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Abstrakt

V této práci zhodnotíme relační a grafové databáze pro použití při ukládání
metadat a vizualizaci datové linie. Datovou linii zpracujeme pro použití v růz-
ných scénářích a vylepšíme ji pro efektivní využití ve vizualizaci. Navrhneme
proces vizualizace různých druhů datových linií, jak do statických objektů,
tak i v dynamickém prostředí, kde uživatel může procházet linií na v reálném
čase.

Klíčová slova Datová linie, Neo4j, vizualizace, graf
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Abstract

In this thesis, we will evaluate relational and graph databases for use in meta-
data storage and data lineage visualisation. We will process the data lineage
for use in various scenarios and enhance it for efficient use in visualisation.
We will devise a process to visualise various kinds of data lineage into static
objects, as well as in a dynamic environment, where the user can go through
the lineage on-demand in a realtime.

Keywords Data lineage, Neo4j, visualisation, graph
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Chapter 1
Introduction

In this thesis, we will be focusing mainly on the analysis and processing of
metadata provided by the manta system. In order to get a broad enough
dataset and work out any problems on real data, which will include most of
the problematic parts we could encounter in the future. We have cooperated
with one of the leading banks in the Czech republic, Česká spořitelna. The
bank has provided access to its Data warehouse (DWH) metadata and Česká
spořitelna metadata sandbox, which gave us a sufficient data sample for our
analysis.

The data sources are then analysed with the use of the Manta tool, which is
a data-gathering tool that scans various systems and their interactions and
dataflows throughout and across these systems and their domains.[2]

Once scanned, we can export the data into CSV files containing a graph
structure of nodes and edges as well as additional attributes gathered dur-
ing the scan. This exported dataset, however, contains only the most basic
connections on the lowest level, such as columns and variables in a script.
The structure also contains information about parent nodes, which gives us
a topological graph with the vertical axis being information about parent ob-
jects such as tables and their columns. On the horizontal axis, we then get
the edges signifying the data flow.

This basic structure can be used to visualise the data lineage, but it is hard to
orient in, and it also requires considerable expertise to understand the data.
On top of that, once we decide to query data lineage for some of the larger
and more complicated datasets, we can also meet with a performance problem
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1. Introduction

where the query would take too much time to complete.

To make the visualisations comprehensible for users without extensive tech-
nical knowledge, we need to process the data into some form that is easier
to read and understand. We will need to aggregate the edges in the graph
to a higher level, such as tables, columns and queries. This will allow us to
visualise the data lineage in a more intuitive way. We can also further ag-
gregate the edges to higher levels, as some use-cases only demand the bigger
picture information where we are not interested in exact tables contained in
each database. This type of aggregation will be further described as vertical
aggregation.

The basic data lineage also may also contain many detailed steps between
two column nodes, mapping the exact path of information from the source
database column to the target database column. In most cases, we will not
need the exact path of data flow through methods and functions. Instead,
we would be content with the information that the data of one column are
flowing into another column without the previous details. Thus, we will need
to aggregate the data on the horizontal axis as well. This will be further
described as horizontal aggregation.

Once we aggregate the graph to the required dimensions, we would like to
examine the options of visualising the aggregated information and the basic
data lineage as exported from Manta. We would like to explore the options
for interactive visualisation, where the user can traverse the data lineage as
they need, as well as the options for having static documentation for specific
use-cases with parts of the data lineage that concern these use-cases.

As part of this proof of concept, we would like to determine whether it is
possible to process the data and visualise the desired data lineage within a
reasonable time frame using a graph database. We would also like to analyse
the past attempts made based on a relational database, which was deemed
unfit for the structured graph data.

We would also like to focus on the aspect of efficiency and performance, as
the past failed mainly on the basis of performance, where it would take too
long to process the dataset with desired results.
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Chapter 2
Data lineage

As described in an article by R. Ikeda and J. Widom [3], Data lineage, also
known as provenance, describes the lifecycle of data, where it came from,
and various transformations it went through, and where it is going. Data
lineage can be used for various purposes. We can use it for verifying data
validity by tracking their sources. We can also use the lineage for confidence
computation in probabilistic databases. It can also be used for understanding
system behaviour and the evolution of data.

As much as the data lineage is valuable, it is also expensive to store and
query. There are many approaches to solving these problems, and each has its
advantages and disadvantages. For example, the approximate lineage, which
lowers the storage requirements, can be used to determine the validity of data,
but it is not possible to determine the exact lineage.

Data lineage can have two different levels of granularity, schema and instance.
The schema level is a coarse-grained level of granularity, where the data lineage
is described by the schema of the data. The instance level is a fine-grained
level of granularity, where the data lineage is described in a more detailed way
with concrete variables and database columns.

We can also separate data lineage into two types, where and how. The where
lineage gives us the information, where the data came from. Thus, it contains
only tables and direct data flow between them without any information about
the transformations and other processes which helped the data reach the des-
tination. On the other hand, when we look at the how lineage, we can see
all the information about various transformations and other processes which
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2. Data lineage

interacted with the data.

Each one of these types and granularities has its own uses. In this thesis, we
will be starting with the fine-grained how granularity. It is in a form of a
graph. The nodes of the graph act as the carrier of information. It represents
the place where the information is stored at a given time, such as variables and
columns. However, the nodes of the graph contain not only the most granular
information but also the higher-level objects such as tables, databases, scripts
and files. As for the edges in the graph, they represent the data flow between
the nodes, such as the assignment of values from one column to another.

2.1 Metadata structure
As we receive the data, it contains a base graph structure with nodes and
edges. We obtain this dataset as multiple CSV tables exported from Manta,
namely Nodes, Node attributes, Edges, Resources and Layers.

The first table, Nodes, contains the actual nodes in our graph structure. Each
node in this table has a name that does not necessarily need to be unique.
Every node also has a type, such as a Column, Table or Report. Each node
also has a unique id, and all but the root nodes also have a parent id.

Then we have the node attributes table. It contains a node id that identi-
fies the node the attribute belongs to. There is also a name of the attribute,
which is unique for each node. Lastly, there is also the value of the attribute,
which can contain anything from an SQL query to human-written commen-
tary.

Next, we have the Edges. This table contains connections between nodes. It
has two node ids, the origin and the target, forming a relationship between
the two nodes. Each edge also has one of the three types. The first is ”DI-
RECT”, signifying a direct flow between nodes. Then we have ”FILTER” and
”MAPS_TO”, representing data being filtered according to the source node
and data being mapped to another node, respectively.

Each of the above items also contains a resource id which signifies the source of
the item, such as a database, system or DWH. Information about the resource
is included in the resource table with its name, description type and layer
id.

Last we have the layer table, which marks the layer of the scanned resource.

4



2.1. Metadata structure

In our case, it is either a physical or logical layer. It contains the layer name
and type as well as the id of import.

Thanks to the Manta tool, the graph contained in this export already has
the basic data lineage mapped. The problem is that the actual data flow
connections are mapped at the most detailed layer of columns and query
variables. This level is hard to keep track of and difficult to visualize, as the
data flow path would be too long, and it would spread across too many levels
for a human to be capable of processing it.
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Chapter 3
Database type overview

As time goes on and technological advancements progress, we no longer have
only one database type as we were used. Nowadays, in addition to the usual
Structured Query Language (SQL) or otherwise known as relational databases,
present in most information systems developed up until now, we also have the
Not only SQL (NoSQL) database category. These NoSQL databases have
their own query language and, in some cases, also support the SQL. However,
this is not the only difference. The NoSQL databases also differ in the way
they store, query and overall work with data. Some databases approach data
as objects, some as documents and some as a graph. There is a plethora of
different approaches and various databases, but as for this chapter, we would
like to limit our selection to the most common SQL, document and graph
databases.

3.1 SQL databases
The traditional relational SQL database is based on the relational model. The
database is based on tables and relations between these tables. These tables
consist of rows and columns. Relational databases employ the use of keys. The
most important key is the primary key which all rows must have and is unique
in the entire table, as it identifies each record in the table. There are also the
four basic operations known as Create, Read, Update and Delete (CRUD),
which use the SQL. One of the most significant parts of a relational database
is its Atomicity, Consistency, Isolation and Durability (ACID) properties. The
SQL databases are heavily optimised for storing and retrieving data quickly
and efficiently, employing indexing or query optimisation. It also allows us to
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3. Database type overview

store data within predefined structures and constraints. [4]

3.1.1 Structure
The main element of each SQL database is a table. It has a name and a
strictly defined structure for each record in it, where the record equates to a
row in the table, and the structure is defined by columns. Every column has
a strictly defined name, data type and size. As mentioned above, each record
has its primary key, which uniquely identifies it and can be used to access the
record directly. Some records also can have a foreign key. The foreign key
matches the primary key, and together, they form a relationship between the
two records.

Another one of the database objects is View. View offers data in the same
structure as a table, but it is only a middle man, and it does not directly store
data. Instead, it has a predefined script to query other views or tables and
transform their data into a predefined structure. Some databases also support
a materialised view, which stores data once materialised and can be used as
a cache for more complex queries and processes.

Another essential part of a SQL database is an index. It helps with optimising
database processes and queries or defining a unique value. Indexes are also
commonly known as keys, such as the primary or foreign keys. There are mul-
tiple ways to store indexes, each having its own advantages and disadvantages
as well as uses.

Constraints introduce a limit on values within each table column. For example,
while saving a battery charge percentage, we could limit its value to be between
zero and one hundred. Constraints can also be used for creating a multi-
column primary key.

Then we have the trigger, which defines a query that should be run once an
event happens, such as data being inserted into a table. Each trigger also has
the option to be activated before or after an event. This way, we can validate
the data before an insert or update our materialised View right after its data
have been modified.

Last but not least, we have Transaction. It is a unit of work that has the
ACID properties and signifies a transfer from and to a valid state.
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3.1. SQL databases

3.1.2 The ACID properties [1]
The ACID properties, as described further, were coined in 1983 by Andreas
Reuter and Theo Härder in their article ”Principles of transaction-oriented
database recovery”.

When we speak about the ACID properties, we mean Atomicity, Consistency,
Isolation and Durability. These properties are the baseline for every SQL
database and all of its transactions, which are the operations modifying the
database, namely the CRUD operations.

The atomicity has the same meaning while talking about databases as when
speaking about atomicity anywhere else in informatics or any other field in
the world. When we say a transaction is atomic, it means it is indivisible, it
either completes as a whole or it will make no changes to our database. Thus,
there can never be an undefined state.

Next of the ACID properties is Consistency. Consistency means that a trans-
action cannot disrupt a database structure and its integrity. Thus, if a trans-
action would lead to an inconsistent database, it will instead fail and leave the
database in the original consistent state.

Isolation signifies the requirement for each transaction to be completely iso-
lated and not influenced by any other transaction. If we were to read a record
while it is being modified, we would still get the original value until the update
operation is successfully completed.

The last property is Durability. Once a durable transaction is successfully
completed, all the changes will be saved to the database. Furthermore, all
these changes are permanent until modified by other transactions later, and
these changes will not be affected by, for example, a system crash.

3.1.3 Database normalization
In the SQL database, we have something called normal forms. The nor-
mal forms are numbered by their level of normalisation. The main target
of database normalisation is to reduce redundancies in the database, thus re-
ducing the possibility of conflict occurring and lowering the size of a database.
Each of these forms also requires the requirements of the preceding form to
be satisfied.
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3. Database type overview

The zeroth normalised form is achieved by all tables, as the only requirement
is to contain at least one column.

The first normalised form requires all columns to contain atomic values. This
means we cannot have a list of phone numbers in one column. Instead, we
must create a table containing one phone number in a column and a foreign
key to our original record.

The second normal form requires that all columns are dependent on the entire
primary key. This means that when we have a primary key consisting of two
or more columns, we can not identify the value in any of the columns by only
part of our primary key.

The third normal form requires tables not to contain any transitive depen-
dency. For example, let us have a table for a car and a table for the brand of
the car. If we were to store the brand id in the table containing cars as well
as the name of the brand, we would have created a transitive dependency. It
would be more efficient to move the brand name into the table of brands. It
would also be much more efficient to change the name of the brand if it was
renamed.

There are further levels of database normalisation. If the reader would like
to find out more information about this subject, we would like to recommend
the ”Database in Depth: Relational Theory for Practitioners”, on which we
based this section. [5]

3.1.4 Graph structure
When we approach the graph structure in general, we have to somehow store it
in the relational database in the form of relations and tables. As we can have
a variable number of node types, it would be hard to separate each node type
into a separate table and normalise the data. We would have to dynamically
create tables on-demand as the data changes.

Even if we worked with a static unchanging dataset, we would have to store the
relations. This is another significant problem, as, within the graf structure,
we can have an infinite number of relations since two nodes can have multiple
relations between each other, and these relations can have various types. Thus,
it makes it close to impossible to store the relationships between data nodes
as database relations between tables.
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3.1. SQL databases

Thus, it is much easier to just place the nodes into a single table containing
all nodes, add a second table with the node attributes, and finally add a
table of edges, leading to the normalised structure as it is described in the
Section 2.1.

As mentioned in the Section 3.1.1, indexes in a database can increase the
efficiency of record lookups. For example, when we have an index in the form
of a binary tree, we can shorten the lookup for each record from a linear
O(n) to a logarithmic complexity O(log(n)). This indexation allows us to
administer sizable datasets with relative efficiency. [6]

On the other hand, when we have data in a graph structure as described
in the Section 2.1, it can get quite arduous to traverse the graph data, as
the nodes are not directly linked together. Furthermore, when the dataset
rises in volume, we are forced to do a high number of joins, which in turn
considerably slows down our transaction, even with a proper indexation. The
problem originates from the way joins are processed in the SQL database, as
the query lookup process is performed for each join separately. Thus, it leads
to a time and resource-consuming process, as described within the following
article comparing SQL and NoSQL databases.[7]

Therefore, it makes any attempts to normalise data into the table structure
as mentioned above a naive approach, which is not efficient enough for larger
datasets. [6]

If we would like to efficiently process data within an SQL database, we would
first have to extend the database itself to optimise the approach to the graph
structure on a lower level. This approach was attempted in a thesis written
by J. Hovad in 2011 on the PostgreSQL database.[6]

Another problem that arises with the use of SQL database when we traverse
a graph structure is cycles. Our data can either have paths leading into the
element itself or cycles containing multiple nodes. Some of the SQL database
traversal options have safeguards implemented for the first issue. However,
the second type of cycle is usually not implicitly resolved and needs to be
taken care of as part of our algorithm. It is also more challenging to find
libraries containing graph-related algorithms for SQL databases than when
we try to search for them in graph databases, where they are usually part of
the database itself. This, in turn, leads to arduous development when working
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3. Database type overview

with graphically structured data on a relational database where we have to
emulate the structure of a graph.

3.2 NoSQL databases
Though it is desirable to have consistency, availability, and par-
tition tolerance in a distributed system, unfortunately no system
can achieve all three at the same time.[8]

Figure 3.1: The CAP Theorem

NoSQL databases became more commonly used with the spread of big data
with the main purpose of storing data in distributed database systems. [9] As
stated by the CAP theorem in the Figure 3.1, it is impossible to achieve Con-
sistency, Availability and Partition tolerance at once, limiting a distributed
database to having only two of these properties at once. This led to the adop-
tion of the Basically Available, Soft-state and Eventual consistency (BASE)
model adopted by most of the NoSQL databases. This model does not provide
strong consistency. Instead, it is based on eventual synchronisation, where,
given enough time, the data becomes consistent. [8]

Furthermore, with a different approach to the database, the view on the
database normalisation has also changed. For example, in the document
database MongoDB, the usual normalisation we could see in the SQL databases
is not applied. Instead, we store all related data within one document. Using
this approach, we can store all the data within a single entity, which allows
us to query the necessary data without any costly joins or aggregation. This
way, we also get all the essential information at once without the risk of the
related entities not being synchronised in time. [10]

3.3 Graph databases
Graph databases are part of the NoSQL database category. They allow us
to store a graph structure with completely different nodes with close to no
predefined structure. Each node can have different parameters and can be
connected to any number of other nodes. In many graph databases, the edges
can also have various attributes.
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3.3. Graph databases

3.3.1 Native graph database
[11] Not all graph databases approach the data in the same way, and there
can be a considerable difference in their processing speeds. Two properties of
the graph database cause this difference. First is the way the database stores
the graph structure. It can be stored natively as graph storage. This way,
the data are stored optimally, ensuring the nodes and relationships are kept
close to each other. Or the graph structure can be stored in a non-native
way. For example, in a relational model, object-oriented model, or any other
general-purpose storage.

The second property is the processing engine. Based on how the engine
works, we can either have a native graph processing engine, which employs
the use of index-free adjacency, where connected nodes point to each other
directly.

To be able to say a database is a native graph database, we need to satisfy
two conditions. The database has to have native graph storage and native
graph processing. On the other side, we have an emulated graph processing,
where the engine only behaves as a graph from the outside, and on the inside,
processes the queries in various other ways.

3.3.2 Traversal problem
Usually, when we traverse a graph, we have to take into consideration vari-
ous variables. For example, when we wish to determine if two nodes have a
path between each other, we might want to use Breadth first search (BFS) or
Depth first search (DFS) algorithms. Both of these algorithms have their own
advantages and disadvantages. They have pretty much the same performance
when we want to find all the existing paths between these two nodes. How-
ever, when we only need to determine if there is at least one path, it matters
where we look first, and the difference in performance can be vast, depending
on the density of the graph and usual path length.

Unlike relational databases, the graph database is meant for graph-structured
data, especially a native graph database. Thus, when we use the graph
database to traverse a graph structure, we do not need to extend our database
with additional procedures and views just to be able to work with the graph.
We also generally get a performance improvement, as a graph database has at
least some optimisations compared to just using a relational database. The
increase is most significant when using a fully native graph database.
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Furthermore, as the database is made to work with graph-structured data, it
comes with a query language intended for graph structure as well. This query
language allows pattern matching based on the graph structure. As the query
language was developed with the graph structure in mind, it also accounts
for cycles during traversals. This way, we do not have to worry about self-
referencing cycles as well as other cycles in the graph, and the database takes
care of everything for us.

When we further analyse the graph traversal problem, we come to the con-
clusion that the index-free adjacency provided by the native graph database
is not a sufficient solution for large database systems. Although the index-
free adjacency significantly improves the speed of traversals in comparison to
the usual relational database system, for long path traversals, it is still insuf-
ficient. When we look at the dataset provided, it commonly contains data
lineage paths with tens of steps. Once we take into consideration that each
node can have hundreds or thousands of relations, we get an exponentially
growing number of paths we need to visit to build the entire data lineage
path.

According to K. Kusu and K. Hatano [12] who have examined the traversal
problem with recurrent paths on large graph datasets. In this article, they
have come up with an approach to increase the efficiency of the traversal
on graph databases. With some modifications, this approach could also be
applicable to relational databases. The basis of the approach is storing the
information about nodes reachable over multiple steps of the recurrent path
as an attribute of a node.
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Chapter 4
Requirements analysis

In this chapter, we would like to focus on what has already been achieved with
the use of OracleDB, what can be improved, and which graph database would
be a good fit for our needs.

4.1 Requirements
The main goal is to visualise extensive data lineage within a reasonable time-
frame. We need to preprocess the data in various ways to achieve this goal.
Some visualisations require only the larger picture information about higher-
level nodes, such as data flow between databases and systems. It would be
quite time consuming to calculate the paths between these high-level nodes
for every visualisation. Furthermore, we also need to find an approach to vi-
sualise the detailed data lineage for extensive analysis. To achieve this goal,
we need to preprocess the data in various ways to shorten the time necessary
for visualising each case.

After consultation with the DWH management and data analytics from the
data provider, ”Česká spořitelna”, we have gathered three main targets. We
need to be able to visualise the data flow on the top level of databases and
schemas for general purposes and basic decision making. Next, we need to
be able to visualise the data flow on the level of tables for the purposes
of analysing existing as well as new in-development systems. Lastly, we
have the need to visualise the bottom-most level for the detailed analysis
of dataflows.

In most cases, we will not need the information about data transformations.
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Thus, we can skip the transformations and link the tables connected directly
to save processing time. However, in some cases, we will need to focus on the
detailed path, including all the transformations. Due to this need, we cannot
entirely remove all transformations, and we still need to be able to display
them.

Moreover, many times, while examining the data lineage on the table level,
we will not need the full path. For example, the information that the data
originates from a certain database or schema will be sufficient for the data
analyst to stop further examinations. This way, we could save some processing
time and make the result data lineage visualisation easier to read.

4.1.1 Use cases
To paint a better picture of the desired results, we would like to describe a
few general use cases for which we would like to use the visualisations of the
data lineage.

The first use case, which requires the least work, is to examine the exact
data flow between two tables in a database. This information can be used for
detailed analysis of the data flow once we have the general knowledge about
the data and we need to know further detailed information. This is the case
for the data analyst who needs to know the exact data flow between two tables
in a database.

Another use case is to examine a data flow to a table. This can be used for
determining the quality of data. For example, we can track the sources of
changes in a table containing critical data and determine the weak links in
the data lineage.

A similar use case to the last one is tracking outgoing data flow. In this
case, we need to track the uses of information. For example, when we have
personal information about clients, we need to make sure it will not be used
in any publicly accessible parts of our system. We can then ensure the proper
security measures are in place.

The last use case is to understand the system while making modifications or
transferring it to newer technology. In this case, the data lineage can act as
documentation for the system. We can then use it to determine the changes
that need to be made to the system.
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These are only a few from the multitude of examples for which we can use the
data lineage visualisations.

4.2 Current solution
At the start of this all, we have the manta tool and its export with nodes,
edges, their attributes and resources. Thus, the first thing that needs to be
done is to import the dataset into the database. Once the graph is imported,
we also clean it up from unnecessary nodes. This is done by removing the
bare minimum of nodes that have no added values, such as nodes with an
unknown resource type. After that, the nodes and edges are enriched with
more information precalculated from the graph to allow faster traversal.

4.2.1 Building the base entitites
As they are exported from Manta, the base entities are inserted into tables
within the database matching the structure of the exported files. As the
OracleDB is a relational database, the base tables also have relations according
to the imported structure, with nodes having constraints to their parent node
as well as edges being connected to the source and target nodes of the relation
they signify. Both nodes, as well as edges, also have constraints for the resource
marking the source system of the scanned object.

Once the base entities are imported as provided, the entities are then rebuilt
and enriched with further information. The core of the optimisation is to
precalculate the path from the root node to each node. There is not only
one path but three. One path consists of node types, one has the names, and
the last has node identifiers. Next, each node has a level, which signifies the
depth (number of parent nodes preceding it). Each node also has information
about its root node, as well as information about the so-called master level
node, which will be described further in this chapter. Finally, there is also the
count of target and source nodes, which helps stop the traversal earlier and
thus saves a little bit of the precious time needed to traverse the graph.

Thanks to these optimisations, we can directly access any of the parents of
a node at any given time. Thus, saving a lot of time, especially when would
have to find a parent over multiple steps, which would require numerous joins,
which is quite expensive.
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4.2.2 Master level
The master level is a level determined by an analyst who has in-depth knowl-
edge about the scanned systems. This level should be understandable to the
everyday manager without the requirement of in-depth knowledge of the sys-
tem or technical knowledge. To this level, we are trying to aggregate the
connections which are currently at the bottom-most level in the export we
receive and are next to impossible to follow for any human being. Once aggre-
gated, the data lineage can help determine the provenance of data in various
systems and help determine the type of data that can appear in said systems,
as well as the impact any changes can have on data downstream.

As of now, the data lineage data gathering is done through complex scripts
with hard-coded rules of node types that are to be skipped or displayed.
These rules need to be set case by case, and there is no guarantee they won’t
need to change once the tracked data change their structure. Furthermore,
as these rules are created case by case for each data lineage diagram, there is
considerable time required to create each diagram.

4.3 Selection of graph database
During the search for the suitable database, we have, among other things, con-
sulted ”An empirical comparison of graph databases”[13], where the Node4j
database particularly piqued our interest. Especially after the considerable
improvement Neo4j has made since the publication of the comparison in
2013.

Since then, Neo4j has introduced features such as APOC a heavily optimised
library of procedures and functions or the Bolt binary protocol with native
drivers for multiple programming languages.[14] The APOC library is also
open source, which allows it to grow and become more optimised over time
while its userbase grows.

Furthermore, Neo4j also has a powerful Graph Data Science (GDS) library,
which introduces many features useful for data analysis, such as pathfinding
procedures which are heavily optimised for massive scale, as well as paralleli-
sation. [15]

We have also considered other graph databases, such as Amazon Neptune, Re-
dis or Sparksee (formerly known as DEX). However, Neo4j has prevailed over
other candidates, especially thanks to its large userbase and well-developed
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documentation. Some of the other databases also introduced limits on free
licences to one million nodes or below, which is way below our needs of tens
to hundreds of millions of nodes, which also factored in our evaluation.

We have also disqualified all of the in-memory and non-native graph databases.
We need to focus on the processing efficiency, as the datasets considered are
rather sizable, and our resources are quite limited for the purposes of this
proof of concept.
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Chapter 5
Metadata storage

The first thing we need to do is process the data exported from Manta, as it
is described in the Section 2.1. We need to import the data into our database
and aggregate the edges into a higher layer.

5.1 Import
The first thing we need to do is get the source dataset containing the graph we
need to further process. We can either export this graph from Manta directly
or use the already exported version within the relational database used up
until now. This way, we can use any enhancement developed in the relational
database. Thanks to this option, we are also not limited to developing our
aggregation scripts and procedures within the graph database, and we can
use other resources as well. The export from the relational database is highly
similar to the Manta tool. Thanks to this similarity, we can import the data
with minimal changes to the importing script itself.

Once we have exported the CSV files, we can proceed to import them into
our Neo4j database. At first, we have used the built-in function ”load csv”,
as can be seen in the Figure 5.1. However, that only worked on the smaller
datasets we used for testing purposes. Once we tried to import the working
dataset, the import became exceedingly slow.

Thus after some research, we have decided to use the APOC library. Namely,
the ”apoc.periodic.iterate” and ”apoc.load.csv” functions, as can be seen in
the Figure 5.2. Thanks to this improvement, we have been able to shorten
the time it took to import our files from hours to minutes.
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Once imported, the dataset for this proof of concept contains over ten million
nodes and over twenty million relations.

load csv from "file:\\\edge.csv" as line
create (:EdgeL0 {edge_id:line[0], from:line[1], to:line[2],

type:line[3], no:line[4]});

Figure 5.1: Native Cypher import

CALL apoc.periodic.iterate(
'CALL apoc.load.csv("edge.csv") yield map as line return line',
'create (:Edge:L0 {edge_id:line.EDGE_ID, from:line.SOURCE_NODE_ID,

to:line.TARGET_NODE_ID, type:line.EDGE_TYPE,
resource_id:line.RESOURCE_ID});',

{batchSize: 10000, iterateList: true, parallel: true});

Figure 5.2: APOC import

5.2 Building the graph
With all the data imported into our database, we have set to build the graph
structure. At first, we have attempted a more comfortable solution, using
Python scripts and the bolt connector. This approach, however, was not as
fast as we wished it to be. The native bolt driver improved the connectivity
considerably with data streaming and other optimisations, but it was still
easier to do all the operations directly within the database.

5.2.1 Nodes
To better distinguish our data nodes, we chose to use the node type as a label.
Thus, being able to quickly filter them and display them with separate colours,
thus easily distinguishing the types of data sources while displaying our data
paths.

We have found it to be quite an arduous process to dynamically set the label of
a node within a native Cypher (the Neo4j query language). The only possible
answer we have found was to split the nodes into groups by type. Afterwards,
create a query string while concatenating the type with the rest of the query
string and then evaluating the query string.
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Thus, we have tried to process the data with python scripts, but that was
infeasible due to the inefficiency, as mentioned above. After introducing the
APOC library, we were able to make the process more efficient. However, we
still ended up having to split up all the nodes into groups separated by type
first. Nevertheless, the ”apoc.periodic.iterate” function was also beneficial in
this case.

The next part was adding the additional parameters to our nodes. This was
the second reason we were keen on using Python scripts at first. We have met
with an issue where we needed to set property by a dynamic name. This issue
was easily solved within a Python script, but it was relatively time-consuming.
Thus, we were forced to turn to the APOC library again. After some research,
we have found the ”apoc.map.setKey” function, which allowed us to modify
an object by a variable key. Thanks to this, we could swiftly update all newly
created nodes with additional attributes.

5.2.2 Edges
Once the actual nodes were prepared, we have set to add the edges, for which
we have used the same approach as with building the nodes themselves. At
first, we have attempted to use a Python script, which allowed us to do all
the necessary operations comfortably. However, this approach has proven to
be too time-consuming. Thus, we have set to optimise the process with the
APOC library.

At first, we have separated all the edges imported to groups by type in the
same way as with the nodes. Afterwards, we have used the iterate function
from APOC and created the edges between nodes. However, once we tried to
run this short script, we have met with an issue. The script was never-ending.
It took us considerable time debugging the script and further testing until we
noticed the create operation was locking nodes, and our script ended with a
deadlock. Once we realised the issue, we switched to synchronous iteration,
and the script finished successfully within a few minutes. The final script can
be seen in the Figure 5.4. We are aware of the possibility of optimising this
script further and adding the edges at the time of import, thus saving the
time needed to load the edges from our database.
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match (n:Edge:L0) with collect(DISTINCT n.type) as types
unwind types as type
call apoc.periodic.iterate(

'match (e:Edge:L0 {type:\'' + type + '\'}),
(f:Node:L1), (t:Node:L1)

where f.node_id=e.from and
t.node_id=e.to return e,f,t',

'merge (f)-[:' + type + ' {resource_id:e.resource_id}]->(t)',
{batchSize:10000, parallel:false})

yield total
return total;

Figure 5.3: Add basic edges

The next step in our graph-building process was to add the edges to our parent
nodes. This task was rather straightforward. All we had to do was match all
nodes with their parent node by the node ids already present and create an
edge between these two nodes.

5.2.3 Modifications
To make the orientation among the nodes easier, we have chosen to add a path
string to each node containing the names of all its parents, creating a path
from one of the root nodes to its imminent parent. This way, we can identify
the current schema or project the node is part of without the need to load up
all the parent nodes.

Initially, this task was resolved as part of creating the parent connections, as
it was relatively effortless to go through all of the nodes through a depth-first
search and, while adding the connection, add the path as well. However, after
moving the edge building process from a python script, we were forced to split
this process into two queries, as the depth-first search did not allow us to
iterate through the nodes while adding edges.

In the end, we have managed to find the ”apoc.text.join” function, which in
combination with the ”collect” function, allowed us to build the path directly
in the Cypher script, as can be seen in the Figure 5.4.
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call apoc.periodic.iterate(
'match p = (n:Node)-[:PARENT *1..100]->(m)

return n, apoc.text.join(
apoc.coll.reverse(collect(m.name)),
".") as path',

'set n.path = path',
{batchSize:10000, parallel:false}

);

Figure 5.4: Add paths from root to each node

5.3 Filtering
Since the graph may contain unnecessary nodes, duplicates as well as nodes
that were scanned with error, we need to filter out these nodes. For most
of these nodes, we can directly delete them according to preset rules. We
can set these rules to match custom name patterns, such as searching for
nodes containing phrases like ”copy” or ”dummy”. We can also match all
nodes which are scanned with a connected resource named ”Unknown”. This
resource marks nodes with unknown origins. We can directly delete these
nodes, as we will not need them for any further analysis, and they would only
take up space and take up processing time during further aggregation.

We can also encounter uninteresting nodes, such as logs or other similar ta-
bles. We can not delete these nodes, as there might be cases where we need to
display or examine them. However, we do not want to use them in our aggre-
gations as they could create unnecessary paths. We can thus mark them with
a custom label, in our case a simple ”Skip”, and then, later on, we just filter
these nodes out during aggregations when these nodes are not needed. Since
we will not delete these nodes, we can display them when needed directly or
use them in selected aggregations where it makes sense.

5.4 Aggregation
Once we have built the graph within our database, we have set to aggregate
the structure to be easier to read and understand for an average human being.
To start with, we have set to aggregate connections at the bottom-most level,
meaningless for a human mind. We have used the so-called master level nodes
selected by the data analyst before, as mentioned in the Section 4.2.2.
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unwind edgeTypes as edgeType
unwind nodeTypes as nodeType1
unwind nodeTypes as nodeType2
call apoc.periodic.iterate(

"match (f:`" + nodeType1 + "`)
<-[:PARENT *1..100]-

()-[:" + edgeType + "]->()
-[:PARENT *1..100]->

(t:`" + nodeType2 + "`)
return f, t;",
"merge (f)-[:" + edgeType + "]->(t)",
{batchSize:10000, parallel:false}

)
yield total
return total;

Figure 5.5: Horizontal aggregation

5.4.1 Vertical aggregation
To aggregate relations to this level, we first tried the basic match within
Neo4j. This approach, which was sufficient for testing purposes, turned out to
be quite lacking once we had introduced it to the production dataset. For one,
we needed more than one type of node to be connected as opposed to only a
single node type used for testing. Thus, we needed to iterate through all the
types of our master-level nodes. Therefore, we have once again introduced the
’apoc.periodic.iterate’.

We can see the final result in the Figure 5.5. We have first gathered the edge
types and list of master node types, which we have omitted in this example
as it would take too much space.1 Once we had all the types, we used an
unwind, which works in the same way as iteration over the list and went
through all of the types, the edge types, as well as the node types of both
starting and finishing nodes. Afterwards, we have used the basic match on
our path structure and added the aggregated edges. The basic match selects
two of the master-level nodes, then matches all child nodes under them and
checks if any of these child nodes have a connection between each other in the
right direction.

This way, we have successfully aggregated the relations into the master level.
1The full script can be found within the attached full_build.cypher file
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Once connected, we have also separated these master-level nodes into four
groups, Reports, Tables, Transformations and Files, according to what best
describes the master-level nodes. This way, the manager does not need to
know the meaning behind a ”Tableau Data Source” and only needs to know
that it stores data and acts the same way as a table for our data lineage
purposes. This separation has been done by a simple label assignment over
all of the master-level nodes.

5.4.2 Horizontal aggregation
Once we had built the connections between the master-level nodes, we were
able to visualise the data flow in the built-in Neo4j Browser. However, this
level of aggregation was still insufficient. In order to track the provenance of
data, we had to go through multiple transformations just to arrive at a source
table. Thus, after consultation with our data analyst, we have set to skip these
transformations, aggregate the data horizontally and connect tables directly
to each other without the need to go through many transformations.

Once we have started analysing the master-level nodes, we have found that
most of the nodes had a connection to a logging database. This connection
has led to problems with displaying the data lineage, as it forced us to load
many unnecessary nodes. Thus we have removed all logging related nodes
from our master level for the purposes of this proof of concept.

The first idea to horizontally aggregate our nodes was to use a similar approach
as with vertical aggregation. We wanted to use a match statement over mul-
tiple relations and tables and then iterate over the results. This approach has
proven not to be feasible, as the match statement matches all existing paths
and stores them in memory.

Once the previous attempt failed, we turned for help to the APOC library,
which has helped us many times in the past. We have found two procedures
that could be potentially helpful.

The first APOC attempt was with the ”apoc.path.spanningTree”, as can be
seen in the Figure 5.6. This procedure is optimised for finding one or a se-
lected number of paths between one and a list of other nodes.[16] We have
selected all our table nodes as starting as well as ending nodes for our path.
We have added a condition for removing self-referencing relationships, as they
are irrelevant for our purposes. Then we used the procedure with label fil-
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call apoc.periodic.iterate(
"match (n:MasterTable), (m:MasterTable)

where n.node_id <> m.node_id
return n, m;",

"call apoc.path.spanningTree(
n,
{

relationshipFilter:'DIRECT>',
labelFilter: '+MasterTransformation|/MasterTable',
endNodes:[m],
limit: 1

}) yield path
merge (n)-[:MasterDirect]->(m)",

{batchSize:10000, parallel:false}
)
yield total
return total;

Figure 5.6: The first APOC attempt for horizontal aggregation

call apoc.periodic.iterate(
"match (n:MasterTable) return n;",
"call apoc.path.expand(

n,
'DIRECT>',
'+MasterTransformation|/MasterTable',
1,
10000

) yield path
merge (n)-[:MasterDirect]->(last(path))",
{batchSize:10000, parallel:false}

)
yield total
return total;

Figure 5.7: The second APOC attempt for horizontal aggregation

tering over transformation nodes, with the terminal node being a table. We
have also limited the relationships to direct for the purposes of this proof of
concept.

We have also pondered on options to optimise the query in the Figure 5.6.
One option we could come up with was to add all the table nodes to our end-
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node list. However, this option has proven to be unfeasible, as we could not
limit the number of returned paths, which only made the query slower.

The second APOC procedure we have attempted to use was the ”apoc.path.expand”
in the Figure 5.7. This procedure focuses on expanding the path according
to provided filters. However, this procedure has proven to be an unfeasible
option as well since the procedure does not allow for exempting the starting
node from the traversal node filter. [17]

After further analysis of this subject, we have met with a recommendation to
write a server-side extension for any complex high-performance operations.[18]

5.4.3 Neo4j plugin
Based on the abovementioned recommendation, we have set to explore the
world of Neo4j custom plugins. The essential requirement for its creation was
java, as the Neo4j is implemented in java. The next thing we needed was to
set up the environment with maven and required packages. This process is
well described within the neo4j documentation[19]. Thus we will not be going
into detail, as it is slightly out of the scope of this thesis.

Once we had the core of the java plugin, we have added a procedure accepting
five arguments, labels of the starting, traversal and ending nodes to filter
by, as well as the type of relationship we would traverse over and lastly, the
relationship type of the newly created aggregate relationships instead of the
existing paths.

To make our procedure as efficient as possible, we have made it fully in memory
and compact. Thus, at the start of our procedure, we gather all the starting,
ending and traversal node identifiers. Afterwards, we load all the relationships
between the gathered nodes. From these relationships, we only select the
identifiers of starting and ending nodes. We then group these relationships
by starting node identifier. We save it to a HashMap[20] structure, where
we map the starting node identifier to the list of all related ending node
identifiers to improve lookup performance. This way, we have easily accessible
relations for all our nodes. Based on the Java documentation[20], we should
achieve the optimal constant-time retrieval performance, as the hashmap was
constructed with a known initial size, which never changes throughout the
procedure.

Next, we create another HashMap for saving the list of accessible end node
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dfs(currentId) {
if (ifAlreadyVisited(currentId)) {

return
}

setVisited(currentId)

connectedNodes = getRelationships(currentId);
for (connectedNodeId in connectedNodes) {

dfs(connectedNodeId);
addResultsFromConnected(currentId, connectedNodeId);

}
}

Figure 5.8: The DFS pseudocode for finding all paths

identifiers for each of the nodes, including the traversal nodes. Afterwards,
we run a DFS algorithm[21] from each of the starting nodes gathered at the
beginning. This way, we only have to visit each relation at most once. The
simplified pseudocode version of our DFS algorithm can be seen in the Fig-
ure 5.8, and the full implementation can be found in the attached CD within
the ”src/plugin” folder.

Once we have all the paths aggregated into simple relations, all we have to do
is to create all the new relations in our database. Since we are working with
larger datasets, we have to separate the process into multiple transactions.
We create a new transaction for each of the starting nodes and commit it once
we add all the relations starting from the said node.

After we have completed the code, we have packaged it into a Java runtime
environment (JRE) plugin, which can be plugged into any Neo4j server and
used for aggregating large dense graphs. However, this plugin is made only
for the purposes of this proof of concept and for further, more general use,
it would need further improvements, such as allowing multiple label types for
relationships as well as nodes, as well as other improvements and possible
performance optimisations.

However, after further investigation of the graph structure, we have found that
there can be cycles within the data flow. Due to these cycles, we were forced
to reexamine our DFS algorithm, as the original algorithm would not connect
all the nodes properly. For example, with the graph structure displayed in the
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Figure 5.9: The graph structure with cycles

Figure 5.9, where we have starting nodes A and B, traversal nodes C and D
and finally terminal nodes E and F. The original algorithm would start in node
A and follow through the node C, D and E. Once reaching a terminal node, it
would go back to node D and mark it as it has access to node E. Afterwards,
it would return to node C and mark it with access to node E. Then, it would
follow to node F, and mark node C with access to node F. Once node C is
completed, it would add the information about access to nodes E and F to node
A. After all edges for starting node A were calculated, the algorithm would
start from node B, following to node D, which would appear as calculated and
return only access to node E, leaving node F unconnected.

Due to this problem, we have tried to use a simple DFS algorithm without
storing the accessible terminal nodes in each of the traversal nodes. This
way, we would run a simple DFS algorithm from each of the starting nodes.
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Thanks to the in-memory processing, the difference in processing time was not
significant. Thus, we have decided to use the simple DFS algorithm without
any further attempts to make it more efficient, as it was not necessary for the
purposes of this proof of concept.

Thanks to this plugin, we have been able to create over twenty million aggre-
gated relationships within approximately 2 minutes. To compare the progress
with the first APOC implementation in the Figure 5.6, which we stopped after
over twelve hours of processing which created a little over one hundred and
forty thousand relationships. At this rate, it would take over two months to
process all of the horizontal aggregations using the APOC library.

5.4.4 Reachability
In order to be able to gather the data lineage for more complex cases, we need
to precalculate the reachability of certain nodes to limit the amount of data we
have to process. The preprocessing is done by another custom procedure not
dissimilar to the first procedure in our custom extension. This procedure loads
up all the nodes matching a selected label and their relations of a selected type.
It then traverses the graph from each of the nodes and saves the identifiers of
all the nodes it has visited. After all the accessible nodes for a starting node
have been gathered, we create a relationship between the starting node and
each visited node. We have been forced to create the relationships for each
starting node separately, as we are limited by the ram size, and the graph is too
extensive for us to store all the newly created relationships within RAM.

Once we have all of the accessible nodes for all of the starting nodes, we
can easily examine any relationships within the data path on higher levels
and gather the lower levels with only the necessary data which relates to our
target node. To be able to gather details on the bottom-most level as well
as on the master level, we have preprocessed both these levels in the same
way. However, the preprocessing was done only on the data nodes, as most
often, we do not need the procedures in between. As for the edge cases, where
we need the full path with procedures included, we can gather the paths in
between our data nodes to complete the detailed path. This process should
not be too time-consuming, as the transformation nodes do not have as many
relationships as the data nodes.
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5.4. Aggregation

5.4.5 Path limiting
To limit the number of nodes within the path, we have also added further
aggregated relations. These relations connect the master level data node and
the top-level data node on the border between top-level nodes. This way, we
can traverse the path and stop at the border once we leave the schema or
database. We can also specify how many borders we are willing to cross while
gathering all the nodes in our data lineage path. This limit was introduced
because some tables have data gathered throughout a large part of the system,
and the path branches rapidly, which can be hard to visualise. It is much easier
to visualise and comprehend when we split the path into parts.

We can also use the combination of path limiting, traverse the path mostly
over top-level nodes and then load up selected parts of the path with the
help of preprocessed reachability relations. This way, we can load up only the
nodes that relate to the data node we are currently examining without the
need to traverse the full path at the examined level. This approach can make
data lineage analysis much more efficient, as we do not need to load anything
else than we are currently examining.
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Chapter 6
Visualisation

We have found various options for visualising our data lineage. Each option
has its pros and cons, and we would like to describe them in this chapter.

6.1 Neo4j Browser
The Neo4j Browser application has a built-in basic visualisation tool. It allows
the user to browse through the data nodes. It is ideal for a developer, as it can
be used for writing detailed queries. However, it requires basic knowledge of
the Cypher language for its use. Thus, it would not be suitable for managers
without prior knowledge about graph databases. On the other hand, it would
be ideal for use-cases such as developers trying to find all tables which can be
affected by changes in a selected table. Once all aggregations are finished, a
simple query could achieve this task.

The Neo4j Browser also allows users to administer a local version of our graph
database. This way, any user can wither run the aggregation scripts on their
device as well as load a backup of the already ready database and work in a
fully offline mode.

The basic built-in visualisation tool also limits the number of nodes it will
visualise. Furthermore, it also loads up all the existing relationships of loaded
nodes, which can be chaotic, especially when introducing all of our aggregated
relations. Thus, it is not the ideal solution for most of our use cases.
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6. Visualisation

Figure 6.1: Data lineage example on master level with horizontal aggregation
(green - tables, red - table for which we need the data lineage)

6.2 Neo4j Bloom
The Neo4j Bloom is a visualisation tool that freely interacts with the Neo4j
graph data platform. It allows the user to connect to a graph database and
visualise its contents. Furthermore, it also supports more natural-like lan-
guage, which is much friendlier to business users, allowing for simple querying
and filtering. It also supports custom queries written in Cypher, which are
then executed with custom parameters with support for the nature-like lan-
guage.

Another advantage of the Neo4j Bloom is the ability to display nodes topo-
logically, which considerably helps with orienting in the data lineage flow. It
also allows for custom rule-based styling, which helps to distinguish different
types of nodes as well as specific essential nodes within the graph.

For example, we can visualise the following data lineage in the most commonly
used view, where we display only tables. The visualisation can be seen in the
Figure 6.1, although these images are anonymised parts of the data lineage, as
the original dataset contains proprietary data. There, we can see aggregated
edges between tables signifying direct data flow.
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6.2. Neo4j Bloom

Figure 6.2: Data lineage example on master level with procedures
(green - tables, pink - procedures, red - table for which we need the data
lineage)

In the second example, the Figure 6.2, we can see the visualisation of the
data flow of the same dataset without the horizontal aggregation, which hides
procedures transforming the data along the datapath. In this view, we can
further analyse data transformations between tables if needed.

It is also possible to visualise the top level of our data lineage, in this case,
the schema level. It is to be used for the larger picture visualisation, where
we want to find associations between databases or dependencies in system
deployment. This visualisation can be seen in the Figure 6.3. It can also be
visualised without the horizontal aggregation, giving us a similar graph as the
master level.

On top of that, we can also combine the abovementioned views. We can start
at the top view with schemas and expand the connections in vertical as well
as horizontal directions. This way, we can leave less important tables hidden
under a schema and display only the parts that are currently of interest.
Moreover, we can also combine both expansions in one view, as you can see
in the Figure 6.4, where we have expanded schemas S1 and S2. Afterwards,
we have also expanded connections between tables T1 and T5 horizontally,
displaying dataflow in procedures connecting these two tables. Finally, we
have expanded the data lineage visualisation to the bottom-most level between
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6. Visualisation

Figure 6.3: Data lineage example on top level with horizontal aggregation
(brown - schemas)

tables T6 and T3, displaying columns connecting these two tables.

Furthermore, we can also use the aggregated relations on the edges of schemas.
We can stop the path expansion using these relations once we cross the border
between schemas. We can also set particular schemas for which we want to
display the detail and skip the rest. Once the path is expanded, we can further
expand the details we need for our specific issue. The resulting example of
such a path can be seen in the Figure 6.5.

6.3 External tools
The Neo4j Bloom also offers the option to export selected nodes and relation-
ships to simple CSV files. This option allows us to prepare the data lineage
within desired borders and then export it for further processing. The Neo4j
Desktop also enables us to export queried graph structures, which is helpful
in loading larger graphs that would be hard to render within the interactive
environment.

Once we have the exported graph, we can use our custom parser, which we
have created for the purposes of this thesis, which parses the graph into a
PlantUML source file. We can see the exported source code in the Figure 6.6
as well as the exported image in the Figure 6.7. The example contains the
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6.3. External tools

Figure 6.4: Combined data lineage example on multiple levels
(brown - schemas, green - tables, pink - procedures, orange - columns
blue edge - parent, red edge - direct data flow)
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6. Visualisation

Figure 6.5: Combined data lineage example on multiple levels
(brown - schemas, green - tables, red - table for which we need the data lineage
red edge - direct data flow, black edge - limited direct dataflow at the border
of two schemas between schema and table)

same dataset as the Figure 6.4. It is also possible to display further details
for each node, as well as to add custom information to each node. However,
this detail is sufficient for the illustrative proof of concept purposes of this
thesis.

To generate the image from the PlantUML source code, we use a free Plan-
tUML service[22]. This service, however, stores the generated image publicly.
Thus it will not be possible to use this publicly available version for pro-
duction purposes. In the future, it would be better to use a local service or
command-line tool for generating the resulting image in the desired format.
The PlantUML also has an option to generate the other formats, such as
SCXML, VDX or XMI, which can be further processed and enhanced. Once
we set up the local service, command-line tool or library, we can integrate
the generation into the Neo4j database itself as another procedure. This way,
we can generate these diagrams on demand on any layer desired with simple
parameters.
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6.3. External tools

@startuml
skinparam rectangle {
roundCorner 25
}
left to right direction
title export_example
'nodes
rectangle "T1" as 0 #FFE081
rectangle "T3" as 2 #FFE081
rectangle "S1" as 4 #D9C8AE
rectangle "T5" as 5 #FFE081
rectangle "T6" as 6 #FFE081
rectangle "S2" as 8 #D9C8AE
rectangle "S3" as 9 #D9C8AE
rectangle "S4" as 10 #D9C8AE
rectangle "C1" as 11 #F79767
rectangle "P2" as 13 #4C8EDA
rectangle "P3" as 14 #4C8EDA
rectangle "P7" as 17 #4C8EDA
rectangle "P9" as 19 #4C8EDA
rectangle "P11" as 21 #4C8EDA
rectangle "P14" as 24 #4C8EDA
rectangle "C2" as 28 #F79767
rectangle "C3" as 29 #F79767
rectangle "C4" as 30 #F79767
rectangle "C5" as 31 #F79767
rectangle "C6" as 32 #F79767
'relationships
5 --> 2
6 --> 2
0 -* 4
5 -* 8
6 -* 8
2 -* 8
32 -* 2
31 -* 2
30 -* 2
0 --> 13
13 --> 14
13 --> 17
13 --> 19
19 --> 21
21 --> 24
17 --> 21
14 --> 24
24 --> 5
10 --> 9
4 --> 8
8 --> 9
29 -* 6
28 -* 6
11 -* 6
11 --> 30
28 --> 31
29 --> 32
@enduml

Figure 6.6: PlantUML data lineage source
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6. Visualisation

Figure 6.7: PlantUML data lineage diagram
(brown - schemas, yellow - tables, blue - procedures, orange - columns)

It is also possible to use the graph export to generate a FlowChart diagram,
which also allows for integration to Confluence, which is widely used for doc-
umentation. The confluence integration also allows binding custom actions
on the diagram elements. This way, we could view detail of any relation
upon clicking on it. However, this would require us to either generate all the
diagrams beforehand or generate them on demand.

To generate such a vast amount of diagrams would require us to automate the
process entirely, which would require further development and integration.
However, with some more work, we could generate the diagrams on demand
by specifying the node of interest, whether we want its data source nodes or
destination nodes, and the layer we want to display. We could also generate
details of lower layers specified by two nodes of a higher layer and a target.
This way, we could create a fully interactive tool that would require minimal
user experience and could be operated by a simple double-click of a mouse to
display the details of any relation and a simple full-text search for a node of
interest.

It is also possible to export the graph into any other visualisation tool. How-
ever, since the graph in question contains hundreds of millions of nodes and
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6.3. External tools

relations, it would be advisable to export only sections or selected layers of
the graph. It would also be possible to connect any third-party visualisation
tools which support the Neo4j integration, such as Perspectives[23].
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Chapter 7
Evaluation

After implementing our solution based on the Neo4j graph database platform,
we have come up with a few options for improvement. First and foremost, we
would like to mention the importance of in-memory preprocessing of reacha-
bility, as well as horizontal aggregations. Since databases were never meant
for calculating large operations with heavy performance requirements, the re-
sulting time needed for these operations is often relatively high. Thus, our first
and most important recommendation is to preprocess as much information as
possible outside of the database.

Another great option is to use a custom in-memory procedure, which allows
us to process the data in parts without the need to move them outside of
the database. This approach might be problematic for larger datasets, as
we could be limited by the RAM size of the machine. This limit can be
bypassed by modifying our current algorithms to allow for problem division
and solving smaller parts separately. However, this approach would overall
require increased processing time.

Next, we would like to note that the most significant advantage of the graph
database is the index-free adjacency which simply can not be achieved with the
usual relational database. The index-free adjacency grants us high-efficiency
improvement while traversing a graph, which is an operation that is the core
of our data lineage visualisation use case. This advantage appears to place
an unscalable barrier between the Neo4j and our usual relational database
used in the original attempts to visualise the data lineage. This core differ-
ence between these databases projects into an exponential difference in time
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7. Evaluation

needed for visualising the data lineage. The visualisation based on the Neo4j
database we have implemented as part of this thesis can gather and visualise
the smaller diagrams containing hundreds of nodes within seconds, as opposed
to the attempts based on the relational databases, which take minutes to com-
plete. The larger datasets with thousands of nodes then display even vaster
differences in performance.

Furthermore, some operations are completely unfeasible based on the current
solution without the preprocessing done on the Neo4j database. For example,
displaying detailed information about the relation between two tables with
hundreds of nodes distancing this relation from the target table in question,
where we try to limit the details to only nodes based on the information
which affects the target table, is not feasible. This operation would require
us to gather the full bottom-most path over the entire path removed by hun-
dreds of other nodes just to determine which nodes can eventually reach the
target table and which do not. This problem could be resolved with the afore-
mentioned preprocessing, which is not database related. Although, it would
be advisable to split the relations into different tables by type, as there can
be a vast amount of the preprocessed relations, which could significantly ex-
tend the time it takes to lookup a relation for each node within the relational
database.

On top of the abovementioned issues, the current problem with the solution
based on a relational database is its need to write extensive custom SQL
queries for each visualisation, which takes hours or longer. This work also
requires a skilled engineer with advanced SQL knowledge as well as elemen-
tary knowledge of the data lineage being visualised. This requirement might
prove to be a significant problem, as it could potentially raise the cost of cre-
ating these visualisations. This issue could be resolved with the use of some
advanced visualisation tool, which allows a business user to interact with
the data visualisation and query the needed information on demand without
the need for any extensive training. Any tool similar to the Neo4j Bloom
should suffice. However, we will leave the research of these tools for future
exploration since it is unnecessary for the purposes of this thesis, and the
Neo4j Bloom provides sufficient options for our visualisation based on a graph
database.

It is also possible to further enhance the data lineage with information from
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other sources and add it to the visualisations. This enhancement could give
us the full business data lineage. It should be relatively easy to implement it
into the project, as the Neo4j database does not have a rigid structure, and it
can be modified at any given step of the process. However, it would require
considerable effort to gather all the information for the business data lineage
to be complete. On the other hand, once the information was gathered and
introduced into the metadata storage, the value of our visualisations would
grow significantly.
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Conclusion

In this thesis, we have analysed the options for visualising data lineage of
various levels and granularities. We have met with the issue of visualising
extensive data lineage and keeping the result easy to understand and compre-
hend. We have decided to attempt to create a proof of concept for dynamic
data lineage visualisation, which was met with radiant support from the side
of our partners from Profinit and Česká Spořitelna. We have also analysed
the current attempts for a solution using a relational database, namely Or-
acle. At the time we started this thesis, all the results were unsuccessful.
However, during the development of this thesis, the other party working on
the project with the relational database managed to achieve a successful out-
come, as they are mentioned in the Section 4.2. However, these results were
achieved with the use of hardcoded SQL scripts, which required considerable
time for each visualised data lineage diagram. These scripts also required a
skilled data analyst to cherry-pick the nodes to visualise as well as the nodes
to skip.

We have also compared the advantages and disadvantages of SQL relational
databases and graph databases. Furthermore, we have focussed on the details
of graph processing on various databases, as well as the level of the nativity
of a graph database. Further, we have selected the Neo4j database as the
best representative, as it is the most widely used graph database. Moreover,
the Neo4j is also an industry-leading database system, which is fully native,
giving the best performance while working with a graph-structured dataset.
On top of that, the Neo4j also has a sizable open-source community developing
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custom methods with an emphasis on performance.

Once we have selected the Neo4j database, we have worked on various ap-
proaches for building the metadata storage. At first, we started with python
scripts, which turned out as a failure due to their performance issues. When
testing this approach on a smaller dataset, we have been rather successful, but
once we introduced it to the dataset provided by our partner Česká Spořitelna,
we met with severe problems, and the scripts would finish only after a rather
long time. Due to the abovementioned performance issues, we have decided to
move forward with the use of native Neo4j queries. We have developed basic
scripts for building the initial stage of the metadata storage. However, the
native neo4j scripts were insufficient for the amount of data we had to work
with. Thus we have decided to look for further options for improving our
processes. We have finally succeeded in optimising the scripts for building the
base of the metadata storage with the use of APOC library developed by the
opensource community surrounding Neo4j. This library helped us to increase
the performance of our scripts significantly.

Once we have built the base of our metadata storage, we have set to aggregate
it horizontally and vertically to enable querying of various types of data lin-
eages. We have aggregated new paths while skipping unnecessary nodes such
as various transformations. We have also aggregated the most basic level data
lineage to higher levels. This way, we have gained the option to query dif-
ferent data lineages containing various levels of granularity and also to query
the data lineage for specific use-cases. At this point, we have reached the
stage where we could query basic data lineages using the Neo4j database in
seconds, while the approach using the SQL database took minutes to complete
processing the query.

However, even though we could query the common data lineages rather fast,
the more complex data lineages were still too extensive to query even with
the Neo4j database, even though it gave us fully native graph processing.
After meeting with the more prominent data lineages, which were harder to
query, we have decided to look for further options for optimising our meta-
data storage. After further analysis of the Neo4j database, we have decided
to use a custom procedure. We have thus created two different procedures for
aggregating data. One for skipping transformations and other unnecessary
nodes, which created direct connections between data nodes and the second
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one, which created aggregated connections between each reachable node. This
way, we have increased the storage needed for the entire metadata storage.
On the other hand, we have gained information about all nodes which are
part of the queried data lineage almost instantly. Thanks to this preprocess-
ing, we have managed to query even the most complex data lineages within
seconds.

Once we have completed the requirements for fast data lineage querying on
multiple levels and granularities, we have decided to build a proof of concept
for dynamic data lineage visualisation. We have decided to use the Neo4j
Bloom application, which is a complex data analysis tool that seamlessly
integrates with the Neo4j database. We have also tried the built-in visual-
isation tool in the Neo4j Dekstop application, but it was insufficient for our
needs. With the neo4j bloom, we have gained the native-like query language,
which is easy to use for users without extensive knowledge and experience
with database systems. We can also extend this language with custom Cypher
queries for querying specific types of data lineages as well as displaying detail
of aggregated relations. This way, any user can dynamically expand the data
lineage with the data they require without the need to go through unnecessary
parts and details, which would only confuse the result.

Since the dynamic querying did not provide us with the option to save the
resulting data lineage with its full information, we have decided to create an-
other tool for exporting the data lineage into a static format. After analysing
the options for this tool, we ended up choosing the PlantUML tool. This is
mainly a UML visualisation tool, which supports mainly the UML generation
from a source code. To generate the PlantUML source code, we have used
a custom Python script, which consumes CSV files easily exported from the
Neo4j Bloom containing the current data lineage. This script also allows us
to generate the PlantUML source code for the data lineages of various levels
and granularities. We can also generate an export of a specific data lineage
directly from the Neo4j database and then use it to generate the PlantUML
source code. Once we have the PlantUML source code, we can then generate
the resulting graph in the desired format, such as SVG image or many other
formats.

We have also devised a solution for generating these exports on demand for
specified data lineage, granularity and level. This way, we could make a tool
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that dynamically loads the data lineage as we go through it and generate the
PlantUML source code and resulting graph. This way, we could make the
tool more user-friendly and save time for the user. The user could easily go
through the graph by simply clicking on an aggregated relation to get a more
detailed visualisation of said relation.

In conclusion, we have successfully managed to devise a process for visualising
static as well as dynamic data lineages of different levels and granularities. We
have managed to optimise this tool to visualise the data lineages efficiently on
demand. In the end, we have also devised further options for the development
of this proof of concept, and we have met with a lot of positive feedback from
our partners.
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Appendix A
Contents of CD

readme.txt.........................the file with CD contents description
bin................................the directory with compiled programs

custom-plugin.jar...............Neo4j plugin for aggregating paths
src.........................................the directory of source codes

export_to_plantuml..Directory with export to PlantUML (including
example)
plugin.........................Custom Neo4j plugin for aggregations
scripts.............Scripts to query and build the metadata storage
thesis...............the directory of LATEX source codes of the thesis

text............................................ the thesis text directory
thesis.pdf........................the Diploma thesis in PDF format
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