
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

ORM Library for Neo4j Graph Database in .NET Framework

Bc. Tomáš Starý

Ing. Marek Skotnica

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

The main goal of this work should be to analyze, design, and create an open-source

object-relational mapping library (ORM) for a graph database Neo4J in the .NET

framework. This solution should enable users to create queries using LINQ.

Steps to take:

- Review EntityFrameworkCore, Neo4j, and Cypher libraries

- Review existing approaches to ORM libraries for graph databases

- Design an ORM library for Neo4J in the .NET framework

- Implement an open-source proof-of-concept of the designed library

- Use test-driven development approach to test the ORM

- Evaluate the results and propose the steps to make the open-source project

sustainable for other developers

Electronically approved by Ing. Michal Valenta, Ph.D. on 15 November 2021 in Prague.

Master’s thesis

ORM Library for Neo4j Graph Database
in .NET Framework

Bc. Tomáš Starý

Department of software engineering

Supervisor: Ing. Marek Skotnica

April 26, 2022

Acknowledgements

My thanks go to my supervisor Ing. Marek Skotnica, for his support and
guidance. I would also like to thank everyone I bothered with the subject of
this thesis — thank you, my rubber ducks.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance
with Article 46 (6) of the Act, I hereby grant a nonexclusive authorization
(license) to utilize this thesis, including any and all computer programs in-
corporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on April 26, 2022

Czech Technical University in Prague

Faculty of Information Technology

© 2022 Tomáš Starý. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Starý, Tomáš. ORM Library for Neo4j Graph Database in .NET Framework.
Master’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2022. Also available from: ⟨https://github.com/TomStary/

masters-thesis⟩.

https://github.com/TomStary/masters-thesis
https://github.com/TomStary/masters-thesis

Abstrakt

Tato diplomová práce se zabývá návrhem a implemetencí knihovny, jež vzá-
jemně mapuje grafovou databázi a objekty .NET platformy. Dva hlavní cíle
knihovny jsou schopnost mapovat objekty do databáze a schopnost mapo-
vat dotazy z LINQ do Cypher dotazů a jejich výsledky do objektů. Na zá-
kladě analýzy grafovách databazí, Entity Frameworku a podobných řešení,
byl vytvořen návrh knihovny. Knihovna je nápsána v jazyce C# jakožto ově-
ření konceptu a má tedy omezenou funkčnost, zdrojové kódy jsou k dispo-
zici na GitHubu. V závěru je zhodnocen výsledek implementace a jsou před-
loženy návrhy na další vývoj.

Klíčová slova Entity Framework, grafové databáze, ORM, OGM, Neo4j,
.NET, .NET core

vii

Abstract

This master’s thesis aims to design and implement an object-graph mapper
library for the .NET platform. The two primary goals for the library are
the ability to map objects to the database and the ability to map queries
from LINQ to Cypher queries and their result to the object. Based on the
analysis of the graph database, Entity Framework and the similar solutions,
the design for the library was decided. The library is implemented in C# as
proof-of-concept with limited functionality, and the source code is available
on GitHub. At the end of the thesis, the implementation is evaluated, and
the next steps for development are proposed.

Keywords Entity Framework, graph databases, Neo4j, ORM, OGM, .NET,
.NET core

viii

Contents

Introduction 1
Graphs are everywhere . 1

What can graph databases offer? 2
How to use graph databases with object-oriented languages? 2

1 State of the art of graph databases 3
1.1 Native vs Non-native graph databases 6
1.2 Neo4j . 7
1.3 Cypher . 7

1.3.1 Nodes . 7
1.3.2 Relationships . 7
1.3.3 Nodes and relationship properties 8
1.3.4 Querying with Cypher 8
1.3.5 Create, update, and delete operations 9

1.4 ORM . 10
1.5 Summary . 11

2 State of the art EntityFramework and .NET platform 13
2.1 C# . 13
2.2 .NET . 14

2.2.1 Reflection . 14
2.2.2 LINQ . 15

2.3 Entity Framework Core . 16
2.3.1 DbSet . 16

ix

2.3.2 FindAsync . 17
2.4 Summary . 18

3 Existing OGM libraries for graph databases 19
3.1 Neo4j–OGM . 19

3.1.1 Neo4j drivers . 20
3.1.2 Entities . 20
3.1.3 Relationships . 20
3.1.4 Indexes . 21
3.1.5 Sessions . 22
3.1.6 Persisting entities . 23
3.1.7 Loading entities . 23
3.1.8 Transactions . 24

3.2 Summary . 24

4 Design of OGM library 25
4.1 Connect to a database . 25
4.2 Map objects into graph structure 26

4.2.1 Annotations . 26
4.2.2 Entity mapper . 27

4.3 Map LINQ query into Cypher query 27
4.3.1 IQueryable extension . 28
4.3.2 Query compilation . 30

4.4 Execute a command and retrieve the result 33
4.5 Map the result of the query to an object 33
4.6 Summary . 34

5 Implementation of proof-of-concept 35
5.1 Common infrastructure . 36

5.1.1 Building metadata . 37
5.1.2 The internal keyword 38
5.1.3 Building schema . 38
5.1.4 DbSet<T> . 40

5.2 Create or update nodes in a database 40
5.2.1 EntityGraphMapper . 41
5.2.2 IMultiStatementCypherCompiler 42
5.2.3 IStatement . 42

x

5.3 Mapping LINQ to Cypher . 43
5.3.1 Prepare LINQ query . 43
5.3.2 Expression visitors . 44

5.4 Summary . 46

6 Test-driven development 47
6.1 More information about TDD 48
6.2 SessionFactory tests . 49

6.2.1 Mocking . 49
6.3 Testing internal classes and methods 50
6.4 Setup and cleanup . 51
6.5 Summary . 51

7 Deployment 53
7.1 NuGet repository . 53
7.2 GitHub actions . 54
7.3 Setting up repository . 54
7.4 Summary . 55

8 Evaluation of the project 57
8.1 Next steps . 58

Conclusion 59

Bibliography 61

A Acronyms 65

B Contents of enclosed CD 67

xi

List of Figures

1.1 Relational database for social network 4
1.2 Graph database for social network 5

4.1 Components diagram . 26
4.2 IEntityMapper and ICompilerContext class diagrams 27
4.3 LINQ expression transformation 28
4.4 IAsyncQueryProvider and DbSet<TEnity> with extension class diagram 30
4.5 QueryCompiler compilation sequence 32
4.6 IResultCursor and IRecord interfaces 33

5.1 File structure . 36
5.2 Custom classes for translating LINQ expression tree 45

6.1 Test-driven development diagram [1] 48
6.2 Example of the report . 49

xiii

List of Tables

3.1 Available modes for indexes and constraints 22

xv

List of source codes

1.1 SQL query for getting followers of users who liked a post 4
1.2 Cypher query for getting followers of followers who liked a post 5
1.3 Create a new user with a nickname 9
1.4 Create a new relationship between two nodes 9
2.1 Person class with a Key attribute 15
2.2 The example of using reflection 15
3.1 An example of model with relationship entity 21
5.1 MetaData constructor . 37
5.2 HasNodeAttribute and HasRelationshipEntityAttribute exten-

sion methods . 38
5.3 IServiceCollection extension method 39
5.4 Internal implementation of save operation 41
5.5 IMultiStatementCypherCompiler interface 42
5.6 DbSet<T>.FindAsync implementation 44
6.1 Example of SessionFactory test with mocking of Assembly object 50
6.2 Snippet of Neo4j.OGM.csproj to access internal classes and meth-

ods inside test project . 51

xvii

Introduction

Graphs are everywhere
In today’s world, everything is highly connected. Graphs are an easy way
to describe and visualize these relations and can help to see connections we
would not otherwise catch.

We do not use graphs to store data in most of our applications today, mainly
because the first applications were made to take paper forms into the dig-
ital world. To keep these paper forms in digital format, we use relational
databases.

Since then, relational databases have been the go-to for every developer when
creating a new application. Using a relational database is helpful for several
reasons, mainly because the development cost is lower than using new tech-
nologies, and everyone is familiar with this type of DBMS. However, the lower
development price benefits are diminished in today’s world by the numerous
problems with using relational databases. For example, lengthy searches for
specific highly connected data and more complex relations are the main rea-
son why NoSQL databases have been gaining so many tractions for the last
decade.

The graph databases are made explicitly with relationships in mind. Every
vertex can have its connection with another one or even itself. This kind of
connection is not possible with a relational database where connecting two
rows means creating a relationship between two tables.

1

Introduction

What can graph databases offer?
We have discussed the problem with highly connected data and long searches,
but how does the graph database solve this issue? The key here is that we
will sooner or later find out that with more data comes more time spent on
the same select with a growing relational database. This behaviour is due
to numerous reasons, but the main one is that we are bound to make more
costly joins with more extensive tables. Our search will be over the same part
of the graph with a graph database no matter what happens with the rest.
Execution times should therefore be the same.

How to use graph databases with object-oriented
languages?
In most applications that communicate with a database, developers use an
ORM to create objects from the database. This is a widespread way to use
databases, and it is effortless to use. It creates an abstraction between the
object-oriented language and SQL. Thus developers do not need a deep knowl-
edge of SQL to use it.

ORMs are powerful, but they are used only with relational databases, which is
understandable given that ORM stands for Object-Relational Mapper. If we
would like to use a mapper between a graph database and an object-oriented
language, we would call it an Object-Graph Mapper (OGM). These types of
mappers are not as widespread as ORMs are.

In this thesis, we will go through the steps of creating the OGM library for
C#. Here is the outline of this thesis:

• Analyze graph databases

• Analyze Entity Framework and .NET platform

• Analyze existing solutions for OGM library

• Design the library

• Implement a proof-of-concept

• Use Test-Driven Development (TDD) to test the library

• Evaluate the result and propose the next steps

2

Chapter 1
State of the art of graph

databases

The first thing we need to know about graph databases is their definition:
“Graph databases store information in graphs, very similarly as relational
databases store information in tables and have relations between columns in
tables, graph databases store information in nodes and even on the edges, or
as we should call them, relations.” [2]

To better show the power of graph databases, we will show it in a real-world
example. Social networks dominate today’s internet content, and everyone
wants to be connected with his or her friends and relatives. In one of the
social networks, we have people who can post their thoughts or opinions.
Other users can follow them to see their posts and like them. We can identify
two entities with relations between them. In a relational database, it would
look like this.

3

1. State of the art of graph databases

Figure 1.1: Relational database for social network

From the schema in figure 1.1, we can see that we need four tables and five
foreign keys to describe all relations between two identified entities. This
design can lead to costly joins to answer requests resulting from relationships
between entities. For example, we could ask who follows followers who liked
someone’s post. The query for this example would look like the example in
code 1.1.

1 SELECT followers_of_followers_data.*
2 FROM post
3 JOIN user_likes fl ON post.id = fl.id_post
4 JOIN "user" followers_liked ON fl.id_follower = followers_liked.id
5 JOIN user_follows followers_of_followers ON followers_liked.id =

followers_of_followers.id_following↪→

6 JOIN "user" followers_of_followers_data ON
followers_of_followers.id_follower =
followers_of_followers_data.id

↪→

↪→

7 WHERE post.id = :post_id
8 ORDER BY followers_of_followers_data.name;

Code 1.1: SQL query for getting followers of users who liked a post

4

The query in code 1.1 is complex and hard to read. However, the main problem
is performance. As data in the database grows, the query execution time will
be longer due to the increasing size of the data needed to load. This increase in
execution time will happen regardless of the change in the actual result.

Now, we compare the same problem solved using a graph database.

Figure 1.2: Graph database for social network

The figure is the schema from the Neo4j database. Each node has one relation
or more to other nodes. Furthermore, the answer to our question from the
beginning is already visible. The question was: who follows users that liked
the post? To get the answer, we can follow the path in the graph, and as
we are going to discover in a moment, the query to get this information also
follows this path.

1 MATCH (:Post {id:
{post_id}})-[:LIKES]->(:User)-[:FOLLOWS]->(followers:User) RETURN
(followers);

↪→

↪→

Code 1.2: Cypher query for getting followers of followers who liked a post

5

1. State of the art of graph databases

As promised, the query in the example 1.2 should not be hard to under-
stand.

This small example was inspired by a blog post from Graham Cox, Introduc-
tion to Graph Databases. [3] It is designed to show the strength of graph
databases compared to relational databases.

1.1 Native vs Non-native graph databases
When dealing with graph databases, we have to look at two main DBMS
features: storage and processing.

Storage is how graphs are stored in memory. If the storage is optimized for
graphs, like having related nodes close together, we talk about native graph
storage. When implementation uses other NoSQL storage, they are called
non-native graph storage.

The second feature is processing, which refers to how graph databases process
database operations. What is meant by that is how the database treats queries
and how it handles storage. Native databases use Index-free adjacency for
processing. [4]

Index-free adjacency: “Native graphs take data that is logically connected
via arcs or relationships and hard-wire the physical RAM addresses of these
items into the node.” [5] This information should answer to why are graph
databases faster than other types of DBMS in searching related row, nodes
or documents. In traditional RDBMS, looking up a row in another table
means pulling an index table representing this relation and then finding a
path to the row in said table. This behaviour leads to another problem in
RDBMS because the database uses many indexes to keep data connected,
which negatively impacts insert operations.

One more thing we should go through is how the graph database handles
writes. Connected data requires strict data integrity. Graph databases have
to create or update nodes and relationships in one transaction; otherwise, this
could result in a corrupted graph, which is almost impossible to fix. The so-
lution to this problem is to write fully ACID-compliant transactions, ensuring
that the database will not become corrupted. [4]

6

1.2. Neo4j

1.2 Neo4j
Neo4j is a graph database management system developed by Neo4j, Inc. [6]
Neo4j is a native graph database and ACID-compliant. Besides DBMS, the
Neo4j company created a custom query language for graph databases called
Cypher. [7]

1.3 Cypher
Cypher is a query language created by Neo4j initially for their graph database.
Nowadays, it is possible to use Cypher on other graph databases using open-
Cypher, an open-source project for other graph DBMS. [8]

From Neo4j’s documentation: Its philosophy is to be easily read and under-
stood by developers, database professionals, and business stakeholders. Its
ease of use derives from the fact that it is in accord with how we intuitively
describe graphs using diagrams. [9]

1.3.1 Nodes
To depict nodes in Cypher, we surround the node with parentheses, e.g.,
(node). Parentheses were chosen because they look like circles, a standard
visual representation of nodes in the graph. [10]

If we need to refer to the node, we can give it a variable like (u) for a user or
(p) for a post. In real-world queries, full names of variables should be used to
understand the query better.

With variables, we mentioned the possibility of giving a variable name to the
nodes, but how can we distinguish two nodes from one to the other. We can
do this by assigning labels to each node. Labels are like tags or table names,
which specify certain entities in the graph. If we look back to our example of
users and posts, we already used the two labels: (p:Post) and (u:User).

Specifying labels also has another benefit. When not using labels in a query,
the database has to look for all nodes, which can negatively impact the per-
formance of the query. [10]

1.3.2 Relationships
Relationships are representations of edges in a graph between nodes. They are
marked in Cypher using an arrow --> or <-- between two nodes. Additional
information, such as by which relationship type are two nodes connected and

7

1. State of the art of graph databases

any properties of the relationship, can be placed in square brackets inside the
arrow ((p:Post)-[:AUTHOR]->(u:User)). [10]

The direction of the relationship must be present only while creating the
relationship. During the traversal of the graph, it is possible to omit the
direction by using two dashes (--). This syntax can make queries more flexible
and not force users to know in which directions are relationships stored in the
database. The tradeoff is a small performance loss.

Like with nodes, variables can be used to refer to relationships. If we do not
need to reference the relationship later. We can leave any specification for a
relationship using two dashes (--).

1.3.3 Nodes and relationship properties
One thing that was not mentioned yet regarding nodes and relationships is
properties. Each node and even each relationship can have one or more prop-
erties assigned to them.

Properties are name-value pairs providing additional detail. To represent them
in the query, we place them in curly brackets. [10] Below is two examples of
this usage, one for node and the other for relationship.

• Node property: (u:User { nickname: 'mr. Incognito' })

• Relationship property:
-[rel:AUTHOR { posted: 2022-02-05T12:12:20Z }]

1.3.4 Querying with Cypher
Cypher has few words reserved for specific actions called keywords like most
other programming languages. [11] First, look at the two most common key-
words:

• MATCH: This keyword is what searches for an existing node, relationship,
label, property, or pattern in the database. MATCH does work similarly to
the SELECT in SQL.

• RETURN: The RETURN keyword defines what values or results we want to
retrieve from the database. It is used mainly in search queries as it is not
required to be used during writing procedures. RETURN does utilize the
node and relationship variables. If we want to return any results from

8

1.3. Cypher

defined MATCH, we must specify which nodes, relationships, properties, or
patterns we want to return.

1.3.5 Create, update, and delete operations
Besides queries, a proper database system must have methods to create, up-
date or delete data.

The function CREATE is used to insert new data into a database. Using CREATE,
we can create nodes, relationships, and also patterns. Below are some exam-
ples (1.3, 1.4) of how CREATE is used. [12]

1 CREATE (u:User {nickname: "mr. Incognito"})
2 RETURN u

Code 1.3: Create a new user with a nickname

In the following example 1.4, we will use MATCH to create a relationship between
two nodes. If we used the CREATE keyword for creating the relationship without
the MATCH, we would introduce duplicities of both nodes.

1 MATCH (u:User {nickname: "mr. Incognito"})
2 MATCH (p:Post {title: "Hello, world!"})
3 CREATE (u)<-[:AUTHOR]-(p)

Code 1.4: Create a new relationship between two nodes

There is another way to create this relationship, and we will look at it later
in this chapter.

To update data in the database, Cypher uses the SET keyword, which can
create or update node or relationship properties.

If we want to delete a node or relationship, we use the DELETE keyword. This
is similar to how SQL DELETE works, but with one exception. If a node is in a
relationship with another node, we cannot delete it because it would create an
inconsistent graph, with a potential relationship pointing to nothing. [12] We

9

1. State of the art of graph databases

could run two queries to delete the relationship and delete the node itself, but
there is a more straightforward solution. We can use DETACH DELETE, which
does detach all relationships from the node before deleting it.

1.4 ORM
ORM stands for an object-relational mapper based on the object-relational
mapping concept. Object-relational mapping is the idea of writing queries
using the object-oriented paradigm. There are some limitations to what ORM
can accomplish. Developers should always consider these limits before using
an ORM framework. [13]

Pros:

• There is no need to use a second language during software development,
SQL is a powerful language, but most developers do not use it too often.

• ORM abstracts away from the database system.

• It can lead to better performance than writing queries by ourselves.

Cons:

• If a developer is an SQL power user, he can write queries that will have
better performance.

• Developers have to learn how to use ORM properly.

• Developers still need to know how ORM works under the hood.

Using the term ORM with graph databases is not correct. The proper term
would be OGM (object-graph mapper), but there are a few reasons why we
are using ORM instead of OGM in the name of this thesis. However, please
make no mistake. When discussing ORM involving graph databases, it is, in
fact, OGM. The main reason is simple: ORM has been around for more than a
decade, and developers are familiar with the concept and its challenges.

The differences between ORM and OGM are mainly in the target DBMS.
They are not interchangeable, however.

10

1.5. Summary

1.5 Summary
This chapter introduced graph databases and compared them to relational
DBMS. We compared the queries of both types of databases and their dif-
ferences. We also studied the differences between native and non-native
databases.

The rest of this chapter focused on Neo4j and Cypher language, where we
introduced the basics of this language, like how relationships and nodes are
defined and base keywords used in Cypher.

In the end, we also adequately introduced the concept of ORM and its relation
to OGM.

11

Chapter 2
State of the art

EntityFramework and .NET
platform

If anyone wants to create ORM or OGM for the .NET platform in C#, they
should go through some principles that are used in EntityFramework and
.NET platform. This chapter will go through these principles with insight
into the technologies used.

2.1 C#

C# is a general-purpose, type-safe, object-oriented programming language, the
goal of which is programmer productivity. To this end, the language balances
simplicity, expressiveness, and performance. [14]

Microsoft has created and is developing the C# language. When writing this
thesis, the current version of the C# is C# 10.

The C# code is statically compiled down to Common Intermediate Language.
CIL cannot be run by itself on a machine. CIL runtime or Common Language
Runtime (CLR) must be used. Using Just-In-Time (JIT) compilation, CLR
reads CIL and translates CIL to native code or sometimes called machine
code. The machine’s processor can then read machine code. Using CIL and
CLR has benefits in running code cross-platform without recompiling code for
different processors, at the cost of some performance. [15]

13

2. State of the art EntityFramework and .NET platform

2.2 .NET
.NET is a framework written for C# and other languages such as F# and
Visual Basic, which Microsoft also develops. In their own words: “.NET is
an open-source developer platform, created by Microsoft, for building many
different types of applications.” [16]

The .NET platform went through many changes, and one of them was the
introduction of the .NET Core version of the .NET platform. .NET Core is
a cross-platform implementation of the .NET platform. At the same time,
the .NET Framework was also developed, which was only supported on the
Windows platform. The .NET Core and .NET Framework were merged in the
.NET version 5.0. From this version on, and the .NET platform has only one
version for the whole platform.

To compile a library or program with a .NET platform, developers must first
download and install a .NET Software Development Kit (SDK). .NET Soft-
ware Development Kit (SDK) is either a standalone Command Line Interface
(CLI) tool or embedded inside an IDE, for example, in Visual Studio from
Microsoft.

One part of the .NET platform we will need for any mapper will be a reflec-
tion.

2.2.1 Reflection
The reflection pattern is used to access the class and its methods and fields.
We can access the class and its methods and fields without knowing its imple-
mentation. This feature has to be supported by the programming language
itself. For example, C# supports reflection and is widely used in many popular
libraries.

Reflection works by scanning the program’s implementations and creating
metadata about the classes and methods. This metadata is stored in the
program’s memory and accessible at runtime.

For example, the following class:

14

2.2. .NET

1 public class Person
2 {
3 [Key]
4 public string Name { get; set; }
5 public int Age { get; set; }
6 }

Code 2.1: Person class with a Key attribute

If we would want to know if the class does contain a field with KeyAttribute
annotation, we could use the following code 2.2 to get the MemberInfo in-
stance:

1 public bool HasKeyAttribute(Type type)
2 {
3 var members = type.GetMembers();
4 return members.Any(member => member.GetCustomAttributes()
5 .OfType<EndNodeAttribute>()
6 .Any());
7 }

Code 2.2: The example of using reflection

We would use this code in cases where we do not know how an object is
implemented.

2.2.2 LINQ
In the previous section, we used a method called Any to check if a collection
contains an element. This method is part of a library in .NET called LINQ.
LINQ stands for Language Integrated Query, and it is a library that provides
a set of methods that can be used to query objects. We can filter, order,
group, and transform data using this library.

LINQ is internally working as an expression tree, each command as an ex-
pression. The expression tree is immutable and evaluated at runtime, and
developers can use the tree to analyze and convert it to SQL, for exam-

15

2. State of the art EntityFramework and .NET platform

ple. To extend expression tree capabilities, LINQ provides an abstract class
ExpressionVisitor, called for each expression combined with extension for
IQueryable<T> and other tools.

With LINQ, we can write queries in a more readable way. These queries can
then be translated to SQL queries, for example. This feature is used in Entity
Framework.

2.3 Entity Framework Core
The Entity Framework is an ORM with the support of writing queries using
LINQ expressions.

When we are talking about Entity Framework, we are talking about the latest
version of this framework, Entity Framework Core or EFCore, as it is known
in the community. This version was released for .NET Core 1.0, the first
Microsoft version of .NET purposely built for multiplatform use.

To use Entity Framework, developers must add another dependency to their
projects. This dependency is for Entity Framework and its called provider,
which is used to provide connection and extend translation capabilities for
Entity Framework to work correctly over a specific database.

If we want to know how Entity Framework translates LINQ queries to SQL
queries, we need to look at the implementation of the Entity Framework. The
translation is separated into several parts, but the most important parts are
implementations of the QueryableMethodTranslatingExpressionVisitor

class which translates the LINQ method into custom expression, and the
QuerySqlGenerator which translates the expression into SQL. There are more
expression visitors and generators, but these are the most important ones.

2.3.1 DbSet
An inseparable part of the Entity Framework Core is the DbSet. This class
is used to query data from the database. The Entity Framework creates it,
and it is an implementation of IQueryable<T> interface. This interface is the
backbone of LINQ.

With this abstract class, we can create queries to the database and add or
update entities to the change tracker. Change tracker is then used for saving
operation, where it is checked what changes in objects were made and then

16

2.3. Entity Framework Core

they are saved to the database using DbContext.SaveChanges method or its
asynchronous version DbContext.SaveChangesAsync.

DbSet implements methods in both synchronous and asynchronous versions.
The main benefit of asynchronous versions is that they are not blocking the
thread. They are using Task to run the code on another thread from a thread
pool or outside of the application’s thread pool if possible. This is done by
using async keyword.

To show the exact process of generating a query from LINQ to SQL, we will
go through the implementation of one of the methods in the DbSet class.

2.3.2 FindAsync
The FindAsync method is used to find an entity by its primary key. If the
entity is not found, it returns default value for given object. It takes 1 to
n parameters of type object. These parameters are mapped to the primary
keys of the entity. If the number of parameters is not equal to the number of
primary keys, the exception is thrown.

We are now going to analyze the implementation of the FindAsync method.
The code for this method and the whole Entity Framework is available in the
GitHub repository at https://github.com/dotnet/efcore.

Inside the concrete implementation of the DbSet<T> abstract class the
FindAsync method call method from IEntityFinder inteface called
FindAsync. The IEntityFinder.FindAsync method is what starts the transla-
tion process of the query by creating the source LINQ query. The find method
is used the FirstOrDefaultAsync method, which is equivalent to FirstOrDefault

method in LINQ. This method accepts a lambda function as a predicate for
the query. This predicate is build inside the EntityFinder class.

The FirstOrDefaultAsync is an extension method for IQueryable interface,
and as the name suggests, it is used for retrieving the first element of a se-
quence or a default value if the sequence contains no elements. This extension
method starts the process of translation and enumeration of the result from
the database.

Translation of the query works by overriding the default provider for
IQueryable done insede the DbSet<T> abstract class. The custom provider
is defined by the IAsyncQueryProvider interface. If we skip to the translation

17

https://github.com/dotnet/efcore

2. State of the art EntityFramework and .NET platform

process itself, we will find ourselves in the QueryCompilationCOntext class in-
side, which is a method CreateQueryExecutor. This method is responsible for
transforming the expression tree for our query. The process is divided into a
few steps preprocessing, translating methods, and postprocessing. At the end
of this method is the translation of the expression tree into a custom lambda
function, which is used to execute the query, enumerate the result and re-
turn it. Each step of the translation process uses an implementation of the
ExpressionVisitor abstract class with different overrides.

2.4 Summary
We are now acquainted with Entity Framework and some of its principles.
This chapter gave us an idea of what it means to implement OGM with LINQ
support. Based on this research, we will build the part of the library respon-
sible for translating LINQ to Cypher.

18

Chapter 3
Existing OGM libraries for graph

databases

Searching for OGM for Neo4j in C# did not result in any working, well main-
tained, and well documented OGM library. However, there is a library written
by the Neo4j company itself in Java called Neo4j–OGM. In this chapter, we
will study this library and conclude its relevance for our goal of building a
OGM library for the .NET platform.

3.1 Neo4j–OGM
Neo4j company has already created an OGM for their DBMS. It supports
dynamic objects and maps nodes and their relations into the domain model
written in Java.

The list of features from the official documentation: [7]

• Object graph mapping of annotated node- and relationship-entities

• Neo4jSession for direct interaction with Neo4j

• Fast class metadata scanning

• Optimized management of data loading and change tracking for minimal
data transfers

• Multiple transports: binary (bolt), HTTP and embedded

• Persistence lifecycle events

19

3. Existing OGM libraries for graph databases

• Query result projection to data transfer objects (DTO)

The following sections are information obtained from the official documenta-
tion of Neo4j–OGM for Java. [17]

3.1.1 Neo4j drivers
There are three possible drivers to use, Bolt driver, HTTP driver, or embedded
driver, which creates an in-memory Neo4j database instance.

Using a different driver in the development or test environment will not affect
the production code. These drivers are interchangeable without the need for
modification in queries.

3.1.2 Entities
The library offers the possibility to define and shape entities and relation-
ships. @NodeEntity annotation is used to declare that a Plain Old Java Object
(POJO)is a representation of a node. This class must have one empty public
constructor to allow the library to construct the objects.

Fields on the entity are by default mapped to properties of the node. Fields ref-
erencing other node entities (or collections) are linked with relationships.

If we want to change fields name or other properties, we can use annotations
like @Property, @Id, @GeneratedValue, or @Relationship. On the other hand,
if we want to not include a field in the node, we can use @Transient annota-
tion.

3.1.3 Relationships
Every field of an entity that references one or more other node entities is
backed by relationships in the graph. These relationships are managed by
Neo4j–OGM automatically.

If we want to specify relationship properties, like the direction of the relation-
ship, the @Relationship annotation is used. The directions are either INCOMING,
OUTGOING, or UNDIRECTED, where the last one ensures that the path between two
node entities is navigable from either side.

Relationships in a graph database can have properties assigned to them.
Neo4j–OGM supports this feature using an (POJO) with annotation
@RelationshipEntity.

20

3.1. Neo4j–OGM

A String attribute called “type” is available on the @RelationshipEntity anno-
tation to control the relationship type. Like the simple strategy for labelling
node entities, if “type” is not provided, the class’s name derives from the rela-
tionship type, although it is converted into a snake case with an upper casing
to honour the naming conventions Neo4j relationships. [17]

Inside the entity, we then define @StartNode and @EndNode annotations. In
referenced entities, we also define a reference to the related entity and use
@Relationship annotation with the same type as is in @RelationshipEntity

annotation.

In the code example 3.1 is a simple example of using @RelationshipEntity.

1 @NodeEntity
2 public class Actor {
3 Long id;
4 @Relationship(type="PLAYED_IN") private Role playedIn;
5 }
6

7 @RelationshipEntity(type = "PLAYED_IN")
8 public class Role {
9 @Id @GeneratedValue private Long relationshipId;

10 @Property private String title;
11 @StartNode private Actor actor;
12 @EndNode private Movie movie;
13 }
14

15 @NodeEntity
16 public class Movie {
17 private Long id;
18 private String title;
19 }

Code 3.1: An example of model with relationship entity

3.1.4 Indexes
Indexes are also defined by using an annotation. We already saw one of them:
the @Id annotation used for the primary index.

Primary indexes are not the only type of index we can define in our model.

21

3. Existing OGM libraries for graph databases

We can also define indexes for other properties using @Index annotation, and
the index will have unique constraint if we use @Index(unique=true).

This library also supports composite indexes and node constraints
with @CompositeIndex and @CompositeIndex(unique = true) annotations, re-
spectively.

@Required is an existence constraint. “It is possible to annotate properties in
both node and relationship entities. For node entities the label of declaring
class is used to create the constraint. For relationship entities the relationship
type is used — such type must be defined on leaf class.” [17]

The library can handle creating and managing indexes or constraints, but as
stated in the documentation [17], this feature should be used only for devel-
opment and not in production. That is why this feature is, by default, turned
off.

These are the available modes for managing indexes and constraints:

node Default, nothing is done on the side of the OGM library.
validate This ensures that all constraints and indexes are in the database

before starting up.
assert This drops all indexes on startup and then creates only these

defined by OGM annotations.
update Update indexes and constraints based on annotations.
dump Dumps all indexes and constraints to a file.

Table 3.1: Available modes for indexes and constraints

3.1.5 Sessions
To interact with mapped entities, Neo4j–OGM requires an instance of the
Session class, which can be created by using SessionFactory class. Besides
creating Session, SessionFactory also setups up the object graph mapping
metadata when constructed. The metadata are used across all Session in-
stances created by SessionFactory.

Session keeps track of mapped entities, their changes, and changes in their
relationships. Tracking is then used when saving or otherwise working with
mapped entities. When an entity is loaded by an instance of the Session class,
the result is cached within the Session instance.

22

3.1. Neo4j–OGM

To keep new data and not prolong sessions too much, session lifetime can
be managed in code. Too long session lifetime means that other users can
change data causing concurrency exceptions, and too short a lifetime means
costly save operations will be executed more often. There is a way to force
the session’s cache to clear, but it is advised against it.

Neo4j–OGM use Cypher queries only for its operations, which limits the ca-
pabilities of the Neo4j–OGM library. Documentation suggests using server-
side operations for more complex or performant graph traversals over the
graph. Nevertheless, Cypher should be powerful enough for most of the prob-
lems.

3.1.6 Persisting entities
The session allows to save, load and delete entities with transaction handling
and exception translation managed. Persistence is performed through method
save. This method then looks at underlying MappingContext and compares
data loaded from the database with the saved entity, creating appropriate
Cypher queries to update the database based on differences. Calling save is
necessary to propagate changes because Neo4j–OGM does not automatically
commit changes.

The save method has a second optional parameter: the depth, which can
restrict how deep will the save operation in the graph for given entities. The
default value is -1, which means saving every change in node and all reachable
nodes from it into the database. This approach is recommended because of
possible inconsistencies that could happen.

3.1.7 Loading entities
Loading entities can be done using methods session.loadxxx or writing a cus-
tom Cypher query with methods session.query

and session.queryForObject. Like the depth parameter for the saving func-
tion, the load functions also have a depth parameter.

Depth is there to determine how many depths of relatives will be loaded
with the query. The default behaviour is to load the object’s properties and
neighbours. This behaviour represents loading data using a depth set to value
1. Depth is mainly helpful when loading deeper than broader parts of a graph
and helps developers execute fewer load operations from the database.

When using load methods from the session, the session uses LoadStrategy

23

3. Existing OGM libraries for graph databases

to generate a RETURN clause. The default strategy is schema loading, which
uses entities metadata. The other is the path load strategy that uses paths
from the root node. It is possible to change the strategy for a query using
Session.setStrategy or globally by calling SessionFactory.setStrategy.

3.1.8 Transactions
Neo4j uses transactions, which means queries can be executed only in trans-
action boundaries. Neo4j–OGM offers tools to manage transactions. The
developer does not have to use them because the session handles them inde-
pendently. However, with the auto-commit transaction.

3.2 Summary
This chapter introduced the Neo4j–OGM library, its features, and how to use
them. We studied them to understand what is needed for an implementation
of an OGM in any language.

24

Chapter 4
Design of OGM library

We should now have all information we need to propose our solution for OGM
using the C# language and .NET platform. Before we start designing individ-
ual pieces of the library, we need to define a list of requirements that should
the library meet.

The solution should be able to:

• connect to a database

• map objects into graph structure

• map LINQ query into Cypher query

• execute a command in a database

• retrieve a result from the database

• map the result from the database into objects

With these minimal requirements set, we can now go through them, analyze
them, and design individual solutions for them.

4.1 Connect to a database
Neo4j company has created a client for .NET that supports both “bolt” and
“neo4j” URI schemes. [18] This driver is a NuGet package, publicly accessible
and licensed under Apache 2.0 license. This means we can use this driver in
our library as a dependency.

25

4. Design of OGM library

The library should handle the driver’s lifecycle. During startup, the applica-
tion should create an instance of the driver and then correctly destroy this
instance on exit.

In the figure 4.1 is a visualisation of connections between components.

Figure 4.1: Components diagram

We will use Neo4j’s official driver for connection, but we need to encapsulate
it into our library. We will define a set of parameters for our library to ensure
we have everything we need to create a connection to the database.

4.2 Map objects into graph structure
To create Cypher queries from the objects, we need to know the graph struc-
ture described in a user’s domain.

What we need to do is build metadata. To build metadata, we first need infor-
mation, which assemblies contain models representing nodes and relationships
in a graph. The end-user of our library must declare these assemblies as it
would be slow for our library to scan all available assemblies.

4.2.1 Annotations
To create a metadata object, we need to identify and process nodes and rela-
tionships. We need to have a way for end-users to describe each node and its
relationship with all properties they want to define.

26

4.3. Map LINQ query into Cypher query

We already have a solution to this problem, and Neo4j–OGM uses it too to
solve the same issue. We will use annotations using attributes to describe
nodes and their relationships.

We will look for these annotations during initialization using reflection, which
is well supported by C# and the .NET platform. With annotation, we can
describe the graph and create the metadata object.

4.2.2 Entity mapper
Entity mapper is a part of our library responsible for mapping entities into
builders, which can be translated into Cypher queries.

For this purpose, we will define a interface IEntityMapper. This interface will
contain this list of public methods:

• Map: this method map an entity to a ICompilerContext

• CompilerContext: this method returns a current instance of
ICompilerContext

In the picture 4.2 is class diagram showing entity mapper part of the library.
The interface ICompilerContext contains methods for controlling the context
of mapped nodes and relationships. These methods are used during mapping
an entity in the IEntityMapper.Map method.

Figure 4.2: IEntityMapper and ICompilerContext class diagrams

4.3 Map LINQ query into Cypher query
Mapping a LINQ query to a Cypher query is a bit more complicated. As we
already know, from our analysis of the Entity Framework, LINQ is translated
into a custom expression tree and then into a lambda function which executes
the query. We will have to create a custom expression tree similar to the one

27

4. Design of OGM library

used in the Entity Framework but optimized for Cypher language. We can
illustrate the process of transformation using the state diagram 4.3.

Figure 4.3: LINQ expression transformation

4.3.1 IQueryable extension
If we want to communicate with the database, the IQueryable instance must
have a correct data provider. This provider must be able to transform the ex-

28

4.3. Map LINQ query into Cypher query

pression tree into a Cypher query and enumerate the result from the database
asynchronously because of the limitation of the driver. We are going to extend
IQueryProvider interface with IAsyncQueryProvider interface which declares
IAsyncQueryProvider.ExecuteAsync<T> method.

To set a correct provider we are going to define new class that implements
IQueryable<T> interface called DbSet<T>. The name of the class is the same
as it is in Entity Framework. Besides implementing IQueryable<T> interface
DbSet<T> class also implements IAsyncEnumerable<T> interface, because we will
use asynchronous enumeration.

Because we are communicating with a database using asynchronous oper-
ations, we need to create extension methods for DbSet<T> which are asyn-
chronous. For example, LINQ has method called FirstOrDefault which re-
turns first element of IQueryable<T> or default value of type T. We will ahve
to create an extension of IQueryable<T> with method FirstOrDefaultAsync.
This will be similar to most of the methods from LINQ.

Inside this extension method, we will call providers
IAsyncQueryProvider.ExecuteAsync<T> method. This is our entry point, from
which we will start a translation of the expression tree into a Cypher query
and enumerate the result.

For better visualisation, here 4.4 is class diagram of query provider and
DbSet<T> class.

29

4. Design of OGM library

Figure 4.4: IAsyncQueryProvider and DbSet<TEnity> with extension class dia-
gram

4.3.2 Query compilation
To best visualize the process of query compilation, we will use sequence di-
agram 4.5. In this diagram, we are using different implementations of the
ExpressionVisitor abstract class to be used in the different steps of the trans-
lation of a LINQ query into a Cypher query.

The result of this compilation will be a Func<QueryContext, TResult>, which is
an object representing the function with the instance of the QueryContext class
as a paramater and return object of TResult type. This function does both a
query execution and enumerates a result from a database response.

In the sequence diagram 4.5, are three expression tree visitors, each serving
different purpose. Using these visitors gives us the ability to quickly expand
our library’s capabilities. We can also further expand the capabilities of de-
fined visitors inside their implementation.

30

4.3. Map LINQ query into Cypher query

We should also introduce the concerns of each visitor. The first one that is
used in the diagram is ParameterExtractingExpressionVisitor, which extracts
parameters from the original expression.

The next one is QueryableMethodTranslationExpressionVisitor, this visitor
will be responsible for translating the original LINQ query into an expression
tree that will be consisted of CypherExpression derivatives, which will copy
the Cypher language structure.

The last visitor is ShapedQueryCompilinExpressionVisitor, it is responsible for
taking a ShapedQueryExpression and translating it into a
Expression.Call expression, which can be then compiled into
the Func<QueryContext, TResult> object.

31

4. Design of OGM library

Figure 4.5: QueryCompiler compilation sequence
32

4.4. Execute a command and retrieve the result

4.4 Execute a command and retrieve the
result

We have already decided to use the official Neo4j .NET driver for communica-
tions with the database. From this library, the result of any query is returned
using the IResultCursor interface. This interface is somewhat similar to an
asynchronous enumerator, but it does not implement the IAsyncEnumerable<T>

interface. The IResultCursor interface declares methods as show on the 4.6
picture. We will have to adapt our code to use this interface. We are going
to use these methods inside a proper implementation of IAsyncEnumerable<T>

interface.

Figure 4.6: IResultCursor and IRecord interfaces

4.5 Map the result of the query to an object
Mapping the result into an object is our last step. We already know from 4.6
class diagram, that we can access an IRecord interface using
IResultCursor.Current property. This interface represents a single result of
the query, which is defined in Cypher using the RETURN clause.

Our mapper needs to read the result and correctly choose the right key from
the values. IRecord is not a representation of a single node or relationship,
but it is a representation of the RETURN clause, meaning that it contains all the
values of the RETURN clause. Mapper needs to know which key contains which
entity and or value.

We can solve this issue by creating an extension method that will extend an
IRecord interface and accept a string parameter defining an alias of value.
This method will return either a value or an entity.

33

4. Design of OGM library

4.6 Summary
In this chapter, we designed a solution for an OGM library in .NET with LINQ
to Cypher translation. We started with defining six critical requirements that
our library must solve and then went through each one and proposed a solution
for them.

We defined how we would handle creating a connection to the database using
Neo4j’s official driver for the .NET platform. Then we moved on to the prob-
lem of mapping objects into graph structure using annotations and reflection.
We also proposed a solution for mapping LINQ queries to Cypher queries. At
the end of the chapter, we went over the process of executions and mapping
the Cypher query and its result into objects.

With this design, we should have all that we need to successfully implement
OGM library for .NET with LINQ to Cypher translation.

34

Chapter 5
Implementation of

proof-of-concept

With the library’s design done, we can now start implementing proof-of-
concept. In the beginning, we should define the goals we want to accomplish
in the proof-of-concept. These are the goals:

• Create or update nodes in a database

• Map LINQ to Cypher

Before we start the implementation, we also need to introduce the tools used.
The main tools used are Visual Studio Code with multiple plugins like Copi-
lot and C# extension. Github is used as VCS. Code is available at this URL
https://github.com/TomStary/dotnet-neo4j-ogm or in the appendix of this the-
sis.

To create a new project in .NET, we will use the following command in the
terminal application: dotnet new classlib with a parameter for the name of
the project. We also want to separate tests from the source code of the library,
so we employ a file structure like this 5.1.

35

https://github.com/TomStary/dotnet-neo4j-ogm

5. Implementation of proof-of-concept

dotnet-neo4j-ogm
src

Neo4j.OGM
tests

Neo4j.OGM.Tests
.gitignore
Neo4j.OGM.sln

Figure 5.1: File structure

With the file structure prepared, we can begin our implementation. During
the development of this library, we will use Test-Driven Development (TDD).
We will not go deep into this approach in this chapter, as it will be described
in the next chapter, but keep in mind that during development, TDD was
used as it is an excellent way to develop libraries.

5.1 Common infrastructure
If we want to achieve set goals for proof-of-concept, we will need a common
infrastructure like the implementation of ISession interface. This interface
can be described as an entry point for all of our operations with the database.
It will handle both saving entities and creating DbSet<T> instances, which can
be used to query over entities using LINQ.

For the session to work properly, we need to have a few things:

• connection to the database

• domain metadata

The connection to a database and domain metadata can be acquired from
the session’s constructor. However, the best solution is to use SessionFactory

instead. Using a factory has many benefits. The client’s code will not be
responsible for creating a connection to the database for each instance of
the Session class. It will also have a cached domain metadata object. An-
other benefit is that it will be possible to hide the concrete implementation of
ISession interface.

Implementation of SessionFactory is simple, we create a class with constructor
accepts three parameters:

• string connectionString — contains connection string to the database

36

5.1. Common infrastructure

• IAuthToken token — token created by AuthTokens class from Neo4j drivers
library, used to authenticate connections to the database

• params Assembly[] assemblies — assemblies containing domain models

Using the first two parameters, we can create IDriver instance, which will
be used to create session instances. The third parameter is special because
the type of the parameter is prefixed with keyword params. It means we can
call the constructor with as many instances of Assembly as we want (we are
limited only by language itself, which has a cap at 214 parameters). From
C# documentation: “No additional parameters are permitted after the params

keyword in a method declaration, and only one params keyword is permitted
in a method declaration.” [19]

The assemblies refer to where domain models are located; we need from the
client’s code information which assemblies to scan using reflection to pick up
classes representing nodes and relationships. We will use this information
during building metadata objects.

5.1.1 Building metadata
We described the importance of metadata, but how are we going to obtain
them. We already have assemblies from client’s code, that should contain the
domain model. We use these assemblies in MetaData class constructor. Here
is an actual implementation of MetaData constructor:

1 /// <summary>
2 /// MetaData constructor.
3 /// </summary>
4 /// <param name="assemblies">Assemblies containing domain

model.</param>↪→

5 public MetaData(params Assembly[] assemblies)
6 {
7 _domainInfo = new DomainInfo(assemblies);
8 Schema = new SchemaBuilder(_domainInfo).Build();
9 }

Code 5.1: MetaData constructor

We can now see how are the assemblies passed to the DomainInfo construc-

37

5. Implementation of proof-of-concept

tor. Inside this class, we are going through all the assemblies and scanning
all classes obtained by the Assembly.GetType method. This method returns
an array of Type objects representing all the types in the assembly. We then
check each Type if it has an annotation for the node or relationship. Us-
ing our custom extension methods for the Type type, HasNodeAttribute and
HasRelationshipEntityAttribute. If the type has the annotation, we will add
it to the correct dictionary, which will be used while building the schema. We
can see how this is done in the code example 5.2.

1 /// <summary>
2 /// Check if given <see cref="Type" does have the <see

cref="NodeAttribute"> applied as custom attribute.↪→

3 /// </summary>
4 internal static bool HasNodeAttribute(this Type type)
5 => type.GetCustomAttributes().Any(attribute => attribute is

NodeAttribute);↪→

6

7 /// <summary>
8 /// Check if given <see cref="Type" does have the <see

cref="RelationshipEntityAttribute"> applied as custom attribute.↪→

9 /// </summary>
10 internal static bool HasRelationshipEntityAttribute(this Type type)
11 => type.GetCustomAttributes().Any(attribute => attribute is

RelationshipEntityAttribute);↪→

Code 5.2: HasNodeAttribute and HasRelationshipEntityAttribute extension
methods

5.1.2 The internal keyword
Keen reader might caught it up, but in the last code example 5.2 we used
the keyword internal as an access modifier to the defined methods. This
access modifier makes methods, classes, and properties available only inside
the assembly. More on this subject can be read in the official documentation
of C# language [20].

5.1.3 Building schema
Building schema is the last step in creating metadata for the client’s domain
model. We use SchemaBuilder class to build the schema. We need to pass the
DomainInfo instance to the SchemaBuilder constructor to use information ob-

38

5.1. Common infrastructure

tained from scanning assemblies. At the start we create new Schema instance,
which is our concrete implementation of ISchema interface.

SchemaBuilder.Build method is responsible for building the schema. It does
that by iterating over nodes and relationships from the instance of DomainInfo
class and adding them to Schema instance using ISchema.AddNode

and ISchema.AddRelationship methods. The resulting schema is then re-
turned.

We now have both schema and driver for creating the session. We will store
both of them inside SessionFactory instance and use them every time a new
instance of Session is requested. To help client’s code to manage instances
of SessionFactory we will create an extension of IServiceCollection which
is a component of .NET responsible for managing the Dependency Injection
Container (DIC). The lifetime of the SessionFactory is a singleton, meaning
that only one instance will be created during the runtime of the application.
The extension implementation is shown in the code example 5.3.

1 /// <summary>
2 /// Try and register the Neo4j OGM services in the DI container.
3 /// </summary>
4 public static IServiceCollection AddNeo4jOGMFactory(
5 this IServiceCollection serviceCollection,
6 string connectionString,
7 IAuthToken authToken,
8 params Assembly[] assemblies
9)

10 {
11 serviceCollection.TryAddSingleton(
12 new SessionFactory(connectionString, authToken, assemblies));
13 return serviceCollection;
14 }

Code 5.3: IServiceCollection extension method

With this extension method done, we have finished the common infrastructure,
and we can now go and start implementing our goals from the beginning of
this chapter.

39

5. Implementation of proof-of-concept

5.1.4 DbSet<T>
DbSet<T> is a generic class that represents a set of entities of a given type.
This concept is very similar to the DbSet<T> abstract class from the Entity
Framework library.

Inside the constructor of DbSet<T> class, we are going to set the correct
provider as well as set an instance of ISession. Because we need an in-
stance of ISession we are going to declare a method inside this interface called
ISession.Set<TEntity> which will create a new instance of DbSet<T>.

5.2 Create or update nodes in a database
In the code example 5.4 is an actual implementation of the save operation in-
side ISession concrete implementation. We are going to use the EntityGraphMapper

class to map the entity/entities into a structure that will be translated into
IStatement objects which represent statements that will be executed in the
database. During mapping, we will also note the relationships between nodes
using information from MetaData object we built for this purpose. This whole
concept is borrowed from the official implementation of the Neo4j–OGM li-
brary for Java.

40

5.2. Create or update nodes in a database

1 /// <summary>
2 /// Save entity or list of entities to the database.
3 /// </summary>
4 public async Task SaveAsync<TEntity>(TEntity entity) where TEntity :

class↪→

5 {
6 CheckDisposed();
7

8 // tranform entity/entities into array
9 IEnumerable<TEntity> objects;

10 if (typeof(IEnumerable).IsAssignableFrom(entity.GetType()))
11 {
12 objects = (IEnumerable<TEntity>)entity;
13 }
14 else
15 {
16 objects = new[] { entity };
17 }
18

19 // map objects into a graph and creates statements
20 foreach (var item in objects)
21 {
22 _entityGraphMapper.Map(item, -1);
23 }
24

25 // execute statements
26 await ExecuteSave(_entityGraphMapper.CompilerContext());
27 }

Code 5.4: Internal implementation of save operation

5.2.1 EntityGraphMapper
The EntityGraphMapper is responsible for mapping entities to builders that
will be translated into Cypher, as was stated in the paragraph before. The
resulting structure of this translation is saved inside a compiler context. The
compiler context is a container for all the information used during mapping
and generating Cypher queries. It tracks visited nodes as well as visited rela-
tionships.

Inside the ICompilerContext is saved the instance of compiler, in this case it is

41

5. Implementation of proof-of-concept

IMultiStatementCypherCompiler, which is responsible for generating create and
update Cypher queries. This compiler is used inside the
Session.ExecuteSave method.

5.2.2 IMultiStatementCypherCompiler

1 public interface IMultiStatementCypherCompiler
2 {
3 CompilerContext Context { get; }
4 NodeBuilder CreateNode(long id);
5 IEnumerable<IStatement> CreateNodesStatements();
6 NodeBuilder ExistingNode(long id);
7 RelationshipBuilder ExistingRelationship(long relId, string type);
8 IEnumerable<IStatement> GetAllStatements();
9 bool HasStatementDependentOnNewNode();

10 RelationshipBuilder NewRelationship(string type);
11 RelationshipBuilder NewRelationship(string type, bool

mapBothDirections);↪→

12 void UseStatementFactory(IStatementFactory statementFactory);
13 }

Code 5.5: IMultiStatementCypherCompiler interface

This interface defines a set of methods needed for preparing and generat-
ing IStatement instances that will then be executed on the database. The
NodeBuilder and RelationshipBuilder classes are created by
EntityGraphMapper and are the building blocks for IStatement instances.

5.2.3 IStatement
The IStatement was mentioned multiple times. It is a simple wrapper around
a string containing the Cypher query and dictionary of parameters used in
the query. These two values can then be used to generate Query object from
Neo4j.Driver library. Query is used by Neo4j.Driver in their transaction im-
plementation.

42

5.3. Mapping LINQ to Cypher

5.3 Mapping LINQ to Cypher
The process of mapping LINQ to Cypher can be divided into these steps:

• prepare LINQ query

• map LINQ to our expression tree

• map our expression tree into Cypher

• map result from database into result object.

We will look at each step and show some parts of the implementation.

5.3.1 Prepare LINQ query
Before we translate the query, we have to prepare our LINQ query. Prepa-
ration starts with the definition of the asynchronous method in the DbSet<T>

class or the IQueryable<T> extension of an asynchronous method. The best
example of this definition would be method FindAsync as it is defined in the
DbSet<T> class, but it also uses an extension method for IQueryable<T> inter-
face. The reason behind using asynchronous methods is the implementation
of IDriver which has only asynchronous methods for working with transac-
tions.

Apart from the checks of key values, the method will also create a lambda ex-
pression that will be translated into the WHERE statement in the Cypher query.
This lambda expression is then passed to the FirstOrDefaultAsync method,
which is an extension of the IQueryable<T> interface as we discussed above.
The code example 5.6 shows the exact implementation of the DbSet<T>.FindAsync

method. Inside the extension method of
FirstOrDefaultAsync, we are calling the IAsyncQueryProvider.

ExecuteAsync<T> method. This method is responsible for the translation and
execution of the query. The translation is driven by our implementation of
ExpressionVisitor abstract class.

43

5. Implementation of proof-of-concept

1 public virtual Task<TEntity?> FindAsync(params object?[]? keyValues)
2 {
3 if (keyValues == null
4 || keyValues.Any(key => key == null))
5 {
6 return Task.FromResult<TEntity?>(default);
7 }
8

9 var keyProperties = typeof(TEntity).GetProperties()
10 .Where(property => property.GetCustomAttribute<KeyAttribute>() !=

null)↪→

11 .ToArray();
12

13 if (keyProperties.Length != keyValues.Length)
14 {
15 throw new ArgumentException("Incorrect number of key values");
16 }
17

18 return this.FirstOrDefaultAsync(BuildLambda(keyProperties, new
ValueBuffer(keyValues)));↪→

19 }

Code 5.6: DbSet<T>.FindAsync implementation

5.3.2 Expression visitors
Our goal is to create a custom expression tree representing the Cypher query
translated from the LINQ source.

First of all, we will introduce classes to which we want to translate our LINQ
expression tree 5.2.

44

5.3. Mapping LINQ to Cypher

Figure 5.2: Custom classes for translating LINQ expression tree

To translate LINQ query to our custom expression tree, we will use the
QueryableMethodTranslationExpressionVisitor class. This class implements
the ExpressionVisitor abstract class from LINQ. Our query is starts as QueryRootExpression
which is translated into ShapedQueryExpression. The ShapedQueryExpression

contains the MatchExpression and
EntityShaperExpression expression. The MatchExpression represents the MATCH

statement in the Cypher query and EntityShaperExpression is used for map-
ping the result of the query from the database. This translation is done inside
VisitExtension method which is called for each expression marked with ExpressionType.Extension

as their NodeType property.

To set up MatchExpression, we are using a method VisitMethodCall which
visits the children of the MethodCallExpression. This method translates calls
like FirstOrDefault from LINQ library. Inside this method the WHERE clause is
translated as well as MatchExpression other properties like
MatchPattern.Limit. Also, the ReturnExpression is created inside this method,
which is equivalent to the LIMIT keyword inside the Cypher query.

The result of Visit method is a ShapedQueryExpression which contains the

45

5. Implementation of proof-of-concept

MatchExpression with ReturnExpression and other predicates and expressions.
The ShapedQueryExpression is now ready to be translated into Cypher query.

The visitor responsible for the actual translation to Cypher is
CypherExpressionVisitor. Inside this implementation of the
ExpressionVisitor abstarct class, we declare methods that corresponds with
our custom classes, like VisitCypherBinary or VisitMatch. Each of these meth-
ods translates part of the expression tree into a Cypher query or calls fur-
ther visits using the CypherExpressionVisitor class. When the translation
is done, the generated query is used in our custom enumerator, enumerat-
ing the result from the database. This enumerator is implemented inside
QueryingEnumerable<T> class.

With the enumerator done, and the query generated, we need to build a
lambda function which will return the result. To do this, we will use another
visitor. In this case, this visitor needs to visit our
ShapedQueryExpression and create a right call that enumerates and returns the
result. The name of the class is
ShapedQueryCompilingExpressionVisitor and it sets up the lambda function
with use of the ProjectionBindingExpression to translate the IRecord result
from the drivers library into our result object.

5.4 Summary
This chapter was about implementing the library we designed in the chapter
before. We described the structure of our project and then implemented two
critical goals of our proof-of-concept. With the first goal, we implemented
the save operation for entities. We used metadata with information about
graph schema to properly create nodes and relationships. The second goal
was mapping LINQ to Cypher query and extracting results from the database
structure; we had to implement our own expressions structure to transform
the expression tree so that we would be able to translate it to Cypher query.
We accomplished both of our goals and are ready to introduce how we tested
these goals.

46

Chapter 6
Test-driven development

In the implementation chapter, we mentioned that tests were written during
implementation and that the TDD technique was used. “Test-driven devel-
opment is a software development approach in which test cases are developed
to specify and validate what the code will do.” [21] What this means to us is
that before the implementation of any public method, we should write a test
for this method. This chapter will focus on implementing the tests and some
base principles of test-driven development and writing tests in general.

We need a framework that will help us write and run tests to write and run
tests. In .NET platform are number of test frameworks that we can use, here
is a list of the most used ones:

• MSTest — Microsoft original test framework

• NUnit — Originaly ported from JUnit [22]

• xUnit — Created by author of the NUnit v2 [23]

Per the author’s experience, we will use the xUnit framework, but TDD can
be done in any of them.

.NET CLI tool has a template for xUnit project available under command
dotnet new xunit. This command will prepare a project with dependencies
for xUnit and Microsoft.NET.Test.Sdk packages. It will also configure runners
and coverlet.collector for collecting code coverage.

47

6. Test-driven development

6.1 More information about TDD
Test-driven development can be summed up using an activity diagram. At the
start of the development, we write down all the tests that we need to cover our
API, and then we start with the implementation of the library. We refactor
our code; for example, we move code from one method into multiple methods
and even classes. After refactoring is done, we check our tests and write new
ones.

Figure 6.1: Test-driven development diagram [1]

Using this approach has many benefits. One of them is complete code coverage
of our code, which means every method should be covered by a test. We
will use the coverlet tool to calculate the coverage, a cross-platform coverage
framework for .NET. [24] It supports multiple output formats, but for our
case, we will use lcov format, which can be then loaded by extension in Visual
Studio Code and display coverage information directly in files. We can also
generate a report of the coverage using these commands.

• dotnet test \

/p:CollectCoverage=true \

/p:CoverletOutput=../../lcov.info \

/p:CoverletOutputFormat=lcov

• genhtml lcov.info -o ./CoverageReport/

The first command is to execute tests and generate lcov.info file, which con-
tains coverage information. This file is also used by extension for Visual Studio
Code named Coverage Gutters. The second command is to generate HTML
report from lcov.info file.

48

6.2. SessionFactory tests

Figure 6.2 is an example of the report from this project.

Figure 6.2: Example of the report

We have introduced the concept of TDD and tools for managing tests. Now
we will go through the process of their implementation.

6.2 SessionFactory tests
We will start with testing SessionFactory as it is the entry point to use our
library. Tests will be simple, we want to test that SessionFactory.Create

return an instance of ISession and that if the configuration set on creating
SessionFactory is invalid, that proper exception will be thrown.

6.2.1 Mocking
When writing tests for SessionFactory, we encountered a problem with send-
ing assemblies containing our domain model to the SessionFactory construc-
tor. We want these assemblies to be mocked.

What is mocking? “Mocking is a process used in unit testing when the unit
being tested has external dependencies. The purpose of mocking is to isolate
and focus on the code being tested and not on the behaviour or state of
external dependencies. In mocking, the dependencies are replaced by closely

49

6. Test-driven development

controlled replacements objects that simulate the behaviour of the real ones.”
[25]

For our case, we will use a library for .NET called Moq, which is available
as a NuGet package. More information about this package can be found at
https://github.com/moq/moq4.

The code example 6.1 is of one of the tests for SessionFactory.Create, which
shows application of mocking. We mock the Assembly class, and also set
up a mocked resuly of the Assembly.GetTypes method. This method is used
internally inside the library, and we need to define our result to be able to
inject the suitable array of classes against which we want to run the test.

1 public void CreateTestResultOk()
2 {
3 var assembly = new Moq.Mock<Assembly>();
4 assembly.Setup(a => a.GetTypes()).Returns(new[] { typeof(Person),

typeof(Post) });↪→

5

6 var sessionFactory = new SessionFactory(
7 "connectionString",
8 AuthTokens.Basic("username", "password"),
9 assembly.Object);

10

11 var session = sessionFactory.Create();
12

13 Assert.NotNull(session);
14 Assert.IsAssignableFrom<ISession>(session);
15 }

Code 6.1: Example of SessionFactory test with mocking of Assembly object

6.3 Testing internal classes and methods
In our library, we are using a keyword internal which hides classes, methods,
or properties from other assemblies, but because we also want to test these
classes and their methods, we need to expose them. Exposing internal is
possible with a slight change in the project file. We need to add the code
snippet from the code example 6.2 to the library project file, and our tests
will be able to access every internal class and method.

50

https://github.com/moq/moq4

6.4. Setup and cleanup

1 <ItemGroup>
2 <AssemblyAttribute
3 Include="System.Runtime.CompilerServices.InternalsVisibleTo">
4 <_Parameter1>Neo4j.OGM.Tests</_Parameter1>
5 </AssemblyAttribute>
6 </ItemGroup>

Code 6.2: Snippet of Neo4j.OGM.csproj to access internal classes and methods
inside test project

We are using this alteration of the Neo4j.OGM.csproj to access internal classes
and methods inside the test project, we can now prepare a test for internal
classes and methods.

6.4 Setup and cleanup
Some of our tests will need to prepare data and mocks. We call this step
of tests a setup step. nUnit for example, uses annotations to mark cleanup
(TearDownAttribute) and setup (SetUpAttribute) methods. However, in xU-
nit, we are using only constructors, and IDisposable interface for setup and
cleanup, respectively. This approach has a limitation in not being able to
perform asynchronous operations safely, but xUnit has a solution for this too.
IAsyncLifetime is an interface from xUnit that provides the means to perform
setup and cleanup methods asynchronously.

Apart from setup and cleanup methods, xUnit also offers an ability to share
context between tests, either in one class or across multiple classes using class
fixtures or collection fixtures. More on this subject can be found in the official
documentation of the xUnit framework. [23]

6.5 Summary
We have now described all the parts of our testing, tests are ready, and we
can start with the cycle of implementation and testing as described in TDD
diagram in the figure 6.1. This chapter was put after the implementation for
clarity reasons.

51

Chapter 7
Deployment

This chapter will focus on deploying our library to the NuGet repository,
GitHub actions, and setting up our repository to attract more contribu-
tors.

7.1 NuGet repository
The primary source of packages for .NET applications is https://www.nuget.org.
Every developer can upload their packages to this repository, and anyone can
then search and download packages from this feed.

Before uploading our library to the NuGet repository, we need to set our
project properly. We can find out everything we need on the “Package au-
thoring best practices” page in Microsoft’s documentation. [26]

From the documentation page [26] we know the properperties we need to set,
here is their list:

• PackageId: name of the package, which will be used in NuGet repository.

• Authors: list of authors of the package.

• Description: description of the package.

• Copyright: copyright details of the package.

With these properties set, we can now create a registration on NuGet and
create an API key for uploading packages using the command line. There is
also a possibility to upload a package using the form on the NuGet page itself,
but we want to have this process automated using GitHub actions.

53

https://www.nuget.org

7. Deployment

7.2 GitHub actions
GitHub actions is a tool for automation of the Continuous Integration/Continuous
Delivery (CI/CD) process, which allows us to automate tasks like running
tests, checking build status, and publishing packages. It is also possible to
run tasks on a schedule, like creating nightly builds of our application or
library.

We created three different workflows for our library, each for a different oper-
ation in VCS. The operations are:

• push — every push of new commits onto the GitHub server will trigger
this workflow.

• pull request — every new pull request to the main branch or update to
the pull request will trigger this workflow.

• release — each new tag in the main branch will trigger this workflow.

These workflows will check our library’s build status and the execution of the
tests we wrote for our library. In the case of release, the workflow will also cre-
ate a new version of our library and publish it to the NuGet repository.

Workflows also offer us the possibility for static analysis of the codebase. This
analysis is helpful as it scans code for common mistakes and potential vulner-
abilities. The static analysis is not used in this project, but it is something
we can use in the future.

7.3 Setting up repository
One of our main goals with this library is that it will be easy for the community
to expand our solution and report any issues with our library. For this reason,
we will follow the GitHub community standards. These standards should
ensure that anyone can contribute to our project. The list of community
standards:

• Description

• README

• Code of conduct

• License

54

7.4. Summary

• Issue templates

• Pull request templates

Some of these steps can be generated on GitHub using their templates, like
license and code of conduct. Others have to be defined by us. In the repository
is a folder called .github which contains all the files that we need to set up,
except for README and license files which are in the root folder of the
repository.

7.4 Summary
With the community standards set up, we have everything we need to release
our library. Our repository on the GitHub server can be made public, and
we can release our library to the NuGet repository. We can now plan the
following steps to finish our library.

55

Chapter 8
Evaluation of the project

We will now evaluate our project. We can divide this evaluation into three
parts.

The first part is the evaluation of our design of the OGM library. The design
was inspired by both the Neo4j–OGM for Java implementation and the Entity
Framework. The result is a library design, but with some limitations that
should be addressed in future development, namely the lack of the change
tracker.

The second part of this evaluation is the implementation of a proof-of-concept
for the design. We set two goals for the proof-of-concept:

• Create or update nodes in a database

• Map LINQ to Cypher

We achieved these two goals, but we noticed the missing change tracker during
the implementation, which severely limits the library’s functionality.

The first goal was achieved with the help of an already existing implementa-
tion in Java. Parts of the code were translated from Java to C# with some
changes to reflect the best practices. This allowed us to quickly develop the
save mechanism for our library, although it was not the best solution. The
problem with this solution is the different architecture of the library in the
Java and .NET. In the .NET, we would greatly benefit from the ability to use
dependency injection, which is not used in Java implementation. One thing
we could also borrow from the Entity Framework is the change tracker. This

57

8. Evaluation of the project

component of the Entity Framework gives us the ability to track changes and
save only the changes. It is also implemented using LINQ extensions. The
extensions would be easy to implement because we already have some basic
functionality in the library.

The second goal was to use the LINQ to create Cypher queries for the Neo4j
database. This goal was far more challenging to accomplish than the first one.
We had to remap the original expression tree into a new one that could be
translated into Cypher query, executed and mapped to the objects using Neo4j
driver for .NET. We accomplished this goal with some limitations. These
limitations were more about the time and size of the implementation itself than
the problem with the design. The only missing part of this goal is to correctly
map the relationship between objects and aggregation methods.

The third part of this evaluation is the projects set up for contributors. This
part is fully completed. We created a set of GitHub actions for our CI/CD,
prepared a contributor’s guide and released our library on the NuGet reposi-
tory feed.

8.1 Next steps
We will propose the next steps for this library and document them in the
repository using issues. The next steps should be the following:

• Implement the change tracker.

• Refactor internal classes to use dependency injection.

• Implement the save operation with the use of the change tracker.

• Implement the mapping of the objects using LINQ like it is done in the
Entity Framework.

With these steps done, we could release our library as production-ready and
could be used in commercial projects.

One other thing missing in this project is proper user-oriented documentation.
As this is a proof-of-concept, we did not create any documentation for the
library, except for the README file. However, there should also be a goal of
creating proper documentation for the library for future development.

58

Conclusion

This thesis aimed to design and create a proof-of-concept for the library for
the .NET platform that would be able to map objects into graphs and vice
versa with the ability to execute queries on the Neo4j graph database.

At the begging of this thesis, we studied graph databases, their properties
and their differences from the relational databases. We also studied the C#

language and platform to understand how the LINQ library works.

Understanding both the language and the database system, we looked into
similar solutions. The first one was the Entity Framework, which is the ORM
library for the .NET platform. The second was the Neo4j–OGM library for
the Java.

Having studied both technologies and existing solutions, we defined our goals
for the library’s design. Based on these goals, we created a design for our
library.

Using the design we created, we implemented a proof-of-concept for the library.
The proof-of-concept has been tested using TDD principles. This library has
limited functionality, but it proves the possibility of the translation between
LINQ and Cypher queries. At the end of the implementation, we prepared
our project for release by setting up GitHub actions providing us with the
CI/CD capabilities.

59

Conclusion

At last, we evaluated our solution, which met all the proposed goals of im-
plementing the proof-of-concept. However, we pointed out the oversights in
our design and proposed the next steps for the library. With these steps
implemented, the library should be ready for use in the production environ-
ment.

60

Bibliography

[1] Madeyski, L.; Kawalerowicz, M. Continuous Test-Driven Develop-
ment - A Novel Agile Software Development Practice and Support-
ing Tool. In Proceedings of the 8th International Conference on Eval-
uation of Novel Approaches to Software Engineering, Angers, France:
SciTePress - Science and and Technology Publications, 2013, ISBN
978-989-8565-62-4, pp. 260–267, doi:10.5220/0004587202600267. Avail-
able from: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=

10.5220/0004587202600267

[2] Morgante, V. What is a graph database? Apr. 2021, publication Ti-
tle: Medium. Available from: https://towardsdatascience.com/what-is-

a-graph-database-249cd7fdf24d

[3] Cox, G. Introduction to Graph Databases. May 2017, publication Title:
Compose Articles. Available from: https://www.compose.com/articles/

introduction-to-graph-databases/

[4] Chao, J. Graph Databases for Beginners: Native vs. Non-Native Graph
Technology. Dec. 2018, publication Title: Neo4j Graph Data Platform.
Available from: https://neo4j.com/blog/native-vs-non-native-graph-

technology/

[5] McCreary, D. The Neighborhood Walk Story. Jan. 2021, publication
Title: Medium. Available from: https://dmccreary.medium.com/how-to-

explain-index-free-adjacency-to-your-manager-1a8e68ec664a

61

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004587202600267
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004587202600267
https://towardsdatascience.com/what-is-a-graph-database-249cd7fdf24d
https://towardsdatascience.com/what-is-a-graph-database-249cd7fdf24d
https://www.compose.com/articles/introduction-to-graph-databases/
https://www.compose.com/articles/introduction-to-graph-databases/
https://neo4j.com/blog/native-vs-non-native-graph-technology/
https://neo4j.com/blog/native-vs-non-native-graph-technology/
https://dmccreary.medium.com/how-to-explain-index-free-adjacency-to-your-manager-1a8e68ec664a
https://dmccreary.medium.com/how-to-explain-index-free-adjacency-to-your-manager-1a8e68ec664a

Bibliography

[6] Neo4j. Company. Publication Title: Neo4j Graph Data Platform. Avail-
able from: https://neo4j.com/company/

[7] Neo4j. Neo4j Graph Database. Publication Title: Neo4j Graph Data Plat-
form. Available from: https://neo4j.com/product/neo4j-graph-database/

[8] Resources · openCypher. Available from: https://opencypher.org/

resources/

[9] Robinson, I.; Webber, J.; et al. Graph databases. Sebastopol, CA:
O’Reilly, 2015, ISBN 978-1-4919-3200-1. Available from: https://

neo4j.com/graph-databases-book/?ref=home

[10] Neo4j. Getting Started with Cypher - Developer Guides. Publication Ti-
tle: Neo4j Graph Database Platform. Available from: https://neo4j.com/

developer/cypher/intro-cypher/

[11] Neo4j. Querying with Cypher - Developer Guides. Available from: https:

//neo4j.com/developer/cypher/querying/

[12] Neo4j. Updating with Cypher - Developer Guides. Publication Title:
Neo4j Graph Database Platform. Available from: https://neo4j.com/

developer/cypher/updating/

[13] Hoyos, M. What is an ORM and Why You Should Use it. Dec. 2018.
Available from: https://blog.bitsrc.io/what-is-an-orm-and-why-you-

should-use-it-b2b6f75f5e2a

[14] Albahari, J.; Albahari, B. C# 8.0 pocket reference: instant help for C# 8.0
programmers. Sebastapol, CA: O’Reilly Media, Inc, first edition edition,
2019, ISBN 978-1-4920-5121-3.

[15] Rodenburg, J. Code like a pro in C#. Shelter Island, New York: Manning
Publications, 2021, ISBN 978-1-61729-802-8.

[16] Microsoft. What is .NET? An open-source developer platform. Publica-
tion Title: Microsoft. Available from: https://dotnet.microsoft.com/en-

us/learn/dotnet/what-is-dotnet

62

https://neo4j.com/company/
https://neo4j.com/product/neo4j-graph-database/
https://opencypher.org/resources/
https://opencypher.org/resources/
https://neo4j.com/graph-databases-book/?ref=home
https://neo4j.com/graph-databases-book/?ref=home
https://neo4j.com/developer/cypher/intro-cypher/
https://neo4j.com/developer/cypher/intro-cypher/
https://neo4j.com/developer/cypher/querying/
https://neo4j.com/developer/cypher/querying/
https://neo4j.com/developer/cypher/updating/
https://neo4j.com/developer/cypher/updating/
https://blog.bitsrc.io/what-is-an-orm-and-why-you-should-use-it-b2b6f75f5e2a
https://blog.bitsrc.io/what-is-an-orm-and-why-you-should-use-it-b2b6f75f5e2a
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet

Bibliography

[17] Neo4j. Reference - OGM Library. Publication Title: Neo4j Graph
Database Platform. Available from: https://neo4j.com/docs/ogm-manual/

3.2/reference/

[18] Neo4j. Client applications - Neo4j .NET Driver Manual. Publication Ti-
tle: Neo4j Graph Database Platform. Available from: https://neo4j.com/

docs/dotnet-manual/4.4/client-applications/

[19] Wagner, B. params keyword for parameter arrays - C# reference. Avail-
able from: https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/params

[20] Wagner, B. internal - C# Reference. Jan. 2022. Available from:
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/

keywords/internal

[21] Hamilton, T. What is Test Driven Development (TDD)? Tutorial
with Example. June 2020. Available from: https://www.guru99.com/test-

driven-development.html

[22] Poole, C.; Prouse, R. NUnit.org. Available from: https://nunit.org/

[23] .NET Foundation. Home. Publication Title: xUnit.net. Available from:
https://xunit.net/

[24] Coverlet. Apr. 2022. Available from: https://github.com/coverlet-

coverage/coverlet

[25] Progress Software Corporation. Mocking Framework for Unit Testing
- Telerik JustMock. Available from: https://www.telerik.com/products/

mocking/unit-testing.aspx

[26] Gill, C. R. Package authoring best practices. Feb. 2022, publica-
tion Title: Package authoring best practices Type: web page. Avail-
able from: https://docs.microsoft.com/en-us/nuget/create-packages/

package-authoring-best-practices

[27] MongoDB. What Is NoSQL? NoSQL Databases Explained. Publica-
tion Title: MongoDB. Available from: https://www.mongodb.com/nosql-

explained

63

https://neo4j.com/docs/ogm-manual/3.2/reference/
https://neo4j.com/docs/ogm-manual/3.2/reference/
https://neo4j.com/docs/dotnet-manual/4.4/client-applications/
https://neo4j.com/docs/dotnet-manual/4.4/client-applications/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/internal
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/internal
https://www.guru99.com/test-driven-development.html
https://www.guru99.com/test-driven-development.html
https://nunit.org/
https://xunit.net/
https://github.com/coverlet-coverage/coverlet
https://github.com/coverlet-coverage/coverlet
https://www.telerik.com/products/mocking/unit-testing.aspx
https://www.telerik.com/products/mocking/unit-testing.aspx
https://docs.microsoft.com/en-us/nuget/create-packages/package-authoring-best-practices
https://docs.microsoft.com/en-us/nuget/create-packages/package-authoring-best-practices
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained

Appendix A
Acronyms

ACID Atomicity, Consistency, Isolation, Durability.

API Application Programming Interface.

CI/CD Continuous Integration/Continuous Delivery.

CIL Common Intermediate Language.

CLI Command Line Interface.

CLR Common Language Runtime.

DBMS Database Management System.

DIC Dependency Injection Container.

DTO Data Transfer Object.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

JIT Just-In-Time.

NoSQL NoSQL is a term for a database that does not use a relational model
to store data. [27].

OGM Object-Graph Mapper.

65

Acronyms

ORM Object-Relational Mapper.

POJO Plain Old Java Object.

RDBMS Relational Database Management System.

SDK Software Development Kit.

SQL Structured Query Language.

TDD Test-Driven Development.

VCS Version Control System.

66

Appendix B
Contents of enclosed CD

README.txt.................................the file with CD contents description
dotnet-neo4j-ogm...........................the project’s source code directory

src..the directory of source codes
Neo4j.OGM....................................the project’s implementation

tests...the directory of tests
Neo4j.OGM.Tests..the project’s tests

text...the thesis text directory
thesis.pdf.....................................the thesis text in PDF format

text-src...the thesis text source directory

67

	Introduction
	Graphs are everywhere
	What can graph databases offer?

	How to use graph databases with object-oriented languages?

	State of the art of graph databases
	Native vs Non-native graph databases
	Neo4j
	Cypher
	Nodes
	Relationships
	Nodes and relationship properties
	Querying with Cypher
	Create, update, and delete operations

	orm
	Summary

	State of the art EntityFramework and .NET platform
	C#
	.NET
	Reflection
	LINQ

	Entity Framework Core
	DbSet
	FindAsync

	Summary

	Existing OGM libraries for graph databases
	Neo4j–ogm
	Neo4j drivers
	Entities
	Relationships
	Indexes
	Sessions
	Persisting entities
	Loading entities
	Transactions

	Summary

	Design of OGM library
	Connect to a database
	Map objects into graph structure
	Annotations
	Entity mapper

	Map LINQ query into Cypher query
	IQueryable extension
	Query compilation

	Execute a command and retrieve the result
	Map the result of the query to an object
	Summary

	Implementation of proof-of-concept
	Common infrastructure
	Building metadata
	The internal keyword
	Building schema
	DbSet<T>

	Create or update nodes in a database
	EntityGraphMapper
	IMultiStatementCypherCompiler
	IStatement

	Mapping LINQ to Cypher
	Prepare LINQ query
	Expression visitors

	Summary

	Test-driven development
	More information about tdd
	SessionFactory tests
	Mocking

	Testing internal classes and methods
	Setup and cleanup
	Summary

	Deployment
	NuGet repository
	GitHub actions
	Setting up repository
	Summary

	Evaluation of the project
	Next steps

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

