
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Machine Actionable User Interface Description for Normalised

Systems Code Expanders

Bc. Patrik Jantošovič

doc. Ing. Robert Pergl, Ph.D.

Informatics

Managerial Informatics

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

The topic contributes to the joint research between FIT and the University of Antwerp. The

assignment focuses on model-driven approach to UI generation, namely generating an

ontology for UI description and its embedding in the expanders system through

Normalised Systems Gateway Ontology for Conceptual Models (NSGO4CM).

1. Acquaint yourself with the Normalised Systems Theory, NSX Expanders and NSGO4CM.

2. Acquaint yourself with the IFML language for modelling user interfaces.

3. Analyse NS code expansion with respect to UI description and its code generation.

4. Design a metamodel of IFML as an OWL ontology for representing IFML models.

5. Design and implement a tool for transformation of IFML models into RDF/OWL models.

6. Design and implement a tool for mapping RDF/OWL IFML models with the NSGO4CM

ontology.

7. Demonstrate your results on a case study.

8. Discuss your achievements and formulate conclusions.

Electronically approved by Ing. David Buchtela, Ph.D. on 11 January 2022 in Prague.

Master’s thesis

Machine Actionable User Interface
Description for Normalised Systems Code
Expanders

Bc. Patrik Jantošovič

Department of Software Engineering
Supervisor: doc. Ing. Robert Pergl, Ph.D.

May 1, 2022

Acknowledgements

First of all, I wish to express my gratitude to my supervisor, doc. Ing. Robert
Pergl, Ph.D., for his valuable advice and guidance. I would also like to thank
Ing. Marek Suchánek and Ing. Jan Slifka for their consultations and help
throughout the work of this thesis. And last but not least, I would also like
to thank my family and my girlfriend for their continuous limitless support
throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 1, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Patrik Jantošovič. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jantošovič, Patrik. Machine Actionable User Interface Description for Nor-
malised Systems Code Expanders. Master’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2022.

Abstrakt

Modelovaćı jazyky pro uživatelské rozhrańı, jako např́ıklad Interaction Flow
Modeling Language, poskytuj́ı nástroje pro všechny účastńıky procesu vývoje
softwaru, d́ıky kterým maj́ı možnost lépe komunikovat a navrhovat uživatelské
rozhrańı aplikace. Normalized Systems Theory, nav́ıc popisuje jak takové apli-
kace vytvářet a upravovat tak, aby byly udržatelné a snadno rozš́ı̌ritelné. To je
možné pomoci definovaných prinćıp̊u a struktur, které jsou generovatelné z ele-
ment̊u za pomoci expander̊u kódu. V téhle diplomové práci jsou prozkoumané
možnosti transformace model̊u z Interaction Flow Modeling Language do ele-
ment̊u definovaných v Normalized Systems Theory a to za pomoci přechodné
ontologie nazvané Normalized Systems Gateway Ontology for Conceptual Mo-
dels.

Kĺıčová slova IFML, Interaction Flow Modeling Language, NS, Normalized
Systems, OWL, Web Ontology Language, Transformace Model̊u

vii

Abstract

User interface modeling languages such as Interaction Flow Modeling Lan-
guage provide tools for participants of a software development process to bet-
ter describe and communicate the design of the front-end of the application.
Normalized Systems Theory, on the other hand, describes how to create this
application in a sustainable way, resulting in an evolvable application. It
does so by defining various principles and structures that can be generated
from Normalized System elements using code expanders. In this thesis, the
possibilities of transforming Interaction Flow Modeling Language models into
Normalized System elements through Normalized Systems Gateway Ontology
for Conceptual Models are explored.

Keywords IFML, Interaction Flow Modeling Language, NS, Normalized
Systems, OWL, Web Ontology Language, Model Transformation

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Methodology . 3

2 Normalized Systems Theory 5
2.1 Introduction To Normalized Systems 5
2.2 Current State . 5
2.3 Theorems . 5

2.3.1 Separation Of Concerns 6
2.3.2 Data Version Transparency 6
2.3.3 Action Version Transparency 6
2.3.4 Separation Of States . 7

2.4 Elements . 7
2.4.1 Data Element . 7
2.4.2 Task Element . 7
2.4.3 Workflow Element . 7
2.4.4 Connector Element . 7
2.4.5 Trigger Element . 8

2.5 Code Expanders . 8

3 UI Modelling & Design 9
3.1 Alternatives . 10

3.1.1 UWE . 10
3.1.2 WebML . 10

4 Interaction Flow Modeling Language 13
4.1 Introduction . 13
4.2 Modelling Aspects . 13
4.3 Concepts . 14

ix

4.3.1 Core Concepts . 14
4.3.1.1 View Element 15
4.3.1.2 View Container 15
4.3.1.3 XOR View Container 15
4.3.1.4 Landmark View Container 16
4.3.1.5 Default View Container 16
4.3.1.6 View Component 16
4.3.1.7 Event . 16
4.3.1.8 Catching Event 16
4.3.1.9 Throwing Event 17
4.3.1.10 System Event 17
4.3.1.11 View Element Event 17
4.3.1.12 Action Event 17
4.3.1.13 Action . 17
4.3.1.14 Navigation Flow 18
4.3.1.15 Data Flow . 18
4.3.1.16 Parameter . 18
4.3.1.17 Parameter Binding 19
4.3.1.18 Parameter Binding Group 19
4.3.1.19 Activation Expression 19
4.3.1.20 Interaction Flow Expression 19
4.3.1.21 Module . 20
4.3.1.22 Port . 20
4.3.1.23 Port Definition 20
4.3.1.24 Input Port . 20
4.3.1.25 Output Port 20
4.3.1.26 View Component Part 20

4.3.2 Extensibility . 21
4.3.3 Extension Concepts . 21

4.3.3.1 List . 21
4.3.3.2 Form . 22
4.3.3.3 Details . 22
4.3.3.4 Menu . 22
4.3.3.5 Field . 22
4.3.3.6 Simple Field 23
4.3.3.7 Selection Field 23
4.3.3.8 Validation Rule 23
4.3.3.9 Window . 23
4.3.3.10 Modal Window 24
4.3.3.11 Modeless Window 24
4.3.3.12 Jumping Event 24
4.3.3.13 Landing Event 24
4.3.3.14 On Select Event 24
4.3.3.15 On Submit Event 24

x

4.3.3.16 On Load Event 25
4.4 Usage & Tools . 25

4.4.1 IFML Editor Eclipse Plugin 25
4.4.2 IFML In Enterprise Architect 25
4.4.3 IFMLEdit.org . 25
4.4.4 WebRatio . 26

5 Semantic Web 27
5.1 OWL 2 . 27

5.1.1 Basic Notions . 27
5.1.1.1 Axioms . 27
5.1.1.2 Entities . 27
5.1.1.3 Expressions . 28

5.1.2 Core . 28
5.1.2.1 Class . 28
5.1.2.2 Individuals . 28
5.1.2.3 Properties . 28

5.1.3 Open World Assumptions 29
5.2 RDF . 29

5.2.1 RDF/XML Syntax . 29
5.3 SPARQL . 29
5.4 Protege . 30

5.4.1 Protege API . 30

6 IFML Transformation 31
6.1 Ontology Creation . 31

6.1.1 Creation Process . 32
6.1.2 Testing & Refactoring 35
6.1.3 Final Product . 35

6.2 Proof Of Concept . 37
6.2.1 IFML . 37

6.2.1.1 Example #1 38
6.2.1.2 Example #2 39
6.2.1.3 Issue With ParameterBindings 39

6.2.2 RDF . 41
6.2.2.1 Example #1 41
6.2.2.2 Example #2 43

6.3 Transformation Implementation 45
6.3.1 Input/Output Definition 46

6.3.1.1 XMI File . 47
6.3.1.2 RDF/OWL File 49

6.3.2 Implementation Details 50
6.3.2.1 Structure . 50
6.3.2.2 Basic Idea . 51

xi

6.3.2.3 Inferring Relationships 51
6.3.3 Usage . 52
6.3.4 Proof Of Concept . 52

6.3.4.1 Example #1 52
6.3.4.2 Example #2 54

6.3.5 Evaluation . 55

7 NSGO4CM Transformation 57
7.1 Transformation Application Changes 58
7.2 Mapping . 60
7.3 Proof Of Concept . 62

8 Case Study 65
8.1 Requirements . 65
8.2 IFML Representation . 66
8.3 RDF Representation . 67
8.4 Final Result . 69

9 Evaluation 71

10 Conclusion 73

Bibliography 75

A External attachments 79

B Acronyms 81

C Contents of enclosed CD 83

xii

List of Figures

6.1 IFML Transformation Diagram . 31
6.2 IFML Ontology Metrics Attempt #1 33
6.3 Ontograf Visualization of IFML Ontology Attempt #1 34
6.4 Final visualization of IFML ontology 36
6.5 Final IFML Ontology Metrics . 37
6.6 IFML Proof Of Concept Example #1 38
6.7 IFML Proof Of Concept Example #2 39
6.8 IFML Gmail Example . 40
6.9 RDF Proof Of Concept Example #1 43
6.10 RDF Proof Of Concept Example #2 Snippet 45
6.11 Enterprise Architect Publish Settings 47
6.12 Transformed RDF - Example #1 54

7.1 IFML to NS Transformation Diagram 57

8.1 E-shop case study - IFML representation 66
8.2 Transformed Case-Study - F1 & F4 Requirements 67
8.3 Transformed Case-Study - F2 Requirement 68
8.4 Transformed Case-Study - F3 Requirement 68
8.5 Transformed Case-Study - F5 Requirement 69

xiii

Chapter 1
Introduction

1.1 Motivation

Conceptual models provide a way to describe, understand and represent com-
plex systems. Its main goal is to represent the fundamental information, such
as functionality and the basic structure of the system, in an understandable
way for all interested parties. In the software development process, it typi-
cally provides a point of reference for system specifications and also serves as
documentation of the system.

There are multiple modeling techniques and methodologies in the field
of software engineering. Each of these models typically focuses on different
parts and views of the system and is therefore suitable for different use cases.
Typically, data models such as entity-relationship models or domain models
are used to describe the underlying data.

However, designers or analysts might want to also focus on the represen-
tation of content, user interaction, and behavior of the front-end of software
applications. This is where the discipline of User Interface Modelling and its
languages such as Interaction Flow Modelling Language is commonly used.
Interaction Flow Modelling Language allows the users to capture not only the
structure of the graphical user interface but also an interaction between the
system and the user.

Information systems are complex ever-changing organisms, as they are
constantly reflecting the changes in the business processes and needs of the
users. The more complex the software is, the more costly these changes be-
come over the lifetime of the systems. These issues with maintainability and
evolvability are addressed in the Normalized Systems Theory, which aim is
to describe how to create software that is sustainable. It does so by defining
theorems, principles, structures, and design patterns, that have been proven
to eliminate the combinatorial effects of the changes. Furthermore, it pro-
vides tools for code generation from its own kind of conceptual model called
Normalized Systems Elements.

1

1. Introduction

In this thesis, we explore the possibilities of transformation from Inter-
action Flow Modelling Language models into Normalized Systems elements.
This is done partly by the Normalized Systems Gateway Ontology for Con-
ceptual Models, which is a gateway ontology into the world of Normalized
Systems. Normalized Systems Gateway Ontology for Conceptual Models is
currently being developed by Marek Suchánek as part of his dissertation the-
sis and is therefore used in its current unpublished format.

1.2 Objectives

This thesis aims to explore and analyze the possibilities of transforming the In-
teraction Flow Modeling Language model (IFML) into a Normalized Systems
Theory (NS) usable format. To achieve this, the following partial objectives
have been formulated and noted for later evaluation:

• O1 - Research and document the problem domains, namely: IFML,
Normalized Systems Theory, Normalized System Code Expanders, on-
going research into Normalized Systems Gateway Ontology for Concep-
tual Models, appropriate tools for IFML and ontology modeling, and
available APIs for manipulating such models.

• O2 - Design an ontology describing Interaction Flow Modeling Language
metamodel and implement this ontology in the appropriate tool.

• O3 - Design a transformation and modeling process for IFML model
creation as ontology using formerly created metamodel ontology.

• O4 - Implement automated transformation tool for IFML model trans-
formation into ontology.

• O5 - Design and implement mapping tool from IFML ontology mod-
els into Normalized Systems Gateway Ontology for Conceptual Models
(NSGO4CM).

• O6 - Demonstrate and evaluate the achieved results on a real-world
inspired case study.

2

1.3. Methodology

1.3 Methodology

In the first few chapters of this thesis, a theoretical background needed to
understand the given problem domains is well researched and prepared.

In Chapter 2, the current state of Normalized Systems Theory, its theo-
retical fundamentals, and practical components such as code expanders and
gateway ontology for conceptual models is documented.

In Chapter 3 and Chapter 4, the focus is on describing the IFML method-
ology in detail and UI modeling as a whole. As the main source for IFML
research, the official ontology definition metamodel by Object Management
Group (OMG) is used. Because the main objective is to implement and
demonstrate IFML models’ transformation to ontologies in the case study
on the core concepts of the language, some parts of the IFML are deliberately
omitted in this thesis.

In Chapter 5, the world of semantic web and ontologies is described shortly.
Specifically, research on the Web Ontology Language (OWL), the Resource
Description Framework (RDF), and available tools is prepared for later use in
the implementation part of this work.

After the theoretical part of this thesis, the core part of this work is pre-
sented in IFML Transformation (Chapter 6). The IFML meta model ontology
is designed, created, and tested, modeling against this ontology is demon-
strated and explained on two proof-of-concept models. Furthermore, the au-
tomatic transformation application is implemented and once again validated
and evaluated on our selected proof-of-concept models.

With the models transformed from IFML diagrams into ontology format,
mapping from IFML meta model ontology into NSGO4CM ontology is pro-
posed and prepared in a form required by the NSGO4CM transformation tool.
Afterward, using prepared mapping, the IFML model in ontology format is
once again transformed into the Normalized Systems.

In the Chapter 8 part of the thesis, a more complex IFML model is created
based on a real-world use case and then automatically transformed, demon-
strating the complex abilities of our solution.

Finally, in Evaluation (Chapter 9) and Conclusion (Chapter 10) the achieved
results are summarized and evaluated. Additionally, the possibilities for future
work are discussed.

3

Chapter 2
Normalized Systems Theory

2.1 Introduction To Normalized Systems

In recent years, the software development process has become more agile,
but the software itself stayed very unadaptable to changes. Normalized Sys-
tems theory was introduced as an approach to developing agile and evolvable
software by defining theorems, principles, and design patterns. By adhering
to these theorems and principles, evolvable architecture that is resistant to
so-called combinatorial effects can be created.

2.2 Current State

Normalized System theory is being developed and commercially used at the
University of Antwerp. Its goal is to provide a way to develop large-scale in-
formation systems that are evolvable. The concept of evolvability comes from
the ever-changing business requirements of the information system. These re-
quirements often lead to the increasing complexity of the information system
and therefore the increasing cost of implementation.[1]

The foundation of NS theory comes from the system theory, mostly from
the concept of system stability and also from the theoretical concept of en-
tropy. In the theory, evolvability and stability are accomplished by the ab-
sence of combinatorial effects. These effects are defined as changes, whose
complexity depends not only on the change itself but also on the size of the
system.[1]

2.3 Theorems

Normalized Systems theory proposes four theorems/rules for system stability
and evolvability. Adhering to these rules should, according to normalized
systems theory, lead to disposing of combinatorial effects.[2]

5

2. Normalized Systems Theory

In their very nature, these theorems are not revolutionary new ideas, but
rather very well-known principles of software development. It is important to
note, that following these principles is necessary not a sufficient condition for
system stability.[1]

2.3.1 Separation Of Concerns

Every change driver (concern) is separated from other concerns in its own
module.[1]

A processing function can only contain a single task in order to achieve
stability.[2]

Separation of concerns is a commonly used practice in software develop-
ment. It is a design principle that is used to divide the software into distinct
sections. Each section addresses a separate concern, whereas a concern can
be, for example, a tier in a multi-tier application or a specific functionality of
the software.[2]

2.3.2 Data Version Transparency

Data entities can be updated without impacting the entities using it as an
input or producing it as an output.[1]

A data structure that is passed through the interface of a processing function
needs to exhibit version transparency in order to achieve stability.[2]

Data version transparency enforces the encapsulation of data fields. It is
a principle that allows us to add and remove data fields in entities without
affecting action entities using it.[2]

In object-oriented programming, this can be manifested on a higher level
by hiding information at compile-time by using, for example, Java beans. On
the lower level, the Java class with an empty constructor and getter/setter
methods for data access can be used to achieve data version transparency.[2]

2.3.3 Action Version Transparency

An action entity can be upgraded without impacting its calling components.[1]
A processing function that is called by another processing function needs to

exhibit version transparency in order to achieve stability.[2]

An action entity, by definition, should implement only one task. Therefore,
there might be a need to change and/or replace the action. Action version
transparency can be implemented using polymorphism, or by encapsulating
the processing actions and using wrapper functions.[2]

6

2.4. Elements

2.3.4 Separation Of States

Each step in a workflow is separated from the others in time by keeping state
after every step.[1]

Calling a processing function within another processing function needs to
exhibit state keeping in order to achieve stability.[2]

During a workflow, the current state of actions is kept, which leads to
stateful workflow systems. Storing the state, can for example be used when
reacting to an error state caused by an exception. In this case, the action
entity does not need to react to this exception by itself, but the error state is
stored and a separate action entity can be used to react to it.[2]

2.4 Elements

Adhering to the introduced principles can prove to be very difficult, as every
infringement of these theorems creates a combinatorial effect. Further-
more, following these principles can lead to a lot of boiler-plate code, such as
wrapper classes and data accessors.

To represent these recurring constructs, five elements have been created.
These elements are high-level design patterns that comply with the core prin-
ciples of NS.[1][3]

2.4.1 Data Element

Data element is used to encapsulate and represent data variables and struc-
tures in an isolated module, adhering to the data version transparency principle.[3]

2.4.2 Task Element

The Task element is used to represent an instruction and/or function in an
isolated module, adhering to the action version transparency principle. It can
also be called an Action element.[1][3]

2.4.3 Workflow Element

A workflow element consists of multiple actions/tasks that are executed in a
sequence. It can be described as a state diagram as the intermediate state is
required for each task execution. Therefore state needs to be linked or be part
of the data element that is the argument of the workflow execution.[3]

2.4.4 Connector Element

It is used as an interface, for users or external systems to interact with data
elements and ensures that the action element is executed statefully. For each
action element, a connector element can be derived.[3]

7

2. Normalized Systems Theory

2.4.5 Trigger Element

The trigger element is used to verify states and decide if a Task should be
executed. For each task element, a trigger element can be derived.[3]

2.5 Code Expanders

When the requirements are formulated in the form of NS elements, descriptor
files are created. These descriptor files are XML/text-based files providing
sufficient input for code expanders. The NS expanders expand these files into
the source code and configuration, creating a working application in one of
the supported technological stacks.[4]

This expanded code, while producing a working application, is often not
enough and the application requires custom code to be added to the gener-
ated code. Traditionally, this would create problems for most of the code
generators, however, in NS, such additions are expected. Custom code can be
added inside a generated file in specific places marked by so-called anchors.
These anchors are specified by the expanders themselves and are part of the
code templates. Another option is to add a custom code as a whole external
package that is later on called from the generated code.[4]

This custom code is harvested during regeneration in order to keep the
customization intact. The procedure is pretty straightforward, it scans through
the code in between the anchors and external packages, keeps them, and then
reapplies them after the code generation.[4]

8

Chapter 3
UI Modelling & Design

In this chapter, we will briefly discuss the ideas behind modeling an application
interface. The principles and description presented are largely influenced by
the description from the IFML standard, as this is the path that we will
follow for the rest of this thesis. But for now, we will try to avoid IFML-
specific vocabulary as much as we can and stay strictly on the more abstract
level of things.

When modeling internet or web applications we can start with thinking
in terms of containers. The main window or main page template can be
considered to be a top-level container, alternatively, we can have multiple
page templates so we will have multiple top-level containers.[5]

Naturally, each container can be divided into multiple parts or sections
and these containers can be divided into more and more sections. Therefore
we can represent this structure as a hierarchy of sub-containers inside our
top-level container.[5]

We can think of two examples, to demonstrate this. A classic desktop ap-
plication, for example, IDE such as IntelliJ, and a classic web application, such
as e-shop. In our IDE, we will have the main window (a top-level container),
that can be divided into multiple parts (sub-containers) that are displayed si-
multaneously such as a top menu, a coding section, and a panel section. Our
panel section can then be divided into more parts, for example, tabs, that are
displayed exclusively. These are the attributes we also need to consider when
modeling the application interface. On the other hand, in an e-shop, we might
have multiple top-level containers for each page so we need to consider what
is our default container that will represent our landing page.

Inside these containers, smaller units, called components can be found.
Components can be used to display content (information) and/or enable the
user to input the data.[5]

Naturally, when modeling UI, we also want to model the interaction that
users can have with these components and containers and not just their mere
existence. Consequently, we arrive at concepts such as parameters, used to

9

3. UI Modelling & Design

transfer data from and to the components, and events describing what happens
when interacting with the components. Furthermore, the effects, or results,
of such events are represented in the form of flows, describing the change in
the state of the user interface.[5]

To put this all into a simple example, let’s say, we have a web application
such as a mailbox. In our top-level container, we have a sub-container with a
list of all the received emails. Our component can therefore be a representation
of an email in this list. An event triggered by selecting one of these emails
results in opening a new container (window/modal) with the message of the
selected email. This may be represented by a flow connection between the
event and the container that is produced to display the message, using the
parameter as the identifier of the email to be presented.

3.1 Alternatives

As mentioned we will focus on IFML, but there are alternatives to IFML
when it comes to the modeling user interface. Although, these are mostly in
the field of web engineering. In this section, we will shortly go through the
more notable ones.

3.1.1 UWE

UML-based web engineering is a software engineering approach for the web
domain. Its main goal is to cover the whole life-cycle of the web develop-
ment process. The focus of the UWE approach is to provide UML-based spe-
cific modeling language with security features, model-driven approach, and
methodology, and also support for systematic design and automatic genera-
tion of web applications.[6]

The UWE notation is defined as a conservative lightweight extension of
the Unified Modelling Language, lightweight meaning that a UML Profile is
provided to satisfy the need of the web domain terminology and conservative
in a sense that model elements of UML metamodel are not modified.[7]

3.1.2 WebML

Web Modelling Language’s goal is to allow designers to model the features of
a website on a level where detailed architecture is not needed. These features
and concepts are represented by intuitive graphical elements, that should be
readable by non-technical users and at the same time, should be provided in
the XML representation that is machine actionable for code generators.[8]

It offers modeling perspectives for users to model. These are the Structural
Model, Hypertext Model, Presentation Model, and Personalization Model.
The structural model is used to model entities and relationships between
them, such as the typical UML class model. The hypertext model is used

10

3.1. Alternatives

to describe hypertext units and their navigation model. The presentation
model expresses the layout and graphical representation of pages and content
elements. And lastly, the personalization model is used to model users and
user groups. These concepts allow us to describe the user-specific content of
the web application.[8]

11

Chapter 4
Interaction Flow Modeling

Language

This chapter provides a description of the Interaction Flow Modeling Language
and its notation. It is divided into detailed subsections for each package
(module). It should also provide sufficient information for the implementation
part of this thesis, so the IFML metamodel can be modeled as ontology using
this research part as documentation.

4.1 Introduction

The Interaction Flow Modeling Language provides a platform-independent
description of a user interface for web, mobile and cross-platform applications.
The goal is to provide a description of application structure and behavior as
perceived by the user.[5]

With popular Model-View-Controller architecture in mind, the IFML focus
naturally lies on the view part of the architecture. However, this can be
extended on controller layer with regard to the events occurring between
user and software. Furthermore, the model layer can be represented as data
provided to the user.[5]

4.2 Modelling Aspects

Simply said, when modeling user interface, we need to address a few aspects
that are pivotal to the UI design[5]:

• Structure of the view, in terms of independent, hierarchical, visual units
displayed exclusively or simultaneously.

• Content of the view, in terms of data provided both by the application
to the user and from the user to the application.

13

4. Interaction Flow Modeling Language

• Commands and inputs enabling user interaction resulting in events on
the view.

• Reference to the actions triggered by user interactions and their results
and effects on the state of the view after the action has been executed.

• Parameter passing information between displayed view and the actions
that need to be performed.

IFML supports this by providing appropriate tools and components[5]:

• The view structure is defined using View Containers, their relationships,
nesting to the hierarchy of view containers, and their attributes such as
reachability, visibility, and more.

• The content of the view is modeled using View Components that are
contained in view containers. IFML provides us with a wide range of
components such as forms, details, lists, windows, and more but it can
simply represent an image or an HTML input form.

• Event definitions, that might be initiated by the user, application, or an
external system.

• Event transitions, describing how the state of the view is affected. This
may be a change at the level of view components in the content dis-
played, an Action trigger, the change of the whole view container, or a
combination of all.

• To model input-output dependencies between view containers or be-
tween a view container and an action, IFML offers Parameter Bindings.

4.3 Concepts

The IFML metamodel is divided into three packages, namely: Core, Extension
and DataTypes package.[5]

In this section, we will provide documentation of the relevant parts of the
metamodel, needed for our implementation part of this thesis. Some parts of
the metamodel such as high-level abstract classes are omitted as they are not
important with regard to our goals. Also, the DataTypes package is omitted
as it is not necessary for our purpose.

4.3.1 Core Concepts

This package contains the concepts that are used to describe the infrastructure
and interaction of the models.[5]

14

4.3. Concepts

4.3.1.1 View Element

While not listed as a core concept in IFML Standard, View Element is a
core metaclass of IFML metamodel. It is an interface element that displays
content. View elements are divided into two groups: View Containers and
View Components.[5]

Generalization

Interaction Flow Element

4.3.1.2 View Container

A View Container is an aggregating element that can contain other View
Containers and/or interface elements displaying content.[5]

Generalization

View Element

Attributes

isXOR : Boolean

indicates that this container is mutually exclusive with his sibling con-
tainers

isDefault : Boolean

indicates that this container is displayed by default amongst his mutu-
ally exclusive sibling containers

isLandmark : Boolean

indicates global reachability of the container

4.3.1.3 XOR View Container

A View Container with attribute isXOR set to true is XOR View Container.
This means that all the included interface elements or View Containers are
presented one at a time. Exactly one of the included objects is expected to
have the isDefault attribute set to true, meaning that this particular child
object will be presented to the user when the encapsulating View Container
is accessed.[5]

This may be a container with multiple tabs, this functionality can be found
in bootstrap open-source toolkit example.

15

4. Interaction Flow Modeling Language

4.3.1.4 Landmark View Container

A Landmark View Container is a View Container with attribute isLand-
mark set to true. Therefore, becoming directly reachable from any View
Element contained in the same View Container.[5]

This may be a Login/Logout button, or a Shopping cart link on websites
that is visible on every page.

4.3.1.5 Default View Container

As already mentioned in XOR View Container, this is the View Container
that will be presented to the user when accessing its parent container.[5]

A welcome page of the website would be a Default View Container.

4.3.1.6 View Component

It is an element of the interface that displays content or accepts an input. It
can consist of multiple View Component Parts.[5]

This may be an HTML input form, an image, or other HTML elements
displaying content on web site.

Generalization

View Element

4.3.1.7 Event

An Event is an occurrence that can alter the application and its state. They
can be Throwing or Catching, depending on the fact if they are thrown by
the interaction or caught by it.[5]

Generalization

Interaction Flow Element

4.3.1.8 Catching Event

CatchingEvents can cause navigation or parameter value passing between
elements. They might be produced by user interaction, system notification,
or by navigation.[5]

Generalization

Event

16

4.3. Concepts

4.3.1.9 Throwing Event

The event is induced by the modeled application when the triggering condi-
tions are met.[5]

Generalization

Event

4.3.1.10 System Event

This type of event is a catching event caused by a system, forcing the change
in the user interface. This might be triggered by the fact that a certain time
has elapsed, or by special conditions such as database connection loss.[5]

Generalization

Catching Event

Attributes

type : SystemEventType

indicates the type of system event

4.3.1.11 View Element Event

It is a type of event representing a user interaction event triggered by View
Element.[5]

Generalization

Catching Event

4.3.1.12 Action Event

Type of event triggered by an Action.[5]

Generalization

Catching Event

4.3.1.13 Action

Any business logic, either server-side or client-side, triggered by an Event is
called Action. In addition, each action can trigger multiple Catching Events
called Action Events as the result of business logic computation or exception
occurence.[5]

Generalization

17

4. Interaction Flow Modeling Language

Interaction Flow Element

Named Event

4.3.1.14 Navigation Flow

Navigation Flow represents navigation of View Elements, the Action pro-
cessing or a System event. It can be accompanied by a set of Parameters that
are passed to the target element through Parameter binding. Furthermore,
corresponding Data Flow can also be triggered to pass further parameters to
the target element.[5]

Generalization

Interaction Flow

4.3.1.15 Data Flow

It is an element used to pass context information between various elements.
It is triggered by Navigation Flow element to pass parameters to the target
element.[5]

Generalization

Interaction Flow

4.3.1.16 Parameter

Simply put, Parameter instance holds a value that is passed between elements.
Parameter flow is executed when events are triggered. Parameters may be-
long to the elements of the user interface such as View containers, View
components, View component parts determining their properties. Further-
more, parameters are restricted in their scope by the element that is holding
them, meaning they can be accessed only by the elements from the same model
space.[5]

Generalization

Interaction Flow Model Element

Multiplicity Element

Typed Element

Named Element

Attributes

direction : Direction

18

4.3. Concepts

indicates the direction of the parameter, whether it is in or out, with
the default being the input parameter

defaultValue : Expression

indicates the default value of the parameter, calculated through the
expression

4.3.1.17 Parameter Binding

To connect the input parameter of the target element and output parameter of
the source element, basically defining how the parameter is passed, Parameter
Binding is used. On Event trigger, this binding is followed, transferring the
value from the source to the target element.[5]

Generalization

Interaction Flow Model Element

4.3.1.18 Parameter Binding Group

Parameter Binding Group is an aggregation of the Parameter Bindings as-
sociated with an interaction flow.[5]

Generalization

Interaction Flow Model Element

4.3.1.19 Activation Expression

It is a boolean expression associated with a View Element, View Component
Part or Event, enabling the associated element when the expression is evalu-
ated as true. It uses Parameter values for expression evaluation.[5]

Generalization

Boolean Expression

4.3.1.20 Interaction Flow Expression

Boolean expression determining which of the interaction flows will be followed
after an Event was triggered. It uses Parameter values for expression eval-
uation. When Event does not have an Interaction Flow Expression, all
interaction flows associated with the Event are followed.[5]

Generalization

Expression

19

4. Interaction Flow Modeling Language

4.3.1.21 Module

To improve maintainability, IFML offers Module creation. It is a reusable part
of the user interface and corresponding actions. Optionally, it is associated
with a set of Ports.[5]

Generalization

Interaction Flow Model Element

Named Element

4.3.1.22 Port

Port is an interaction point between Module and the rest of the model. Its
interface is defined by a Port Definition[5]

Generalization

Interaction Flow Element

4.3.1.23 Port Definition

Port definition is used to define interface for the Port, holding Parameters
for value passing to and from modules.[5]

Generalization

Interaction Flow Element

4.3.1.24 Input Port

It is an interaction point between a Module and its surroundings. It collects
all interaction flow and parameters arriving at Module and distributes them
inside.[5]

4.3.1.25 Output Port

It is an interaction point between a Module and its surroundings. It collects
all interaction flow and parameters inside Module and distributes them to its
surroundings.[5]

4.3.1.26 View Component Part

It is an element that can only live inside the context of View Component.
It may trigger Events and can have incoming and outgoing interaction flow.
Activation of the View Component Part can be conditioned by the activation
expression attribute. If this expression is not present, the element is considered
active.[5]

20

4.3. Concepts

View Component Part typically represents a field in a form.

Generalization

Interaction Flow Element

4.3.2 Extensibility

IFML provides a way to allow the definition of stereotypes, tagged values
and constraints through standard UML extensibility mechanism. Extensions
are supposed to provide a refinement or a specification of core concepts of
the IFML. According to IFML documentation, following core concepts can be
extended and still adhere to standard[5]:

• ViewContainer

• ViewComponent

• ViewComponentPart

• Event

• DomainConcept

• FeatureConcept

• BehaviorConcept

• BehavioralFeatureConcept

4.3.3 Extension Concepts

A set of extension concepts is provided by the IFML standard as an example
for the extension mechanism.

4.3.3.1 List

It is a type of View Component used to display a list of data binding instances.
At least one instance must be associated with the list, i.e. the list cannot be
empty. Furthermore, data binding instances can be associated with an Event,
meaning that on each item selection, the Event is triggered.[5]

E.g. table with the content of the same type.

Generalization

View Component

21

4. Interaction Flow Modeling Language

4.3.3.2 Form

It is a type of View Component representing an input form in which the user
can provide information by filling out fields of the form. Form is required to
have at least one field and typically a Submit Event is associated with the
form.[5]

In HTML this is an equivalent of the form element.

Generalization

View Component

4.3.3.3 Details

Details is a type of View Component used to display information from a data
binding instance. Hence, it is mandatory for the Details component to have
exactly one data binding instance associated with it. Furthermore, Event can
be associated with component of this type, triggering the Event on display and
passing Parameter values of data binding instance to the target interaction
flow element.[5]

Generalization

View Component

4.3.3.4 Menu

Menu is a special type of View Container used to model the concept of the
menu that can be for example found on the web application as a navigation
menu. The important constraint of this element is that it cannot contain any
sub-containers or View Components.[5]

Generalization

View Container

4.3.3.5 Field

A field is a pair of value-type that can be displayed to the users or can be
used to capture input from the user. It also behaves as a parameter, passing
values from and to elements.[5]

Generalization

View Component Part

Parameter

22

4.3. Concepts

4.3.3.6 Simple Field

Simple Field is a type of field that is used to display or capture value in a
textual form.[5]

Generalization

Field

4.3.3.7 Selection Field

This type of field enables the user to select one or more values from a prede-
fined set of values.[5]

Generalization

Field

Attributes

isMultiSelection : Boolean

indicates whether elements allow selecting multiple values

4.3.3.8 Validation Rule

Validation Rule is a kind of constraint that verifies the value supplied to
the Field by the user.[5]

Generalization

Constraint

4.3.3.9 Window

It is a type of View Container used to model the concept of the window.[5]
This can represent a new page in HTML or a new window in a desktop

application.

Generalization

View Container

Attributes

isNewWindow : Boolean

indicates whether the container is opened in a new window

isModal : Boolean

indicates whether the window is rendered as a modal window

23

4. Interaction Flow Modeling Language

4.3.3.10 Modal Window

Modal Window is a Window which when rendered, blocks interaction in previ-
ously displayed containers.[5]

4.3.3.11 Modeless Window

Modeless Window is a Window that is placed over previously displayed con-
tainers that remain active.[5]

4.3.3.12 Jumping Event

Jumping Event is a type of Throwing Event that triggers a navigation flow
passing to referenced Landing Event.[5]

Generalization

Throwing Event

4.3.3.13 Landing Event

References the destination of Jumping Event.[5]

Generalization

Catching Event

4.3.3.14 On Select Event

On Select Event is a type of Event denoting the selection of an item from
the multiple choices and passing its value to the target element.[5]

It can represent a selection of a row in a table or an item from the list.

Generalization

View Element Event

4.3.3.15 On Submit Event

On Submit Event is a type of Event that triggers a parameter passing between
interaction flow elements.[5]

In HTML this can be represented as a submit button of the form.

Generalization

View Element Event

24

4.4. Usage & Tools

4.3.3.16 On Load Event

It is a type of System Event that is triggered when View Element that this
event is attached to is completely rendered for the user.[5]

Generalization

System Event

4.4 Usage & Tools

A Systematic Literature Review has been performed in 2018 on the topic of In-
teraction Flow Modeling Language, which concluded that the IFML certainly
simplifies the design and implementation of front-end interfaces, however, the
existing tools are not mature enough to be utilized for complex and large
software applications.[9]

In the following sub-sections, we will take a look at the most prominent
modeling tools that support IFML.

4.4.1 IFML Editor Eclipse Plugin

IFML Editor is an open-source plugin based on Sirius technology with support
for IFML standards in the Eclipse environment.[10]

Besides covering the whole IFML standard, being open source and multi-
platform, other important aspects of IFML Editor are code generation-friendliness
and extensibility to different domains based on Eclipse Modeling Framework.
IFML Editor was created as a result of cooperation between WebRatio, re-
search team AtlanMod, and Politecnico di Milano and it is available on GitHub
or the Eclipse marketplace.[11]

4.4.2 IFML In Enterprise Architect

EA allows us to model IFML through the use of MDG Technology integrated
with Enterprise Architect. According to the user guide, the following is pro-
vided for the user[12]:

• 11 IFML model patterns

• 2 IFML diagram types - model diagram and domain model diagram

• Core, Essential, and Extension concepts available in the toolbox

4.4.3 IFMLEdit.org

IFMLEdit.org is an online model-driven tool for the specification and rapid
prototyping of mobile and web applications. It allows to model all important
aspects of the IFML model[13]:

25

4. Interaction Flow Modeling Language

• The view structure and its content, i.e. View Containers and View
Components along with their relationships, activation, and visibility at-
tributes allowing for the display of content or data entry.

• The occurrences that affect the user interface can be caused by user
interaction or by application in form of Events.

• The consequences of Events on the user interface in form of displayed
content update, change of View Container, triggering off an Action or
a mix of all of the above.

• The input-output dependencies between View Elements and Actions
represented through Parameter Bindings

4.4.4 WebRatio

WebRatio is a model-driven, low-code development platform based on IFML.
It consists of two parts. WebRatio Platform is focusing on web extended
version of IFML while WebRatio Mobile Platform is implementing mobile-
specific extensions for IFML. It provides three integrated environments[14]:

• Modeling environment supporting specification of IFML diagrams,
UML class diagrams, and BPMN process diagrams

• Development environment to support implementation of custom
components to allow personalized extensions of modelling language, cus-
tom functionalities, data and system integrations

• Style design environment and template layout for UI specification
with support of HTML5, CSS and JavaScript

With user input combined from all environments, WebRatio is able to ver-
ify the model, generate code and manage the lifecycle of the product. Code
generation results in cloud-deployed Java EE for web front-end and back-end
with Apache Cordova for cross-platform mobile applications. More impor-
tantly, the generated code is human readable and maintainable without any
closed components, therefore generated code can be managed even outside the
WebRatio Platform.[14]

WebRatio might not be open-source, however, it is considered to be the
richest tool from the one presented. Its code generation with specific platform
support is unmatched amongst other tools and therefore it is a recommended
tool for industrial purposes.[11]

26

Chapter 5
Semantic Web

5.1 OWL 2

The W3C Web Ontology Language (OWL 2) is a semantic web language used
to describe and represent knowledge and relations between things. It is used
to express ontologies - which in our context means a set of precise statements
about the domain of interests we are describing.[15]

It is a declarative language, not a programming one, describing the state
of things in a logical way. Tools, so-called reasoners, can be used to deduce
further information about ontology. There are multiple reasoners with various
characteristics available, supporting different OWL2 profiles.[16]

As we are only concerned with OWL 2, which is an extension of the former
OWL, we will interchange these abbreviations and use OWL and OWL 2 as
equals in the following sub-sections.

5.1.1 Basic Notions

To understand how knowledge is represented in OWL 2, some fundamental
notions should be explained.

5.1.1.1 Axioms

Axioms are the main components, the elementary pieces of OWL 2 ontology.
It is a set of statements or propositions that defines what is true in the domain
of interest. OWL 2 provides an extensive set of Axioms, for example: dec-
larations and axioms about classes, data properties, object properties, data
type definitions, keys, assertions and annotations.[17][15]

5.1.1.2 Entities

Entities are elements, building blocks, used to describe and define the vo-
cabulary of an ontology by referring to real-world objects. This includes

27

5. Semantic Web

classes, data types, object properties, data properties, annotation properties,
and named individuals.[18][15]

5.1.1.3 Expressions

Expressions are created by combining multiple names of entities. They are
used to form complex descriptions from basic ones.[15]

5.1.2 Core

There are multiple syntaxes in the OWL standard. To describe various fea-
tures in the following sub-sections, the functional syntax is used.

5.1.2.1 Class

The most fundamental concepts in the domain correspond to the classes. They
can be connected by using a transitive SubclassOf relation to create a hier-
archy of classes, by relating a more specific class to the more general one. In
OWL every user-defined class is implicitly a subclass of owl:Thing, therefore
every instance is also an instance of owl:Thing. To describe a semantically
equivalent class, OWL offers a transitive relation called EquivalentClasses.
On the other hand, we might want to state that membership in one class ex-
cludes a membership in another. For this use case, relation DisjointClasses
is used. To express more complex knowledge, intersection, union and com-
plement of set theory is used, these are namely: ObjectIntersectionOf,
ObjectUnionOf, ObjectComplementOf.[19][15]

5.1.2.2 Individuals

A member of a class, more technically an instance of a class, is called an
Individual. As in classes we can use relations to describe knowledge about
these individuals. To describe inequality and equality of individuals we can
use DifferentIndividuals and SameIndividual respectively.[19][15]

5.1.2.3 Properties

Properties are binary relations used to describe facts between classes and
individuals. We differentiate between two types of properties[19][15]:

• Object properties relate individuals to other individuals. We should
note that the order of the individuals is important, i.e. motherOf,
wifeOf, husbandOf relations.

• Datatype properties relate individuals to primitive data types like
string, int, dates.

28

5.2. RDF

5.1.3 Open World Assumptions

It is important to note, and keep in mind while working with OWL 2, that it
uses open-world assumptions. Traditionally, in closed-world assumptions, an
unknown statement defaults to false, or more precisely, if it was not stated to
be true, it is considered to be false. However, in an open world, we simply
cannot consider it false, instead, we assume that this knowledge has not (yet)
been added to the ontology.[20]

5.2 RDF

Resource Description Framework is an abstract modeling standard used to
describe data by defining relationships between them. The basic data model
consists of three types[21]:

• Resources - everything described by the RDF expression is a resource.
They are identified by a URI and optionally by anchor IDs.

• Properties - are aspects, characteristics, attributes or relations used to
describe a resource. Property has a meaning, set of permitted values, set
of resources it can describe, and its relationships with other properties.

• Statements - a resource, property, and value of the property for a given
resource together create a statement. These parts of the statement are
called the subject, the predicate, and the object. The object, which is
the value of the property can be another resource or a literal.

5.2.1 RDF/XML Syntax

As we established, the RDF is an abstract format that can be represented in
different ways. These include Turtle syntax, N-Triples, RDF/JSON, and a
few more.[22]

The most common one, however, is RDF/XML syntax which we are going
to use in our thesis.[23]

5.3 SPARQL

It is a semantic query language able to retrieve and manipulate data stored in
RDF format. Since RDF is essentially a directed labeled graph data format,
SPARQL is naturally a graph-matching query language. It consists of three
parts[24]:

• Pattern matching - includes features for graph pattern matching as
optional parts, union, nesting, filtering values, and specifying a data
source

29

5. Semantic Web

• Solution modifier - used to modify values of an output produced by
a computed pattern, modification can be made with typical operators
such as projection, distinct, limit, or order

• Output - it can be of different types, new RDF data, selection of vari-
ables, a Yes/No query result

5.4 Protege

Currently, a go-to ontology constructing and maintaining the system (at least
in the academic sphere) has come a long way from the 1980s when it was first
introduced. With the emergence of OWL from the W3 consortium, Protege
was at the time, the only ontology-development tool that could accommodate
nearly the complete OWL specification. In the years to come, OWL2 emerged
and Protege enhanced its support of the OWL2 standard becoming a highly
popular tool used by more than 360 000 registered users as of now.[25][26]

Protege is a free, open-source ontology editor and framework for building
intelligent systems. Being an open-source, extensible, Java-based system, it
is supported by a strong community of academic, government, and business
entities resulting in many plugins and add-ons to accommodate a wide range
of use cases. The latest version fully supports the latest OWL 2 Web Ontology
Language and RDF specifications from the World Wide Web Consortium.[26]

5.4.1 Protege API

ProtegeAPI is an open-source Java library for the Web Ontology Language.
It can be used for both, developing plugins to the Protege application and
creating standalone applications. The API provides an interface for loading,
manipulating, and saving OWL files, querying, and modifying the ontologies.
It also allows us to programmatically run reasoners on the loaded ontologies.
It is currently maintained by Protege staff and the community.[27]

30

Chapter 6
IFML Transformation

In this chapter, we will describe the transformation from IFML to RDF. On-
tology will be constructed in Protege and a tool will be created to enable the
transformation from IFML to RDF/XML that adheres to the created ontol-
ogy. Modeling of IFML will be done in Enterprise Architect as this is the tool
that the author of this thesis is the most familiar and comfortable with.

Figure 6.1: IFML Transformation Diagram

6.1 Ontology Creation

As a next logical step, we will now try to create a representation of IFML
metamodel in Protege. We will try to create and adhere to simple rules for
simple constructs and then try to use more advanced features to model more
complex rules and constructs. This ontology will be created iteratively by
continuously adding another layer of complexity to the ontology.

31

6. IFML Transformation

6.1.1 Creation Process

After some experimenting with the Protege ontology editor, and creating a few
simple ontologies, the procedure has been proposed, to describe the modeling
process of the IFML meta model ontology. This procedure also serves as a
documentation of the set of rules used to design this ontology. The basic idea
behind the transformation is to represent IFML classes as classes, attributes
of the classes as data properties, and associations between these classes as
object-properties.

This procedure is as follows:

• For each IFML class, an OWL class is created.

• For each generalization relation in IFML metamodel, subClassOf
relation is used in OWL.

• For each attribute, data property is created in ontology. The name
of the data property is equal to the name of the attribute.

• For each mandatory attribute, data restriction property is created
with cardinality exactly 1.

• For each optional attribute, data restriction property is created with
cardinality max 1.

• Each relation with target or source outside of IFML metamodel is
considered out-of-scope and is therefore ignored.

• For each relation, object property is created with Domain being the
source of relation and Range being the target of the relation. Name of
the object property is derived from prefix has and Range or Relation
name, i.e. hasDataBinding.

• For each relation with the same target, existing object property is used
and the differing source is added as an alternative in the Domain
using or operator.

• Each data property is representing an attribute of IFML elements and
is therefore marked as Functional.

• Each class with the same parent(s) is marked as disjoint with its sib-
lings.

• For each 0..1 relation, object restriction with max 1 operator is cre-
ated.

• For each 1..1 relation, object restriction with exactly 1 operator is
created.

32

6.1. Ontology Creation

• For each 1..N relation, object restriction with some operator is cre-
ated.

• For each 0..N relation, object restriction with min 0 operator is cre-
ated, bearing in mind that in open-world assumptions this is not very
meaningful but we will still include it for completeness.

• OWL class siblings are marked as disjoint with disjointWith relation,
otherwise, they might be considered equal by the reasoner.

Some exceptions have also been made as, for example, the proposed rules
do not support creation of both targetInteractionFlow and sourceInteraction-
Flow relation on InteractionFlow class or in/out InteractionFlows
on InteractionFlowElement class. This was resolved by indeed creating two
object properties and specifying that they are disjoint to one another.

There was also an issue about handling abstract classes of IFML meta-
model, as abstractness is not natural in OWL. It surely could be modeled as
the fact that the abstract class is unionOf of these disjoint children’s classes.
However, in open-world assumptions, there is no type-checking present to en-
force this logic, and we can simply have an instance of an abstract of which
we do not know what type of sub-class it actually is. Furthermore, enforcing
abstract classes might even pose a problem for us as not all implementations
respect this constraint. For example, in Enterprise Architect implementation
of IFML, SimpleField and SelectionField have been omitted and instead
an abstract parent Field is used in models.

Following the procedure, we have arrived at our first prototype. The cre-
ated ontology is depicted on fig. 6.3, using the OntoGraf plugin for Protege
and as we can see from the metrics on fig. 6.2, we have arrived at 476 axioms
in total.

Figure 6.2: IFML Ontology Metrics Attempt #1

33

6. IFML Transformation

Figure 6.3: Ontograf Visualization of IFML Ontology Attempt #1

34

6.1. Ontology Creation

6.1.2 Testing & Refactoring

After the creation, HermiT reasoner has been used to check for any inconsis-
tencies and incoherencies. The result was sub-optimal with many problems
reported. Using Protege Debugger we have been able to identify the causes.
Therefore, there have been some simplifications made.

Many of the problems resulted from having elements with multiple parents
(generalization relation). After some investigation, we have arrived at the
conclusion that there is no point in having InteractionFlowModelElement
in our ontology as it only creates ambiguity and does not offer any additional
information.

Another important point is that, once we want to start representing our
IFML models in the ontology, we will use NamedIndividuals of Protege API.
Therefore, we will expect every modeled element to be an NamedElement. This
has been resolved by merging NamedElement and
InteractionFlowModelElement into NamedElement drastically reducing in-
consistencies. However, we will also respect the IFML metamodel in the sense,
that every instance of NamedElement will also have an attribute (an OWL
data-property) name set to the same value as is the name of the NamedIndi-
vidual.

Furthermore, every Element of IFML, is expected to have an id attribute,
which once again is represented as a data property in OWL. Normally, this
would be a simple identifier of some sort, its format is up to the author.
However, this is convenient as we can use this further down the road to keep
a relation between the IFML element to the automatically transformed one.

After the simplification we have done and running the Debugger with
HermiT reasoner, we now get the message that our ontology is coherent and
consistent.

6.1.3 Final Product

After following the proposed procedure and some simplifications, we have
arrived at the prototype that is sufficient for our use case. There definitely
is a lot more that can be done, in terms of defining constraints, fine-tuning
the definition of relations, implementing the DataTypes package of IFML,
and many more improvements. However, as we are going to illustrate in our
proofs-of-concept, this prototype is a solid base for our research.

Once more, we depicted our ontology on fig. 6.4, this time connecting
elements only by subClass relation for simplicity, using the OntoGraf plugin
for Protege. And as we can see from the metrics on fig. 6.5, axiom count has
been slightly decreased to 456.

35

6. IFML Transformation

Figure 6.4: Final visualization of IFML ontology

36

6.2. Proof Of Concept

Figure 6.5: Final IFML Ontology Metrics

The final ontology can be found on GitHub:
https://github.com/PatrikJantosovic/ifml-ontology.

The version tagged with 0.0.1-RELEASE tag is used in demonstrations in
the following chapters. In case there is more work done, for example,

support of transformation into normalized systems, the application will be
versioned accordingly.

6.2 Proof Of Concept

At the start, we will select two simple examples that will be used as proof
of concept. First, we will model these diagrams in IFML, after that we will
try to recreate the same diagrams in RDF in our created ontology. Using the
knowledge of the source and target state, we will try to generalize transfor-
mation rules and implement them. The resulting tool will be an open-source
Java application published on Github.

6.2.1 IFML

Examples are going to be simplified parts of the more comprehensive case
study that can be found in the last chapter. These examples will later be
used as input for our transformation application. In this section, we will
try to demonstrate that we are able to work with different sets of elements,
their attributes, and the relationships between these elements. We are using
Enterprise Architect 14.1 and its built-in support for IFML modeling that is
based on the OMG’s UML profile for IFML using MDG technology. We will
create a project, that will contain both of the proof-of-concept examples in

37

6. IFML Transformation

separate packages and this project will be part of the submitted source code
of this thesis.

6.2.1.1 Example #1

The first example will be a simple homepage model with a list of categories,
recommended products section, a shopping cart, and the main menu repre-
senting the basic navigation menu of the web application as you can see on
fig. 6.6.

Figure 6.6: IFML Proof Of Concept Example #1

The goal here is to demonstrate support for basic IFML elements and the
ability to create simple associations by nesting the elements, using different
types of parent-child relationships.

In this example, we can already see that we will have to keep inheritance
(through generalization association) in mind when transforming these associ-
ations. It is because, we can nest basically any element into each other and
therefore create structure, however in IFML metamodel there is a relationship
defined somewhere on the parent level of these elements, depending on the re-
lationship. Therefore we also have them represented in our OWL metamodel
as object properties between potential superclasses. This trait, therefore, has
to be reflected in our transformation application.

38

6.2. Proof Of Concept

6.2.1.2 Example #2

And our second example will be a simplified checkout process as displayed on
fig. 6.7.

Figure 6.7: IFML Proof Of Concept Example #2

Here, the goal is to demonstrate the ability to create simple processes,
using flows and bindings as relationships, which is semantically a different
type of association to the one demonstrated in proof-of-concept example #1.

Both of these proof-of-concept figures can also be found as external attach-
ments of this thesis, for better readability, identified as I1 and I2 respectively.

6.2.1.3 Issue With ParameterBindings

However, looking at the diagram on fig. 6.7, it might be easy for humans to
recognize that PriceBinding means passing a value from field Total to the
parameter Price. And indeed this is how parameter bindings are drawn, as we
can see on fig. 6.8, which is an example from the official IFML website.[28]

39

6. IFML Transformation

Figure 6.8: IFML Gmail Example [28]

The problem with this is that this is not machine-actionable. There is
no way for a machine to understand which parameter binding corresponds to
which parameters if there is no real and tangible relationship. Referring to the
IFML documentation, we can clearly see that there should be two associations
on ParameterBinding element, having both the source parameter and target
parameter of the binding. However, this is not the case in the Enterprise
Architect implementation of IFML.

Furthermore, there is another issue of the same type, with connecting
NavigationFlow to the ParameterBindingGroup. There is a Parameter Bind-
ing Link association in the Enterprise Architect implementation, however, this
is not part of the IFML standard and it is merely a NoteLink which, unfortu-
nately, is not even exported when trying to save the diagram in XMI normative
format. Rendering this link is unusable in our automatized transformation.

40

6.2. Proof Of Concept

There are multiple ways of resolving this problem:

• We can come up with special naming rules for these elements and parse
these names for additional information during transformation. This
might be the least intrusive solution but it also is not very exact.

• Another possible solution is to use the classic association relationship,
connecting source and target parameters to the parameter binding ele-
ment and replacing the note-link relationship when connecting the pa-
rameter binding group to the navigation flow. However, this makes the
diagram less readable and creates unnecessary complications once ex-
ported to the XMI file.

• Another option is to use tagged values to add properties to these
elements as needed. The name of the tagged value will be the name of
the object property of the corresponding relationship and the value will
be the name of the related element. For example, in example #2, we
will create a tagged value with the name hasSourceInteractionFlow on
the ParameterBinding element with the value set to Total.

Every option requires some additional work from the user who wants to
use our transformation application. Therefore, we will select the most simple
one from both application implementation and modeler point of view, which
is clearly the usage of the tagged values. Consequences on the structure of
the XMI file and implementation details will be discussed in section 6.3 part
of this work.

6.2.2 RDF

To model our proof of concept in RDF, we will once again use Protege. The
results will be compared to the output of our transformation application and
hopefully, the files produced would correspond to our modeled examples. In
the beginning, a new project is created, and the existing IFML ontology is
imported. In each example, we will create an Individual for every IFML
element with appropriate characteristics and relations. We are free to use
NamedIndividuals as we expect every IFML element to be a Named Element.
This is a restriction (and a change in the ontology compared to IFML meta-
model) that we have created to simplify modeling and transformation automa-
tion.

6.2.2.1 Example #1

For our proof-of-concept #1 we will create the following Individuals:

• Homepage of type ViewContainer

• Categories of type List

41

6. IFML Transformation

• Recommended Products of type List

• Shopping Cart of type Form

• MainMenu of type Menu

• CategorySelect of type OnSelectEvent

As a next step, we should set name and id data properties for each
created individual. Then, we will set the rest, which is fairly simple as we
only have them on the Homepage. We will set them equivalently to the IFML
values, that being isDefault is true and the rest of them are set to false.

Finally, we have to set appropriate relations using object properties.
Looking at the diagram, we can clearly see the relations:

• MainMenu is a sub-container to the Homepage. In our implementation of
IFML metamodel, this is simulated by using hasViewContainer object
property which is an IFML equivalent of view Container [0..1] relation
on View Element class.

• The Categories, Recommended Products, and Shopping Cart are all View
Components belonging to the Homepage. Through generalization, these
are also View Elements, we will once again use the hasViewContainer
object property to describe the relation.

• Lastly, we have an On Select Event belonging to the List, which con-
veniently does have a hasOnSelectEvenent object property, which is
the IFML equivalent of On Select Event [0..*] association on List class.

It is important to note, that there may be more object properties that
could and/or should be set, but in this case, we can benefit from the open-
world assumptions. It is not necessary to define all the values as far as our
translated model provides the same set of information to the user, which in
this case does.

The final product of our example #1 is therefore pretty simple as we can
see on fig. 6.9. Id and name data properties have been omitted from the graph.
The graph can be also found in attachments under R1 identifier.

42

6.2. Proof Of Concept

Figure 6.9: RDF Proof Of Concept Example #1

6.2.2.2 Example #2

And for our second proof-of-concept example we will create the following
Individuals:

• Pay for Products of type Action

• Confirm of type ActionEvent

• Price of type Parameter

• Order of type ViewContainer

• Order Detail of type Details

• PriceParameters of type ParameterBindingGroup

• Total-Price of type ParameterBinding

• Shopping Cart of type ViewContainer

• Products of type List

• Total of type Field

• CheckOut of type OnSubmitEvent

• To Payement Flow of type NavigationFlow

• Confirmation Flow of type NavigationFlow

43

6. IFML Transformation

Then we naturally set name and id data properties, furthermore we set
the isLandmark on shopping cart to true as we have done in IFML and the
rest of the ViewContainer elements attribtues are set to false.

Now we have to find relations and their corresponding representation in
our ontology. Once again, from the diagram, we can quickly identify the
following:

• Products is a List belonging to the Shopping Cart element. Therefore,
hasViewContainer object property will be used.

• Order Detail is of a Details kind, belonging to the Order container.
The hasViewContainer object property will be used.

• Price is a Parameter belonging to the Pay For Products action, there-
fore hasParameter object property will be used.

• Total is Field belonging to the Products list. Since it is a descendant of
the Parameter, once again hasParameter object property can be used.

• CheckOut is a OnSubmitEvent belonging to the Products list, therefore
hasViewElement object property can be used.

• Confirm is an ActionEvent that is related to the action with name
Pay For Products. Therefore, hasActionEvent can be used.

• Total-Price is a parameter binding belonging to the parameter binding
group. Therefore hasParameterBinding is used.

• To Payement Flow is an NavigationFlow, which requires us to spec-
ify the source and the target of the navigation. On the IFML dia-
gram (fig. 6.7) we can clearly see that it starts in CheckOut and ends
in Pay For Products. The hasSourceInteractionFlowElement can be
set to the CheckOut and target of the relationship connected through
hasTargetInteractionFlowElement to Pay For Products value.

• We will do exactly the same for the second instance of NavigationFlow
that is present in our model. The hasSourceInteractionFlowElement
to the Confirm and hasTargetInteractionFlowElement to Order value.

• Similarly, we need to provide both of the hasSourceParameter and
hasTargetParameter object properties for the Total-Price parameter
binding.

• Lastly, we have to connect the ParameterBindingGroup to the nav-
igation flow To Payement Flow by using hasParameterBindingGroup
object property.

44

6.3. Transformation Implementation

The result is a more complicated RDF model than we had in example #1,
as we can see on fig. 6.10. Once again, some elements and relationships were
omitted for better readability. The full RDF diagram can be found in external
attachments under the identifier R2.

Figure 6.10: RDF Proof Of Concept Example #2 Snippet

6.3 Transformation Implementation

In this section, we will try to implement an application for the automated
transformation of IFML models to their RDF/OWL representation. The goal
is to create a simple java command-line application that works against our
created IFML meta model ontology and is able to generate RDF/OWL files
that adhere to this ontology.

To work with the ontology, we will use the already mentioned Protege API
from section 5.4.1.

45

6. IFML Transformation

6.3.1 Input/Output Definition

First, we need to define our expected inputs and outputs. Trivially, our out-
put is a file in RDF/OWL format representing the IFML model as ontology.
Output ontology will be validated during the transformation against the meta-
model.

And for the input of the transformation application, we need to define the
following:

• A path to the IFML meta model ontology in a machine-readable format
for Protege API.

• An IFML meta model ontology base IRI to tell Protege API which on-
tology it should read from the file.

• A path to the destination where the resulting RDF/OWL file should be
stored.

• An IRI of the target ontology.

• A path to the source file from which the IFML model should be read.

For the OWL part of the implementation, the ontology representation is
pretty much set in stone, resulting from the need to adhere to Protege API.
Obviously, the most common RDF/OWL format of the file is supported, for
both loading and saving the ontology so there is no reason for us to go for a
less standardized format.

However, we do need to find a suitable format for our IFML model im-
plementation. Since we are using Enterprise Architect we do have multiple
options, however, we are also restricted by IFML implementation in Enterprise
Architect and its shortcomings as we have already mentioned in section 6.2.1.3.
Looking at the options in Enterprise Architect, the XMI format is our choice
as this is the format that is commonly used for the serialization of modeling
languages.

Enterprise Architect offers multiple versions of XMI with various options.
For our implementation, we want to keep the resulting XML file as simple as
possible, yet we do need it to contain all of the necessary information. By a
quick trial and error procedure and comparing multiple versions of the XMI
file, we have arrived at the conclusion that the Normative XMI 2.4.2 format
will be used. That is equivalent to the following settings, as depicted on the
fig. 6.11. Please note that we deliberately check the Exclude EA Extensions
checkbox and uncheck the Export Diagrams checkbox as we would otherwise
end up with unnecessary information in the result file.

46

6.3. Transformation Implementation

Figure 6.11: Enterprise Architect Publish Settings

6.3.1.1 XMI File

Here we will shortly discuss the structure of our input XMI file and identify
all the information that it provides and how we can process and use this
information.

Looking at our example #1 representation on listing 1, we can take a note
of the following five things:

• All IFML elements are listed at the end of the file, in IFML: namespace.
This is very convenient, as we can easily identify which Individuals we
need to create just by parsing elements with IFML: prefix from the file.

• As we established, we consider every element to be Named Element as
we want to use NamedIndividuals for our models. Therefore we have
to fetch those names from elements inside uml:Model node correspond-
ing to the IFML elements. These can be identified by using xmi:id
attributes on the elements which are equal to the base % attributes in
IFML: namespace.

47

6. IFML Transformation

• Similarly, we expect every element to have an id, therefore we will use
the already mentioned xmi:id values. These will conveniently provide a
mapping between IFML model elements and RDF/OWL elements.

• The remaining attributes that belong to IFML elements, and are ex-
pected to be transformed to data properties can be found as at-
tributes on the elements in IFML: namespace.

• The nesting of the elements in the uml:Model node indicates that there
is some kind of relationship between the parent-child elements. How-
ever, we do not have the luxury of knowing what kind of association
that is, we just have the participants. Therefore we will have to refer
to our metamodel in the ontology and infer the relationship from the
participants.

<?xml version="1.0" encoding="windows-1252"?>
<xmi:XMI xmlns:uml="http://www.omg.org/spec/UML/20110701"

xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:IFML="http://www.sparxsystems.com/profiles/IFML/1.0">

<xmi:Documentation exporter="Enterprise Architect" exporterVersion="6.5"/>
<uml:Model xmi:type="uml:Model" name="EA_Model">

<packagedElement xmi:type="uml:Package"
xmi:id="EAPK_E921F46F_CB90_4462_8E67_45E529A41836"
name="Poc1">
<packagedElement xmi:type="uml:Component"

xmi:id="EAID_316F284E_4634_4658_B348_3CD84861F74C"
name="Homepage">
<nestedClassifier xmi:type="uml:Component"

xmi:id="EAID_E51583A7_A6CE_4916_97F4_424117FD32CE"
name="MainMenu"/>

<nestedClassifier xmi:type="uml:Class"
xmi:id="EAID_E69DE1F0_7808_41ea_BECE_C2C8B1BCAB40"
name="Shopping_Cart"/>

<nestedClassifier xmi:type="uml:Class"
xmi:id="EAID_B1DB7AC9_8643_4bfa_B145_125D427A0FA3"
name="Recommended_Products"/>

<nestedClassifier xmi:type="uml:Class"
xmi:id="EAID_253B61D2_018D_43b1_BF19_F02057525C42"
name="Categories">
<ownedAttribute xmi:type="uml:Port"

xmi:id="EAID_EBFDA47A_2D69_487f_9826_3BB0A70420BA"
name="OnSelectEvent" aggregation="composite"/>

</nestedClassifier>
</packagedElement>

</packagedElement>
<profileApplication xmi:type="uml:ProfileApplication"

xmi:id="profileap_43202EE1-F">
<appliedProfile xmi:type="uml:Profile"

href="http://www.sparxsystems.com/profiles/IFML/1.0#43202EE1-F"/>
</profileApplication>

</uml:Model>
<IFML:ViewContainer base_Component="EAID_316F284E_4634_4658_B348_3CD84861F74C"

isLandMark="false"
isXor="false"
isDefault="true"/>

<IFML:Menu base_Component="EAID_E51583A7_A6CE_4916_97F4_424117FD32CE"/>
<IFML:Form base_Class="EAID_E69DE1F0_7808_41ea_BECE_C2C8B1BCAB40"/>
<IFML:List base_Class="EAID_B1DB7AC9_8643_4bfa_B145_125D427A0FA3"/>
<IFML:List base_Class="EAID_253B61D2_018D_43b1_BF19_F02057525C42"/>
<IFML:OnSelectEvent base_Port="EAID_EBFDA47A_2D69_487f_9826_3BB0A70420BA"/>

</xmi:XMI>

Listing 1: XMI Representation of PoC Example #1

48

6.3. Transformation Implementation

Another type of relationship is present when modeling Flows. In this case,
nesting is obviously not present because this is not a parent-child relationship.
However, IFML flows have been modeled as uml:Dependecies, therefore source
and target of the relationship is provided in supplier and client attributes.
An example of such relationship representation can be found in the following
snippet on listing 2.

<packagedElement
xmi:type="uml:Dependency"
xmi:id="EAID_BB5259EA_0AA0_4962_8BBD_AEB09687FADA"
name="To_Payement_Flow"
supplier="EAID_F916316E_5B0E_48ee_8F0B_088213A75B0B"
client="EAID_AA646F95_9FA8_4d71_A632_4637E22FE5C2"/>

Listing 2: Interaction Flow Association Representation

However, as we already discussed in section 6.2.1.3, for some associations,
most notably parameter bindings, there is no nesting and no uml:Dependency
to indicate the existence of the relationship. Therefore, we have resulted in
using tagged values to model this relationship. Since these tagged values
are created in a separate namespace, the result looks as we can see in the XMI
snippet below on listing 3.

<IFML:ParameterBinding
base_Class="EAID_EAB30D5B_2E2F_4019_8730_7ECBAC8FDC49"/>
<thecustomprofile:hasTargetInteractionFlowElement

base_Class="EAID_EAB30D5B_2E2F_4019_8730_7ECBAC8FDC49"
hasTargetInteractionFlowElement="Price"/>

<thecustomprofile:hasSourceInteractionFlowElement
base_Class="EAID_EAB30D5B_2E2F_4019_8730_7ECBAC8FDC49"
hasSourceInteractionFlowElement="Total"/>

Listing 3: Interaction Flow Association Representation

6.3.1.2 RDF/OWL File

The resulting file is expected to be in RDF/OWL format. Format settings
are provided by ProtegeAPI that we are using to handle ontologies in our
application and since RDF/OWL is the most common format used there is no
issue. The goal is to create files that only contain Individuals with IFML
meta model ontology only imported, as we have been creating them in our
proof-of-concept examples (e.g. listing 4).

49

6. IFML Transformation

<?xml version="1.0"?>
<rdf:RDF xmlns="https://github.com/PatrikJantosovic/ifml-ontology/poc#"

xml:base="https://github.com/PatrikJantosovic/ifml-ontology/poc"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:ifml="https://github.com/PatrikJantosovic/ifml-ontology/ifml#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="https://github.com/PatrikJantosovic/ifml-ontology/poc">
<owl:imports rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/ifml"/>

</owl:Ontology>
<!--
///
//
// Individuals
//
///
-->

<!-- https://github.com/PatrikJantosovic/ifml-ontology/poc#Categories -->
<owl:NamedIndividual

rdf:about="https://github.com/PatrikJantosovic/ifml-ontology/poc#Categories">
<rdf:type rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/ifml#List"/>
<ifml:name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Categories</ifml:name>
<ifml:id rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

EAID_BB5259EA_0AA0_4962_8BBD_AEB09687FADA
</ifml:id>
<ifml:hasViewContainer

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc#Homepage"/>
<ifml:hasOnSelectEvent

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc#CategorySelect"/>
</owl:NamedIndividual>

</rdf:RDF>

Listing 4: RDF File Format - PoC Example #1

6.3.2 Implementation Details

In this subsection, implementation details of the transformation application
and technical decisions are briefly discussed.

6.3.2.1 Structure

The application is divided into multiple packages. Api package contains
classes describing IFML elements, a class representing OWL data property
structure, and a class representing OWL object property structure. Besides
that, it also contains the factory class that instantiates the objects. The
cmd package provides an entry point to the application through the pico-
cli command-line interface and also implements spring configuration loading.
Most of the logic resides in core package, with an XMI parser class and OWL
modifier class, which are classes implementing the logic of reading information
from IFML models in XMI format and writing them to the resulting files in
RDF/OWL format.

50

6.3. Transformation Implementation

6.3.2.2 Basic Idea

The very basic idea of transformation is explained in the following snippet of
the pseudo-code:

create new target ontology
import ifml:metamodel ontology to target ontology
for each element in ifml: namespace of xmi file:

read id from base_% attribute
read name from child element of uml:model node using id
read attributes from the element
create individual

for each individual:
verify individual type against ifml:metamodel ontology
add individual axiom to the target ontology
for each attribute in individual.attributes:

verify data-property ifml:metamodel ontology
add data-property axiom to the target ontology

for each individual:
get nesting relations from xmi file
get uml:dependency relations from xmi file
get tagged-values relation from xmi file
save to individual

for each individual:
for each relation:

find object-property in ifml:metamodel ontology
add object-property axiom to the target ontology

save target ontology to file

6.3.2.3 Inferring Relationships

As already mentioned, sometimes we only have participants and their types of
relationships. To know which association this is, we use HermiT reasoner that
is part of ProtegeAPI. At first, we try to fetch object-property definition
by using classes of these Individuals. If such object property exists, we use
it. Otherwise, we fetch for all superclasses using the reasoner and try to find
the appropriate object property in the whole hierarchy.

Furthermore, to simplify the issue with parent-child relationships, children
are related to the parent on the parent level. This means that the resulting
subject-predicate-object triple is always in the form of parent-relationship-
child.

51

6. IFML Transformation

6.3.3 Usage

To use the transformation application you will need Java 11 installed and
IFML meta model ontology downloaded from the GitHub project:
https://github.com/PatrikJantosovic/ifml-ontology to your local computer.

You can fetch the built ifml2rdf.jar from the GitHub repository:
https://github.com/PatrikJantosovic/ifml2rdf release section. The applica-
tion can then be run with the following parameters:

• –path being the path to the source IFML file

• –target being the path where we want to store our RDF/OWL result

• –iri being resulting ontology IRI

Furthermore, we should set the following properties in the application.properties
file, as these are not necessary as input parameters.

• metamodel.path being path to IFML metamodel ontology file

• metamodel.iri being metamodel IRI, which by default is:
https://github.com/PatrikJantosovic/ifml-ontology/ifml

The application uses Apache log4j2 logging service, to log information to
standard output on different levels. Therefore, we can also set the following
properties:

• logging.level.root being the default application logging level, to avoid
useless logs from Spring, we should keep this set to WARN

• logging.level.com.jantosovic.ifml being application-specific logs log-
ging level, this should be set to INFO/DEBUG

Sample application.properties file is published alongside the jar file for
better usability.

6.3.4 Proof Of Concept

Now, we will try to demonstrate the application in our prepared examples.

6.3.4.1 Example #1

For our first example we will execute the application with following arguments:

--path="\\ifml2rdf\PoC\poc1-xmi.xml"
--target="\\ifml2rdf\transformation\\poc.owl"
--iri="https://github.com/PatrikJantosovic/ifml-ontology/poc1"

52

6.3. Transformation Implementation

And we indeed end up with a poc.owl file that contains our imported
IFML ontology and our Individuals corresponding to the IFML elements as
we can see in the following snippets:

<!-- https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage -->
<owl:NamedIndividual rdf:about="https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage">

<rdf:type
rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/ifml#ViewContainer"/>

<ifml:isDefault
rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</ifml:isDefault>

<ifml:isLandMark
rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</ifml:isLandMark>

<ifml:isXor
rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</ifml:isXor>

<ifml:hasViewElement
rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc1#Categories"/>

<ifml:hasViewContainer
rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc1#MainMenu"/>

<ifml:hasViewElement
rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc1#Recommended_Products"/>

<ifml:hasViewElement
rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc1#Shopping_Cart"/>

</owl:NamedIndividual>

Listing 5: Transformed RDF file - Example #1: Individual structure

On the listing 5 we can see that the structure of the exported file corre-
sponds to the one we have designed in our ontology and later used during the
modeling of Example #1 in RDF. We have our named individual of Homepage
element, described using rdf:type as ViewContainer class. Then, we can see
our IFML attributes as data properties.

Furthermore, we can see the hierarchy structure of containers represented
through hasViewElement and hasViewContainer relationships. In the fol-
lowing snippet on listing 6, we can see the representation of the association
between Categories and its related event OnSelectEvent.

<!-- https://github.com/PatrikJantosovic/ifml-ontology/poc1#Categories -->

<owl:NamedIndividual
rdf:about="https://github.com/PatrikJantosovic/ifml-ontology/poc1#Categories">
<rdf:type

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/ifml#List"/>
<ifml:hasOnSelectEvent

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc1#CategorySelect"/>
</owl:NamedIndividual>

Listing 6: Transformed RDF file - Example #1: Association representation

And as we can see, when we compare our RDF graph (id and name at-
tributes are omitted for readability) on fig. 6.12 to the one we have created
in the RDF proof of concept section on fig. 6.9 we can clearly see that these
differ only in selected relationships that were used to relate the parent and
child, as the transformation tool always pick parent-hasChild-child relation-
ship. A full RDF diagram of the transformation result can be found in external
attachments under the identifier T1.

53

6. IFML Transformation

Figure 6.12: Transformed RDF - Example #1

6.3.4.2 Example #2

We have demonstrated that we can create the appropriate Individuals with
their properties, and basic association that is represented as a nested relation-
ship in the XMI file in our first example. Here, we will try to demonstrate
that the application is able to transform the remaining two relationship types
which we have described in Implementation Details (section 6.3.2).

Therefore, we run our application with the following parameters:

--path="\\ifml2rdf\PoC\poc2-xmi.xml"
--target="\\ifml2rdf\transformation\poc2.owl"
--iri="https://github.com/PatrikJantosovic/ifml-ontology/poc2"

And as a matter of fact, we are indeed able to transform even the flow and
tagged-value relationship as we can see on listing 7 and listing 8. Full RDF
diagram of the transformation result can be found in external attachments
under the identifier T2.

<!-- https://github.com/PatrikJantosovic/ifml-ontology/poc2#To_Payment_Flow -->

<owl:NamedIndividual
rdf:about="https://github.com/PatrikJantosovic/ifml-ontology/poc2#To_Payment_Flow">
<rdf:type

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/ifml#NavigationFlow"/>
<ifml:hasParameterBindingGroup

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc2#PriceParameters"/>
<ifml:hasSourceInteractionFlowElement

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc2#Checkout"/>
<ifml:hasTargetInteractionFlowElement

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc2#Pay_For_Products"/>
</owl:NamedIndividual>

Listing 7: Transformed RDF - Flow association representation

54

6.3. Transformation Implementation

<!-- https://github.com/PatrikJantosovic/ifml-ontology/poc2#Total-Price -->

<owl:NamedIndividual
rdf:about="https://github.com/PatrikJantosovic/ifml-ontology/poc2#Total-Price">
<rdf:type

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/ifml#ParameterBinding"/>
<ifml:hasSourceParameter

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc2#Total"/>
<ifml:hasTargetParameter

rdf:resource="https://github.com/PatrikJantosovic/ifml-ontology/poc2#Price"/>
</owl:NamedIndividual>

Listing 8: Transformed RDF - Tagged-value association representation

6.3.5 Evaluation

As we have demonstrated, we are able to transform the IFML models to the
RDF/OWL format using our transformation application. This application
supports creating all commonly used IFML elements, their attributes, and
their most common associations. The application is easy to use, allowing
the user to select their target IRI, source file, and target destination of the
RDF/OWL file. The application offers multiple levels of logs for debugging
and error handling and is well documented both by using Javadoc and higher-
level documentation in the readme file.

While there definitely is a lot to improve, this result clearly demonstrates
that the automated transformation from IFML to RDF/OWL that adheres
to our IFML meta model ontology is possible and working in the described
scope.

The application can be found on GitHub:
https://github.com/PatrikJantosovic/ifml2rdf.

The reflected version is tagged with 0.0.1-RELEASE tag in case there is
more work done.

55

Chapter 7
NSGO4CM Transformation

In this chapter, the transformation from generated RDF/OWL model to the
RDF model adhering to the Normalized Systems Gateway Ontology For Con-
ceptual Models is designed.

NSGO4CM is currently in active development and is yet to be published,
however, the first prototypes of NS meta model ontology and transformation
tool have been provided by the author, Marek Suchánek.

Figure 7.1: IFML to NS Transformation Diagram

According to the unpublished work [29], transformation is done by provid-
ing a mapping between IFML metamodel and NS metamodel, as depicted on
fig. 7.1. The transformation tool provided to us is a python application with
a command-line interface. This tool takes an IFML model (or any supported
conceptual model) in ontology format and Turtle syntax as input. Further-
more, configuration files in the form of input-output mapping are supplied to
the application. Then, SPARQL CONSTRUCT queries are built based on
the supplied mapping configuration file and used to transform the input file
in our IFML ontology to the NS ontology.

57

7. NSGO4CM Transformation

After some experimenting with the provided tool, we have identified the
additional steps needed for successful transformation from IFML models into
NS elements:

• The NSGO4CM tool expects the input ontology to be in Turtle for-
mat, therefore the output from our application should be changed from
RDF/XML to Turtle syntax.

• Change transformation application to use prefixes instead of full IRIs
of IFML elements, resulting in a more readable format, especially when
combined with Turtle syntax.

• Prepare sample mapping configuration for a subset of IFML elements
and demonstrate the successful transformation.

7.1 Transformation Application Changes

As for the change of the syntax, protege API provides a convenient way of
changing the output format when saving ontology to file. Therefore, the ad-
ditional parameter, model.syntax, has been added, which can be set in the
application.properties. The default value is TURTLE, but to keep backward
compatibility, another supported option is RDF/XML. Other formats have
not been supported for now as they are not needed.

Additionally, Protege API also provides a possibility to import, set and
use prefixes alongside imported ontologies. Therefore, an ifml: prefix is now
set for imported meta model ontology, resulting in a cleaner output file. The
result of the transformation of our proof-of-concept #1 that we have been
using throughout this thesis can be seen in the snippet on listing 9.

As stated before, the application can be found on GitHub:
https://github.com/PatrikJantosovic/ifml2rdf.

The version, which supports Turtle syntax and IFML prefix, is tagged as
0.0.2-RELEASE.

58

7.1. Transformation Application Changes

@prefix : <https://github.com/PatrikJantosovic/ifml-ontology/poc1#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ifml: <https://github.com/PatrikJantosovic/ifml-ontology/ifml#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@base <https://github.com/PatrikJantosovic/ifml-ontology/poc1> .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1>
rdf:type owl:Ontology ;
owl:imports <https://github.com/PatrikJantosovic/ifml-ontology/ifml> .

:Categories rdf:type owl:NamedIndividual ,
ifml:List ;

ifml:name "Categories"ˆˆxsd:string ;
ifml:hasOnSelectEvent :OnSelectEvent .

:Homepage rdf:type owl:NamedIndividual ,
ifml:ViewContainer ;

ifml:name "Homepage"ˆˆxsd:string ;
ifml:isXor "false"ˆˆxsd:string ;
ifml:isLandMark "false"ˆˆxsd:string ;
ifml:isDefault "true"ˆˆxsd:string ;
ifml:hasViewElement :Categories ;
ifml:hasViewContainer :MainMenu ;
ifml:hasViewElement :Recommended_Products ,

:Shopping_Cart .

:MainMenu rdf:type owl:NamedIndividual ,
ifml:Menu ;
ifml:name "MainMenu"ˆˆxsd:string .

:OnSelectEvent rdf:type owl:NamedIndividual ,
ifml:OnSelectEvent ;
ifml:name "OnSelectEvent"ˆˆxsd:string .

:Recommended_Products rdf:type owl:NamedIndividual ,
ifml:List ;
ifml:name "Recommended_Products"ˆˆxsd:string .

:Shopping_Cart rdf:type owl:NamedIndividual ,
ifml:Form ;
ifml:name "Shopping_Cart"ˆˆxsd:string .

Listing 9: Transformed Proof-Of-Concept #1 in Turtle syntax 59

7. NSGO4CM Transformation

7.2 Mapping

As the next step, a sample set of rules for mapping is proposed and some of
them are implemented for demonstration purposes. For now, the mapping def-
inition needed for proof-of-concept #1 is proposed. These rules are expected
to be revisited, refactored, and expanded in further research.

• IFML elements denoting the structure of the application are transformed
into DataElement. This is mainly ViewElement and its descendants such
as Form, List, Detail, Window.

• Type of the container should be explicitly defined in the DataOption
belonging to the DataElement.

• IFML elements describing events and actions are transformed into
TaskElement. This might include types such as OnSelectEvent,
OnSubmitEvent, OnLoadEvent, and Action and it is specified in the
associated TaskOption.

• IFML elements representing data presented to the user in form of fields
are transformed into Field entities. This includes all descendants of
ViewComponentPart. The type is specified in the associated
FieldOption.

• Name of the IFML elements is transformed into the name attribute of
the constructed NS element.

• All the remaining attributes of the IFML elements are transformed into
DataOptions or TaskOptions.

• Parent-child associations of containers and view elements can be simu-
lated by using LinkField.

On listing 10, a sample mapping file representing a simple transformation
from IFML:Form to NS:DataElement is presented. Here, we can see the defini-
tion of the input and the expected output. In the first section, some meta-data
about the transformation is defined, as well as variables are defined. In the
input section, it is set that we expect the ifml:Form, with ifml:name attribute
and we also specify a filter for the Sparql query to include only named ele-
ments. In the output section, we have defined that we expect the element to
be transformed into ns:DataElement, with ns:DataElement-name being the
name of the element and ns:DataElement-type being a primary data element.

To demonstrate the result, an example of ifml:Form definition as seen
on listing 11 is transformed using the mapping. The result of the successful
transformation can be seen on listing 12.

60

7.2. Mapping

{
:mapping a sbmo:Mapping .
:mapping rdfs:label "IFML Form element mapping for Data Element" .
:mapping sbmo:hasGraphPattern :input .
:mapping sbmo:hasConstructTemplate :output .
:cls a sbmo:Variable .
:cls sbmo:preferredName "cls" .
:cls-name a sbmo:Variable .
:cls-name sbmo:preferredName "clsName" .

}

:input {
:cls a ifml:Form .
:cls ifml:name :cls-name .
:input sbmo:hasFilter "STRLEN(?clsName) > 0" .

}

:output {
:cls a ns:DataElement .
:cls ns:DataElement-name :cls-name .
:cls ns:DataElement-type "Primary" .

}

Listing 10: Mapping of IFML:Form to NS:DataElement

https://github.com/PatrikJantosovic/ifml-ontology/poc1#Shopping_Cart

:Shopping_Cart rdf:type owl:NamedIndividual ,
ifml:Form ;

ifml:id "EAID_E69DE1F0_7808_41ea_BECE_C2C8B1BCAB40"ˆˆxsd:string ;
ifml:name "Shopping_Cart"ˆˆxsd:string .

Listing 11: IFML:Form representation in Proof-of-Concept #1

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Shopping_Cart>
a ns1:DataElement ;

ns1:DataElement-name "Shopping_Cart"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

Listing 12: NS:DataElement representation of IFML:Form from PoC #1

61

7. NSGO4CM Transformation

7.3 Proof Of Concept

In this section, mapping files for the elements that are present in the first
proof-of-concept example are prepared. This includes mapping for Form,
ViewContainer, List, Menu and OnSelectEvent elements.

Unfortunately, there is a problem present with part of the transformation.
For the proposed mapping, the ability to generate or calculate a unique uni-
form resource identifier (URI) should be implemented. For example, imagine
having to create a ns:DataOption for each ns:DataElement to describe a type
of UI element. For now, this is not possible, as there is nothing to query for in
the input file. That is because it does create a piece of additional information
based on the type of the transformed element.

A similar issue naturally occurs when trying to transform a data-property
or object-property predicate to the normalized systems element as a unique
subject of the RDF triple. The feedback regarding this was provided to the
author and it will be resolved in the future versions of the transformation tool.

Ignoring this issue, it is still possible to transform IFML elements into NS
elements. The result of transformation from our model (listing 9) can be found
on listing 13. Clearly, we can see the result of our IFML elements mapping,
and their successful transformation, but, associations between the elements
and attributes of the elements are missing in the transformed file.

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#MainMenu>
a ns1:DataElement ;
ns1:DataElement-name "MainMenu"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#OnSelectEvent>
a ns1:TaskElement ;
ns1:TaskElement-name "OnSelectEvent"ˆˆxsd:string ;
ns1:TaskElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Recommended_Products>
a ns1:DataElement ;
ns1:DataElement-name "Recommended_Products"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Shopping_Cart>
a ns1:DataElement ;
ns1:DataElement-name "Shopping_Cart"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Categories>
a ns1:DataElement ;
ns1:DataElement-name "Categories"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage>
a ns1:DataElement ;
ns1:DataElement-name "Homepage"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

Listing 13: Mapping of Proof-of-Concept #1

62

7.3. Proof Of Concept

However, as we only have unique associations in our proof-of-concept
model, we can simulate the URI generation in our transformation mapping
files by hard-coding the identifiers. This is obviously not optimal, but this
way we can at least demonstrate the result of the future transformation more
accurately. The hard-coded identifiers are prefixed with URI- to clearly dis-
tinguish what should be fixed in future versions of the transformation tool.
On listing 15, the result of the transformation can be seen, now containing
the parent-child associations of different types of ViewContainers through
the LinkField entity of Normalized Systems. Additionally, attributes of IFML
elements, such as ifml:isXor, are transformed into DataOption entities. The
example of a mapping file for the hasViewContainer association can be seen
on listing 14. All of the mapping files can be found on the attached CD.

@prefix rdfs: <https://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <https://www.w3.org/2002/07/owl#> .
@prefix ns: <https://normalizedsystems.org/owl/elements#> .
@prefix sbmo: <https://example.com/sbmo#> .
@prefix ifml: <https://github.com/PatrikJantosovic/ifml-ontology/ifml#> .
@prefix : <https://example.com/ns-mapping/ifml/m-hasViewContainer#> .

{
:mapping a sbmo:Mapping .
:mapping rdfs:label "IFML hasViewContainer association mapping for LinkField" .
:mapping sbmo:hasGraphPattern :input .
:mapping sbmo:hasConstructTemplate :output .
:clsA a sbmo:Variable .
:clsA sbmo:preferredName "clsA" .
:clsB a sbmo:Variable .
:clsB sbmo:preferredName "clsB" .

}

:input {
:clsA ifml:hasViewContainer :clsB .
:input sbmo:hasFilter "EXISTS { ?clsA ifml:hasViewContainer ?clsB }" .

}

:output {
"URI-viewContainer" a ns:Field, ns:LinkField .
"URI-viewContainer" ns:Field-name "hasViewContainer" .
"URI-viewContainer" ns:Field-dataElement :clsA .
"URI-viewContainer" ns:Field-targetDataElement :clsB .

}

Listing 14: Association hasViewContainer mapping into LinkField

63

7. NSGO4CM Transformation

@prefix ns1: <https://normalizedsystems.org/owl/elements#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

"URI-onSelectEvent" a ns1:Field,
ns1:LinkField ;

ns1:Field-dataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#Categories> ;
ns1:Field-name "hasOnSelectEvent" ;
ns1:Field-targetDataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#OnSelectEvent> .

"URI-viewContainer" a ns1:Field,
ns1:LinkField ;

ns1:Field-dataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage> ;
ns1:Field-name "hasViewContainer" ;
ns1:Field-targetDataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#MainMenu> .

"URI-viewElement" a ns1:Field,
ns1:LinkField ;

ns1:Field-dataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage> ;
ns1:Field-name "hasViewElement" ;
ns1:Field-targetDataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#Categories>,

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Recommended_Products>,
<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Shopping_Cart> .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#MainMenu> a ns1:DataElement ;
ns1:DataElement-name "MainMenu"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#OnSelectEvent> a ns1:TaskElement ;
ns1:TaskElement-name "OnSelectEvent"ˆˆxsd:string ;
ns1:TaskElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Recommended_Products> a ns1:DataElement ;
ns1:DataElement-name "Recommended_Products"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Shopping_Cart> a ns1:DataElement ;
ns1:DataElement-name "Shopping_Cart"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

"URI-ifml:isDefault" a ns1:DataOption ;
ns1:DataOption-dataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage> ;
ns1:DataOption-name "ifml:isDefault" ;
ns1:DataOption-value "true"ˆˆxsd:string .

"URI-ifml:isLandMark" a ns1:DataOption ;
ns1:DataOption-dataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage> ;
ns1:DataOption-name "ifml:isLandMark" ;
ns1:DataOption-value "false"ˆˆxsd:string .

"URI-ifml:isXor" a ns1:DataOption ;
ns1:DataOption-dataElement <https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage> ;
ns1:DataOption-name "ifml:isXor" ;
ns1:DataOption-value "false"ˆˆxsd:string .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Categories> a ns1:DataElement ;
ns1:DataElement-name "Categories"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

<https://github.com/PatrikJantosovic/ifml-ontology/poc1#Homepage> a ns1:DataElement ;
ns1:DataElement-dataOption "URI-ifml:isDefault",

"URI-ifml:isLandMark",
"URI-ifml:isXor" ;

ns1:DataElement-name "Homepage"ˆˆxsd:string ;
ns1:DataElement-type "Primary" .

Listing 15: Simulated Mapping of Proof-of-Concept #1
64

Chapter 8
Case Study

In the final chapter, results are demonstrated in a case study using a simple
generic e-shop as our modeled domain. Normally, IFML comes as a com-
plement to the content domain model, typically in form of a UML diagram.
However, here the focus is solely on the part that is represented in IFML such
as the structure of the user interface and interaction flow describing processes
on the e-shop.

8.1 Requirements

The goal is not to model the whole e-shop but to demonstrate the capabilities
of our solution on a subset of the most common modeling scenarios of IFML.
Therefore, the following requirements have been selected to be modeled as our
case study:

• F1 - Homepage of the e-shop, consisting of recommended products sec-
tion, list of categories, main navigation menu of the e-shop, search field,
and a simple snippet of a shopping cart. This is almost identical to
already established proof-of-concept #1.

• F2 - The checkout process, starts from the shopping cart, with payment
and order confirmation. For this, a similar model to the model of proof-
of-concept #2 is used.

• F3 - The process of adding an item to the shopping cart with quantity
selection.

• F4 - The product detail page with multiple fields describing the product.

• F5 - The process of searching for a product.

65

8. Case Study

8.2 IFML Representation

These requirements are represented in the following IFML model on fig. 8.1.
This model can also be found in external attachments with C1 identifier and
in the attached Enterprise Architect project.

Figure 8.1: E-shop case study - IFML representation

The web application is modeled as a single window, with a sub-container
for a shopping cart, a menu element for a navigation menu, and a form that
consists of a search field. Furthermore, a content parent container is created
with the Xor attribute, meaning that only one child of this element is rendered
at the same time, virtually creating the shared template of the website for our
specific content pages. This structure effectively covers our F1 requirement.

One of our content pages is a simple product page with details on the
product, availability of the product, and the form allowing us to add the
product to the cart in the selected quantity. Interaction with this form is
modeled using an event and activity resulting in the item being added to the
shopping cart. This covers the requirements F3 and F4.

The checkout process (requirement F2), is implemented almost identically
to the proof-of-concept #2. The process starts with on submit event using
the checkout button in the shopping cart, passing the total price of products
as a parameter to the payment action. On completion of this action, the user
is redirected to the order summary detail page.

Lastly, the process of searching for a product is triggered by the on-submit
event from the search form after the user provides the textual input to the

66

8.3. RDF Representation

field. On a successful search, the user is directly redirected to the product
page following the navigation flow. This covers our last F5 requirement.

8.3 RDF Representation

As the next step, the IFML model is exported in XMI format and transformed
into RDF/OWL representation using our application implemented in Chap-
ter 6. The whole result can be found as an RDF graph in external attachments
identified as C2, however, ontology is already pretty complex and large which
makes it harder to read for humans.

In the following paragraphs, the result is dissected and it is demonstrated
that structures are all present and that they represent the requirements we
have set.

For requirement F1 and F4, hierarchy of containers denoting the structure
is described through parent-child relationship in form of hasViewContainer
and hasViewElement object properties. Visualized on fig. 8.2.

Figure 8.2: Transformed Case-Study - F1 & F4 Requirements

Requirement F2 is very similar to already mentioned proof-of-concept #2
model. Two navigation flows are present, describing the process from checkout
through payment activity to the order confirmation. The visualization can be
found on fig. 8.3.

67

8. Case Study

Figure 8.3: Transformed Case-Study - F2 Requirement

For requirement F3, the subset of ontology that can be found on fig. 8.4 is
relevant. Clearly, the core of the process, which is the navigation flow starting
from AddToCartEvent to AddToCartAction is present.

Figure 8.4: Transformed Case-Study - F3 Requirement

And finally, the process of searching for a product (requirement F5) is also
present in the transformed ontology as seen on the snippet on fig. 8.5. The
SearchForm has a view element event, which triggers a navigation flow called
SearchFlow resulting in the navigation to the product page.

68

8.4. Final Result

Figure 8.5: Transformed Case-Study - F5 Requirement

8.4 Final Result

In the case study, it was demonstrated that the automatic transformation
application is successfully applied even on larger models resulting in complex
ontologies, supporting different kinds of associations and all IFML elements
that are present in IFML meta model ontology are being created as named
individuals.

This representation can now be transformed into the format that is defined
by Normalized Systems Gateway Ontology for Conceptual Models and there-
fore transformed into Normalized Systems elements. But, since NSGO4CM
development is still in progress, the final transformation of this case study will
not be performed as not all constructs and elements of IFML are mapped yet.
This topic will require further research once NSGO4CM and the transforma-
tion tool are in the stable version.

69

Chapter 9
Evaluation

In this chapter, goals from Section 1.2 are revisited and evaluated. It is also
important to note, that the results were obtained in multiple iterations as
the problem domains were quite unexplored and some of the objectives were
readjusted during the work.

In Chapter 2, Chapter 3, Chapter 4 and Chapter 5, the theoretical foun-
dations of the problem domains were explored and documented. We have
acquainted ourselves with Normalized Systems Theory, Interaction Flow Mod-
eling Language, and Semantic Web technologies. Furthermore, we have ex-
plored tools and APIs for these domains. Therefore, we can conclude that we
have achieved our first objective (O1).

The second objective (O2) was to design an ontology of Interaction Flow
Modelling Language metamodel and implement it. This was successfully pre-
pared in Section 6.1, using Protege ontology editor, and is one of the outputs
and contributions of our thesis. As a next step, in objective number three
(O3), we wanted to design a process of IFML modeling in the form of ontolo-
gies using our prepared metamodel. The implementation of the metamodel
and its application in modeling was successfully demonstrated on two proof-
of-concept examples in Section 6.2.

In the fourth objective (O4), the goal was to automatize transformation
from IFML models in form of diagrams into the IFML model ontologies. This
was achieved by implementing a simple transformation application in Chap-
ter 6. Afterward, in Section 6.3.4 we have successfully demonstrated that the
transformation is indeed functional in our proof-of-concept examples.

Moving towards Normalized Systems, the fifth objective (O5) was to de-
sign transformation between IFML models and NS models. Furthermore, the
transformation tool should be implemented according to the proposed map-
ping of the metamodels. However, during the work on this thesis, it became
clear that the tool is already part of the NSGO4CM solution. Therefore, only
mapping was proposed and implemented in the form of mapping files that are
provided as input to the existing transformation solution. The mapping was

71

9. Evaluation

developed only for a part of the IFML metamodel and would require further
research, therefore we can conclude that the objective number five (O5) was
achieved only partially.

The last objective, (O6), was to illustrate the complete solution in a com-
plex case study. Therefore, a simple e-shop was modeled in IFML and then
successfully transformed using our implemented solution. The final transfor-
mation to the NS elements was not performed as the NSGO4CM mapping is
not prepared in a sufficient range. We can consider objective number 6 partly
achieved.

72

Chapter 10
Conclusion

In this thesis, we explored the possibilities of transforming an Interaction
Flow Modeling Language model into Normalized Systems elements by using
Normalized Systems Gateway Ontology for Conceptual Models.

After acquainting ourselves with problem domains, we started by imple-
menting the IFML meta model ontology. As a next step, a set of rules for
modeling using the prepared metamodel was proposed. This allowed us to
implement these rules in transformation application and therefore automatize
the whole process of IFML model transformation into an ontological IFML
model.

Afterward, the goal of transforming these IFML models into Normalized
Systems elements was pursued. And even though NSGO4CM is still in de-
velopment, we were able to show promising results when transforming our
ontological models. After getting acquainted with NSOGO4CM, sample map-
ping between NS and IFML meta-models was proposed and implemented.
After that, we successfully demonstrated the transformation using provided
tool.

There have been multiple issues encountered along the way, mostly because
of the exploratory nature of this thesis. There have been slight adjustments
made to the IFML metamodel when transforming it into ontology, in order to
simplify its usage and avoid some inconsistencies. Enterprise Architect IFML
implementation has proven to be imperfect as there was no standard way of
representing some of the associations in a machine-readable format, which we
however solved by providing additional information to our models. This could
possibly be avoided by using different modeling tools and it could therefore
lead to changes in our transformation application, however, we managed to
work around the issue somewhat successfully. Furthermore, our own appli-
cation had to be prepared in two iterations, resulting in two versions. This
is because once we acquired the NSGO4CM transformation tool, we had to
modify our own application output to make it compatible with the expected
input format.

73

10. Conclusion

As for further research, numerous possibilities appeared from the incom-
pleteness of our research as well as from the issues we have encountered along
the way. Another IFML modeling tool can be explored, and in case of a
better output format, the transformation could be simplified. Another pos-
sibility is to finish the IFML-NS metamodel mapping and demonstrate the
transformation on more complex models. Furthermore, additional research
in Normalized Systems can be pursued by looking into UI-specific Normal-
ized Systems expanders and structures and combining them with the IFML
models.

To summarize the contributions and achievements of this thesis, the most
notable one is the exploration itself and lessons learned along the way, and
the demonstration that this transformation is indeed possible. Hopefully, this
provides a positive outlook for future research into NS, NSGO4CM, and its
possibilities related to UI modeling. Another significant output is the IFML
meta model ontology which is publicly available and can be used in further
research. Additionally, we prepared the transformation application of IFML
diagram models exported from Enterprise Architect in XMI format into on-
tologies.

74

Bibliography

[1] Oorts, G.; Huysmans, P.; et al. Building Evolvable Software Using
Normalized Systems Theory: A Case Study. In 2014 47th Hawaii In-
ternational Conference on System Sciences, 2014, pp. 4760–4769, doi:
10.1109/HICSS.2014.585.

[2] Mannaert, H.; Verelst, J.; et al. The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability. Science of Computer Programming, volume 76, no. 12,
2011: pp. 1210–1222, ISSN 0167-6423, doi:https://doi.org/10.1016/
j.scico.2010.11.009, special Issue on Software Evolution, Adaptability and
Variability. Available from: https://www.sciencedirect.com/science/
article/pii/S016764231000208X

[3] Mannaert, H.; Verelst, J.; et al. Towards evolvable software architectures
based on systems theoretic stability. Software: Practice and Experience,
volume 42, no. 1, 2012: pp. 89–116, doi:https://doi.org/10.1002/spe.1051,
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.1051. Avail-
able from: https://onlinelibrary.wiley.com/doi/abs/10.1002/
spe.1051

[4] Mannaert, H.; De Cock, K.; et al. On the realization of meta-circular code
generation: the case of the normalized systems expanders. In Proceedings
of the Fourteenth International Conference on Software Engineering Ad-
vances (ICSEA), volume 2019, 2019, pp. 171–176.

[5] Brambilla, M.; Fraternali, P. Interaction Flow Modeling Language Spec-
ification. 2015. Available from: https://www.omg.org/spec/IFML/1.0/
PDF

[6] Koch, N. UML-based Web Engineering. 2016. Available from: http://
uwe.pst.ifi.lmu.de/index.html

75

https://www.sciencedirect.com/science/article/pii/S016764231000208X
https://www.sciencedirect.com/science/article/pii/S016764231000208X
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.1051
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1051
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1051
https://www.omg.org/spec/IFML/1.0/PDF
https://www.omg.org/spec/IFML/1.0/PDF
http://uwe.pst.ifi.lmu.de/index.html
http://uwe.pst.ifi.lmu.de/index.html

Bibliography

[7] Kroiß, C.; Koch, N.; et al. UWE Metamodel and Profile. 2011. Avail-
able from: http://uwe.pst.ifi.lmu.de/download/UWE-Metamodel-
Reference-v1.9.pdf

[8] Ceri, S.; Fraternali, P.; et al. Web Modeling Language (WebML): a mod-
eling language for designing Web sites. Comput. Networks, volume 33,
2000: pp. 137–157.

[9] Hamdani, M.; Butt, W. H.; et al. A Systematic Literature Review on In-
teraction Flow Modeling Language (IFML). ICMSS 2018, New York, NY,
USA: Association for Computing Machinery, 2018, ISBN 9781450354318,
p. 134–138, doi:10.1145/3180374.3181333. Available from: https://
doi.org/10.1145/3180374.3181333

[10] Ed-Douibi, H.; Bruneliere, H. Modeling software application front-
ends: introducing the open source IFML graphical editor. . .. In
EclipseCon North America 2015 - Modeling Symposium, San Francisco,
United States, Mar. 2015. Available from: https://hal.inria.fr/hal-
01146785

[11] Laaz, N.; Wakil, K.; et al. Comparative Analysis of Interaction Flow
Modeling Language Tools. Journal of Computer Science, 2018.

[12] Enterprise Architect User Guide Web Page. 2021. Available from:
https://sparxsystems.com/enterprise_architect_user_guide/
15.2/model_domains/ifml_tech.html

[13] Bernaschina, C.; Comai, S.; et al. IFMLEdit.org: Model Driven Rapid
Prototyping of Mobile Apps. In 2017 IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft),
2017, doi:10.1109/MOBILESoft.2017.15.

[14] Acerbis, R.; Bongio, A.; et al. Model-Driven Development Based on
OMG’s IFML with WebRatio Web and Mobile Platform. In Engineer-
ing the Web in the Big Data Era, edited by P. Cimiano; F. Frasincar;
G.-J. Houben; D. Schwabe, Cham: Springer International Publishing,
2015, ISBN 978-3-319-19890-3, pp. 605–608.

[15] Hitzler, P.; Krötzsch, M.; et al. OWL 2 web ontology language primer.
W3C recommendation, volume 27, 2009.

[16] Singh, G.; Bhatia, S.; et al. OWL2Bench: A Benchmark for OWL 2
Reasoners. In The Semantic Web – ISWC 2020, edited by J. Z. Pan;
V. Tamma; C. d’Amato; K. Janowicz; B. Fu; A. Polleres; O. Seneviratne;
L. Kagal, Cham: Springer International Publishing, 2020, ISBN 978-3-
030-62466-8.

76

http://uwe.pst.ifi.lmu.de/download/UWE-Metamodel-Reference-v1.9.pdf
http://uwe.pst.ifi.lmu.de/download/UWE-Metamodel-Reference-v1.9.pdf
https://doi.org/10.1145/3180374.3181333
https://doi.org/10.1145/3180374.3181333
https://hal.inria.fr/hal-01146785
https://hal.inria.fr/hal-01146785
https://sparxsystems.com/enterprise_architect_user_guide/15.2/model_domains/ifml_tech.html
https://sparxsystems.com/enterprise_architect_user_guide/15.2/model_domains/ifml_tech.html

Bibliography

[17] OWL2 Axioms Web Page. 2021. Available from: https://www.w3.org/
TR/owl2-syntax/#Axioms

[18] OWL2 Entities Web Page. 2021. Available from: https:
//www.w3.org/TR/owl2-syntax/#Entities.2C_Literals.2C_and_
Anonymous_Individuals

[19] OWL2 Guide Web Page. 2021. Available from: https://www.w3.org/TR/
2004/REC-owl-guide-20040210

[20] Horridge, M.; Jupp, S.; et al. A practical guide to building owl ontologies
using protégé 4 and co-ode tools edition1. 2. The university of Manch-
ester, volume 107, 2009.

[21] Resource Description Framework (RDF) Model and Syntax Specification.
1999. Available from: https://www.w3.org/TR/PR-rdf-syntax/

[22] Resource Description Framework Serialization Syntax. 2011. Available
from: https://www.w3.org/wiki/RdfSyntax

[23] RDF/XML Syntax Specification. 2004. Available from: https://
www.w3.org/TR/REC-rdf-syntax/

[24] Pérez, J.; Arenas, M.; et al. Semantics and Complexity of SPARQL.
ACM Trans. Database Syst., volume 34, no. 3, sep 2009, ISSN 0362-
5915, doi:10.1145/1567274.1567278. Available from: https://doi.org/
10.1145/1567274.1567278

[25] Musen, M. A. The protégé project: a look back and a look forward. AI
matters, volume 1, no. 4, 2015: pp. 4–12.

[26] Protege Web Page. 2021. Available from: https://
protege.stanford.edu/

[27] ProtegeAPI web page. 2022. Available from: https://
protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_
Guide

[28] IFML Examples web page. 2022. Available from: https://www.ifml.org/
ifml-examples/

[29] Suchánek, M. Towards a Normalized Systems Gateway Ontology for Con-
ceptual Models, [Dissertation Thesis (Unpublished)].

77

https://www.w3.org/TR/owl2-syntax/##Axioms
https://www.w3.org/TR/owl2-syntax/##Axioms
https://www.w3.org/TR/owl2-syntax/##Entities.2C_Literals.2C_and_Anonymous_Individuals
https://www.w3.org/TR/owl2-syntax/##Entities.2C_Literals.2C_and_Anonymous_Individuals
https://www.w3.org/TR/owl2-syntax/##Entities.2C_Literals.2C_and_Anonymous_Individuals
https://www.w3.org/TR/2004/REC-owl-guide-20040210
https://www.w3.org/TR/2004/REC-owl-guide-20040210
https://www.w3.org/TR/PR-rdf-syntax/
https://www.w3.org/wiki/RdfSyntax
https://www.w3.org/TR/REC-rdf-syntax/
https://www.w3.org/TR/REC-rdf-syntax/
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://protege.stanford.edu/
https://protege.stanford.edu/
https://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide
https://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide
https://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide
https://www.ifml.org/ifml-examples/
https://www.ifml.org/ifml-examples/

Appendix A
External attachments

External attachments are part of this work for better readability of modeled
diagrams. They are labeled according to the following list. All attachments
are contained in an attachments directory on the external device that has been
submitted with this thesis.

• R1 - Proof of Concept Example #1 in RDF Format

• R2 - Proof of Concept Example #2 in RDF Format

• I1 - Proof of Concept Example #1 as IFML diagram

• I2 - Proof of Concept Example #2 as IFML diagram

• T1 - Transformation Proof of Concept Example #1 in RDF Format

• T2 - Transformation Proof of Concept Example #2 in RDF Format

• C1 - Case Study IFML diagram

• C2 - Case Study - RDF graph

79

Appendix B
Acronyms

API Application Programming Interface

EA Enterprise Architect

IRI Internationalized Resource Identifier

UI User Interface

IFML Interaction Flow Modeling Language

NS Normalized Systems

NST Normalized System Theory

HTML Hyper Text Markup Language

MDG Model Driven Generation

W3 World Wide Web

OWL Web Ontology Language

RDF Resource Description Framework

BPMN Business Process Model and Notation

UWE UML-based Web Engineering

WebML Web Modelling Language

XML Extensible Markup Language

XMI XML Metadata Interchange

NSGO4CM Normalized Systems Gateway Ontology for Conceptual Models

URI Uniform Resource Identifier

81

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
attachements..................the directory with external attachments
src.......................................the directory of source codes

metamodel the directory with containing IFML ontology
application............the directory with source files of application
mapping.................. the directory with IFML-NS mapping files
ifml.eap enterprise architect project with examples
thesis the directory with LATEX source code of the thesis

thesis.pdf..............................the thesis text in PDF format

83

	Introduction
	Motivation
	Objectives
	Methodology

	Normalized Systems Theory
	Introduction To Normalized Systems
	Current State
	Theorems
	Separation Of Concerns
	Data Version Transparency
	Action Version Transparency
	Separation Of States

	Elements
	Data Element
	Task Element
	Workflow Element
	Connector Element
	Trigger Element

	Code Expanders

	UI Modelling & Design
	Alternatives
	UWE
	WebML

	Interaction Flow Modeling Language
	Introduction
	Modelling Aspects
	Concepts
	Core Concepts
	View Element
	View Container
	XOR View Container
	Landmark View Container
	Default View Container
	View Component
	Event
	Catching Event
	Throwing Event
	System Event
	View Element Event
	Action Event
	Action
	Navigation Flow
	Data Flow
	Parameter
	Parameter Binding
	Parameter Binding Group
	Activation Expression
	Interaction Flow Expression
	Module
	Port
	Port Definition
	Input Port
	Output Port
	View Component Part

	Extensibility
	Extension Concepts
	List
	Form
	Details
	Menu
	Field
	Simple Field
	Selection Field
	Validation Rule
	Window
	Modal Window
	Modeless Window
	Jumping Event
	Landing Event
	On Select Event
	On Submit Event
	On Load Event

	Usage & Tools
	IFML Editor Eclipse Plugin
	IFML In Enterprise Architect
	IFMLEdit.org
	WebRatio

	Semantic Web
	OWL 2
	Basic Notions
	Axioms
	Entities
	Expressions

	Core
	Class
	Individuals
	Properties

	Open World Assumptions

	RDF
	RDF/XML Syntax

	SPARQL
	Protege
	Protege API

	IFML Transformation
	Ontology Creation
	Creation Process
	Testing & Refactoring
	Final Product

	Proof Of Concept
	IFML
	Example #1
	Example #2
	Issue With ParameterBindings

	RDF
	Example #1
	Example #2

	Transformation Implementation
	Input/Output Definition
	XMI File
	RDF/OWL File

	Implementation Details
	Structure
	Basic Idea
	Inferring Relationships

	Usage
	Proof Of Concept
	Example #1
	Example #2

	Evaluation

	NSGO4CM Transformation
	Transformation Application Changes
	Mapping
	Proof Of Concept

	Case Study
	Requirements
	IFML Representation
	RDF Representation
	Final Result

	Evaluation
	Conclusion
	Bibliography
	External attachments
	Acronyms
	Contents of enclosed CD

