
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Modern Web Development Technologies and Approaches
Bc. Petr Pondělík
Ing. Adam Vesecký
Informatics
Web Engineering
Department of Software Engineering
until the end of summer semester 2022/2023

Instructions

The goal of the thesis is to explore and analyze the development of web applications
with a particular focus on REST, GraphQL, and PWA. Furthermore, another output of the
thesis will be a prototype of a web application, demonstrating the use of the outlined
technologies.

Requirements for the thesis:
- explore the types of web applications and their characteristics
- explore the web development approaches and technologies in the following scopes:
client-side, server-side, and PWA
- design and implement a prototype of a web application with PWA elements and
demonstrate the use of the analyzed technologies
- the application will consist of a client-side and a server-side application, where the
latter will expose an API
- implement the same API using REST and GraphQL, and compare them based on the
criteria below
- evaluate the used technologies in terms of implementation, extendability,
sustainability, and testing

The design part of the thesis will follow SI methodologies.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 13 December 2021 in Prague.

Master’s thesis

Modern Web Development Technologies
and Approaches

Bc. Petr Pondělík

Department of Software Engineering
Supervisor: Ing. Adam Vesecký

May 5, 2022

Acknowledgements

First of all, I would like to express gratitude and thanks to Ing. Adam Vesecký
for his advices, time and guidance. My appreciation goes also towards my
family and my friends for all their support during the whole studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 5, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Petr Pondělík. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Pondělík, Petr. Modern Web Development Technologies and Approaches.
Master’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2022. Also available from: ⟨https://github.com/petr-
pondelik/modern-web-development⟩.

https://github.com/petr-pondelik/modern-web-development
https://github.com/petr-pondelik/modern-web-development

Abstrakt

V současné době je správná volba technologií a přístupů v oblasti vývoje
webových služeb a aplikací klíčem k úspěchu. Proto je důležité mít přehled
o aktuálních technologiích a přístupech, a především jim porozumět. Správně
volit technologie či udržovat přehled o aktuálních trendech jsou však v sou-
časném rychle se vyvíjejícím světě webových technologií obtížné úkoly.

Cílem této práce je provést čtenáře světem současného vývoje webových
aplikací. Práce cílí na to, aby čtenáři nejprve poskytla obecný úvod do této
oblasti a co nejpřirozenější cestou se zaměřila na témata REST, GraphQL a
PWA. Tato témata pak popíše a vysvětlí podrobně.

Praktickým výstupem této práce bude implementace prototypu webové
aplikace rozděleného do komponent na straně serveru a na straně klienta.
Tento prototyp bude demonstrovat využití vhodných technologií a přístupů k
vývoji REST API, GraphQL API a progresivních webových aplikací.

V závěru budou jednotlivé komponenty prototypu, a tedy také technologie
využité pro jejich implementaci, zhodnoceny z hlediska kvality a obtížnosti
implementace, rozšiřitelnosti, udržitelnosti a testovatelnosti.

Klíčová slova vývoj webových aplikací, technologie na straně serveru, tech-
nologie na straně klienta, REST, GraphQL, API, PWA, Prisma, Nest, React,
JavaScript, Node.js

vii

Abstract

Nowadays, the right choice of technologies and approaches is crucial for success
in web development. In order to make the right choice, it is important to be
aware of and understand the current technologies and approaches. However,
neither of the aforementioned tasks are easy in the fast-paced world of the
web technology.

This thesis aims to walk the reader through the world of current web
development. The aim of this thesis is first to conceptualize the topic broadly
and then move on to the topics of REST, GraphQL and Progressive Web
Applications in the most natural way possible. These specific topics will be
thoroughly described and explained.

The practical output of the thesis will be the implementation of a pro-
totype web application divided into client-side and server-side components.
This prototype will demonstrate the use of appropriate technologies and ap-
proaches for developing REST and GraphQL APIs as well as Progressive Web
Applications.

Finally, the individual components of the prototype, and thus the tech-
nology used to implement them, will be evaluated in terms of implementation
quality and difficulty, extendability, sustainability and testability.

Keywords web application development, server-side technology, client-side
technology, REST, GraphQL, API, PWA, Prisma, Nest, React, JavaScript,
Node.js

viii

Contents

Introduction 1
The Goal of This Thesis . 1

1 Theoretical Analysis 3
1.1 Web Applications and Websites 3
1.2 Client-Server Model . 4
1.3 Types of Web Applications . 6
1.4 JavaScript . 12
1.5 Client-Side Web Development 14
1.6 Progressive Web Applications 20
1.7 Server-Side Web Development 23
1.8 REST . 29
1.9 GraphQL . 38
1.10 Chapter Summary . 46

2 Design 47
2.1 Functional Requirements . 47
2.2 Non-Functional Requirements 49
2.3 Domain Model . 49
2.4 Overall Architecture . 49
2.5 Technologies . 50
2.6 Server . 57
2.7 REST Client . 67
2.8 GraphQL Client . 69
2.9 Chapter Summary . 70

3 Implementation 71
3.1 Docker Setup . 71
3.2 PostgreSQL Service . 72

ix

3.3 Database Initialization . 72
3.4 Server . 74
3.5 REST Client . 85
3.6 GraphQL Client . 90
3.7 Chapter Summary . 92

4 Testing 93
4.1 Types of Automated Tests . 93
4.2 Testing the Nest Server . 93
4.3 Testing the REST Client . 98
4.4 Chapter Summary . 99

5 Evaluation 101
5.1 Server . 101
5.2 REST API . 102
5.3 GraphQL API . 103
5.4 Clients . 104

Conclusion 107

Bibliography 109

A Acronyms 121

B Contents of CD 123

x

List of Figures

1.1 Client-Server Model . 4
1.2 Client-Server Model for Web Application 5
1.3 Relations Between the Types of Web Applications 7
1.4 Monolithic Application . 9
1.5 Decoupled Architecture . 10
1.6 Client-Side Web Technologies Layers 14
1.7 Client-Side JavaScript Runtime . 16
1.8 Front-end JavaScript Frameworks in Time 18
1.9 Overall PWA Architecture . 21
1.10 Node.js Event Loop . 24
1.11 Microservices Architecture . 28
1.12 Data Fetching With REST . 40
1.13 GraphQL Data Fetching . 41
1.14 GraphQL Server With a Connected Database 44
1.15 GraphQL Server That Integrates Existing Services 44

2.1 Domain Model . 50
2.2 Server Architecture Layers to MVC 58
2.3 Resources Linking in REST . 63
2.4 Server Architecture Components 66
2.5 REST Client Architecture Design 68
2.6 GraphQL Client Architecture Design 70

4.1 Integration Tests Results . 99

xi

List of Tables

1.1 Types of Web Applications Overview 6
1.2 Safe and Idempotent HTTP Methods 33

2.1 REST and GraphQL With Node.js Frameworks 54
2.2 REST API Resources . 60
2.3 REST API Endpoints . 61
2.4 REST API HTTP Status Codes 62
2.5 GraphQL Mutations to REST API Endpoints Mapping 65

3.1 Docker Services . 72

xiii

List of Code Snippets

1 HATEOAS Links . 36
2 GraphQL Schema Example . 42
3 Routing Method for Specific HTTP Method 51
4 Chained Route Handlers With app.route() 52
5 Next RESTful API Route . 53
6 Nest RESTful Routes . 53
7 PostgreSQL Service Configuration 72
8 Prisma Schema Snippet . 73
9 Server’s Root Module . 75
10 Prisma Module Decorators . 75
11 JWT Strategy Configuration 79
12 Class-Validator Decorators . 80
13 GraphQLModule Configuration 82
14 GraphQL Mutations Definition 83
15 GraphQL Related Data Fields and Resolvers 84
16 Nginx in Docker . 85
17 Local State Management With useState 87
18 Manage Logged User With Zustand 87
19 Query With useQuery Hook . 88
20 Mutation With useMutation Hook 89
21 Caching REST API Responses for Offline Access 90
22 GraphQL Query With Apollo Client 91
23 Mocking the StoryService Class 95
24 Using the Test Class to Mock the Nest Runtime 95
25 Jest Unit Tests . 96
26 Mocking the Nest Runtime for Integration Tests 97
27 RESTful Endpoint Integration Test 97
28 React DOM Testing . 98

xv

Introduction

The popularity of online solutions has grown significantly in the last decade.
Many people and companies have changed their approaches to solving a wide
range of tasks and started using online solutions. The technical requirements
for these solutions are constantly growing. This leads to the emergence of
new approaches, technologies, architectures and frameworks that are suitable
to meet the evolving requirements.

We can notice the trend of emerging new solutions, for example, from the
results of The State of JavaScript [1] survey. The timelines show that in 2017,
there were only four front-end and a single back-end JavaScript framework
of which at least 10 % of survey participants knew about. We can see that
after four years, the result set has grown to 13 back-end frameworks [2] and
10 front-end frameworks [3].

It’s clear that in today’s world of web development, technology and ap-
proaches are evolving rapidly. Experienced developers do not have the time
to follow and understand all these technologies and approaches, while novice
developers find it difficult to orient themselves in these technologies and ap-
proaches. This is a problem at a time when the right choice of technologies
and approaches is the key to success.

The Goal of This Thesis
This thesis aims to study and analyze web application development in client-
side and server-side domains. In particular, the development of REST and
GraphQL APIs along with progressive web applications. Furthermore, the
thesis aims to design and implement prototype web application demonstrat-
ing the use of appropriate technologies and approaches in the aforementioned
domains. Moreover, it will explore the types of web applications from differ-
ent perspectives. The output of this thesis will be beneficial to beginning web
developers as an entry guide to the current web development, or to web devel-

1

Introduction

opers interested in extending or consolidating their knowledge in client-side
or server-side development. It can also be beneficial for developers looking for
a demonstration of API implementation using REST and GraphQL.

2

Chapter 1
Theoretical Analysis

This chapter provides an introduction into web application development and
a broad overview of the technologies and approaches used in web application
development. Our goal is to cover the topic of web development broadly and to
get to the topics such as REST, GraphQL and PWA in the most natural way
possible. Firstly, we provide the basic information on web applications. After
that, we explain a client-server model and how it is used by web applications.
Subsequently, we describe types of web applications from several different
perspectives. After that, we describe JavaScript and analyze the technologies
and approaches used in client-side web development. Then we describe PWAs
in detail. After that, we analyze the server-side web development. Finally, we
analyze REST and GraphQL in detail.

1.1 Web Applications and Websites
When it comes to web application development, it is suitable to start by
explaining the similarities and differences between web applications and web-
sites. Both web applications and websites are essentially a software that is
stored on a server and is delivered via a network such as the internet. Users
access them through web browsers. Moreover, developers use the same tech-
nologies to build both websites and web applications. The key difference
between websites and web applications is in their purpose and the level of
interactivity. Although modern websites have elements of web applications,
their main purpose is to provide users with information. This implies that
the provided information limit the level of website’s interactivity. On the
other hand, the main function of a web application is to provide users with
functionality that allows them to achieve some goals. [4]

Web applications operate in a client-server model. This means that they
consist of a client-side component and at least one server-side component.
Server-side component typically implements application logic that uses one or

3

1. Theoretical Analysis

more databases to retrieve and persist data. The application logic may also
communicate with other server-side components. [5] [6]

Because of the client-server model, web applications require both client-
side and server-side scripting. Client-side scripting deals with the information
presentation and the user interface. For client-side scripting, we use browser-
based 1 technologies such as JavaScript, CSS and HTML. [5]

On the other hand, the purpose of server-side scripting differs from the
purpose of client-side scripting. It mostly deals with selecting the content to
be returned in response to a request. It usually involves validating requests
or interacting with a database, as we have already mentioned above. [6]

Web application components communicate via standardized protocols such
as HTTP. [6] The following section describes a client-server model and how it
is used in a basic web application configuration.

1.2 Client-Server Model

As we mentioned in the previous section, a client-server model is essential for
web applications. It is a distributed model that divides tasks between nodes
that provide services, called servers, and nodes that request these services,
called clients. The server handles all processing related to the provided service,
while the client can access this service. [7]

Clients and servers communicate using a request-response messaging pat-
tern. In other words, the client sends a request to the server and the server
responds with a response. The server perpetually listens for requests from
clients. When the server receives the request, it processes that request and
sends the response back to the client. [7]

Network ServerClients

Figure 1.1: Client-Server Model

1The technologies that rely on a web browser to execute or interpret the code.

4

1.2. Client-Server Model

Now that we have described the client-server model in general, we will
explain how typical web application works on top of the client-server model.
Considering the situation where there is no intermediary between the client
and the server, we can describe the request-response process in the following
steps:

1. The Web browser sends an HTTP request to the specified URL.

2. The Web Server receives the request and delegates it to the web appli-
cation.

3. The Web Application performs the appropriate operations on the data.

4. The Web Application dynamically prepares the data to be sent back as
part of the response.

5. The Web Application passes the data along with the HTTP metadata
to the Web Server which sends an HTTP response back to the Web
Browser.

6. The Web Browser processes the response and, if necessary, sends requests
to fetch static resources.

7. The Web Server loads requested files from the file system and sends
them back in response.

Web BrowserWeb ServerFiles

Database Web Application

1

2

3

4

5

7
HTTP Request

HTTP Response

Static resources:
CSS
JavaScript
Images
Other filesTemplates

Data
Response data,
HTTP metadata

Request data

7

Figure 1.2: Client-Server Model for Web Application

5

1. Theoretical Analysis

1.3 Types of Web Applications
The preceding sections dealt with the definition of a web application and the
explanation of how web applications work. This section analyzes the types
of web applications from several different technical perspectives in order to
provide a comprehensive overview of possible technical approaches in web
application development.

Let us give a general overview before proceeding to the analysis of individ-
ual types of applications. Table 1.1 lists the perspectives we will examine and
the corresponding application types. Figure 1.3 illustrates the relationships
between the application types listed in this table.

Perspective Types

Rendering
Server-Side Rendered (SSR)
Client-Side Rendered (CSR)
Hybrid Rendered (SSR & CSR)

Reloading
Multi-Page (MPA)
Single-Page (SPA)
Hybrids of MPA and SPA

Decoupling

Monolithic
Decoupled (Headless)
Microservices Oriented
Micro Frontends Oriented

Adaption to Mobile Devices
Mobile-Dedicated
Responsive
Progressive

Table 1.1: Types of Web Applications Overview

1.3.1 From the Perspective of Rendering

Firstly we will categorize web applications according to where and how the
HTML content is assembled. By assembling, we mean combining data with
a template into the final content presented to the user. We recognize client-
side and server-side rendered applications as well as a combination of both
approaches. [8]

6

1.3. Types of Web Applications

CSR MPA SSR MPASSR & CSR
MPA

Monolithic
Applications

Mobile
Dedicated

Applications

PWA

Responsive
Applications

Micro Frontends
Oriented

Applications

CSR SPA SSR & CSR
SPA

SSR SPA

Decoupled
(Headless)

Applications

Microservices
Oriented

Applications

Figure 1.3: Relations Between the Types of Web Applications

1.3.1.1 Server-Side Rendered Applications

Applications that utilize server-side rendering approach generate HTML con-
tent on each request. There are two main approaches to server-side rendering:

Template Engines Server-side technologies typically provide a way to write
dynamic content into HTML. Template engines are libraries for these
technologies that provide syntax for more conveniant templating. Ex-
amples of template engines are Twig, Handlebars, Pug or Jinja. [9]

Isomorphic/Universal JS This approach allows us to pre-render the de-
fault page of an application developed using a client-side JavaScript
framework. This page is displayed independently of JavaScript. As
soon as the JavaScript framework loads, the page becomes interactive.
Examples are Next.js, Nuxt.js, Meteor.js or Angular Universal. [9]

1.3.1.2 Client-Side Rendered Applications

Client-side rendered web applications utilize asynchronous HTTP requests
to retrieve data from servers and JavaScript to construct HTML in a web
browser. Client-side rendering, also known as AJAX, enables us to modify
the DOM without refreshing the entire page. Single-page applications, which
we will describe in Section 1.3.2.2, usually take advantage of CSR. [10]

7

1. Theoretical Analysis

1.3.1.3 Hybrid Rendered Applications

These web applications use server-side pre-rendering. After receiving the pre-
rendered content, further rendering is performed by the browser.

1.3.2 From the Perspective of Reloading

Looking at web applications from a different perspective, we can categorize
them according to an architectural pattern that determines how the appli-
cation handles transitions between its pages. From this point of view, we
recognize multi-page and single-page web applications and web applications
that combine both approaches.

1.3.2.1 Multi-Page Applications (MPA)

These applications generally use SSR, however they can use CSR to refresh
parts of the content asynchronously. A typical MPA consists of multiple pages
that the user navigates through. [11] [12]

Without utilizing a CSR approach, multi-page application sends a request
to a server at every action and waits for a response. The response contains
the entire new HTML page and the application reloads as soon as it receives
the response. This can be inefficient. Let us imagine that we have a page with
several assets 2 and a form for editing the user’s profile. After submitting
the form, the application requests a new HTML page and the entire page is
transferred and reloaded just to display a status message. Moreover, without
caching, a web browser reloads all required assets. [11] In MPA, both front-end
and back-end usually depend on each other. [13]

1.3.2.2 Single-page Applications (SPA)

In contrast to MPAs, SPAs never reload or redirect. All the resources re-
quired by the application are retrieved the first time the application loads.
SPAs perform each update of the page content dynamically. They commu-
nicate asynchronously with server-side applications in order to retrieve data
for updates. [11] They generally feel faster than MPAs because they do not
repeatedly load the entire content. They promote decoupling since front-end
and back-end are strictly separated. [13] SPAs provide better user experience
since they allow us to evoke a native look and feel. Because of that, this ap-
proach is suitable for Progressive Web Applications which we will analyze in
Section 1.6 [12]

2e.g. images, CSS or JavaScript

8

1.3. Types of Web Applications

1.3.2.3 Hybrids of MPA and SPA

We can combine both previous approaches. Such a combination can result,
for example, in MPA that contains SPAs as sub-applications. [11]

1.3.3 From the Perspective of Decoupling
We can also categorize web applications according to how their logical parts
are separated. This section will therefore focus on monolithic, decoupled,
microservices oriented and micro frontends oriented applications. [14] [15]

1.3.3.1 Monolithic Web Applications

A typical web application consists of three layers. These are the presentation
layer, the business logic layer and the data access layer. In applications with a
monolithic architecture, all these layers are coupled within a single, complex
codebase. Moreover, components of the logic layer which could be developed
independently are tied together. [14]

Monolithic applications are not technologically flexible and make us bound
to a single technological stack. They are not reliable since a failure in one func-
tionality can cause the entire application to fail. As the application evolves,
the volume of the code grows and its quality deteriorates. This reduces the
speed of development. The only way to scale monolithic application is to run
additional application instances and use a load balancer to distribute requests
among these instances. Deployment is simple, but changing any part of the
application requires to redeploy the entire application. [14]

Presentation Layer

Business Logic Layer

Data Access Layer

Database

Figure 1.4: Monolithic Application

9

1. Theoretical Analysis

1.3.3.2 Decoupled (Headless) Web Applications

Monolithic applications tend to be difficult to maintain. Moreover, we can
not clearly define the boundary between the front-end and the back-end. This
means that front-end developers often need to understand how back-end so-
lutions are implemented. [15]

Because of that, we introduce a decoupled architecture that strictly sep-
arates the presentation layer of the web application from the business logic
by implementing separate applications for both layers. This approach is com-
monly known as the separation of front-end and back-end. Back-end and
front-end applications are deployed on separate servers. The back-end appli-
cation exposes an API that the front-end consumes. Such a back-end applica-
tion is also called headless. This approach narrows the gap between front-end
and client-side development, as well as between back-end and server-side de-
velopment. [15]

It is important to note that the separation of front-end and back-end does
not mean that the front-end and back-end applications are not monolithic.
For decoupling within these applications, we use the architectures described
in the following subsections.

Business Logic Layer

Front-end Application

Presentation Layer

Back-end Application

Data Access Layer

Database

API

Figure 1.5: Decoupled Architecture

1.3.3.3 Microservices Oriented Web Applications

In contrast to monolithic applications, microservices oriented applications are
divided into a system of small isolated services. Each of these services runs
independently and exposes an API. The services then communicate with each
other. We will describe microservices in more detail in Section 1.7.5.2. [14]

10

1.3. Types of Web Applications

1.3.3.4 Micro Frontends Oriented Web Applications

Fundamentally, Micro Frontends is an architectural style that extends the idea
of microservices to the front-end development. Micro Frontends use the DOM
as the API that enables them to communicate. Since the Micro Frontends
architecture closely relates to client-side development, we will describe it later
in Section 1.5.2. [16]

1.3.4 From the Perspective of Adaption to Mobile Devices

According to the Nielsen Norman Group, we can essentially divide web ap-
plications into three categories based on how they handle adaption to mobile
devices. We will expand these categories with progressive web applications,
as they can be understood as an effort to behave as native applications on the
target device. [17]

First of the categories is trivial. It includes web applications that fail to
adapt to mobile devices. We describe other categories below. [17]

1.3.4.1 Mobile-Dedicated Web Applications

This approach provides a standalone version of the user interface that is de-
veloped specifically for mobile devices. The mobile version differs from the
full one and is located under a different URL. It provides content and features
suitable for mobile devices, which are usually limited compared to the full
version. [17]

1.3.4.2 Responsive Web Applications

Responsive web applications represent an approach where a single implemen-
tation supports a set of distinct devices and screen sizes. In contrast with
mobile-dedicated web applications, they should provide the same content and
functionality for all devices.3 They are easier to maintain because of the sin-
gle codebase. However, any change requires testing on all supported devices.
They may run slower due to loading content for all versions. [17]

1.3.4.3 Progressive Web Applications

Progressive web applications take web application adaptability further. They
heavily use JavaScript to behave like native applications. We will describe
these applications in detail in Section 1.6. [18]

3In practice, some responsive web applications limit content and functionality, but to a
lesser extent than mobile-dedicated ones.

11

1. Theoretical Analysis

1.3.5 Section Summary

In this section, we explored the the types of web applications from several
different perspectives. We analyzed basic characteristics of individual types
of web applications and how they relate to other web application types. We
learned that rendering architecture and reloading architecture are closely re-
lated and application types from these two perspectives strongly overlaps.

As we will learn in Section 1.5.2, JavaScript frameworks are very popular
nowadays. One of the key benefits of JavaScript frameworks is the support for
client-side rendering, which makes it easy to implement single-page applica-
tions. From the results of The State of JavaScript [19] survey, we may notice
the rising usage of PWAs. In the next section, we will cover JavaScript as one
of the building blocks of web development and as the key technology for the
approaches mentioned above.

1.4 JavaScript

JavaScript is an essential part of web development since almost 98 % of all
websites use it on client-side. [20] Moreover, according to Stack Overflow De-
veloper Survey 2021 [21], Node.js has become the sixth most popular technol-
ogy. It has even overcome web browsers as a JavaScript runtime in The State
of JavaScript [22] survey.

JavaScript is a lightweight, cross-platform scripting or programming lan-
guage. Furthermore, it can be characterized as a prototype-based, multi-
paradigm, single-threaded and dynamic language. JavaScript supports object-
oriented, imperative and functional programming. Depending on the imple-
mentation, JavaScript can be an interpreted or just-in-time compiled lan-
guage. [23] [24]

JavaScript is capable of running in different environments, such as a web
browser or Node.js. It can connect to objects in the host environment and
provide the developer with control over them. [25] [24]

The core language of JavaScript is defined by ECMAScript standard which
ensures that the JavaScript core behaves the same in all implementations.
Among other aspects, it defines a language syntax, types, standard library of
objects or error handling mechanism. [24] [26] In the context of web develop-
ment, we have two extensions to the core JavaScript:

Client-side JavaScript which additionally contains objects to control a web
browser and Document Object Model. [24]

Server-side JavaScript that extends the core specification by objects that
provide functionality specific to server-side development. [24]

12

1.4. JavaScript

1.4.1 Implementations

The first implementation of JavaScript engine was created by Brendan Eich at
Netscape. The engine was implemented using C/C++ and named SpiderMon-
key. Since its release, the engine has been gradually optimized and updated
to support the current ECMAScript specification. SpiderMonkey is still used
today as the JavaScript engine for Mozilla Firefox. [23]

Another important JavaScript engine is Google’s V8. This engine is used
by Google Chrome and the current version of Opera. It is also important to
mention that Node.js is based on the V8 engine. Other popular JavaScript
engines include SquirellFish and Nitro for WebKit browsers, such as Apple
Safari. [23]

1.4.2 ES2015

ECMAScript 2015 is the largest update to JavaScript in its history and rep-
resents a turning point in its evolution. ES2015 brought two major changes.
The first is that the JavaScript specification receives regular updates. The
second brings extensive changes to the language features. [27]

The breakthrough feature of ES2015 are modules that allow us to develop
flexible and modular code. Another important features are classes that add
syntactic sugar to the prototype-based inheritance. We should also mention
better support for asynchronous programming and the possibility to define
variables with a scope limited to the block in which it is defined. [27]

1.4.3 TypeScript

In recent years, the popularity of TypeScript has grown significantly. [28].
Essentialy, TypeScript is a typed superset of JavaScript. This means that it
shares the syntax of JavaScript and adds typing rules on top of it. TypeScript
comes with a runtime for JavaScript that provides a compile-time type check-
ing. The runtime preserves the behavior of JavaScript runtime so if we move
code from JavaScript to TypeScript, it runs the same way. Once TypeScript
checks the types validity, it removes the types and compiles the code into plain
JavaScript. [29]

1.4.4 Asynchronous JavaScript

Before we will continue, it is important to note that asynchronous program-
ming is different from parallel programming. As we mentioned at the begin-
ning of this section, JavaScript is a single-threaded language. Asynchronous
programming allows us to free the thread from waiting for the result of a
blocking call. JavaScript supports both synchronous and asynchronous code
execution. This is made possible by the ability to dispatch an operation out-

13

1. Theoretical Analysis

side the main thread and wait for the result. The main thread is not blocked
and continues to run while the asynchronous operation is beeing processed. [30]

In asynchronous programming, we must ensure that the code which de-
pends on the results of asynchronous operations is executes only after they
are completed. There are three ways to do this in JavaScript. The first uses
asynchronous callbacks and gradually becomes deprecated. The second uses
promises that act as a proxy for the future result of an asynchronous opera-
tion. The last uses async/await constructs that provide a syntax sugar for
promises. [31]

1.5 Client-Side Web Development
As we mentioned in Section 1.1, web applications operate in a client-server
model. That implies that web application development consists both of client-
side and server-side development. In this section, we will discuss client-side
web development technologies and selected approaches. Finally, we will intro-
duce some of the popular JavaScript frameworks.

1.5.1 Key Technologies
Client-side web development is based on three essential technologies, namely
HTML, CSS and client-side JavaScript.

Structure: HTML

Presentation: CSS

Behavior: JavaScript

Figure 1.6: Client-Side Web Technologies Layers

1.5.1.1 HyperText Markup Language

HTML is the most basic layer of any client-side web application. It is a markup
language that defines the structure of a web application using predefined el-
ements. Most elements consist of an opening tag, a content and a closing
tag. However, some elements do not require a closing tag. These elements are
typically used to insert something into a document. We can categorize HTML
elements as inline and block. A web browser renders the block element as a

14

1.5. Client-Side Web Development

visible block of content that is separated from the preceding content by a new
line. The inline element must not contain a block element. [32]

1.5.1.2 Cascading Style Sheets

Cascading Style Sheets stand for the rule-based language that specifies how
HTML documents should be rendered on top of the browser’s default styles.
It allows us to graphically represent the document. CSS consists of a list of
rules. Each rule specifies a group of styles that is applied to a set of elements.
The target set of elements is specified by a selector. The group of styles is
represented as a list of property-value pairs. [33]

Instead of pure CSS, we may use CSS preprocessors. CSS preprocessor is
a tool that lets us to compile an extended version of CSS into a basic CSS
syntax. There are several preprocessors, such as Sass, Less or Stylus. [34]

1.5.1.3 Client-Side JavaScript

JavaScript is an essential part of the client-side web development since almost
98 % of all websites use it. [20] As we mentioned in Section 1.4, it is the
extension that provides APIs defined on top of the core JavaScript language.
There are two different categories of these APIs, browser APIs and third-
party APIs. Browser APIs are constructs provided directly by a web browser.
Essentially, they are bridges between JavaScript and complex lower-level code.
Third-party APIs are JavaScript codes available on the web. We must retrieve
the API code in order to use it. [35]

Below we describe only the most important browser APIs. For a compre-
hensive overview, we can look at the reference.4

DOM API provides connection between JavaScript and a document that
represents a website. It models the document as a logical tree. There is
a node at the end of each branch that contains an object which repre-
sents an HTML element. We can access these objects and attach event
handlers to them. [36]

Fetch API is a promise-based API that provides asynchronous fetching of
resources. [37]

Web Storage API provides access to sessionStorage and localStorage. [38]

IndexedDB API is available within Web Workers and provides access to
client-side storage for larger amounts of data. It enables efficient search
through indexing. [39]

4https://developer.mozilla.org/en-US/docs/Web/API

15

https://developer.mozilla.org/en-US/docs/Web/API

1. Theoretical Analysis

Let us describe a theoretical model of the client-side JavaScript runtime,
which neglects all optimizations implemented by current engines. The runtime
model of the client-side JavaScript is based on stack, heap, message queue and
event loop.

Heap contains allocated objects.

Stack is formed by function calls.

Message queue contains messages to be processed.

Message contains a function that is called when the message is processed.

Event loop processes the message queue, starting with the oldest message.

Message is added into the message queue anytime an event listener is
triggered by an event. When the stack is empty5, the event loop removes
the oldest message from the queue and the contained function is called with
the message as a parameter, causing the frame to be added on the top of the
stack. The function call stack is processed until it empties. Then the event
loop continues to the next message. [39]

Heap
Obj1, Obj2, ...

Call Stack
Frame1, Frame2, ...

Message Queue
[Message2: foo, data], ...

Message1

Event Loop JavaScript Runtime

Web Application

function foo(args) { ... }

function onClick(args) { ... } Browser API

Figure 1.7: Client-Side JavaScript Runtime

1.5.2 Modern Development Approaches
There is a large number of trends in client-side web development. This thesis
does not aim to analyze all existing trends. Sources [40] [41] [42] discussing
web development trends include approaches such as mobile-first development,
single-page applications, micro frontends or JavaScript frameworks. We will

5So the previous message was completely processed.

16

1.5. Client-Side Web Development

skip JavaScript frameworks and PWAs because we will cover them in detail
in Section 1.5.3 and Section 1.6. Since we already discussed SPAs in section
1.3.2.2, we will omit them too.

1.5.2.1 Mobile-First Development

According to StatCounter Global Stats [43], more than 56 % of web traffic
comes from mobile devices nowadays. This makes mobile optimization a must.
Mobile-first development is based on creating a layout that is designed for mo-
bile devices by default. This layout is gradually modified for wider viewports
using layered configurations. [44]

1.5.2.2 Micro Frontends

The term Micro Frontends was first mentioned in ThoughtWorks Technology
Radar in 2016. As we mentioned in Section 1.3.3.4, Micro Frontends is an
architectural style that extends the idea of microservices to the front-end
development. It thinks of a web application as a set of features that are
developed by independent teams. Each team develops its own features end-
to-end, from database to UI. [16]

There are several ideas behind Micro Frontends:

Be Technology Agnostic Each team selects and manages its technology
stack independently of other teams. They may use custom elements as
an interface and to encapsulate implementation details. [16]

Isolate Team Code Features developed by teams do not share runtime.
They e.g. avoid global variables. [16]

Establish Team Prefixes Establish naming conventions where it is not pos-
sible to isolate. For example, namespaces in CSS or key prefixes in web
storages. [16]

Favor Native Browser Features over Custom APIs Use browser events
for communication instead of implementing your own publish-subscribe
mechanism. [16]

Build a Resilient Site Use universal rendering and progressive enhance-
ment to make the feature viable even if JavaScript has failed to run
or has not run yet. [16]

Above we mentioned the concept of custom elements. Custom elements
are a set of JavaScript APIs defined by the Web Components standard. Using
these APIs, we can create custom elements that are useful for encapsulating
features. Specifications of these elements serve as APIs for integration with
other micro frontends. [16]

17

1. Theoretical Analysis

1.5.3 JavaScript Frameworks and Libraries
As we mentioned in Section 1.4.2, ES2015 brought modularity to JavaScript.
This led to the emergence of many modern JavaScript frameworks which have
become an essential element of modern client-side web development. They
bring together tools and approaches that facilitate the development of scalable
and interactive web applications. [45]

According to The 2021 State of JavaScript [3] survey, consistently the most
popular JavaScript front-end framework is React, used by 80 % of respondents.
On second place is Angular followed by Vue.js. The results show an increase in
the popularity of the Svelte framework for which it shows very high satisfaction
and interest, while usage and awareness are increasing. [3] We may see the
usage ratio of the most popular frameworks in Figure 1.8.

Year

U
sa

ge
 ra

tio

0%

25%

50%

75%

100%

2016 2017 2018 2019 2020 2021

Ember Preact Svelte Vue Angular React

Front-end JavaScript Frameworks in Time

Figure 1.8: Front-end JavaScript Frameworks in Time

Below we will describe React and Vue.js based on the enormous popularity
of Vue.js on GitHub [46].

18

1.5. Client-Side Web Development

1.5.3.1 React

React is a declarative, component-based JavaScript library for creating inter-
active UIs. The declarative nature of React is that we can declare the view
of an application based on its state. React renders and updates the view of
a component when its state changes. [47] It separates concerns at the level of
isolated components instead of separating rendering from other UI logic, such
as event handling or status updates. [48]

In React, we connect the data to the view using one-way data binding.
With one-way data binding, we can use two different approaches. The first
is Component to View, where any change to the data is reflected in the view.
The second is View to Component, where any change in the view is reflected
in the data. [49]

React interacts with HTML using a virtual DOM. [50] Moreover, it uses
JSX for rendering. This technology allows us to use a declarative HTML-like
code inside JavaScript to describe the rendering output. Since a web browser
cannot interpret JSX, it must be compiled into calls of the specific method.
This method creates objects called React elements. These objects describe
what to render and React uses them to create and update the DOM. [51] [48]

React only provides components, DOM manipulation and component state
management. Additional features such as application state management or
routing are implemented externally. [50] On that basis, we should note that
React itself is a library, not a framework, and is not limited to web applica-
tion development6. Rendering for web applications is provided by ReactDOM
library. Combination of React and ReactDOM is often considered a frame-
work. [51]

1.5.3.2 Vue

Same as React, Vue is a declarative JavaScript framework for creating inter-
active UIs that implements component-based architecture. It also interacts
with HTML using a virtual DOM. [52] [53]

In contrast to React, Vue supports both one-way and two-way data bind-
ing. In two-way data binding, the model automatically updates when there is
a change in view, view than responds to this change in the model. [50] [54]

Essentially, we can define logic, template and styles of a component in
separate files. However, the recommended way of defining a component is to
use an HTML-like files called single-file components. [52] [55]

Vue is designed as a progressive framework. It facilitates incremental de-
velopment of projects and allows us to migrate existing projects to Vue grad-
ually. Unlike React, it allows us enhancing a static HTML without a building
process. [50] [52]

6We can use e.g. React Native to create mobile application UI.

19

1. Theoretical Analysis

1.6 Progressive Web Applications
In recent years, a good-looking and easy-to-use user interface has become a
must for any application to attract users and succeed. Users have become
accustomed to certain standards that make them feel comfortable when using
applications. As we mentioned in Section 1.5.2.1, more than 56 % of web traf-
fic comes from mobile devices in these days. Moreover, an increasing number
of mobile device users spend more than 90 % of their time using mobile ap-
plications instead of a web browser. [56] This has two implications. The first
is that the web front-end must be optimized for mobile devices. Second, users
expect a mobile web to behave in the same way as a native mobile application.

Some of the features of web applications differ from those of the native
ones. Compared to native applications, web applications do not support
any offline experience in default. PWAs attempt to narrow the gap between
them by utilizing modern web capabilities to convey a native-like user expe-
rience. [18]

1.6.1 Principles of Progressive Web Applications

In general, it is not trivial to determine whether a web application is a PWA.
This subsection outlines the key principles that a PWA should follow.

• be discoverable by search engines,

• be installable so that we can access a PWA from the home screen or
application launcher,

• be linkable so that we can refer to a PWA using a URL,

• be independent of the network so that it can work offline,

• implement a progressive enhancement so that it supports older browsers
and provides the best possible experience when accessed using state-of-the-
art web browsers,

• support user re-engagement using approaches such as notifications,

• use CSS constructs to achieve responsivity,

• be delivered using HTTPS to ensure security. [18]

In order to achieve features mentioned above, we use a set of common
web technologies and concepts. We will introduce these within the following
section.

20

1.6. Progressive Web Applications

1.6.2 Technologies and Approaches
We develope PWAs using common web technologies. These include service
workers, web application manifest and a set of Web APIs such as Cache API,
Push API or Notification API. Furthermore, it is common to implement appli-
cation shell architecture for PWA. [18] [57] We will introduce service workers,
web application manifest and application shell within the following sections.
Figure 1.9 illustrates the overall architecture of PWA.

Web Application

Back-end server

Offline CacheOffline

Online

Service Worker

Request

Response

Response

Web Application
Manifest

Figure 1.9: Overall PWA Architecture

1.6.2.1 Service Workers

A service worker is a script that runs in the background in a thread that is
separate from the main JavaScript thread of a web application. It is able
to improve the reliability and performance of the a application by providing
offline access. [58] [57]

A service worker has the ability to capture and process network requests.
Therefore, it can act as a network proxy between a client application and a
server. On top of that, it has access to a variety of client-side APIs, such as
Cache API, Push API or Notification API. [58] [57] As a motivation, let us
describe what a service worker is able to provide:

• Because a service worker can act as a network proxy and is able to
use caching and storage APIs, it allows us to control what content gets
served from cache. [57]

21

1. Theoretical Analysis

• Using the same capabilities, the service worker is able to implement
offline functionality by storing a set of requests to be handled as soon
as the network is available. [57]

• Using the push and notification API, the service worker can implement
system notifications. [57]

Service workers follow the concept of progressive enhancement. They en-
hance a website functionality through a service worker life lifecycle and do not
affect the base functionality of a web application if its visited through a web
browser that does not support service workers. [58] Let us describe a service
worker’s lifecycle:

1. A service worker’s lifecycle begins with its registration through an ap-
plication code and is based on asynchronous events. [59]

2. The first event after the registration occurs when a web browser starts
installing a service worker which fires an install event. During the
installation, we usually use the Cache API to precache the assets needed
for offline access. [59]

3. After successful installation, the service worker becomes activating and
the activate event is fired. During the activation, we typically clear
the old caches if any exist. [59]

4. After the activation, the service worker changes state to activated and
is able to handle functional events, such as fetch. [59]

1.6.2.2 Web Application Manifest

As we have already stated, PWAs should be installable. This can be achieved
using the web application manifest JSON file. The manifest contains the
metadata used by a web browser during the installation process, as well as
by the device’s interface7 for running applications. [57] [60] The manifest may
contain:

• application metadata, such as the application name,

• display configuration, such as font size, background color or splash screen,

• paths to application icons displayed within the device’s interface,

• default orientation and display mode declaration. [57]
7e.g. home screen or application listing

22

1.7. Server-Side Web Development

1.6.2.3 Application Shell Architecture

The application shell architecture is an approach to building client-side web
applications. It is based on the idea of caching a basic skeleton of the ap-
plication. The basic structure of the application is stored locally and thus
available offline. This structure is dynamically populated with real data using
JavaScript. Application shell promotes a good performance, fast application
loading and a native-like interaction regardless of the connection quality. [57]

1.7 Server-Side Web Development
Section 1.5 provided an overview of technologies and approaches for client-side
web application development. This section covers server-side development in
a similar way.

1.7.1 Popular Technologies
We can use a wide range of technologies for server-side development. There-
fore, this section focuses only on the overview of the most popular ones. We
will determine the popularity of technologies based on the popularity of its
web frameworks. According to the Stack Overflow Developer Survey 2021 [21],
the most popular technologies for server-side web development are Node.js8

and Python9. The survey defines the popularity of technology as the number
of developers who have done extensive development work with the technology
in recent years or who want to work with the technology in the next year.

The following two subsections provide the information on Node.js and
Python characteristics.

1.7.2 Node.js
Node.js is an event-driven, single-threaded JavaScript runtime that uses V8
JavaScript engine outside of a web browser. Node.js does not implement
concurrency model by creating a new OS thread for each request. It uses un-
blocking asynchronous paradigm instead. This means that Node.js dispatches
inherently blocking operations, such as database or filesystem access, and con-
tinues with other tasks until it receives the response. [61]

The event loop is part of the Node.js runtime and is the key to achieve
non-blocking I/O operations. Whenever possible, it delegates I/O operations
to the system kernel, which is usually multi-threaded and can handle multiple
operations simultaneously. When the operation is complete, the kernel notifies
Node.js, which adds the appropriate callback in the poll step of the event
loop.

8Express
9Flask, Django and FastAPI

23

1. Theoretical Analysis

Figure 1.10 shows simplified overview of the Node.js event loop which omits
the microtask queue that we will describe separately.

timers

pending
callbacks

 idle,
prepare

poll

check

close
callbacks

icomming:
connections,

data, ...

Figure 1.10: Node.js Event Loop

Each of the steps depicted in Figure 1.10 keeps a FIFO queue of callbacks
to be executed. When entering a specific step, operations specific to that step
are executed, followed by callbacks from the queue. [62] Let us describe the
responsibilities of these steps:

timers phase executes callbacks queued by setTimeout() and setInterval().
The callbacks will be executed as soon as possible after the time thresh-
old we specified has passed.

pending callbacks performs I/O callbacks postponed to the next iteration.
Usually, the queue contains callbacks for system operations such as TCP
errors reporting.

idle, prepare is only used internally.

poll fetches and executes I/O related events. This phase is responsible for
processing the poll queue and calculating the time that blocking opera-
tions will take. Once the poll finishes processing the queue, it looks up

24

1.7. Server-Side Web Development

the timers whose time thresholds have passed. It it find some, the event
loop jumps right to timers phase. If there are no timers, the event loop
will proceed to the check phase.

check performs callbacks queued by setImmediate().

close callbacks executes close callbacks, such as socket closing.

Between processing queues for the steps above, the event loop checks and
executes functions stored in the microtask queue. This queue consists of two
sub-queues. The first one stores function calls delayed by process.nextTick()
and the second one holds functions delayed by promises. [63]

1.7.3 Python vs Node.js
Python is an interpreted dynamic programming language. It provides high-
level data types and statements that allow us to express complex operations
concisely. Python provides splitting code into reusable modules.[64]

The Python interpreter is extensible with custom functions or modules
implemented using C language. This feature is useful for implementing critical
sections of the application where efficiency is important.[64]

Below we will compare Node.js and Python based on architecture, speed,
scalability, universality and applicability.

Architecture Node.js has event-driven architecture which supports asyn-
chronous I/O. In contrast to Node.js, Python does not implement such
architecture. It can use special libraries for asynchronous I/O, but they
are not part of most frameworks. [65]

Speed Both languages are interpreted, so they are generally slower than com-
piled languages. Node.js benefits from the performance of the V8 engine,
which is optimized by Google. The fact that Node.js runs outside a web
browser also has a positive effect on its performance. The non-blocking
event-driven architecture allows multiple requests to be processed si-
multaneously. Python only supports synchronous code execution and is
generally slower. [65]

Scalability Node.js supports the creation of modules and micro-services that
run in separate processes and communicate using lightweight mecha-
nisms. Python’s scalability is limited. Its memory management is not
thread-safe and therefore must use Global Interpreter Lock. This allows
Python to run only one thread at a time. [65]

Applicability Node.js is widely used for web application back-end develop-
ment. The advantage of Node.js is that it allows us to use JavaScript
both for client-side and server-side web development. Both Python and

25

1. Theoretical Analysis

Node.js are cross-platform. Python may be used as a full-stack language
to develop both front-end and back-end. [65]

Node.js is a popular technology used for web development that allows
us to develop back-end for web applications in JavaScript which is a native
technology for client-side web development. Therefore, the following section
will focus on Node.js frameworks only.

1.7.4 Node.js Frameworks
From the results of The State of JavaScript [2] survey, we can notice that some
of the most used Node.js frameworks are Express, Next, Nuxt, Nest, Strapi
and Fastify.

Leaving aside Express, the most popular Node.js frameworks according to
npm trends [66] are Next and Nest. This subsection will cover Express, Next
and Nest frameworks. We will include Nest because it is a robust framework
that provides a high level abstraction on the top of the HTTP server layer
provided by frameworks such as Express or Fastify. [67]

1.7.4.1 Express

Express is a minimalist and flexible framework for web application develop-
ment. Its simple architecture makes it easy to use for anyone who has ex-
perience with Node.js environment. It is considered a robust HTTP server
framework. [68]

Features Express is an unopinionated framework. That means that the
framework has no opinion about how developers use it. Because of that,
developers have the freedom to experiment. This can be an advantage
or a disadvantage depending on the developer’s experience. It promotes
rapid server-side development, especially the creation of RESTful APIs.
It also natively supports NoSQL databases.[68]

Use cases It is useful to create any type of application.[68]

1.7.4.2 Next

Next was originally presented as a back-end for a React front-end, however,
we can use the latest version as a full-fledged server-side framework. [68]

Features Next is built on top of React. It supports fast real-time changes
propagation while development. It splits assets so that only the required
JS and CSS is loaded for each page. [68]

Use cases It is especially suitable for fast and SEO-friendly applications built
with React. [68]

26

1.7. Server-Side Web Development

1.7.4.3 Nest

Nest is a Node.js framework that uses a robust HTTP server framework as the
underlying platform. It uses Express.js by default, but also supports Fastify.
Nest.js allows us to develop scalable, maintainable and testable server-side
applications. [67]

Features Nest is an opinionated framework. It effectively solves the problem
of application architecture by providing higly testable, scalable, main-
tainable and loosely coupled architecture out of the box. Implicitly,
Nest supports TypeScript, but also allows us to use pure JavaScript. It
combines object-oriented, functional and functional reactive program-
ming approaches. Although it provides abstraction over HTTP server
frameworks, it still allows us to use their APIs directly. Thanks to this,
we can use the libraries available for these frameworks as well. Nest is
also well documented. [67]

Use cases It is useful to create any type of scalable, testable and loosely-
coupled application. [68]

1.7.5 Modern Development Approaches
As server-side development is a broad topic, we will focus on a limited selection
of approaches similar to Section 1.5.2. According to the same sources as in
the mentioned section, we have two fundamental trends on the server side,
namely API-first development and microservices architecture.

1.7.5.1 API-First Development

APIs play an important role in modern web application development that
supports loosely coupled architectures. They enable mutual communication
between the front-end and back-end components, as well as communication
between different applications. [41]

API-first development is the approach where we prioritize APIs before
other aspects of the project. This approach allows us to create reusable,
modular and extensible applications. [41]

Let us briefly explain the categorization of APIs according to the architec-
tural style.

REST architectural style is based on separating concerns of the API con-
sumers from the API provider. Instead, REST relies on general opera-
tions over resources using underlaying network protocol. [69]

RPC is based on the idea of calling procedures on a remote system. We
usually call these procedures using their identifiers. This approach is

27

1. Theoretical Analysis

protocol-agnostic, but does not allow us to take advantage of native
protocol capabilities, such as caching. [69]

Event-driven/Streaming architecture do not require direct client API calls.
Instead, it provides events that clients can subscribe to. When an event
occurs, the client receives new data. [69]

1.7.5.2 Microservices Architecture

As we mentioned in Section 1.3.3.3, microservices are based on dividing the
application into a system of small isolated services.

Microservices are created on the basis of business responsibilities so that
these responsibilities are served independently. They provide high flexibility.
We can develop each microservice using a different technology. They are quite
reliable because a failure of one microservice does not take down the entire
application. Moreover, we can fix and re-deploy only the failing microservice.
Since the codebases of the individual microservices are small, we can main-
tain the code well. We can scale each microservice separately. This allows
us to assign additional resources only to those processes that require them.
When the microservice is modified, we have to redeploy only that particular
microservice. [14]

Microservice D

User Interface A User Interface B

Microservice A

Microservice B Microservice C

API

API API API

Database 1 Database 2 Database 3

Figure 1.11: Microservices Architecture

28

1.8. REST

1.8 REST
Representational State Transfer stands for an architectural style first intro-
duced by Roy Fielding in his dissertation. In these days, REST architecture
is often applied to the design of APIs for web services. A Web API complying
to the REST architecture is called a REST API. A web service that pro-
vides a REST API is called RESTful. [70] The REST architecture conforms
constraints outlined in the following section.

1.8.1 Constrains
In 1993, Roy Fielding began to address the problem of Web’s scalability.
Based on the analysis, he found that the scalability of the Web is determined
by a set of constraints. Fielding grouped these constraints into following cat-
egories: [70]

• Client-server,

• Uniform interface,

• Layered system,

• Cache,

• Stateless,

• Code-on-demand. [70]

We will describe each of these categories in the subsections below.

1.8.1.1 Client-Server

The Web is based on a client-server model that we covered in Section 1.2.
Client-server constraint promotes separation of concerns. Thanks to this, we
can isolate web components and implement them independently. [70]

1.8.1.2 Uniform Interface

The uniformity of the interface of web components is essential for their mu-
tual interaction. If any of the components does not comply with the agreed
standards, it is not possible to interact with it. [70] There are four constraints
that ensure the interoperability of web components:

Identification of resources The interface identifies each distinct resource
by a unique identifier, such as a URI. [70]

29

1. Theoretical Analysis

Manipulation of resources through representations Clients use the rep-
resentation to manipulate the resource. The representation is not the
resource itself since the resource can have multiple different representa-
tions. [70]

Self-descriptive messages A client’s request message should carry enough
information to describe a resource’s desired state. The server’s response
should carry enough information to describe a resource’s current state.
The server may or may not accept the client’s request. [70]

Hypermedia as the engine of application state A resource’s represen-
tation contains hyperlinks to related resources and actions. Clients can
traverse the resources and actions using these links. The hyperlink is a
part of the resource’s state. [70]

1.8.1.3 Layered System

These constraints take advantage of a uniform interface that allows the deploy-
ment of network components between a client and a server. These components
form a layered system where no layer can see beyond the layers it interacts
with. [70]

1.8.1.4 Cache

The cache constraint requires a web server to add cacheability information to
each response. This helps to reduce latency and a web server’s load. [70]

1.8.1.5 Stateless

Stateless constraint mandates a web server should not store the state of any
client application. This means that each client has to send all required con-
textual information whenever it communicates with the web server. [70]

1.8.1.6 Code-On-Demand

This constraint allows a web server to send executable code to clients. The
client has to be able to understand the received code in order to execute
it. This means that code-on-demand establishes a coupling between the web
server and its clients. Because of that, this constraint is optional. [70]

1.8.2 Resource Modeling
Any nameable Web-based concept is considered a resource. A REST API
represents a set of interlinked resources which are known as the REST API’s
resource model. The state of the resource in a particular format and at a
particular time is called resource representation. Each resource representation

30

1.8. REST

contains the data, the metadata and the hypermedia links which allows clients
to traverse the desired states of the resource. [70] [71]

1.8.2.1 Resource Archetypes

Resource archetypes allow us to consistently communicate the structure and
behavior of a resource model. [70] When designing a REST API, we encounter
the following four resource archetypes:

Document A document is similar to a single database record as it represents
a single concept. It represents the basis for the other archetypes. A
document may have a set of sub-concepts that we model as its child
resources. A document’s representation commonly consists of both its
attributes and links to related resources. [70]

Collection A collection is a resource directory managed by a server. Clients
may suggest new resources to be added into the collection. However,
the server decides whether to add the suggested resources or not. [70]

Store A store is a repository of resources managed by a specific client. The
client has full control over the repository. The repository never generates
a new URI. Each resource is created under the URI specified by the
client. [70]

Controller We use a controller resource to model procedural concepts. The
controller resource performs application-specific actions that we cannot
map to CRUD operations. It accepts appropriate parameters on in-
put. [70]

1.8.2.2 URI Path Design

Since the resource model forms a hierarchy, we can easily use URIs to de-
scribe the model. Each path segment maps to a unique resource within this
hierarchy. [70] The following list provides general URI path design rules for
the REST API resource model.

• use forward slash separators to indicate a resources hierarchy,

• do not use a trailing forward slash in URIs,

• use hyphens to separate resource’s name segments,

• prefer lowercase letters in URI paths,

• do not include CRUD function names in URIs,

• do not include file extensions in URIs. [70]

31

1. Theoretical Analysis

An example of URI that identifies the resource within the resource model
hierarchy may be http://api.example.org/collection/document. Below
we list the rules for URI path segments based on the resource archetype:

• use singular noun for document names,

• use plural noun for collection names,

• use plural noun for store names,

• use verb or verb phrase for controller names. [70]

1.8.2.3 URI Query Design

The query component of a URI is assembled of a list of key-value pairs. We
interpret the query component as a derivative of the resource that is specified
by the path component of a URI.[70] In REST architecture, we may use the
query component of a URI for the two following purposes:

• to filter collection or store,

• to paginate collection or store records. [70]

In order to accomplish filtering, we should use a query parameters to pass
key-value pairs where keys indicate attributes to be filtered and values specify
the desired values of the filtered attributes. For pagination, we should use
query parameters to indicate page index and size. [70]

If the complexity of filters exceeds the capabilities of the query component,
we should create a filtering controller related to the collection or repository.
This controller may accept a filtering query through a request’s body. [70]

1.8.2.4 Modelling Many-To-Many Relations

Managing relations between resources is one of the common challenges in
REST. Modelling many-to-many relations is one of the more advanced, yet
common tasks. Imagine a situation where we want to model relations between
users and groups, where one user can belong to many groups and one group
can contain many users.

Essentially, there are two major approaches to achieve this:

1. We can model our own collection for each group. This leads to relational
resources on URIs /groups/{group-id}/users/{user-id}.

2. We can model a separate relational resource such as /group-members.

32

1.8. REST

1.8.3 REST API Design Using HTTP
In context of web development, REST API is usually implemented on top of
the HTTP, specifically using its request methods, response codes and mes-
sage headers. Resource methods form the uniform interface to interact with
a REST API’s resource model since each HTTP method has well-defined se-
mantics. [70] For REST API resource model it is essential if an HTTP method
is safe or idempotent. We describe these two attributes below.

Safety An HTTP method is safe if it is read-only. When using a safe method,
we do not request or expect any change in the resource’s representa-
tion. [72]

Idempotence We call an HTTP method idempotent if an identical request
leaves the resource in the same state when called repeatedly. It is im-
portant to note that idempotency does not mean that the response to
the request will always be the same. For example, assume that we re-
peatedly call DELETE request. If the deleted resource exists at the time
of the first call, the server responds with 200 OK code. On the other
requests, the server responds with 404 Not Found. Important is that
the other requests do not alter the server state. [72]

In Table 1.2, we categorize HTTP methods by safety and idempotence. [72]

Method Safe Idempotent

GET Yes Yes

HEAD Yes Yes

OPTIONS Yes Yes

PUT No Yes

DELETE No Yes

POST No No

PATCH No No

Table 1.2: Safe and Idempotent HTTP Methods

33

1. Theoretical Analysis

1.8.3.1 Methods Semantics

A REST API must not compromise the design rules outlined below and must
provide a transparent interface.

GET We must use GET to retrieve a representation of a resource. The
request must not contain a body. We may repeatedly send GET requests
without causing any side effect. [70]

HEAD We should use HEAD to verify a resource existence or to fetch its
metadata. [70]

POST We can use POST for multiple purposes. We must use it to suggest
a new resource to be added into a collection. In addition, we must use
POST to execute controllers. On the other hand, we must not use it to
get, store or delete resources since there are dedicated methods for these
purposes. [70]

PUT A client must use PUT to insert a new resource to a store and to
replace or update a stored resource. The request must contain a whole
resource’s representation. [70]

PATCH We should use PATCH to partially update an existing resource. [70]

DELETE We must use DELETE to remove resource from its parent. [70]

OPTIONS We should use OPTIONS to retrieve resource’s available inter-
actions. The interactions are listed within the Allow header. [70]

From the description of the POST method it is clear that repeated calls
can cause the creation of new resources. For this reason it is a non-idempotent
method. Since the PATCH method performs only a partial update of a re-
source, it may cause side-effects if the resource contains e.g. auto-incrementing
values which the request does not update.

1.8.3.2 Response Status Codes

REST APIs take advantage of standard HTTP status codes to inform clients of
the results of processed requests. See the Mozilla MDN10 for a comprehensive
documentation of the HTTP status codes.

Note that if a REST API is designed on top of the HTTP, it is really a
bad practice not to use HTTP status codes.

10https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

34

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

1.8. REST

1.8.3.3 Metadata

In addition to the HTTP status codes, REST Architecture also uses HTTP
headers to convey various metadata. Headers are available within both HTTP’s
request and response messages. In Section 1.8.3.1, we already mentioned that
a server uses HTTP Allow header to inform a client about available interac-
tions over the resource. [70]

Another use case for HTTP headers is content negotiation. As we men-
tioned in Section 1.8.1.2, a resource can have multiple representations. Con-
tent negotiation stands for the process of requesting a specific representation of
a resource. In a REST API designed with HTTP, the recommended approach
to content negotiation is to use of the HTTP Content-Type header. [73]

The last use case for HTTP headers in the REST architecture that we will
mention is caching. HTTP provides four cache control headers. Each of them
is described below.

Expires We use Expires header to specify an absolute expiration time of a
cached resource’s representation. After exceeding that time, the repre-
sentation must be re-validated. [74]

Cache-Control This header specifies if a response is cacheable. It is also
capable of specifying by whom and for how long by using max-age or
s-maxage directives. [74]

If-None-Match This header created a conditional request. If the resource’s
ETag does not match the ETag sent within the request, the server will
return that resource. Otherwise, HTTP 304 Not Modified is returned.

Last-Modified Response’s Last-Modified header contains timestamp that
indicates when the resource was last changes. [74]

1.8.4 HATEOAS

The REST architectural style allows us to send hypermedia links within the
body of the response. Clients may use these hyperlinks to dynamically navi-
gate through resources. [75] Essentially, this principle is the same as browsing
web pages via hyperlinks. In such a scenario, we enter the website’s homepage.
The homepage provides us links to other sections of the website. By clicking
the links, we obtain more contextual information. Analogously, a REST client
sends a request to the initial API endpoint. When the client receives a re-
sponse, it uses the provided links to access resources and dynamically discover
available actions. [75]

35

1. Theoretical Analysis

1.8.4.1 Benefits

Thanks to HATEOAS, clients do not need to hardcode URIs. Moreover,
clients only need to know about possible actions, but not about their business
logic11. This promotes the separation of concerns. [75]

1.8.4.2 Hypermedia Links Format

RFC 8288 [76] specifies a recommended format for relational links between
resources on the Web. Each link should contain the following items:

Link relation type describes the relation between the actual resource and
the target resource. We should represent it as the rel attribute. [76]

Target URI which we should represent as the href attribute. [76]

Target attributes include attributes of a link. We may include attributes
such as title or media or our own attributes. [76]

1.8.4.3 Implementation

We can delivery hypermedia links as a part of a response body or within the
link HTTP header. In Snippet 1, we can see the HATEOAS links implemen-
tation within the response’s body in JSON format. [75]

{
"id": 10,
"title": "Thursday Scheduled Meeting",
"author": "George",
"_links": [

{
"href": "10/participants",
"rel": "participants",
"type" : "GET"

}
]

}

Code Snippet 1: HATEOAS Links

11For example, clients do not need to consider the user’s role when rendering action
controls.

36

1.8. REST

1.8.5 Security Essentials
REST APIs are stateless. As a result, request authentication and authoriza-
tion should not depend on sessions. Instead, each request must contain some
form of credentials. [77] Below we outline some of the best practices for REST
APIs security:

Keep it simple We should aim for as simple security mechanism as possi-
ble. As security becomes more complex, the risk of security breaches
increases. [77]

Always use HTTPS In these days, HTTPS uses TLS to secure the com-
munication. It allows us to use token-based security mechanisms. [77]

Never expose information in URL We should never use URL to exchange
credentials. [77]

Input parameters validation We should validate request’s data as soon
as we can. If the validation fails, we should immediately reject the
request. [77]

1.8.6 Versioning
Versioning is a useful approach that helps us to manage the impacts of break-
ing API changes. Breaking changes should result in a change in the REST
API’s version. [78] They include the following scenarios:

• response’s data format changed for one or more resources,

• a data type in the request’s or response’s data attribute changed,

• some resources were removed from the API. [78]

Below we outline the three most common approaches used for API ver-
sioning.

1.8.6.1 URI Versioning

This approach is the most popular and straightforward. The most common
way is to specify the version using numeric value or v\d+ expression. Possible
examples are http://api.example.com/v1 or http://apiv1.example.com. [78]

1.8.6.2 Versioning Using Custom Request Header

Although it duplicates the content negotiation implemented by Accept header,
we may use our custom header to specify the API’s version. Possible example
is Accept-version: v1. [78]

37

1. Theoretical Analysis

1.8.6.3 Versioning Using “Accept” Header

Using content negotiation for API versioning allows us to keep clean and
consistent URLs. However, this approach increases the complexity of API
since it becomes responsible for indentifying which version of a resource to
return. [78]

1.9 GraphQL
The REST architecture, which we discussed in the previous section, has essen-
tially become a standard in web API design. It has some great features such
as statelessness or structured access to resources based on their hierarchy. [79]
However, requirements for APIs have changed rapidly since REST was intro-
duced. In many cases, REST APIs have become not flexible enough to keep
pace with the rapidly changing requirements of client applications. [80] [79]

There are three main requirements for API development which emerged
in recent years:

1. Increasing usage of mobile devices makes it necessary to load data from
APIs efficiently. [80]

2. The ability to have multiple client applications that consume a sin-
gle API makes it difficult to create a single API optimized for all its
clients. [80]

3. Changes on the client-side often require changes in consumed data. [80]

GraphQL meets the requirements outlined above since it is designed to
provide client applications with a flexible and intuitive way to describe their
data needs and interactions. [81] Essentially, it consists of two components:

1. a query language for API,

2. a server-side execution engine. [82]

The GraphQL query language enables us to use requests to specify exactly
what data we need from an API, while the execution engine executes queries
based on a type system which we define for our data. [81] [80] GraphQL imple-
mentation does not require any specific programming language or database.
Instead, we use our specific technologies to map the logic and data of our
services to GraphQL’s uniform language and type system. [82]

38

1.9. GraphQL

1.9.1 Design Principles
GraphQL follows several design principles which make server-side APIs a
friendly environment to build client side applications. We will cover these
principles below.

Product-centric GraphQL is driven by the requirements of views and front-
end developers. [82]

Hierarchical A GraphQL query is structured hierarchically and the response
data has the same structure as the query. This approach is client-side
friendly, since the client-side development mostly involves working with
view hierarchies. [82]

Strong-typing In GraphQL, we define a type system that is specific to our
service. Each operation is then performed with respect to that system.
This allows GraphQL tools to verify both the syntax and type validity of
each operation before it is executed. In addition, the server-side service
is able to guarantee the response shape to a certain level. [82]

Client-specified response A GraphQL service uses its type system to de-
scribe the capabilities which are available for its clients to use. The
client is than responsible for how it will consume the GraphQL service.
It specifies its needs at field-level granularity within the request. [82]

Introspective GraphQL allows us to use its query language to query its type
system. This may be useful for various tools or client libraries. [82]

1.9.2 From REST to GraphQL
GraphQL is a direct competitor to REST in the context of web APIs. This
subsection covers the major differences between these two.

1.9.2.1 Data Fetching

GraphQL provides a declarative data fetching where a client specifies the
exact data it needs to get from an API. This brings major differences to data
fetching compared to REST. Using a REST API, we typically use multiple
endpoints to fetch the required data. In GraphQL, we send a single query to
a GraphQL service. This query describes our exact data requirements. [79]

To illustrate the difference mentioned above, let us image a simple scenario.
In a blogging application, we have a user’s profile screen. The screen displays
the basic information about the user, a list of user’s posts and the last 5
followers of the user. We need to display a title for each post and a name for
each follower. Using REST, we would typically make requests to the endpoints
listed below. Figure 1.12 illustrates this scenario.

39

1. Theoretical Analysis

1. /users/<id> to fetch the user’s data,

2. /users/<id>/posts to fetch all the posts for that user,

3. /users/<id>/followers to fetch the followers of the user.

/users/<id>

/users/<id>/posts

/users/<id>/followers

{
 "data": {
 "id": 1,
 "name": "George",
 "address": { ... },
 "birthday": "June 25, 1995"
 }
}

API

/users/<id>

/users/<id>/posts

/users/<id>/followers

{
 "data": [{
 "id": 105,
 "title": "My First Post",
 "content": "Some content.",
 "comments": [...]
 }, ...]
}

API

/users/<id>

/users/<id>/posts

/users/<id>/followers

{
 "data": [{
 "id": 40,
 "name": "John",
 "address": { ... },
 "birthday": "May 24, 1994"
 }, ...]
}

API

Figure 1.12: Data Fetching With REST

Using GraphQL, we are able to describe our exact data requirements in a
single query. We illustrate this scenario in Figure 1.13. In REST, it is hard to
fetch data efficiently since endpoints return only fixed data structures. We may
customize the data returned by these endpoints, but this approach becomes
very difficult especially if the API provides data for many different clients.
Because of this, clients often face overfetching and underfetching. [79]

Overfetching is the situation where a client downloads more information
than it needs. We may notice the overfetching in Figure 1.12. The client only
needs to display the titles of the posts of a specific user and the names of the
last 5 followers of the user. The responses, however, contain additional data
which the client do not need. [79]

Underfetching means that an endpoint does not provide enough infor-
mation to the client. Because of that, the client has to send additional requests
to fetch all the required information. Underfetching can lead to the situation
where the client has to first send request for the list of resources and then

40

1.9. GraphQL

/graphql

API

query {
 User(id: 1) {
 name
 posts { title }
 followers { name }
 }
} {

 "data": {
 "User": {
 "name": "George",
 "posts": [{ "title": "Lorem" }],
 "followers": [
 { "name": "John"}, { "name": "Jane" }, {"name": "Mary" }
]
 }
}

Figure 1.13: GraphQL Data Fetching

send one additional request for each element. This situation is known as the
n+1 problem. [79]

1.9.2.2 Client-Side Product Iterations

For REST APIs, it is a common practice to customize the data provided
by API endpoints to suit the requirements of the client’s views. With this
approach, the client retrieves all the required data for a particular view in a
single request. However, any change in client views may result in a change
in the required data. Therefore, the relevant API points must be adjusted
to meet the new requirements. [79] Thanks to its flexible query language,
GraphQL solves this problem and we can implement changes on the client-
side without modifying the API. [79]

1.9.2.3 Insightful Server-Side Analytics

Since each client uses queries to specify its exact data needs, GraphQL allows
us to deeply understand how clients use the data provided by API. We can,
for example, use the statistics to deprecate the unused fields. [79]

1.9.2.4 Schema and Type System

As we mentioned in Section 1.9.1, GraphQL takes advantage of a service-
specific type system. We use the GraphQL Schema Definiton Language (SDL)
to create a schema which describes all the exposed and consumed types. The
created schema than serves as the contract between the GraphQL API and
its clients. [79]

41

1. Theoretical Analysis

1.9.3 Core Concepts
This subsection will briefly summarize the core technical concepts of GraphQL.

1.9.3.1 GraphQL Schema and Types

As we have already mentioned in the previous section, GraphQL has its own
type system which is based on a schema. In order to create schema, we use
the Schema Definition Language. The most fundamental component of a
GraphQL schema is type. Type uses fields to describe a shape of an object
that is exposed by an API. We can attach arguments to each field. These
arguments can later be used to determine the value of the field. In the schema
we can also express relations between types. Snippet 2 depicts a simple schema
containing Post and Person types in one-to-many relation. [83]

type Post { type Person {
title: String! name: String!
author: Person! age: Int!

} posts: [Post!]!
}

Code Snippet 2: GraphQL Schema Example

Most types in a schema describe data objects, however there are two types
with a special role within the schema:

1. query type,

2. mutation type. [83]

Every valid GraphQL schema must contain at least one query type. The
mutation type is not required. For a comprehensive documentation of GraphQL
schema, you may see Schema and Types section of graphql.org12. [83]

1.9.3.2 Fetching Data With Queries

Section 1.9.2.1 compared how we fetch data using GraphQL and REST. A
REST API exposes multiple endpoints, each of which has a clearly defined
structure of provided data. In contrast to REST API, GraphQL API only
exposes a single endpoint. The data provided by this endpoint has a dynamic
shape and it is the responsibility of client to describe its data needs. In order
to describe its data needs, client sends query as a part of a request. Queries
sent by a client corresponds to queries defined in a GraphQL schema. [84]

12https://graphql.org/learn/schema

42

https://graphql.org/learn/schema

1.9. GraphQL

1.9.3.3 Writing Data With Mutations

Previous section covered how we read data exposed by a GraphQL API. How-
ever, a typical web application also needs to make changes to the persistent
data stored on the server. With GraphQL, we use mutations to modify the
persistent data. Mutations allow us to perform create, update and delete
operations on the data. [84]

1.9.3.4 Realtime Updates With Subscriptions

GraphQL offers subscriptions as a way to maintain a real-time connection
to the server in order to immediately inform the client about events. As
the client subscribes to an event, it establishes and keeps a connection to the
server. When the subscribed event occurs, the server pushes the specified data
to the client. In contrast to request-response model of queries and mutations,
subscriptions are essentially a stream of data from the server to the client. [84]

1.9.4 GraphQL Architectures
This subsection provides an overview of the fundamental architectures in
which GraphQL server may participate. The three following architectures
represent predominant GraphQL use cases and demonstrate the flexibility of
GraphQL in the content of usage:

1. server with a connected database,

2. layer that integrates existing services,

3. integration server with a connected database. [85]

1.9.4.1 GraphQL Server with a Connected Database

This is the most common setup for new projects. We have a single web
server which implements GraphQL according to the specification. When the
GraphQL server receives a query, it parses that query and loads the required
data from the database. This process, which is database agnostic, is called re-
solving the query. When the data is loaded, the server constructs the response
according to the specification13 and sends it back to the client. [85]

1.9.4.2 GraphQL Server That Integrates Existing Services

The second setup integrates multiple existing systems using a single GraphQL
API. Imagine a situation where we need to build a modern product that
should integrate with a number of legacy or third-party components which
expose several different types of APIs. In some cases, integration with these

13https://spec.graphql.org/October2021/#sec-Response-Format

43

https://spec.graphql.org/October2021/#sec-Response-Format

1. Theoretical Analysis

/graphql

Figure 1.14: GraphQL Server With a Connected Database

components may be too complicated for us. In order to avoid the complexity,
we may use a GraphQL server as a middleware that unifies the interaction with
these components. This way, any new client application can communicate with
the GraphQL server without knowing about the inconsistent infrastructure
behind it. [85]

Legacy
System

Third-Party
API

/graphql

Figure 1.15: GraphQL Server That Integrates Existing Services

In the previous setup, the GraphQL server was independent of the database
type. In this setup, it does not require any specific API for integrated com-
ponents. [85]

1.9.4.3 Integration GraphQL Server With a Connected Database

With GraphQL, we are able to combine both the aforementioned setups and
build a server that communicates with other systems and has a connected
database. When the server receives a query, it uses either a connected database
or some of the integrated service to resolve it. [85]

1.9.5 Resolvers
When we talked about the possible architectures that take advantage of GraphQL,
we mentioned the resolving process. The way GraphQL performs resolving is
the key to its flexibility. [85]

As we mentioned in Section 1.9.3.1, all available queries and mutations
are defined as fields of the special query and mutation types. The GraphQL

44

1.9. GraphQL

server implementation maps each of these fields to a specific function that
we call a resolver. The only purpose of a resolver function is to fetch data
corresponding to the filed it is mapped to. [85] When the server receives a
query, it calls a resolver for each field specified by that query. As soon as all
resolvers return, the server formats the data to match the query structure. [85]

1.9.6 GraphQL Client Libraries
Most client applications that use REST API perform the following steps in
order to call an API endpoint and display the result of the call:

1. create and send a request,

2. receive and process the server’s response,

3. store received data14,

4. display the received data. [85]

In GraphQL, there are client libraries such as Apollo or Relay that abstract
the data fetching into the following two steps:

1. declaratively describe requirements for the data,

2. display the received data. [85]

1.9.7 GraphQL Server Implementations
Since Facebook has only released GraphQL as a specification that describes
exactly how a GraphQL server should behave [85], many community imple-
mentations have emerged. Some implementations have become popular and
are nowadays considered proven solutions. Among these proven implementa-
tions, we may name the following:

• Apollo Server that supports several Node.js frameworks, such as Ex-
press, Koa or Fastify,

• Express GraphQL for Express,

• Mercurius for Fastify.

From npm trends [86], we may notice that Apollo Server and Express
GraphQL are much more popular than Mercurius. However, all these imple-
mentations follow common pattern. To be able to create a GraphQL server,
we must define GraphQL schema and a resolver map first. When instantiating
or registering the server, we pass both the schema and the resolver map.

14e.g. in order to fetch related data or for caching

45

1. Theoretical Analysis

1.10 Chapter Summary
This chapter provided an introduction into web application development and
a broad overview of the technologies and approaches used in web application
development. Our goal was to cover the topic of web development broadly and
to get to the topics such as REST, GraphQL and PWA in the most natural
way possible.

We first laid out the basic information by explaining what a web appli-
cation is and how it differs from a classic website. After that, we explained
the client-server model and how it is used by web applications. Subsequently,
we analyzed the types of web applications from several different perspectives.
We followed up with JavaScript as a means of implementing modern types of
web applications. We have noted that client-side JavaScript, that is executed
by a web browser browser, is an extension to general JavaScript, and moved
on to technologies and approaches used in client-side web development. Be-
fore we proceeded to server-side web development, we took a detailed look at
PWAs. In our analysis of server-side web development, we mentioned an ap-
proach called API-first development. We followed up with a detailed analysis
of REST and GraphQL.

Starting with the next chapter, we will focus on a selected subset of the
analyzed technologies and approaches from a more practical point of view.
Specifically, we will focus on building a web application using the decoupled
architecture described in Section 1.3.3.2. We will follow mobile-first develop-
ment and API-first development approaches which we mentioned in Sections
1.5.2.1 and 1.7.5.1. On the server-side we will demonstrate how to build both
REST and GraphQL APIs. On the client-side we will demonstrate how to
build a PWA and how to communicatie with server using REST and GraphQL
APIs.

46

Chapter 2
Design

In this chapter, we will define the requirements for a prototype of the ap-
plication that is suitable to be built as PWA. Based on the requirements,
we will perform an analysis of the domain model. After that, we will select
appropriate server-side technologies and libraries that will allow us to eas-
ily implement an extensible and maintainable application that provides both
REST and GraphQL APIs. Similarly, we will select a suitable client-side
framework whose ecosystem will allow us to easily implement PWA.

Our prototype will focus on content publishing. It should provide users
with a way to publish content, such as posts or articles. It will also allow users
to create reading lists and to store content into their reading lists. Generally,
we will refer to the content as a story, similar to the Medium.com platform.
Let us mention that the purpose of the prototype is not to create a production-
ready application, but to demonstrate selected technologies and approaches.

2.1 Functional Requirements
This subsection specifies the functional requirements for the prototype.

F1: Access Control and Sign-in Both anonymous and logged-in users can
access the application prototype. Anonymous users have access limited
to viewing stories and user profiles only. The prototype must allow users
to log into their account by entering their email and password.

F2: List Stories The prototype must allow all users to list existing stories.
Each story in the list must contain links to its view and author.

F3: Search Stories The prototype must allow all users to search for stories
based on the content of their title and description. Each story found
must contain links to its view and author.

47

2. Design

F4: View Story Detail The prototype must allow all users to view the de-
tail of the story. The detail of the story contains link to its author.

F5: View User Detail The prototype must allow users to view the detail
of any user. The detail of the user contains the list of user’s stories with
links to these stories.

F6: List My Stories The prototype must allow logged-in users to view a
list of stories they have created.

F7: Create a Story The prototype must allow logged-in users to create a
new story.

F8: Update a Story The prototype must allow logged-in users to update
their stories.

F9: Delete a Story The prototype must allow logged-in users to delete their
stories.

F10: List My Reading Lists The prototype must allow logged-in users to
view a list of their reading lists.

F11: Create a Reading List The prototype must allow logged-in users to
create a new reading list.

F12: View My Reading List The prototype must allow logged-in users to
view the detail of reading lists they have created. The detail contains
a list of stories added into the reading list. Each story has links to its
view and author.

F13: Rename Reading List The prototype must allow logged-in users to
rename their reading lists.

F14: Delete Reading List The prototype must allow logged-in users to
delete the reading lists they have created.

F15: Add Story into Reading List The prototype must allow logged-in
users to add stories into their reading lists.

F16: Remove Story from Reading List The prototype must allow logged-
in users to remove stories from their reading lists.

F17: Offline Access The prototype must have some features that are es-
sential to PWA. We outlined these features in Section 1.6.1. At the very
least, it must be installable and allow users to view content they have
already visited without the need for an internet connection.

48

2.2. Non-Functional Requirements

2.2 Non-Functional Requirements
This subsection specifies non-functional requirements for the prototype.

N1: Architecture The application prototype has to be divided into a client-
side application and a server-side application, where the latter will ex-
pose an API.

N2: REST and GraphQL Server-side application has to expose both REST
and GraphQL APIs with the same capabilities.

N3: Extendability, Sustainability and Testability The result prototype
must be extendable, sustainable and testable.

2.3 Domain Model
This section analyzes the domain model of the prototype based on the func-
tional requirements defined in Section 2.1. The purpose of the domain model
is to get overview of the entities occurring in the logical layer of the prototype
and the relationships between these entities. We will use the domain model
in the following section to select the appropriate database technology.

Figure 2.1 depicts the domain model. The functional requirement F1 im-
plies the need for the existence of User entity. Based on several functional
requirements, including F2, F4 or F7, there is the need for Story entity. Sim-
ilarly, functional requirements such as F10 or F11 implies the existence of
Reading List entity. Furthermore, functional requirements F6, F7, F8 and
F9 imply the existence of the relationship between User and Story. The re-
lationship between User and Reading List must exist based on functional
requirements F12, F13, and F14. Finally, the relationship between Story and
Reading List must exist based on the functional requirements F15 and F16.

2.4 Overall Architecture
After specifying the requirements, we can proceed to the architecture design.
Based on the non-functional requirements, the prototype will be divided into
a client-side component and a server-side component, where the latter will ex-
pose both REST and GraphQL APIs with the same capabilities. In order to
demonstrate the communication with server using both REST and GraphQL
APIs, we will create two separate client applications. Each of them will com-
municate with the server using a different API via the HTTP protocol.

Since the server needs to store persistent data, we will create a database
for this purpose. The database will run as a separate service, so it will form
the third component of the prototype. We may notice that in the context of
architectures described in Section 1.9.4, we will implement a GraphQL server

49

2. Design

0..*1 created

User

+ email

+ password

+ given name

+ family name

+ profile description

Story

+ title

+ description

+ content

Reading List

+ title

0..*

1

created

0..*

1

0..* belongs to

Figure 2.1: Domain Model

with a connected database. Overall, the prototype will implement a three tier
architecture as follows:

1. Presentation tier – a client-side application that provides UI,

2. Application tier – a server-side application that implements business
logic,

3. Data tier – a separate database service,

2.5 Technologies
This section deals with the selection of suitable technologies to implement the
individual components of the prototype.

2.5.1 PostgreSQL
In Figure 2.1, we can see that there is a relation between each two entities.
Based on the functional requirements, it is clear that together with an instance
of a particular entity, we will often need to work with instances of related
entities as well. Therefore, it is advisable to choose a database that supports
join operations by default.

50

2.5. Technologies

We will use PostgreSQL15 for our domain. PostgreSQL is an open source
object-relational database system that uses and extends SQL language. It
earned the popularity due to its architecture, reliability, extensibility and a
robust feature set. [87]

2.5.2 Node.js

We analyzed the popular server-side technologies for web application devel-
opment in Section 1.7.1. There we covered Node.js and Python technologies.
We will use Node.js due to its scalability and in order to take advantage of
the same technology for both client-side and server-side development.

2.5.3 Server-Side Framework

In this subsection, we first explore the support for creating REST and GraphQL
APIs offered by the frameworks described in Section 1.7.4. At the end of this
subsection, we will select an appropriate framework based on the information
gained.

2.5.3.1 REST With Express.js

Express.js allows us to simply create REST API using routing methods of
the Express application object that we create by calling express() function
exported by the Express module. [88] There are essentially two ways how to
handle routing in Express:

1. routing methods for specific HTTP methods,

2. chained route handlers with app.route(). [88]

In Snippet 3, we can see the example of routing method for HTTP GET
method. We are able to specify response status and response headers by
modifying the res object in the routing method callback.

app.get('/user/:id', function (req, res) {
res.send('user ' + req.params.id)

})

Code Snippet 3: Routing Method for Specific HTTP Method

Snippet 4 depicts the example of using app.route() method to create
routes by chaining path and handlers for a specific HTTP method.

15https://www.postgresql.org

51

https://www.postgresql.org

2. Design

app.route('/events')
.all(function (req, res, next) {

// runs for all HTTP verbs first
})
.get(function (req, res, next) { ... })
.post(function (req, res, next) { ... })

Code Snippet 4: Chained Route Handlers With app.route()

2.5.3.2 GraphQL With Express.js

There are several GraphQL server implementations for Express. We will
briefly describe Express GraphQL and the Express integration for Apollo
Server. As we described in Section 1.9.7, we must define GraphQL schema
and a resolver map first to be able to create a GraphQL server using both
implementations.

express-graphql 16 is developed and maintained by GraphQL Foundation.
It allows us to bind a GraphQL server as middleware to the application
object. [89]

apollo-server-express 17 is developed and maintained by the Apollo Com-
munity. It is the Express integration of apollo-server. In contrast
to express-graphql, it allows us to bind the Express application as
middleware to ApolloServer object. [90]

2.5.3.3 REST With Next

In Next, we can use API routes to create RESTful endpoints as part of our
application folder structure. API routes is a feature of Next which ensures
that any file inside the /pages/api directory is mapped to corresponding URL
prefix with /api and will be treated as an API endpoint. Snippet 5 depicts
the RESTful route defined in pages/api/user/[id].js. [91]

2.5.3.4 GraphQL With Next

We can also use API routes to create GraphQL API. All we have to do is to
create a pages/api/graphql.js file and to initialize a GraphQL server such
as Apollo in the route handler function. Same as with Express, we need to
define a GraphQL schema and a resolver map.

16https://github.com/graphql/express-graphql
17https://www.npmjs.com/package/apollo-server-express

52

https://github.com/graphql/express-graphql
https://www.npmjs.com/package/apollo-server-express

2.5. Technologies

export default function userHandler(req, res) {
const { query: { id, name }, method, } = req;

switch (method) {
case 'GET':
res.status(200).json({ ... });
break;

...
}

}

Code Snippet 5: Next RESTful API Route

2.5.3.5 REST With Nest

In Nest, we can use controllers to create RESTful endpoints. Controllers are
created as classes annotated by the @Controller(<name>) decorator. We
can define a set of methods on each controller. When annotated with the
decorator of the corresponding HTTP method, such as @Get() or @Post(),
the method becomes a handler for an API endpoint. Each HTTP method
annotation allows us to specify relative route path which can include route
parameters. The resulting API endpoint URL consists of the controller name
and the relative path of the route method. [92]

On the level of controller methods, we can also use annotations in order
to extract data from the request, such as request body, headers, route param-
eters or query parameters. [92] Listing 6 depicts the RESTful route handlers
implemented by Nest controller.

@Controller('cats')
export class CatsController {

@Post()
@HttpCode(201)
create(dto: CatDto): string {
return { ... };

}

@Get()
@HttpCode(200)
findAll(): string {
return [...]

}
}

Code Snippet 6: Nest RESTful Routes

53

2. Design

2.5.3.6 GraphQL With Nest

Nest provides a built-in @nestjs/graphql module. We can configure this
module to use Apollo Server for Express or Mercurius for Fastify. [93] There
are two ways of building GraphQL API with Nest:

1. code first approach,

2. schema first approach. [93]

In code first approach, we use decorators and TypeScript classes to
generate the GraphQL schema. This approach is suitable if we prefer to stick
to one language, such as TypeScript. [93]

On the other hand, in schema first approach, GraphQL SDL files are
the source of truth. Since SDL is a language-agnostic, is allows us to share the
GraphQL schema between multiple different platforms. We may use Nest to
generate TypeScript interfaces or classes from the GraphQL schema in order
to avoid boilerplate code. [93]

As we have already learned, to use a GraphQL server implementation, we
usually need to define a resolver map. Nest provides the @nestjs/graphql
package that automatically generates the resolver map. In order to accomplish
that, it uses metadata from decorators that we use to annotate classes that
implement methods used as resolver functions. [94]

2.5.3.7 Conclusion

We learned that all frameworks provide decent support for building both
REST and GraphQL APIs. The information we obtained is summarised in
Table 2.1.

Framework REST GraphQL

Express Uses routing methods. Directly uses
GraphQL server.

Next Introduces the concept
of API routes.

Directly uses
GraphQL server.

Nest Using decorators
to create controllers.

Uses @nestjs/graphql module
to integrate GraphQL server.

Table 2.1: REST and GraphQL With Node.js Frameworks

From the analyzed frameworks, we choose Nest because of its modularity,
robust and clean architecture, the possibility to use decorators for declarative
development and the existence of a module integrating GraphQL server.

54

2.5. Technologies

2.5.4 Client-Side Framework
Similarly to the previous subsection, we first explore the support for building
PWAs offered by the frameworks described in Section 1.5.3. At the end of this
subsection, we select a suitable framework based on the information gained.

2.5.4.1 PWA with React

The React ecosystem includes Create React App18, a popular library for creat-
ing React applications without having to install or configure tools like webpack
or Babel. This library provides a number of templates for React applications.
These include the following two templates that we may use to make our web
application progressive: [95]

• cra-template-pwa – the template for a JavaScript PWA,

• cra-template-pwa-typescript – the template for a TypeScript PWA.

The templates listed above contains a src/service-worker.js file that is
based on the Google’s Workbox19. This service worker handles all requests for
webpack-generated assets, including navigation requests, using a cache-first
strategy. Note that the offline-first behavior is opt-in so that it is up to us to
decide if we want to register the service worker or not. [95]

2.5.4.2 PWA with Vue

With Vue, we may use the @vue/cli-plugin-pwa20 plugin for vue cli to add
a service worker into our application. We may configure our PWA using the
pwa property of the vue.config.js file. The service worker added by the
@vue/cli-plugin-pwa is also based on Workbox. [96]

2.5.4.3 Conclusion

We can say that both frameworks are good choices for building PWAs. Based
on popularity, we choose React.

2.5.5 Prisma
To abstract database operations and bridge the gap between object and re-
lational data representation, we will use Prisma21, an open-source modern
Node.js and TypeScript ORM.

18https://github.com/facebook/create-react-app
19https://developers.google.com/web/tools/workbox
20https://github.com/vuejs/vue-cli/tree/dev/packages/%40vue/cli-plugin-pwa
21https://www.prisma.io

55

https://github.com/facebook/create-react-app
https://developers.google.com/web/tools/workbox
https://github.com/vuejs/vue-cli/tree/dev/packages/%40vue/cli-plugin-pwa
https://www.prisma.io

2. Design

2.5.5.1 Prisma Concepts

The most important element of Prisma is the Prisma schema which allows
us to define our application model using its data modelling language. [97] In
Prisma schema, we define the following:

data source which accepts an environment variable that specifies our database
connection,

generator which contains a language specific provider that generates the
Prisma Client from the schema,

data model that defines our application model as a collection of model ob-
jects. [97]

A data model has two major functions. The first is to represent structures
of the underlying relational database or MongoDB. The second function is
that it serves as a definition file for the Prisma Client which than provides
typed queries through Prisma Client API. [97]

2.5.5.2 Prisma Workflows

The data model evolves routinely during its lifetime. For a production appli-
cation, we typically want to keep track of changes made to the schema and
to be able to revert those changes if necessary. Moreover, production applica-
tions typically have more than one environment and we may want to replicate
schema changes in other environments. [98] For this reason, there are two
typical workflows when working with Prisma schema:

1. Prisma Migrate workflow,

2. workflow with SQL migrations and introspection. [97]

With Prisma’s database migration tool, the workflow consists of three step:

1. manual modification of the data model,

2. database migration using prisma migrate dev CLI command,

• migration command generates the migration SQL file, updates database
schema and generates Prisma Client

3. using Prisma Client to access the modified database. [97]

In contrast, when using SQL migration and introspection, the workflow
consists of different steps:

1. manual modification of the database without modifying Prisma schema,

56

2.6. Server

2. (re-)introspection of our database,

3. (re-)generate Prisma Client,

4. using Prisma Client to access the modified database. [97]

2.5.5.3 Benefits of Using Prisma

Prisma introduces a new approach to object-relational mapping. It provides
a type-safe, data model-specific API for submitting typed database queries
that return JavaScript objects with a well-defined structure. This allows us
to avoid building SQL queries and complex objects for ORM. Another great
feature is that the Prisma schema represents a single source of truth both for
a database and our application. [99]

2.6 Server
As we mentioned, our server will expose both REST and GraphQL APIs.
Through these APIs, the server will consume requests and return responses
in JSON format. After receiving the request, the server executes the corre-
sponding business logic and communicates with the database as needed. In
this section we will focus on designing the server architecture to be scalable,
sustainable and testable.

2.6.0.1 Authentication

To authenticate users, we will implement a simple JWT-based authentication.
We will use a configuration file to store the secret for the JWT signature. We
will encapsulate all the authentication logic using the corresponding module.

2.6.1 Modularity
To make our server modular and to comply with separation of concerns, we
will take advantage of Nest modules. Modules are classes annotated with
the @Module() decorator. We pass this decorator an object containing the
metadata that Nest uses to organize the application. Each Nest application
requires at least the root module. [100]

We will use the AppModule as a root module for our server. Based on the
domain model, we can identify the following domain driven modules that will
encapsulate all the logic related to the corresponding entity:

• User Module

• Story Module

• ReadingList Module

57

2. Design

In order to encapsulate the logic for authentication, we will create AuthModule.
Finally, we will create a PrismaModule to encapsulate the custom Prisma
logic.

2.6.2 Layers
Within each module, we will divide the responsibilities outlined in the begin-
ning of this section into the following three layers:

Presentation Layer that consumes requests and constructs responses.

Business Logic Layer which implements the business logic.

Data Access Layer that communicates with the database.

From a different perspective, we can think of the server architecture as a
headless MVC. The three layers listed above comply with the headless MVC
architecture as depicted in Figure 2.2. Headless in our case means that the
view is not implemented as a UI, but only provides a JSON representation of
the resources.

Model

Controller

View

Data Access Layer

Business Logic Layer

Presentation Layer

Figure 2.2: Server Architecture Layers to MVC

2.6.2.1 Data Access Layer

In our case, we do not need to manually implement the data access layer, as
its implementation will provide the Prisma Client generated from the schema.
All we need to do is to pass the database connection information to the client.
Prisma Client will provide us with a type-safe interface for working with a
database based on the data model defined in our schema.

2.6.2.2 Business Logic Layer

In Nest, it is appropriate to implement the business logic layer using services.
Services are classes annotated with the @Injectable() decorator. This dec-
orator declares that the Nest Inversion of Control container can manage the

58

2.6. Server

annotated class. This allows us to leave resolving dependencies to dependency
injection. [94]

In order to provide Prisma Client with our database connection informa-
tion and to make it injectable, we will create the PrismaService class as a
part of the PrismaModule. This class will provide us a connection between
the business logic layer and the data access layer. Any service that requires
access to the database will inject PrismaService. In general, a service can
have other services as dependencies.

Services will provide all necessary CRUD operations on the data. Read
and delete operations require the necessary data identifiers as input parame-
ters. Create operations require the corresponding DTOs22 constructed at the
presentation layer as their input parameters. Update operations require both.

Where needed, the services return entity classes that we will create as
implementations of types generated from our Prisma schema. This will allow
us to extend the types generated by Prisma with custom functionality if needed
in the future. Additionally, it allows us to annotate these types and, for
example, use them to generate OpenAPI documentation for our REST API.

2.6.2.3 Presentation Layer

Our server will provide two versions of headless presentation layer. The first
one will provide the representation of resources through the REST API and
the second will provide the GraphQL representation of the data.

2.6.3 REST API Design

To implement our REST API, we will use Nest controllers. As we have al-
ready mentioned, a Nest controller is a class annotated by the @Controller()
decorator. Controllers inject the required services as their dependencies.

2.6.3.1 Resource Modelling

A REST API design usually starts with identifying the resources. We have
already done this work in Section 2.3 by analyzing the domain model, so we
can move on to resource modeling. We follow the theoretical background laid
in Section 1.8.2.

In Table 2.2, we can see the URIs design for the identified resources along
with the functional requirements that will use the capabilities of the resources.
We may notice the modelling of the many-to-many relations between Reading
List and Story entities as well as between User and Reading List entities.

22Data Transfer Object

59

2. Design

URI Archetype Functional Req.
/auth/sign-in Controller F1
/stories Collection F2
/stories/search Controller F3
/stories/:id Document F4, F7, F8, F9, F12
/reading-lists Collection F11
/reading-lists/:id Document F13, F14
/reading-lists/:id/stories Store F12
/reading-lists/:rId/stories/:sId Document F15, F16
/users/:id Document F4, F12
/users/:id/stories Collection F5, F6
/users/:id/reading-lists Collection F10
/users/:uId/stories/:sId Document F4
/users/:uId/reading-lists/:rId Document F12

Table 2.2: REST API Resources

2.6.3.2 Design Using HTTP

After modeling the resources, we can proceed to design the interaction with
the resources. As we specified in Section 2.4, our clients will communicate
with the server using the HTTP protocol. We therefore proceed to designing
a REST API using HTTP.

We follow the theoretical background laid in Section 1.8.3. Table 2.3 sum-
marizes our RESTful endpoints with associated HTTP methods. Note that
we do not necessarily need an endpoint for the stories list, since we can use
the existing search endpoint for that purpose. Let us further note that we use
r-l as an abbreviation for reading-lists to fit on the page. You may notice
using the PATCH method for partial updates, using the POST method for
the /auth/sign-in controller resource or using the PUT method for adding
resources into the stores that implement many-to-many relations. Since this
feature is not captured in the table, we should mention that each collection
resource allows us to specify the maximum number of records returned using
the limit query parameter of the collection URL.

60

2.6. Server

Method URI Description
POST /auth/sign-in Sign-in to obtain JWT.
POST /stories Create a new story.
POST /stories/search Search for stories.
GET /stories/:id Get the story.
PATCH /stories/:id Partially update the story.
DELETE /stories/:id Remove the story.
POST /reading-lists Create a new reading list.
PATCH /reading-lists/:id Update the reading list.
DELETE /reading-lists/:id Delete the reading list.
GET /r-l/:id/stories Get stories within the reading list.
PUT /r-l/:id/stories/:id Add story into the reading list.
DELETE /r-l/:id/stories/:id Remove story from the reading list.
GET /users/:id Get the user.
GET /users/:id/stories Get user’s stories.
GET /users/:id/r-l Get user’s reading lists.
GET /users/:id/stories/:id Get the user’s story.
GET /users/:id/r-l/:id Get the user’s reading list.

Table 2.3: REST API Endpoints

The final step in the design of our REST API is to specify the HTTP
codes and headers that the API responds with in various situations when
clients call the endpoints listed above. We list the used response codes and
the corresponding scenarios in Table 2.4.

61

2. Design

HTTP Code Use Cases

200 OK Successful response to read and update operations.

201 Created Successful response to create operations.

204 No Content Successful response to delete operations.

400 Bad Request
Invalid request format.

Invalid DTO in requests to create, update
and controller operations.

401 Unauthorized Missing valid JWT
in requests to secured endpoints.

403 Forbidden
Requests to create, update or delete resources

that are not allowed for the user.
e.g. delete a story created by another user

404 Not Found Any request to a non-existing resource.

409 Conflict
Any request that puts the resource

in a state that breaks the constraints.
e.g. repeatedly adding the story into the reading list

500 Internal Error Any unexpected error.

Table 2.4: REST API HTTP Status Codes

Now that we have a proposed resource representation and interaction with
those resources via HTTP, let us illustrate the design of linking resources using
hypertext links. This will ensure that our API is HATEOAS compliant. The
linking is depicted in Figure 2.3.

62

2.6. Server

self: GET /stories/:id
if owner:
 update: PATCH /stories/:Id
 delete: DELETE /stories/:id

/stories /stories/:id

/users/:id

item.author:
GET /users/:id

item.self:
GET /stories/:id

item.self: GET /stories/:id

/users/:id/stories

stories:
GET /users/:id/stories

item.author:
GET /users/:id

item.self:
GET /users/:uId/stories/:sId

/users/:id/reading-lists

readingLists:
GET /users/:id/reading-lists

/users/:uId/reading-lists/:id

item.self:
GET /users/:uId/reading-lists/:sId

author:
GET /users/:id

/reading-lists/:id/stories

stories:
GET /reading-lists/:id/stories

author:
GET /users/:id

self: POST /stories
search: POST /stories/search

self: GET /users/:id/stories
if owner:
 create: POST /stories

self: GET /users/:id/reading-lists
if owner:
 create: POST /reading-lists

self: GET /users/:uId/reading-
lists/:rId
if owner:
 update: PATCH /reading-lists/:Id

parent:
GET /users/:id

parent: GET /stories

parent:
GET /users/:id/reading-lists

self:
GET /users/:id

self: GET /r-l/:id/stories
if owner: item.delete
 DELETE /r-l/:rId/stories/:sId

item.author:
GET /users/:id

/users/:uId/stories/:sId

self: GET /users/:uId/stories/:sId
if owner:
 update: PATCH /stories/:id
 delete: DELETE /stories/id

parent:
GET /users/:id/stories

author:
GET /users/:id

Figure 2.3: Resources Linking in REST

63

2. Design

2.6.4 GraphQL API Design
According to the non-functional requirement N2, our server has to expose both
REST and GraphQL APIs with the same capabilities. This subsection deals
with the design of a GraphQL API that will be equivalent to the proposed
REST API.

Because of the flexibility and shareability of the technology-agnostic GraphQL
schema, we will apply the schema first approach to build our GraphQL API.
Therefore, we will focus on specifying queries and mutations that provide the
same capabilities as the REST API proposed in the previous section.

Compared to our REST API, we will replace controllers with resolvers.
Same as controllers, resolvers inject the required services as their dependen-
cies. Resolvers have a single responsibility – to map GraphQL queries and
mutations defined by GraphQL schema to services implemented by the busi-
ness logic layer of our server. [101]

2.6.4.1 Queries

As we learned in Section 1.9.3.2, GraphQL allows us to define a business-
specific set of queries to read the data from the API. Below we describe
GraphQL queries that will provide equivalent capabilities to the read-only
endpoints we listed in Table 2.3:

1. User that returns the User type based on its id,

2. Story that returns the User type based on its id,

3. Stories that returns a list of the Story type records bases on the search
string.

The three queries above provide us with all the querying power we need.
This is thanks to the Client-specified response design principle of the GraphQL
that we mentioned in Section 1.9.1. We learned its consequences on data
fetching with GraphQL in Section 1.9.2.1. In summary, we can simply query
the associated data using resolvers.

Because of that, User query covers all GET /users/:id/* endpoints. Since
we will use GET /reading-lists/:id/stories only to fetch data related to
the, it covers this endpoint too. Story query covers the GET /stories/:id
query. With taking advantage of the GraphQL query arugments, Stories query
covers GET /stories and POST /stories/search endpoints.

2.6.4.2 Mutations

For write operations, GraphQL allows us to define a set of mutations spe-
cific for our API. Below we describe GraphQL mutations that will provide
equivalent capabilities to the write endpoints we listed in Table 2.5:

64

2.6. Server

GraphQL Mutation RESTful API endpoint

SignIn POST /auth/sign-in

CreateStory POST /stories

UpdateStory PATCH /stories/:id

DeleteStory DELETE /stories/:id

CreateReadingList POST /reading-lists

UpdateReadingList PATCH /reading-lists/:id

DeleteReadingList DELETE /reading-lists/:id

AddStoryIntoReadingList
PUT
/reading-lists/:rId/stories/:sId

RemoveStoryFromReadingList
DELETE
/reading-lists/:rId/stories/:sId

Table 2.5: GraphQL Mutations to REST API Endpoints Mapping

2.6.5 Server Architecture Summary

To summarize the previous subsections, Figure 2.4 provides the fundamental
overview of the design of the server components. It captures the services,
controllers and resolvers in the aforementioned modules. Note that we do not
show dependencies between components across domain modules, especially
dependencies of controllers and resolvers on services from other domains, be-
cause this is implementation dependent.

65

2. Design

«component»
StoryModule

«component»
StoryController

«component»
StoryResolver

«component»
StoryService

«component»
PrismaModule

«component»
PrismaService

«component»
ConfigService

«component»
UserModule

«component»
UserController

«component»
UserResolver

«component»
UserService

«component»
ReadingListModule

«component»
ReadingListController

«component»
ReadingListResolver

«component»
ReadingListService

«component»
AuthModule

«component»
AuthController

«component»
AuthResolver

«component»
AuthService

«component»
JwtService

Database

Figure 2.4: Server Architecture Components

66

2.7. REST Client

2.7 REST Client
The first client will demonstrate the integration of the client-side application
with the REST API exposed by our server. As we decided in Section 2.5.4, we
will implement both client applications using React. Since functional compo-
nents nowadays provide practically the same possibilities as class components,
we will use functional components that are more lightweight.

2.7.1 State Management
A common problem in React development is the state management. In a
regular React app, we need to manage the following types of state:

• Local state,

• Global state,

• Server state,

• URL state. [102]

2.7.1.1 Local State

The local state is the most basic type of state. It represents the data that we
manage within a single component. React functional components provide the
great way to manage this type of state in the form of the useState hook. We
will use this approach in our implementation. [102]

2.7.1.2 Global State

Essentially, the global state represents data that we need to share across mul-
tiple components. A common example of this state is the logged-in user state,
which is also encountered in our client application. The most basic approach
to solving this problem is called lifting state up. This approach is based on
lifting a shared state to the nearest ancestor in the component tree whose
descendants still require that shared state. We then pass the shared state to
any descendants that require it via props. [103]

While this approach is suitable for very simple applications, it is unsus-
tainable for larger applications. React nowadays offers a Context API to solve
this problem, but it is not a solution for state management. It only allows us
to read global state, not change it. [102] Because of this, there are a number
of third-party libraries for state management, such as Redux23, Recoil24, or
Zustand25. Because of its simplicity and flexibility, we will use Zustand in our
clients.

23https://redux.js.org
24https://recoiljs.org
25https://github.com/pmndrs/zustand

67

https://redux.js.org
https://recoiljs.org
https://github.com/pmndrs/zustand

2. Design

2.7.1.3 Server State

Server state represents the data stored on the remote server that we have to
interpret in our UI. This problem becomes more complicated if we want to
deal with displaying the status of queries, for example the application shell
on load. [102] To make the server state management as simple as possible, we
will use the React Query26 library.

2.7.1.4 URL State

We will use the URL state to hierarchically identify our resources. It will also
contain identifiers of specific entities.

2.7.2 Architecture Design
Figure 2.5 depicts the architecture design for the REST Client. It illustrates
the basic components of the architecture, how they communicate with each
other and how they send requests to the REST API exposed by the server.

REST Client

Server REST API REST API Service

Pages User Store

HttpRequest

React Query

Features

Figure 2.5: REST Client Architecture Design

2.7.2.1 HttpRequest

This component provides a wrapper over the JavaScript fetch function.

2.7.2.2 React Query

This component represents React Query library that handles our API requests
26https://react-query.tanstack.com

68

https://react-query.tanstack.com

2.8. GraphQL Client

2.7.2.3 REST API Service

This component provides us with functions for querying REST API endpoints.
It passes the requests created by the HttpRequest to React Query.

2.7.2.4 User Store

This component will use Zustand state management library to provide Fea-
tures and Pages with the store for logged-in user.

2.7.2.5 Pages

The Pages component groups all screens of the client application. It may use
REST API Service to load the data based on the URL state.

2.7.2.6 Features

Features component organizes all React components by their domain. These
components can use REST API Client to interact with the REST API without
leveraging HATEOAS links, or they can use React Query to send queries
constructed from the links.

2.8 GraphQL Client
The second client application will demonstrate the integration of the client-
side application with the GraphQL API exposed by our server. Since this
client is identical to the first one in terms of functional requirements and
will be implemented using the same framework, this section only provides an
overview of the changes compared to the REST Client.

2.8.1 Server State Management
Since this client will communicate with the GraphQL API instead of the REST
API, we will use a different library to simplify working with the server state.
Specifically, we will use the Apollo Client27 integration for React.

2.8.2 Architecture Design
Figure 2.6 depicts the architecture design for the GraphQL client. It illustrates
the basic components of the architecture, how they communicate with each
other and how they send queries and mutations to the GraphQL API exposed
by the server.

27https://www.apollographql.com/docs/react

69

https://www.apollographql.com/docs/react

2. Design

GraphQL Client

Server GraphQL API GraphQL API Service

Pages User Store

Apollo Client

Features

Figure 2.6: GraphQL Client Architecture Design

2.9 Chapter Summary
This chapter defined the requirements for the prototype that will serve as
the practical output of this thesis and designed the prototype. Based on the
requirements, we performed the analysis of the domain model. We designed
both REST and GraphQL APIs that the server component of the prototype
will expose. After that, we selected PostgreSQL, Prisma and the Nest frame-
work to implement our server. To implement our REST Client, we selected
React together with React Query and Zustand libraries. For REST Client,
we replaced React Query with the Apollo Client library. After selecting the
technologies and libraries, we designed the server and both clients.

70

Chapter 3
Implementation

This chapter focuses on the implementation of the prototype for which we
designed the architecture and selected the appropriate technologies in the
previous chapter. It first describes the configuration of the environment in
which the project is run. Then, it describes the implementation of the database
service and the process of initializing the database. Finally, it documents the
implementation of the server and both clients.

3.1 Docker Setup

Since the implementation consists of several isolated components, we decided
to use Docker28 in order to provide the easy way to build and run the project as
a whole. Using Docker, we created two separate environments for the project.
These environments are defined by the following docker-compose files:

1. docker-compose.dev.yml which builds and runs the project for devel-
opment purposes. We will refer to this environment as development.

2. docker-compose.prod.yml which builds and runs the project in order
to present the practical output of the thesis. We will refer to this envi-
ronment as production.

Table 3.1 depicts all services created by both docker environments. In
addition to the services corresponding to the components listed in the pre-
vious chapter, both environments also include the mwd-prisma service. The
highlighted service mwd-prisma-studio is created only for the development
environment and provides us with a database client for Prisma.

28https://www.docker.com

71

https://www.docker.com

3. Implementation

Service Outer Port Inner Port

mwd-postgres 5438 5432
mwd-prisma-db-init - -
mwd-prisma-studio 5555 5555
mwd-server-side 8080 3000
mwd-client-side-rest 3100 3010
mwd-client-side-graphql 3200 3020

Table 3.1: Docker Services

3.2 PostgreSQL Service
Our database is provided by the mwd-postgres service listed in Table 3.1.
We used the official docker image29 for this service. Snippet 7 illustrates the
configuration of PostgreSQL service in a docker compose file. We may notice
the credentials definition under the environment key.

mwd-postgres:
image: postgres:12.10
container_name: mwd-postgres
restart: always
environment:

- POSTGRES_USER=mwd_u
- POSTGRES_PASSWORD=mwd_p
- POSTGRES_DB=mwd_db

ports:
- '5438:5432'

Code Snippet 7: PostgreSQL Service Configuration

3.3 Database Initialization
Database initialization is the responsibility of the mwd-db-init service. All
logic and data required by the mwd-db-init service is located within the
prisma-tools/ directory. This service starts when the mwd-postgres con-
tainer is created and shuts down after it completes the following tasks:

1. database schema creation,
29https://hub.docker.com/_/postgres

72

https://hub.docker.com/_/postgres

3.3. Database Initialization

2. database seeding.

Before we describe the implementation of the tasks listed above, let us
briefly introduce the organization of the prisma-tools/ directory. Important
here is the prisma/ subdirectory. It contains the following files:

1. schema.prisma which defines the Prisma schema,

2. generate-data.ts that generates random data for the schema,

3. seed.ts which inserts the generated data into the database.

3.3.1 Database Schema Creation
The service uses Prisma CLI to create a database schema based on the data
model defined by our Prisma schema. In Snippet 8, we may see the model for
ReadingList entity defined in the prisma.schema file.

model ReadingList {
id Int @id @default(autoincrement())
createdAt DateTime @default(now())
title String
author User @relation(fields: [authorId], references: [id])
authorId Int
stories StoriesOnReadingLists[]
@@map("reading_lists")

}

Code Snippet 8: Prisma Schema Snippet

Our goal is to achieve the desired final state of the schema without tracking
the steps leading to that state. Because of this, we do not follow the workflows
described in Section 2.5.5.2. Instead, we use the prisma db push command
with the --force-reset flag in order to reset the database and create the
schema each time the service starts. [98]

3.3.2 Database Seeding
The service uses the prisma db seed command to initialize the database with
pre-generated data from the data/ subdirectory.

In the package.json file, we prepared the yarn data:generate command
that generates the content of the data/ sub-directory using faker-js/faker30,
a popular library for generating test data. The service does not call the
yarn data:generate command at startup for optimization reasons. If neces-
sary, we can use it to manually regenerate the data at any time.

30https://github.com/faker-js/faker

73

https://github.com/faker-js/faker

3. Implementation

3.4 Server
Our server implementation is located within the server-side/ directory and
is run by the mwd-server-side service. As we decided in Section 2.5.3, we
implemented the server using the Nest framework. We followed the default
configuration and used the Express web server framework as the underlying
platform. Before we continue, let us briefly introduce the organization of the
server-side/ directory:

• config/ contains the configuration files for the server application,

• graphql/ contains scripts for generating TypeScript classes and inter-
faces from the GraphQL schema,

• prisma/ contains the same prisma.schema as the one used by the
mwd-prisma-db-init service,

• src/ contains the application logic of the server,

• test/ contains end-to-end tests.

Now that we understand the structure of the server-side/ directory, let
us describe what happens at the startup of the mwd-service-side service:

1. it uses the prisma generate command to generate the Prisma Client
from the prisma/prisma.schema file,

2. it uses graphql:generate-classes command from package.json to
generate TypeScript classes based on the GraphQL schema.

3.4.1 Modularity
Our implementation follows the design proposed in the Section 2.6.1 and uses
Nest modules to achieve modularity. The AppModule serves as the root module
of the application. In order to build the application graph, it imports all the
necessary modules. Each of these modules encapsulates a closely related set
of capabilities. Snippet 9 depicts how the AppModule imports other modules.

The @Module() decorator takes an input object that may contain the fol-
lowing properties to describe the module:

providers which specifies the providers that the Nest injector will instantiate.
These can be shared across the actual module or exported and used
across other modules.

controllers specifies the controllers defined in the module that have to be
instantiated.

74

3.4. Server

@Module({
imports: [
ConfigModule.forRoot({ ... }),
GraphQLModule.forRoot({ ... }),
AuthModule,
UserModule,
StoryModule,
PrismaModule,
ReadingListModule,

],
controllers: [AppController],

})
export class AppModule {}

Code Snippet 9: Server’s Root Module

imports takes the list of modules that export providers required by the actual
module.

exports specifies the subset of providers defined by the actual module that
are available for the modules which import the actual module.

3.4.2 Prisma Module

The implementation of this module is trivial. It contains PrismaService
class that extends PrismaClient class generated by the mwd-server-side
service at startup and enum constants.ts which provides us with constants
for Prisma error codes. Snippet 10 depicts the decorators used to describe the
module. We may notice that we used the @Global() decorator. This ensures
that we only need to import the module once in AppModule and it will be
automatically imported into all other modules.

@Global()
@Module({

providers: [PrismaService],
exports: [PrismaService],

})

Code Snippet 10: Prisma Module Decorators

75

3. Implementation

3.4.3 Domain Driven Modules
By domain driven modules we mean modules dedicated to individual entities
captured by the domain model depicted in Figure 2.1. As we proposed in
Section 2.6.1, we implemented the following three domain driven modules:

• UserModule

• StoryModule

• ReadingListModule

These modules share the structure that follows the architecture proposed
in Section 2.6:

• dto/ JS module contains DTO classes for operations implemented by
the module.

• entities/ JS module contains classes that implement types generated
as the part of the Prisma Client.

• envelopes/ JS module contains classes that represent REST API re-
sponses. These classes are based on the classes from the entities/ JS
module.

• <name>Module class that defines the module.

• <name>Service class which implements the business logic layer of the
module.

• <name>Controller class that implements RESTful endpoints for the
corresponding resource.

• <name>Resolver class that implements resolver for GraphQL.

3.4.4 Auth Module
The AuthModule follows the basic structure of domain driven modules de-
scribed above. However, it serves a special purpose, as it implements user
authentication for client applications. We describe the authentication flow
below.

3.4.4.1 Authentication Flow

As we proposed in Section 2.6.0.1, this module implements a simple JWT-
based authentication. The flow described below stays same for both RESTful
and GraphQL APIs:

76

3.4. Server

1. Client sends a sign-in request that contains user’s email address and
password.

2. The server validates the credentials from the previous step.

• If they are valid, the server fetches the data of the corresponding
user.

• If they are invalid, the server returns error and the flow ends.

3. The server signs the JWT with the payload derived from the user’s data
and sends the JWT to the client as the part of the response.

4. The client receives the response and sends the JWT in subsequent re-
quests as a bearer token within the HTTP Authorization header.

5. The server authenticates the used based on the JWT.

The following subsection presents a standard way to implement authenti-
cation using Nest.

3.4.4.2 Passport Library in Nest

For the authentication purposes, Nest integrates Passport31, a popular au-
thentication library for Node.js, using the @nestjs/passport module. [104]

To better understand the implementation of this module, let us describe
how the Passport library works and how Nest integrates it. Essentially, Pass-
port performs the three following steps:

1. Authenticate a user based on the credentials, such as username-password
pair or JWT. [104]

2. Manage the authenticated state representation, such as JWT or Express
session. [104]

3. Attach the authenticated user object to the Request object. This allows
us to access the user within the route handlers. [104]

The Passport library can be considered a framework to some extent. It
provides us with an Inversion of Control and abstracts the authentication into
a set of strategy-specific steps that we customize. It has a rich ecosystem of
implemented strategies that we configure by supplying a configuration object
and callback functions that Passport calls based on its inner logic. [104] With
@nestjs/passport, we perform the following steps in order to configure a
strategy:

31https://github.com/jaredhanson/passport

77

https://github.com/jaredhanson/passport

3. Implementation

1. We extend a PassportStrategy class from the @nestjs/passport mod-
ule. [104]

2. Optionally, we provide configuration specific for that strategy in the
super() method. [104]

3. We provide the verify callback by implementing the validate() method.
In this method, we specify how Passport verifies the credentials. [104]

When we extend a Passport strategy, the Passport library provides us with
an AuthGuard, a special type of guard that invokes the corresponding Passport
strategy.

In Nest, guards are classes that implement the CanActivate interface and
are annotated with the @Injectable() decorator. They have a single respon-
sibility, and that is to decide whether the request will be processed by the
route handler or not. We usually refer to this process as authentication and
authorization. In Express application, it is typically handled by middleware.
Nest also provides middleware that we can use for this purpose. However,
guards provide benefits such as context knowledge. We will demonstrate the
usage of the context in Section 3.4.8.4 when describing the GraphQL authen-
tication. [105]

Now that we know our authentication flow and how Passport works, we
can understand why this module contains guard and strategy JS modules.

3.4.4.3 Strategies

For the purpose of our authentication flow, the server implements the following
Passport strategies:

• LocalStrategy that extends the passport-local strategy provided by
Passport,

• JwtStrategy that extends the passport-jwt strategy provided by Pass-
port.

We use LocalStrategy in the second step of the authentication flow. We
have configured the strategy to lookup for the username under the email field
of the request data. The validate() method uses AuthService to validate
the credentials.

JwtStrategy implements the fifth step of our flow. We have configured
the strategy to fetch the JWT as a bearer token from the Authorization
header and to retrieve the JWT secret using the Nest built-in ConfigService.
Furthermore, since we implemented a prototype, we ignored the expiration of
the token. Snippet 11 depicts the configuration of JwtStrategy.

78

3.4. Server

constructor(
private readonly userService: UserService,
readonly configService: ConfigService

) {
super({

jwtFromRequest: ExtractJwt.fromAuthHeaderAsBearerToken(),
ignoreExpiration: true,
secretOrKey: configService.get('JWT_SECRET'),

});
}

Code Snippet 11: JWT Strategy Configuration

3.4.4.4 Guards

In order to follow the DRY principle, our server provides guard classes that
extend the AuthGuard class for both local and jwt strategies. These guards
differs for REST and GraphQL APIs.

3.4.5 Data Transfer Objects Validation

In order to validate input DTOs, our server uses the class-validator32 library.
This library allows us to define validation rules over specific attributes of
DTO classes using decorators. Snippet 12 provides an example of using class-
validator decorators. To enable the class-validator, we registered a global
validation pipe in the src/main.ts file. We configured the class-validator to
remove all non-whitelisted properties from the input data. A non-whitelisted
property is a property that the class-validator cannot map to any decorated
property of DTO.

3.4.6 Common Logic

When implementing software, we typically encounter repetitive tasks. To
ensure that our application is DRY compliant, we either implement custom
solutions for recurring issues or use Nest features such as ParameterDecorator
or NestInterceptor. All this logic is located in the /src/common/ directory.

3.4.7 REST API

As we proposed in Section 2.6.3, we used Nest controllers as a building block
for the REST API exposed by our server. We have also implemented the
linking proposed at the end of Section 2.6.3.2.

32https://github.com/typestack/class-validator

79

https://github.com/typestack/class-validator

3. Implementation

export class CreateStoryDto {
@IsString()
@IsNotEmpty()
title: string;

@IsString()
@IsOptional()
description?: string | null;

...
}

Code Snippet 12: Class-Validator Decorators

3.4.7.1 Controllers

As we described in the previous sections, domain driven modules together
with the AuthModule contain controller classes. We followed the principles
described in Section 2.5.3.5. For each module, we created a controller using
the @Contoller() decorator. To specify the base path of the controller, we
used the path property of the @Controller() decorator input object.

For each controller, we implemented methods that cover the endpoints pro-
posed in Section 2.6.3.2. To make each controller method a RESTful endpoint
handler, we annotated that method with the decorator corresponding to the
HTTP method of the handled endpoint. Where necessary, we specified the
path relative to the base path of the controller as a decorator parameter. This
path may contain route parameters used, for example, to specify the resource
identifier. If necessary, we also specified a default HTTP status code of the
response using the @HttpCode() decorator. This was necessary, for example,
in the following cases:

• for POST /stories/search since this endpoint retrieves the data and
Nest returns 201 OK code by default in responses to POST requests,

• for delete endpoints, where it was necessary to set HTTP code 204 No
Content.

3.4.7.2 Endpoint Handlers

Each endpoint handler uses the services injected by the controller. Within
endpoint handlers, we often need to work with route parameters, user object
or response object. To get these values, we use the following Nest decorators
in the signature of route handlers:

80

3.4. Server

• Built-in @Param() decorator that extracts the route parameter by its
key specified in the HTTP method decorator. We can bind pipes to this
decorator in order to transform or validate the parameter. We typically
use the ParseIntPipe to transform string parameter to integer.

• Built-in @Res() decorator to access the request object of the underlying
platform.

• Custom @User() decorator to extract the user object from the request.

• Custom @Limit() decorator to extract the limit query parameter.

• Custom @Jwt() decorator to extract JWT from the Authorization
header of the HTTP request.

3.4.7.3 Access Restriction

In order to restrict access to specific endpoints, we annotated the correspond-
ing handlers using the @UseGuards() decorator. This decorator accepts a
guard as an input parameter. In the case of the POST /user/sign-in
endpoint handler, we used LocalAuthGuard as the input parameter of the
@UseGuards() decorator. This guard internally uses LocalStrategy. For
other restricted actions, we passed JwtAuthGuard as an input parameter of
the @UseGuards() decorator.

3.4.7.4 HATEOAS

We have implemented an envelope system to incorporate links into the re-
sponse data. At the end of the endpoint handler, we wrap the data into an
envelop and assign the appropriate links. We assign links based on the con-
text. So we are able, for example, to assign extra links in the case of a request
that contains the JWT of the resource owner. For example, these can be links
to update or delete this resource.

Links are assigned to the _links property of the envelope. In order to
have typed links available, we created the HateoasLink class that complies to
the hypermedia links format recommended by RFC 822 that we mentioned in
Section 1.8.4.2.

To simplify link assignment, we created a simple factory function createLink
and the addLinks helper function that assigns links to the _links property
of the input object. These functions are available within the common logic.

3.4.7.5 Versioning

In order to enable versioning of our REST API, we call app.enableVersioning()
in the bootstrap() function defined in the src/main.ts file. We specify the
version of the API at the controller level using the version property of the
@Controller() decorator.

81

3. Implementation

3.4.7.6 OpenAPI and Swagger

Once the REST API implementation was complete, we annotated the con-
trollers using decorators from the @nestjs/swagger module. This module
provides Nest integration of Swagger33, a tool based on the OpenAPI specifi-
cation that allows us to generate interactive API documentation.

The documentations is available under the /api route.

3.4.8 GraphQL API
As proposed in Section 2.6.4, we implemented our GraphQL API using the
schema-first approach.

3.4.8.1 GraphQLModule Registration

As we learned in Section 2.5.3.6, Nest provides a built-in @nestjs/graphql
module. In order to use this module, we need to import it into AppModule
and configure it.

We can see the configuration of this module in Snippet 13. Since we used
Express as the underlying platform, we may notice that we configured the
GraphQLModule to use the Apollo Server. Next, we can notice the value of the
typePaths property which tells the module to search for GraphQL schema
definitions recursively throughout the src/ directory. The module will merge
all found schemas into one. In our case, however, there is only one GraphQL
schema. Finally, the definitions property tells the module to generate Type-
Script classes based on the schema into the src/graphql/graphql.ts file.

GraphQLModule.forRoot<ApolloDriverConfig>({
driver: ApolloDriver,
typePaths: ['./src/**/*.graphqls'],
definitions: {
path: join(process.cwd(), 'src', 'graphql', 'graphql.ts'),
outputAs: 'class',

},
}),

Code Snippet 13: GraphQLModule Configuration

3.4.8.2 GraphQL Schema

The schema for the GraphQL API exposed by our server can be found in the
src/graphql/schema.graphqls file. It has the following logical structure:

33https://swagger.io

82

https://swagger.io

3.4. Server

1. Firstly, we list the scalar types used.

2. Then we define Entity and NamedEntity interfaces.

3. After the interfaces, we define the JWT wrapper type and the input
data for sign-in.

4. Then we define the types that represent the entities and the input data
for mutations of these entities. Each entity implements either the Entity
or NamedEntity interface.

5. Finally, we define the available queries and mutations.

Snippet 14 depicts the definition of selected GraphQL mutations.

type Mutation {
signIn(content: SignInContent!): AuthPayload
createStory(content: CreateStoryContent!): Story
updateStory(id: Int! content: UpdateStoryContent!): Story
deleteStory(id: Int!): Story
deleteReadingList(id: Int!): ReadingList
...

}

Code Snippet 14: GraphQL Mutations Definition

3.4.8.3 Resolvers

As we explained in Section 1.9.5, resolvers instruct a GraphQL server how
to transform a GraphQL operation defined by a GraphQL schema into data.
Resolvers return data in a shape that matches the definition in the GraphQL
schema. In the case of Node.js, this data is returned either synchronously or
asynchronously as a promise that resolves to data of the corresponding shape.

In Section 2.5.3.6, we learned that Nest provides the @nestjs/graphql
package that generates a resolver map automatically using the metadata that
we provide by using specific decorators. We use these decorators to annotate
<name>Resolver classes of our modules.

To turn class into a resolver, we use the @Resolver() decorator. This
decorator accepts an optional string argument that specifies the name of the
resolver. It becomes required if we use the @ResolveField() decorator within
the resolver. The @ResolveField() decorator informs Nest that the deco-
rated method is bound to the parent type. Such methods are applied as re-
solvers for fields that represent queries for related data. Snippet 15 illustrates
how query fields in the GraphQL schema and resolver methods decorated by

83

3. Implementation

@ResolveField() are related. We can notice the use of the @Parent() dec-
orator to get the parent type of the resolved field – in this case we get the
object corresponding to the User type from the GraphQL schema.

// src/graphql/schema.graphqls
type User implements Entity {

...
stories(limit: Int): [Story!]!
...

}

// src/user/user.resolver.ts
@ResolveField('stories')
async getStories(@Parent() user, @Args('limit') limit: number) {

const { id } = user;
return this.storyService.findManyByAuthor(id, limit);

}

Code Snippet 15: GraphQL Related Data Fields and Resolvers

To map resolver class methods to individual queries, we decorate these
methods using the @Query() decorator. Similarly, we use the @Mutation()
decorator to map methods to mutations.

3.4.8.4 Access Restriction

We restricted the resource access using the @UseGuards() decorator similar
to the REST API. However, the implementation differs in two ways:

1. we restrict access to actions at another stage of processing,

2. guards must obtain request data differently.

In contrast to the REST API, we do not decorate methods serving directly
as route handlers, but methods serving as resolvers. Since guards are designed
to secure common HTTP-based APIs, such as REST APIs, they cannot au-
tomatically retrieve the necessary data from a GraphQL query or mutation.
Because of that, we need to create parallel guard classes to the classes used
by our REST API. These guards retrieve the necessary request data using
the GqlExecutionContext factory method. Here we take advantage of Nest
guards that we discussed in Section 3.4.4.2.

84

3.5. REST Client

3.5 REST Client
The implementation of our REST Client can be found in the client-side-rest/
directory. The client is run by the mwd-client-side-rest service. As we de-
cided in Section 2.5.4, we implemented the client using React.

3.5.1 Production Environment Setup

The PWA template provided by Create React App supplies us with a robust
service worker registration script that ensures that it is only installed in the
production build of the application. To avoid the frustration of loading cached
assets instead of the latest changes, the documentation does not recommend
modifying the registration script to register the service worker in the develop-
ment build. [95] For this reason, the production docker environment contains
a production client build.

For security reasons, browsers only allow service workers to be installed
via HTTPS. This does not apply to localhost, which browsers consider to be
a secure origin and do not require a secured connection to install a service
worker from localhost. [106] To serve our client from localhost, we configured
the production container to host the production build using the Nginx web
server. Snippet 16 shows a fragment of the corresponding Dockerfile.

FROM nginx:1.21.0-alpine AS production

COPY --from=builder
COPY nginx.conf /etc/nginx/conf.d/default.conf
EXPOSE 3010
CMD ["nginx", "-g", "daemon off;"]

Code Snippet 16: Nginx in Docker

3.5.2 Source Code Organization

Essentially, the organization of the client source code follows the architecture
presented in Section 2.7.2. The important contents of the src/ directory are
as follows:

• features/ organizes all React components into JavaScript modules ac-
cording to their domains. In addition, it includes the core module with
shared, domain-independent components.

• helpers/ provides a JavaScript module of globally applicable functions
that simplify certain operations.

85

3. Implementation

• pages/ contains a JavaScript module providing the components of in-
dividual pages of the application.

• services/ which generally bundles the service modules used by the
client. In our case, it contains a service that integrates the client with
the REST API.

• stores/ contains a module that groups stores for sharing the global
state. In our case, it contains the storage of the logged in user.

• types/ provides a module of globally applicable types.

• validations/ provides a module that encapsulates the functions used
to validate user input.

• Router.tsx that uses React Router v634 to perform routing.

• service-worker.ts which implements basic offline experience required
by functional requirement F17 described in Section 2.1.

3.5.3 State Management
This section presents the implementation of the state management that we
proposed in Section 2.7.1. We omit URL state management, as it was al-
ready sufficiently covered in the previous chapter. We also omit server state
management as it will be covered in Section3.5.4.

3.5.3.1 Local State Management

As we mentioned in Section 2.7.1.1, React functional components provide the
useState hook to manage the local state. Snippet 17 depicts the use of the
useState to manage the local state of the ReadingListForm component.

3.5.3.2 Global State Management

As we proposed in Section 2.7.1.2, we implemented global state management
using the Zustand library. Using Zustand, we implemented the useUserStore
hook within the stores module. This hook uses localStorage to store both
user’s JWT token and the decoded data contained in the JWT. It stores this
data in the jwt and user properties and provides the setUser and removeUser
functions to manipulate it.

Zustand allows us to access elements defined within the useUserStore
hook using selector functions. Snippet 18 illustrates the use of the useUserStore
hook and selector functions.

34https://reactrouter.com

86

https://reactrouter.com

3.5. REST Client

const [state, setState] = useState<ReadingListFormState>({
dto: {

title: readingList ? readingList.title : '',
},
validation: { title: !!readingList },
enabled: !!readingList,

});
...
setState({
...state,
...{

dto: newDto,
validation: newValidation,

},
enabled: valid,

});

Code Snippet 17: Local State Management With useState

const jwt = useUserStore(state => state.jwt);
const removeUser = useUserStore(state => state.removeUser);

Code Snippet 18: Manage Logged User With Zustand

3.5.4 RESTful API Integration

As we proposed in Section 2.7.2, we implemented the rest-api-service mod-
ule that integrates the REST client with the server using its REST API. To
provide end-to-end type safety to some extent, it provides clones of DTOs,
entities, and envelopes implemented by the server.

The service implementation uses React Query which is built around the
following three core concepts:

1. queries,

2. mutations,

3. query invalidation. [107]

In order for our client to use React Query, we provided our application with
an object of type QueryClient. To achieve this, we wrapped our application
in the QueryClientProvider component.

87

3. Implementation

3.5.4.1 Queries

In React Query, queries are essentially a declarative dependency on an asyn-
chronous request for data which are identifies with a unique key. In order to
subscribe to the query, we use the useQuery hook with the following argu-
ments [108]:

• a unique query key,

• a function that returns a promise that resolves the data or throws an
error. [108]

The query result returned by this hook provides us with an easy access
to the various states of the query, such as response data, error or loading
status. [108]

Our REST API service provides a module that implements queries us-
ing the aforementioned useQuery hook. As the resolving function mentioned
above, we use our HttpRequest function that wraps the fetch function of the
client-side JavaScript. In Snippet 19, we can see the implementation of the
query that fetches a story from the server.

export const useStory = (id: number) => {
return useQuery<StoryEnvelope>(
['story', id], () =>

HttpRequest<StoryEnvelope>(`/stories/${id}`)
);

}

Code Snippet 19: Query With useQuery Hook

3.5.4.2 Mutations

Unlike loading data, React Query uses mutations to perform server-side effects
such as creating, updating, or deleting data. To implement a mutation, we use
the useMutation hook exported by React Query. This hook returns a result
object that provides a mutate() method to call when needed. The result
object also provides indicators of the status of the mutation request. The
useMutation also provides us with helper options that allow us to specify side
effects for mutation states, such as a callback after the mutation is successfully
completed. [109] Snippet 20 shows the implementation of the mutation for
sign-in.

3.5.4.3 Query Invalidation

We use query invalidation after update mutation over stories and reading lists
and after assigning or removing a story from the reading list. To invalidate

88

3.5. REST Client

export const useSignIn
= (dto: SignInDto, successCallback: (data: JwtEnvelope) => void)

=> {
return useMutation<JwtEnvelope, ErrorMessage>('signIn',

() => HttpRequest<JwtEnvelope, SignInDto>(
'/auth/sign-in', 'POST', dto),
{
onSuccess: successCallback

}
);

};
...
const signIn = useSignIn(dto, signInSuccessCallback);

Code Snippet 20: Mutation With useMutation Hook

the query, we retrieve the client using the useQueryClient hook. Then we
call the invalidateQueries method of the client. As an argument, we specify
the key of the query we want to invalidate.

3.5.4.4 Using HATEOAS Links

In our REST client, we use HATEOAS links for the following purposes:

1. Retrieve links to related resources from the current resource represen-
tation and then retrieve related resources from the server and possibly
creating links to navigate to them.

2. Detection of available operations for a given resource. Based on the
detected operations, we render the controls in the UI.

To send requests to our REST API based on found links, we prepared a
generic query useLinkQuery and a generic mutation useLinkMutation.

3.5.5 Turning REST Client Into a PWA
The Create React App template for the PWA we used to create the REST
client provided us with the PWA implementation that consists of the following
elements:

• public/manifest.json file that makes our client installable,

• src/serviceWorkerRegistration.ts script for conditional service worker
registration,

• src/service-worker.ts that caches Application Shell for offline access.

89

3. Implementation

To meet the functional requirement F17 defined in Section 2.1, we ex-
tended the service worker to cache content already loaded from the API for
offline access. Using the Workbox library integrated by the PWA template, we
registered the caching of API queries using the StaleWhileRevalidate caching
strategy. In Snippet 21, we can see setting up the caching.

registerRoute(
({url}) => url.origin === ApiConfig.host,
new StaleWhileRevalidate({
cacheName: 'rest-api-cache',
plugins : [

new CacheableResponsePlugin({
statuses: [0, 200]

}),
]

})
);

Code Snippet 21: Caching REST API Responses for Offline Access

3.6 GraphQL Client
The GraphQL client implementation is essentially a modified clone of the
REST client. For this reason, we will only describe the parts of the imple-
mentation where they differ.

3.6.1 GraphQL API Integration
As we proposes in Section 2.8.2, we implemented the graphql-api-service
module that integrates the GraphQL client with the server using its GraphQL
API. This module exports schema-based interfaces from the server-side gen-
erated graphql-typings.ts. These interfaces provide end-to-end type safety
to some extent.

The GraphQL API service implementation uses Apollo Client that allows
us to declaratively fetch or manipulate server state via a GraphQL API. An-
other advantage of Apollo Client is that it provides caching of responses out
of the box. [110] It provides us with hooks for all input types of GraphQL
API:

• queries,

• mutations,

• subscriptions. [110]

90

3.6. GraphQL Client

In order to use Apollo Client, we created the object of type ApolloClient
and provided our application with that object by wrapping the App compo-
nent in the ApolloProvider component.

3.6.1.1 Queries

To execute GraphQL queries, Apollo Client supplies us with the useQuery
hook. To run a query, we pass a GraphQL query string to this hook. At
component render, the useQuery hook returns a result object that contains
data, loading and error properties.

Using the useQuery hook, we implemented a custom hook for each query
defined in the GraphQL schema within the queries module of the service.
Snippet 22 depicts the implementation of the custom hook useStoriesQuery
that fetches stories.

const STORIES_QUERY = gql`
query Stories($searchString: String!, $limit: Int) {

stories(searchString: $searchString, limit: $limit) {
id
createdAt
title
description
author {

id
givenName
familyName

}
}

}
`;
...
export function useStoriesQuery(_variables: StoriesVars) {

return useQuery<StoriesData, StoriesVars>(STORIES_QUERY, {
variables: _variables,

});
}

Code Snippet 22: GraphQL Query With Apollo Client

3.6.1.2 Mutations

In order to perform mutations, Apollo Client supplies us with the useMutation
hook. To execute a mutation, we first need to call this hook with a mutation

91

3. Implementation

string as argument. [111] At component render, the useMutation returns a
tuple that includes the following:

• a mutate function that we call when anytime we desire,

• a representation of the current status of the mutation execution similar
to the result object of the useQuery hook. [111]

Similar to queries, we implemented a custom hook for each mutation de-
fined in the GraphQL schema within the mutations module of the service.

3.6.1.3 Query Invalidation

To invalidate queries, we call the refetchQueries method of the Apollo Client
object retrieved using the useApolloClient hook.

3.6.2 Turning GraphQL Client Into a PWA
Since WorkBox uses the CacheStorage API under the hood, which only allows
caching responses to GET requests, we could not use the registerRoute
function provided by WorkBox.

To achieve the same functionality as the REST client, we implemented
custom caching using the IndexedDB API.

3.7 Chapter Summary
In this chapter, we described the implementation of a prototype demonstrating
the use of selected client-side and server-side technologies and approaches.
Especially API-first development, REST, GraphQL, Nest, React and client
integration with REST and GraphQL APIs.

92

Chapter 4
Testing

To demonstrate the possibilities of testing the technologies used, we finished
the implementation with automated tests covering selected parts of the server
and the REST client. This section first describes the different types of au-
tomated tests. Then, it explores testing capabilities of the Nest framework.
Finally, it briefly introduces the tools used to implement the tests and provides
specific examples of implemented tests for both the server and the client.

4.1 Types of Automated Tests
There are several different types of automated tests, such as unit tests, in-
tegration tests or end-to-end (e2e) tests. Each of these tests differs in the
amount of functionality tested.

Unit tests represent the lowest level of software testing. They focus on
testing individual units of software. A unit is the smallest section of code that
can be logically isolated. In functional programming, it is usually a function.
In object-oriented programming, it is typically a method of a concrete class.
The purpose of unit tests is to verify that each unit of software behaves as
expected. If the unit requires interaction with other isolated units, we use
so-called mock objects to simulate these units. [112]

Unlike unit tests, in integration tests we integrate software modules and
test them as a whole. The purpose of integration tests is to verify that the
components interact with each other as expected. [113]

End-to-end testing validates the behavior of the software as a whole, in-
cluding interaction with external services such as databases. [114]

4.2 Testing the Nest Server
Our goal in testing the server implementation was to demonstrate the ability
to test parts of the implementation that are crucial to both the REST and

93

4. Testing

GraphQL APIs. Before we proceed to the description of the actual implemen-
tation of the tests, let us get acquainted with the possibilities of testing Nest
applications.

Although testing has undeniable benefits, it can be challenging to set up.
To facilitate testing, Nest particularly:

• provides a test runner that constructs an isolated loader for modules
and application,

• supplies us with dependency injection in the test environment for easy
mocking,

• integrates Jest and Supertest out-of-the-box. [115]

With the features mentioned above, Nest provides the means for all of the
aforementioned types of automated tests out-of-the-box.

4.2.1 Used Tools
This section briefly introduces the tools used to implement the tests, specifi-
cally the Jest35 testing framework and the SuperTest36 library.

Fundamentally, the Jest framework provides us with resources particularly
suitable for writing unit tests. It allows us to create isolated tests and structure
the related tests into blocks. The most basic tests using Jest involve using
matchers to test values. Jest provides a variety of different matchers. [116]
It also supplies us with functions to setup the environment before each test,
as well as to teardown the environment after each test. [117] It is also very
suitable for mocking and subsequent inspection of the mock state. [118]

The SuperTest library serves a different purpose compared to Jest. Su-
perTest allows us to test the interaction with software components by simu-
lating HTTP requests.

4.2.2 Unit Tests
When writing unit tests, we focused on the Story domain. Specifically, we
covered the controller and resolver classes in the Story Module.

To simulate the data, we prepared fixture arrays containing items of the de-
sired types. Since both StoryController and StoryResolver classes require
service classes from the application logic layer as a dependency, we created
mocks for these services using the Jest framework. In Snippet 23, we can see
calling the jest.fn() function to mock findMany and update methods of the
StoryService class.

35https://github.com/facebook/jest
36https://github.com/visionmedia/supertest

94

https://github.com/facebook/jest
https://github.com/visionmedia/supertest

4.2. Testing the Nest Server

const storyService = {
findMany: jest.fn().mockResolvedValue(storiesFixture),
...
update: jest.fn(async (_id: number, dto: UpdateStoryDto) => {

const story = storiesFixture.find((s) => s.id === _id);
if (story) {

return {...story, ...dto};
}
throw new NotFoundException();

}),
...

};

Code Snippet 23: Mocking the StoryService Class

We use the beforeEach function provided by Jest to setup the environment
before starting each test. We use the testing utilities provided by the Test
class of the @nestjs/testing package to setup the environment. Snippet 24
depicts the usage of the Test class to mock the full Nest runtime in order to
test the StoryResolver class in isolation.

const moduleRef: TestingModule = await Test.createTestingModule({
providers: [StoryResolver],

})
.useMocker((token) => {

if (token === StoryService) {
return storyService;

}
if (token === UserService) {

return userService;
}
...

})
.compile();

storyResolver = moduleRef.get(StoryResolver);

Code Snippet 24: Using the Test Class to Mock the Nest Runtime

Since we introspect mock object statistics in the tests, we reset these statis-
tics after each test using the afterEach function. We organize the tests using
the describe function in groups according to which method they belong to.
In our tests, we use toBe and toStrictEqual matchers to compare expected
and received values.

95

4. Testing

To test the interaction of the tested method with mock objects, we use the
mock attribute of mocked methods. This attribute contains an array of calls
of the method and an array of arguments for each call. Snippet 25 depicts the
implementation of two unit tests for getStory method of the StoryResolver
class.

describe('Testing the getStory() method.', () => {
test('Should return story entity.', async () => {
expect(await storyResolver.getStory(1))

.toBe(storiesFixture.find((s) => s.id === 1));
expect(storyService.findOneById.mock.calls.length).toBe(1);
expect(storyService.findOneById.mock.calls[0][0]).toBe(1);

});
test('Should throw NotfoundException.', async () => {

await expect(storyResolver.getStory(100))
.rejects
.toStrictEqual(new NotFoundException());

expect(storyService.findOneById.mock.calls.length).toBe(1);
expect(storyService.findOneById.mock.calls[0][0]).toBe(100);

});
});

Code Snippet 25: Jest Unit Tests

4.2.3 Integration Tests
After we covered StoryController and StoryResolver with unit tests, we
also covered the domain with integration tests.

As in the case of the unit tests, we prepared fixture arrays to simulate
the data for the integration tests. In contrast to unit tests, we did not create
mocks for individual services that the tested classes require as dependencies.
Instead, we mocked the PrismaService class on which the mentioned services
depend.

For the purpose of setting up the environment for individual tests, we
again take advantage of the beforeEach function provided by Jest.

Compared to unit tests, we mock the full Nest runtime with our entire
application, not just the tested class. When mocking the runtime, we specify
which providers we want to replace with the prepared mock objects. Finally,
we create and run the Nest application. We can see this process in Snippet 26.

We organize the tests using the describe function in groups according to
which RESTful endpoint or GraphQL query/mutation they belong to. To test
the RESTful enpoint, we perform the following steps:

1. We define the expected response data.

96

4.2. Testing the Nest Server

const moduleFixture: TestingModule = await Test
.createTestingModule({

imports: [AppModule],
})
.overrideProvider(PrismaService)
.useValue(prismaService)
.overrideProvider(ConfigService)
.useValue(configService)
.compile();

app = moduleFixture.createNestApplication();
await app.init();

Code Snippet 26: Mocking the Nest Runtime for Integration Tests

2. We decorate the underlying Express HTTP server of the Nest application
using the request function of the SuperTest library.

3. We fluently describe the test request using the SuperTest methods.

4. We use the expect method of the SuperTest library to compare the
expected and the received response in terms of the HTTP status code
and the body.

Snippet 27 provides an example of the integration test for the RESTful
endpoint that provides the create story operation.

test('Should respond with 403 Forbidden.', async () => {
return request(app.getHttpServer())

.post('/stories')

.send(createDto)

.set('Accept', 'application/json')

.set('Authorization', 'Bearer ' + user4Jwt)

.expect(403)

.expect({ statusCode: 403, message: 'Forbidden' });
});

Code Snippet 27: RESTful Endpoint Integration Test

Integration tests for GraphQL queries and mutations differ as follows:

• We always test the POST /graphql request.

• We always set the request body to the appropriate query or mutation.

97

4. Testing

4.3 Testing the REST Client
After we finished testing the server, we implemented tests for the REST client.
Our goal in testing the client implementation was to demonstrate the DOM
testing for React components. Since React components are isolated units, as
we described in Section 1.5.3.1, we test them using unit tests.

For testing we used the Testing Library37 implementation for React38 in
combination with the Jest framework described in Section 4.2.1. The React
Testing Library allows us to use its render function to render a React compo-
nent into the container over which the library operates. The result object of
this function call contains the container itself and a number of hooks to query
the contents of the container.

To demonstrate the DOM testing, we limited ourselves to testing the ren-
dering of the save button in the FullscreenDialog component. This button
can be in the following three different states:

1. unrendered if the dialog is not open,

2. rendered and disabled if the dialog content is not in a validated state,

3. rendered and enabled if the dialog content is in a validated state.

Snippet 28 depicts the unit test that implements DOM testing for the
FullscreenDialog. We can notice using the queryByText query hook pro-
vided by the React Testing Library. We can also notice the use of Jest match-
ers toBeDefined, toBeVisible and toBeDisabled to evaluate the button
state.

test('Test the disabled save button.', () => {
const {queryByText} = render(
<FullscreenDialog
isOpened={true}
actionEnabled={false}

/>
);
const saveBtn = queryByText('save');
expect(saveBtn).toBeDefined();
expect(saveBtn).toBeVisible();
expect(saveBtn).toBeDisabled();

});

Code Snippet 28: React DOM Testing

37https://github.com/testing-library
38https://github.com/testing-library/react-testing-library

98

https://github.com/testing-library
https://github.com/testing-library/react-testing-library

4.4. Chapter Summary

4.4 Chapter Summary
This section explored the testing capabilities of the technologies used, de-
scribed the tools used for testing and finally provided an overview and exam-
ples of the implemented tests.

In the server implementation, we covered StoryController and StoryResolver
with unit and integration tests. StoryController exposes five RESTful end-
points for CRUD operations and searching over the Story entity. In com-
parison, StoryResolver provides six resolver methods, since it additionally
implements the resolving of the story author. Over these two classes, we im-
plemented a total of 28 unit tests and 23 integration tests. The tests verify the
correct behavior of both classes and can easily detect errors caused by possible
modifications to the implementations. Figure 4.1 illustrates the results of the
implemented integration tests.

Figure 4.1: Integration Tests Results

In the REST Client implementation, we demonstrated DOM testing using
the unit tests for FullscreenDialog component. In total, we implemented 3
tests that verify the rendering of the button to trigger the dialog action. This
verified that the user cannot run an action under conditions where it should
not be allowed.

99

Chapter 5
Evaluation

The last chapter evaluates the practical outputs of the thesis in terms of
implementation, extendability, sustainability, and testability.

5.1 Server

In this section, we evaluate the implemented server from the aforementioned
perspectives.

5.1.1 Implementation

Right at the beginning of the implementation, the Nest framework provided
us with a basic TypeScript application with a robust architecture. The im-
plementation is object-oriented, modular and makes heavy use of JavaScript
decorators. The modules encapsulate the implementation of the associated
logic. Nest allows us to import other modules into this module as part of the
module declaration and also specify what specific logic the module exposes to
other modules.

Despite the fact that Nest is based on a number of design patterns and of-
ten uses advanced Node.js constructs, we found the learning curve surprisingly
moderate. We owe this to the fact that the framework is both opinionated
and well documented. The use of a range of well documented built-in decora-
tors and integration modules for the technologies used helped to improve our
productivity.

Let us note that we spent more effort implementing authentication for
GraphQL than for REST because we had to retrieve the request data using
the GraphQL context.

101

5. Evaluation

5.1.2 Extendability

As the previous section suggests, the framework leads us to create extensible
applications primarily using modularization and OOP principles such as DRY
or separation of concerns. The proof of Extendability is that the initial imple-
mentation of the server exposed only the REST API and the GraphQL API
was implemented later. This was achieved by simply registering the built-in
module and creating new classes that did not require a single modification to
the existing solution.

5.1.3 Sustainability

By following OOP principles and using TypeScript, the implementation is
sustainable. In particular, TypeScript and the implemented tests contribute
to a faster understanding of existing solutions and safer modification of the
implementation.

5.1.4 Testability

We have demonstrated through implemented tests that our server can be
easily tested with unit and integration tests. Furthermore, the server could
be tested using end-to-end tests if we modified the integration tests to use a
test database.

5.2 REST API
This section evaluates the implementation of the REST API that is exposed
by the server evaluated in the previous section.

5.2.1 Implementation

The REST API implementation takes advantage of Nest controllers and avail-
able built-in decorators for declaring endpoints, route parameters, HTTP
methods and status codes. We also make use of the built-in decorator to
obtain request body where needed. For the needs of our REST API and to
comply with the DRY principle, we implemented our own decorators to get the
authenticated user from the request, get the JWT and also the query param-
eter to limit the number of records in the response that contains a collection
of resources.

Overall, we implemented most of the basic form of the REST API declar-
atively using the built-in Nest decorators. To comply with HATEOAS, we
implemented our own solution for linking resources. This cost us much more
effort and overhead.

102

5.3. GraphQL API

5.2.2 Extendability
We can easily extend the existing controllers with additional decorated route
handlers, or we can create and integrate a new module containing a controller
into the application.

5.2.3 Sustainability
The sustainability of a REST API implementation is a consequence of the
sustainability of the server implementation that exposes it.

5.2.4 Testability
Since the server tests we implemented also covered a RESTful controller in
terms of both unit and integration tests, we demonstrated that our REST
API is easy to test.

5.3 GraphQL API
This section evaluates the implementation of the GraphQL API exposed by
our server.

5.3.1 Implementation
Since we used Express as the underlying platform for Nest, the GraphQL API
implementation takes advantage of Nest’s integration of the Apollo Server.
Since we chose a schema first approach for the implementation, we had to
learn how to use GraphQL Schema Definiton Language to define the schema
of our API. However, defining a GraphQL schema is easy to learn.

Since Nest provides a built-in package for GraphQL integration, all we had
to do after defining the schema was to configure the GraphQL module to use
this schema. We also configured this module to generate TypeScript classes
corresponding to the schema at the server start. Thanks to this, we got free
typing. For the implementation of resolvers, we again used the mentioned
Nest package. The package allows us to use decorators to declaratively map
methods of resolver classes to the corresponding queries, mutations and query
fields of types.

5.3.2 Extendability
We can easily extend the implementation by modifying the GraphQL schema
and then modifying existing resolvers, or by implementing new resolvers mapped
to new elements of the GraphQL schema. The automatic generation of Type-
Script classes ensures that we automatically have typing available for new
elements.

103

5. Evaluation

5.3.3 Sustainability
The sustainability of the resolver implementation is a consequence of the sus-
tainability of the server implementation.

Furthermore, the GraphQL schema provides us with easy-to-understand
documentation for the GraphQL API. In addition, the schema serves as a
contract between back-end and front-end developers. This makes it easier
and more efficient to integrate client applications with any changes to the
GraphQL API.

5.3.4 Testability
The implemented unit tests cover the selected resolver class. Furthermore,
the implemented integration tests cover queries and mutations that use the
methods of the class covered by the unit tests for the resolving process. This
demonstrated the testability of our GraphQL API.

5.4 Clients
This section evaluates the implementation of both REST and GraphQL clients
that demonstrate the integration of client-side applications with our server.

5.4.1 Implementation
We used the React library to implement the clients. React made it easy
to split the application into isolated components. React is unopinionated.
Because of this, we had trouble figuring out how to organize the application
in a way that made sense and allowed for easy and meaningful integration of
any additional components and their tests. In addition, we spent a long time
deciding which query library to use to integrate the REST client with the
REST API. However, after overcoming the initial problems, we implemented
logically organized client applications.

5.4.1.1 REST Client

For communication with the REST API, we decided to use the React Query
library, which simplifies handling the request status and implements automatic
refetching when the user returns to the browser tab with the application.

We encountered the typical problem of underfetching and overfetching. In
order to obtain all required data, we send requests for the following data:

1. basic reading list data,

2. data about the author,

3. list of contained stories,

104

5.4. Clients

4. basic data for each contained story.

We also encountered the need to implement a low-level HTTP requests
construct using the fetch API. The implementation of the offline experience
according to the F17 functional requirement was trivial in this case thanks to
the Workbox library.

5.4.1.2 GraphQL Client

When integrating with the GraphQL API using the Apollo Client, we did
not encounter the problem of underfetching or overfetching due to the nature
of GraphQL. Furthermore, we did not have to deal with the HTTP requests
construction.

Since we communicate with the GraphQL API exclusively via POST re-
quests, it was problematic to implement caching for offline access, since the
Cache API used by the Workbox library allows only GET requests to be
cached.

5.4.2 Extendability
Both client applications are extensible because they are built with isolated
components that interact with each other through defined interfaces. When
extending with complex components requiring global state management, we
recommend implementing additional stores using the Zustand library.

5.4.3 Sustainability
Since we used TypeScript for the implementation, we significantly increased
the maintainability compared to a React application developed with JavaScript.

5.4.4 Testability
By implementing unit tests we demonstrated the testability of individual ap-
plication components. The application could be further tested using integra-
tion tests, where we would test multiple components as a whole.

105

Conclusion

This thesis aimed to study and analyze web application development in client-
side and server-side domains with a particular focus on REST, GraphQL and
PWA. Furthermore, the thesis aimed to design and implement prototype web
application demonstrating the use of appropriate technologies and approaches
in the aforementioned domains. A secondary goal was to explore the types of
web applications from different perspectives.

We started with an introduction to web application development, exploring
types of web applications from four different perspectives. We also created a
diagram showing how they are related. Subsequently, we provided a broad
theoretical analysis of technologies and approaches used in client-side and
server-side web development. We gradually progressed from general topics to
REST, GraphQL and PWA, which we analyzed thoroughly.

We then focused on designing a prototype web application to demonstrate
the use of some of the analyzed technologies and approaches. We defined func-
tional and non-functional requirements so that the prototype could demon-
strate the features of both the REST and GraphQL APIs and at the same
time the clients had to implement the functionality using the service worker.
During the design process, we focused on selecting a suitable server-side frame-
work that allows easy implementation of both REST and GraphQL APIs. We
also focused on choosing a client-side framework that would allow us to easily
create a PWA. We also emphasized that the resulting implementation should
be scalable and sustainable. Finally, we designed a specific solution for the
server and client applications.

The design was directly followed by the implementation part of the thesis.
The design was directly followed by the implementation part of the thesis,
where we described the Docker environment created to run the project and
the implementation of the server and clients. The implementation part of the
thesis directly followed the design. We described the Docker environment we
created to run the project, as well as the implementation of the server and
clients.

107

Conclusion

Then, we subjected selected parts of the prototype components to auto-
mated tests at the level of unit tests and integration tests.

Finally, we evaluated the individual components of the prototype, and
thus the technology used to implement them, in terms of quality and diffi-
culty of implementation, extendability, sustainability and testability. Based
on the evaluation, we came to the conclusion that the implemented prototype
is extensible, sustainable and testable.

We have shown by implementation that it is easy to implement identical
APIs using both REST and GraphQL. Both approaches have advantages and
disadvantages. We decided to implement REST, including HATEOAS, which
cost us an extra effort. However, we have shown that links, as part of a resource
representation, can move business logic related to, for example, evaluating a
user’s permissions to actions on a server.

We have also demonstrated that GraphQL gives clients more flexibility
and actually eliminates both underfetching and overfetching. However, we
have found, for example, that caching for offline access is more difficult when
using the GraphQL API.

The main practical output of this thesis, ie a prototype of a web appli-
cation, could be further expanded. For example, we could implement user
registration, paging for collections, or a subscription and notification system,
for example. At the same time, it would be appropriate to maintain the pro-
totype in the future to keep pace with the development of the technologies
used.

108

Bibliography

[1] Sacha Greif, with help from a team of open-source contributors and
consultants. The State of JS 2021 [online]. 2022, [2022-03-05]. Available
from: https://2021.stateofjs.com

[2] Sacha Greif, with help from a team of open-source contributors and
consultants. The State of JS 2021: Back-end Frameworks [online].
2022, [2022-03-05]. Available from: https://2021.stateofjs.com/en-
US/libraries/back-end-frameworks

[3] Sacha Greif, with help from a team of open-source contributors and
consultants. The State of JS 2021: Front-end Frameworks [online].
2022, [2022-03-05]. Available from: https://2021.stateofjs.com/en-
US/libraries/front-end-frameworks

[4] Indeed Editorial Team. Website vs. Web Application (App):
What’s the Difference? [online]. August 2021, [Cited 2022-04-09].
Available from: https://www.indeed.com/career-advice/career-
development/website-vs-web-application

[5] Indeed Editorial Team. What Is a Web Application? How It Works,
Benefits and Examples [online]. November 2021, [Cited 2022-01-31].
Available from: https://www.indeed.com/career-advice/career-
development/what-is-web-application

[6] Mozilla and individual contributors. Introduction to the server side -
Learn web development [online]. February 2022, [Cited 2022-02-03].
Available from: https://developer.mozilla.org/en-US/docs/Learn/
Server-side/First_steps/Introduction

[7] Singh, E. Client-Server Architecture [online]. August 2021, [Cited 2022-
02-09]. Available from: https://medium.com/codex/client-server-
architecture-5e103aa0106d

109

https://2021.stateofjs.com
https://2021.stateofjs.com/en-US/libraries/back-end-frameworks
https://2021.stateofjs.com/en-US/libraries/back-end-frameworks
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks
https://www.indeed.com/career-advice/career-development/website-vs-web-application
https://www.indeed.com/career-advice/career-development/website-vs-web-application
https://www.indeed.com/career-advice/career-development/what-is-web-application
https://www.indeed.com/career-advice/career-development/what-is-web-application
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction
https://medium.com/codex/client-server-architecture-5e103aa0106d
https://medium.com/codex/client-server-architecture-5e103aa0106d

Bibliography

[8] Mendez, N. Understanding Rendering in Web Apps: Intro [online].
January 2021, [Cited 2022-02-12]. Available from: https://dev.to/
snickdx/understanding-rendering-in-web-apps-intro-21cl

[9] Mendez, N. Understanding Rendering in Web Apps: SSR [online].
January 2021, [Cited 2022-02-12]. Available from: https://dev.to/
snickdx/understanding-rendering-in-web-apps-ssr-1h83

[10] Mendez, N. Understanding Rendering in Web Apps: CSR [online].
January 2021, [Cited 2022-02-12]. Available from: https://dev.to/
snickdx/understanding-rendering-in-web-apps-csr-354d

[11] Khalifa, Z. Multi-page, Single-page, or a Hybrid? [online]. June 2020,
[Cited 2022-02-12]. Available from: https://medium.com/swlh/spa-
mpa-or-a-hybrid-42fdf6b3415c

[12] Mendez, N. Understanding Rendering in Web Apps: SPA
vs MPA [online]. January 2021, [Cited 2022-02-12]. Available
from: https://dev.to/snickdx/understanding-rendering-in-web-
apps-spa-vs-mpa-49ef

[13] Ltd, A. B. Single Page Application (SPA) vs Multi Page Application
(MPA) – Two Development Approaches [online]. November 2019, [Cited
2022-02-12]. Available from: https://asperbrothers.com/blog/spa-
vs-mpa/

[14] Akhtar, J. Microservices Introduction (Monolithic vs. Microser-
vice Architecture) - DZone Microservices [online]. December 2018,
[Cited 2022-02-13]. Available from: https://dzone.com/articles/
microservices-1-introduction-monolithic-vs-microse

[15] Molnar, Z. Decoupled architecture: how to modernise your
frontend [online]. April 2020, [Cited 2022-02-13]. Available
from: https://inviqa.com/blog/decoupled-architecture-how-
modernise-your-frontend

[16] Geers, M. Micro Frontends - extending the microservice idea to fron-
tend development [online]. [Cited 2022-02-16]. Available from: https:
//micro-frontends.org

[17] Budiu, R. Mobile Websites: Mobile-Dedicated, Responsive, Adaptive,
or Desktop Site? [online]. February 2016, [Cited 2022-02-16]. Available
from: https://www.nngroup.com/articles/mobile-vs-responsive

[18] Mozilla and individual contributors. Introduction to progressive web
apps - Progressive web apps (PWAs) [online]. February 2022, [Cited
2022-02-23]. Available from: https://developer.mozilla.org/en-US/
docs/Web/Progressive_web_apps/Introduction

110

https://dev.to/snickdx/understanding-rendering-in-web-apps-intro-21cl
https://dev.to/snickdx/understanding-rendering-in-web-apps-intro-21cl
https://dev.to/snickdx/understanding-rendering-in-web-apps-ssr-1h83
https://dev.to/snickdx/understanding-rendering-in-web-apps-ssr-1h83
https://dev.to/snickdx/understanding-rendering-in-web-apps-csr-354d
https://dev.to/snickdx/understanding-rendering-in-web-apps-csr-354d
https://medium.com/swlh/spa-mpa-or-a-hybrid-42fdf6b3415c
https://medium.com/swlh/spa-mpa-or-a-hybrid-42fdf6b3415c
https://dev.to/snickdx/understanding-rendering-in-web-apps-spa-vs-mpa-49ef
https://dev.to/snickdx/understanding-rendering-in-web-apps-spa-vs-mpa-49ef
https://asperbrothers.com/blog/spa-vs-mpa/
https://asperbrothers.com/blog/spa-vs-mpa/
https://dzone.com/articles/microservices-1-introduction-monolithic-vs-microse
https://dzone.com/articles/microservices-1-introduction-monolithic-vs-microse
https://inviqa.com/blog/decoupled-architecture-how-modernise-your-frontend
https://inviqa.com/blog/decoupled-architecture-how-modernise-your-frontend
https://micro-frontends.org
https://micro-frontends.org
https://www.nngroup.com/articles/mobile-vs-responsive
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction

Bibliography

[19] Sacha Greif, with help from a team of open-source contributors and
consultants. The State of JS 2021: Features [online]. 2022, [2022-04-
10]. Available from: https://2021.stateofjs.com/en-US/features/
other-features

[20] W3Techs. Usage Statistics of JavaScript as Client-side Programming
Language on Websites, March 2022 [online]. [Cited 2022-02-23]. Avail-
able from: https://developer.mozilla.org/en-US/docs/Glossary/
CSS_preprocessor

[21] Stack Overflow. Stack Overflow Developer Survey 2021 [on-
line]. 2021, [Cited 2022-03-06]. Available from: https:
//insights.stackoverflow.com/survey/2021

[22] Sacha Greif, with help from a team of open-source contributors and con-
sultants. The State of JS 2021: Other Tools [online]. 2022, [2022-04-10].
Available from: https://2021.stateofjs.com/en-US/other-tools

[23] Mozilla and individual contributors. About JavaScript [on-
line]. July 2021, [Cited 2022-02-23]. Available from: https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/About_
JavaScript

[24] Mozilla and individual contributors. Introduction [online].
February 2022, [Cited 2022-02-23]. Available from: https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Introduction

[25] Mozilla and individual contributors. JavaScript [online]. July 2021,
[Cited 2022-02-23]. Available from: https://developer.mozilla.org/
en-US/docs/Web/JavaScript

[26] Mozilla and individual contributors. JavaScript technologies
overview [online]. January 2022, [Cited 2022-02-23]. Available from:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
JavaScript_technologies_overview

[27] Branscombe, M. JavaScript 6 Offers Big Changes, and Kicks
Off an Expedited Timetable [online]. 2016, [Cited 2022-03-06].
Available from: https://thenewstack.io/ecmascript-6-biggest-
update-javascript-yet-start-rolling-annual-improvements

[28] Wang, S. The State of JS 2021: Conclusion [online]. 2022, [2022-04-10].
Available from: https://2021.stateofjs.com/en-US/conclusion

[29] Microsoft and TypeScript Community. TypeScript: Documentation -
TypeScript for the New Programmer [online]. 2022, [Cited 2022-04-10].

111

https://2021.stateofjs.com/en-US/features/other-features
https://2021.stateofjs.com/en-US/features/other-features
https://developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor
https://developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://2021.stateofjs.com/en-US/other-tools
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://thenewstack.io/ecmascript-6-biggest-update-javascript-yet-start-rolling-annual-improvements
https://thenewstack.io/ecmascript-6-biggest-update-javascript-yet-start-rolling-annual-improvements
https://2021.stateofjs.com/en-US/conclusion

Bibliography

Available from: https://www.typescriptlang.org/docs/handbook/
typescript-from-scratch.html

[30] Mozilla and individual contributors. General asynchronous pro-
gramming concepts [online]. January 2022, [Cited 2022-02-23].
Available from: https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Asynchronous/Concepts

[31] Mozilla and individual contributors. Introducing asynchronous
JavaScript [online]. February 2022, [Cited 2022-02-23]. Available from:
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
Asynchronous/Introducing

[32] Mozilla and individual contributors. Getting started with HTML
[online]. February 2022, [Cited 2022-02-23]. Available from:
https://medium.com/@dennis.pintilie.alexandru/separation-
of-concerns-soc-fd72b0191b1f

[33] Mozilla and individual contributors. What is CSS? [online].
February 2022, [Cited 2022-02-23]. Available from: https:
//developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/
What_is_CSS

[34] Mozilla and individual contributors. CSS preprocessor [online].
October 2021, [Cited 2022-02-23]. Available from: https://
developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor

[35] Mozilla and individual contributors. Introduction to web APIs
[online]. February 2022, [Cited 2022-02-23]. Available from:
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
Client-side_web_APIs/Introduction

[36] Mozilla and individual contributors. Document Object Model
(DOM) [online]. December 2021, [Cited 2022-02-23]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/Document_
Object_Model

[37] Mozilla and individual contributors. Fetch API [online]. February 2022,
[Cited 2022-02-23]. Available from: https://developer.mozilla.org/
en-US/docs/Web/API/Fetch_API

[38] Mozilla and individual contributors. Web Storage API [online].
February 2022, [Cited 2022-02-23]. Available from: https://
developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API

[39] Mozilla and individual contributors. The event loop [online].
February 2022, [Cited 2022-02-23]. Available from: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

112

https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Concepts
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Concepts
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing
https://medium.com/@dennis.pintilie.alexandru/separation-of-concerns-soc-fd72b0191b1f
https://medium.com/@dennis.pintilie.alexandru/separation-of-concerns-soc-fd72b0191b1f
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS
https://developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor
https://developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

Bibliography

[40] Wiredelta. 10 Most Popular Web Development Trends of 2022 [online].
2022, [Cited 2022-03-05]. Available from: https://wiredelta.com/10-
most-popular-web-development-trends-of-2022

[41] Sulikowska, M. 22 Web Development Trends for 2022 [online]. 2022,
[Cited 2022-03-05]. Available from: https://naturaily.com/blog/22-
web-development-trends-for-2022

[42] Global Media Insight. 23 Latest Web Development Trends to Follow
in 2022 [online]. 2021, [Cited 2022-03-05]. Available from: https://
www.globalmediainsight.com/blog/web-development-trends

[43] StatCounter. Desktop vs Mobile vs Tablet Market Share World-
wide [online]. [Cited 2022-03-05]. Available from: https:
//gs.statcounter.com/platform-market-share/desktop-mobile-
tablet

[44] Mozilla and individual contributors. Mobile first - Progressive
web apps (PWAs) [online]. March 2022, [Cited 2022-03-05].
Available from: https://developer.mozilla.org/en-US/docs/Web/
Progressive_web_apps/Responsive/Mobile_first

[45] Mozilla and individual contributors. Introduction to client-side
frameworks [online]. February 2022, [Cited 2022-02-28]. Available
from: https://developer.mozilla.org/en-US/docs/Learn/Tools_
and_testing/Client-side_JavaScript_frameworks/Introduction

[46] You, Y. vuejs/vue: Vue.js is a progressive, incrementally-adoptable
JavaScript framework for building UI on the web. [online]. 2022, [Cited
2022-04-10]. Available from: https://github.com/vuejs/vue

[47] Meta Platforms, Inc. React – A JavaScript library for building user
interfaces [online]. 2022, [Cited 2022-02-28]. Available from: https://
reactjs.org

[48] Meta Platforms, Inc. Introducing JSX [online]. 2022, [Cited 2022-02-28].
Available from: https://reactjs.org/docs/introducing-jsx.html

[49] GeeksforGeeks and individual contributors. ReactJS Data Binding
[online]. May 2021, [Cited 2022-03-01]. Available from: https://
www.geeksforgeeks.org/reactjs-data-binding

[50] Lvova, E. Best JavaScript Framework in 2021: React vs. Vue [online].
March 2021, [Cited 2022-02-28]. Available from: https://dzone.com/
articles/react-vs-vue-in-2021-best-javascript-framework

113

https://wiredelta.com/10-most-popular-web-development-trends-of-2022
https://wiredelta.com/10-most-popular-web-development-trends-of-2022
https://naturaily.com/blog/22-web-development-trends-for-2022
https://naturaily.com/blog/22-web-development-trends-for-2022
https://www.globalmediainsight.com/blog/web-development-trends
https://www.globalmediainsight.com/blog/web-development-trends
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Responsive/Mobile_first
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Responsive/Mobile_first
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://github.com/vuejs/vue
https://reactjs.org
https://reactjs.org
https://reactjs.org/docs/introducing-jsx.html
https://www.geeksforgeeks.org/reactjs-data-binding
https://www.geeksforgeeks.org/reactjs-data-binding
https://dzone.com/articles/react-vs-vue-in-2021-best-javascript-framework
https://dzone.com/articles/react-vs-vue-in-2021-best-javascript-framework

Bibliography

[51] Mozilla and individual contributors. Getting started with React
[online]. February 2022, [Cited 2022-02-28]. Available from: https:
//developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/
Client-side_JavaScript_frameworks/React_getting_started

[52] Evan You and the team. Introduction [online]. [Cited 2022-02-28]. Avail-
able from: https://vuejs.org/guide/introduction.html

[53] Mozilla and individual contributors. Getting started with Vue [on-
line]. February 2022, [Cited 2022-02-28]. Available from: https:
//developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/
Client-side_JavaScript_frameworks/Vue_getting_started

[54] Tatwa, T. N. Vue.js Two Way Binding Model [online]. March 2021,
[Cited 2022-03-01]. Available from: https://www.geeksforgeeks.org/
vue-js-two-way-binding-model

[55] Evan You and the team. Components Basics [online]. [Cited 2022-02-28].
Available from: https://vuejs.org/guide/essentials/component-
basics.html

[56] Martin, S. Mobile App Vs. Mobile Website: Which is the Best Choice
in 2021? [online]. June 2021, [Cited 2022-02-16]. Available from:
https://javascript.plainenglish.io/mobile-app-vs-mobile-
website-which-is-the-best-choice-in-2021-25cb9a53ec47

[57] Google Web Fundamentals. Introduction to Progressive Web App
Architectures [online]. February 2021, [Cited 2022-02-24]. Available
from: https://developers.google.com/web/ilt/pwa/introduction-
to-progressive-web-app-architectures

[58] Chrome Developers and Contributors. Service worker overview [on-
line]. September 2021, [Cited 2022-02-24]. Available from: https://
developer.chrome.com/docs/workbox/service-worker-overview

[59] Chrome Developers and Contributors. A service worker’s life [on-
line]. September 2021, [Cited 2022-04-11]. Available from: https://
developer.chrome.com/docs/workbox/service-worker-lifecycle

[60] Mozilla and individual contributors. How to make PWAs installable
- Progressive web apps (PWAs) [online]. February 2022, [Cited 2022-
02-24]. Available from: https://developer.mozilla.org/en-US/docs/
Web/Progressive_web_apps/Installable_PWAs

[61] OpenJS Foundation and Contributors. Introduction to Node.js [on-
line]. [Cited 2022-03-07]. Available from: https://nodejs.dev/learn/
introduction-to-nodejs

114

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://vuejs.org/guide/introduction.html
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Vue_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Vue_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Vue_getting_started
https://www.geeksforgeeks.org/vue-js-two-way-binding-model
https://www.geeksforgeeks.org/vue-js-two-way-binding-model
https://vuejs.org/guide/essentials/component-basics.html
https://vuejs.org/guide/essentials/component-basics.html
https://javascript.plainenglish.io/mobile-app-vs-mobile-website-which-is-the-best-choice-in-2021-25cb9a53ec47
https://javascript.plainenglish.io/mobile-app-vs-mobile-website-which-is-the-best-choice-in-2021-25cb9a53ec47
https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-architectures
https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-architectures
https://developer.chrome.com/docs/workbox/service-worker-overview
https://developer.chrome.com/docs/workbox/service-worker-overview
https://developer.chrome.com/docs/workbox/service-worker-lifecycle
https://developer.chrome.com/docs/workbox/service-worker-lifecycle
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Installable_PWAs
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Installable_PWAs
https://nodejs.dev/learn/introduction-to-nodejs
https://nodejs.dev/learn/introduction-to-nodejs

Bibliography

[62] OpenJS Foundation. The Node.js Event Loop, Timers, and pro-
cess.nextTick() [online]. [Cited 2022-03-07]. Available from: https:
//nodejs.org/en/docs/guides/event-loop-timers-and-nexttick

[63] Megida, D. A deep dive into queues in Node.js [online]. June 2020,
[Cited 2022-04-12]. Available from: https://blog.logrocket.com/a-
deep-dive-into-queues-in-node-js

[64] Python Software Foundation. 1. Whetting Your Appetite [online]. April
2022, [Cited 2022-04-12]. Available from: https://docs.python.org/3/
tutorial/appetite.html

[65] Korduba, Y. NodeJS vs Python: Choosing the Best Technology to
Develop Back-End of Your Web App [online]. October 2021, [Cited
2022-04-12]. Available from: https://keenethics.com/blog/nodejs-
vs-python

[66] Potter, J. @nestjs/core vs fastify vs next vs nuxt vs strapi [online]. [Cited
2022-04-12]. Available from: https://www.npmtrends.com/@nestjs/
core-vs-fastify-vs-next-vs-nuxt-vs-strapi

[67] Mysliwiec, K. Documentation [online]. [Cited 2022-03-08]. Available
from: https://docs.nestjs.com

[68] Patel, R. Top Node.js Frameworks to use in 2022 [online].
March 2021, [Cited 2022-03-08]. Available from: https:
//javascript.plainenglish.io/top-node-js-frameworks-to-
use-in-2021-4951ee5940b8

[69] MuleSoft LLC. Types of APIs and how to determine which to
build [online]. 2022, [Cited 2022-04-12]. Available from: https://
www.mulesoft.com/resources/api/types-of-apis

[70] Massé, M. REST API Design Rulebook. Sebastopol: O’Reilly Media,
2012, ISBN 978-144-9310-509.

[71] Gupta, L. What is REST - REST API Tutorial [online]. April 2022,
[Cited 2022-04-12]. Available from: https://restfulapi.net

[72] Scharhag, M. HTTP methods: Idempotency and Safety [on-
line]. February 2020, [Cited 2022-04-12]. Available from: https://
www.mscharhag.com/api-design/http-idempotent-safe

[73] Gupta, L. HTTP Content Negotiation in REST APIs [online].
September 2021, [Cited 2022-03-13]. Available from: https://
restfulapi.net/content-negotiation

115

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick
https://blog.logrocket.com/a-deep-dive-into-queues-in-node-js
https://blog.logrocket.com/a-deep-dive-into-queues-in-node-js
https://docs.python.org/3/tutorial/appetite.html
https://docs.python.org/3/tutorial/appetite.html
https://keenethics.com/blog/nodejs-vs-python
https://keenethics.com/blog/nodejs-vs-python
https://www.npmtrends.com/@nestjs/core-vs-fastify-vs-next-vs-nuxt-vs-strapi
https://www.npmtrends.com/@nestjs/core-vs-fastify-vs-next-vs-nuxt-vs-strapi
https://docs.nestjs.com
https://javascript.plainenglish.io/top-node-js-frameworks-to-use-in-2021-4951ee5940b8
https://javascript.plainenglish.io/top-node-js-frameworks-to-use-in-2021-4951ee5940b8
https://javascript.plainenglish.io/top-node-js-frameworks-to-use-in-2021-4951ee5940b8
https://www.mulesoft.com/resources/api/types-of-apis
https://www.mulesoft.com/resources/api/types-of-apis
https://restfulapi.net
https://www.mscharhag.com/api-design/http-idempotent-safe
https://www.mscharhag.com/api-design/http-idempotent-safe
https://restfulapi.net/content-negotiation
https://restfulapi.net/content-negotiation

Bibliography

[74] Gupta, L. Caching REST API Response [online]. January 2022, [Cited
2022-03-13]. Available from: https://restfulapi.net/content-
negotiation

[75] Gupta, L. HATEOAS Driven REST APIs [online]. October 2021, [Cited
2022-03-13]. Available from: https://restfulapi.net/hateoas

[76] Nottingham, M. RFC 8288 - Web Linking [online]. October 2017,
[Cited 2022-04-13]. Available from: https://datatracker.ietf.org/
doc/html/rfc8288

[77] Gupta, L. REST API Security Essentials [online]. October 2021, [Cited
2022-03-14]. Available from: https://restfulapi.net/security-
essentials

[78] Gupta, L. What is API Versioning in REST? [online]. October
2021, [Cited 2022-03-14]. Available from: https://restfulapi.net/
versioning

[79] Prisma and the GraphQL community. GraphQL vs REST - A
comparison [online]. [Cited 2022-04-14]. Available from: https://
www.howtographql.com/basics/1-graphql-is-the-better-rest

[80] Prisma and the GraphQL community. Learn GraphQL Fundamen-
tals with Fullstack Tutorial [online]. [Cited 2022-04-14]. Available from:
https://www.howtographql.com/basics/0-introduction

[81] The GraphQL Foundation. Introduction to GraphQL [online]. 2022,
[Cited 2022-04-14]. Available from: https://www.howtographql.com/
basics/1-graphql-is-the-better-rest

[82] Facebook, Inc. and GraphQL contributors. GraphQL [online]. October
2021, [Cited 2022-04-14]. Available from: https://spec.graphql.org/
October2021

[83] The GraphQL Foundation. Schemas and Types [online]. 2022, [Cited
2022-04-15]. Available from: https://graphql.org/learn/schema

[84] Prisma and the GraphQL community. GraphQL Core Concepts
Tutorial [online]. [Cited 2022-04-16]. Available from: https://
www.howtographql.com/basics/2-core-concepts

[85] Prisma and the GraphQL community. GraphQL Architecture &
Big Picture [online]. [Cited 2022-04-18]. Available from: https://
www.howtographql.com/basics/3-big-picture

[86] Potter, J. apollo-server vs express-graphql vs mercurius [online]. April
2022, [Cited 2022-04-20]. Available from: https://www.npmtrends.com/
apollo-server-vs-express-graphql-vs-mercurius

116

https://restfulapi.net/content-negotiation
https://restfulapi.net/content-negotiation
https://restfulapi.net/hateoas
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288
https://restfulapi.net/security-essentials
https://restfulapi.net/security-essentials
https://restfulapi.net/versioning
https://restfulapi.net/versioning
https://www.howtographql.com/basics/1-graphql-is-the-better-rest
https://www.howtographql.com/basics/1-graphql-is-the-better-rest
https://www.howtographql.com/basics/0-introduction
https://www.howtographql.com/basics/1-graphql-is-the-better-rest
https://www.howtographql.com/basics/1-graphql-is-the-better-rest
https://spec.graphql.org/October2021
https://spec.graphql.org/October2021
https://graphql.org/learn/schema
https://www.howtographql.com/basics/2-core-concepts
https://www.howtographql.com/basics/2-core-concepts
https://www.howtographql.com/basics/3-big-picture
https://www.howtographql.com/basics/3-big-picture
https://www.npmtrends.com/apollo-server-vs-express-graphql-vs-mercurius
https://www.npmtrends.com/apollo-server-vs-express-graphql-vs-mercurius

Bibliography

[87] The PostgreSQL Global Development Group. PostgreSQL: About
[online]. 2022, [Cited 2022-04-19]. Available from: https://
www.postgresql.org/about

[88] StrongLoop, IBM, and other expressjs.com contributors. Express rout-
ing [online]. 2017, [Cited 2022-04-19]. Available from: https://
expressjs.com/en/guide/routing.html

[89] The GraphQL Foundation. Running an Express GraphQL Server [on-
line]. 2022, [Cited 2022-04-20]. Available from: https://graphql.org/
graphql-js/running-an-express-graphql-server

[90] Apollo Graph Inc. Choosing an Apollo Server package [online]. [Cited
2022-04-20]. Available from: https://www.apollographql.com/docs/
apollo-server/integrations/middleware

[91] Vercel, Inc. and Contributors. API Routes: Introduction [online]. 2022,
[Cited 2022-04-20]. Available from: https://nextjs.org/docs/api-
routes/introduction

[92] Mysliwiec, K. Controllers [online]. [Cited 2022-04-20]. Available from:
https://docs.nestjs.com/controllers

[93] Mysliwiec, K. GraphQL + TypeScript [online]. [Cited 2022-04-20]. Avail-
able from: https://docs.nestjs.com/graphql/quick-start

[94] Mysliwiec, K. Providers [online]. [Cited 2022-04-23]. Available from:
https://docs.nestjs.com/providers

[95] Facebook, Inc. Making a Progressive Web App [online]. 2022, [Cited
2022-04-20]. Available from: https://create-react-app.dev/docs/
making-a-progressive-web-app

[96] Evan You and the team. @vue/cli-plugin-pwa [online]. February 2022,
[Cited 2022-04-21]. Available from: https://cli.vuejs.org/core-
plugins/pwa.html

[97] Prisma and Contributors. What is Prisma? (Overview) [online]. April
2022, [Cited 2022-04-21]. Available from: https://www.prisma.io/
docs/concepts/overview/what-is-prisma

[98] Prisma and Contributors. Schema Prototyping [online]. April 2022,
[Cited 2022-04-27]. Available from: https://www.prisma.io/docs/
concepts/components/prisma-migrate/db-push

[99] Prisma and Contributors. Why Prisma? Comparison with SQL query
builders & ORMs [online]. August 2021, [Cited 2022-04-22]. Available
from: https://www.prisma.io/docs/concepts/overview/why-prisma

117

https://www.postgresql.org/about
https://www.postgresql.org/about
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://graphql.org/graphql-js/running-an-express-graphql-server
https://graphql.org/graphql-js/running-an-express-graphql-server
https://www.apollographql.com/docs/apollo-server/integrations/middleware
https://www.apollographql.com/docs/apollo-server/integrations/middleware
https://nextjs.org/docs/api-routes/introduction
https://nextjs.org/docs/api-routes/introduction
https://docs.nestjs.com/controllers
https://docs.nestjs.com/graphql/quick-start
https://docs.nestjs.com/providers
https://create-react-app.dev/docs/making-a-progressive-web-app
https://create-react-app.dev/docs/making-a-progressive-web-app
https://cli.vuejs.org/core-plugins/pwa.html
https://cli.vuejs.org/core-plugins/pwa.html
https://www.prisma.io/docs/concepts/overview/what-is-prisma
https://www.prisma.io/docs/concepts/overview/what-is-prisma
https://www.prisma.io/docs/concepts/components/prisma-migrate/db-push
https://www.prisma.io/docs/concepts/components/prisma-migrate/db-push
https://www.prisma.io/docs/concepts/overview/why-prisma

Bibliography

[100] Mysliwiec, K. Modules [online]. [Cited 2022-04-23]. Available from:
https://docs.nestjs.com/modules

[101] Mysliwiec, K. GraphQL + TypeScript - Resolvers [online]. [Cited 2022-
04-23]. Available from: https://docs.nestjs.com/graphql/resolvers

[102] Barger, R. How to Manage State in Your React Apps [on-
line]. February 2022, [Cited 2022-04-25]. Available from:
https://www.freecodecamp.org/news/how-to-manage-state-in-
your-react-apps

[103] Meta Platforms, Inc. Lifting State Up [online]. 2022, [Cited 2022-04-25].
Available from: https://reactjs.org/docs/lifting-state-up.html

[104] Mysliwiec, K. Authentication [online]. [Cited 2022-04-27]. Available
from: https://docs.nestjs.com/security/authentication

[105] Mysliwiec, K. Guards [online]. [Cited 2022-04-27]. Available from:
https://docs.nestjs.com/guards

[106] Mozilla and individual contributors. Using Service Work-
ers [online]. April 2022, [Cited 2022-05-02]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/Service_
Worker_API/Using_Service_Workers

[107] Tanner Linsley and Contributors. Quick Start [online]. [Cited 2022-
04-30]. Available from: https://react-query.tanstack.com/quick-
start

[108] Tanner Linsley and Contributors. Queries [online]. [Cited 2022-04-30].
Available from: https://react-query.tanstack.com/guides/queries

[109] Tanner Linsley and Contributors. Mutations [online]. [Cited 2022-
04-30]. Available from: https://react-query.tanstack.com/guides/
mutations

[110] Apollo Graph Inc. Why Apollo Client? [online]. [Cited 2022-04-30].
Available from: https://www.apollographql.com/docs/react/why-
apollo

[111] Apollo Graph Inc. Mutations in Apollo Client [online]. [Cited 2022-
04-30]. Available from: https://www.apollographql.com/docs/react/
data/mutations

[112] Hamilton, T. Unit Testing Tutorial: What is, Types, Tools & Test
EXAMPLE [online]. April 2022, [Cited 2022-05-02]. Available from:
https://www.guru99.com/unit-testing-guide.html

118

https://docs.nestjs.com/modules
https://docs.nestjs.com/graphql/resolvers
https://www.freecodecamp.org/news/how-to-manage-state-in-your-react-apps
https://www.freecodecamp.org/news/how-to-manage-state-in-your-react-apps
https://reactjs.org/docs/lifting-state-up.html
https://docs.nestjs.com/security/authentication
https://docs.nestjs.com/guards
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://react-query.tanstack.com/quick-start
https://react-query.tanstack.com/quick-start
https://react-query.tanstack.com/guides/queries
https://react-query.tanstack.com/guides/mutations
https://react-query.tanstack.com/guides/mutations
https://www.apollographql.com/docs/react/why-apollo
https://www.apollographql.com/docs/react/why-apollo
https://www.apollographql.com/docs/react/data/mutations
https://www.apollographql.com/docs/react/data/mutations
https://www.guru99.com/unit-testing-guide.html

Bibliography

[113] Hamilton, T. Integration Testing: What is, Types, Top Down & Bottom
Up Example [online]. April 2022, [Cited 2022-05-02]. Available from:
https://www.guru99.com/integration-testing.html

[114] Hamilton, T. END-To-END Testing Tutorial: What is E2E Testing with
Example [online]. April 2022, [Cited 2022-05-02]. Available from: https:
//www.guru99.com/end-to-end-testing.html

[115] Mysliwiec, K. Testing [online]. [Cited 2022-05-02]. Available from:
https://docs.nestjs.com/fundamentals/testing

[116] Facebook, Inc. and Contributors. Using Matchers [online]. April 2022,
[Cited 2022-05-02]. Available from: https://jestjs.io/docs/using-
matchers

[117] Facebook, Inc. and Contributors. Setup and Teardown [online]. April
2022, [Cited 2022-05-02]. Available from: https://jestjs.io/docs/
setup-teardown

[118] Facebook, Inc. and Contributors. Mock Functions [online]. April 2022,
[Cited 2022-05-02]. Available from: https://jestjs.io/docs/mock-
functions

119

https://www.guru99.com/integration-testing.html
https://www.guru99.com/end-to-end-testing.html
https://www.guru99.com/end-to-end-testing.html
https://docs.nestjs.com/fundamentals/testing
https://jestjs.io/docs/using-matchers
https://jestjs.io/docs/using-matchers
https://jestjs.io/docs/setup-teardown
https://jestjs.io/docs/setup-teardown
https://jestjs.io/docs/mock-functions
https://jestjs.io/docs/mock-functions

Appendix A
Acronyms

REST Representational State Transfer

PWA Progressive Web Application

CSS Cascading Style Sheets

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

URL Uniform Resource Locator

URI Uniform Resource Identifier

SSR Server-Side Rendering

CSR Client-Side Rendering

MPA Multi-Page Application

SPA Single-Page Application

JS JavaScript

API Application Programming Interface

DOM Document Object Model

UI User Interface

JSX JavaScript XML

JSON JavaScript Object Notation

121

A. Acronyms

OS Operating System

I/O Input/Output

FIFO First In, First Out

TCP Transmission Control Protocol

TLS Transport Layer Security

SEO Search Engine Optimization

RPC Remote Procedure Call

CRUD Create, Read, Update, Delete

MDN Mozilla Developer Network

HATEOAS Hypermedia as the Engine of Application State

SDL Schema Definition Language

CLI Command Line Interface

SQL Structured Query Language

ORM Object-Relational Mapping

MVC Model-view-controller

DTO Data Transfer Object

OOP Object Oriented Programming

JWT JSON Web Token

DRY Don’t Repeat Yourself

122

Appendix B
Contents of CD

readme.txt.........................the file with CD contents description
src...the directory of source codes

implementation implementation source codes
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf........................the Diploma thesis in PDF format

123

	Introduction
	The Goal of This Thesis

	Theoretical Analysis
	Web Applications and Websites
	Client-Server Model
	Types of Web Applications
	JavaScript
	Client-Side Web Development
	Progressive Web Applications
	Server-Side Web Development
	REST
	GraphQL
	Chapter Summary

	Design
	Functional Requirements
	Non-Functional Requirements
	Domain Model
	Overall Architecture
	Technologies
	Server
	REST Client
	GraphQL Client
	Chapter Summary

	Implementation
	Docker Setup
	PostgreSQL Service
	Database Initialization
	Server
	REST Client
	GraphQL Client
	Chapter Summary

	Testing
	Types of Automated Tests
	Testing the Nest Server
	Testing the REST Client
	Chapter Summary

	Evaluation
	Server
	REST API
	GraphQL API
	Clients

	Conclusion
	Bibliography
	Acronyms
	Contents of CD

