
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Open-Source Instant Messaging Platform using Microservices

Bc. Vladyslav Volodin

Ing. Marek Suchánek

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

Secured and private communication between people through the Internet always

depends on the trustworthiness of the service provider. This thesis should design and

implement an open-source instant messaging (IM) platform that will be possible to

deploy on-premise and adjust security mechanisms.

- Analyse the main security mechanisms related to IM.

- Briefly research the currently widely-used solutions for IM (security as well as other

features).

- Set the requirements for the solution and describe use cases to fulfil them.

- Design the solution using a microservices architecture. The architecture must support

scalability and extensions (e.g. new security mechanisms, chatbots, or other sendable

content).

- Implement the solution based on the design in Go programming language. Briefly

describe other selected technologies and justify the choice.

- Document, test, and evaluate the overall solution.

Electronically approved by Ing. Michal Valenta, Ph.D. on 27 August 2021 in Prague.

Master’s thesis

Open-Source Instant Messaging Platform
using Microservices

Bc. Vladyslav Volodin

Department of Software Engineering
Supervisor: Ing. Marek Suchánek

May 3, 2022

Acknowledgements

I want to thank my supervisor Marek Suchánek for discussing and enhancing
the thesis topic with me and for all the feedback he provided while I was
writing this thesis.

Furthermore, I want to thank my wife, Faina, and my family for all the
support and patience they provided to me during the whole process. They
were always there for me when I needed them and supported me over the years
in all my endeavors. Thank you for being with me during hard times.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 3, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Vladyslav Volodin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Volodin, Vladyslav. Open-Source Instant Messaging Platform using Microser-
vices. Master’s thesis. Czech Technical University in Prague, Faculty of In-
formation Technology, 2022.

Abstrakt

Tato práce je věnována návrhu a implementaci Instant Messaging platformy,
která podporuje škálovatelnost a rozš́ı̌reńı pomoćı architektury mikroslužeb.
Implementace je provedena v programovaćım jazyce Go pro backendové služby
a JavaScript pro frontend. Výstupem této práce je prototyp poskytuj́ıćı základ-
ńı funkce IM a podporuj́ıćı end-to-end šifrované zprávy mezi dvěma účastńıky.

Kĺıčová slova instant messaging, mikroslužby, webová aplikace, Go, chi,
JavaScript, ReactJS, MongoDB

Abstract

This work is devoted to designing and implementing the Instant Messaging
Platform that supports scalability and extensions using the microservices ar-
chitecture. The implementation is done in Go programming language for the
backend services and JavaScript for the frontend. The output of this work is
the prototype providing the essential IM features and supporting the end-to-
end encrypted direct messages between two participants.

Keywords instant messaging, microservices, web application, Go, chi, Java-
Script, ReactJS, MongoDB

vii

Contents

Introduction 1

1 Goals and Structure 3

2 Instant Messaging Platforms 5
2.1 Importance of IM Platforms . 5
2.2 Networking Models . 6

2.2.1 Client-Server . 6
2.2.2 Peer-to-Peer . 7

3 Security and Privacy in IM 9
3.1 Security . 9

3.1.1 Security Mechanisms . 10
3.1.1.1 SSL/TLS Encryption 10
3.1.1.2 Storing the Passwords 11
3.1.1.3 End-to-End Encryption 11

3.2 Privacy . 12
3.2.1 Personal Information . 12

3.2.1.1 Personally Identifiable Information 12
3.2.1.2 Personal Data 14

3.3 Open Source . 14

4 Existing IM Platforms 17
4.1 Popularity . 17
4.2 WhatsApp . 17

4.2.1 Platforms . 18
4.2.2 Features . 19

4.3 Telegram . 20
4.3.1 Platforms . 20
4.3.2 Features . 21

ix

4.4 Signal . 22
4.4.1 Platforms . 22
4.4.2 Features . 23

4.5 Slack . 24
4.5.1 Platforms . 24
4.5.2 Features . 25

5 Analysis and Design 27
5.1 Requirements Analysis . 27

5.1.1 Functional Requirements 27
5.1.2 Non-Functional Requirements 28

5.2 Use Cases . 29
5.3 Architecture . 30

5.3.1 Users Service . 32
5.3.2 Chat Service . 33
5.3.3 Delivery Service . 33

5.4 User Interface . 34

6 Implementation 37
6.1 Technologies . 37

6.1.1 Go Chi . 37
6.1.2 MongoDB and Mongo Driver 38
6.1.3 JSON Web Tokens . 38
6.1.4 Bcrypt . 38
6.1.5 ReactJS . 39
6.1.6 Other Technologies . 39

6.2 Containers . 39
6.2.1 Users Service . 40
6.2.2 Chat Service . 42
6.2.3 Delivery Service . 43

6.3 Shared Library . 44
6.3.1 Logging . 44
6.3.2 Tokens Authentication 45
6.3.3 Passwords Hashing . 48
6.3.4 Referencing the Shared Library 49

6.4 Users Service . 49
6.4.1 Database . 49
6.4.2 Starting the Web Server 50
6.4.3 Handling the Requests 51

6.5 Chat Service . 53
6.5.1 Database . 53
6.5.2 Starting the Web Server 55
6.5.3 Sending the Initial Message 57

6.6 Delivery Service . 60

x

6.7 Testing . 63
6.8 Web Application Prototype . 64

6.8.1 Router . 65
6.8.2 Requests Sending . 65
6.8.3 End-to-End Encryption 66
6.8.4 User Interface . 68

6.9 Documentation . 68

7 Evaluation 73
7.1 IM Platform Evaluation . 73
7.2 Possible Future Steps . 74

Conclusion 75

Bibliography 77

A Acronyms 83

B Contents of enclosed SD card 85

xi

List of Figures

2.1 Client-Server model illustration [1] 6

3.1 Man-in-the-middle attack illustration [2] 11

4.1 Ranking of selected Instant Messaging Platforms [3] 18
4.2 WhatsApp application UI [4] . 19
4.3 Telegram application UI [5] . 21
4.4 Signal application UI [6] . 23
4.5 Slack application UI [7] . 24

5.1 Use Cases diagram . 31
5.2 Architecture diagram . 32
5.3 Model of the Users Service . 33
5.4 Model of the Chat Service . 34
5.5 Main page UI wireframe . 35
5.6 Login page UI wireframe . 35

6.1 Postman [8] . 64
6.2 Welcome screen . 69
6.3 Bad credentials alert . 69
6.4 Using the search field to start the conversation 70
6.5 New conversation screen . 70
6.6 Sending the initial message . 71
6.7 Receiving the new message . 71
6.8 Successful conversation after the initial message received 72

xiii

Listings

6.1 Users Service Dockerfile . 40
6.2 Users Service docker-compose.yml 41
6.3 Chat Service docker-compose.yml 42
6.4 Delivery Service docker-compose.yml 43
6.5 Logging implementation . 44
6.6 TokensProvider abstraction . 45
6.7 JwtTokensProvider structure 45
6.8 JwtTokensProvider’s GenerateTokens function 46
6.9 JwtTokensProvider’s Verify function 47
6.10 Tokens middleware . 47
6.11 HashingProvider interface . 48
6.12 BcryptHashingProvider implementation 48
6.13 Shared Library reference in go.mod file 49
6.14 Users Service mongo-init.js . 49
6.15 Users Service User structure . 49
6.16 Creating the UsersHandler . 50
6.17 Creating and starting the Users Service router 51
6.18 UsersHandler Register function 52
6.19 UsersMongoService Register function 52
6.20 Chat Service mongo-init.js . 54
6.21 Chat Service User entity . 54
6.22 Chat Service Private Conversation entity 55
6.23 Chat Service Private Message entity 55
6.24 Creating the Chat Service handlers 56
6.25 Chat Service routes . 56
6.26 Chat Service send initial message handler 57
6.27 Chat Service PrivateMessagesMongoService SendInitial function 58
6.28 Chat Service DeliveryService logic 59
6.29 Delivery Service Routes . 60
6.30 Delivery Service SSEHandler implementation 61

xv

6.31 Delivery Service UserDevices service 62
6.32 JwtTokensProvider Unit Test 63
6.33 Application navigation . 65
6.34 Function for POST requests sending 65
6.35 Shared key logic functions . 66
6.36 Encrypt and decrypt message functions 67

xvi

Introduction

Communication is one of the most necessary parts of a human’s life. Every
day we communicate, discuss, and interoperate using the natural language to
achieve our career goals or stay in touch with people close to us.

Instant Messaging helps people living in different parts of the globe stay
connected for personal and business purposes. So, nowadays, thanks to it,
there is no need to overuse business trips in most cases. Moreover, families
can stay in touch even when living in different parts of the planet.

There are privacy and security concerns related to Instant Messaging and
ways to prevent them. Because of that, it is crucial to have Instant Messaging
platforms compliant with them and make it easy to prove this compliance.

Because such services are essential for people across the globe, they need to
be highly available and quickly scalable on demand. The ease of maintenance
and extending is essential as well to be able to react to frequently changing
security requirements and possible leaks.

The output of this thesis will be beneficial as a service implementing se-
curity and privacy mechanisms for users who care about it.

1

Chapter 1
Goals and Structure

This thesis aims to design and implement a scalable, reliable, and extendable
Instant Messaging Web Service that will be possible to deploy on-premise and
adjust security mechanisms.

It is needed to analyze the primary security mechanisms related to In-
stant Messaging, briefly research the currently widely-used solutions for IM,
including the security mechanisms used there.

It is necessary to set the requirements for the service and describe use
cases to fulfill them.

The author will design the service using the microservices architecture to
support scalability and extensions like new security mechanisms, chatbots, or
other sendable content.

The other goal is to implement the solution based on the design in the Go
programming language and briefly describe other selected technologies and
justify the choice.

Another important topic is to document, test, and evaluate the solution
according to requirements.

The first part of the thesis describes and analyzes Instant Messaging Plat-
forms and general technologies and approaches they use. The next analyzes
the security, privacy, and security mechanisms related to Instant Messaging.
The following part is the research of existing widely-used solutions. The next
is the analysis and design of an Instant Messaging service, which will be the
output of this thesis. After that, the thesis will describe the implementation of
the solution, testing, documentation; and will justify the technologies choice.
The final part of the thesis is the evaluation of the implemented platform.

3

Chapter 2
Instant Messaging Platforms

Instant Messaging, in general, refers to text-based, real-time communication
carried out between two or more people over a digital network. [9]

Nowadays, Instant Messaging Platforms have an unbelievable amount of
monthly active users. When we calculate a sum for the most popular ones like
WhatsApp [10], WeChat [11], Facebook Messenger [12], QQ [13], Snapchat [14],
and Telegram [15], we will get 5.9 billion users as of January 2022. And the
leader is WhatsApp, with its 2 billion monthly active users. [3]

Given that fact, we can conclude that the IM platforms are highly de-
manded and crucial for people all over the globe. Obviously, with such an
amount of monthly active users, the system that serves requests should be
easily scalable and optimized. This chapter describes the Instant Messaging
Platforms and standard technologies used to make them reliable and possible
to exist.

2.1 Importance of IM Platforms

Instant Messaging Platforms found their usage not only in personal lives.
During the last 30 years, after it developed in the 1990s, the IM Platforms
became a standard for communication inside organizations over the globe.
One of the reasons for such success is the possibility to communicate with
clients and colleagues quickly, privately, and on the fly. One of the other
essential features is that people can use Instant Messaging systems to talk to
their families, friends, co-workers, meet new people, build relationships, join
discussions and chat rooms by their interests, hobbies, etc. In this way, people
can talk to anyone in the world. [9]

5

2. Instant Messaging Platforms

2.2 Networking Models

Networking models’ purpose is to connect computers over a network. The
most popular models are client-server and peer-to-peer. [16]

2.2.1 Client-Server

The client-server model idea is the relationship of so-called clients and servers.
The client is the computer that requests the information, and the server is the
computer that serves such requests and sends the response to the client with
the requested information, as you can see in figure 2.1. [16]

Figure 2.1: Client-Server model illustration [1]

According to Ajay Sarangam [17], the client-server architecture has the
following advantages and disadvantages:

Advantages

• The data is centralized within the system that is maintained in a single
place.

• The model is efficient in delivering resources to the client and also re-
quires low-cost maintenance.

• It is easy to manage, and the data can be easily delivered to the client.

• As the data is centralized, this system is more secure and serves added
security to the data.

• Within this type of model, more clients and servers can be embedded
into the server, which makes the performance outstanding and increases
the model’s overall flexibility.

6

2.2. Networking Models

Disadvantages

• Clients’ systems can get a virus or any malicious scripts if any are run-
ning on the server.

• Extra security must be added so that the data does not get spoofed in
between the transmission.

• The main problem can be server down. When the server is down, the
client loses its connection and will not access the data.

2.2.2 Peer-to-Peer

In a Peer-to-Peer network, there is no centralized provider like the server
responsible for delivering the content. All participants store some data, and
communication happens directly between all participants, so-called peers [16].
So, in terms of Instant Messaging, it is advantageous since the sender and
recipient will not worry about some server storing and processing their data.
But this should be implemented with End-to-End encryption because sending
the messages in plain text is not secure — more about this in Chapter 3 which
focuses on security and privacy aspects.

Shane Avron defined the advantages and disadvantages of Peer-to-Peer
networks [18]. The following list is the version adapted for Instant Messaging
Platform usage:

Advantages

• Low latency — With low latency come better response times and shorter
waiting times between requests. The length of the connection path that
is between peers is reduced, making the network more efficient by elim-
inating redundant steps on the way towards the final destination.

• High bandwidth — A peer-to-peer network provides you with high band-
width, so there is no need for central servers to provision resources.

• Low cost — Due to the fact that there is no central server in a peer-
to-peer network, each peer is responsible for storing and sending the
requested information. There are no fees charged by the server that is
hosting the application.

• Decentralization — In a client-server architecture, the company that
owns the server controls its users. It can monitor user activity and
delete information. That is not the case when it comes to peer-to-peer
networks, which let users control their own data.

7

Chapter 3
Security and Privacy in IM

Privacy and security have become extremely important and valuable nowadays
thanks to the spreading of Information Technologies, and it is becoming an
essential part of a human being. The proper handling and usage of data are
critical nowadays. Experienced hackers make numerous cyberattacks, but it
is not the only risk for personal data. Many leaks are happening because
of inappropriate usage and storing of data. Alternatively, companies owning
free-to-use services with poor privacy policies and trading with personal data
are the other problem. This chapter will describe the Security and Privacy in
Instant Messaging Platforms and cover some mechanisms for achieving it.

3.1 Security

According to Collins dictionary, security refers to all the measures taken to
protect a place or ensure that only people with permission enter it or leave
it ‘[19]. In terms of Instant Messaging, the secure messaging system should
control the access to the messages and any other personal information users
send to each other to prevent unauthorized access. The ideal state is when only
the sender and recipient can access the message content and metadata. For
example, we can achieve it by using peer-to-peer technology and end-to-end
encryption, which will be covered later in this chapter. However, both bring a
certain level of complexity and inconvenience for users who use or want to use
more than one device for participating in communications. The ideal product
in terms of security contradicts the ideal product in terms of usability. That
is why designing and implementing an Instant Messaging Platform is mostly
about finding the acceptable trade-off between a sufficient level of security and
a user-friendly application.

No one wants their private communication to become public. All peo-
ple have their reasons for that. Private business communication between top
management about the brand new feature or product should not leak to third
parties or hackers for apparent reasons — it is the situation when the company

9

3. Security and Privacy in IM

probably loses its money, reputation, and leadership on the market. Even if
industrial espionage does not sound like a problem for full-time employees
or families, there are still cases when the leaked data may harm them. For
example, when the person is sharing their billing information, addresses, and
vacation plans, the leak may potentially harm them, the people close to them,
or their property. Another example — is sharing with the family the plans to
change the employer for some complicated reasons. The leak of this commu-
nication may harm the company and them directly because of the contract,
including the non-disclosure part.

There is a wide range of mechanisms to secure the product, whether it is
a web service, platform native application, or web application aggregating the
data from third parties. Next, it is crucial to cover some of them applicable
for Instant Messaging Platforms and will be used in implementation later.

3.1.1 Security Mechanisms

The Instant Messaging systems store personal information and act with it.
Examples of such information are email addresses, phone numbers, passwords,
full names, messages content, and attachments. The easiest recommended and
the most common way to secure such information is encryption of the data
and the channel used to transfer it. [20]

3.1.1.1 SSL/TLS Encryption

Initially, the network data were transferred as plain text, allowing everyone
to inspect the content. SSL inventors created it to correct this problem and
protect user privacy. [21]

SSL (Secure Sockets Layers) and TLS (Transport Layer Security) are cryp-
tographic protocols to secure the data-transferring channel. They provide au-
thentication and data encryption between servers, machines, and applications
operating over the network (client-server architecture). Both SSL 2.0 and 3.0
are deprecated, and there are many discovered vulnerabilities. However, since
the TLS protocol is based on SSL and replaced it, there are still some people
who accidentally refer to the TLS protocol as “SSL.” [22]

TLS encrypts all the data transmitted across the web. So, anyone who
tries to read the content can see only the meaningless symbols unless they
have the key for decryption. In addition, it provides authentication through
the handshake and the data integrity, verifying that no one modified the data
during the transportation. [21]

3.1.1.1.1 Man-in-the-Middle attack The widely known attack is the
man-in-the-middle attack, where the malefactors position themselves in a con-
versation between the participants, as displayed in figure 3.1, and read all the
content sent between them to still their personal information [2]. In terms

10

3.1. Security

of the encrypted connection, the user connects to the malefactor’s server and
establishes the secured connection, thinking it is the original server. Thanks
to the SSL/TLS authentication through the handshake using the certificate
issued by the trusted Certificate Authority, the TLS protocol is resistant to
this attack. [23]

Figure 3.1: Man-in-the-middle attack illustration [2]

3.1.1.2 Storing the Passwords

All Instant Messaging systems have some authentication. The implementation
often relies on the phone number and one-time codes sent via SMS. Another
possible way to authenticate the user is to rely on the pair username/email
and password. There is a requirement for services storing user passwords to
store them securely. Storing them in plain text is not an acceptable option.
The commonly used mechanism combines hashing and salting the passwords
to complicate the cracking.

3.1.1.2.1 Hashing Hashing is the process of applying the one-way hash-
ing function to generate a hash value. The application then stores this value
instead of the original password and, during the authentication process, hashes
the value that is coming from the user and compares two hashes. [24]

3.1.1.2.2 Salting Salting is a concept widely used with hashing to add an
additional layer of security to hashing process, especially against brute-force
attacks. Essentially, salt is a unique value that can be added to the end of the
password to create a different hash value. [24]

3.1.1.3 End-to-End Encryption

End-to-end encryption guarantees a secure data exchange between two end-
points [20]. In terms of Instant Messaging Platforms, only the sender and the

11

3. Security and Privacy in IM

recipient may access the sending message and its content.
For example, with Open Whisper System’s Signal Protocol [25], in order to

send the encrypted message, the sender should first get the recipient’s public
keys and combine them with their private keys to generate the shared master
key. Then the sender sends the message encrypted with this shared key to the
recipient. After receiving the message, the recipient does the same work —
gets the sender’s public keys and combining them with their private keys
generates the same shared master key and decrypts the message. Participants
continue to use this master key for communication between them. This process
is possible using an extended version of the Diffie-Hellman key exchange. [26]

3.2 Privacy

Privacy is a human right that Warren and Brandeis described in 1890 as the
right of the individual to be free from intrusion [27]. Later in 1983, Stone et al.
defined informational privacy as “The ability of the individual to personally
control information about one’s self.” [28]

“The Internet is the primary environment for informational privacy, as this
is where most information is transferred, collected, and stored.” [29]

In order to protect users’ privacy on the internet, specific legislations such
as the California Consumer Privacy Act (CCPA) and the General Data Pro-
tection Regulation (GDPR) have been undertaken [29]. So, every company
that does business in California or has users from California should follow
the rules of CCPA. A similar situation is for European Union countries and
GDPR.

As mentioned in Security 3.1 section, the examples of information the
Instant Messaging platform operates with are email addresses, phone numbers,
passwords, full names, messages content, and attachments. Also, we need
some classification to address this data and find the best strategy to ensure
that users’ privacy is secure and we use the personal data the proper way.

3.2.1 Personal Information

There are two different classifications of data that often confuse companies
that collect users’ data — personally identifiable information (PII) and per-
sonal data. The United States uses PII, but there is no legal document that
defines it. However, personal data has the legal meaning defined by GDPR,
and European Union accepted it as law. [30]

3.2.1.1 Personally Identifiable Information

Even when Personally identifiable information is not defined in any legal doc-
ument [30], the United States Government Accountability Office provided a

12

3.2. Privacy

well-describing definition of PII for purposes of their report — “Any informa-
tion about an individual maintained by an agency, including (1) any informa-
tion that can be used to distinguish or trace an individual’s identity, such as
name, social security number, date and place of birth, mother‘s maiden name,
or biometric records; and (2) any other information that is linked or linkable
to an individual, such as medical, educational, financial, and employment in-
formation.” [31]

3.2.1.1.1 Linked and Linkable Information PII consists of linked and
linkable information. Both kinds are essential, and the system should manip-
ulate them properly without allowing unauthorized access.

Linked information is the information directly associated with the individ-
ual and makes it possible to identify them [30]. For example:

• Full name;

• Home address;

• Social security number;

• Credit card number;

• Date of birth;

• IP or MAC address;

• Cookies.

Linkable information is not enough to identify a person’s identity, but
combining it with other information can identify them [30]. For example:

• Common first or last name;

• Country, state, city;

• Gender;

• Race;

• Job position;

• Non-specific age (e.g., 30–40 instead of 30).

13

3. Security and Privacy in IM

3.2.1.2 Personal Data

Personal data is a legal term, and according to the definition coming from
GDPR, it “means any information relating to an identified or identifiable
natural person (‘data subject’); an identifiable natural person is one who can
be identified, directly or indirectly, in particular by reference to an identifier
such as a name, an identification number, location data, an online identifier or
to one or more factors specific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural person.” [32]

Besides the most prominent examples from linked and linkable informa-
tion, the definition of personal data covers even such information as: [30]

• transaction history,

• browser history,

• posts on social media.

3.3 Open Source

Implementing the Instant Messaging Platform according to the last security
best practices and recent law regulations is not enough to make the customers
sure that the service respects their security and privacy. Customers’ trust
is essential for every service. One of the most effective ways to convince
customers and build trust is to make the code base Open Source. With such
an approach, everyone can look at the implementation and check all security
mechanisms and approaches used in the implementation.

According to Rad Hat, open source software is the code designed to be
publicly accessible, so anyone can read it, make any modifications, and dis-
tribute it. [33]

The Open Source Initiative provides a more concrete definition of open
source, accessible on its website. According to it, open source does not just
mean access to the source code by any individual, it defines that the distribu-
tion of the open source software must comply with the following criteria: [34]

1. Free redistribution.

2. The program must include the source code.

3. The license must allow modifications and derived works.

4. Integrity of the author’s source code.

5. No discrimination against persons or groups.

6. No discrimination against fields of endeavor.

14

3.3. Open Source

7. The rights attached to the program must apply to all to whom the
program is redistributed.

8. License must not be specific to a product.

9. License must not restrict other software.

10. License must be technology-neutral.

15

Chapter 4
Existing IM Platforms

There are a lot of solutions implementing the Instant Messaging platforms
on the market. All of them have different purposes, advantages, and dis-
advantages. This chapter will cover some of them, including the security
mechanisms.

4.1 Popularity

According to the statistics from DataReportal [3] already mentioned in Chap-
ter 2, we can draw chart 4.1 comparing the popularity of the most popular
IM Platforms as of January 2022.

As you can see, WhatsApp [10] is the most popular platform. It is 63.15 %
more popular than the Chinese IM platform WeChat [11], more than two times
more significant than the Facebook messenger [12], and almost four times more
popular than other mentioned services.

For this thesis, the author chose the following implementations:

• WhatsApp [10] — the most popular IM platform;

• Telegram [15] — extensible and, according to its pages — private and
secure;

• Signal [35] — combines both security and privacy on a high level [36];

• Slack [37] — an example of a business solution for Instant Messaging
designed for communication inside a company;

The following sections will cover them in more detail.

4.2 WhatsApp

WhatsApp is the Instant Messaging platform created by Brian Acton and
Jan Koum and initially released in January 2009 without the Instant Messag-

17

4. Existing IM Platforms

Global active users (millions)

WhatsApp

WeChat

FB Messenger

QQ

Snapchat

Telegram

0 500 1000 1500 2000

Figure 4.1: Ranking of selected Instant Messaging Platforms [3]

ing features, which were a part of future releases. Later in February 2014,
Facebook acquired WhatsApp for 19 billion US dollars. [38]

But later, after the acquisition, on February 8th, 2021, WhatsApp an-
nounced the change in its terms of service and privacy policy. The biggest
concern was about how the company processes the user data. More specifically,
WhatsApp can use Facebook hosted services to store and manage chats and
partner with Facebook to integrate itself into Facebook Company Products.
This change allows WhatsApp to share users’ information like registration,
phone numbers, transaction data, interactions, IP addresses, and similar with
other Facebook companies. This data usage violates the GDPR, so this change
does not apply to EU countries. Another important fact is that if the user
does not want to accept such policies, WhatsApp will make their accounts
inaccessible. [39]

In figure 4.2 you can see the application UI. The view is separated into two
columns: the left one with chats and the right one with chat messages. At the
bottom of the messages view, there is a place for typing a message. And at the
top, there is information about the open chat. This layout is typical for most
Instant Messaging platforms, and as you will see in other implementations, all
applications are similar in this sense.

4.2.1 Platforms

As of April 3rd, 2022, WhatsApp supports the following platforms [4]:

18

4.2. WhatsApp

Figure 4.2: WhatsApp application UI [4]

• iPhone,

• Android,

• macOS,

• Windows,

• Web.

Unfortunately, there is no solution for iPad or Linux, so users need to use a
Web application. There are some third-party implementations of WhatsApp
clients. However, using them is forbidden by the company, and the account
may be permanently banned. [40]

4.2.2 Features

Previously, WhatsApp did not support having independent devices except the
user’s mobile phone. The user was able to connect their devices to the mobile
phone using a QR code and communicate through it. However, when the
phone went offline, the user was forced to do the connection procedure again.
But later, in July 2021, the company started beta testing to support multiple
devices fully, and it works now. [41] [42]

19

4. Existing IM Platforms

Nevertheless, it still has some limitations. For example, the “linked device”
will be logged out if the user does not use their phone for more than 14 days.
And some other features are not supported on “linked devices” as of April
3rd, 2022: [42]

• Clearing or deleting chats if the primary device is an iPhone.

• Messaging or calling someone using an old version of WhatsApp on their
phone.

• Viewing live location.

• Creating and viewing broadcast lists.

• Sending messages with link previews from WhatsApp Web.

The set of essential features WhatsApp has that the author considers cru-
cial for a successful Instant Messaging platform is following:

• End-to-end encryption,

• Group chats,

• Support for multiple devices,

• Sharing the different additional content like images, videos, documents,
and similar,

• Voice messages,

• Video and voice calls.

4.3 Telegram

Telegram is the Instant Messaging platform initially launched in 2013 by the
brothers Nikolai and Pavel Durov, who invented the Russian social network
VK in October 2006. In figure 4.3 you can see the application UI.

4.3.1 Platforms

As of April 3rd, 2022, Telegram supports the following platforms [43]:

• iPhone,

• iPad,

• Android,

• macOS,

20

4.3. Telegram

Figure 4.3: Telegram application UI [5]

• Windows,

• Linux,

• Web.

In addition, Telegram designed the Telegram Database Library [44] to
help third-party developers create their custom applications using the Tele-
gram platform. This approach differs from forbidding third-party clients as
WhatsApp has.

4.3.2 Features

Telegram has a wide range of features that make it stand out among competi-
tors:

• Channels — a form of one-way messaging where admins can post mes-
sages for a wider audience,

• Bots — Telegram accounts operated by programs that react to user
messages and commands, accept online payments, and may be helpful
in any other scenarios since the Telegram team provides an API and an
easy way for creating bots,

21

4. Existing IM Platforms

• Telegraph — publishing tool for creating formatted article pages with
embedded media,

• Video and voice calls,

• Voice messages,

• Sync between devices,

• Sharing the different additional content like images, videos, documents,
and similar,

• Open source.

As for personal chats, the situation is not as straightforward as someone
wanted it to be. By default, Telegram saves all communications on its server,
and such chats are not end-to-end encrypted. If the user wants end-to-end
encrypted communication, they need to initiate a so-called Secret chat. With
this approach, the user will have two conversations with the same recipient,
which may be confusing. In addition, the single Secret chat is accessible only
on the devices that initiate it, so there is no access on other devices. As
for advantages, users may easily remove the whole communication and send
self-destructing messages.

4.4 Signal

Signal is an encrypted Instant Messaging platform developed by the non-profit
Signal Foundation and Signal Messenger LLC, initially released on July 29th,
2014. It is a result of merging the RedPhone [45] and TextSecure [46] appli-
cations, and it is known and popular for its security and privacy policy [47].
Signal was the first iOS app that enabled end-to-end encrypted voice calls for
free [48]. In figure 4.4 you can see the application UI.

4.4.1 Platforms

As of April 3rd, 2022, Signal supports the following platforms [6]:

• iPhone,

• iPad,

• Android,

• macOS,

• Windows,

• Linux.

22

4.4. Signal

Figure 4.4: Signal application UI [6]

4.4.2 Features

Signal implements all features essential for the Instant Messaging platform
and does it without ignoring the users’ privacy and security:

• Personal and group chats,

• End-to-end encryption,

• Support for multiple devices,

• Sharing the different additional content like images, videos, documents,
and similar,

• Video and voice calls,

• Voice messages,

• Open source.

Signal does not store users’ messages — after applying the end-to-end
encryption, the client sends the message to the Signal servers, which store it
in queues until all devices receive it. But this may cause unexpected problems
in edge cases. For example, when the person is on vacation, the queue for
their desktop may overflow, resulting in missed messages.

23

4. Existing IM Platforms

4.5 Slack

Slack is a business communication platform developed by Slack Technologies,
initially released in August 2013. Many companies use it to provide conve-
nient and effective communication inside the company and between teams. In
figure 4.5, you can see the application UI.

Figure 4.5: Slack application UI [7]

4.5.1 Platforms

As of April 3rd, 2022, Slack supports the following platforms [49]:

• iPhone,

• iPad,

• Android,

• macOS,

• Windows,

• Linux,

• Web.

24

4.5. Slack

4.5.2 Features

Slack offers many IRC-style features, for instance:

• Persistent chat rooms (channels) organized by topic,

• Private groups,

• Direct messaging,

• Sharing files.

25

Chapter 5
Analysis and Design

In this chapter, the author will go through the requirements and use cases
to fulfill them during the implementation. In addition, the author will de-
sign and present the platform architecture, required entities models for each
service implemented using the micro-service architecture, and design the chat
application User Interface.

5.1 Requirements Analysis

This section aims to gather and formalize the functional and non-functional
requirements for the Instant Messaging Platform implemented in this thesis.
The author will later use the output of this section as the base for defining
the Use Cases.

5.1.1 Functional Requirements

For the implementation of the Instant Messaging Platform prototype, which
is the goal of this thesis, the author considers the following functional require-
ments as the essential ones:

1. Users Search — the user should be able to find other users knowing
their username and initiate the communication with them — the chat
page will provide the field to search for users and the button to create a
new chat next to it.

2. Display the conversations — the application will provide the list of
conversations the user participates in as one of the essential parts of the
UI.

3. Create an account — the new user should be able to create an account
without providing any sensitive or personal information — the user who

27

5. Analysis and Design

is not registered will see only the registration page with only two required
fields — username and password.

4. View the conversation history — the user should be able to access
the conversation history — when scrolling up the conversation history,
the old messages will appear.

5. Real-Time messaging — the user should be able to access the new
messages without the page refresh — all messages sent after the initial
loading of the application will reach the user’s device in real-time.

6. Highlight new messages in conversations — the fact of new mes-
sages reaching the client should be visible on the conversation level —
the application will highlight the conversations containing new messages.

7. Open the conversation — the user should be able to display the
messages related to the concrete conversation — when clicking on the
concreate conversation, the chat with messages will appear.

8. Send the message — the user should be able to send the message to
the selected conversation.

5.1.2 Non-Functional Requirements

Besides the functional requirements that base on features visible to general
users, it is crucial to define the non-functional requirements necessary for the
system.

1. The application should be accessible with the standard Web Browser
using the HTTP protocol.

2. The communication between participants should be end-to-end encrypted.

3. The systems should store only the essential personal information needed
to operate.

4. The application should be reliable and behave smoothly.

5. The application design and architecture should support the possible ex-
tensibility and scalability.

6. The application should use the microservices architecture.

Regarding the personal information item 3, the idea of the Instant Messag-
ing Platform implemented in this thesis is to store only the username, which
may be any value user prefers to use. In this case, the system will not store
emails, phone numbers, real names, or other personal information.

28

5.2. Use Cases

There are the mechanisms such as pagination, limiting the amount of data
sent in each HTTP request and response, using asynchronous calls on the
frontend, and others to achieve reliability and smooth behavior, as mentioned
in item 4. Reaction to the growing number of user requests to maintain
reliability is possible using horizontal scaling, which the thesis does not cover
but designs services to support it

5.2 Use Cases

In this section, the author will describe how users will perform tasks using
the application in so-called use cases. There is only one role — the user who
uses the Instant Messaging Platform. The use cases are based on functional
requirements defined in the previous section. Each of them has the following
short description. The reader can see the Use Cases diagram in figure 5.1.

UC1 Finding other users

• The user will start typing the username in field.
• The user can select the desired recipient from suggestions and click

on it.

UC2 Initiating the communication with the concrete user

• The user will select the desired user (UC1).
• Will click on the adding button located near the search field.

UC3 Display the conversations the user participates in

• The user will open the main application page.
• They can see the conversations on the left side of the screen.

UC4 Create the account without providing any sensitive or personal informa-
tion

• The user who is not registered will open the application, and the
application will redirect them to the authentication page.

• The user will fill username and password.
• The user will click the register button, and the application will

redirect them to the main page.

UC5 Displaying the conversation messages

• The user will click on the conversation located on the left side of
the screen.

• The conversation messages appear on the right side of the screen.

29

5. Analysis and Design

UC6 Accessing the conversation history

• The user will display the conversation messages (UC5).
• The user will scroll up, and old messages will appear when the user

continues to scroll.

UC7 Accessing the new messages for current conversation without refreshing

• All new messages appear at the bottom of the conversation mes-
sages.

• The user needs to scroll down if not at the bottom.

UC8 See new messages on the conversation level

• The conversation on the left side will indicate that the new message
has arrived.

UC9 Accessing the new messages for other conversations without refreshing

• The user will see an indication in the conversations list on the left
side of the screen showing that a new message arrived (UC8).

• The user will click on the conversation and will see new messages.

UC10 Sending the message

• The user will select some conversation (UC5).
• The user will type the message to the field at the bottom of the

chat view.
• The user will click the “Send” button.

5.3 Architecture

To fulfill all functional and non-functional requirements, the author designed
the application with three services — two of them use databases to store the
data, and one without any data store. The reader can see the architecture
diagram displayed in figure 5.2.

The Users Service and Chat Service are stateless services that can quickly
and infinitely scale horizontally without any risk of breaking the application
logic, as in the case of stateful services.

Unlike them, the Delivery Service is stateful. It stores the information
of the connected devices in the in-memory map to deliver real-time messages
to them. However, it does not imply the inability to scale horizontally. The
horizontal scaling only requires the more intelligent sharding approach like,
for example, MongoDB [50] has. So, to make the Delivery Services scale

30

5.3. Architecture

User

Instant Messaging Platform

UC1: Finding other
users

<<include>>

UC7: Accessing the new
messages for current
conversation without

refreshing

<<include>>

UC9: Accessing the new
messages for other

conversations without
refreshing

UC8: See new
messages on the
conversation level

<<include>>

UC6: Accessing the
conversation history

UC5: Displaying the
conversation

messages

UC4: Create the account
without providing any sensitive

or personal information

UC3: Display the
conversations the
user participates in

UC2: Initiating the
communication with
the concrete user

<<include>>

UC10: Sending the
message

Figure 5.1: Use Cases diagram

31

5. Analysis and Design

mongo
DB
 Users Service Chat Service Delivery Service

mongo
DB

Deliver

Connect

Deliver
Real-Time
messages

Client

Figure 5.2: Architecture diagram

horizontally, it is enough to implement the reverse proxy, which will guarantee
to send the requests for a particular user to the same Delivery Service instance
both for Chat Service and Client calls.

Even if the actual horizontal scaling is out of the scope of this thesis, these
facts show that the platform components support it by design and can scale
independently. Thanks to it, the thesis achieved one of its goals.

With this architecture design, the author was trying to separate related
logic to multiple services to split a load of parts with different usage frequen-
cies.

The author will describe the Users Service, Chat Service, and Delivery
Service responsibilities and models in the following subsections.

5.3.1 Users Service

The Users Service is responsible for handling the new users’ registration re-
quests, generating API access tokens, and storing the users’ public keys for
end-to-end encryption purposes by providing the API for registered users to
access them.

Its model is displayed in figure 5.3 and contains only one entity. “User” is
the entity storing the user’s username, password, and public key, as mentioned
before. The thesis will describe the database model in more detail in the
Implementation 6 chapter.

32

5.3. Architecture

User

Id
Username

Password
PublicKey

Figure 5.3: Model of the Users Service

5.3.2 Chat Service

The Chat Service is responsible for all the Instant Messaging Platform opera-
tions and covers the rest of the requirements. It is also responsible for sending
the request to Delivery Service for every new incoming message to provide the
real-time messaging feature. Figure 5.4 displays the Chat Service model. It
is different from the actual database model because of additional fields used
for faster queries and indexes, and the Implementation 6 chapter covers these
details.

The implementation does not use foreign keys or any object or document
references. It deals with three independent collections of documents storing
the values, and the service objects do not use any joins. That is why there
are no references in the Chat Service model.

The User entity stores only the user’s username and a list of conversations
documents with a relatively simple structure: each document contains only
the id and type of the conversation. The current implementation provides
only the private conversation type, which the Implementation 6 chapter also
covers.

The Conversation entity is simple as well. It stores only the list of partic-
ipants’ usernames, so the client can access them when needed using the API
secured by the access token validation.

The Message entity does not define any message structure. It allows the
Client application to fully handle it, use the end-to-end encryption to encrypt
it, and store it on the server since it is also responsible for displaying the
message. That is why the Content field is just an array of bytes. The From
field specifies the sender of the message to retrieve the sender’s public key
from the Users Service to decrypt the shared encryption key provided with
the initial message and display the message author on the Client side. The
last field is the ConversationId used for retrieving the messages for concrete
conversation.

5.3.3 Delivery Service

Delivery Service does not operate with structured data, and its purpose is
clear from this section — delivery of the real-time messages. However, it is

33

5. Analysis and Design

User

Id
Username
Conversations

Conversation

Id
Participants

Message

Id
From
Content
ConversationId

Figure 5.4: Model of the Chat Service

still worth mentioning because of its usage.
Before the client can receive the real-time messages, it needs to register

itself in Delivery-Service and initiate a one-way communication from the De-
livery Service. After that, the Delivery Service sends all messages coming to
this user after getting them from the Chat Service using the endpoint secured
by another short-time access token issued by the Chat Service for its usage.

5.4 User Interface

Figures 5.5 and 5.6 display the wireframes of the User Interface of the appli-
cation main and login pages, which cover mentioned functional requirements.

On the main page, there is a header containing the search field and button
for adding new conversations and the username of the currently logged-in user.
There is a list of conversations the user participates in on the left side, and on
the right side, the messages for the currently selected conversation. There is
a field and the button for sending the message at the bottom of the currently
opened chat.

The login page has only necessary fields for registration - username and
password, as mentioned in the requirements.

34

5.4. User Interface

Chat UsernameSearch field +

Conversation 1

Conversation 2
...

 Type the message here...
 SEND

 Message 1
Username

 Message 2

Username

 Message 3

Companion

Companion

Figure 5.5: Main page UI wireframe

Welcome!

Username

Password

Login Register

Figure 5.6: Login page UI wireframe

35

Chapter 6
Implementation

This chapter will present and describe the implementation of the solution us-
ing the microservices architecture written in the Go programming language.
Furthermore, it will briefly describe the technologies used during the imple-
mentation and justify the choice. This chapter describes the essential parts
of the implementation and does not cover the whole codebase. In order to
explore the source code, please see the attached source files.

6.1 Technologies

6.1.1 Go Chi

When coming to web service implementation, it is essential to decide about
the application’s technology to create the router responsible for routing the
requests to responsible handlers.

According to the official GitHub page, chi [51] is a lightweight, idiomatic
and composable router for building Go HTTP services. It provides an elegant
and comfortable design for writing API servers [52]. The author used the
following modules from the chi project: chi, CORS [53], and render [54].

The chi module provides the tools for creating the router, middleware, and
other essential features for implementing the web service. The CORS module
provides an easy way for enabling the Cross-Origin Resource Sharing requests
for our services to allow the requests from all domains. Finally, the render
package helps manage HTTP request and response payloads, making it more
accessible.

The author chose the go-chi compared to the other alternatives because of
the following key factors [52]:

• Chi is lightweight,

• Chi is fast,

• Chi is 100 % compatible with standard net/http package.

37

6. Implementation

6.1.2 MongoDB and Mongo Driver

The database used for the implementation is MongoDB [50]. It is a document-
oriented database that perfectly suits the primary needs of the implemented
prototype:

• It is schema-less, which implies the possibility to develop the application
fast,

• It is horizontally scalable out-of-the-box thanks to sharding,

• MongoDB is highly available,

• The data model suits the document orientation.

To use it from services written in the Go programming language, the author
used the official MongoDB Go Driver [55], which provides an easy way to call
the MongoDB API for developers familiar with using the official mongo shell
with no complicated abstractions.

6.1.3 JSON Web Tokens

Thanks to the stateless way of authentication and easy usage, the author
decided to use the JWT tokens for authentication and authorization purposes.
For implementing the generation of access and refresh tokens and the tokens
verification, the author used the jwt-go [56] library, which provides the main
needed functionality. The main features are [57]:

• JWT tokens generation,

• JWT tokens parsing and verification,

• Signing of JWT tokens,

• Possibility to add the own custom implementation of the signing algo-
rithm.

6.1.4 Bcrypt

The author decided to use the Bcrypt adaptive hashing algorithm and its
implementation from the Go Cryptography [58] library to store the passwords
securely. The main reasons to choose this algorithm were:

• It incorporates a sault to protect against rainbow table attacks.

• It is an adaptive function that allows increasing the iterations count,
making it resistant to brute-force search attacks but making the algo-
rithm slower.

• The bcrypt function is the default password hash algorithm for OpenBSD. [59]

38

6.2. Containers

6.1.5 ReactJS

ReactJS [60] is an open source library for creating the frontend applications in
the JavaScript programming language, which was developed and is maintained
by Facebook and individual contributors. The key factors that influenced this
technology’s choice are:

• High popularity,

• Virtual DOM,

• Combining the JavaScript and HTML in JSX,

• Making the component easy to use and understand,

• The possibility of the server-side rendering.

6.1.6 Other Technologies

For implementing the User Interface in ReactJS, the author used an open
source components library, PrimeReact [61], providing easy-to-use components
with minimalistic and customizable themes, which allows to speed up the
development by achieving more in less time.

For routing the URLs in a single-page application, the author used the
React Router [62] library, which perfectly suits the React ecosystem and is
one of the most popular solutions [63]. The author also uses it to redirect
all unauthorized requests to the login page and disable the login page for
authorized users.

For the end-to-end encryption, the author used a SubtleCrypto [64] in-
terface of the Web Crypto API that provides several low-level cryptographic
functions because all modern browsers support it.

The author used Docker [65] as the most popular container technology to
create and deploy the backend services. It provides all features needed for
the Instant Messaging Platform prototype implementation. In addition, it
allows to speed up the development process by having multiple instances of
databases running without any conflict on the developer’s machine and easy
management of services.

6.2 Containers

As mentioned in the previous section, the author used Docker containers to
speed up the development, automate the creation and initialization of the
database, and build and start the Go application. This section will describe
the Dockerfiles and docker-compose configurations for backend services.

39

6. Implementation

6.2.1 Users Service

Each service implemented for the Instant Messaging Platform, the output
of this thesis, has its Dockerfile for building the images. Since the logic is
defined on the application level, all three Dockerfiles are made using the same
template, so the thesis describes only the Users Service Dockerfile. Chat
Service and Delivery Service use the modified version, mostly defers in paths
and names. However, the file skeleton stays the same.

1 # syntax = docker / dockerfile :1
2
3 FROM golang :1.18 - alpine
4
5 ENV APP_PATH =/ rchat -users
6 ENV SRC_PATH =/ build/rchat/users/app
7
8 # Update packages
9 RUN apk update -q && \

10 apk add --upgrade apk -tools && \
11 apk upgrade --available
12
13 EXPOSE 8080
14
15 # Create the limited user
16 RUN addgroup -S rchat -users && \
17 adduser -S -G rchat -users rchat -users
18
19 WORKDIR $SRC_PATH
20
21 # Build the application
22 ADD . ./
23 RUN go mod download
24 RUN go build -o $APP_PATH
25
26 # Continue as the limited user
27 RUN chown rchat -users:rchat -users $APP_PATH
28 USER rchat -users
29
30 CMD ${ APP_PATH }

Listing 6.1: Users Service Dockerfile

On listing 6.1, the reader can see the Dockerfile for Users Service. It is rel-
atively simple. Thanks to the FROM instruction, the produced image becomes
based on the official golang Alpine Linux image. It sets the environment vari-
ables that the file later uses for dealing with paths. Their purpose is to define
the paths only once for the whole Dockerfile and reuse them, which reduces
the number of mistakes possible in specifying the same paths multiple times.
Also, it updates the Alpine packages on lines 9–11 to ensure that the image
contains the latest security updates and the container is not outdated. Line
13 uses the EXPOSE instruction to indicate that the application running in the
container is listening for requests on port 8080. The last line related to the

40

6.2. Containers

image configuration is creating the limited user on lines 16–17, which will be
later responsible for running the application. It ensures that the application
does not have root access to the system and reduces possible security risks.

The second part of the file is related to the Go application itself. Using
the WORKDIR instruction on line 19, the file changes the directory where all
commands will execute, adds all files from the service folder to that directory
using the ADD instruction, and finally builds the application on lines 23–24.
After that, it updates the owner of the produced binary to the limited user
created in the first part of the file and, using the USER instruction, sets this
user to execute the rest of the commands in this file. The last line is making
the application run on container start.

Listing 6.2 shows the docker-compose.yml file used for creating and run-
ning the needed containers for Users Service. It defines the database “db” and
the Go application “service” services.

1 version : "3.8"
2 services :
3 db:
4 image: mongo
5 container_name : rchat - usersdb
6 environment :
7 - PUID =1000
8 - PGID =1000
9 volumes :

10 - ./db/ mongodb :/ data/db
11 - ./db/mongo -init.js:/ docker -entrypoint - initdb .d/mongo -init

.js:ro
12 restart : unless - stopped
13
14 service :
15 build:
16 dockerfile : Dockerfile
17 context : app/
18 container_name : rchat -users
19 environment :
20 - RCHAT_DB_URL = mongodb :// rchat - usersdb :27017
21 - RCHAT_JWT_KEY =secret -key
22 ports:
23 - "8080:8080"
24 depends_on :
25 - db
26 restart : unless - stopped

Listing 6.2: Users Service docker-compose.yml

As mentioned previously, the database is MongoDB. The most important
lines are 10–11, which define the volumes for the database container. The first
one maps the db/mongodb directory on the host to the /data/db directory in
the container to make the data stored in the database persistent even when
the container restarts or is deleted. The second one is used for the database

41

6. Implementation

initialization. It uses the mongo-init.js file to create indexes which will be
discussed later.

Then, the docker-compose.yml defines the “service” service. It sets the
build context, the directory containing the application files, and the Dockerfile
in this directory to build the image for the service container. Furthermore,
later on, line 23 maps the host port 8080 to container port 8080, which makes
the application accessible from the host.

Thanks to the docker default networking, the file can provide the container
name as the domain name without exposing the database port to the host. It
does that on line 20 to provide the database URL to the application as the
environment variable. Line 21 provides the secret for JWT tokens in plain
text. Ideally, for production applications, plain text secrets should not be
used since it is a security risk, but creating a shared secret store was out of
the scope of this thesis.

6.2.2 Chat Service

Listing 6.3 shows the docker-compose.yml file used for creating and running
the needed containers for Chat Service. The database service is configured
the same way as for the Users Service. The only differences are in the content
of the mongo-init.js script, which does not affect the docker-compose.yml
file and the chat network. Adding the chat network is required to connect the
Chat Service application with the database. It can not work using the default
networking because the file defines the new network chat-delivery-network
to connect to the Delivery Service. However, the only difference for database
service is lines 13–14.

1 version : "3.8"
2 services :
3 db:
4 image: mongo
5 container_name : rchat - chatdb
6 environment :
7 - PUID =1000
8 - PGID =1000
9 volumes :

10 - ./db/ mongodb :/ data/db
11 - ./db/mongo -init.js:/ docker -entrypoint - initdb .d/mongo -init

.js:ro
12 restart : unless - stopped
13 networks :
14 - chat
15
16 service :
17 build:
18 dockerfile : Dockerfile
19 context : app/
20 container_name : rchat -chat
21 environment :

42

6.2. Containers

22 - RCHAT_DB_URL = mongodb :// rchat - chatdb :27017
23 - RCHAT_JWT_KEY =secret -key
24 - RCHAT_DELIVERY_JWT_KEY =delivery -secret -key
25 ports:
26 - "8081:8080"
27 depends_on :
28 - db
29 restart : unless - stopped
30 networks :
31 - chat
32 - delivery
33
34 networks :
35 chat:
36 name: chat - network
37 delivery :
38 name: chat -delivery - network

Listing 6.3: Chat Service docker-compose.yml

The service is different in networks as well. It connects to the chat and
delivery networks to connect to the database and the Delivery Service for
real-time message delivery. The other differences are another port 8081 on the
host mapped to the 8080 port in the container and the additional JWT key
used for authenticating the delivery requests to Delivery Service to restrict
access to the delivery endpoint only for the Chat Service.

6.2.3 Delivery Service

The delivery service is different because it does not store any data in the
database, so the only defined service displayed on listing 6.4 is the Delivery
Service application itself. It gets both JWT secrets through the environment
variables as the Chat Service. It needs the general JWT key to allow only the
authenticated users to access the connecting endpoint. In addition, it maps
the next available host port 8082 to 8080 port in the container and connects
to the same chat-delivery-network as the Chat Service.

1 version : "3.8"
2 services :
3 service :
4 build:
5 dockerfile : Dockerfile
6 context : app/
7 container_name : rchat - delivery
8 environment :
9 - RCHAT_JWT_KEY =secret -key

10 - RCHAT_DELIVERY_JWT_KEY =delivery -secret -key
11 ports:
12 - "8082:8080"
13 expose :
14 - 8080
15 restart : unless - stopped

43

6. Implementation

16 networks :
17 - delivery
18
19 networks :
20 delivery :
21 name: chat -delivery - network

Listing 6.4: Delivery Service docker-compose.yml

6.3 Shared Library

All three backend services are web applications with JWT tokens authentica-
tion. All of them have some standard parts of code, such as error responses,
logging, token generation, verification and middleware, and hashing, which
the author decided to implement in the shared library for reuse. This section
will describe some of them.

6.3.1 Logging

There was no need for some intelligent logging for the prototype implemented
during this thesis. Hence, the author defined a Logger interface to make the
logging algorithm easily changeable and the ConsoleLogger implementation
for debugging purposes. Listing 6.5 displays both of them.

1 type Logger interface {
2 Info(message string)
3 Warning (message string)
4 Error(message string , err error)
5 }
6
7 type ConsoleLogger struct {}
8
9 func (l * ConsoleLogger) Info(message string) {

10 l.log ("[INFO]", message)
11 }
12
13 func (l * ConsoleLogger) Warning (message string) {
14 l.log ("[WARN]", message)
15 }
16
17 func (l * ConsoleLogger) Error(message string , err error) {
18 if err == nil {
19 l. errorMessage (message)
20 return
21 }
22 l.log ("[ERROR]", fmt. Sprintf ("%s\ nError : ’%s’", message , err.

Error ()))
23 }
24
25 func (l * ConsoleLogger) errorMessage (message string) {

44

6.3. Shared Library

26 l.log ("[ERROR]", message)
27 }
28
29 func (l * ConsoleLogger) log(prefix string , message string) {
30 fmt. Printf ("%s %s\n", prefix , message)
31 }

Listing 6.5: Logging implementation

6.3.2 Tokens Authentication

One of the goals of this thesis was to make the security mechanisms adjustable
and easy to change. That is why the author defined the interface for tokens
authentication that all services use and its implementation, which operates
with JWT tokens.

Listing 6.6 shows the TokensProvider interface with only two functions
— GenerateTokens and Verify, which usage is evident from their signatures.
The current implementation generates access and refresh tokens and provides
a way to verify the access token. In case of the successful verification, it returns
the claims containing only the username needed during the implementation.

1 type Tokens struct {
2 AccessToken string ‘json :" access_token "‘
3 RefreshToken string ‘json :" refresh_token "‘
4 }
5
6 type Claims struct {
7 Username string ‘json :" username "‘
8 }
9

10 type TokensProvider interface {
11 GenerateTokens (username string) (* Tokens , error)
12 Verify (token string) (* Claims , error)
13 }

Listing 6.6: TokensProvider abstraction

Listing 6.7 shows the structure JwtTokensProvider and its creation using
the NewJwtTokensProvider function.

1 type jwtClaims struct {
2 Username string ‘json :" username "‘
3 jwt. StandardClaims
4 }
5
6 type JwtTokensProvider struct {
7 secret string
8 accessTokenTTL time. Duration
9 }

10
11 func NewJwtTokensProvider (secret string , accessTokenTTL time.

Duration) (* JwtTokensProvider , error) {

45

6. Implementation

12 if len(secret) == 0 {
13 return nil , fmt. Errorf (" Empty string is not allowed as a

secret for JWT tokens ")
14 }
15 return & JwtTokensProvider {
16 secret : secret ,
17 accessTokenTTL : accessTokenTTL ,
18 }, nil
19 }

Listing 6.7: JwtTokensProvider structure

The GenerateTokens function displayed on the listing 6.8 creates the ac-
cess token with the provided time to live and the refresh token, valid for seven
days using the jwt-go library and HS256 signing method.

1 func (p * JwtTokensProvider) GenerateTokens (username string) (*
Tokens , error) {

2 accessClaims := & jwtClaims {
3 Username : username ,
4 StandardClaims : jwt. StandardClaims {
5 ExpiresAt : time.Now ().UTC ().Add(p. accessTokenTTL).

Unix (),
6 },
7 }
8 refreshClaims := & jwtClaims {
9 StandardClaims : jwt. StandardClaims {

10 ExpiresAt : time.Now ().UTC ().Add (7 * 24 * time.Hour).
Unix (),

11 },
12 }
13
14 accessToken , err := jwt. NewWithClaims (jwt. SigningMethodHS256 ,

accessClaims). SignedString ([] byte(p. secret))
15 if err != nil {
16 return nil , fmt. Errorf (" Error generating the access token

: %w", err)
17 }
18 refreshToken , err := jwt. NewWithClaims (jwt. SigningMethodHS256

, refreshClaims). SignedString ([] byte(p. secret))
19 if err != nil {
20 return nil , fmt. Errorf (" Error generating the refresh

token: %w", err)
21 }
22
23 return & Tokens { AccessToken : accessToken , RefreshToken :

refreshToken }, nil
24 }

Listing 6.8: JwtTokensProvider’s GenerateTokens function

The Verify function of the JwtTokensProvider structure on listing 6.9
verifies the provided JWT access token and returns the Claims coming from
the interface definition.

46

6.3. Shared Library

1 func (p * JwtTokensProvider) Verify (token string) (* Claims , error)
{

2 claims := & jwtClaims {}
3 tkn , err := jwt. ParseWithClaims (token , claims , func(token *

jwt.Token) (interface {}, error) {
4 return [] byte(p. secret), nil
5 })
6 if err != nil {
7 return nil , err
8 }
9 if !tkn.Valid {

10 return nil , fmt. Errorf (" JWT token is invalid ")
11 }
12 return & Claims { Username : claims . Username }, nil
13 }

Listing 6.9: JwtTokensProvider’s Verify function

The Shared Library also defines the middleware used by the services to
validate the token and add the username to the request context. Its im-
plementation is visible on the listing 6.10, and it supports providing the to-
ken both in the Authorization header using the ‘‘bearer {token}’’ string
and in the query parameter ‘‘?token={token}’’. The implementation of
getHeaderToken and getQueryToken functions is not part of the listing but
is part of the attached source files.

1 type Middleware = func(http. Handler) http. Handler
2
3 func ValidateTokenAndAddUsernameToContext (provider providers .

TokensProvider , logger logger . Logger) Middleware {
4 return func(next http. Handler) http. Handler {
5 return http. HandlerFunc (func(w http. ResponseWriter , r *

http. Request) {
6 token , err := getHeaderToken (r)
7 if err != nil {
8 token , err = getQueryToken (r)
9 if err != nil {

10 logger .Error ("Can ’t get token from header /
query", err)

11 render . Render (w, r, e. Unauthorized)
12 return
13 }
14 }
15 claims , err := provider . Verify (token)
16 if err != nil {
17 logger .Error (" Invalid token", err)
18 render . Render (w, r, e. Unauthorized)
19 return
20 }
21 ctx := context . WithValue (r. Context (),

UsernameContextKey , claims . Username)
22 next. ServeHTTP (w, r. WithContext (ctx))
23 })
24 }

47

6. Implementation

25 }

Listing 6.10: Tokens middleware

6.3.3 Passwords Hashing

Thanks to the interface, the password hashing logic can easily change, like
the tokens authentication. The library defines the simple HashingProvider
interface visible on listing 6.11 with only two methods, Hash and Verify.
In the case of the bcrypt algorithm, it is not enough to hash the received
password and compare the hashes, so the abstraction should also support this
scenario.

1 type HashingProvider interface {
2 Hash(value string) (string , error)
3 Verify (expected string , provided string) error
4 }

Listing 6.11: HashingProvider interface

The bcrypt implementation of the above interface is short because it uses
the bcrypt implementation from the Go Cryptography library. The listing 6.12
shows the BcryptHashingProvider implementation.

1 type BcryptHashingProvider struct {
2 cost int
3 }
4
5 func NewBcryptHashingProvider (cost int) * BcryptHashingProvider {
6 return & BcryptHashingProvider {cost: cost}
7 }
8
9 func (p * BcryptHashingProvider) Hash(value string) (string , error

) {
10 bytes , err := bcrypt . GenerateFromPassword ([] byte(value), p.

cost)
11 if err != nil {
12 return "", err
13 }
14 return string (bytes), nil
15 }
16
17 func (p * BcryptHashingProvider) Verify (expected string , provided

string) error {
18 return bcrypt . CompareHashAndPassword ([] byte(expected), [] byte

(provided))
19 }

Listing 6.12: BcryptHashingProvider implementation

48

6.4. Users Service

6.3.4 Referencing the Shared Library

Since the Shared Library is private, the Go module cannot easily add the de-
pendency using the GitHub URL. That is why each service directory contains
the copy-lib.sh script that copies the library sources to the build/lib/rchat-lib/
directory. The listing 6.13 displays the reference to it in the go.mod file.

1 ...
2 require rchat/lib v1 .0.0
3
4 replace rchat/lib => ./ build/lib/rchat -lib
5 ...

Listing 6.13: Shared Library reference in go.mod file

6.4 Users Service

This section will describe the Users Service implementation details. It will
cover the most critical topics and provide relevant code listings.

6.4.1 Database

As mentioned in the Containers 6.2 section, the author created the script for
initializing the database. The listing 6.14 displays the content of this script.
There is nothing special in its lines. The only important line is line number 5,
which creates the unique index for documents in users collection. Thanks to
it, all queries based on the username will work fast, and we ensure that there
are no users with the same usernames on the database level.

1 db = db. getSiblingDB (’rchat -users ’)
2
3 let res = [
4 db.users.drop (),
5 db.users. createIndex ({ username : 1 }, { unique : true })
6]
7
8 printjson (res)

Listing 6.14: Users Service mongo-init.js

The database state is updated from the Go application directly. This
service does not store much data because it handles only the logic closely
connected to the user. Listing 6.15 shows the User structure, which the service
application uses to manage documents in users collection — all the properties
are strings: the database stores only the username and public key used for end-
to-end encryption. MongoDB generates the id when inserting the document.

1 type User struct {
2 Id string ‘bson :"_id , omitempty " json :"id , omitempty "‘
3 Username string ‘bson :" username " json :" username "‘

49

6. Implementation

4 PublicKey string ‘bson :" public_key " json :" public_key "‘
5 }

Listing 6.15: Users Service User structure

6.4.2 Starting the Web Server

Before creating the chi router, we need to create the dependencies and inject
them into the request handler. Listing 6.16 shows how the app gets environ-
ment variables defined previously in docker-compose.yml, uses its values to
instantiate the JWT implementation of TokensProvider interface, creates the
MongoDB client, and uses them to instantiate the UsersMongoService later
used as the UsersHandler dependency together with the ConsoleLogger.

1 mongoUrl := os. Getenv (" RCHAT_DB_URL ")
2 jwtSecretKey := os. Getenv (" RCHAT_JWT_KEY ")
3
4 jwtTokensProvider , err := providers . NewJwtTokensProvider (

jwtSecretKey , 24* time.Hour)
5 if err != nil {
6 log.Fatal(err)
7 }
8
9 mongoClient , err := db. CreateMongoClient (mongoUrl)

10 if err != nil {
11 log.Fatal(err)
12 }
13
14 usersService := service . NewUsersMongoService (
15 providers . NewBcryptHashingProvider (14) ,
16 jwtTokensProvider ,
17 mongoClient ,
18)
19
20 consoleLogger := & logger . ConsoleLogger {}
21 usersHandler := & handlers . UsersHandler { UsersService : usersService

, Logger : consoleLogger }

Listing 6.16: Creating the UsersHandler

With all dependencies initialized, we can move to creating and config-
uring the chi router. Listing 6.17 shows this process. The application cre-
ates the chi router, sets the default logging middleware for incoming re-
quests that prints the output to the console for debugging purposes, then
sets the ErrorHandlers defined in the Shared Library to return the valid
JSON MethodNotAllowed and NotFound error responses.

Lines 7–14 show the CORS requests’ settings to allow the Web Applica-
tions from different domains to call this service.

Then lines 16–19 define the public routing for login and register requests
to the UsersHandler functions. Next, on lines 20–23, there is the private
endpoint for getting the user’s public key for end-to-end encryption purposes.

50

6.4. Users Service

It uses the ValidateTokenAndAddUsernameToContext middleware defined in
the Shared Library.

Finally, the last lines make the application start and listen for requests on
port 8080.

1 r := chi. NewRouter ()
2 r.Use(middleware . Logger)
3
4 r. MethodNotAllowed (errors . ErrorHandler (errors . MethodNotAllowed))
5 r. NotFound (errors . ErrorHandler (errors . NotFound))
6
7 r.Use(cors. Handler (cors. Options {
8 AllowedOrigins : [] string {" https ://*" , "http ://*"} ,
9 AllowedMethods : [] string {" GET", "POST", "PUT", " DELETE ", "

OPTIONS "},
10 AllowedHeaders : [] string {" Accept ", " Authorization ", "Content -

Type", "X-CSRF -Token "},
11 ExposedHeaders : [] string {" Link "},
12 AllowCredentials : false ,
13 MaxAge : 300,
14 }))
15
16 r.Route ("/ auth", func(r chi. Router) {
17 r.Post ("/ login", usersHandler .Login)
18 r.Post ("/ register ", usersHandler . Register)
19 })
20 r.Route ("/ users", func(r chi. Router) {
21 r.Use(middlewares . ValidateTokenAndAddUsernameToContext (

jwtTokensProvider , consoleLogger))
22 r.Get(fmt. Sprintf ("/{%s}/ public -key", constants .

UsernamePathParam), usersHandler . GetPublicKey)
23 })
24
25 if err := http. ListenAndServe (":8080" , r); err != nil {
26 log.Fatal ("Can ’t start the server .", err)
27 }

Listing 6.17: Creating and starting the Users Service router

6.4.3 Handling the Requests

This subsection will show the example of the request handling flow and will
cover only the registration request. The other logic is a part of the thesis
attachments.

Listing 6.18 shows the implementation of the UsersHandler Register
function. It instantiates the RegisterRequest from the service package that
stores the username, password, and public key using the request JSON body,
calls the Exists function of the UsersService interface, and if the user does
not exist — calls the Register function of the same UsersService. Besides
that, it also handles all errors and returns valid JSON error responses. The
response is only the successful status code and empty JSON body.

51

6. Implementation

1 type UsersHandler struct {
2 UsersService service . UsersService
3 Logger logger . Logger
4 }
5
6 func (h * UsersHandler) Register (w http. ResponseWriter , r *http.

Request) {
7 var registerRequest = & service . RegisterRequest {}
8 if err := render .Bind(r, registerRequest); err != nil {
9 render . Render (w, r, e. BadRequest (err))

10 return
11 }
12
13 exists , err := h. UsersService . Exists (registerRequest . Username

)
14 if err != nil {
15 h. Logger .Error (" Error validating the user existence

before registration ", err)
16 render . Render (w, r, e. InternalServerError)
17 return
18 }
19 if exists {
20 render . Render (w, r, e. BadRequest (fmt. Errorf (" user ’%s’

already exists ", registerRequest . Username)))
21 return
22 }
23
24 if err := h. UsersService . Register (registerRequest); err !=

nil {
25 h. Logger .Error (" Error registering the user", err)
26 render . Render (w, r, e. InternalServerError)
27 return
28 }
29 render . Status (r, http. StatusOK)
30 render . PlainText (w, r, "{}")
31 }

Listing 6.18: UsersHandler Register function

Listing 6.19 shows the UsersMongoService Register function implemen-
tation. Thanks to the UsersService interface, we can have multiple ser-
vice implementations for different data sources. The Register function first
uses the hashProvider to compute the hash for the provided password, then
changes the plain text password value with the hash in the provided request
object and inserts the document into the users collection.

1 type UsersMongoService struct {
2 collection *mongo. Collection
3 hashProvider providers . HashingProvider
4 tokensProvider providers . TokensProvider
5 timeout time. Duration
6 }
7
8 func NewUsersMongoService (

52

6.5. Chat Service

9 hashProvider providers . HashingProvider ,
10 tokensProvider providers . TokensProvider ,
11 mongoClient *mongo.Client ,
12) UsersService {
13 return & UsersMongoService {
14 collection : mongoClient . Database (db. DatabaseName).

Collection (db. UsersCollection),
15 hashProvider : hashProvider ,
16 tokensProvider : tokensProvider ,
17 timeout : 10 * time.Second ,
18 }
19 }
20
21 func (s * UsersMongoService) Register (registerRequest *

RegisterRequest) error {
22 hash , err := s. hashProvider .Hash(registerRequest . Password)
23 if err != nil {
24 return fmt. Errorf (" Error generating the password hash for

registration : %w", err)
25 }
26 registerRequest . Password = hash
27
28 var ctx , cancel = context . WithTimeout (context . Background (), s

. timeout)
29 defer cancel ()
30
31 _, err = s. collection . InsertOne (ctx , registerRequest)
32 return err
33 }

Listing 6.19: UsersMongoService Register function

6.5 Chat Service

6.5.1 Database

The Chat Service database has its script for initializing the database as the
Users Service has. Listing 6.20 shows the content of the mongo-init.js script.
It creates the indexes for all three collections:

• The users collection has a unique index for the username field.

• The privateConversations collection has the unique index for the field
participants hash, used for the faster queries based on the participants
list.

• The messages collection has the index for the conversation id field,
used for all queries that load messages in the application.

53

6. Implementation

1 db = db. getSiblingDB (’rchat -chat ’)
2
3 let res = [
4 db.users.drop (),
5 db.users. createIndex ({ username : 1 }, { unique : true }),
6 db. privateConversations .drop (),
7 db. privateConversations . createIndex ({ participants_hash : 1 },

{ unique : true }),
8 db. messages .drop (),
9 db. messages . createIndex ({ conversation_id : 1 })

10]
11
12 printjson (res)

Listing 6.20: Chat Service mongo-init.js

The model of the Chat Service is more complicated than the Users Service
has. It currently supports only direct messages, but it is designed to support
extensibility, group chats, chatbots, channels, and other possible extensions.
The first entity shown on listing 6.21 is the User entity. It stores the username
and the list of conversations the user participates in. The conversation, in this
case, stores only the id of the conversation from the privateConversations
collection and the type, which is the enum currently having only one possi-
ble value — PrivateConversationType, which represents the conversation
between two participants.

1 type User struct {
2 Id string ‘bson :"_id , omitempty " json :"

id , omitempty "‘
3 Username string ‘bson :" username " json :"

username "‘
4 Conversations [] UserConversation ‘bson :" conversations " json :"

conversations "‘
5 }
6
7 type UserConversation struct {
8 Id string ‘bson :"_id , omitempty " json :"id ,

omitempty "‘
9 Type ConversationType ‘bson :" type" json :" type"‘

10 }
11
12 type ConversationType int
13
14 const (
15 PrivateConversationType ConversationType = iota
16)

Listing 6.21: Chat Service User entity

The following entity represents the conversation. The Conversation struct
shown on listing 6.22 is standard for all possible conversation types. The
PrivateConversation extends this Conversation for direct messages and

54

6.5. Chat Service

contains the ParticipantsHash field for making the queries faster when ini-
tializing the new conversation.

1 type Conversation struct {
2 Id string ‘bson :"_id , omitempty " json :"id ,

omitempty "‘
3 Participants [] string ‘bson :" participants " json :" participants

"‘
4 }
5
6 type PrivateConversation struct {
7 Conversation ‘bson :", inline "‘
8 ParticipantsHash string ‘bson :" participants_hash " json :"-"‘
9 }

Listing 6.22: Chat Service Private Conversation entity

The final entity represents the message. It is common for direct and group
messages and may even be used for channels. However, it is vital to use this
structure based on the collection that stores it and provides the mapping to
the corresponding conversations collection. The general message shown on
listing 6.23 defines the standard fields for all possible message types. Fur-
thermore, the Message structure extends it with the ConversationId field
applicable for direct conversations and many possible future extensions.

1 type GeneralMessage struct {
2 Id string ‘bson :"_id , omitempty " json :"id , omitempty "‘
3 From string ‘bson :" from" json :"from , omitempty "‘
4 Content [] byte ‘bson :" content " json :" content "‘
5 }
6
7 type Message struct {
8 GeneralMessage ‘bson :", inline "‘
9 ConversationId string ‘bson :" conversation_id " json :"

conversation_id , omitempty "‘
10 }

Listing 6.23: Chat Service Private Message entity

6.5.2 Starting the Web Server

In many ways, configuring and starting the Web Server for Chat Service is
the same as for Users Service.

Firstly, the chat service has more handlers and uses the Delivery Service
/deliver endpoint, which requires another secret for JWT token signature.
So the application needs to create the DeliveryService, pass it to the mes-
sages services for real-time messages delivery, and instantiate all the handlers
to handle the requests coming from the client. Listing 6.24 displays the whole
straightforward process. All mongo services implement the interfaces, so the
implementation can be easily changed to support another store.

55

6. Implementation

1 mongoUrl := os. Getenv (" RCHAT_DB_URL ")
2 jwtSecretKey := os. Getenv (" RCHAT_JWT_KEY ")
3 deliverySecretKey := os. Getenv (" RCHAT_DELIVERY_JWT_KEY ")
4
5 // -1 ttl because chat service does not issue user access tokens ,

only validates them
6 jwtTokensProvider , err := providers . NewJwtTokensProvider (

jwtSecretKey , -1)
7 if err != nil {
8 log.Fatal(err)
9 }

10
11 consoleLogger := & logger . ConsoleLogger {}
12
13 deliveryService , err := services . NewDeliveryService (" http :// rchat

- delivery :8080/ deliver ", deliverySecretKey , consoleLogger)
14 if err != nil {
15 log.Fatal(err)
16 }
17
18 mongoClient , err := db. CreateMongoClient (mongoUrl)
19 if err != nil {
20 log.Fatal(err)
21 }
22
23 privateMessagesService := service . NewPrivateMessagesMongoService (

mongoClient , deliveryService)
24 privateMessagesHandler := handlers . PrivateMessagesHandler { Service

: privateMessagesService , Logger : consoleLogger }
25
26 messagesService := service . NewMessagesMongoService (mongoClient ,

deliveryService , 15)
27 messagesHandler := handlers . MessagesHandler { Service :

messagesService , Logger : consoleLogger }
28
29 userService := service . NewUserMongoService (mongoClient)
30 userHandler := handlers . UserHandler { Service : userService , Logger :

consoleLogger }
31
32 privateConversationsService := service .

NewPrivateConversationsMongoService (mongoClient)
33 privateConversationsHandler := handlers .

PrivateConversationsHandler { Service :
privateConversationsService , Logger : consoleLogger }

Listing 6.24: Creating the Chat Service handlers

Listing 6.25 shows all the endpoints the Chat Service defines to satisfy
the Instant Messaging Platform requirements defined previously. The Chat
Service does not have any public endpoints and secures them with the same
authentication middleware defined in the Shared Library using the Users Ser-
vice secret key.

1 r.Group(func(r chi. Router) {

56

6.5. Chat Service

2 r.Use(middlewares . ValidateTokenAndAddUsernameToContext (
jwtTokensProvider , consoleLogger))

3 r.Route ("/ users", func(r chi. Router) {
4 r.Get ("/" , userHandler . FindUsers)
5 r.Post ("/ init", userHandler . InitialCall)
6 r.Get ("/ conversations ", userHandler . GetConversations)
7 })
8 r.Route ("/ messages ", func(r chi. Router) {
9 r.Get(fmt. Sprintf ("/ conversation /{%s}", constants .

IdPathParam), messagesHandler . FindForConversation)
10 r.Route ("/ private ", func(r chi. Router) {
11 r.Post ("/" , privateMessagesHandler .Send)
12 r.Post ("/ init", privateMessagesHandler . SendInitial)
13 })
14 })
15 r.Route ("/ conversations ", func(r chi. Router) {
16 r.Route ("/ private ", func(r chi. Router) {
17 r.Route(fmt. Sprintf ("/{%s}", constants . IdPathParam),

func(r chi. Router) {
18 r.Get ("/" , privateConversationsHandler .

GetConversation)
19 r.Get ("/ participants ",

privateConversationsHandler . GetParticipants)
20 })
21 })
22 })
23 })

Listing 6.25: Chat Service routes

6.5.3 Sending the Initial Message

For the request flow demonstration purposes, the author chose the request for
sending the initial message as the most complicated one. In addition, it uses
the delivery service to send a real-time message to the recipient.

The PrivateMessagesHandler SendInitial function shown on listing 6.26
has the same structure as the handlers function in Users Service. It parses
the message body, calls the PrivateMessagesService SendInitial function,
and handles the errors. It returns the message with the id and conversation
id to the client.

1 func (h * PrivateMessagesHandler) SendInitial (w http.
ResponseWriter , r *http. Request) {

2 message := & service . InitialPrivateMessage {}
3 if err := render .Bind(r, message); err != nil {
4 switch err .(type) {
5 case * chatErrors . InvalidMessageError :
6 render . Render (w, r, e. BadRequest (err))
7 return
8 default :

57

6. Implementation

9 h. Logger .Error (" Error creating the
InitialPrivateMessage before sending the initial private
message ", err)

10 render . Render (w, r, e. InternalServerError)
11 return
12 }
13 }
14 msg , err := h. Service . SendInitial (message)
15 if err != nil {
16 switch err .(type) {
17 case * chatErrors . InvalidMessageError :
18 render . Render (w, r, e. BadRequest (err))
19 return
20 default :
21 h. Logger .Error (" Error sending the initial private

message ", err)
22 render . Render (w, r, e. InternalServerError)
23 return
24 }
25 }
26 render .JSON(w, r, msg)
27 }

Listing 6.26: Chat Service send initial message handler

Listing 6.27 shows the PrivateMessagesMongoService SendInitial func-
tion implementation. In the beginning, it validates the user’s existence. After
that, it calls the getPrivateConversationId function, which will check if the
conversation with the recipient exists, and, if not — creates it and returns the
id. After that, it inserts the document into the database. In case of a success-
ful insert, it will deliver the message in real-time using the DeliveryService,
which calls the Delivery Service application. All private helping functions are
not parts of this listing and are parts of the attached source files.

1 func (s * PrivateMessagesMongoService) SendInitial (initMessage *
InitialPrivateMessage) (* store.Message , error) {

2 ctx , cancel := context . WithTimeout (context . Background (), s.
timeout)

3 defer cancel ()
4
5 for _, username := range [] string { initMessage .From ,

initMessage .To} {
6 if err := s. validateUserExists (ctx , username); err != nil

{
7 return nil , err
8 }
9 }

10
11 conversationId , err := s. getPrivateConversationId (ctx ,

initMessage)
12 if err != nil {
13 return nil , err
14 }

58

6.5. Chat Service

15 message := &store. Message {
16 GeneralMessage : store. GeneralMessage {
17 From: initMessage .From ,
18 Content : initMessage .Content ,
19 },
20 ConversationId : conversationId ,
21 }
22 result , err := s. messagesCollection . InsertOne (ctx , message)
23 if err != nil {
24 return nil , err
25 }
26 message .Id = result . InsertedID .(primitive . ObjectID).Hex ()
27
28 s. deliveryService . DeliverInitialMessage (& services .

DeliveryInitialMessage {
29 Message : *message ,
30 SharedKey : initMessage .SharedKey ,
31 }, [] string { initMessage .From , initMessage .To})
32 return message , nil
33 }

Listing 6.27: Chat Service PrivateMessagesMongoService SendInitial function

Listing 6.28 shows the Delivery Service client function responsible for de-
livering the initial message. As the first step, it serializes the message with
the shared encryption key to JSON because the Delivery Service does not
check the content of the message and delivers the message. After that, it pre-
pares the request body with the recipients list in deliver function, creates the
one-time JWT token, and sends the POST request to Delivery Service.

1 type DeliveryRequest struct {
2 Recipients [] string ‘json :" recipients "‘
3 Message string ‘json :" message "‘
4 }
5
6 type DeliveryInitialMessage struct {
7 store. Message
8 SharedKey [] byte ‘json :" shared_key "‘
9 }

10
11 func (s * DeliveryService) DeliverInitialMessage (message *

DeliveryInitialMessage , participants [] string) {
12 messageJson , err := json. Marshal (message)
13 if err != nil {
14 s. logger .Error ("Can ’t convert the message to JSON", err)
15 }
16 s. deliver (messageJson , message .From , participants)
17 }
18
19 func (s * DeliveryService) deliver (messageJson []byte , from string

, participants [] string) {
20 body := & DeliveryRequest {
21 Recipients : getRecipients (from , participants),
22 Message : string (messageJson),

59

6. Implementation

23 }
24 bodyJson , err := json. Marshal (body)
25 if err != nil {
26 s. logger .Error ("Can ’t convert the message to JSON", err)
27 }
28
29 tokens , err := s. tokensProvider . GenerateTokens (from)
30 if err != nil {
31 s. logger .Error ("Can ’t generate the access token for

delivery service ", err)
32 return
33 }
34 request , err := http. NewRequest (" POST", s.uri , bytes.

NewBuffer (bodyJson))
35 if err != nil {
36 s. logger .Error ("Can ’t create the HTTP POST request to

delivery service ", err)
37 return
38 }
39 request . Header .Add (" Authorization ", fmt. Sprintf (" bearer %s",

tokens . AccessToken))
40 _, err = s. httpClient .Do(request)
41 if err != nil {
42 s. logger .Error (" Error sending the delivery request ", err)
43 return
44 }
45 }

Listing 6.28: Chat Service DeliveryService logic

6.6 Delivery Service

Since the Delivery Service is responsible only for delivering the messages, its
configuration does not differ much from the other services.

Listing 6.29 shows the Delivery Service routes. There are two of them,
and the different JWT signing secrets protect each.

1 ...
2
3 r.Group(func(r chi. Router) {
4 r.Use(middlewares . ValidateTokenAndAddUsernameToContext (

deliveryTokensProvider , consoleLogger))
5 r.Post ("/ deliver ", deliveryHandler . Deliver)
6 })
7 r.Group(func(r chi. Router) {
8 r.Use(middlewares . ValidateTokenAndAddUsernameToContext (

jwtTokensProvider , consoleLogger))
9 r.Get ("/ connect ", sseHandler . Connect)

10 })
11
12 ...

Listing 6.29: Delivery Service Routes

60

6.6. Delivery Service

The delivery handler does not differ from the other handlers mentioned
in this thesis and acts the same way and calls the UserDevices service’s
NewMessage function.

To deliver real-time messages, the Delivery Service uses the Server-Sent
Events. That is why the SSEHandler is different from other ones, and list-
ing 6.30 shows its implementation. It gets the username from the context and
uses the RemoteAddr request property, which includes the port and provides
the uniqueness of the device identifier, sets the needed request headers, and
calls the UserDevices Connect function, which returns the channel where the
delivery handler adds new messages. Then it defers the Disconnect function
calls and, until the connection is closed, delivers all real-time messages that
the Delivery Service receives.

1 type SSEHandler struct {
2 UserDevices * services . UserDevices
3 Logger logger . Logger
4 }
5
6 func (h * SSEHandler) Connect (w http. ResponseWriter , r *http.

Request) {
7 h. Logger .Info (" Get handshake from client ")
8 username := r. Context ().Value(middlewares . UsernameContextKey)

.(string)
9 device := r. RemoteAddr

10
11 w. Header ().Set (" Content -Type", "text/event - stream ")
12 w. Header ().Set (" Cache - Control ", "no -cache ")
13 w. Header ().Set (" Connection ", "keep -alive ")
14 w. Header ().Set (" Access -Control -Allow - Origin ", "*")
15
16 messagesChannel := h. UserDevices . Connect (username , device)
17 defer func () {
18 if err := h. UserDevices . Disconnect (username , device); err

!= nil {
19 h. Logger .Error (" Error during disconnecting ", err)
20 return
21 }
22 h. Logger .Info (" Client connection is closed ")
23 }()
24
25 flusher , _ := w.(http. Flusher)
26 for {
27 select {
28 case message := <- messagesChannel :
29 _, err := fmt. Fprintf (w, "data: %s\n\n", message)
30 if err != nil {
31 h. Logger .Error (" Error when delivering the message

", err)
32 }
33 flusher .Flush ()
34 case <-r. Context ().Done ():
35 return

61

6. Implementation

36 }
37 }
38 }

Listing 6.30: Delivery Service SSEHandler implementation

Listing 6.31 displays the UserDevices service implementation. It stores
the mapping of the user’s device’s messages channels. When the handler calls
the NewMessage function, it adds the message to all recipients’ devices channels
so that every user will receive the message on all connected devices. The
connect function adds the device to the user’s devices. Finally, the Disconnect
function does the required cleanup.

1 type MessagesChannel = chan string
2 type DevicesChannels = map[string] MessagesChannel
3
4 type UserDevices struct {
5 devices map[string] DevicesChannels
6 }
7
8 func NewUserDevices () * UserDevices {
9 devices := make(map[string] DevicesChannels)

10 return & UserDevices { devices : devices }
11 }
12
13 func (ud * UserDevices) NewMessage (recipients [] string , message

string) error {
14 for _, recipient := range recipients {
15 devicesChannels := ud. devices [recipient]
16 if devicesChannels == nil {
17 return errors . NoUserRegistrationError
18 }
19 for _, messages := range devicesChannels {
20 messages <- message
21 }
22 }
23 return nil
24 }
25
26 func (ud * UserDevices) Connect (username string , device string)

MessagesChannel {
27 if ud. devices [username] == nil {
28 ud. devices [username] = make(DevicesChannels)
29 }
30 ch := make(MessagesChannel)
31 ud. devices [username][device] = ch
32 return ch
33 }
34
35 func (ud * UserDevices) Disconnect (username string , device string)

error {
36 devicesChannels := ud. devices [username]
37 if devicesChannels == nil {
38 {

62

6.7. Testing

39 return fmt. Errorf (" there are no user devices ")
40 }
41 }
42 close(devicesChannels [device])
43 delete (devicesChannels , device)
44 return nil
45 }

Listing 6.31: Delivery Service UserDevices service

6.7 Testing

The author created the unit tests to test the more complex parts of the back-
end services — that, besides the delegation of the function calls, have some
complex logic.

Listing 6.32 displays the example of the test written for the JwtTokensProvider.
It creates the tokens provider with the testing secret and 24 hours valid access
token, then generates tokens, parses them, and validates their claims.

1 func TestJwtTokensProvider_Success (t * testing .T) {
2 assert := assert .New(t)
3 provider , err := NewJwtTokensProvider (secret , 24* time.Hour)
4 assert . NoError (err)
5
6 tokens , err := provider . GenerateTokens (username)
7 assert . NoError (err)
8
9 access , err := parseToken (tokens . AccessToken)

10 assert . NoError (err)
11 refresh , err := parseToken (tokens . RefreshToken)
12 assert . NoError (err)
13
14 accessClaims , ok := access . Claims .(* jwtClaims)
15 assert .True(ok)
16 assert .Less(time.Now ().UTC ().Unix (), accessClaims . ExpiresAt)
17 assert .Equal(username , accessClaims . Username)
18
19 refreshClaims , ok := refresh . Claims .(* jwtClaims)
20 assert .True(ok)
21 assert .Less(time.Now ().UTC ().Unix (), refreshClaims . ExpiresAt)
22 assert .Empty(refreshClaims . Username)
23 }
24
25 func parseToken (token string) (* jwt.Token , error) {
26 return jwt. ParseWithClaims (
27 token ,
28 & jwtClaims {},
29 func(token *jwt.Token) (interface {}, error) {
30 return [] byte(secret), nil
31 },
32)

63

6. Implementation

33 }

Listing 6.32: JwtTokensProvider Unit Test

The author tested the API functionality using the Postman [8] tool. Fig-
ure 6.1 displays the example of calling the /auth/login endpoint of Users
Service. It sends the valid credentials, and we can use the result to com-
pose the Authorization header and call other endpoints the same way. If the
credentials are invalid, the API will return the JSON describing the error.

Figure 6.1: Postman [8]

6.8 Web Application Prototype

This section describes the Instant Messaging Platform frontend prototype. It
does not cover the implementation of each User Interface component. How-
ever, instead of that, it covers the essential logic pieces such as pages routing,
requests sending, end-to-end encryption, and the User Interface description.

64

6.8. Web Application Prototype

6.8.1 Router

Since almost all application features require the user to be authenticated,
the application should redirect the users to the login screen if they are not
logged in already. Listing 6.33 shows the implementation of the logic which
makes it possible. It defines two routes — the first one for the user, which
lacks authentication, and the second one for the authenticated user. The
application is a Single Page, so there are only two possible paths.

1 function App () {
2 const [authenticated , setAuthenticated] = useState (localStorage

. getItem (AUTH_TOKEN) !== null);
3 return (
4 <div style ={{ backgroundColor : ’#badcef ’, height : ’100%’,

width: ’100%’, position : ’fixed ’}}>
5 <BrowserRouter >
6 { ! authenticated && (
7 <Routes >
8 <Route path ="/ login" element ={< Login setAuthenticated

={ setAuthenticated } />} />
9 <Route path ="*" element ={< Navigate to ="/ login" />} />

10 </Routes >
11)}
12 { authenticated && (
13 <Routes >
14 <Route path ="/" element ={< Main onLogout ={() => {

setAuthenticated (false)}} />} />
15 <Route path ="*" element ={< Navigate to ="/" />} />
16 </Routes >
17)}
18 </ BrowserRouter >
19 </div >
20);
21 }

Listing 6.33: Application navigation

6.8.2 Requests Sending

Listing 6.34 shows the example of the POST request sending logic. It stringifies
the body, sets the headers, and sends the request. For both success and failure,
it returns the valid promise, which utilizes the resolve and reject callbacks of
the Promise. All POST API calls use this function and provide only the needed
values as arguments.

1 const post = async (uri , headers , body) => {
2 return new Promise ((res , rej) => {
3 fetch(uri , {
4 method : ’POST ’,
5 headers : {
6 ’Accept ’: ’application /json ’,
7 ’Content -Type ’: ’application /json ’,

65

6. Implementation

8 ... headers
9 },

10 body: JSON. stringify (body)
11 }).then(async response => {
12 if (! response .ok) {
13 rej ({
14 error: (await response .json ()). message
15 });
16 return
17 }
18 res ({
19 data: await response .json ()
20 });
21 }).catch(e => {
22 rej ({
23 error: e
24 });
25 });
26 });
27 };

Listing 6.34: Function for POST requests sending

6.8.3 End-to-End Encryption

The author implemented the end-to-end encryption the following way. When
the user creates the account, the application generates the RSA key pair, stores
the private key locally, and sends the public key together with the registration
request. Then, for each new conversation, the initiator generates the AES
shared key, encrypts the message content with it, then encrypts the shared
key with the recipient’s public key coming from the Users Service, and sends
it together with the encrypted message. Thanks to the JWT authentication,
the Chat Service sets the from field based on the JWT token claim, ensuring
that the sender sent the message and the key. Then the recipient receives the
message, decrypts the shared key using the stored private key, and decrypts
the message content using the decrypted shared key.

The author created the crypto.js file in the src/crypto directory to
make this flow work, which defines all the needed functions and uses the
Subtle Crypto interface previously mentioned in the Technologies section.

Listing 6.35 displays the functions related to the shared key logic. Thanks
to this implementation, the algorithms can easily change, satisfying one of the
thesis goals.

1 const generateSharedKey = async () => {
2 return await crypto . subtle . generateKey (
3 { name: "AES -CBC", length : 128 },
4 true ,
5 [" encrypt ", " decrypt "],
6);
7 };

66

6.8. Web Application Prototype

8
9 const exportSharedKey = async (sharedKey) => {

10 return JSON. stringify (await crypto . subtle . exportKey (" jwk",
sharedKey));

11 };
12
13 const encryptSharedKey = async (sharedKey , recipientPublicKey) =>

{
14 return Array .from(new Uint8Array (
15 await crypto . subtle . encrypt ("RSA -OAEP", recipientPublicKey ,

sharedKey)
16));
17 };
18
19 const decryptSharedKey = async (encryptedSharedKey ,

recipientPrivateKey) => {
20 return new Uint8Array (await crypto . subtle . decrypt ("RSA -OAEP",

recipientPrivateKey , encryptedSharedKey));
21 };
22
23 const importSharedKey = async (jwk) => {
24 return await crypto . subtle . importKey (
25 "jwk",
26 jwk ,
27 "AES -CBC",
28 true ,
29 [" encrypt ", " decrypt "],
30);
31 };

Listing 6.35: Shared key logic functions

Listing 6.36 shows the implementation of the encrypt and decrypt message
functions using the AES algorithm.

1 const encryptMessage = async (message , sharedKey , username) => {
2 const iv = encoder . encode (username . repeat (16 / username . length

+ 1). substring (0, 16));
3 return Array.from(new Uint8Array (
4 await crypto . subtle . encrypt (
5 {
6 name: "AES -CBC",
7 iv: iv
8 },
9 sharedKey ,

10 encoder . encode (message)
11)
12));
13 }
14
15 const decryptMessage = async (encryptedMessage , sharedKey ,

username) => {
16 const iv = encoder . encode (username . repeat (16 / username . length

+ 1). substring (0, 16));
17 return decoder . decode (await crypto . subtle . decrypt (

67

6. Implementation

18 {
19 name: "AES -CBC",
20 iv: iv
21 },
22 sharedKey ,
23 encryptedMessage
24));
25 };

Listing 6.36: Encrypt and decrypt message functions

6.8.4 User Interface

When the users first open the application, they will see the welcome screen
shown in figure 6.2, where they can sign in or register without providing any
sensitive or personal information. If the user provides the invalid credentials,
they will see the error message displayed in figure 6.3. After the successful
registration, the user will see the main page displayed in figure 6.4. The user
can create a new conversation by typing the recipient name in the application
header and clicking the blue button close to it, indicating the conversation
initiation. After doing so, the conversation will appear on the left side. It will
automatically open, allowing the user to type the message in the bottom input
field, as displayed in figure 6.5. After typing and sending the message, the
initial end-to-end encrypted message will be sent to the recipient, as shown in
figure 6.6. When the user receives the new message, the conversation appears
at the top of the conversations list, indicating the new message received us-
ing the asterisks shown in figure 6.7 that will disappear on the conversation
open. Figure 6.8 displays the successful conversation after receiving the initial
message.

6.9 Documentation

The Web Application Prototype section sufficiently describes the application
functionality and how to use it. However, there is a need to document the
backend services installation and its APIs. The /docs directory, which is one
of the attachments of this thesis, contains the documentation for all services
in separate directories. The file manual.pdf describes the requirements and
instructions to build and run the service in a Docker container. The file api.pdf
describes the service endpoints and the way to access them.

68

6.9. Documentation

Figure 6.2: Welcome screen

Figure 6.3: Bad credentials alert

69

6. Implementation

Figure 6.4: Using the search field to start the conversation

Figure 6.5: New conversation screen

70

6.9. Documentation

Figure 6.6: Sending the initial message

Figure 6.7: Receiving the new message

71

6. Implementation

Figure 6.8: Successful conversation after the initial message received

72

Chapter 7
Evaluation

7.1 IM Platform Evaluation

The implemented Instant Messaging Platform prototype uses the microser-
vices architecture and supports scalability and extensions by design as de-
scribed in Analysis and Design chapter. The extensions can be done differ-
ently based on the purpose. In the case of the chatbots, it may be reasonable
to add a new service handling it because of the different types of the load.
Group chats can be implemented by adding a new conversation type.

The different sendable content can be implemented by adding a new service
responsible for storing it. However, the platform already supports it because
it does not restrict the message content field allowing the frontend to store
everything it can handle and display. All extensions require further analysis,
but the platform’s architecture supports them.

The author designed the backend services to support the features like
multiple devices by storing the end-to-end encrypted messages on the server.
Delivery Service supports multiple devices by having different message chan-
nels for different devices. However, the Web Application prototype needs to
provide a way to share all the keys from the primary device to the device that
logs in, which was not implemented during this thesis.

The application supports all basic features required for the Instant Mes-
saging Platforms. Furthermore, it respects the security by implementing end-
to-end encryption. Another benefit is respecting users’ privacy — the system
does not store any sensitive or private information. It does not require the
username to be linked or linkable information.

The essential feature is also the easy and reliable deployments. Thanks
to the containerized architecture, there is no dependence on the developer’s
machine system during the development, which decreases the probability of
unexpected hidden errors in production.

73

7. Evaluation

7.2 Possible Future Steps

Since the Instant Messaging Platform implemented in this thesis is the proto-
type, it lacks some feature important for IM to be competitive in the market.

One of the mentioned features is, for example, the support of multiple
devices on the frontend. The possible implementation is by getting the QR
code with encoded secret keys. Alternatively, to provide more security —
posting the way of communication with the public key to encrypt all shared
data, which can use the QR code to simplify the process. However, it requires
further investigation of possible risks to find the best solution.

Another critical improvement may be to add the ability to backup the
secrets. If the user loses access to the account or all devices, they can still
access the application and messages on another device. One of the possible
implementations may be to store it in another microservice encrypted with
the key shared with the user, so they can store it in a secure place and use
it for the next login. This implementation will also resolve a problem with
supporting multiple devices by allowing the user to provide this key when
logging in.

One of the most significant improvements is storing the messages in the
queue to deliver the messages for the currently offline user when they are back
online.

Storing the messages in queues will also allow the users to initiate the
communication when the recipient is offline. Because, in the current imple-
mentation, the user does not have any chance to get the shared key for the
initial message, not from the Delivery Service. The shared key problem may
also be resolved by another microservice, which will temporarily store the
shared key until all devices receive it.

74

Conclusion

The goal of this thesis was based on the analysis to design and implement
an open source Instant Messaging Platform that will be possible to deploy
on-premise and adjust security mechanisms. It was essential to design the
application using the microservices architecture supporting the scalability and
extensions.

The output of this thesis is the Instant Messaging Platform prototype. Its
implementation uses the microservices architecture with three services sepa-
rated by the purpose: Users Service, Chat Service, and Delivery Service. As
mentioned in the thesis chapters, this implementation supports scalability and
extensions.

The author analyzed some of the popular Instant Messaging Platforms
present on the market and primary security mechanisms related to IM, defined
the functional and non-functional requirements, and described the use cases.
In addition, the author described the selected technologies, documented the
output, and evaluated the solution. The author implemented the Unit Tests
to test the complex logic and tested the API using the Postman tool.

The designed prototype supports the end-to-end encryption to maintain
the users’ conversations security and respects the privacy by not collecting
the personal information. It stores the end-to-end encrypted messages on the
server to support the multiple devices, which the delivery logic also supports.
However, the prototype still has the ways for improvement, and the Evaluation
chapter covers it.

75

Bibliography

[1] GeeksforGeeks. Client-Server Model. GeeksforGeeks Tutorials [online],
November 2019, [accessed on 2022-03-27]. Available from: https://
www.geeksforgeeks.org/client-server-model/

[2] Imperva. Man in the middle (MITM) attack. Imperva Learn-
ing Center [online], 2022, [accessed on 2022-03-20]. Available
from: https://www.imperva.com/learn/application-security/man-
in-the-middle-attack-mitm/

[3] Kemp, S. Digital 2022 Global Overview Report (January
2022) v05. DataReportal, January 2022: p. 99. Available from:
https://www.slideshare.net/DataReportal/digital-2022-global-
overview-report-january-2022-v05

[4] LLC, W. Download. WhatsApp Web Pages [online], April 2022, [accessed
on 2022-04-03]. Available from: https://www.whatsapp.com/download

[5] handlerug. Telegram macOS screenshots picture. GitHub [online], April
2019, [accessed on 2022-04-03]. Available from: https://github.com/
overtake/TelegramSwift/blob/master/images/tg.png

[6] Signal. Get Signal. Signal Web Pages [online], April 2022, [accessed on
2022-04-03]. Available from: https://signal.org/download/

[7] Slack. Slack Features. Slack Web Pages [online], April 2022, [accessed on
2022-04-03]. Available from: https://slack.com/features

[8] Abhinav Asthana. Postman. Available from: https://www.postman.com

[9] Maina, T. Instant messaging an effective way of communication in work-
place. 10 2013.

[10] WhatsApp LLC. WhatsApp. Available from: https://www.whatsapp.com

77

https://www.geeksforgeeks.org/client-server-model/
https://www.geeksforgeeks.org/client-server-model/
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
https://www.slideshare.net/DataReportal/digital-2022-global-overview-report-january-2022-v05
https://www.slideshare.net/DataReportal/digital-2022-global-overview-report-january-2022-v05
https://www.whatsapp.com/download
https://github.com/overtake/TelegramSwift/blob/master/images/tg.png
https://github.com/overtake/TelegramSwift/blob/master/images/tg.png
https://signal.org/download/
https://slack.com/features
https://www.postman.com
https://www.whatsapp.com

Bibliography

[11] Tencent Holdings Limited. WeChat. Available from: https://
www.wechat.com

[12] Meta Platforms. Messenger. Available from: https://
www.messenger.com

[13] Shenzhen Tencent Computer System Co., Ltd. Tencent QQ. Available
from: https://im.qq.com

[14] Snap Inc. Snapchat. Available from: https://www.snapchat.com

[15] Telegram Messenger Inc. Telegram. Available from: https://
telegram.org

[16] BBC. Network hardware. Bitesize [online], February 2022: p. 7, [accessed
on 2022-03-27]. Available from: https://www.bbc.co.uk/bitesize/
guides/zh4whyc/revision/7

[17] Sarangam, A. What Is Client Server Architecture? An Overview. Jig-
saw Academy [online], December 2020, [accessed on 2022-03-27]. Avail-
able from: https://www.jigsawacademy.com/blogs/cyber-security/
what-is-client-server-architecture/

[18] Avron, S. Advantages and Disadvantages of a Peer-to-Peer Network.
Flevy Blog [online], May 2021, [accessed on 2022-03-27]. Available
from: https://flevy.com/blog/advantages-and-disadvantages-of-
a-peer-to-peer-network/

[19] Dictionary, C. Definition of ‘security’. Collins Dictionary [online],
March 2022, [accessed on 2022-03-18]. Available from: https://
www.collinsdictionary.com/dictionary/english/security

[20] Schuster, S.; Berg, M.; et al. Mass Surveillance and technological policy
options: Improving security of private communications. Computer Stan-
dards & Interfaces, 09 2016, doi:10.1016/j.csi.2016.09.011, [accessed on
2022-03-20].

[21] Cloudflare. What is SSL? — SSL definition. Cloudflare Learning
[online], 2022, [accessed on 2022-03-20]. Available from: https://
www.cloudflare.com/en-gb/learning/ssl/what-is-ssl/

[22] Olenski, J. SSL vs TLS - What’s the Difference? GlobalSign Blog [on-
line], February 2020, [accessed on 2022-03-20]. Available from: https:
//www.globalsign.com/en/blog/ssl-vs-tls-difference

[23] Munteanu, R. SSL Certificates vs. Man-in-the-middle attacks.
Medium [online], October 2019, [accessed on 2022-03-20]. Avail-
able from: https://medium.com/@munteanu210/ssl-certificates-
vs-man-in-the-middle-attacks-3fb7846fa5db

78

https://www.wechat.com
https://www.wechat.com
https://www.messenger.com
https://www.messenger.com
https://im.qq.com
https://www.snapchat.com
https://telegram.org
https://telegram.org
https://www.bbc.co.uk/bitesize/guides/zh4whyc/revision/7
https://www.bbc.co.uk/bitesize/guides/zh4whyc/revision/7
https://www.jigsawacademy.com/blogs/cyber-security/what-is-client-server-architecture/
https://www.jigsawacademy.com/blogs/cyber-security/what-is-client-server-architecture/
https://flevy.com/blog/advantages-and-disadvantages-of-a-peer-to-peer-network/
https://flevy.com/blog/advantages-and-disadvantages-of-a-peer-to-peer-network/
https://www.collinsdictionary.com/dictionary/english/security
https://www.collinsdictionary.com/dictionary/english/security
https://www.cloudflare.com/en-gb/learning/ssl/what-is-ssl/
https://www.cloudflare.com/en-gb/learning/ssl/what-is-ssl/
https://www.globalsign.com/en/blog/ssl-vs-tls-difference
https://www.globalsign.com/en/blog/ssl-vs-tls-difference
https://medium.com/@munteanu210/ssl-certificates-vs-man-in-the-middle-attacks-3fb7846fa5db
https://medium.com/@munteanu210/ssl-certificates-vs-man-in-the-middle-attacks-3fb7846fa5db

Bibliography

[24] Nohe, P. The difference between Encryption, Hashing and Salting.
The SSL Store Blog [online], December 2018, [accessed on 2022-03-
20]. Available from: https://www.thesslstore.com/blog/difference-
encryption-hashing-salting/

[25] Open Whisper Systems. Signal Protocol. Available from: https://
signal.org/docs/

[26] Dion van Dam. Analysing the Signal Protocol. Master’s thesis, Radboud
University, Houtlaan 4, 6525 XZ Nijmegen, Netherlands, 2019.

[27] Warren, S. D.; Brandeis, L. D. The Right to Privacy. Harvard Law Review,
volume 4, no. 5, 1890: pp. 193–220, ISSN 0017811X. Available from:
http://www.jstor.org/stable/1321160

[28] Stone, E. F.; Gueutal, H. G.; et al. A field experiment comparing
information-privacy values, beliefs, and attitudes across several types of
organizations. Journal of Applied Psychology, volume 68(3), 1983: pp.
459–468. Available from: http://www.jstor.org/stable/1321160

[29] Durnell, E.; Okabe-Miyamoto, K.; et al. Online Privacy Breaches, Of-
fline Consequences: Construction and Validation of the Concerns with
the Protection of Informational Privacy Scale. International Journal of
Human–Computer Interaction, volume 36, no. 19, 2020: pp. 1834–1848,
doi:10.1080/10447318.2020.1794626. Available from: https://doi.org/
10.1080/10447318.2020.1794626

[30] Matuszewska, K.; Lubowicka, K.; et al. What is PII, non-PII, and per-
sonal data? Piwik Pro Blog [online], April 2021, [accessed on 2022-03-21].
Available from: https://piwik.pro/blog/what-is-pii-personal-
data/#what-is-personally-identifiable-information-(pii)?

[31] United States Government Accountability Office. PRIVACY Alternatives
Exist for Enhancing Protection of Personally Identifiable Information.
Report to Congressional Requesters, May 2008, [accessed on 2022-03-29].
Available from: https://www.gao.gov/assets/gao-08-536.pdf

[32] Proton Technologies AG. Art. 4 GDPR - Definitions. General Data Pro-
tection Regulation [online], May 2016, [accessed on 2022-03-29]. Available
from: https://gdpr.eu/article-4-definitions/

[33] Red Hat, Inc. What is open source? Red Hat Topics [online],
October 2019, [accessed on 2022-03-29]. Available from: https://
www.redhat.com/en/topics/open-source/what-is-open-source

[34] Open Source Initiative. The Open Source Definition. Open Source Ini-
tiative website [online], March 2007, [accessed on 2022-03-29]. Available
from: https://opensource.org/osd

79

https://www.thesslstore.com/blog/difference-encryption-hashing-salting/
https://www.thesslstore.com/blog/difference-encryption-hashing-salting/
https://signal.org/docs/
https://signal.org/docs/
http://www.jstor.org/stable/1321160
http://www.jstor.org/stable/1321160
https://doi.org/10.1080/10447318.2020.1794626
https://doi.org/10.1080/10447318.2020.1794626
https://piwik.pro/blog/what-is-pii-personal-data/#what-is-personally-identifiable-information-(pii)?
https://piwik.pro/blog/what-is-pii-personal-data/#what-is-personally-identifiable-information-(pii)?
https://www.gao.gov/assets/gao-08-536.pdf
https://gdpr.eu/article-4-definitions/
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://opensource.org/osd

Bibliography

[35] Signal Foundation and Signal Messenger LLC. Signal. Available from:
https://signal.org

[36] Kraus, R. What is Signal? The basics of the most secure messaging app.
Mashable [online], July 2021, [accessed on 2022-04-02]. Available from:
https://mashable.com/article/what-is-signal-app

[37] Slack Technologies. Slack. Available from: https://slack.com

[38] Olson, P. Exclusive: The Rags-To-Riches Tale Of How Jan
Koum Built WhatsApp Into Facebook’s New $19 Billion Baby.
Forbes [online], February 2014, [accessed on 2022-04-03]. Available
from: https://thehackernews.com/2021/01/whatsapp-will-delete-
your-account-if.html

[39] Lakshmanan, R. WhatsApp Will Disable Your Account If You
Don’t Agree Sharing Data With Facebook. The Hacker News
[online], January 2021, [accessed on 2022-04-03]. Available from:
https://thehackernews.com/2021/01/whatsapp-will-delete-your-
account-if.html

[40] of Android, C. Use a third-party WhatsApp client and you could
be banned for life. Cult of Mac [online], March 2015, [accessed on
2022-04-03]. Available from: https://www.cultofmac.com/314343/use-
a-third-party-whatsapp-client-and-you-could-be-banned-for-
life/

[41] Lawler, R. WhatsApp multi-device beta allows four devices at once even
without a phone. The Verge [online], July 2021, [accessed on 2022-04-
03]. Available from: https://www.theverge.com/2021/7/14/22577594/
whatsapp-multi-device-e2e-facebook

[42] LLC, W. About linked devices. WhatsApp Web Pages [on-
line], April 2022, [accessed on 2022-04-03]. Available from:
https://faq.whatsapp.com/general/download-and-installation/
about-linked-devices/?lang=en

[43] Inc., T. M. Telegram Applications. Telegram Web Pages [online], April
2022, [accessed on 2022-04-03]. Available from: https://telegram.org/
apps

[44] Telegram Messenger Inc. Telegram Database Library. Available from:
https://core.telegram.org/tdlib

[45] Open Whisper Systems. RedPhone.

[46] Open Whisper Systems. TextSecure.

80

https://signal.org
https://mashable.com/article/what-is-signal-app
https://slack.com
https://thehackernews.com/2021/01/whatsapp-will-delete-your-account-if.html
https://thehackernews.com/2021/01/whatsapp-will-delete-your-account-if.html
https://thehackernews.com/2021/01/whatsapp-will-delete-your-account-if.html
https://thehackernews.com/2021/01/whatsapp-will-delete-your-account-if.html
https://www.cultofmac.com/314343/use-a-third-party-whatsapp-client-and-you-could-be-banned-for-life/
https://www.cultofmac.com/314343/use-a-third-party-whatsapp-client-and-you-could-be-banned-for-life/
https://www.cultofmac.com/314343/use-a-third-party-whatsapp-client-and-you-could-be-banned-for-life/
https://www.theverge.com/2021/7/14/22577594/whatsapp-multi-device-e2e-facebook
https://www.theverge.com/2021/7/14/22577594/whatsapp-multi-device-e2e-facebook
https://faq.whatsapp.com/general/download-and-installation/about-linked-devices/?lang=en
https://faq.whatsapp.com/general/download-and-installation/about-linked-devices/?lang=en
https://telegram.org/apps
https://telegram.org/apps
https://core.telegram.org/tdlib

Bibliography

[47] McCall, V.; Smith, B. What is Signal? How the popular encrypted
messaging app keeps your texts private. Business Insider [online],
October 2021, [accessed on 2022-04-03]. Available from: https://
www.businessinsider.com/signal-app

[48] Greenberg, A. Your iPhone Can Finally Make Free, Encrypted
Calls. Wired [online], July 2014, [accessed on 2022-04-03]. Available
from: https://www.wired.com/2014/07/free-encrypted-calling-
finally-comes-to-the-iphone/

[49] Slack. Slack Downloads. Slack Web Pages [online], April 2022, [accessed
on 2022-04-03]. Available from: https://slack.com/downloads

[50] MongoDB Inc. MongoDB. Available from: https://www.mongodb.com/

[51] go-chi. chi. Available from: https://github.com/go-chi/chi

[52] go chi. chi. GitHub [online], April 2022, [accessed on 2022-04-28]. Avail-
able from: https://github.com/go-chi/chi

[53] go-chi. CORS net/http middleware. Available from: https://
github.com/go-chi/cors

[54] go-chi. render. Available from: https://github.com/go-chi/render

[55] MongoDB Inc. MongoDB Go Driver. Available from: https://
www.mongodb.com/docs/drivers/go/current/

[56] dgrijalva. jwt-go. Available from: https://github.com/dgrijalva/jwt-
go

[57] dgrijalva. jwt-go. GitHub [online], April 2022, [accessed on 2022-04-28].
Available from: https://github.com/dgrijalva/jwt-go

[58] Google. Go Cryptography. Available from: https://pkg.go.dev/
golang.org/x/crypto#section-readme

[59] OpenBSD. CVS log for src/lib/libc/crypt/bcrypt.c. OpenBSD CVS [on-
line], February 1997, [accessed on 2022-04-28]. Available from: https://
cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libc/crypt/bcrypt.c

[60] Meta Platforms. React. Available from: https://reactjs.org/

[61] PrimeFaces. PrimeReact. Available from: https://
www.primefaces.org/primereact/

[62] remix-run. react-router. Available from: https://github.com/remix-
run/react-router

81

https://www.businessinsider.com/signal-app
https://www.businessinsider.com/signal-app
https://www.wired.com/2014/07/free-encrypted-calling-finally-comes-to-the-iphone/
https://www.wired.com/2014/07/free-encrypted-calling-finally-comes-to-the-iphone/
https://slack.com/downloads
https://www.mongodb.com/
https://github.com/go-chi/chi
https://github.com/go-chi/chi
https://github.com/go-chi/cors
https://github.com/go-chi/cors
https://github.com/go-chi/render
https://www.mongodb.com/docs/drivers/go/current/
https://www.mongodb.com/docs/drivers/go/current/
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://pkg.go.dev/golang.org/x/crypto#section-readme
https://pkg.go.dev/golang.org/x/crypto#section-readme
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libc/crypt/bcrypt.c
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libc/crypt/bcrypt.c
https://reactjs.org/
https://www.primefaces.org/primereact/
https://www.primefaces.org/primereact/
https://github.com/remix-run/react-router
https://github.com/remix-run/react-router

Bibliography

[63] w3schools. React Router. w3schools [online], April 2022, [accessed
on 2022-04-28]. Available from: https://www.w3schools.com/react/
react_router.asp

[64] Mozilla.org. SubtleCrypto. developer.mozilla.org [online],
February 2022, [accessed on 2022-04-28]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/
SubtleCrypto#browser_compatibility

[65] Docker Inc. Docker. Available from: https://www.docker.com/

82

https://www.w3schools.com/react/react_router.asp
https://www.w3schools.com/react/react_router.asp
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto#browser_compatibility
https://www.docker.com/

Appendix A
Acronyms

API Application Programming Interface

CCPA California Consumer Privacy Act

CORS Cross-Origin Resource Sharing

DOM Document Object Model

EU European Union

GDPR General Data Protection Regulation

HTTP Hypertext Transfer Protocol

IM Instant Messaging

IP Internet protocol

IRC Internet Relay Chat

JSON JavaScript Object notation

JWT JavaScript Web Tokens

MAC Media access control

P2P Peer-to-Peer

PII Personally Identifiable Information

SSE Server-Sent Events

SSL Secure Sockets Layers

TLS Transport Layer Security

TTL Time to Live

83

A. Acronyms

UI User Interface

URL Uniform Resource Locator

US United States

84

Appendix B
Contents of enclosed SD card

readme.txt...................the file with SD card contents description
docs the directory of documentation

users-service..................the documentation of Users Service
api.pdf.................................the API documentation
manual.pdf..........the instructions to build and run the service

chat-service....................the documentation of Chat Service
api.pdf.................................the API documentation
manual.pdf..........the instructions to build and run the service

delivery-service............the documentation of Delivery Service
api.pdf.................................the API documentation
manual.pdf..........the instructions to build and run the service

src.......................................the directory of source codes
impl..implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
DP Volodin Vladyslav 2022.pdf......the thesis text in PDF format

85

	Introduction
	Goals and Structure
	Instant Messaging Platforms
	Importance of IM Platforms
	Networking Models
	Client-Server
	Peer-to-Peer

	Security and Privacy in IM
	Security
	Security Mechanisms
	SSL/TLS Encryption
	Storing the Passwords
	End-to-End Encryption

	Privacy
	Personal Information
	Personally Identifiable Information
	Personal Data

	Open Source

	Existing IM Platforms
	Popularity
	WhatsApp
	Platforms
	Features

	Telegram
	Platforms
	Features

	Signal
	Platforms
	Features

	Slack
	Platforms
	Features

	Analysis and Design
	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements

	Use Cases
	Architecture
	Users Service
	Chat Service
	Delivery Service

	User Interface

	Implementation
	Technologies
	Go Chi
	MongoDB and Mongo Driver
	JSON Web Tokens
	Bcrypt
	ReactJS
	Other Technologies

	Containers
	Users Service
	Chat Service
	Delivery Service

	Shared Library
	Logging
	Tokens Authentication
	Passwords Hashing
	Referencing the Shared Library

	Users Service
	Database
	Starting the Web Server
	Handling the Requests

	Chat Service
	Database
	Starting the Web Server
	Sending the Initial Message

	Delivery Service
	Testing
	Web Application Prototype
	Router
	Requests Sending
	End-to-End Encryption
	User Interface

	Documentation

	Evaluation
	IM Platform Evaluation
	Possible Future Steps

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD card

