
Title:

Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Client-Side Application Development Using Blazor Framework
– a Blockchain Smart Contract Designer Case Study
Bc. Jan Klicpera
Ing. Marek Skotnica
Informatics
Software Engineering
Department of Software Engineering
until the end of summer semester 2022/2023

Instructions

The main goal of this thesis is to explore the current possibilities of developing and
deploying multi-platform client-side apps with the core project being developed as a
client-side Blazor web application. The chosen approach will be demonstrated in a
complex case study – an open-source smart contract designer. The main goal of the case
study is to provide a unified visual language, DasContract, to design legal contracts
between parties that can be used to generate executable blockchain smart contracts.

Steps to take:
- Review the Blazor technology and technologies allowing client-side app deployment
- Review the DasContract technology
- Design and implement a DasContract designer utilizing client-side Blazor technology
- Evaluate the benefits of the case-study approach compared to other client-side
approaches

Electronically approved by Ing. Michal Valenta, Ph.D. on 15 November 2021 in Prague.

Master’s thesis

Client-Side Application Development
Using Blazor Framework – a Blockchain
Smart Contract Designer Case Study

Bc. Jan Klicpera

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 1, 2022

Acknowledgements

My deep gratitude goes to my supervisor and mentor, Ing. Marek Skotnica,
for his incredible guidance and valuable feedback. It has been a pleasure
working with you, thank you. I would also like to thank my family for their
unconditional love and support. Last but not least, my appreciations go to
all my friends.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 1, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Jan Klicpera. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Klicpera, Jan. Client-Side Application Development Using Blazor Framework
– a Blockchain Smart Contract Designer Case Study. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Blockchain chytré kontrakty jsou relativně nová technologie, jenž by mohla
způsobit převrat ve vytváření a vedení právních kontraktů. Příkladem jednoho
z jejich benefitů je možnost eliminace potřeby ověřených autorit třetích stran.
Jejich širšímu zavedení však brání komplexní, silně technický způsob kterým
jsou vytvářeny. Tímto nedostatek se zabývá probíhající výzkumný projekt,
DasContract, jenž má za cíl zjednodušit vytváření chytrých kontraktů po-
skytnutím vizuálního doménově specifického jazyka, který lze zkonvertovat do
spustitelného kódu. Tato diplomová práce je součástí DasContract výzkumu
a zabývá se navržením a implementováním webové aplikace v Blazor WebAs-
sembly frameworku, která umožní uživatelům vizuálně modelovat chytré kon-
trakty pomocí DasContract jazyka. Práce dále prozkoumává možnosti na-
sazení Blazor webové aplikace jakožto samostatné multiplatformní aplikace.
Vytvořená aplikace je volně dostupná (zdrojové kódy jsou open-source) a je
momentálně využívána k navazujicímu výzkumu.

Klíčová slova Blazor, WebAssembly, chytrý kontrakt, blockchain, DasCon-
tract, PWA

vii

Abstract

A Blockchain smart contract (SC) is an emerging technology that has the
potential to revolutionize the practice of conducting legal contracts. The
benefits of SC include, for example, the opportunity to eliminate the need
for third-party authorities. However, one of the challenges associated with
smart contracts, stalling their mass adoption, is the complex, highly tech-
nical method of creating them. DasContract is an ongoing research project
that aims to address this challenge by defining a visual domain-specific lan-
guage (DSL) that can be converted into executable smart contract code. This
thesis contributes to the research project by designing and implementing a
web application in the Blazor WebAssembly framework, which allows users
to visually model smart contracts using the DasContract DSL. The thesis
also explores the possibilities of deploying the implemented client-side Blazor
web application as a standalone multi-platform application. The editor is fully
open-source and is currently being utilized for conducting further SC research.

Keywords Blazor, WebAssembly, smart contract, blockchain, DasContract,
PWA

viii

Contents

Introduction 1
The DasContract Project . 2
Structure of the Thesis . 2

1 Review of DasContract and Related Technologies 3
1.1 Blockchain . 3

1.1.1 State Synchronization and Immutability 3
1.1.2 Cryptocurrency . 5

1.2 Smart Contracts . 5
1.3 DasContract . 6

1.3.1 DasContract DSL . 7
1.3.2 Smart Contract Converters 9
1.3.3 Forms Wallet and Editor 10
1.3.4 DasContract Editor . 10

2 Blazor Framework and Standalone App Development 11
2.1 Blazor . 12

2.1.1 Dynamically Interacting With the Browser Model . . . 13
2.1.2 Hosting Models . 13
2.1.3 JavaScript Interoperability 15

2.2 Electron . 16
2.2.1 Process Model . 16
2.2.2 Context Isolation and Sandboxing 17
2.2.3 Distribution and Updating 18

2.3 Progressive Web Apps . 18
2.3.1 Service Workers . 20
2.3.2 Web App Manifest . 21
2.3.3 Supported Browsers and Platforms 22

ix

2.4 Comparison of the Technologies for Standalone Deployment . . 22
2.4.1 Supported Platforms . 23
2.4.2 Maintainability . 23
2.4.3 Capabilities . 24
2.4.4 Maturity of the Technology 24
2.4.5 Distribution . 24
2.4.6 Size and Performance 25

3 DasContract Editor Case Study 27
3.1 Functional and Non-Functional Requirements 27

3.1.1 General Requirements 28
3.1.2 Process Section Requirements 29
3.1.3 Data Section Requirements 29
3.1.4 User Section Requirements 30
3.1.5 Converter Section Requirements 30

3.2 Business Process . 30
3.3 Use Cases . 32
3.4 User Interface Design . 32

3.4.1 Landing Page . 34
3.4.2 Process Model Page . 34
3.4.3 Data Model Page . 37
3.4.4 Users and Roles Model Page 40
3.4.5 Converted Contract Page 41

3.5 Project Structure Overview . 41
3.6 Contract Management . 42
3.7 Process Modeller . 45

3.7.1 Synchronizing the Process Data Models 45
3.7.2 Element Detail Sidebar 47
3.7.3 Supporting Undo/Redo Operations 48

3.8 User Model . 49
3.9 Smart Contract Conversion . 50
3.10 Implementation and Used Technologies 50

3.10.1 Text Editor Integration 52
3.10.2 Data Model Diagram Generation 53
3.10.3 BPMN Modeller . 53
3.10.4 DMN Modeller . 53
3.10.5 Advanced Select Component 53
3.10.6 Split . 54

3.11 Testing . 54
3.11.1 Unit Testing . 54
3.11.2 End-to-End Testing . 54
3.11.3 User Feedback . 55

x

4 Standalone App Deployment 57
4.1 Choosing the Technology . 57
4.2 Integrating the PWA Approach 58

4.2.1 Web App Manifest . 58
4.2.2 Service Worker . 58

4.3 Installing and Updating . 59
4.4 Evaluation . 60

Conclusion 63
Future Work . 63

Bibliography 65

A Acronyms 71

B Contents of Enclosed SD Card 73

xi

List of Figures

1.1 Structure of the data blocks in a blockchain. 4
1.2 Concept architecture of DasContract. 7
1.3 The DasContract DSL metamodel. 8

2.1 The restriction model in chromium-based browsers. 12
2.2 Blazor server hosting model schema. 14
2.3 Blazor webassembly hosting model schema. 15
2.4 Blazor hybrid hosting model schema. 16
2.5 Process hiearchy in Electron. 17
2.6 Capabilities vs. reach of native apps, web apps and PWAs. 19
2.7 Dataflow of requests when using a service worker. 20
2.8 Lifecycle of a service worker. 21

3.1 Activity diagram describing the business process of the dascontract
modeler. 31

3.2 Use case diagram for the dascontract modeler. 33
3.3 Wireframe of the landing page of the modeler application. 35
3.4 Wireframe of the process section of the modeler application. 35
3.5 Wireframe of the data section of the modeler application. 39
3.6 Converted visual diagram based on the example data model defi-

nition in listing 1. 39
3.7 Wireframe of the user and roles section of the modeler application. 41
3.8 Package diagram view of the DasContract Editor. 43
3.9 The interfaces of classes responsible for managing the lifecycle of

the dascontract datamodel. 44
3.10 Classes responsible for handling incoming bpmn modeler events. . 46
3.11 Sequence diagram showcasing how a bpmn event is handled when

a new shape is added in the visual modeler. 47
3.12 A visualization of how the razor component views are nested based

on the type of the edited element. 49

xiii

LIST OF FIGURES

3.13 Class diagram of the undo/redo functionality for the users and
roles editor page. 51

3.14 Classes related to contract conversion 52

4.1 The PWA install prompt in a google chrome browser. 61
4.2 A screenshot of the PWA installed on Windows 10 using Google

Chrome browser. 62

xiv

Introduction

Recent developments in the world of web technologies have introduced new,
exciting approaches to developing and deploying web applications. One of
these exciting technologies is WebAssembly, an instruction format that allows
to execute code directly in a web browser.

Microsoft has recently released client-side Blazor, which compiles C# code
into the WebAssembly instruction format. This gives developers the opportu-
nity to create client-side web applications with the help of libraries from the
vast .NET ecosystem. Running the web application directly in the browser,
on the one hand, increases the hardware demands but, on the other hand,
makes the application easier and cheaper to scale, as opposed to the server-
side approach.

The client-based approach also provides another opportunity. One of the
properties of web applications that made them so widely popular is their ac-
cessibility. If a user wants to visit a web application, they only need a web
browser and the address of the application. There is no need for explicit in-
stallation; everything is conveniently downloaded on the fly and run in the
browser. However, there is a tradeoff in terms of the application’s capabili-
ties, as it is launched in an isolated sandbox with limited permissions. The
performance of a classical web application is also limited by the connection
speed. Several case studies have found that providing an option to install web
apps as a standalone application increases user engagement [1].

One way to provide the users with the option to choose their preferred type
of app would be to develop a separate standalone application in a platform-
specific framework. This would, however, significantly increase the complexity
of the project. An alternative approach is to utilize a technology that allows to
deploy the web application as standalone whilst preserving the web-oriented
codebase.

One of the focuses of this thesis is to explore and demonstrate the possibil-
ities of providing both a web and a fully standalone version of an application
without the need for separate codebases.

1

Introduction

The DasContract Project
Blockchain smart contracts have proven to be a technology that could help
to fully digitalize conducting of legal contracts whilst removing the need for
trusted intermediaries to mediate the terms of the contract. One of the current
caveats of smart contracts is that they are defined using specialized program-
ming languages, making them difficult to create and convey to other people.

DasContract is an ongoing research project focusing on making smart con-
tracts more comprehensible and accessible to a broader audience. It aims
to achieve this by providing a custom visual language that is technologically
independent and easy to understand even by people with no technical back-
ground.

The practical part of the thesis is a contribution to the research project, as
it consists of designing and implementing a visual smart contract editor. The
purpose of the editor is to provide a user-friendly application for modelling
smart contracts using the DasContract language and converting them into a
specific smart contract platform code.

Structure of the Thesis
Chapter 1 covers the current state of the DasContract project and related
technologies, like blockchain and smart contracts. Chapter 2 introduces the
Blazor framework and compares the technologies that can be used to deploy
web apps as standalone applications – Electron, Progressive web applications
and Blazor Hybrid.

The third chapter contains the analysis, design and implementation of the
DasContract Editor case study. Finally, chapter 4 describes which standalone
app deployment technology has been chosen and the steps needed to convert
the implemented web application.

2

Chapter 1
Review of DasContract and

Related Technologies

This chapter mainly focuses on introducing the reader the the DasContract
research project. In section 1 and 2, the technologies that the DasContract
projects builds upon, blockchain and smart contracts are briefly presented.
Section 3 provides a summary of the goals of the DasContract project and the
current state of the research.

1.1 Blockchain

From a technological viewpoint, blockchain is simply a set of data blocks
that are publicly distributed over a peer-to-peer network [2]. That means
blockchain can be viewed as a decentralized database – it provides a way to
store and retrieve data without the need for a central authority. When a
new data block is added to the blockchain, it must contain a cryptographical
hash of the block that was previously last. The blocks then form a chain, all
containing a unique hash of their “parent” block – hence the term blockchain.
The internal structure of a data block can be seen in Figure 1.1.

1.1.1 State Synchronization and Immutability

The decentralization introduces a challenge in terms of all participants having
to agree on the contents of the blockchain, with minimalized risks of mali-
cious participants manipulating the data contents in their favour. To prevent
misuse, most blockchain implementations employ the following set of rules to
confirm the validity of a newly added block [3]:

1. It must contain the hash of the previous block.

3

1. Review of DasContract and Related Technologies

Hash of
block #i-1

Timestamp

Nonce

Data hash

Hash function

Header

Block #i

Data

Hash of
block #i-1

Timestamp

Nonce

Data hash

Header

Block #i+1

Data

Figure 1.1: Structure of the data blocks in a blockchain.

2. A subset of the block’s cryptographic hash must be some determined
constant (for example, the hash must start with 20 zeros). This is
achieved by finding a special number (called nonce) that produces the
hash with the desired subset when appended to the data block. Be-
cause the hash function is cryptographic and thus not reversible, the
only way to find this number is to manually iterate through the possible
combinations, making it a computationally demanding task.

3. Based on the nature of the stored data, there might be additional checks
on the data content itself. For example, if the blockchain stores financial
transactions, then each transaction must be digitally signed by the in-
volved parties and must be valid in regards to their transactional history
(cannot spend more than they own).

The consequence of the first rule is that altering an existing block in the chain
is computationally not feasible if enough blocks have already been chained
behind it. Changing the contents of the block would not only alter the hash
of the block itself, but it would also alter the hash of the next block and all
the other blocks down the line, as the hash of a block is partly computed from
the hash of its parent block. That means that all of the nonces would have to
be recomputed.

The second rule means that adding a new block into the blockchain is
not an instant process, as finding the nonce requires a significant amount of
computational power. When someone wants to add data to the blockchain,
they broadcast this request to all network nodes that wish to participate in
computing the nonce. These nodes are called miners. Once the miner has
gathered enough valid requests, it compiles them into a block and tries to
compute the nonce. When one lucky miner manages to guess the correct
nonce, it broadcasts the new block to the rest of the network, requesting them
to update their local blockchain.

4

1.2. Smart Contracts

Since the rules do not define the order in which the incoming data should
be compiled into blocks, diverging forks may occur in the chain (different
nodes are broadcasting different chains). If that happens, then the longest
one is chosen as the “correct” chain. Together with the rules for block val-
idation, this forms a system of voting for the “correct” version of the chain
based on computing power. A malicious attacker might be able to produce
a different version of the chain, but they would have to keep computing new
blocks to maintain the longest chain’s position. As long as they do not own a
majority of the computing power in the network, this chain will be eventually
outperformed by the honest nodes.

1.1.2 Cryptocurrency
To this day, the most well-known usage of blockchain technology is cryp-
tocurrency. Cryptocurrency blockchain implementations store digitally signed
transactions between participants. New cryptocurrency is minted with each
new block as a reward to the miner that found the correct nonce and thus cre-
ated the block. Some cryptocurrencies, such as Bitcoin, have implemented
a hard cap on the number of coins in circulation; other cryptos, such as
Ethereum, limit the amount of cryptocurrency introduced per year.

Bitcoin was notably the first implementation of the blockchain technology,
as the author (or authors, the real identity of the author is unknown) pro-
posed a concrete solution to the distributed ledger problem [4]. Since then,
the number of cryptocurrencies has skyrocketed, with a plethora of different
blockchain implementations. As of writing this thesis, a popular tool for mon-
itoring cryptocurrencies, CoinMarketCap, provides an overview of over 9000
cryptocurrencies.

1.2 Smart Contracts
The term “smart contracts” was first coined by Nick Szabo in 1994 [5], long
before the blockchain technology was conceptualized. Szabo proposed that
cryptography and digital protocols could be used to automate the interaction
between parties, based on a predefined agreement, in a legally binding way.

The concept of smart contracts is not tied to any particular technology.
Still, blockchain has proven to be an excellent platform for implementing smart
contracts, as it allows smart contracts to utilize the properties of blockchain
mentioned in the previous section – blockchain smart contracts are transpar-
ent, decentralized and very resistant to tampering. This means that block-
chain smart contracts can safely and automatically facilitate defined agree-
ments between multiple parties without the need for a trusted intermediary [6].

Currently, one of the most popular platforms for deploying smart con-
tracts is the Ethereum blockchain project [7]. Ethereum has been defined
as a distributed state machine, which stores its machine code and state in

5

1. Review of DasContract and Related Technologies

the blockchain. The machine code is in specialized bytecode that is executed
inside of the Ethereum virtual machine (EVM) [8].

The Ethereum smart contracts can be written using specialized program-
ming languages that compile into the EVM bytecode [9]. One of the most
commonly used languages for Ethereum development is Solidity, an object-
oriented language mostly inspired by C++ syntax. Another popular language
is Vyper, which describes itself as a contract-oriented pythonic language. It
deliberately provides fewer features than Solidity to make contracts easier to
audit and more secure [10].

1.3 DasContract
Blockchain smart contracts have turned out to be a promising technology that
could cause a major breakthrough in conducting legal contracts. Most impor-
tantly, utilizing blockchain smart contracts would not require trust in indi-
viduals, organizations or the government, as smart contracts are autonomous
and immutable. This would eliminate the need for a trusted middleman to
mediate the terms of the contract, which would lower the cost and complexity
of the process and would also prevent potential abuse [11].

Until smart contracts can be adopted on a mass scale, several caveats
will need to be addressed. The DasContract project addresses one of the
caveats, the difficulty of creating smart contracts, and proposes a solution.
The current smart contract platforms, such as Ethereum [7], only provide
specialized programming languages for creating smart contracts. This makes
smart contracts difficult to create and, more importantly, challenging to read
and understand [11].

DasContract is an ongoing research project with the primary objective of
providing a high-level platform for defining, deploying and managing block-
chain smart contracts [12, 13]. The proposed approach of the DasContract
project to deliver such a platform can be seen in Figure 1.2. It consists of
three parts [13]:

Human Understanding This is where the contract is formally specified in a
way that can is legally binding and understandable by all parties without
the requirement of extensive technical or legal knowledge. The abstract
DasContract language that allows defining contracts in such a way is
further described in subsection 1.3.1. An editor application, mentioned
in subsection 1.3.4, is also needed to model contracts using the DasCon-
tract language.

Technical Implementation Once the contract is conceptually defined, it
can be automatically converted into executable smart contract code and
deployed onto the blockchain. The converters are mentioned in subsec-
tion 1.3.2.

6

1.3. DasContract

Legal Text
+

Formal
Models

A Person

A Company

A Legal
Authority

A Smart
Contract

CodeCode
Generation

A Blockchain
A Contract

Human Understanding Technical Implementation Digital Interaction

Figure 1.2: Concept architecture of DasContract. [13]

Digital interaction Once the contract is deployed, the affected parties are
provided with an interface to interact with the contract. The approach
to providing such an interface is described in subsection 1.3.3.

1.3.1 DasContract DSL
The building stone of the project is the DasContract visual domain-specific
language (DSL). It allows defining smart contracts in a way that is easier
to comprehend even by non-technical users, as opposed to defining smart
contracts using code. It also aims to separate the contract model from a
specific SC platform. An overview of the metamodel, represented as a UML
class diagram, can be seen in Figure 1.3. The metamodel can be split into
three parts, which are further described in the following subsections.

Process model

The process model visually describes the flow of rules and user activities in the
contract. It uses an extended subset of the BPMN [14] 2.0 level 3 notation [13].

A process model consists of elements that are connected using directional
sequence flows. When a process element is successfully completed or evaluated,
the execution continues in the direction of the outgoing sequence flows. All
process elements and sequence flows must be placed into a process. Multiple
processes may be defined in a single contract; interaction between them can
be done using call activities.

The process elements can be classified into three categories: events, gate-
ways and tasks. Gateways control the process flow by evaluating a condition
or by starting/synchronizing parallel flows. Start events are used to initialize
new flows, whilst end events are used to terminate them. A timer boundary
event can be attached to a task to redirect the flow if the task is not completed
in a defined time frame.

7

1. Review of DasContract and Related Technologies

1 0..* 1 0..*
Property

+ Id: string

+ Name: string

+ IsMandatory: boolean

+ IsCollection: boolean

+ Type: PropertyType

<<Enumeration>>

PropertyType

Int
Uint
Bool
String
DateTime
Address
AddressPayable
Data
Entity

Contract

+ Id: string

+ ProcessDiagram: string

10..*

Process

+ Id: string

0..*

1 Source

1

0..*

1

1

1 0..*

ProcessRole

+ Id: string

+ Name: string

+ Description: string

SequenceFlow

+ Id: string

+ Name: string

+ Condition: string

0..*

0..*

ProcessUser

+ Id: string

+ Name: string

+ Description: string

0..*

0..*

C
an

di
da

te
R

ol
es

Entity

+ Id: string

+ Name: string

Task

ExclusiveGatewayParallelGateway

Gateway

1

0..*

0..*

0..*

UserTask

+ Id: string

+ Name: string

C
an

di
da

te
U

se
rs

As
ig

ne
e

ServiceTask

+ ImplementationType: string

+ Configuration: string

1

0..*

D
ef

au
ltS

eq
ue

nc
eF

lo
w

BusinessRuleTask

+ BusinessRuleDefinitionXml: string

ScriptTask

+ Script: string

ProcessElement

+ Id: string

+ Name: string

0..*

1 Target

StartEvent EndEvent

Event

1

1

UserForm

+ Id: string

FormField

+ Id: string

+ Order: int

+ Type: FormFieldType

+ DisplayName: string

+ IsReadOnly: boolean

+ PropertyExpression: string

+ CustomConfiguration: string

1 0..*

<<Enumeration>>

FormFieldType

Property
Custom

0..*

1

StartForm

Figure 1.3: The DasContract DSL metamodel. [12]

8

1.3. DasContract

Script tasks are used to automatically execute logic when reached by the
flow. Business rule tasks allow defining complex business logic using the De-
cision Model and Notation (DMN). User tasks allow to define the point of
interaction with the contract by the user. The interaction is described in
more detail in the users and forms model subsection.

Data model

The data model defines data structures that can be referenced in the process
and forms models. The data model can contain three kinds of data types [12]:

Entity Serves the purpose of a regular data structure that can contain any
number of properties. The supported property types are: int, unsigned
int, boolean, string, date time, address, reference. The reference prop-
erty can contain a reference to any other entity, enum, or token. All
properties can also be defined as an array, or dictionary.

Enum Is used to define an enumeration of string values.

Token Is used to represent blockchain tokens. Similarly to the entity data
type, the token data type can also contain properties. Special token
attributes, the symbol and fungibility, can also be specified.

Forms model

User tasks represent a point where an interaction by a contract party is re-
quired. The party might need to confirm an action, but they might also need
to provide additional information. The forms model allows formalising the
form presented to the party when interaction with a given user task is neces-
sary.

The model serves two purposes:

• It is used to generate an off-chain graphical user interface (GUI) for easy
user interaction with the deployed contract.

• It is also used to define the internal parameters of the on-chain pro-
cedures and bind the input parameters to the data model, making the
input data persistable.

1.3.2 Smart Contract Converters
A practical area of the project is the implementation of algorithms for convert-
ing the DasContract DSL into code deployable on a concrete smart contract
platform. Two converters are currently in development for Solidity[15] and
Plutus[16] blockchain platforms.

9

1. Review of DasContract and Related Technologies

1.3.3 Forms Wallet and Editor
An approach to designing the user forms model has been demonstrated in [17].
The work has proposed a text-based approach to creating the forms model,
powered by a custom domain-specific language (DSL). Automatic conversion
of the model into an off-chain graphical user interface has also been imple-
mented.

Lastly, a proof-of-concept DasContract wallet for Ethereum, which con-
nects the generated user form to the deployed SC, has been introduced.

1.3.4 DasContract Editor
An integral part of the DasContract project is an application for creating and
editing DasContract models in a user-friendly manner. It should also provide
a built-in interface to allow conversion of the model into a target blockchain
smart contract code.

An editor for an older version of the DasContract language was created
in [18]. It is built using the server-side Blazor framework with a backend server
to handle active connections and store user sessions. Since the publication of
the older version of the editor, the Blazor framework has officially released a
new hosting model, Blazor WebAssembly, which allows the web applications
to entirely run inside of the browser (Blazor hosting models are described in
greater detail in subsection 2.1.2).

The DasContract project aims to shift the focus from dependence on a
backend server to running the application fully on the client-side. This would
not only improve the scalability of the application, but it would also provide
an opportunity to make the web app deployable as a standalone offline-capable
application.

One of the goals of this thesis is to provide an editor for a newer version of
the DasContract language that introduces support for multiple processes, user
and forms model, additional process elements and more. The new editor is
planned to be implemented using Blazor WebAssembly, eliminating the need
for a backend server and allowing the app to function in offline mode. The
new editor should also be available both as a web and standalone application.
Furthermore, the new editor should provide a simpler, more streamlined user
interface when modelling for increased effectiveness and user experience.

10

Chapter 2
Blazor Framework and

Standalone App Development

The first section of this chapter introduces the Blazor framework, which will
be used to implement the web version of the DasContract Editor.

As mentioned in the introduction, web applications can be easily accessed
using only a web browser. However, this ease of access could also carry risks for
the user – untrusted websites might contain malicious code. For this reason,
browsers employ a technique known as sandboxing. In order to avoid security
risks, untrusted code is run in an environment with restricted access to the
operating system [19]. For example, the Chromium browser project runs all
website code in a sandboxed process, which only allows free access to CPU
cycles and memory. As illustrated in Figure 2.1, access to other processes
or resources, such as the filesystem, is not permitted inside of the sandboxed
process [20].

The downside of this security feature is the limited capabilities of web
apps compared to native applications. Another drawback of web applications
is their strong dependence on internet connection. User experience can be
negatively impacted if the connection is slow or unreliable. In order to enjoy
the “best of both worlds”, several technologies have emerged in the past years
that provide the means to deploy web apps as standalone applications whilst
preserving the web codebase.

One of these technologies is directly tied to the Blazor framework, so it
is mentioned in subsection 2.1.2. Another two technologies are explored in
sections 2.2 and 2.3. Finally, the technologies are compared in section 2.4.

11

2. Blazor Framework and Standalone App Development

Figure 2.1: The restriction model in chromium-based browsers. The renderer
processes are not allowed to directly communicate between each other, or with
the file system [21].

2.1 Blazor

Blazor [22] is an open-source framework that allows to develop web applica-
tions using the C# programming language. It is a part of the powerful .NET
ecosystem, which is a developer platform consisting of tools and libraries for
building cross-platform applications [23].

To generate the markup the browser uses to render the page, Blazor uti-
lizes a special syntax, Razor [24], for embedding .NET code into webpages.
The syntax is a combination of Razor markup, C# code and HTML. During
runtime, the Razor and C# expressions are evaluated and converted into plain
HTML, which is then rendered by the browser.

The primary building blocks of Blazor apps are components. Typically
written using the Razor markup, they allow to define flexible UI rendering
logic and handle user events. They are fully modular, which means that they
can be nested, reused in the project, or even across different projects. They can
also be shared and distributed as NuGet packages, allowing other developers
to reuse them [22].

12

2.1. Blazor

2.1.1 Dynamically Interacting With the Browser Model

During most interactions with a web application, user actions usually only
result in minor changes to the underlying web HTML document. Therefore,
it would be rather wasteful to reload the entire HTML document every time
a change is made. For this reason, modern web browsers build a representa-
tion of the document in memory, called the Document Object Model (DOM).
DOM then exposes a programming interface, allowing external scripts to dy-
namically modify the document [25].

To communicate the changes that need to be done to the DOM, Blazor
utilizes an abstraction layer called the render tree. It is a lightweight represen-
tation of the browser’s DOM, allowing changes to be made to the document
more efficiently and flexibly [22, 26]. Several changes may be done in the
render tree during a single update cycle. At the end of each update cycle, the
smallest set of DOM edits necessary to reflect the changes is calculated [27].
Blazor components are converted into the render tree automatically, but the
tree can also be modified programmatically if necessary.

2.1.2 Hosting Models

Blazor provides three different hosting models that determine how the content
is built and delivered to the target platform and how the user events are
handled. The Razor syntax is identical across the hosting models, which
means that components can be easily shared and reused among the different
hosting models.

Blazor Server

In the Blazor server hosting solution, also known as server-side Blazor, the
app logic is run on a server in an ASP.NET core app. The server builds a
render tree for each connection and periodically synchronizes it with the DOM
in the browser, as shown in Figure 2.2.

The communication between the server and browser is handled over a
connection in the SignalR standard, which is established during the initial
request to the website. All UI updates, events and javascript calls in the
browser are then handled over the established connection. The connections are
resilient to temporary network interruptions, as the server stores disconnected
connections for a configurable interval[28].

Since most of the computations are done on the server, technical require-
ments on the end user’s device are very low. On the other hand, scaling the
app is more costly and complex, as the server must actively handle each open
connection.

13

2. Blazor Framework and Standalone App Development

Figure 2.2: Blazor server hosting model schema [22].

Blazor WebAssembly

Blazor WebAssembly, illustrated in Figure 2.3, runs its code and interacts
with the DOM directly in the browser. It does so by compiling the source code
into WebAssembly (WASM), which is a low-level bytecode format capable of
running in modern browsers at near-native speed [29, 30]. It is also worth
noting that C# is not the only language that can be compiled into WASM;
other languages such as C++, TypeScript, or Rust are also fully supported,
with many still being in active development [31].

When the browser produces the initial request, it gets sent the WASM-
based .NET runtime along with the app’s assemblies and dependencies. No
further communication with the server is required beyond that point, which
means that the app remains functional even if the internet connection is lost
(unless an external data source needs to be accessed, of course). If needed, the
app can interact with endpoints over the network, using a variety of protocols,
such as web API or SignalR [28].

The client-side Blazor app can be categorized as a static web application –
the web content files are delivered directly to the browser without any custom
server-side alterations [32]. The app can thus be deployed in a serverless
environment, as a dedicated ASP.NET Core web server is not strictly required.

Since the computational workload is shifted to the end user’s device, the
requirements for capable hardware and software are higher than for Blazor
Server apps. The initial download size is also much higher, as the .NET
runtime and assemblies of the app must first be loaded [27]. On the other
hand, the performance no longer suffers from network latency once the app
fully loads.

14

2.1. Blazor

Figure 2.3: Blazor webassembly hosting model schema [22].

Blazor Hybrid

Blazor provides a hosting model, Blazor Hybrid, that allows direct deploy-
ment as a native client-side application. As shown in Figure 2.4, by using an
embedded web view, Blazor Hybrid makes it possible to render Razor com-
ponents directly in a native app on both mobile and desktop platforms. This
means that components that work with server-side and client-side Blazor also
work with this hosting model. Since these apps are not run in the browser
sandbox, they can leverage the full capabilities of the native platform, such as
access to the file system. It also means that WebAssembly is not needed, as
the Razor components can be run directly in the native app. [28, 33]

The disadvantage, when compared to the other two hosting models, is that
separate apps must be built, deployed and managed for each platform. It is
also worth noting that as of writing this thesis, Blazor Hybrid is in preview
and is not recommended for use in production environments. [28]

2.1.3 JavaScript Interoperability
While most common use cases can be handled entirely in the Blazor’s .NET
ecosystem without needing to write a single line of JavaScript, specific ways
to interact with the browser are still only possible using JavaScript, such as
accessing the browser’s local storage. Another reason for needing to be able to
execute JavaScript code is the vast number of js libraries that can be leveraged
to speed up development.

15

2. Blazor Framework and Standalone App Development

Figure 2.4: Blazor hybrid hosting model schema [28].

Luckily, Blazor supports JavaScript interoperability – JavaScript can be
called from .NET and vice versa. It is also supported for both client-side and
server-side Blazor. This allows the developer to manipulate the DOM directly
and to integrate JavaScript libraries into their codebase.

2.2 Electron
Electron is an open-source framework that makes it possible to deploy web-
based applications as standalone desktop applications. It achieves this by
embedding Chromium and Node.js into its binary format [34].

Chromium is an ongoing open-source browser project. It serves as a code-
base for many popular modern browsers, such as Google Chrome, Opera, or
Microsoft Edge. The goal of the project is to provide a “safer, faster and more
stable way for all Internet users to experience the web ” [35].

Node.js is an open-source JavaScript runtime environment, primarily de-
signed to build scalable asynchronous network applications [36]. This allows
the developers to build both the frontend and backend of an application us-
ing JavaScript. As opposed to running JavaScript in the browser sandbox,
Node.js provides extended functionality, such as access to the filesystem.

2.2.1 Process Model
Electron apps run in a multi-process model, which is inspired by the architec-
ture of Chromium. As shown in Figure 2.5, the architecture consists of two
types of processes [37]:

16

2.2. Electron

Figure 2.5: A top-level view of the process hiearchy in Electron [38].

Main process The primary purpose of this process is to create and manage
application windows. It is launched in the Node.js environment, which
means it has access to the extended system APIs. It can directly interact
with the render processes and provide data to them.

Render process Each open app window gets assigned a render process,
which is responsible for rendering the content. Unlike the main pro-
cess, render processes do not have direct access to the Node.js APIs.

2.2.2 Context Isolation and Sandboxing
Each render process can attach a preload script, which is executed before
the page is rendered. The preload scripts are granted access to the Node.js
APIs. For security reasons, the scripts with elevated rights run in a separate
context than the websites loaded inside the render processes. This prevents the
potentially unsecured website code from having direct access to the powerful
Node.js APIs. A context bridge can be used to selectively expose parts of the
API between contexts [39].

Electron also uses inter-process communication (IPC) to allow messaging
between the main and renderer processes. The communication is done over
bidirectional messaging channels, with the the access to the messaging API
being allowed only to the preload scripts inside of the renderer process. The

17

2. Blazor Framework and Standalone App Development

following communication patterns can be used to exchange messages between
the processes [40]:

Renderer to main (one-way) The renderer sends a message to the main
process without expecting a response.

Renderer to main (two-way) The renderer sends a message to the main
process and awaits a response from the main process.

Main to renderer The main process sends a message to a specified renderer.

Renderer to renderer Direct communication between renderers is not pos-
sible by default. In order to achieve this, the main process could be set
up to act as a message broker, forwarding messages between the render-
ers.

2.2.3 Distribution and Updating

In order to distribute Electron apps, they must first be packaged for the target
platform. This can be done manually with prebuilt binaries or using official
automatic build tools. Electron bundles both the Chromium and Node.js
libraries into the published application. This, on the one hand, means that
the end-users do not need to install additional software to run Electron apps,
but it also, on the other hand, negatively impacts the size and performance
of the application [41].

In terms of providing updated app versions to the users, Electron provides
several methods. The Squirrel framework, in combination with the auto-
updater module, is the officially recommended way to distribute these updates.

2.3 Progressive Web Apps
Unlike Electron apps, Progressive Web Apps (PWAs) are not built using a
standardized framework. PWAs are instead regular web applications that
adhere to a set of techniques and recommendations in order to utilize available
web technologies, making web apps more capable and reliable [42].

Web apps are easily discoverable by users and can be quickly shared among
users. Native apps, on the contrary, are richer in terms of features that can be
provided to the user. They are also able to function regardless of the internet
connection. The main goal of PWAs, as illustrated in Figure 2.6, is to combine
the benefits of each app type.

There is no official list of properties that a web app must satisfy in order
to be deemed as a PWA. Most commonly, these requirements include [42, 44,
45]:

18

2.3. Progressive Web Apps

Reach

C
a
p
a
b
ili
ti
e
s

Figure 2.6: Capabilities vs. reach of native apps, web apps and PWAs [43].

Network Independence Once the app has fully loaded, it should remain
functional even if the network becomes unreliable. The user should also
be able to access the content they have previously visited, even if they
are offline. When the user tries to access a page that has not yet been
loaded, the app should provide a custom offline page, keeping the user
immersed in the PWA experience.

Installability The user should be able to add a shortcut for the app directly
to their device. Futhermore, the app should be installable directly from
the browser. This shortcut should also open the app in a container that
is native to the underlying platform.

Discoverability The app should use the current web standards to describe
its content to the search engines, making them easier to discover by users
and more likely to be exposed by the search engines.

Responsive design The layout of the UI components should adapt to the
user’s viewport so that they can use the app comfortably.

Performance The app should load fast and stay fast when browsing through
the content.

Platform Independance The app should be able to function regardless of
the platform (Windows, Android, ...) and the user should be able to use
it comfortably regardless of the input type (mouse and keyboard, touch
screen, ...).

19

2. Blazor Framework and Standalone App Development

Figure 2.7: Dataflow of requests when using a service worker [42].

2.3.1 Service Workers

Service workers are one of the most significant technologies employed by
PWAs, making network-independent web apps a possibility. Service workers
are scripts that act as a proxy between the web application and the network,
intercepting requests made from the browser [46] (see Figure 2.7). They allow
the developer to control how the app should behave in specific network situa-
tions. For example, if the network becomes unreachable, instead of displaying
an error, the service can attempt to access a snapshot of the resources from
the cache and serve it instead.

Scope

All service workers have a defined scope that dictates which requests they
will be able to intercept. By default, service workers have control over the
scope their script is located in – for example, if a worker has a script at the
URL www.example.com/content/service-worker.js, it can intercept any
request that begins with www.example.com/content. It is also important to
note that only one service worker can be active per scope [47, 48].

Lifecycle

Service workers run on a different thread than the render process, making
them able to run in the background without blocking the UI layer. They also
have a lifecycle independent of the page’s lifecycle. When the user visits the
page for the first time, the service worker will be registered and installed. If
no errors occur in the script during installation, the worker goes through the
activation phase. These phases emit an event inside the service worker script
that allows actions to be performed (caching resources, clearing old cache).
The service worker stays activated even if the user fully closes and reopens the

20

2.3. Progressive Web Apps

Figure 2.8: Lifecycle of a service worker [47].

webpage, which means that these two phases occur only once in the lifetime
of the service worker [47, 46].

When activated, the service is in an idle state by default, waiting for re-
quests to be intercepted. If it stays idle for too long, the browser can temporar-
ily terminate it to save resources. It can be then brought back directly into
the idle state (it does not go through the installing and activation phases) [47].
A diagram of the described lifecycle can be seen in Figure 2.8.

Updating a service worker

When a user navigates to a site with an active service worker, the browser
checks whether the running service worker script matches the script it down-
loads from the site. If they do not match, it will install the new worker. The
new worker does not get activated right away; it instead goes into a waiting
phase while the old service worker remains in control. After the page is closed,
the old worker is terminated, and the new worker gets activated [47].

2.3.2 Web App Manifest
Another crucial part of all PWAs is an app manifest, a text file in the JSON
format. It describes how the app should appear and behave when installed

21

2. Blazor Framework and Standalone App Development

onto the device. The following entries are mandatory [49, 50]:

name Name of the installed application.

icons Icons of different sizes that will be used in the native environment
(home screen, app launcher).

start_url Defines where the app should start when it is launched.

display Allows to customize how the app is displayed in the native environ-
ment. The options are fullscreen, standalone (app opens in a stan-
dalone window that contains some control UI elements) and minimal-ui
(similar to standalone, but hides non-crucial UI elements).

The manifest may also contain several other optional entries. Most notable
ones include [50]:

short_name If both name and short name are defined, then the short name
is used on the user’s home screen, launcher, or other places where space
may be limited.

theme_color Sets the color of the tool bar on the target platform.

2.3.3 Supported Browsers and Platforms
Unfortunately, full support of all PWA features is inconsistent across the most
widely used browsers. Unlike Electron, however, PWA apps are installable
even on the mobile platform. Table 2.1 contains an overview of supported
features per browser.

It is worth noting that service workers are supported by all mentioned
browsers, which means that offline mode is implicitly supported. Installation is
supported on all major desktop platforms (Windows, Linux, Mac) and mobile
platforms (Android and iOS). Not all browsers on these platforms support
installability – Mozilla has abandoned all development of the feature on their
desktop Firefox browser [51].

2.4 Comparison of the Technologies for Standalone
Deployment

The approaches to deploying the client-side Blazor web app as a standalone ap-
plication, presented in the previous sections, are compared. Three approaches
to client-side app deployment were mentioned: Blazor Hybrid, Electron and
PWAs. The properties of each technology are discussed and compared in the
following subsections.

22

2.4. Comparison of the Technologies for Standalone Deployment

Browser Platform Supported features

Chrome Desktop Service Workers, Installable,
File System Access

Firefox Desktop Service Workers
Opera Desktop Service Workers, File System Access

Edge Desktop Service Workers, Installable,
File System Access

Safari Mac Service Workers, File System Access
Chrome for Android Android Service Workers, Installable
Firefox for Android Android Service Workers, Installable

Safari on iOS iOS Service Workers, Installable,
File System Access

Table 2.1: An overview of supported PWA features on the most popular
browsers [52].

2.4.1 Supported Platforms
This subsection compares the device platforms that each technology can tar-
get.

Electron apps are supported only on the desktop platforms (Windows, Linux
and Mac). [34]

Blazor Hybrid is planned to be supported on all the major desktop and
mobile platforms; however, Linux is not yet officially supported. [53]

PWAs are available on all platforms that support PWA-capable browsers (all
the major desktop and mobile platforms). A more detailed list of the
PWA-capable browsers can be seen in subsection 2.3.3. [52, 43]

2.4.2 Maintainability
An important measure is how much additional maintenance the client-side
solution would bring if it were deployed alongside the pure web version of the
application. Since all of the solutions use a web view or a web browser directly,
most of the web application code can be reused for the client-side application.

Electron apps use the Node.Js framework, so regardless of the web technol-
ogy being wrapped, additional javascript code needs to be written and
maintained to control the lifecycle of the application and the access to
the native platform features. [34]

Blazor Hybrid apps, similarly to the Electron apps, require an additional
codebase to be maintained to make full use of the capabilities of the
target platform. [33]

23

2. Blazor Framework and Standalone App Development

PWAs run directly in a browser instance; no platform-specific code is re-
quired. The only files that need to be maintained are the app manifest
and service worker code. [54]

2.4.3 Capabilities
This subsection compares the ability of each technology to access the native
features of its target platforms.

Electron apps can make full use of the native capabilities of the platform,
such as access to the file system or the ability to read sensor data on
mobile devices. [34]

Blazor Hybrid apps can also make full use of the native capabilities of the
platform. [28]

PWAs are constrained by very similar limitations as web applications when
it comes to their access to the native capabilities of the platform. Cer-
tain features, such as push notifications, are available. It is also worth
noting that new features, such as filesystem access, are being gradually
introduced. [43, 54]

2.4.4 Maturity of the Technology
This subsection summarizes whether the technologies are ready for production
workloads and whether they are still actively supported.

Electron has first been officially released in 2016 and is still in active devel-
opment. It is fully open-source, so anyone can contribute by opening an
issue or submitting a pull request in the GitHub repository. [55]

Blazor Hybrid has not yet been officially released and is not recommended
for production workloads. [33]

PWAs have first been adapted by Google in 2016 as a new development
standard. Other companies like Microsoft, Mozilla and Apple have also
provided support for PWAs in the following years [54]. Unfortunately,
Mozilla has withdrawn its support for PWAs for their popular desktop
browser, Firefox, in 2021 [51].

2.4.5 Distribution
This subsection describes whether separate installation packages for each plat-
form must be provided and how the installation packages are delivered to the
user.

24

2.4. Comparison of the Technologies for Standalone Deployment

Electron apps must be bundled into an installable app for each target plat-
form. The installer must then be distributed to the users, for example,
by using GitHub Releases feature [56]. Electron apps may also be pub-
lished to the Windows and Mac app stores. [34]

Blazor Hybrid apps must also be bundled for each target platform and dis-
tributed, similarly to the electron apps. [33]

PWAs have the benefit that they can be directly installed as a native app
by visiting the web version of the application. This means that the
distribution of PWAs is not platform-dependent, as they do not need to
be specially bundled and distributed. [54]

2.4.6 Size and Performance
The overhead of each technology in terms of storage requirements is men-
tioned in this subsection. Overall performance expectations are also briefly
mentioned.

Electron apps bundle Chromium and Node.js libraries with each distribu-
tion, which means that even simple applications require around 100 MB
of disk space. Since the apps run in a browser instance, their perfor-
mance is also limited as opposed to fully native apps. [34, 57]

Blazor Hybrid apps are still in prerelease, so no conclusive observations can
yet be made about the size and performance of the final product. Since
they run natively on the device, it is very likely that they will achieve
better performance than their browser-based counterparts. [33]

PWAs run in the browser, but unlike Electron, use the existing browser
installation instead of bundling it with each app. This means that PWAs
can be very lightweight in terms of storage space. Similarly to electron
apps, their performance is limited by running in the browser. [54]

25

Chapter 3
DasContract Editor Case Study

This chapter describes the development process of the DasContract Editor web
application. It does not cover the integration of a standalone app deployment
approach, as that is independent of the web app implementation and will
instead be covered in the next chapter. The chapter starts with an analysis of
the case study. Requirements are formalized in section 1, the top-level business
process is shown in section 2, and the use cases are described in section 3.

The second part of the chapter, oriented towards the design of the appli-
cation, begins with section 4. It describes the navigational structure of the
application and proposes the design of each page. Section 5 reveals an ar-
chitectural overview of the application. The following four sections provide
a detailed description of the structural design of essential parts of the ap-
plication, accompanied by class diagrams. The services used to manage the
contract data model and lifecycle are introduced in section 6. The design
of the process model page is described in section 7. Section 8 mainly covers
how the undo/redo functionality was achieved in the user model page. Lastly,
section 9 proposes a design for an easy-to-extend integration of the external
DasContract converters.

The final part of the chapter begins with section 10, which summarizes
the implementation process and mentions notable tools that were used and
libraries that were integrated. Last but not least, section 11 describes the
methods used for testing the application.

3.1 Functional and Non-Functional Requirements
This section contains the Functional (F) and Non-Functional (NF) require-
ments and also specifies features that are out of scope (OS) of this thesis
project. The requirements are categorized into five sections. The first section
defines the general requirements for how the app should behave and how the
opening of contracts should be handled. The second, third and fourth sec-

27

3. DasContract Editor Case Study

tions define the features needed to create models in the DasContract DSL.
The last section contains requirements for converting the DasContract DSL
into a smart contract on the target platform.

3.1.1 General Requirements

F1 – Create a new contract
The app allows the user to create a new contract, initialising a new
contract context and opening the modeller page.

F2 – Upload and open a contract
The app allows the user to upload an existing contract in the DasCon-
tract file format. The modeller page is then opened in a context defined
by the file.

F3 – Reopen a recently edited contract
The app allows the user to select a recently edited contract, which opens
the modeller page in a context defined by the serialized recent contract.

F4 – Browse and open example contracts
The app displays a library of example contracts to the user. The user can
select an example contract, which opens the modeller page in a context
defined by the example contract.

F5 – Save and download an open contract
Inside the modeller with an open contract context, the user can download
the contract as a file, allowing them to persist the serialized context on
their filesystem.

F6 – Rename a contract
The app allows the user to change the name of an open contract.

NF1 – Supported on modern desktop browsers
The app is fully functional on the latest stable versions of Edge, Firefox
and Chrome on Windows and Linux desktop platforms.

NF2 – Functional in offline mode
After the initial download of the application, no further internet con-
nection is needed for the app to stay functional.

NF3 – Installable
The app can be installed and launched in a window incorporated into
the native environment of the user’s platform.

28

3.1. Functional and Non-Functional Requirements

3.1.2 Process Section Requirements
F1 – Add, edit or remove a process

The app allows the user to add, edit or remove processes.

F2 – Add, edit or remove a process element
The app allows the user to add, edit or remove process elements using
an interactive visual interface that directly reflects the changes made by
the user. The added element must be a part of a process. The properties
of process elements are described in subsection 1.3.1.

F3 – Undo/redo an action
The app allows the user to undo or redo actions done in the process
editor (removing a process element, for example). The app does not
have to persist the history of changes between sessions.

F4 – Download an image representation of the process diagram
The app allows the user to download a diagram representing the process
in a bitmap and vector file format.

NF1 – Extensible interface to edit properties of elements
The user interface for editing properties of process elements is designed
to be highly extensible. It allows to add new fields and integrate complex
editors that might require a significant amount of screen space.

OS1 – Implementation of complex element editors
The developed app is supposed to provide support for integrating com-
plex element editors (for example, the user forms editor); however, im-
plementing all of them is beyond the scope of this thesis project.

3.1.3 Data Section Requirements
F1 – Add, edit or remove a data model element

The user can define the data model by adding, editing or removing a data
model element. The properties of data model elements are described in
subsection 1.3.1.

F2 – Display a visual representation of the data model
If the data model defined by the user is valid, then the app displays a
visual representation of the data model.

F3 – Download a visual representation of the data model
If the data model defined by the user is valid, then the app allows the
user to download the visual representation of the data model in a bitmap
and vector file format.

F4 – Undo/redo an action
The app allows the user to undo/redo actions in the data model editor.

29

3. DasContract Editor Case Study

3.1.4 User Section Requirements
F1 – Add, edit or remove users and roles

The user can add, edit and delete process users/roles using a graphical
interface.

F2 – Filter existing users and roles
The app allows the user to filter existing user/role records based on their
properties.

F3 – Undo/redo an action
The app allows the user to undo/redo actions done in the user section
editor.

3.1.5 Converter Section Requirements
F1 – Choose a target smart contract platform

The app allows the user to choose a target smart contract platform.

F2 – Convert into a smart contract
The app converts and displays the smart contract code based on the
chosen target platform.

F3 – Download the converted smart contract
The app allows the user to download the converted smart contract code.

OS1 – Converter logic
The logic required to convert the DasContract model into a smart con-
tract is an external dependency. The app only provides the DasContract
model to the converter and displays the result back to the user.

OS2 – Deployment of the contract
The app does not provide an interface to deploy the converted smart
contract. The user must download the converted smart contract code
and deploy it using the existing tools for the target platform.

3.2 Business Process
The general business process is visualized in an activity diagram in Figure 3.1.
Firstly, the user must choose a way to open the contract modeller. Up to four
different options are available to the user:

Open a new contract Initializes a new contract.

Open an existing contract Allows the user to upload a DasContract file
from their device. The contract is then opened if parsed successfully.

30

3.2. Business Process

Editor applicationUser

Select a way
to open a
contract

Upload a
dascontract

file

Create a new
contract

Load recent from
storage

Parse file

Parsing successful?

Contract
could
not be
opened

Load contract
from example

library

Open the
contract

Make
changes to

the contract

Save contract

Next
action

Select target
conversion
platform

Convert contract

Serialize
contract

Save into
local storage
and trigger
download

Close contract
Check for
unsaved
changes

Unsaved changes?
Display
warning
prompt

Close anyway?

Contract
closed with

unsaved
changes

Contract
closed

Download
resource

Prepare resource
and trigger
download

Display smart
contract code or

error prompt

Yes

No

open existing

open example

No

open new

No

open recent

Yes

Yes

Figure 3.1: Activity diagram describing the business process of the dascontract
modeler.

31

3. DasContract Editor Case Study

Open a recently edited contract The application shows a list of contracts
that have been recently edited by the user and allows to reopen them.

Open an example contract The application offers a library of example
contracts that can be opened and freely edited by the user.

Once the contract modeller is open, the user’s primary action is making
changes to the contract model via the graphical interface. The user can save
the contract directly in the application or download it as a DasContract file.
The user can also download any model diagrams in both bitmap and vector
formats.

If satisfied with the changes, the user can choose from a list of available
smart contract platforms to convert their contract. If the conversion is suc-
cessful, the code is displayed with the option to copy or download it as a file.
If the contract cannot be converted, an error prompt describes the issue.

The user can exit the application at any time, but they are alerted if they
try to exit with unsaved changes.

3.3 Use Cases
A use case diagram, constructed based on the functional requirements specified
in section 3.1, can be seen in Figure 3.2. It contains a single actor – the end-
user of the DasContract modeller.

Most of the use cases are self-explanatory, as the topic has already been
covered in the previous sections. Use cases 2 to 5 all include use case 1 (the
user must always have a contract open). The diagram does not name the
concrete steps the user can perform in terms of UC2. These steps include:

• Adding, editing, or removing a process.

• Adding, editing, or removing a process element.

• Adding, editing, or removing a process user or role.

• Adding, editing, or removing a data model element.

• Undoing or redoing an action.

3.4 User Interface Design
After analyzing the previous version of the editor, it has been decided to
create the design of the UI from scratch. The application is split into five
main pages that the user can navigate to and interact with. The entry point
of the application, called the landing page, contains the options to open a
contract.

32

3.4. User Interface Design

User

UC1 - Open a Contract

UC1.1 - Create a new
contract

UC1.2 - Upload an
existing contract

UC1.3 - Open a recent
contract

UC1.4 - Open an
example contract

UC2 - Edit contract

UC3 - Convert into
smart contract code

UC4 - Save contract

UC5 - Download a
resource

UC 5.1 - Download
dascontract file

UC5.3 - Download
converted code

UC5.2 - Download a
diagram image

«include» «include»

«include» «include»

Figure 3.2: Use case diagram for the dascontract modeler.

The goal of the new design is to make the interface as simple as possi-
ble, eliminating any unnecessary elements. When editing a contract in the
previous version of the editor, three different navigation bars were present
simultaneously – a top header for top-level navigation, a breadcrumb bar and
a bar for switching between model views. This took up valuable horizontal
space and reduced clarity.

Instead, the new design proposes to use a single header to contain all nav-
igations and tool items, such as buttons for saving and downloading. Namely,
the header should contain the following elements:

• Logo of DasContract. Clicking on it brings the user back to the landing
page.

33

3. DasContract Editor Case Study

• Name of the open contract. Clicking on it allows the user to edit it.

• Buttons to navigate between the process, data and user model pages.

• Button to convert a contract. It provides the user with the option to
convert the contract into any of the supported blockchain platforms.

• Button to save the open contract. This makes the current state of the
contract available and reopenable from the landing page.

• Button to download resources. The options are based on the page the
user is on (process diagram on the process page, for example). An option
to download the DasContract file is present on all pages.

Another design goal is to eliminate whole-page vertical scrolling (scrolling
where the header becomes hidden). Wherever possible, the components should
resize automatically to satisfy this criteria.

3.4.1 Landing Page
As specified in the functional requirements, the is presented with four options
to open a contract. The landing page, shown in Figure 3.3, contains buttons to
create a new contract, open an existing contract and browse example contracts.
The button to browse example contracts displays a list of example contracts
that the user can open. Lastly, the page contains a list of recently edited
contracts, sorted by the last updated date.

3.4.2 Process Model Page
The previous version of the editor required the user to use separate screens
for creating process elements and editing their properties. Whenever a new
process element was created, the user would have to navigate to a different
page and manually look for it in a list of elements to edit its custom proper-
ties. This reduced effectiveness and user comfort. To address this, the new
editor aims to allow editing of properties without having to switch windows
by displaying a resizable sidebar.

The process model page allows the user to define processes and process
elements using an interactive visual modeller. As shown in Figure 3.4, the
page is split into two primary parts. The left part contains the process model
editor, in which the user can add and organize the elements. The visual
process model editor will not be further specified, as it will be integrated in
the form of an external library.

Clicking any element in the process model editor displays the element’s
properties in the detail pane on the right side of the page. It contains the
custom DasContract model properties that the user can edit. The properties
are organized into tabs that can be navigated using buttons on top of the

34

3.4. User Interface Design

Editor

https://www.dascontract.io/editor

DasContract
Open from file

Create new

Browse examples

Recent contracts

EU Elections last edited 21/02/2022 16:30

Mortgage last edited 21/02/2022 16:11

Figure 3.3: Wireframe of the landing page of the modeler application.

Editor

https://www.dascontract.io/editor/process

Process model

 editor

Process
element detail

General

Edited activity type

Other tabs

Process Data Users Convert Save DownloadContract Name

Edited activity id

Figure 3.4: Wireframe of the process section of the modeler application.

35

3. DasContract Editor Case Study

detail pane. The tabs and contents of the tabs are customized based on the
type of the clicked element.

Some tabs might contain complex property editors that require a sizeable
amount of screen space, so the detail pane can be horizontally resized by the
user. The user can choose the preferred size ratio by dragging the divider
between the process model and process element detail. The rest of the section
describes the different types of detail tabs.

General Detail Tab
The general tab contains properties of primitive types (boolean, string, single-
choice or multi-choice enumeration, ...). The fields are further categorized into
sections, which are determined based on the type of the element:

All elements include text fields for editing their id and name.

Processes include a checkbox for specifying whether they are executable.

Multi-instance tasks include a single-choice select box for defining the loop
collection. They also include a text field for defining the loop cardinality.

Call activities include a single-choice select box for defining the called pro-
cess.

User tasks include fields for defining the assignee of the task and the can-
didate users and roles of the task. The assignee field is a single-choice
select box; candidate users and roles are multi-choice select boxes. The
section also contains a text field for defining the task’s due date.

Timer boundary events include a text box for specifying the time expres-
sion for triggering the event.

Script Detail Tab
Some process elements allow attaching custom script logic. The script tab
contains a text editor that supports basic features such as key shortcuts,
undo/redo, search and replace and syntax highlighting. The elements that
include a script tab are:

• Script task

• User task

• Process

• Sequence flow

36

3.4. User Interface Design

Business Rules Detail Tab
The business rule task includes this tab to allow the user to define com-
plex business rules using the Decision Model and Notation (DMN). The tab
contains an interactive visual modeller similar to the process modeller. The
modeller will be integrated using an external library.

User Form Detail Tab
User tasks represent points of interaction by the participants of the contract.
The user forms tab allows to define the types of input that the participant
(user) must provide to carry out the task. The forms model is defined using
a domain-specific language developed by Petr Ančinec [17]. The language
serves two purposes – it defines what types of input parameters the underlying
blockchain process will have, but it can also be used to automatically generate
a user interface to interact with the deployed contract.

The tab itself contains a text editor, in which the user form DSL can
be written. It also contains an option to render a preview of the user form
interface. When the preview is shown, it replaces the process model editor on
the left portion of the screen. That way, the user can make changes to the
user model definition whilst having a live preview of how the changes affect
the generated user form interface.

3.4.3 Data Model Page
The data model page is used to define the data structure of the contract.
The previous version of the editor used a GUI-based approach, in which the
user could define the entire data model using visual elements like buttons and
text boxes. While this approach is easy for the user to understand initially,
the model quickly becomes challenging to navigate as more data elements are
added. There was also no way to visually display the data model, making it
difficult to analyze and convey to other people.

Defining the Data Model
The new editor utilizes a different approach – instead of defining the data
model using GUI elements, it could be defined using a declarative domain-
specific language (DSL) in a text editor. While it might initially take the user
some time to familiarize themselves with the declarative language, it allows
to create models much more effectively. The text editor makes it possible to
easily search for keywords, undo/redo actions, and copy/paste elements.

The carrier syntax for the DSL is the Extensible Markup Language (XML).
The syntax of XML is human-readable and easy to understand. Thanks to
various available tools and libraries, parsing and validating XML is also very
straightforward.

37

3. DasContract Editor Case Study

An example of a data model definition is shown in listing 1. The root of
the XML document is the DataTypes element. It can contain any number of
the following child elements:

Entity An attribute IsRootEntity can be used to specify the root entity flag
(if the attribute is not defined, then it is false by default). It can also
contain any number of Property child elements.

Token Fungibility flag, issued flag and symbol can be specified using the
IsFungible, IsIssued and Symbol attributes, respectively. The mint
and transfer scripts can be specified using child elements MintScript
and TransferScript. Similarly to the entity element, it can also contain
any number of Property child elements.

Enum Can contain any number of Value elements. These elements are of
string type and contain the individual values of the enumeration.

The Token, Entity, Enum and Property elements also contain mandatory
attributes Id and Name. The values of the attributes must be unique.

The Property element mentioned above defines all of its data properties
as attributes. The mandatority flag can be specified as IsMandatory. Type of
the property can be specified as PropertyType using values single, collection,
or dictionary. Data type of the property can be specified as DataType. If the
value of DataType is reference, then a ReferencedDataType attribute must
also be specified with the id of the referenced data type.

Visually Representing the Data Model
In order to further improve the clarity of the defined data model, the designer
also automatically converts the DSL into a visual representation and displays
it alongside the data model definition. The layout of the page can be seen
in Figure 3.5, with the text editor being placed on the left and the visual
representation being displayed on the right. Similarly to the process section,
the vertical divider can also be dragged to adjust the ratio.

The structure of the visual diagram is based on a UML class diagram.
It displays each defined data type in a separate box. Each box contains the
type of the data type and its name; enums contain a list of their options;
Entities and tokens contain a list of their properties, displaying their type and
name; tokens also display the values of their symbol, fungibility and issuability
attributes.

Furthermore, if any entity or token contains a reference property, a rela-
tionship between the entity and referenced data type is displayed. An example
diagram based on the data model definition in listing 1 can be seen in Fig-
ure 3.6.

The generated diagram can also be downloaded in bitmap and vector for-
mats using the download button in the header.

38

3.4. User Interface Design

Editor

https://www.dascontract.io/editor/data

Data text editor Generated
data diagram

Process Data Users Convert Save DownloadContract Name

Figure 3.5: Wireframe of the data section of the modeler application.

<<token>>
CarNFT

+ car: Car

+ isFungible(): False
+ isIssued(): False
+ symbol(): HTWHL

<<entity>>
Car

+ brand: CarBrand
+ color: string
+ dateRegistered: dateTime
+ enginePowerKw: int
+ id: uint
+ isElectric: bool

<<entity>>
RootEntity

- cars: Car[]

references

references
«enumeration»

CarBrand

 BMW
 Lada
 Skoda
 Tesla

references

Figure 3.6: Converted visual diagram based on the example data model defi-
nition in listing 1.

39

3. DasContract Editor Case Study

<DataTypes>
<Token Id="Token_1" Name="CarNFT" IsFungible="false" IsIssued="false" Symbol="HTWHL">

<MintScript>Insert mint script here</MintScript>
<TransferScript>Insert transfer script here</TransferScript>
<Property Id="Property_3" Name="car" IsMandatory="true" PropertyType="Single"

DataType="Reference" ReferencedDataType="Entity_2" />
</Token>

<Enum Id="Enum_1" Name="CarBrand">
<Value>BMW</Value>
<Value>Lada</Value>
<Value>Skoda</Value>
<Value>Tesla</Value>

</Enum>

<Entity Id="Entity_1" Name="RootEntity" IsRootEntity="true">
<Property Id="Property_1" Name="Cars" IsMandatory="true" PropertyType="Collection"

DataType="Reference" ReferencedDataType="Entity_2" />
</Entity>

<Entity Id="Entity_2" Name="Car">
<Property Id="Property_2" Name="id" IsMandatory="true"

PropertyType="Single" DataType="Uint" />
<Property Id="Property_3" Name="brand" IsMandatory="true"

PropertyType="Single" DataType="Reference" ReferencedDataType="Enum_1" />
<Property Id="Property_4" Name="color" IsMandatory="true"

PropertyType="Single" DataType="String" />
<Property Id="Property_5" Name="enginePowerKw" IsMandatory="true"

PropertyType="Single" DataType="Int" />
<Property Id="Property_6" Name="isElectric" IsMandatory="false"

PropertyType="Single" DataType="Bool" />
<Property Id="Property_7" Name="dateRegistered" IsMandatory="true"

PropertyType="Single" DataType="DateTime" />
</Entity>

</DataTypes>

Listing 1: An example of a valid data model definition.

3.4.4 Users and Roles Model Page

This page is used to specify participants of the contract in the form of con-
tract users and roles. Roles have only two attributes – name and description.
Contract users contain a name, description, a blockchain address of the user,
and a list of roles assigned to the user.

While it would be possible to apply the same DSL approach as in the
data model section for defining the user model, it has been decided against
it. Unlike the data model, the user model is simple, with the only relation-
ships between elements being the role assignments. For that reason, a more
traditional GUI-based approach has been chosen.

As shown in Figure 3.7, the page is vertically split into two equal panes,
the left one containing the users and the right one containing the roles. New
roles and users can be added using a button, which creates a new form box
containing the definable properties.

Both the panes also contain a search bar, which allows to filter the records

40

3.5. Project Structure Overview

Editor

https://www.dascontract.io/editor/users

Process Data Users Convert Save DownloadContract Name

 Search

Users
Add user

Roles

Borrower

He is bald
Description

Marsellus Wallace
Name

0xBB519fDda55
Account address

Remove user

Add role Search

Roles

Remove role

Borrower
Name

The lenders from 4th division
Description

Figure 3.7: Wireframe of the user and roles section of the modeler application.

based on a provided keyword. The search matches a record if any of its
attributes contain the keyword.

3.4.5 Converted Contract Page
When the user chooses to convert the contract into a blockchain smart con-
tract, the DasContract model is delegated into a converter for the target
platform. An error prompt is displayed on the screen if the conversion fails,
describing why the conversion could not be done. If the conversion is success-
ful, the converted smart contract code is displayed to the user in a text editor.
The user can then download the converted code using the download button
in the header.

3.5 Project Structure Overview
The project is developed using the Blazor WebAssembly framework. The web
application is designed to run fully on the client’s device, which means that no
backend server is required, as the application can be entirely served as static
files.

The structure of the solution is shown in Figure 3.8. The main project
DasContract.Editor.Web contains four key namespaces. The Pages names-
pace contains the razor views responsible for rendering the pages the user
can navigate to. It utilizes the Shared package, which contains razor views
that are shared across pages, such as Layouts and the navigation menu. The

41

3. DasContract Editor Case Study

Components namespace contains all razor components that can be reused
across the application.

The business logic is contained inside of the Services namespace. It
provides interfaces for working with the contract data models, downloading
resources, interacting with javascript libraries, converting the contract and
so on. The services can be accessed from the razor views using dependency
injection. All of the services have a scoped lifetime, meaning that a single
instance of a service object is shared across all its clients.

All namespaces import an external project DasContract.Abstraction,
which contains the DasContract data model definitions and logic for serial-
ization and deserialization. The Services namespace also imports the con-
verters responsible for converting a DasContract model into blockchain smart
contract code for a specific platform.

The project also includes several javascript files, which primarily contain
methods for interacting with the javascript libraries used in this project. The
used libraries are mentioned in further sections.

3.6 Contract Management

The entire DasContract data model is stored in a class called Contract, which
is defined in the DasContract.Abstraction external namespace. The in-
stance of this class should not be directly exposed, as incorrect manipulation of
the contract might lead to inconsistencies and code duplications. Instead, the
contract can be indirectly accessed and updated using management interfaces
defined in the Services.ContractManagement namespace. The interfaces can
be seen in Figure 3.9.

The ContractManager class is responsible for managing the lifecycle of the
currently open contract. It implements methods to restore a contract from its
serialized form or to initialize a new contract. It also provides the contract
instance to the other management classes.

The IProcessModelManager provides an interface for manipulating the
contract process model. It is primarily used by the BpmnSynchronizer de-
scribed in the next section.

The IDataModelManager provides an interface for setting the contract data
model and retrieving information about it. Unlike other manager classes, it
does not provide methods to add individual data types, as the data model is
defined and parsed using the custom domain-specific language.

The IUserModelManager provides an interface for modifying and reading
the contract user model. It also exposes events that notify about users and
roles being added and removed.

42

3.6. Contract Management

DasContract.Abstraction

+ Contract

+ Data

+ Processes

+ UserInterface

DasContract.Editor.Web

Pages

+ BpmnEditor

+ DataEditor

+ GeneratedCode

+ LandingPage

+ UsersEditor

Shared

+ LandingPageLayout

+ MainLayout

+ NavMenu

Services

+ BpmnEvents

+ ContractManagement

+ Converter

+ EditElement

+ ExamplesLoader

+ JsInterop

+ LocalStorage

+ Resize

+ Save

+ UndoRedo

+ UserForm

+ UserInput

Components

+ Buttons

+ ProcessDetail

+ Select2

+ UserForms

Converters

DasContract.Blockchain.Solidity

DasContract.Blockchain.Plutus

«import»

«import»

«import»

«import»

«import»«import»

«import»

«import»
«import»

«import»

Figure 3.8: Package diagram view of the DasContract Editor.

43

3. DasContract Editor Case Study

ContractManager

- _dataModelManager: IDataModelManager {readOnly}
- _userModelManager: IUserModelManager {readOnly}
- _processModelManager: IProcessModelManager {readOnly}
- _jsRuntime: IJSRuntime
- _httpClient: HttpClient
- _saveManager: SaveManager
- _contractStorage: IContractStorage
- _converterService: IConverterService

+ InitAsync(): Task
+ IsContractInitialized(): bool
+ InitializeNewContract(): Task
+ SerializeContract(): string
+ RestoreContract(string): void
+ ConvertContract(string*): bool
+ GetContractName(): string
+ GetContractId(): string
+ SetContractName(string): void
+ CanSafelyExit(): bool
- SaveContract(object, EventArgs): Task
- ContractChanged(): void

«property»
Contract(): Contract
+ GeneratedContract(): string
+ SerializedContract(): string

«interface»
IContractManager

+ IsContractInitialized(): bool
+ InitAsync(): Task
+ InitializeNewContract(): Task
+ ConvertContract(string*): bool
+ CanSafelyExit(): bool
+ SerializeContract(): string
+ RestoreContract(string): void
+ GetContractName(): string
+ GetContractId(): string
+ SetContractName(string): void

«property»
+ GeneratedContract(): string

«interface»
IDataModelManager

+ SetContract(Contract): void
+ GetDataTypes(): IDictionary<string, DataType>
+ GetPropertyById(string): Property
+ GetCollectionProperties(): IList<Property>
+ GetDataModelXml(): string
+ SetDataModelXml(string): void

«interface»
IProcessModelManager

+ SetContract(Contract): void
+ GetAllProcessIds(): IList<string>
+ AddNewProcess(string, string): void
+ RemoveProcess(string): void
+ UpdateProcessId(Process, string): void
+ TryGetProcess(string, Process*): bool
+ GetProcessIdFromParticipantId(string): string
+ TranslateBpmnProcessId(string): string
+ IsElementIdAvailable(string): bool
+ TryRetrieveIElementById(string, string, IProcessElement*): bool
+ TryRetrieveIElementById(string, IProcessElement*): bool
+ TryRetrieveSequenceFlowById(string, string, SequenceFlow*): bool
+ TryRetrieveElementById(string, string, ProcessElement*): bool
+ TryRetrieveProcessOfElement(string, Process*): bool
+ AddElement(string, string, string): ProcessElement
+ RemoveElement(string): void
+ ProcessExists(string): bool
+ UpdateId(string, string, string): void
+ UpdateSequenceFlowSourceAndTarget(SequenceFlow, string, string, string): void
+ AddSequenceFlow(string, string, string, string): SequenceFlow
+ RemoveSequenceFlow(string): void
+ ChangeProcessOfElement(IProcessElement, string, string): void
+ SetProcessBpmnDefinition(string): void
+ GetProcessBpmnDefinition(): string

«interface»
IUserModelManager

+ SetContract(Contract): void
+ AddNewUser(): ProcessUser
+ AddNewRole(): ProcessRole
+ AddUser(ProcessUser): void
+ RemoveUser(ProcessUser): void
+ AddRole(ProcessRole): void
+ RemoveRole(ProcessRole): void
+ GetProcessUsers(): IList<ProcessUser>
+ GetProcessRoles(): IList<ProcessRole>

«event»
+ UserRemoved(): EventHandler<ProcessUser>
+ RoleRemoved(): EventHandler<ProcessRole>
+ UserAdded(): EventHandler<ProcessUser>
+ RoleAdded(): EventHandler<ProcessRole>

provides
contract to

provides
contract to

provides
contract to

Figure 3.9: The interfaces of classes responsible for managing the lifecycle of
the dascontract datamodel.

44

3.7. Process Modeller

3.7 Process Modeller
As mentioned in subsection 3.4.2, the process model will utilize an external
library to allow visual BPMN process modelling. This section describes the
approach to synchronizing process models and handling other incoming events
from the external library. It also covers the functionality of the process ele-
ment sidebar. Lastly, a solution to supporting the undo/redo functionality is
presented.

3.7.1 Synchronizing the Process Data Models
Since the DasContract language is an extension of BPMN, the data models
of the process elements contain additional properties that are not present in
the original bpmn-js data model. Three possible approaches to tackle this
problem have been identified:

1. Extending the javascript process element objects. Since javascript
objects can be dynamically extended with additional properties, extend-
ing the process data model directly in javascript would be possible. This
would, however, make it difficult to work with the process data model in
the .NET parts of the application, as it would require js interop calls for
each interaction. It would also shift the codebase away from the Blazor
framework into javascript, which is not desired.

2. Parsing the entire bpmn-js process model definition into Das-
Contract. A simple solution would be to parse the entire javascript
process data model into the .NET process data model. This approach is
unfortunately not very practical since the data models need to be syn-
chronized after every change made by the user. This would mean that
after every change in the bp mn-js model, the entire data model would
need to be parsed.

3. Listening to bpmn-js events and synchronizing the data model
on a per-event basis. The bpmn-js library provides an event bus,
which can be used to notify the .NET application about the process
model modifications. This way, the process data model can be selectively
synchronized without needing to parse the entire process data model.
The downside of this approach is the need for additional synchronization
logic. The synchronization logic also needs to be well tested, as a bug
could result in the two models becoming desynchronized.

The third option has been chosen as the most suitable for the current
scenario, as it preserves the .NET codebase and does not require the entire
model to be reparsed after every change.

The classes responsible for receiving and handling events can be seen in
Figure 3.10. The BpmnEventHandler class acts as the entry-point for the

45

3. DasContract Editor Case Study

«interface»
IBpmnEventListener

«event»
+ ElementClick: EventHandler<BpmnElementEvent>
+ ElementChanged: EventHandler<BpmnElementEvent>
+ ShapeAdded: EventHandler<BpmnElementEvent>
+ ShapeRemoved: EventHandler<BpmnElementEvent>
+ ElementIdUpdated: EventHandler<BpmnElementEvent>
+ ConnectionAdded: EventHandler<BpmnElementEvent>
+ ConnectionRemoved: EventHandler<BpmnElementEvent>
+ RootAdded: EventHandler<BpmnElementEvent>
+ RootRemoved: EventHandler<BpmnElementEvent>

+ InitializeHandler(): Task
+ HandleBpmnElementEvent(BpmnElementEvent): void

BpmnEventListener

+ InitializeHandler(): Task
+ HandleBpmnElementEvent(BpmnElementEvent): void

BpmnSynchronizer

- _eventHandler: IBpmnEventHandler
- _processElementManger: IProcessElementManager
- _editElementService: IEditElementService
- _contractManager: IContractManager

+ InitializeOrRestoreBpmnEditor(string): void
- OnRootAdded(object, BpmnElementEvent): void
- OnRootRemoved(object, BpmnElementEvent): void
- OnShapeAdded(object, BpmnElementEvent): void
- OnShapeRemoved(object, BpmnElementEvent): void
- OnElementIdUpdated(object, BpmnElementEvent): void
- OnElementChanged(object, BpmnElementEvent): void
- OnElementClicked(object, BpmnElementEvent): void
- OnConnectionAdded(object, BpmnElementEvent): void
- OnConnectionRemoved(object, BpmnElementEvent): void

«interface»
IBpmnSynchronizer

+ InitializeOrRestoreBpmnEditor(string): void

«interface»
IProcessModelManager

«interface»
IEditElementService

«interface»
IContractManager

propagates event
changes to

propagates event
changes to

consumes events of

propagates event
changes to

Figure 3.10: Classes responsible for handling incoming bpmn modeler events.

BPMN events, as it defines a method marked with the JsInvokable, allowing
javascript code to invoke the method. The method handles the javascript
event and, based on the type of the received event, executes one of the .NET
events it exposes.

The BpmnSynchronizer class listens to events invoked by the BpmnEvent
Handler, each being processed by a private method. These private methods
contain business logic for extracting the information about the changed el-
ements and calling the appropriate methods in the ProcessModelManager,
synchronizing the .net process data model with its javascript counterpart.

An example of an event being handled can be seen in Figure 3.11. The

46

3.7. Process Modeller

«javascript»

eventHandler

«javascript»

DotnetObjectReference

«.net»

BpmnEventHandler

«.net»

BpmnSynchronizer

alt

[elementType = "bpmn:Participant"]

[else]

«.net»

ProcessModelManager

OnShapeAdded
(BpmnElementEvent e)

AddElement(string
elementType, string

elementId, string processId)

AddNewProcess(string
processId, string participantId)

ShapeAdded?.Invoke()

HandleBpmnElementEvent
(BpmnElementEvent e)

invokeMethodAsync
(eventObj)

Figure 3.11: Sequence diagram showcasing how a bpmn event is handled when
a new shape is added in the visual modeler.

event is first caught in a javascript eventHandler, which extracts the rel-
evant information into a javascript object. The object is passed onto the
DotnetObjectReference object, which in simplified terms acts as a bridge
between javascript and .net. The HandleBpmnElementEvent method is called,
which looks at the type of the event and invokes the appropriate .net event.
BpmnSynchronizer consumes this event and, based on the type of the element,
calls the ProcessModelManager to either add a new process or a new process
element.

3.7.2 Element Detail Sidebar

As mentioned in subsection 3.4.2, clicking on an element in the process model
view opens a sidebar that allows the user to edit the properties of the selected
element.

To keep track of the currently selected element, EditElementService is
used. It contains a public field that allows to get and set the currently edited
element and also provides two events that notify about a new element being

47

3. DasContract Editor Case Study

assigned and about the element being modified. The razor views consume
these events, as the razor component needs to be rerendered whenever such
change happens.

To determine which element is currently selected, the javascript event han-
dler listens to an elementClicked event. This event is then delegated to
.NET and processed using the same structure described in the previous sub-
section. The BpmnSynchronizer tries to find the element object based on the
id provided in the event arguments and sets it as the edited element in the
EditElementService.

General tab

By default, every element detail contains at least one tab – the general tab. In
order to avoid code duplication, the general tab is rendered using nested razor
components, which are visualized in Figure 3.12. The hierarchy of the razor
views mimics the hierarchy of the contract element classes, allowing property
inputs such as ID and Name to be reused. If a new property or element were
to be added in the future, the razor component structure could also be easily
extended to accommodate this change.

Scripts tabs

Process elements such as script tasks, user tasks, and sequence flows require a
script tab for specifying additional logic. The tab will make use of an external
text editor library, which is further described in subsection 3.10.1.

Forms tab

The user task also contains a tab for defining user forms. Similarly to the
data model, the user forms can be defined using a custom XML-based DML.
The actual implementation of the forms tab content has been done in [17];
this work only integrates it into the editor.

Business rules tab

Business rule tasks allow defining custom business rules. As described in
subsection 1.3.1, this is achieved by using the Decision Model and Notation
(DMN) standard. An external library that allows visually modelling in the
notation will be integrated.

3.7.3 Supporting Undo/Redo Operations
The bpmn-js modeller natively supports the undo/redo functionality for all
actions performed by the user. When undo/redo request is triggered, the

48

3.8. User Model

ElementGeneralTab

ID textbox

Name textbox

TaskGeneralTab

UserTask
GeneralTab

Candidate roles

select

Assignee select

Candidate user

select

Call Activity
GeneralTab

Called process

select

Loop collection select

Loop cardinality textbox

If (Task.InstanceType = Multi)

ProcessGeneralTab

Is Executable
checkbox

TimerBoundaryEvent
GeneralTab

Timer type

select

Timer definition

textbox

Figure 3.12: A visualization of how the razor component views are nested
based on the type of the edited element.

modeller also invokes the events that correspond to the action done during
the undo/redo, keeping the javascript and .net process data models in sync.

The only obstacle was that when a delete action was undone, the readded
element lost all of its DasContract properties, as those exist only in the .NET
process data model. This was solved by storing deleted process elements in
memory. When a element-created event for a process element is handled,
it first checks whether the element’s id is not contained inside the list of
deleted objects. If the element is found, then it is restored, including all of
the DasContract properties.

3.8 User Model
In order to satisfy one of the functional requirements, all of the actions in
the user model page must be undoable. One of the most common ways of
implementing undo/redo functionality in object-oriented programming is to
make use of the command design pattern [58]. Instead of performing actions
directly (such as adding a new role), the actions are represented as instances

49

3. DasContract Editor Case Study

of classes called commands. A separate class is created for each type of action,
extending an abstract command class that defines a method to execute the
action. The command class can also define an undo method, which returns
the receiver of the action to the state prior to execution.

The benefit of using the class instances to represent actions is that exe-
cuted actions can be stored in a stack, allowing the commands to be retrieved
and undone when requested. To also support redo functionality, the undone
commands are simply moved from the undo stack into a redo stack.

The implementation of the command pattern can be seen in Figure 3.13.
An abstract command class UserModelCommand defines the Execute and Undo
methods, which are implemented by the concrete command classes. It also de-
fines a public property UserModelManager, which acts as the receiver of the ac-
tions. The commands are created, stored and executed in UsersRoleFacade.

3.9 Smart Contract Conversion
New conversion target platforms are expected to be added in the future, so it
is vital to minimalize the impact on existing code when adding a new target
platform. There is no standard interface that all converter packages must
adhere to, which means custom code needs to be written for each converter
to handle it. To encapsulate this custom code and to allow converters to be
interchangeable in the rest of the application, the strategy design pattern [59,
58] can be employed.

The strategy design pattern says that different behaviours, which need to
be assigned dynamically, should adhere to a common interface. Each be-
haviour should then implement a concrete class containing the logic. By
defining a common abstract class, called ConversionStrategy, which acts
as a base class for the concrete conversion methods, the logic for handling the
conversion is encapsulated.

The strategies can be then used interchangeably and dynamically assigned.
When a conversion platform needs to be supported, a new concrete strategy
class is simply added. The only changes that need to be made to the existing
code are in the NavMenu class.

3.10 Implementation and Used Technologies
The implementation of the application went as expected without any major
issues. As previously mentioned, the app was implemented in the Blazor
WebAssembly framework.

To style the generic components of the application, Bootstrap [60], a pop-
ular open-source CSS framework, was used. Custom style sheets were written

50

3.10. Implementation and Used Technologies

UserModelCommand

UserModelManager: IUserModelManager

+ Execute(): void
+ Undo(): void

AddRoleCommand

- AddedRole: ProcessRole

+ Execute(): void
+ Undo(): void

UsersRolesFacade

- _undoableCommands: Stack<UserModelCommand>
- _redoableCommands: Stack<UserModelCommand>

+ OnUserRoleAssign(string): void
+ OnUserRoleUnassign(string): void
+ OnUserAdd(): void
+ OnUserRemove(ProcessUser): void
+ OnRoleAdd(): void
+ OnRoleRemove(ProcessRole): void
+ Undo(): void
+ Redo(): void

RemoveRoleCommand

- RemovedRole: ProcessRole

+ Execute(): void
+ Undo(): void

AddUserCommand

- AddedUser: ProcessUser

+ Execute(): void
+ Undo(): void

RemoveUserCommand

- RemovedUser: ProcessUser

+ Execute(): void
+ Undo(): void

UnassignRoleCommand

- UnassignedRole: ProcessRole

+ Execute(): void
+ Undo(): void

AssignRoleCommand

- AssignedRole: ProcessRole

+ Execute(): void
+ Undo(): void

UserModelManager

is receiver ofexecutes

Figure 3.13: Class diagram of the undo/redo functionality for the users and
roles editor page.

51

3. DasContract Editor Case Study

ConversionStrategy

ConvertedCode: string
ErrorMessage: string

+ GetConvertedCode(): string
+ GetErrorMessage(): string
+ Convert(Contract): bool

PlutusConversionStrategy

+ Convert(Contract): bool

SolidityConversionStrategy

+ Convert(Contract): bool

ContractManager

ConverterService

+ ConvertContract(Contract): boolean
+ GetConvertedCode(): string
+ GetErrorMessage(): string

«interface»
IConverterService

«property»
+ ConversionStrategy: ConversionStrategy

+ ConvertContract(Contract): boolean
+ GetConvertedCode(): string
+ GetErrorMessage(): string

NavMenu

sets strategy

executes

converts using

Figure 3.14: Classes related to contract conversion

using Sass [61], which is an extension language for CSS that supports advanced
features such as variables, mixins and functions.

Third-party javascript libraries were managed using the npm package man-
ager. The libraries were integrated using bridge javascript files that are called
from the .NET codebase. The javascript files were bundled using webpack,
which compiled the files including their module dependencies into minified
static javascript files.

The rest of the section mentions the third-party libraries that have been
used and describes the process of integrating them.

3.10.1 Text Editor Integration

As mentioned in the analysis chapter, a text editor is required in several areas
of the application. The Monaco editor [62], which powers the popular VS Code
text editor, has been chosen as a suitable library. The library is written in
javascript, so javascript interoperability must be used to integrate the library.
A project called BlazorMonaco [63] makes the Monaco editor available as a
Blazor component, making integration into Blazor applications easier.

52

3.10. Implementation and Used Technologies

3.10.2 Data Model Diagram Generation

One of the requirements for the data model definition section was to render
a visual representation of the data model. Mermaid [64], an open-source
javascript library, provides the functionality to generate UML diagrams and
flowcharts from text definition.

One of the supported diagram types is the UML class diagram. Since
Mermaid uses a custom language for defining the diagram structure, the data
model definition needs to be converted into this language. The conversion
is handled by the DataModelConverter service. It accepts a dictionary of
the defined datatypes and returns a string that can be used to generate the
diagram.

3.10.3 BPMN Modeller

An open-source javascript library, bpmn-js[65], has been chosen to visually
define the DasContract process model, which is heavily based on BPMN. The
process of synchronization has already been described in subsection 3.7.1.

The modeller is highly configurable, allowing custom model elements and
rules to be added. The modeller was customized by removing elements that
are not present in the DasContract DSL. Custom modelling rules were also
applied. For example, the DasContract DSL currently only permits interme-
diary events to be directly attached to tasks.

3.10.4 DMN Modeller

A DMN open-source javascript modeller, dmn-js [66], has been integrated
into the business rule tab of business rule tasks. DasContract uses the DMN
without any modifications, so the synchronization of the models is effortless,
as the library allows downloading and importing of models in a serialized XML
format. The business rule task class contains a string field for persisting the
serialized format.

3.10.5 Advanced Select Component

Some input fields permit multiple entries to be selected (when choosing the
assignees of a user task, for example). Since the user can also define the
entries, there is no upper limit on the number of options. It is thus important
to use a UI component that can accommodate this functionality. The default
select component supports multi-choice; however, it does not provide a good
way of filtering the choices.

A library that provides an advanced select component, select2 [67], has
been used. It supports filtering, intuitive multi-choice selections, dynamic
item creation and customizable styling. In order for it to be easily usable in

53

3. DasContract Editor Case Study

the Blazor project, a Select2 razor component has been created, which wraps
all of the communication with the javascript library.

3.10.6 Split
The process and data model pages contain a dynamic vertical split, allowing
the user to alter the ratio between the left and right modeller panes by dragging
the split line. A javascript library, split-js [68], has been used to provide
this functionality. Since the panes might contain complex components, which
require manual refreshing, the .NET codebase subscribes to an event that fires
whenever the user drags the split.

3.11 Testing
Two approaches are most commonly used when testing Blazor apps [69]:

Unit testing is a preferred option if the tested .NET classes and Razor com-
ponents do not depend on JS interop logic that manipulates the browser
DOM. Unit tests are fast to execute, allow access to the Razor compo-
nents and are generally more reliable.

E2E testing is used whenever a complex interaction with javascript codebase
needs to be tested. The test cases are run in a browser instance against
the built application, so E2E tests are much slower to execute and more
difficult to maintain.

3.11.1 Unit Testing
The business logic of the application is contained within .NET classes called
services. Any dependencies between services are defined using an interface,
which means that the dependencies can be mocked, making it possible to
test each service independently using unit tests. The Unit tests are contained
within the Web.Tests.Unit project and cover the majority of the implemented
services.

3.11.2 End-to-End Testing
An important functionality of the DasContract editor, which is susceptible
to potential issues, is the synchronization of the DasContract and bpmn-js
process models. The app relies on receiving and correctly processing synchro-
nization events in order to keep the two models consistent, as inconsistency
between the two models might lead to unexpected bugs and problems.

The full integration process cannot be tested using only unit tests, as the
bpmn-js modeller is a javascript library and cannot be run independently in
the context of the .NET tests [69]. An end-to-end testing approach was chosen

54

3.11. Testing

instead, where the entire application is launched in a browser window and
automatically controlled using predefined commands. The bpmn-js modeller
can be controlled programmatically using javascript commands, making it
possible to simulate user actions without relying on the application’s visual
layout. This makes the test more robust, as changes to the layout will not
affect the test cases.

Testing Framework

The Playwright for .NET [70] testing framework has been chosen for imple-
menting the synchronization tests, as it provides a simple testing interface with
all of the needed features. It allows to access and filter the DOM, making it
possible to trigger events on browser elements. It also provides an interface
to evaluate javascript code, which can be used to control the instance of the
bpmn-js modeller.

Structure of the Test Cases

The test cases are run in accordance with the following steps:

1. A fresh browser context is created. The test case also creates a separate
DasContract model, which is edited alongside the executed commands
and serves as the expected state of the application. An option to create
a new contract is then selected on the landing page of the editor.

2. The bpmn-js commands are executed to make changes to the process
model. When executing the command, the test fixture also directly
makes appropriate changes to the model that acts as the expected state.

3. When all commands have been executed, a download of the DasCon-
tract file is requested in the browser. The downloaded actual model is
then compared to the expected model that has been directly modified
alongside the executed commands.

3.11.3 User Feedback
Stable versions were periodically deployed during the development of the edi-
tor, making them publicly available to other researchers and developers of the
DasContract project. Feedback was collected in the form of consultations and
also in the form of GitHub issue pages, where the users could report any bugs
and suggestions.

Some of the proposals that have been addressed include:

• A developer of a DasContract converter proposed that the users should
have the option to change the IDs of process elements since the IDs
were automatically generated and immutable. A change has been made

55

3. DasContract Editor Case Study

to make the IDs editable, according to certain rules (must be unique, no
special characters)

• When saving a contract to a device, the default filename in the download
prompt would be “contract.dascontract”. A user proposed that the de-
fault filename should be filled in dynamically based on the actual name
of the contract.

• When a new contract was created, the data model page did not contain
an example. It has been proposed that it would be more user-friendly if
it contained an example data model by default, which users can use as
a template for their work.

56

Chapter 4
Standalone App Deployment

A client-side Blazor web application was presented in the previous chapter.
This chapter describes the deployment of the implemented application as a
progressive web application.

The first section summarizes the benefits and drawbacks of the standalone
deployment technologies in the context of the implemented web app case study
and explains why the PWA approach was chosen. The second section describes
the process of making the existing web app available as a PWA. The third
section describes how the user can install and update the app. The chosen
approach is evaluated in the last section, and its benefits are summarized.

4.1 Choosing the Technology
Three approaches to converting a web app into a standalone application have
been described in chapter 2 – Blazor Hybrid, Electron and PWAs. This section
goes over the properties of standalone app frameworks in the context of the
DasContract Editor and evaluates the most suitable framework.

Supported Platforms The DasContract editor is targeted to desktop plat-
forms only. All technologies support all desktop platforms, except for
Blazor Hybrid, which is not supported on Linux.

Maintainability Since the case study is a part of an ongoing open-source
research, it is more than expected for the project to evolve and include
new requirements. It is therefore imperative for the chosen technology
to be as easy to maintain as possible. Based on the research, PWAs have
the lowest maintenance overhead out of the mentioned technologies.

Capabilities The case study does not require any special platform-specific
capabilities, such as access to the file system or system settings.

57

4. Standalone App Deployment

Maturity of the technology Both the Electron and PWA technologies have
been in production use for several years and can be deemed as stable.
Blazor Hybrid is still in preview and is not recommended for production
environments.

Distribution The ease of distribution is also worth mentioning, as it concerns
both the developers and users. The easiest technology to both distribute
and consume is, without doubt, the PWA. The standalone PWA can be
installed directly from the web version of the application.

Size and performance Since the app is not computationally demanding,
top-level performance is not required. In terms of the size of the appli-
cation, the PWA is the most lightweight out of the three.

Based on these observations, the PWA approach seems to be the most
suitable technology in the context of the current case study – it is easy to
maintain and distribute, is lightweight, stable and provides all of the necessary
capabilities.

4.2 Integrating the PWA Approach
In order to make the web app installable as a standalone application using the
PWA technology, two criteria need to be met: the web app manifest must be
defined, and a service worker script must be present.

4.2.1 Web App Manifest
The manifest is a text file in JSON format containing information about how
the app should be displayed on the target platform. The fields have been
described in subsection 2.3.2. The contents of the web app manifest file can
be seen in listing 2.

4.2.2 Service Worker
As described in subsection 2.3.1, service workers make it possible to cache
static web resources, making them available offline. Blazor provides a template
setup for making a Blazor app available as a PWA, including a basic service
worker code that caches the static files [71]. The template service worker code
has been slightly modified to fit the purposes of the case study app. A snippet
of the most important parts of the service worker can be seen in listing 3.

The onInstall function is called when a new service is successfully in-
stalled. Blazor provides an assets manifest file, which is generated during
compilation. This file lists all static resources served by the app, such as
.NET assemblies, javascript and css files, etc [71]. The manifest is filtered
using regular expressions, specifying which file extensions are required to be

58

4.3. Installing and Updating

{
"name": "DasContract Editor",
"short_name": "DasContract",
"start_url": "./",
"display": "standalone",
"theme_color": "#212529",
"icons": [

{
"src": "dist/logo/icon-512x512.png",
"type": "image/png",
"sizes": "512x512"

},
{

"src": "dist/logo/icon-256x256.png",
"type": "image/png",
"sizes": "256x256"

},
{

"src": "dist/logo/icon-192x192.png",
"type": "image/png",
"sizes": "192x192"

}
]

}

Listing 2: Web app manifest defined for the standalone application.

cached by the service worker. The files that have been filtered are then saved
into cache using an identifier that is unique to the version of the service worker.

The onActivate function is called when a new worker is activated. Since
each service worker installation has its own cache, when a service worker gets
deactivated, its cache gets left behind. This function clears the cache left
behind by any deactivated service workers.

The onFetch function is called whenever a request to the server is being
made. The function acts as a proxy, allowing to return cached resources
instead of making requests to the server. The function first checks the method
of the request, as only GET requests can be cached. Since Blazor dynamically
inserts its pages into the index.html file, all navigate requests should return
the index.html file, regardless of the address (the internals of Blazor handle
the routing).

4.3 Installing and Updating

The app can be “installed” directly in the browser when visiting the web
application (the install prompt in a google chrome browser can be seen in

59

4. Standalone App Deployment

const cacheNamePrefix = 'offline-cache-';
const cacheName = `${cacheNamePrefix}${self.assetsManifest.version}`;
const offlineAssetsIncl = [/\.dll$/, /\.pdb$/, /\.wasm/, /\.html/, /\.js$/,

/\.json$/, /\.css$/, /\.woff$/, /\.ttf$/, /\.eot$/, /\.woff2$/, /\.svg$/,
/\.png$/, /\.jpe?g$/, /\.gif$/, /\.ico$/, /\.blat$/, /\.dat$/, /\.dascontract$/,
/\.xml$/];

const offlineAssetsExcl = [/^service-worker\.js$/, /^routes\.json$/];

async function onInstall(event) {
// Cache items from the assets manifest based on regex rules
const assetsRequests = self.assetsManifest.assets

.filter(asset => offlineAssetsIncl.some(pattern => pattern.test(asset.url)))

.filter(asset => !offlineAssetsExcl.some(pattern => pattern.test(asset.url)))

.map(asset => new Request(asset.url, { integrity: asset.hash }));
await caches.open(cacheName).then(cache => cache.addAll(assetsRequests));

}

async function onActivate(event) {
// Delete unused caches left behind by inactive service workers
const cacheKeys = await caches.keys();
await Promise.all(cacheKeys

.filter(key => key.startsWith(cacheNamePrefix) && key !== cacheName)

.map(key => caches.delete(key)));
}

async function onFetch(event) {
let cachedResponse = null;
if (event.request.method === 'GET') {

// For all navigation requests, try to serve index.html from cache
const shouldServeIndexHtml = event.request.mode === 'navigate';
let request = shouldServeIndexHtml ? 'index.html' : event.request;
const cache = await caches.open(cacheName);
// Try to retrieve the request from cache, ignoring any query params
cachedResponse = await cache.match(request, {ignoreSearch: true});

}

return cachedResponse || fetch(event.request);
}

Listing 3: A snippet of the service worker script.

Figure 4.1). The process of installation was put in quotes because the app is
already cached on the device by the time the install prompt becomes available.

A new service worker is automatically installed whenever a new version of
the web app is deployed. It does not interrupt the active service worker, so
while the new files are being downloaded, the user can still use the old version
of the app.

4.4 Evaluation
A cache-first PWA approach has been successfully implemented. Since the
web app is entirely served as static pages and does not require additional
communication with a backend server, it is fully functional in offline mode.
The standalone app window can be seen in Figure 4.2.

60

4.4. Evaluation

Figure 4.1: The PWA install prompt in a google chrome browser.

Compared to the other approaches, a major advantage of the PWA ap-
proach is that new releases of the web app version do not require separate
deployment and testing of the standalone app. Instead, the version of the
PWA is directly tied to the version of the web app, so no new deployment
cycle has to be established and managed.

Another benefit is the lower storage requirements of the PWA. Unlike
Electron apps, which have a storage overhead due to bundling chromium and
node.js, PWAs make use of the installed browser to run in. The deployed
application downloads and caches around 16MB of data.

Users also gain benefits even if they do not install the app to their device
– the service worker caches the static files even when the app is not installed,
which means that load times are reduced, and the web app is accessible in
offline mode.

The drawback of the PWA approach is that not all native device features
are available (such as direct access to the file system). This limitation is not
a problem for the case study implementation, as the app does not require any
special capabilities.

61

4. Standalone App Deployment

Figure 4.2: A screenshot of the PWA installed on Windows 10 using Google
Chrome browser.

62

Conclusion

One of the aims of this thesis was to explore the possibilities of combining web
app development in the Blazor WebAssembly framework with standalone app
deployment whilst preserving the same codebase. Three different approaches
were explored and compared. One of these approaches was then used in a
complex case study, demonstrating that a client-side Blazor web application
can be deployed as a Progressive Web Application, making it fully offline-
capable with very little maintenance overhead.

In the practical part of the thesis, a visual blockchain smart contract editor
was designed, implemented and successfully deployed as a standalone appli-
cation. The implementation is fully open-source and is available in a public
GitHub repository [15].

The editor is currently being used by other DasContract researchers to
create smart contract case studies. The deployed application, including a video
tutorial, is also freely accessible, allowing anyone interested in the DasContract
project to design and generate smart contracts.

Future Work
DasContract is an ongoing research project, so it is expected that the domain-
specific language will be extended in the future, requiring changes to be made
to the editor. This was reflected in the application’s design, making the parts
of the applications most prone to changes easily extensible. An example is
the detail bar of the process elements, which allows new properties and tabs
to be easily added.

There are also several areas in which the DasContract Editor could be
improved. The Monaco script editor could be configured to provide advanced
features such as auto code completion, hints, automatic formatting and sugges-
tions. Advanced process model validations could also be implemented, directly
warning the users about errors in their process model before converting.

63

Bibliography

1. FOURAULT, Sébastien. How Progressive Web Apps can drive business
success [online] [visited on 2022-04-24]. Available from: https://web.
dev/drive-business-success/.

2. NOFER, Michael; GOMBER, Peter; HINZ, Oliver; SCHIERECK,
Dirk. Blockchain. Business & Information Systems Engineering.
2017, vol. 59, no. 3, pp. 183–187. issn 1867-0202. Available from
doi: 10.1007/s12599-017-0467-3.

3. GAYVORONSKAYA, Tatiana; MEINEL, Christoph. Blockchain. Sprin-
ger International Publishing, 2021. isbn 978-3-030-61559-8. Available
from doi: 10.1007/978-3-030-61559-8.

4. NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem [online]. [N.d.] [visited on 2022-01-26]. Available from: https://
bitcoin.org/bitcoin.pdf.

5. SZABO, Nick. Smart Contracts [online] [visited on 2022-01-29].
Available from: https : / / www . fon . hum . uva . nl / rob / Courses /
InformationInSpeech / CDROM / Literature / LOTwinterschool2006 /
szabo.best.vwh.net/smart.contracts.html.

6. SWAN, Melanie. Blockchain. Sebastopol, CA: O’Reilly Media, 2015.
7. Ethereum: EthereumProject [online] [visited on 2022-04-17]. Available

from: https://ethereum.org/.
8. ETHEREUM VIRTUAL MACHINE (EVM) [online] [visited on 2022-

04-17]. Available from: https://ethereum.org/en/developers/docs/
evm/.

9. INTRODUCTION TO THE ETHEREUM STACK [online] [visited on
2022-04-17]. Available from: https://ethereum.org/en/developers/
docs/ethereum-stack/.

65

https://web.dev/drive-business-success/
https://web.dev/drive-business-success/
https://doi.org/10.1007/s12599-017-0467-3
https://doi.org/10.1007/978-3-030-61559-8
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://ethereum.org/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/ethereum-stack/
https://ethereum.org/en/developers/docs/ethereum-stack/

Bibliography

10. SMART CONTRACT LANGUAGES [online] [visited on 2022-04-17].
Available from: https://ethereum.org/en/developers/docs/smart-
contracts/languages/.

11. KLICPERA, Jan. A novel way of conducting legal contracts [online] [vis-
ited on 2022-04-24]. Available from: https://janklicpera.medium.
com/a-novel-way-of-conducting-legal-contracts-be54ceda39ad.

12. SKOTNICA, Marek; KLICPERA, Jan; PERGL, Robert. Towards
Model-Driven Smart Contract Systems – Code Generation and Im-
proving Expressivity of Smart Contract Modeling. In: CIAO! Doctoral
Consortium, EEWC Forum 2020. CEUR, 2020. Available also from:
http://ceur-ws.org/Vol-2825/paper1.pdf.

13. SKOTNICA, Marek; PERGL, Robert. Das Contract - A Visual Do-
main Specific Language for Modeling Blockchain Smart Contracts. In:
AVEIRO, David; GUIZZARDI, Giancarlo; BORBINHA, José (eds.). Ad-
vances in Enterprise Engineering XIII. Cham: Springer International
Publishing, 2020, pp. 149–166. isbn 978-3-030-37933-9. Available also
from: https://link.springer.com/chapter/10.1007/978-3-030-
37933-9_10.

14. BPMN Specification – Business Process Model and Notation [online] [vis-
ited on 2022-04-24]. Available from: https://www.bpmn.org/.

15. SKOTNICA, Marek; KLICPERA, Jan; DROZDÍK, Martin; ŠELDER,
Ondřej. DasContract GitHub repository [online] [visited on 2022-04-24].
Available from: https://github.com/CCMiResearch/DasContract.

16. DROZDÍK, Martin. DasContract Plutus generator [online] [visited on
2022-04-24]. Available from: https://github.com/drozdik- m/das-
contract-plutus-generator.

17. ANČINEC, Petr. Domain-Specific Languages for Off-chain UI in De-
centralized Applications. Praha, 2021. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, Department of
Software Engineering. Supervisor: Marek Skotnica.

18. DROZDÍK, Martin. Open-Source Legal Process Designer in .NET Blazor.
Praha, 2020. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, Department of Software Engineering.
Supervisor: Marek Skotnica.

19. GOLDBERG, Ian; WAGNER, David; THOMAS, Randi; BREWER,
Eric. A Secure Environment for Untrusted Helper Applications. 1996.
Available also from: https://www.usenix.org/legacy/publications/
library/proceedings/sec96/full_papers/goldberg/goldberg.pdf.

20. Chromium sandbox [online] [visited on 2022-02-26]. Available from:
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/
design/sandbox.md.

66

https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://janklicpera.medium.com/a-novel-way-of-conducting-legal-contracts-be54ceda39ad
https://janklicpera.medium.com/a-novel-way-of-conducting-legal-contracts-be54ceda39ad
http://ceur-ws.org/Vol-2825/paper1.pdf
https://link.springer.com/chapter/10.1007/978-3-030-37933-9_10
https://link.springer.com/chapter/10.1007/978-3-030-37933-9_10
https://www.bpmn.org/
https://github.com/CCMiResearch/DasContract
https://github.com/drozdik-m/das-contract-plutus-generator
https://github.com/drozdik-m/das-contract-plutus-generator
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/design/sandbox.md

Bibliography

21. MCCLOUD, Scott; GOOGLE CHROME TEAM. Chrome Google book
[online] [visited on 2022-02-26]. Available from: https://www.google.
com/googlebooks/chrome/big_26.html.

22. Introduction to ASP.NET Core Blazor [online] [visited on 2022-01-29].
Available from: https://docs.microsoft.com/en-gb/aspnet/core/
blazor.

23. .NET | A developer platform for building all your apps. [Online] [visited
on 2022-04-20]. Available from: https://dotnet.microsoft.com/.

24. Razor syntax reference for ASP.NET Core [online] [visited on 2022-01-
29]. Available from: https://docs.microsoft.com/en-gb/aspnet/
core/mvc/views/razor.

25. Document Object Model (DOM) [online] [visited on 2022-01-30]. Available
from: https : / / developer . mozilla . org / en - US / docs / Web / API /
Document_Object_Model.

26. CHARBENEAU, Ed. Blazor RenderTree Explained [online]. 2020-06
[visited on 2022-01-30]. Available from: https : / / www . infoq . com /
articles/blazor-rendertree-explained.

27. HIMSCHOOT, Peter. Microsoft Blazor building web applications in
.NET. United States: Apress, 2020. isbn 9781484259283.

28. ASP.NET Core Blazor hosting models [online] [visited on 2022-01-30].
Available from: https://docs.microsoft.com/en-gb/aspnet/core/
blazor/hosting-models.

29. WebAssembly [online] [visited on 2022-02-27]. Available from: https :
//webassembly.org/.

30. WebAssembly MDN Web Docs [online] [visited on 2022-02-27]. Available
from: https://developer.mozilla.org/en-US/docs/WebAssembly.

31. Awesome WebAssembly Languages – A curated list of languages that
compile directly to WASM [online] [visited on 2022-02-27]. Available from:
https://github.com/appcypher/awesome-wasm-langs.

32. Defining Static Web Apps [online] [visited on 2022-02-27]. Available from:
https://www.staticapps.org/articles/defining- static- web-
apps/.

33. ASP.NET Core Blazor Hybrid [online] [visited on 2022-04-16]. Available
from: https://docs.microsoft.com/en-us/aspnet/core/blazor/
hybrid.

34. Electron Documentation [online] [visited on 2022-02-26]. Available from:
https://www.electronjs.org/docs.

35. Chromium Browser Project [online] [visited on 2022-02-26]. Available
from: https://www.chromium.org/Home/.

67

https://www.google.com/googlebooks/chrome/big_26.html
https://www.google.com/googlebooks/chrome/big_26.html
https://docs.microsoft.com/en-gb/aspnet/core/blazor
https://docs.microsoft.com/en-gb/aspnet/core/blazor
https://dotnet.microsoft.com/
https://docs.microsoft.com/en-gb/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-gb/aspnet/core/mvc/views/razor
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://www.infoq.com/articles/blazor-rendertree-explained
https://www.infoq.com/articles/blazor-rendertree-explained
https://docs.microsoft.com/en-gb/aspnet/core/blazor/hosting-models
https://docs.microsoft.com/en-gb/aspnet/core/blazor/hosting-models
https://webassembly.org/
https://webassembly.org/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://github.com/appcypher/awesome-wasm-langs
https://www.staticapps.org/articles/defining-static-web-apps/
https://www.staticapps.org/articles/defining-static-web-apps/
https://docs.microsoft.com/en-us/aspnet/core/blazor/hybrid
https://docs.microsoft.com/en-us/aspnet/core/blazor/hybrid
https://www.electronjs.org/docs
https://www.chromium.org/Home/

Bibliography

36. About Node.js [online] [visited on 2022-02-26]. Available from: https:
//nodejs.org/en/about/.

37. Electron Process Model [online] [visited on 2022-02-26]. Available from:
https://www.electronjs.org/docs/latest/tutorial/process-
model.

38. MARTINEZ, Juan Cruz. How to Build Desktop Applications the Right
Way Using Electron [online]. 2020 [visited on 2022-02-27]. Available
from: https://betterprogramming.pub/how- to- build- desktop-
applications-the-right-way-using-electron-aee5deedeb8c.

39. Electron Context Isolation [online] [visited on 2022-02-26]. Available from:
https://www.electronjs.org/docs/latest/tutorial/context-
isolation.

40. Electron Inter-Process Communication [online] [visited on 2022-02-
26]. Available from: https://www.electronjs.org/docs/latest/
tutorial/ipc.

41. Electron Distribution [online] [visited on 2022-02-26]. Available from:
https://www.electronjs.org/docs/latest/tutorial/application-
distribution.

42. SHEPPARD, Dennis. Beginning Progressive Web App Development:
Creating a Native App Experience on the Web. Apress, 2017. isbn
9781484230893. Available from doi: 10.1007/978-1-4842-3090-9.

43. RICHARD, Sam; LEPAGE, Pete. What are Progressive Web Apps? [On-
line] [visited on 2022-03-05]. Available from: https://web.dev/what-
are-pwas/.

44. Introduction to progressive web apps [online] [visited on 2022-03-05].
Available from: https://developer.mozilla.org/en-US/docs/Web/
Progressive_web_apps/Introduction.

45. What makes a good Progressive Web App? [Online] [visited on 2022-03-
05]. Available from: https://web.dev/pwa-checklist.

46. Service Worker API [online] [visited on 2022-03-05]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/Service_
Worker_API.

47. GAUNT, Matt. Service Workers: an Introduction [online] [visited on
2022-03-05]. Available from: https://developers.google.com/web/
fundamentals/primers/service-workers.

48. Service workers [online] [visited on 2022-03-05]. Available from: https:
//web.dev/learn/pwa/service-workers.

49. Web app manifests [online] [visited on 2022-03-06]. Available from:
https://developer.mozilla.org/en-US/docs/Web/Manifest.

68

https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://www.electronjs.org/docs/latest/tutorial/process-model
https://www.electronjs.org/docs/latest/tutorial/process-model
https://betterprogramming.pub/how-to-build-desktop-applications-the-right-way-using-electron-aee5deedeb8c
https://betterprogramming.pub/how-to-build-desktop-applications-the-right-way-using-electron-aee5deedeb8c
https://www.electronjs.org/docs/latest/tutorial/context-isolation
https://www.electronjs.org/docs/latest/tutorial/context-isolation
https://www.electronjs.org/docs/latest/tutorial/ipc
https://www.electronjs.org/docs/latest/tutorial/ipc
https://www.electronjs.org/docs/latest/tutorial/application-distribution
https://www.electronjs.org/docs/latest/tutorial/application-distribution
https://doi.org/10.1007/978-1-4842-3090-9
https://web.dev/what-are-pwas/
https://web.dev/what-are-pwas/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction
https://web.dev/pwa-checklist
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developers.google.com/web/fundamentals/primers/service-workers
https://developers.google.com/web/fundamentals/primers/service-workers
https://web.dev/learn/pwa/service-workers
https://web.dev/learn/pwa/service-workers
https://developer.mozilla.org/en-US/docs/Web/Manifest

Bibliography

50. LEPAGE, Pete; BEAUFORT, François; STEINER, Thomas. Add a web
app manifest [online] [visited on 2022-03-06]. Available from: https :
//web.dev/add-manifest.

51. NEWMAN, Jared. Firefox just walked away from a key piece of the
open web [online] [visited on 2022-03-08]. Available from: https : / /
www.fastcompany.com/90597411/mozilla- firefox- no- ssb- pwa-
support.

52. DEVERIA, Alexis; SCHOORS, Lennart. Can I Use? [Online] [visited on
2022-03-08]. Available from: https://caniuse.com/.

53. Supported platforms for .NET MAUI apps [online] [visited on 2022-04-
16]. Available from: https://docs.microsoft.com/en-us/dotnet/
maui/supported-platforms.

54. RAKOWSI, Filip; GRZYBOWSKA, Kaja; KWIECIEŃ, Aleksandra;
KARWATKA, Piotr. The PWA Book – Open guide to progressive web
apps [online]. Divante eCommerce Software House, 2019 [visited on
2022-04-17]. Available from: https://www.divante.com/pwabook.

55. Electron [online]. GitHub, [n.d.] [visited on 2022-04-16]. Available from:
https://github.com/electron/electron.

56. Releasing projects on GitHub [online] [visited on 2022-04-16]. Available
from: https : / / docs . github . com / en / repositories / releasing -
projects-on-github.

57. H., Gordon. Performance Comparison: Flutter Desktop vs. Electron [on-
line]. 2021 [visited on 2022-04-17]. Available from: https://getstream.
io/blog/flutter-desktop-vs-electron/.

58. SHVETS, Alexander. Dive Into Design Patterns. 2019.
59. DOOLEY, John. Software development, design and coding : with pat-

terns, debugging, unit testing, and refactoring. Berkeley, Californial:
Apress, 2017. isbn 9781484231524.

60. Bootstrap [online] [visited on 2022-04-23]. Available from: https : / /
getbootstrap.com/.

61. Syntatically Awesome StyleSheets (SASS) [online] [visited on 2022-04-23].
Available from: https://sass-lang.com/.

62. Monaco Editor [online]. GitHub [visited on 2022-04-03]. Available from:
https://github.com/Microsoft/monaco-editor.

63. BlazorMonaco [online]. GitHub [visited on 2022-04-03]. Available from:
https://github.com/serdarciplak/BlazorMonaco.

64. Mermaid JS [online]. GitHub, [n.d.] [visited on 2022-04-03]. Available
from: https://github.com/mermaid-js/mermaid.

69

https://web.dev/add-manifest
https://web.dev/add-manifest
https://www.fastcompany.com/90597411/mozilla-firefox-no-ssb-pwa-support
https://www.fastcompany.com/90597411/mozilla-firefox-no-ssb-pwa-support
https://www.fastcompany.com/90597411/mozilla-firefox-no-ssb-pwa-support
https://caniuse.com/
https://docs.microsoft.com/en-us/dotnet/maui/supported-platforms
https://docs.microsoft.com/en-us/dotnet/maui/supported-platforms
https://www.divante.com/pwabook
https://github.com/electron/electron
https://docs.github.com/en/repositories/releasing-projects-on-github
https://docs.github.com/en/repositories/releasing-projects-on-github
https://getstream.io/blog/flutter-desktop-vs-electron/
https://getstream.io/blog/flutter-desktop-vs-electron/
https://getbootstrap.com/
https://getbootstrap.com/
https://sass-lang.com/
https://github.com/Microsoft/monaco-editor
https://github.com/serdarciplak/BlazorMonaco
https://github.com/mermaid-js/mermaid

Bibliography

65. bpmn-js – BPMN 2.0 viewer and editor. [Online] [visited on 2022-04-16].
Available from: https://bpmn.io/toolkit/bpmn-js/.

66. dmn-js – DMN viewer and editor. [Online] [visited on 2022-04-16]. Avail-
able from: https://bpmn.io/toolkit/dmn-js/.

67. Select2 - the jQuery replacement for select boxes [online] [visited on 2022-
04-16]. Available from: https://select2.org/.

68. Split JS [online] [visited on 2022-04-16]. Available from: https://split.
js.org/.

69. Test Razor components in ASP.NET Core Blazor [online] [visited on
2022-04-19]. Available from: https://docs.microsoft.com/en- us/
aspnet/core/blazor/test.

70. Playwright for .NET [online] [visited on 2022-04-19]. Available from:
https://playwright.dev/dotnet/.

71. ASP.NET Core Blazor Progressive Web Application (PWA) [online] [vis-
ited on 2022-04-18]. Available from: https://docs.microsoft.com/en-
us/aspnet/core/blazor/progressive-web-app.

70

https://bpmn.io/toolkit/bpmn-js/
https://bpmn.io/toolkit/dmn-js/
https://select2.org/
https://split.js.org/
https://split.js.org/
https://docs.microsoft.com/en-us/aspnet/core/blazor/test
https://docs.microsoft.com/en-us/aspnet/core/blazor/test
https://playwright.dev/dotnet/
https://docs.microsoft.com/en-us/aspnet/core/blazor/progressive-web-app
https://docs.microsoft.com/en-us/aspnet/core/blazor/progressive-web-app

Appendix A
Acronyms

BPMN Business Process Model and Notation

CSS Cascading Style Sheet

DMN Decision Model and Notation

DOM Document Object Model

DSL Domain-specific Language

EVM Ethereum Virtual Machine

GUI Graphical User Interface

HTML HyperText Markup Language

JS JavaScript

JSON JavaScript Object Notation

PWA Progressive Web Application

SASS Syntatically Awesome Style Sheets

SC Smart Contract

UML Unified Modeling Language

WASM WebAssembly

XML Extensible markup language

71

Appendix B
Contents of Enclosed SD Card

readme.txt....................the file with SD card contents description
tutorial.mp4..user tutorial video
src...the directory of source codes

DasContract.Abstraction DasContract Abstraction project
dependency
DasContract.Blockchain.Solidity .DasContract Solidity converter
project dependency
DasContract.Editor.Websource code of the DasContract Editor
DasContract.Editor.Web.Tests.E2E end-to-end tests
DasContract.Editor.Web.Tests.Unitunit tests
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

73

