudo samples will
be used in the semi-supervised training and its duration.

Next, I have tested the value of the confidence threshold. If the confidence
of the prediction of the unlabeled sample is larger then the threshold, it is
added to the training set for semi-supervised learning. The original labeled
training set is enriched with the new pseudo-samples.

Based on the testing of the sample smoothing I have set the label smooth-
ing to 0.1 and in the next step I will test the probability threshold value,
see Table 5.9 for the results. I have focused on the final F1 score not the
improvement over the supervised learning.

The results showed that after removing the less confident pseudo-labels
the performance got better only for the scratch class. The are no bigger
improvements or declines in other classes. In theory, it is better for model to
train with the more data than less.

5.3.1 Size of labeled data

I have tested different sizes of training set with supervised learning and how
it affects the final predictions. I have use these models to predict the pseudo
labels and test if it is still possible to improve the performance with worse
performing models.

With 75 % sized dataset the pseudo labels improve the final result in 4 out
of 5 runs with 1 % of improvement in macro F1 score. With smaller dataset
the improvement was less frequent and less significant on average. In many
cases there was significant drop in performance around 1-2 % of macro F1
score.

Table 5.7: Results of supervised learning with different the size of
labeled data

DS size 0 1 2 3 4 5 6 7 8
25 % 0.90 0.82 0.75 0.97 0.64 0.87 0.19 0.91 0.98
50 % 0.91 0.84 0.79 0.97 0.70 0.87 0.53 0.92 0.98
75 % 0.92 0.85 0.80 0.97 0.73 0.88 0.58 0.94 0.99
100 % 0.92 0.86 0.80 0.97 0.72 0.89 0.67 0.97 0.99

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random,
6:Scratch, 7:Near-full, 8:None. Results represents average of five runs and
the models were trained with the same set of parameters.
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5. Results

It was visible how the performance of the pseudo labels method are
strongly affected by the supervised model and suitable samples. I think the
pseudo samples are method that can be useful in many cases. For example
with enlarging the existing dataset. It could be used in iterative manner to
speed up the data labeling process.

5.4 Self-supervised

I have tested smaller single input model with the WaPIRL framework to train
it using self-supervision approach. The single input architecture achieved
macro F1 score of 0.826 with the supervised learning and with self-supervised
approach using WaPIRL framework achieved 0.862.

The authors have used the batch size 256 samples, but then with
3-dimensional inputs it filled up almost whole GPU memory and I was not
able to train other models.

I have pre-trained the ResNet-18 with 50 epochs and 128 batch size, see
Table 5.10 for the results. The pretraining step took over 12h and final fine-
tuning took around 2h (50 epochs). I have tested the two versions of fine-
tuning with 50 and 100 epochs. The supervised baseline for the ResNet-18
was 0.858 macro F1 score. The results are from the best model based on the
validation loss.

The ResNet-18 after 50 epochs achieved 0.792 F1 score and after 100
epochs it was 0.878. I have used the different optimizer (weak Adam) to
the one they used in their testing. The average of ten runs presented in the
original paper was 0.895 with 100 epochs for pretraining and fine-tuning.

The single input model achieved similar results as ResNet-18 fine-tuned on
50 epochs and it performed slightly worse on 100 epochs. Improvement of 1 %
was gained with 100 epochs of pretraining and 100 epochs of classification.

The result shows that the model learned some information during the
pretraining, but still the supervised fine-tuning, which relies on the labeled
data, has a huge impact on the final results.

Table 5.8: Results of semi-supervised relative improvement with different
label smoothing and same confidence threshold (90 %)

smooth. 0 1 2 3 4 5 6 7 8
0 -0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 -0.01
0.05 0.01 -0.01 0.00 0.00 0.00 -0.02 0.05 -0.01 0.00
0.10 0.00 0.01 0.00 0.00 0.00 -0.01 0.05 -0.01 0.00

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch,
7:Near-full, 8:None. Results are the average of five runs and the models were
trained with the same set of parameters

56



5.4. Self-supervised

5.4.1 Size of labeled data

Based on my testing and research the self-supervised learning is using the
information from the unlabeled data better than the semi-supervised pseudo
labels method which strongly relies on the quality of supervised trained model.

Table 5.9: Results of semi-supervised learning - pseudo labels confi-
dence threshold

smooth. 0 1 2 3 4 5 6 7 8
0 0.89 0.86 0.77 0.97 0.69 0.85 0.59 0.94 0.98
0.50 0.91 0.87 0.75 0.97 0.72 0.86 0.67 0.93 0.98
0.70 0.92 0.86 0.80 0.97 0.72 0.86 0.68 0.92 0.99
0.90 0.92 0.87 0.80 0.97 0.72 0.88 0.72 0.96 0.99

0:Center, 1:Donut, 2:Edge-Local, 3:Edge-Ring, 4:Local, 5:Random, 6:Scratch,
7:Near-full, 8:None. Results represents average of five runs and the models
were trained with the same set of parameters
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5. Results

Table 5.10: Results of self-supervised learning - WaPIRL

Pretraining Fine tuning macro F1 score

ResNet-18 50 50 0.792
100 0.878

100 100 0.895

Simple model
50 50 0.807

100 0.851

100 50 0.796
100 0.862

The numbers in the columns Pretraining and Fine-tuning are number
of epochs. The results of the ResNet-18 with 100 pretraining and
100 fine-tuning epochs (0.895 ) is from the paper [13].
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Conclusion

This work aims to analyze the state-of-the-art methods and propose a solution
to improve the classification of defects on wafer bin maps on the WM-811K
dataset. These methods can be applied on any other WBM dataset, bearing
in mind the defect pattern types. This, in turn, means that the yield of the
wafers will be higher which leads to better efficiency and use of resources. Due
to the global shortage of chips, this might turn to be beneficial.

First, I tested the state-of-the-art networks using transfer learning.
The best performance was achieved with Xception in supervised learning
approach. For other testing, I have developed a smaller model that uses only
2-dimensional wafer input instead of 3-dimensional as the state-of-the-art
models.

Based on my research, I implemented a semi-supervised approach using
the pseudo-labels to improve the classification with utilization of unlabeled
data. Another tested method was the self-supervised framework WaPIRL,
where I added a smaller model as the backbone of the framework and tested
its performance against the larger network.

In the third chapter, the analysis of the WM-811K dataset and pattern
defects is described. I tested variants of WBM data preprocessing, augmen-
tation and resizing. Because of the fact that WM-811K is heavily imbalanced
as any other real world WBM dataset, I have implemented methods of data
balancing.

The testing of semi-supervised and self-supervised methods showed, that
the labeled data are essential. They are still used in the models to obtain
the pseudo-labels or in fine-tuning after the self-pretraining. My model has
achieved a competitive performance and the model itself is more suitable for
the WBM classification task than the state-of-the-art models.

There are so many possible methods that need to be tried in the integrated
circuits fabrication domain, which is very specific due to its data. Next, the
testing of WaPIRL framework would need more time to test and implement
new methods, that have potential to improve the model performance.
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Conclusion

In my opinion the outcomes of this thesis were met, but there is still many
methods that can be explored. Future steps might involve a search for the
optimal small model or a usage of augmentation methods for data balancing
or for a pretext tasks.
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Appendix A
Acronyms

WBM Wafer Bin Map

IC Integrated Circuit

CVD Chemical Vapor Deposition

CMP Chemical Mechanical Planarization

CNN Convolutional Neural Network

LED Light-Emitting Diode

PCM Process Control Monitoring

WS Wafer Sort

ReLU Rectified Linear Unit

GPU Graphics Processing Unit

ResNet Residual Neural Network

RGB Red, Green, Blue

RNN Regulated Residual Network

ConvLSTM Convolutional Long Short-Term Memory

ConvRNN Convolutional Regulated Residual Network

RegNet Self-Regulated Network

EMA Exponential Moving Average

SS-DGM Semi-supervised Deep Generative Model
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A. Acronyms

SS-CDGMM Semi-supervised Convolutional Deep Generative Multiple
Model

SS-CDGM Semi-supervised Convolutional Deep Generative Model

HSV Hue, Saturation, Value

ILSVRC2012 ImageNet Large Scale Visual Recognition Challenge 2012

VAT Virtual Adversarial Training

MOAM Mix Of All Models

WaPIRL Wafer-oriented Pretext-invariant Representation Learning

GAN Generative Adversarial Network

DCGAN Deep Convolutional Generative Adversarial Network

DS Dataset

CNTK Microsoft Cognitive Toolkit

RAM Random Access Memory
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Appendix B
Contents of Enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

data .......................... dataset, training, validation, test sets
notebooks...................Jupyter notebooks and python modules
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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