
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Light-Weight Sandbox for Installers
Bc. Artem Ustynov
Ing. Josef Kokeš
Informatics
Computer Security
Department of Information Security
until the end of summer semester 2022/2023

Instructions

1) Research currently used methods for sandboxing applications.
2) Study the real-world scenarios of a malicious use of installers.
3) Propose a technical solution that would allow the user to detect and/or prevent such
an attack.
4) Create a proof-of-concept of a lightweight application of your design.
5) Test your code against a real-world potentially unwanted installer.
6) Evaluate your results and discuss the options for improvement.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 6 February 2022 in Prague.

Master’s thesis

Light-Weight Sandbox for Installers

Bc. Artem Ustynov

Department of Information Security
Supervisor: Josef Kokes

April 30, 2022

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on April 30, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Artem Ustynov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Ustynov, Artem. Light-Weight Sandbox for Installers. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Při vyhledáváńı méně známých softwarových produkt̊u nebo produkt̊u vyvi-
nutých nezávislými vývojáři je nutné vypořádat se s jejich instalátory. Tyto
instalačńı programy často obsahuj́ı software třet́ıch stran a někdy neńı možné
nainstalovat požadovaný software, aniž by byl uživatel nucen instalovat nějaký
daľśı doprovodný program. Ćılem této práce je analyzovat běžně použ́ıvaný
instalátor “InnoSetup” a vyvinout odlehčený sandbox, který zajist́ı, že in-
stalátor nebude upravovat registry ani soubory na hostitelském poč́ıtači, což
uživateli umožńı učinit informovaněǰśı rozhodnut́ı týkaj́ıćı se bezpečnosti soft-
waru, který si přeje instalovat. Navrhované řešeńı je navrženo jako odlehčená
alternativa k existuj́ıćım př́ıstup̊um.

Kĺıčová slova lehký, sandbox, instalátor, softwarová emulace

Abstract

When searching for lesser-known software products or products developed by
independent developers one has to deal with software installers. Such installers
often bundle third party software and sometimes it is impossible to install the
desired software without also installing some additional program. The goal
of this work is to analyze the commonly used installer the “InnoSetup” and

v

develop a lightweight sandbox that will ensure that installer won’t modify
registers or files on the host computer, allowing the user to make a better-
informed decision regarding the safety of the software they desire to install.
The proposed solution is designed to be a lightweight alternative to existing
approaches.

Keywords light-weight, sandbox, installer, software emulation

vi

Contents

Introduction and motivation 1

1 Real-world scenarios of the malicious use of the installers 4

1.1 O�cial distribution . 4
1.1.1 uTorrent . 5
1.1.2 GOM player . 6

1.2 Third party software distribution websites 7
1.2.1 Examining the distributed files 7
1.2.2 Motivation for PUP . 10

1.3 Antivirus protection . 10

2 Isolating installers 12

2.1 Docker . 13
2.2 Virtual machines . 13
2.3 Windows Sandbox . 14
2.4 SHADE Sandbox . 15

3 Design overview 17

3.1 Windows registry . 17
3.2 Design . 18
3.3 Sandbox design . 22

4 Image file structure 25

4.1 Image file in memory . 27

5 Implementation details 31

5.1 Function hooking . 33
5.2 Registry key management . 38
5.3 File management . 44

vii

6 Testing against real-world potentially unwanted installer 50

6.1 InnoSetup installation outside the sandbox 50
6.2 InnoSetup installation in the sandbox 52

7 Discussion 54

7.1 Options for improvement . 55
7.2 Modifications and cooperation 56

8 Final conclusion 57

Bibliography 60

A Acronyms 63

B Contents of enclosed CD 64

viii

List of Figures

1.1 Cheat Engine PUPs . 4
1.2 uTorrent additional software . 6
1.3 GOM player PUPs . 6
1.4 Downloadastro PUPs . 8
1.5 No internet error message . 8
1.6 End of the installation process window 9

2.1 Docker and VM distinctions [3] . 13
2.2 Memory sharing for Windows Sandbox 14
2.3 SHADE sandbox. Placing program into the sandbox [8] 15

3.1 Schematic process of registry key creation 19
3.2 User level key creation imitation 19
3.3 Imitation of a registry key creation 21
3.4 Installer process start under sandbox mode 22
3.5 New process call interception diagram 23
3.6 Create file interception diagram . 23
3.7 Modify file interception diagram 24

4.1 Portable executable file format. [14] 25
4.2 NT DOS HEADER location relative to DOS HEADER 26
4.3 Locate IMAGE NT HEADER structure 26
4.4 Export tables and symbols [17] . 27

5.1 MoveFileW system calls . 32
5.2 Locate PIMAGE DOS HEADER of loaded DLL libraries 33
5.3 Process of location of an ImageThunk from a DosHeader 34
5.4 Import by name process overview 35
5.5 Import by ordinal. Function metadata location. 35
5.6 Function names location, derived from AddressOfNameOrdinals . 36
5.7 Import by name. Function swap schematic process. 37

ix

5.8 Overwriting the function address for functions imported by ordinal 38
5.9 API call stack for predefined handle value equal to five 38
5.10 API call stack for predefined handle value equal to six 39
5.11 Containers used to store registry key data during sandbox run-time. 39
5.12 Registry key container class . 40
5.13 Registry value container class . 40
5.14 NtCreateKey emulation process. 41
5.15 NtOpenKey emulation process. 41
5.16 NtSetValueKey emulation process. 42
5.17 NtQueryValueKey emulation process. 42
5.18 NtQueryKey emulation process. 43
5.19 myNtClose process. 43
5.20 Files location with and without sandbox. 44
5.21 Name location in OBJECT ATTRIBUTES structure 45
5.22 myNtOpenFile process. 46
5.23 myNtCreateFile process. 47
5.24 myNtQueryAttributesFile process. 47
5.25 MoveFile process. 48
5.26 LoadLibraryW process. Redirecting call. 48
5.27 CreateProcessW process. Redirecting call. 49

6.1 InnoSetup new process created. 50
6.2 InnoSetup new process at the final stage. 51
6.3 Files after InnoSetup installation 51
6.4 Origin of the child process during InnoSetup installation. 52
6.5 Content of the sandbox folder upon reaching the first screen. . . . 53

x

Introduction and motivation

Nowadays, a lot of software is no longer supported by developers and can’t
be accessed through o�cial websites, so users have to resort to download-
ing from third party resources. Often, such software comes in the form of
an “installer” with bundled programs. Sometimes, even currently supported
free-to-use programs come in bundles in order to monetize them. For example:
Cheat Engine, uTorrent, and Daemon Tools. Some installers force the user to
install at least one of the bundled programs in order to continue, and some-
times they don’t give a choice of where the product is going to be installed,
or won’t even notify the user about the fact that there will be more than one
program installed.

Furthermore, installed software needs to be uninstalled by the provided
uninstaller and the result is often not what would be expected after complete
removal. Programs often leave residue files in system folders. This can cause
potential errors and crushes of other programs. And there is no easy way of
knowing if these files weren’t deleted by accident, or if they in conjunction
with some other software are used to profile users. They can be used to track
users’ history of used programs and gain insight that will allow them to gain
knowledge for malicious or commercial use.

A similar issue occurs with registry keys. They are often used as a less
obvious way to store information on the machine. They can prevent a user
from having a fresh install of the app and have similar potential malicious
and commercial use as files. Examples of such behavior are often displayed by
legitimate programs for example: Yandex Disk, Opera Browser, Gom Player,
Viber and many other programs that leave residual files and registries after
they were deleted.

Detecting such a file or a registry can be a rather di�cult task since there
are potentially millions of keys and files that can be present in the system and
Windows doesn’t provide a way to track what files or keys were modified or
created by a given program.

While all the aforementioned changes are preventable via containers, vir-

1

Introduction and motivation

tual machines, and Windows Sandbox, they are rather complicated to set up
and require significant computation resources. They provide good levels of
isolation from the host machine. Since they are all designed for professional
use and not for everyday users process of setting up and running existing en-
capsulating solutions can be relatively di�cult. HYPER-V technology that is
used for Windows Sandbox and some Virtual Machines is not supported on
some CPUs or might need an additional set-up in BIOS and not all users would
be comfortable changing parameters there or even have access to them in the
first place. Furthermore, installing the software might require installing ad-
ditional dependencies and possibly even purchasing additional licenses. This
makes the set-up and running of an installer in the emulated environment a
task that requires more e�ort than an average user is willing to give. Software
based sandboxes are less secure, but more convenient, so they are more likely
to be utilized by the user.

Users can’t fully rely on antiviruses to protect them from unwanted soft-
ware, since antiviruses often depend on signatures and do not perform a full
analysis of potentially installed software. The whole installer might be quaran-
tined or deleted leaving the user no other choice except to disable the antivirus
and install a program as-is especially if the desired software can’t be obtained
from other sources without the installer attached to it. See results of the
experiment 1.

It is a common practice to have additional potentially unwanted software
bundled with legitimate software to monetize free programs. Antiviruses
sometimes see this practice as malicious and block the whole installer, but
if the user is careful they can often avoid installing any additional programs
so from the user’s perspective the antivirus just stands in the way and makes
obtaining otherwise legitimate software unnecessary di�cult. However, this
behavior from antivirus is expected since the vendor isn’t obligated to openly
state what software will be installed, especially if it is impossible to find al-
ternatives.

A perfect solution would allow users to install software and verify its legit-
imacy without installing any additional programs or purchasing a professional
license, that isn’t going to be fully utilized. It is not necessary to develop an
absolutely secure sandbox solution, but rather a solution that is good enough,
to prevent opportunistic malicious agents from pushing potentially unwanted
programs onto users. As it will be demonstrated in this thesis bundled pro-
grams are often free to use. They either used to serve ads to users or have
some behaviour that promotes purchases of subscriptions or digital items. It
isn’t clear if original developers of bundled software are aware of methods that
are being used to distribute their product. It is possible that they are con-
tracting promoting agencies that incorporate the software in bundles, without
informing the creator. If the distributor is being payed per-installment, they
have strong instinctive to generate as many installations as possible and it is
not important if the program will be used or not and software installers allow

2

to bundle multiple products maximizing the profits.
So end-user’s PC isn’t attacked by a sophisticated virus but rather the user

has to deal with annoyances that come when unwanted programs are installed:
unnecessary reboots, slowing down of the system, time that is spent waiting
for the uninstallation process to finish plus time spend manually making sure
that all key registers and files were deleted and do not persist past uninstall
process. Software-based sandboxes can cover all of this issues.

3

Chapter 1
Real-world scenarios of the

malicious use of the installers

A malicious use of the installer would be defined as leveraging the software
installation process to perform unsolicited or harmful changes or an attempt to
install additional software that isn’t crucial for the function of the application
that the user originally intended to install.

1.1 O�cial distribution
Some o�cially distributed software if packed in form of the installers and can
display some malicious behavior.

Cheat Engine [1] is software that can be used to quickly find the address
of values that are changed during a program’s run for reverse engineering
purposes. The provided “InnoSetup” based installer is 3.4 MiB. And upon
running, it will try to install two additional programs see figure 1.1. In the

Figure 1.1: Cheat Engine PUPs

figure 1.1 we can see that the placement of the “Accept” button and the

4

1.1. O�cial distribution

fact that it is highlighted increases the chance of accidental clicks. In case the
software was accepted, there are no further dialogues to specify target location
and no way of going back other than closing the installer window. After the
displaying of two potentially unwanted programs (PUPs) the installment will
start immediately without clicking the dedicated “Install” button, a path for
Cheat Engine is never asked by the installer.

Given the original size of the installer, it is obvious that the PUPs are being
dynamically downloaded from the internet and their installation is completely
silent.

If the user tries to run the installer without a connection to the internet,
then no program is going to be installed but a success message is going to
be displayed. In case the user already has PUP software installed then the
installer won’t be trying to download or install it again.

The observed behavior strongly indicates that the installer is used mainly
to download real executables to reduce the perceived size of the program and
as a source of magnetization for the application.

After uninstalling, there were “Cheat Engine” and “Cheat engine symbols”
folders left in user/Appdata/Local/Temp. Even though this is a directory
for storage of temporary files, the fact that some files were left there after
the software was uninstalled violates the expected result of the application
deletion process.

1.1.1 uTorrent
uTorrent is software designed to download files from peer-to-peer connections.
This helps to reduce the load on an individual server and helps to improve the
stability and speed of the download process. uTorrent uses the “installaware”
installer. This installer executable is 5.4 MB. Upon an attempt to run this
installer without an internet connection, it will fail, notifying the user that a
connection is required.

If a connection to the internet is established, then the installer will try to
install at least one additional software as shown in figure 1.2

Similar to the previous example, this installer gives the user a chance to
opt-out of additional programs. However, the UI is designed to trick users
and make them continue the installation process by accident. Just like in
the previous installer this one doesn’t provide a dialog window to specify the
desired path and additional software is installed silently in the background.

After uninstalling uTorrent, there are no residual files but
Computer\HKEY CLASSES ROOT\.torrent registry key remains in the system.

5

1. Real-world scenarios of the malicious use of the installers

Figure 1.2: uTorrent additional software

1.1.2 GOM player
GOM player is software designed to playback audio and video files with a
wide variety of encoding. The installer size is 40 MiB and it is based on the
“NullSoft” installer.

Upon running the installer with an internet connection, two additional
PUPs will attempt to be installed see figure 1.3.

Figure 1.3: GOM player PUPs

The user isn’t provided with a choice of where this software will be installed
and UI elements placement encourages accidental clicks on the “Accept” but-
ton. Just like the previous examples, this installer doesn’t have a dedicated

6

1.2. Third party software distribution websites

“Install” button and if a user clicks on the “Next” button the installation
suddenly starts and can’t be interrupted.

After uninstalling the GOM player, these registry keys were left:

• Computer\HKEY CLASSES ROOT\Gomplayer.Skinfile

• Computer\HKEY CLASSES ROOT\.gps\GOM Player Skin File

• Computer\HKEY CLASSES ROOT\DVD\shell\Play with GOM Player

And these files and folders:

• C:\Users\user \AppData\Local\Temp\Unistall.exe

• C:\Program Files (x86)\GOM

While none of these key registers or files are malicious the fact that they
persist on the user’s PC after the uninstallation breaks the expectations of
the software removal process and can potentially cause unexpected errors.

1.2 Third party software distribution websites
There exists a vast variety of websites that claim that one can download
software there for free. Some websites work as a proxy between the user
and the developer and serve a purpose similar to Microsoft Store or Steam,
creating a convenient marketplace for developers to advertise their software
and for users to download it legally. Often, this sort of website will distribute
software in the same way as the o�cial developer website, allowing users to
download a free or paid version. They work as a platform that helps both
developer and users and does not claim that software obtained from them is
free, specifying the type of license.

The second category are websites that claim that all the software that they
host is free and available for use without purchasing.

Websites of the second category are prone to malicious activity, thus will
be examined more closely in the scope of this work. One of such websites
is downloadastro.com. Here one can find that they are supposedly able to
download programs that are protected by copyright.

Since downloading protected software is forbidden by law, in the scope of
this work only free-to-use software will be examined.

1.2.1 Examining the distributed files
For direct comparison, “Cheat Engine”, “uTorrent” and “Gom Player” were
selected. All of these programs, when downloaded from downloadastro.com,
are 2.4 MB InnoSetup files with two PUPs as shown in figure 1.4.

1.4

7

1. Real-world scenarios of the malicious use of the installers

Figure 1.4: Downloadastro PUPs

Neither of the programs can be installed without an internet connection.
Upon an attempt, the user will see an identical error message across all the
installers as shown in figure1.5.

Figure 1.5: No internet error message

If the user accepts PUPs (on purpose or by accident) as shown in figure
1.4 then programs will be silently installed in the background without any
indication of the fact that the process of installation has started. Regardless
of whether the user accepts or declines the o�ered software, they will see
window o�ering them to run the installer and open the developer’s website as
shown in figure 1.6.

Ignoring the user’s choice regarding visiting the developer’s website they
will be redirected there to the download page.

8

1.2. Third party software distribution websites

Figure 1.6: End of the installation process window

So downloadastro.com website only serves as a way to trick the usurers
into thinking that they will be able to download the desired software, but in
actuality, all they will get is a glorified URL to the developer’s website. So the
website is used exclusively to mislead the users into downloading unwanted
software. Installers downloaded from developer’s website will still have PUPs,
so the potential amount of unwanted programs only increases.

9

1. Real-world scenarios of the malicious use of the installers

1.2.2 Motivation for PUP
The main motivation for including potentially unwanted software into in-
stallers is the financial gain. There exists a framework that allows one to
create installers with relative ease, for example: “Dynamic Downloader”. It
describes itself as:

“Designed for downloading large files. The end user – instead of down-
loading a desired large file directly (through a browser) – downloads only
a small Dynamic Downloader Client, which downloads the desired large
file in small chunks in the background. This method allows you to o�er
the end-user additional values while his desired file is being downloaded.
That value can be o�ered to download third-party software, or it can
simply show ads, videos, websites, or any other online content.” [2] It
is clear that developers of this software are aware of the fact that this
product is used to push unwanted software onto users, and it serves to
minimize user interaction and increase the chance of accidental down-
loads. Direct quote from the website: “Browser asks to save the file and
starts the download process.
And here we go. This is the weak part of this way of downloading files.
(Yeah, already the second step). After the download is confirmed (very
often it is automatic) you see nothing but a progress bar, and it is even
hidden somewhere in the corner!
For small software it is fine, but any larger software takes several minutes
to download. It is pretty annoying for users to wait and also for you
– because you have no profit from this time. The longer the download
process takes the bigger chance you lose the customer is.
How to solve this? How to use this time e�ectively? What to do to avoid
long waiting? Maybe showing the user your other valuable software?
Or third party software he may like and you can earn some profit for
recommending it to him?”[2]

This approach is designed to hide what software is going to be installed
and the whole installation process. And there is no mention of whether “other
valuable software” is going to be safe. Given that “Dynamic Downloader” can
be purchased as a service by anyone, there are no guarantees regarding the
safety of software received via the installer.

1.3 Antivirus protection
Antivirus software is often capable of detecting suspicious installers, but the
detection is most-likely based on the signatures and the pattern recognition, so
entire installer is quarantined without allowing the user to install the desired
program.

To demonstrate this behavior, most common antiviruses were selected:
Avast, ESET-NOD32, Microsoft Defender, and Norton 360. They were tested

10

1.3. Antivirus protection

against files downloaded from the o�cial Cheat Engine website. In this test,
all additional o�erings were accepted. Results of the test:

• Avast Antivirus – the installer was isolated upon download. Had to be
manually removed from quarantine, before running the program. Upon
finishing the installation, the Opera Browser and the Cheat Engine were
installed. Directories for both programs were scanned and no threats
were detected.

• ESET-NOD32 – after an attempt to run the installer was isolated. It had
to be manually removed from quarantine, before running the program.
Upon finishing the installation, the Opera browser, Avast Antivirus,
and the CheatEngine were installed. Directories for all programs were
scanned, and no threats were detected.

• Microsoft Defender – no threats detected in the installer. Upon finish-
ing the installation, the Opera browser, Avast Antivirus, and the Cheat-
Engine were installed. Directories for all programs were scanned, and
no threats were detected.

• Norton 360 – after an attempt to run the installer was isolated. It had
to be manually removed from quarantine, before running the program.
Upon finishing the installation, the Opera browser, Avast Antivirus,
and the CheatEngine were installed. Directories for all programs were
scanned, and no threats were detected.

It was shown that antiviruses behave similarly and only detect the installer
as a threat. Since the o�cial distribution of CheatEngine is bundled with
additional software, users will ignore antivirus recommendations, to get the
desired program. This becomes problematic if the users develop a habit of
ignoring antivirus advice and warnings, rendering them useless.

11

Chapter 2
Isolating installers

In the scope of this work, “unwanted change” would be considered as an in-
stallation of potentially unwanted software, or files and registry keys that were
created and persisted after the software that created them was uninstalled,
excluding files and registry keys that were deliberately created by a user with
that software.

Currently, there exist several solutions that can be utilized to prevent un-
wanted changes. The most popular ones are virtual machines, Docker, Win-
dows Sandbox and SHADE Sandbox (higher level software sandbox). Docker
and VM are mainly geared towards developers and professional users. Their
setup requires some knowledge of operating systems and networking as well
as an understanding of hardware resources such as CPU and RAM to config-
ure them for hosted OS or containerized applications. Windows Sandbox is
designed to be easier to use, but it is not available on home versions of Win-
dows, making it a rather expensive option. Higher level software sandboxes
are usually less resource heavy and do not require specific CPU features like
the HYPER-V technology. Price can vary depending on the sandbox.

Existing low-level isolating solutions are mostly geared toward profession-
als and advanced users. As such, it is not a problem for them to require some
preparation time and hardware support and to have a relatively steep learn-
ing curve. A regular user often doesn’t have time or willingness to learn new
technologies, since that isn’t their goal. So they rely on antivirus protection
and trustworthy resources, and if such resources are not available, users resort
to downloading software from third parties. In recent years, the situation has
become better. Both virtual machines and containers are easier to install and
configure. It is even possible to get this software for free. Windows Sandbox is
available on professional versions of the OS only, but once configured it can be
run and used as easily as any other program. Higher-level “SHADE sandbox”
solution can be installed just like any other program.

12

2.1. Docker

2.1 Docker
From the point of view of a regular user containers are very similar in their
functionality to VM. It is easier to run multiple instances of a container than
VM, but setting up a container also requires a license for Windows and has all
of the same drawbacks as VM when it comes to setting up of the environment
also containers tend to have a steeper learning curve, so that might discourage
an average user.

Just like VM, containers provide isolation from the host operating system
and that is a strong argument in favor of their security.

So from the point of view of an average user the distinctions between
virtual machine and container are not as significant since both of the solutions
require significant computational resources, time and money investments to
set up the environment.

Figure 2.1: Docker and VM distinctions [3]

2.2 Virtual machines
System virtual machines (VM) (full virtualization virtual machines) provide
virtualization of the entire OS. This type of emulation is rather resourced
heavy. Minimum requirements for Windows 7 are 1 GB of RAM and 6 GB
on hard drive [4], while newer versions require even more resources – 4 GB of
RAM and 64 GB of storage [5]. For better performance, virtualization should
also be supported by the CPU. This type of emulation requires HYPER-V
to be disabled on the host OS, and modifying this parameter might not be
permitted in certain types of environments, or simply above the e�ort level
that the average user is willing to spend. An additional downside is that the
purchase of an additional license is required in order to run Windows inside a

13

2. Isolating installers

virtual machine, as well as licenses for all the additional software that might
be required in order to install a new application. Also, when considering the
average user, time of set-up should be taken into account since the majority
of the applications is not critical and setting up VM might take several hours,
so some users would rather risk and install software on their current system.

On the plus side, VM is isolated from the host OS and is system indepen-
dent, so one can use VM to run Windows apps from a Linux host and the
graphics interface makes navigating virtualized system identical to regular
Windows.

2.3 Windows Sandbox
This is a utility that is available for Professional versions of Windows 10 and
can be used to run untrustworthy applications in the Sandbox mode.

Because Windows Sandbox runs the same operating system image as the
host, it has been enhanced to use the same physical memory pages as the host
for operating system binaries via a technology referred to as “direct map.”
For example, when NTDLL.dll is loaded into memory in the sandbox, it uses
the same physical pages as those of the binary when loaded on the host.
Memory sharing between the host and the sandbox results in a smaller memory
footprint when compared to traditional VMs, without compromising valuable
host secrets.[6]

Figure 2.2: Memory sharing for Windows Sandbox

This and other optimizations allow Windows Sandbox to be relatively
lightweight when compared to other solutions. However, systems requirements
are far from being trivial [7]

• Windows 10 Pro, Enterprise or Education build 18305 or Windows 11
(Windows Sandbox is currently not supported on Windows Home edi-
tion)

• AMD64 architecture

• Virtualization capabilities enabled in BIOS

14

2.4. SHADE Sandbox

• At least 4 GiB of RAM (8 GB recommended)

• At least 1 GB of free disk space (SSD recommended)

• At least two CPU cores (four cores with hyperthreading recommended)

In addition to paying for a professional license, which might not be needed
for the average user, the setup process also requires access to BIOS and the
use of PowerShell [7]. Those two factors can be enough to prevent people from
even trying to use an o�cial solution.

In contrast to containers and virtual machines Windows Sandbox can’t
preserve its state, so every new launch only includes the default Windows
applications. While this can be desired behavior for some use cases, it can
also mean additional work from the users’ side.

The strong sides of Windows Sandbox would include o�cial support from
Microsoft and ease of interaction. Users can just drag and drop files they want
to test, and this eliminates unnecessary barriers for beginners.

2.4 SHADE Sandbox
SHADE Sandbox is a simulated virtual environment in your system. Instead of
running software and browsing the internet directly from your system, you can
perform these activities through a safe virtual environment. This advanced
mechanism enables a highly controlled setting for running new or suspicious
applications without risking the integrity of your operating system [8].

SHADE Sandbox o�ers an easy way to run a program under software
sandbox. All that is required from a user is to drag and drop an application
of their choice into the program’s window, and it will run in the sandbox mode
as shown in figure 2.3.

Figure 2.3: SHADE sandbox. Placing program into the sandbox [8]

15

2. Isolating installers

SHADE sandbox is a closed source project. User can choose between the
free trial version, a yearly subscription and a perpetual licence. Hardware
requirements are minimal:

• Operating System: Windows 10, Windows 11

• CPU: 1GHz

• RAM: 2GB

There is no in-depth explanation of how exactly it functions. But since
it is required to run in background to intercept applications that were just
dragged and dropped into the sandbox and the fact that it utilizes the actual
file system on the user’s PC, sandboxing functionality is probably achieved by
hooking API calls redirecting them into a predetermined “sandbox” location.

This solution o�ers software isolation that would probably be good-enough
for a regular user. It will most likely protect them from unwanted software
bundles by placing them into simulated folders, making it easy to remove if
deemed necessary, or the user can keep using an untrustworthy application
from within the sandbox. The Previously discussed isolating solutions are
geared towards professional usage and are deployed to production environ-
ments in various corporations o�er better isolation and as the result more
security, but for an average user the trade-o� in convenience isn’t worth it
since they are not likely to be subjected to highly sophisticated attacks in the
first place.
Small drawbacks are:

• Closed sourced nature of the product. If it doesn’t find a commercial
success it might become abandoned.

• The trial period is limited to 30 days, after that purchasing of the license
is required.

• Sandbox a�ects the performance of the application by making it slower
to start and less responsive.

On the plus side, it is a much more user-friendly solution compared to VM,
containers, and Windows Sandbox. Installing it is not more di�cult than any
other software and running programs in the sandbox or purging the sandbox
storage is an easy and intuitive process, there are no special hardware features
that are required in order for it to function and the minimum requirements
match those of the OS it is designed for.

16

Chapter 3
Design overview

The goal of this work is to develop a solution that will contain all the changes
that were performed by installer in a predetermined scope while not requiring
a complicated set-up and preparation process. By deleting the containment
scope, all files and registry keys that were created should be removed from
the system without leaving any trace and no files or registry keys should be
edited.

3.1 Windows registry
The Microsoft Computer Dictionary, Fifth Edition, defines the registry as:

“A central hierarchical database used in Windows 98, Windows CE,
Windows NT, and Windows 2000 used to store information that is nec-
essary to configure the system for one or more users, applications, and
hardware devices.
The Registry contains information that Windows continually references
during operation, such as profiles for each user, the applications installed
on the computer and the types of documents that each can create, prop-
erty sheet settings for folders and application icons, what hardware ex-
ists on the system, and the ports that are being used.
The Registry replaces most of the text-based .ini files that are used in
Windows 3.x and MS-DOS configuration files, such as the Autoexec.bat
and Config.sys. Although the Registry is common to several Win-
dows operating systems, there are some di�erences among them. A
registry hive is a group of keys, subkeys, and values in the registry
that has a set of supporting files that contain backups of its data.
The supporting files for all hives except HKEY CURRENT USER are
stored in the %SystemRoot%\System32\Config folder on Windows NT
4.0, Windows 2000, Windows XP, Windows Server 2003, and Windows
Vista. The supporting files for HKEY CURRENT USER are in the
%SystemRoot%\Profiles\Username folder.” [9].

17

3. Design overview

This definition is crucial, since it helps in understanding of how and why
programs are using registry instead of regular files. Knowing this it becomes
clear why the proposed sandbox solution should also isolate registry storage.
Data stored in the registry isn’t limited to small numerical or string values.
It is possible that the software that appears to be legitimate can store the
malicious code inside the registry key, hiding it from the antivirus programs.
And even if the software that originally placed the malicious code in the
registry was deleted, but registry key remained, it is possible that some other
program will take an advantage of it in the future.

3.2 Design
For a running process to interface with an OS, it has to utilize system calls. A
system call is a way for a program to interface with the OS kernel. Assuming
the synchronous call model process performs a system call to the OS kernel
through a predefined interface and passes control from user space to kernel
space, once control is returned to the process, the program continues as usual.
System calls are utilized to interact with the file system, create new processes
or threads, and perform other kernel-level functions. Windows OS has close to
2000 system calls [10]. Not all the system calls are documented. Often there
exist only wrapper interfaces e.g. CreateProcessW, a part of Kernel32.dll,
is a documented function in MSDN [11] that is utilizing an undocumented
function NtCreateProcess from NTDLL.DLL [12]. Calling undocumented
functions isn’t a good practice since the interface or error reporting might
change and that would cause problems or crashes of the application that are
hard to debug.

Import Address Table (IAT) is a structure that holds addresses of the sym-
bols that are being imported. These addresses are technically called “virtual
addresses” even thou they are the actual memory addresses of the symbols.

Knowing how image files are structured and how they are loaded into
memory allows developers to intercept calls to the dynamically linked libraries
by replacing the import function addresses (a process of locating function
addresses and replacing them will be explained in more detail in the chapter:
“Implementation details” section: “Function hooking” 5.1)

All operations that might cause an unwanted change can be reduced to:

• Creating files.

• Editing files.

• Creating registry keys.

• Editing registry keys.

18

3.2. Design

In Windows, these functions are handled by the OS —in case of working
with registers by AdvApi.dll on the user level and by NTDLL.dll on the system
level as shown in figure 3.1.

Figure 3.1: Schematic process of registry key creation

In case of files calls to the DLL functions can be intercepted and redirected
to prevent
changes in the user’s system. This can be achieved with a combination of
remote thread execution and DLL injection.

It is possible to intercept system calls on the user level (advapi.dll etc.)
and the system level (NTDLL.dll). There are drawbacks and benefits to both
approaches.

Figure 3.2: Schematic process of imitation of a registry key creation on user
level

Intercepting of function calls on user-level as shown in figure 3.2 has ben-
efits such as:

19

3. Design overview

• Functions are well documented and described on the o�cial Microsoft
website

• They are called less frequently compared to NTDLL functions

• Interfaces are often simpler (functions have fewer input parameters and
fewer data structures are involved)

• Their declaration is much more stable, rarely changing over time.

Drawbacks should also be considered:

• There are many variations of functions that achieve a similar goal
(OpenKey, OpenKeyExW, OpenKeyExA etc.).

• Third party libraries that will serve a a convenient wrapper around the
NTDLL functions are relatively easy to develop and use instead of the
f.e. AdvApi.dll and other o�cial user-level libraries.

• It is possible to call system-level libraries directly.

• They are not guaranteed to be loaded into the process.

While this is a valid approach it is also can be defeated relatively easily
and there are no guarantees that user-level functions are going to be utilized
in the installer. Designers of installers might want to use their libraries to
optimize their code in some way. Due to these reasons, this approach wasn’t
implemented, and instead, the interception was performed on the system level
as shown in figure 3.3.

Since NTDLL is guaranteed to be present in the installer process and cre-
ating a file or key without invoking NTDLL functions isn’t o�cially supported
in Windows, even if someone should discover a way to somehow circumvent
the invocation of the NTDLL library, it would most likely be unstable and
eventually blocked by Microsoft. A significant e�ort that isn’t guaranteed to
pay o� and the inherent instability (due to reasons described above) of any
solution that will somehow avoid using NTDLL for file or registry key manip-
ulation makes it unsuitable. Using it in installers would be counterproductive
since one of the main reasons to use the installer in the first place is its abil-
ity to create an environment required for program execution across di�erent
versions of Windows and independently of the security patch installed.

Due to the aforementioned reasons interception of system-level functions
is a good candidate for proof of concept (POC) of a sandbox. By replacing
the NTDLL functions it won’t be possible for an installer to create a change
in the user’s system 3.3. Problem of avoiding NTDLL library doesn’t apply
to the proposed solution, because the goal is to mimic system behaviour and
not to circumvent NTDLL. Interactions with the system will be mocked, so
from point of view of the original application everything will be the same,

20

3.2. Design

the only di�erence is that the operations on registers will be simulated in
the memory and operations on files will be redirected into the predetermined
location. In case the interface for the intercepted functions will be changed
it will be necessary to update the sandbox application, but underlying logic
isn’t likely to be significantly di�erent from the originally proposed.

Figure 3.3: Schematic process of imitation of a registry key creation on a
system level.

21

3. Design overview

3.3 Sandbox design
To execute an application in sandbox mode, several actions must be executed.
First, the application should be started, and then Sandbox.dll that will hook
API calls should be injected. To achieve this, three main components of the
sandbox application were identified and designed.

Initializer – a component responsible for the initial start of an installer
application. Since the application should not perform any actions while being
outside of the sandbox mode, this component starts the application in a sus-
pended state. After the installer process is started, the Initializer creates the
Injector process. Once Injecting is complete, the installer process is resumed.

Injector – a component responsible for injecting DLL into the running
installer process. This component allocates memory inside the target process,
writes a DLL into the allocated space and starts the remote thread. Once
finished, this process exits.

Sandbox.dll – the main logical component that is responsible for intercep-
tion of the API calls and emulating registry key calls and redirecting of file
system calls to a predetermined location.

It is expected that the installer might utilize multiple threads during the
installation process, so Sandbox.dll has critical regions that will ensure proper
order of execution.

To intercept all potential changes, the sandbox has to inject the DLL right
as the installer program starts. This can be achieved by starting the installer
process in suspended mode, performing interception, and then resuming the
installer process as shown in figure 3.4.

Figure 3.4: Installer process start under sandbox mode

Since there are two main architectures of Windows applications, 64 and
32-bit versions, the proposed solution should support both of them. To achieve
that, two versions of Sanbox.dll and Injector components are required: 64 and
32-bit accordingly. After the Initializer starts the installer.exe process, it is

22

3.3. Sandbox design

possible to get the process’s architecture and based on the received information
decide what version of Injector and Sandbox.dll should be dispatched.

During the execution of the installer.exe process, a new process may be
created. To ensure that the created process won’t escape the sandbox, Sand-
box.dll should intercept API calls to create a new process and inject Sand-
box.dll into that process as well as shown in figure 3.5.

Figure 3.5: New process call interception diagram

It is possible that the installer might have some libraries loaded via
LoadLibrary, these calls should also be intercepted and functions that might
cause a change on the user’s PC should be hooked by Sandbox.dll

To prevent the creation of files in a location outside the predetermined
one, Sandbox.dll should redirect the destination location of the file about to
be created as shown in figure 3.6.

Figure 3.6: Create file interception diagram

Since the installer can also open and modify existing files on the user’s PC
simple redirection won’t work, since the file won’t be present in the predeter-

23

3. Design overview

mined location and the application might fail. To counter this, Sandbox.dll
should copy files that are accessed with modify permission enabled into a pre-
determined location and allow all the manipulations required by the installer
on the copy of the original file. In this way, the installer will have access to
the same files as if it wasn’t running in the sandbox, but no changes will be
performed on the user’s files, and after the deletion of the sandbox all modified
files will be removed but originals will be untouched as shown in figure 3.7.
In case the file in question was created by the installer, then all modifications
will be performed on the file in the sandbox, since creation of the file was
redirected as well.

Figure 3.7: Modify file interception diagram

Registries are rather similar to files. Thus, registry key creation and mod-
ification processes are similar from the point of view of intercepting and sand-
boxing API calls. The main di�erence is that all registry keys will be saved
into the SQLite database which can be reviewed or deleted after the installa-
tion is finished.

24

Chapter 4
Image file structure

The software-base sandbox solution is possible because of the structure of
the executable file, its layout in the memory, and the way it interacts with
dynamically linked libraries. Some elements of the executable file format that
are required for the functioning of the sandbox will be described in this section.
Executable file either .EXE or .DLL is called an image file. An image file can
be thought of as a memory image. The term image file is usually used instead
of executable file, because the latter sometimes is taken to mean only a .EXE
file[13] .

Figure 4.1: Portable executable file format. [14]

The MS-DOS Header – Every PE file begins with a small MS-DOS exe-
cutable. The need for this stub executable arose in the early days of Windows,

25

4. Image file structure

before a significant number of consumers were running it. When executed on
a machine without Windows, the program could at least print out a message
saying that Windows was required to run the executable.

The first bytes of a PE file begin with the traditional MS-DOS header,
called an IMAGE DOS HEADER. The only two values of any importance today
are e magic and e lfanew. The e lfanew field contains the file o�set of
the PE header. The e magic field (a WORD) needs to be set to the value
0x5A4D. There’s a #define for this value, named IMAGE DOS SIGNATURE. In
ASCII representation, 0x5A4D is MZ, the initials of Mark Zbikowski, one of
the original architects of MS-DOS.[15]

Figure 4.2: NT DOS HEADER location relative to DOS HEADER

The IMAGE NT HEADERS structure (see figure 4.3) is the primary location
where the specifics of the PE file are stored. Its o�set is given by the e lfanew
field in the IMAGE DOS HEADER at the beginning of the file. There are actually
two versions of the IMAGE NT HEADER structure, one for 32-bit executables and
the other for 64-bit versions. The only correct, Microsoft-approved way of
di�erentiating between the two formats is via the value of the Magic field in
the IMAGE OPTIONAL HEADER [15]

1 typedef struct _IMAGE_NT_HEADERS {
2 DWORD Signature;
3 IMAGE_FILE_HEADER FileHeader;
4 IMAGE_OPTIONAL_HEADER32 OptionalHeader;
5 } IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

Figure 4.3: Locate IMAGE NT HEADER structure

In an image file, the address of an item after it was loaded into memory,
with the base address of the image file subtracted from it is called Relative
virtual address (RVA). The RVA of an item almost always di�ers from its
position within the file on disk (file pointer). In an object file, an RVA is less
meaningful because memory locations are not assigned. In this case, an RVA
would be an address within a section (described later in this table), to which
a relocation is later applied during linking. For simplicity, a compiler should
just set the first RVA in each section to zero. [16]

26

4.1. Image file in memory

Knowing how RVA works allows us to locate some of the crucial parts of
the image file, that can be used to locate dynamically loaded libraries and
their functions. One of such pars is the Optional Header. Every image file
has an optional header that provides information to the loader. This header is
optional in the sense that the object file format doesn’t require it. For image
files, this header is required. An object file can have an optional header, but
generally this header has no function in an object file except to increase its
size [16].

From optional header it is then possible to locate the Export Directory
Table as shown in figure 4.4. The export symbol information begins with the
export directory table, which describes the remainder of the export symbol
information. The export directory table contains address information that is
used to resolve imports to the entry points within this image.[16].

Figure 4.4: Export tables and symbols [17]

4.1 Image file in memory
Image file gets loaded into the memory with Windows loader utility. The
image loader lives in the user-mode system DLL NTDLL.dll and not in the
kernel library. Therefore, it behaves just like a standard code that is a part
of a DLL and is subject to the same restrictions in terms of memory access
and security rights. What makes this code special is the guarantee that it will
always be present in the running process (NTDLL.dll is always loaded) and
that it is the first piece of code to run in user mode as part of a new appli-
cation. (When the system builds the initial context, the program counter, or

27

4. Image file structure

instruction pointer, is set to an initialization function inside NTDLL.dll.[18])
Because the loader runs before the actual application code, it is usually

invisible to users and developers. Additionally, although the loader’s initial-
ization tasks are hidden, a program typically does interact with its interfaces
during the run time of a program—for example, whenever loading or unload-
ing a DLL or querying the base address of one. Some of the main tasks the
loader is responsible for include [18]):

• Initializing the user-mode state for the application, such as creating the
initial heap and setting up the thread-local storage (TLS) and fiber-local
storage (FLS) slots

• Parsing the import table (IAT) of the application to look for all DLLs
that it requires (and then recursively parsing the IAT of each DLL), fol-
lowed by parsing the export table of the DLLs to make sure the function
is actually present (Special forwarder entries can also redirect an export
to yet another DLL.)

• Loading and unloading DLLs at run time, as well as on demand, and
maintaining a list of all loaded modules (the module database)

• Allowing for run-time patching (called hotpatching) support, explained
later in the chapter

• Handling manifest files

• Reading the application compatibility database for any shims, and load-
ing the shim engine DLL if required

• Enabling support for API sets and API redirection, a core part of the
MinWin refactoring e�ort

• Enabling dynamic runtime compatibility mitigations through the
SwitchBranch mechanism

Without this functionality applications wouldn’t be able to run. Since the
Windows loader is part of NTDLL all processes are subjected to the same
loader behaviour. Loader is also responsible for import-parsing (processing
IAT and making imported functions available for calling within a program)

During this step, the loader will do the following:

• Locate each DLL referenced in the import table of the process’ exe-
cutable image.

• Check whether the DLL has already been loaded by checking the module
database. If it doesn’t find it in the list, the loader opens the DLL and
maps it into memory.

28

4.1. Image file in memory

• During the mapping operation, the loader first looks at the various paths
where it should attempt to find this DLL, as well as whether this DLL
is a “known DLL”, they are just like any other DLL except that the
operating system always looks for them in the same directory in order
to load them. Certain deviations from the standard lookup algorithm
can also occur, either through the use of a .local file (which forces the
loader to use DLLs in the local path) or through a manifest file, which
can specify a redirected DLL to use to guarantee a specific version.

• Relocation happens after the DLL has been found on disk and mapped.
The loader checks whether the kernel has loaded it somewhere else. If
the loader detects relocation, it parses the relocation information in the
DLL and performs the operations required. If no relocation information
is present, DLL loading fails.

• The loader then creates a loader data table entry for this DLL and inserts
it into the database.

• After a DLL has been mapped, the process is repeated for this DLL to
parse its import table and all its dependencies.

• After each DLL is loaded, the loader parses the IAT to look for specific
functions that are being imported. Usually this is done by name, but
it can also be done by ordinal (an index number). For each name, the
loader parses the export table of the imported DLL and tries to locate
a match. If no match is found, the whole loading process is aborted.

• The import table of an image can also be bound. This means that at
link time, the developers already assigned static addresses pointing to
imported functions in external DLLs. This removes the need to do the
lookup for each name, but it assumes that the DLLs the application will
use will always be located at the same address. Because Windows uses
address space randomization , this is usually not the case for system
applications and libraries.

• The export table of an imported DLL can use a forwarder entry, meaning
that the actual function is implemented in another DLL. This must
essentially be treated like an import or dependency, so after parsing the
export table, each DLL referenced by a forwarder is also loaded and the
loader goes back to the first step.

• The DllMain function is called when the system starts or terminates
a process or thread, it calls the entry-point function for each loaded
DLL using the first thread of the process. The system also calls the
entry-point function for a DLL when it is loaded or unloaded using the
LoadLibrary and FreeLibrary functions [19].

29

4. Image file structure

After all imported DLLs (and their own dependencies, or imports) have been
loaded, all the required imported functions have been looked up and found,
and all forwarders also have been loaded and processed, the step is com-
plete: all dependencies that were defined at compile time by the application
and its various DLLs have now been fulfilled. During execution, delayed de-
pendencies (called delay load), as well as run-time operations (such as calling
LoadLibrary) can call into the loader and essentially repeat the same tasks[18]

30

Chapter 5
Implementation details

To create a working proof of concept, it is crucial to study the installer appli-
cation and its use of Windows API. In previous chapters, it was shown that
there exist websites that host “InnoSetup” based installers and that there are
frameworks designed to work with it to push unwanted software to users. This
installer will be used as a reference. It is a legitimate software that is pop-
ular among the developers and isn’t necessarily malicious it is being abused
by the packaging parties, because it is free to use and exists for over twenty
years, so malicious frameworks and strategies were designed around it. In-
noSetup version 6.2.0 uses itself for install so it was used to study the normal
behavior of the installer and develop a proof of concept. To identify API calls
that are typical for this installer, “APImonitor” by Rohitab software was used
1. Since InnoSetup uses a pascal scripting language to configure its installer
and doesn’t provide control over what system API functions will be used it
is safe to assume that in the standard case all InnoSetup based installers will
have a similar set of utilized API calls [20]. Usage of untypical APIs can be
considered as a highly suspicious behaviour.

This Windows API calls were identified as those that required hooking for
registry keys:

• NtCreateKey – function creates a new registry key or opens an existing
one.

• NtOpenKey – function opens an existing registry key.

• NtSetValueKey – function creates or replaces a registry key’s value entry.

• NtQueryValueKey – function returns a value entry for a registry key.

• NtQueryKey – function provides information about the class of a registry
key, and the number and sizes of its subkeys.

1Link to the APImonitor by Rohitab website – http://www.rohitab.com/apimonitor

31

5. Implementation details

• NtClose – function closes an object handle.

File API calls:

• NtOpenFile – opens an existing file, device, directory, or volume, and
returns a handle for the file object.

• NtCreateFile – creates a new file or directory, or opens an existing file,
device, directory, or volume.

• NtQueryAttributesFile – retrieves basic attributes for the specified file
object.

• MoveFileW – moves an existing file or a directory, including its children.

• MoveFileExW – moves an existing file or directory, including its children,
with various move options.

MoveFile and MoveFileExW functions are not part of the NTDLL library,
since internally they are utilizing memcpy mechanics that are not specific to
file move calls as shown in figure 5.1.

Figure 5.1: MoveFileW system calls

During the execution process InnoSetup creates temporary files in the
C:\Users\user\AppData\Local\Temp\is-*.tmp folder, where * represents
random four to five character alphanumeric string. One of those files is an exe-
cutable that performs the installation process. The original file that user inter-
acts with is just a launcher for it and finishes its execution after the secondary
process finishes. All interactions with the UI are handled by the secondary
process. After studying the API calls it was determined that InnoSetup uses
CreateProcessW function. Also, during research it was discovered that some
libraries are loaded with LoadLibraryW function, so two additional functions
were hooked:

32

5.1. Function hooking

• CreateProcessW – creates a new process and its primary thread. The
new process runs in the security context of the calling process.

• LoadLibraryW – loads the specified module into the address space of the
calling process. The specified module may cause other modules to be
loaded.

System calls description was sourced from o�cial MSDN documentation web-
site [21].

5.1 Function hooking
In order to intercept function calls after DLL had been attached to the installer
process, DLLMain will be called with fdwReason equal to DLL PROCESS ATTACH.
Since this code will be executed in the address space of the target process
it is possible to locate TEB – thread environment block and from there
PIMAGE DOS HEADER of all data table entries can be located as shown in figure
5.2.

1 PTEB teb = (PTEB) NtCurrentTeb();
2 PPEB peb = teb->ProcessEnvironmentBlock;
3 PPEB_LDR_DATA peb_ldr_data = peb->Ldr;
4 PLIST_ENTRY list_head = &peb_ldr_data->
5 InMemoryOrderModuleList;
6 PLIST_ENTRY list_entry = list_head;
7

8 while ((list_entry = list_entry->Flink) != list_head) {
9 PLDR_DATA_TABLE_ENTRY data_table_entry =

10 CONTAINING_RECORD(list_entry,
11 LDR_DATA_TABLE_ENTRY, InMemoryOrderLinks);
12

13 locateAndSwapAll((PIMAGE_DOS_HEADER)
14 data_table_entry->DllBase, STEAL);
15 }

Figure 5.2: Locate PIMAGE DOS HEADER of loaded DLL libraries

After the location of IMAGE DOS HEADER pointers, it is possible to locate a
pointer to IMAGE THUNK DATA as shown in figure 5.3.

33

5. Implementation details

Figure 5.3: Process of location of an ImageThunk from a DosHeader

34

5.1. Function hooking

To identify a function it is required to identify the DLL name, that can be
computed as
pImageImpDescArray[imageDescIndex].Name + ((BYTE *) pDosHeader
and function name. There are two main ways how Windows handles function
imports – import by name shown in figure 5.4 and import by ordinal [22].

Figure 5.4: Import by name process overview

To determine whether the function in question is imported by name or by
ordinal, it is necessary to check the most significant bit of the ordinal. If this
bit is set, then the function is imported by ordinal as shown in figure 5.5.

Figure 5.5: Import by ordinal. Function metadata location.

35

5. Implementation details

An export’s ordinal is the index into the AddressOfFunctions array (the
0-based position in this array) plus the “Base” mentioned above. In most
cases, the “Base” is 1, which means the first export has an ordinal value of 1,
the second has an ordinal value of 2 and so on.

After the “AddressOfFunctions” RVA we find a RVA to the array of 32-bit-
RVAs to symbol names “AddressOfNames”, and a RVA to the array of 16-bit-
ordinals “AddressOfNameOrdinals”. Both arrays have “NumberOfNames” ele-
ments. The symbol names may be missing entirely, in which case the “Addres-
sOfNames” is 0. Otherwise, the pointed-to arrays are running parallel, which
means their elements at each index belong together. The “AddressOfNames”-
array consists of RVAs to 0-terminated export names; the names are held in
a sorted list [22] (i.e. the first array member is the RVA to the alphabetically
smallest name; this allows e�cient searching when looking up an exported
symbol by name). According to the PE specification, the
“AddressOfNameOrdinals”-array has the ordinal corresponding to each name
[22]. Based on this information, it is possible to locate the name of a function.

Figure 5.6: Function names location, derived from AddressOfNameOrdinals

Once the DLL name and function name have been identified, it is possible
to hook the function by swapping the function pointer from injected Sand-
box.dll with the original function pointer. Since there are two di�erent ways to
import a function, the process of hooking the functions will be di�erent as well.
Before process functions can be swapped corresponding memory page should

36

5.1. Function hooking

made be writable, this can be achieved with a call to the VirtualProtect
function. And once the process of swapping is complete, it is necessary to
restore the original page attributes.

For functions imported by name, the process of hooking is relatively
straightforward. FirstThunk of the IMAGE IMPORT DESCRIPTOR that was used
to locate function name should be used. FirstThunk is an RVA pointing to
the ImageThunkDataArray its elements correspond to those in in the
OriginalFirstThunkArray as shown in the figure 5.7. After the original
function was located its address is saved in the Sandbox.dll and the original
address is overwritten with the injected function as shown in figure 5.7 .

Figure 5.7: Import by name. Function swap schematic process.

For functions imported by ordinal it is required to first locate function
address in the AddressOfFunctionsArray that can be accessed from
IMAGE EXPORT DIRECTORY and function address has to be computed 5.8

Since one function can be imported multiple times, it is important to make
sure that no cycles will be created during the substitution process, so a check

37

5. Implementation details

AddressOfFunctionsArray[ordinal - pImageExpDescArray[0].Base]
= functioFromInjectedDll - pDosHeader

Figure 5.8: Overwriting the function address for functions imported by ordinal

should be placed to ensure that the address of the function from DLL is not
equal to the function from Sandbox.dll

Once all functions were identified and swapped all subsequent calls from
the installer application will be redirected to Sandbox.dll and handled there
in a manner that prevents modifications on the user’s PC.

5.2 Registry key management
To prevent changes in the registry original operations to change registry value
such as NtSetValueKey and NtCreateKey are never called within the sandbox,
so these operations are 100% emulated. Accessed registries and values are
stored in an SQLite database that allows users to review what values were
created, changed, or accessed during the execution. Preventing changes in a
registry hive also helps against programs establishing persistence on the user’s
PC.

It was attempted to allow users to define registry keys in the SQLite
database before sandbox and to define returned handles manually. However,
some values caused unpredictable behavior from the OS on subsequent calls
to this handle. This happened when predefined handles had small values as
shown in figure 5.9.

Figure 5.9: API call stack for predefined handle value equal to five

As is shown on figure 5.9, after calling for RegQueryValueExW with the han-

38

5.2. Registry key management

dle value equal to five LdrLoadDll is invoked and library “rpct4.dll” is loaded.
According to the o�cial documentation: “Microsoft Remote Procedure Call
(RPC) defines a powerful technology for creating distributed client/server pro-
grams. The RPC run-time stubs and libraries manage most of the processes
relating to network protocols and communication. This enables you to focus
on the details of the application rather than the details of the network.” [23].

The same calls with di�erent handle values (six) resulted in di�erent call
stacks as shown in figure5.10.

Figure 5.10: API call stack for predefined handle value equal to six

After some testing, it was observed that this behavior only occurs when
handle values are small numbers. Since specifying custom handles isn’t a core
functionality, the reason for this behavior wasn’t determined and this feature
wasn’t developed. It is not guaranteed that this behavior won’t be displayed
for some other values, but it wasn’t observed outside described scenario. To
mitigate this issue it is possible to intercept also RegQueryValueExW but since
this call is not a part of NTDLL and wasn’t required to be intercepted it is
outside the scope of the current thesis.

To improve the performance of the sandbox during run-time, registries are
stored in map containers as shown in figure 5.11.

map<wstring, MyRegKeyOpen> openedRegisters;
map<MAX_WORD, wstring> openedRegisterLocator;

Figure 5.11: Containers used to store registry key data during sandbox run-
time.

openedRegisters is a map that keeps the information about opened reg-
istries. Key – registry key path. Value – the class that holds all required
information about a registry key shown in figure 5.12. Since one registry key
can have multiple values it has map container that holds information about
key values. The key to this map is the name of the Value – data stored in

39

5. Implementation details

class MyRegKeyOpen {
ACCESS_MASK accessMask;
ULONG OpenOptions;

public:
HANDLE resHandle = NULL;
size_t reference = 0;
bool emulated = false;
map<wstring, MyRegValue> created_values;
OBJECT_ATTRIBUTES objectAttributes;

...
}

Figure 5.12: Container class used to store registry key data during sandbox
run-time.

the registry key’s value a shown in figure 5.13. openedRegisterLocator is

class MyRegValue {
HANDLE KeyHandle = NULL;

public:
PUNICODE_STRING ValueName = NULL;
ULONG TitleIndex = NULL;
ULONG Type = NULL;
PVOID Data = NULL;
ULONG DataSize = NULL;
NTSTATUS status;

...
}

Figure 5.13: Container class used to store registry key’s values during sandbox
run-time.

used to locate registry names based on the handles of the registry keys. Every
time a registry key is opened or created, a pair handle – registry key name is
stored in this map. To emulate registry key creation, it is necessary to return
some value that will serve as a handle for possible future operations. Because
NtCreateKey creates a new registry, opens it and returns a handle or opens
one if already exists [24], it is reasonable to place all created key registers
in openedRegisters container. As a returned value for created registers the
address of the created values map was used.

Having all of the above information, it is now possible to locate all registries
based on their name or based on the handle. That is su�cient to intercept
and emulate all the calls that were defined above in chapter 5.The original

40

5.2. Registry key management

NtCreateKey is never called during execution and the call is fully emulated
as shown in figure 5.14

Figure 5.14: NtCreateKey emulation process.

Since NtOpenKey doesn’t cause any changes in the system registry hive
emulation is a straightforward process as shown in figure5.15.

Figure 5.15: NtOpenKey emulation process.

NtSetValueKey takes a handle to an opened register where the value will be

41

5. Implementation details

set. The call to this function has to be fully emulated and the original function
should never be called. During the development of the sandbox application,
it was discovered that contrary to the MSDN documentation: “handle is cre-
ated by a successful call to ZwCreateKey or ZwOpenKey” [golden˙set˙value]
sometimes handles are used without a call to NtOpenKey or NtCreateKey.
This behavior is probably an optimization from Windows OS to reuse re-
cently opened key handles by accessing cached values. In case such a behavior
is detected, Sandbox.dll retrieves a registry key name from the handle and
adds this registry to openedRegisters and openedRegisterLocator maps
as shown in figure 5.16.

Figure 5.16: NtSetValueKey emulation process.

NtQueryValueKey function is used to retrieve the data stored in the registry
key value. Since this call doesn’t change registry key data its original function
can be called. If the key was created by an installer program it will be emulated
and data will be retrieved from openedRegisters map, if this value wasn’t
created by an installer, then it will be retrieved from the registry hive as usual.

Figure 5.17: NtQueryValueKey emulation process.

42

5.2. Registry key management

Cached handles may be used in this function call, but since information
is queried and not written, it is safe to call the original function as shown in
figure 5.17.

NtQueryKey function is sometimes called inside the NtSetValueKey (if this
key was created under the sandbox library), so it has to be emulated. Since
the target registry key could be one created by the installer itself and thus
exists only in the RAM of the Sandbox.dll it is not always possible to directly
call the original function even if it doesn’t cause any changes. 5.18.

Figure 5.18: NtQueryKey emulation process.

NtClose this function closes handles, not necessarily ones that were created
by NtOpenKey or NtCreateKey functions. So, if a handle in question was
completely emulated by Sandbox.dll the function will always return success,
otherwise the original function will be called as shown in figure 5.19.

Figure 5.19: myNtClose process.

The process of writing data to the SQLite database involves functions that
are being hooked by the sandbox. To avoid interception of the internal SQLite-
related functions, a mechanism was introduced to call the original functions
instead of the hooked ones. When an SQLite function is invoked, a critical

43

5. Implementation details

section is entered, then a boolean variable is set to true, while it is true all
emulation will be paused and original functions will be called, once the process
is finished the variable is set to false, the critical region is exited and emulation
resumes.

5.3 File management
The main reason to intercept function calls related to file system is that in-
stallers will often create files across many directories in the file system, and
if the user had to disable antivirus during the installation process and wants
to scan files once it is finished they are left with a choice of scanning only
directories that were specified as target ones while there is no guarantee that
it is the only place where files are added, or do a whole system scan that might
take multiple hours so it isn’t likely to be desired. By redirecting all created
files to a predefined location, it becomes possible to scan a single folder for
viruses after a program was installed as shown in figure 5.20.

Figure 5.20: Files location with and without sandbox.

In addition, the installer might want to create files in a location inaccessible
by the user and utilizing the sandbox mechanics, it becomes possible to install
and review software in otherwise restrictive environments or run installers that
were not designed to be run under a limmited user without writing access to
certain directories. To keep track of the original file name and redirected file
map<wstring, wstring> translation map container structure was utilized,
where the key — original file path, value — new file path. After redirecting
the file, the new path can be significantly longer and according to the o�-
cial documentation: “In the Windows API (with some exceptions discussed
in the following paragraphs), the maximum length for a path is MAX PATH,

44

5.3. File management

which is defined as 260 characters. A local path is structured in the fol-
lowing order: drive letter, colon, backslash, name components separated by
backslashes, and a terminating null character. For example, the maximum
path on drive D is ”D:\some 256-character path string<NULL>“ where
“NULL” represents the invisible terminating null character for the current
system codepage. (The characters < > are used here for visual clarity and
cannot be part of a valid path string.)“ [25] Since the new path can be longer
than the original one all the addresses are in form of “\\?\...” since this
form allows having a longer path length of approximate 32,767 characters.
Approximate because the “\\?\” prefix may be expanded to a longer string
by the system at run time, and this expansion applies to the total length [25].
In order to redirect the file path for NT functions it is necessary to mod-
ify OBJECT ATTRIBUTES shown in figure 5.21 structure value – ObjectName.
This structure holds the target’s file name. It was discovered that if the origi-
nal UNICODE STRING ObjectName is modified – Buffer attribute replaced and
Length MaximumLength values shown in figure 5.21 were recalculated, then
program will fail in unpredictable manner, but if ObjectName is fully replaced
by a structure that was allocated on the heap, then file redirection will be suc-
cessful, so all functions that utilize OBJECT ATTRIBUTES had their ObjectName
replaced to one that would point them inside of the sandbox.

Figure 5.21: Name location in OBJECT ATTRIBUTES structure

NtOpenFile is used to get open handle to a file. ACCESS MASK
DesiredAccess expresses the types of file access desired by the caller. If the
desired access doesn’t specify the access level of write or delete then this call
is passed to an original function. Files that are opened with write access are
copied to the predetermined location first, following the “copy first strategy”.
Since calls to CopyFileW are internally utilizing NtOpenFile functions the
sandbox sets a flag, and when it is set original NTDLL functions are being
called. After CopyFileW is called function SetLastError(0) is invoked to
reset any error that could have occurred during this process, so if installer
program will utilize GetLastError the original error will be reported as shown
in figure 5.22.

45

5. Implementation details

Figure 5.22: myNtOpenFile process.

46

5.3. File management

NtCreateFile opens or creates a file. This function has a similar imple-
mentation logic to the NtOpenFile with the exception that if the file doesn’t
exist it will be created and that regardless of desired access file it will be first
copied to the Sandbox.dll directory.

Figure 5.23: myNtCreateFile process.

NtQueryAttributesFile – retrieve file attributes. If the file in question
exists in translation map then the file attribute of the file in the sandbox
folder is queried, otherwise the original file is queried as shown in figure5.24.

Figure 5.24: myNtQueryAttributesFile process.

47

5. Implementation details

MoveFileW and MoveFileExW – moves files to the specified location. Since
this function doesn’t utilize NTDLL hooking is done on user level in the Ker-
nel32.dll. A call is intercepted, and the destination address is swapped for the
address within a sandbox folder as shown in figure 5.25.

Figure 5.25: MoveFile process.

An installer can emit libraries that later will be loaded with a call to
LoadLibraryW. Since newly created files are redirected into the sandbox li-
brary it is necessary to swap the original library path with one located in
translation map.

Figure 5.26: LoadLibraryW process. Redirecting call.

After the library is loaded into the memory, it is checked for referencing
functions that should be managed by Sandbox.dll, and if this library imports
them, function calls are swapped with ones that are managed by the sand-
box. This process is identical to the process described in the above “Function
hooking. Implementation details” section 5.1, with main di�erence being that

48

5.3. File management

PIMAGE DOS HEADER can be obtained by a simple static cast of the
LoadLibraryW return value into pointer to a DOS header. After obtaining the
header it is possible to do the substitution as shown in section 5.1.

CreateProcessW function can also be a�ected by the fact that the files
are relocated into the sandbox folder. The strategy for executable files is
rather similar to dynamically linked libraries. If the files are tracked by
translation map then the executable should be loaded from the sandbox
folder, in other cases the original file should be called as shown in figure 5.27.

Figure 5.27: CreateProcessW process. Redirecting call.

After the executable file was substituted, the process is started in the sus-
pended mode and PID is obtained by calling
lpProcessInformation->dwProcessId. When PID of the process was ob-
tained and architecture was determined by calling IsWow64Process with
handle obtained from calling OpenProcess. After process architecture is es-
tablished, the Injector can be invoked and the rest of the process is identical to
initial startup described above as shown in section 5.1. This process doesn’t
account for the case when new process or DLL can be called from current
directory or relative address, since InnoSetup doesn’t exhibit such behaviour
it is not handled, however it can be supported by expanding relative address
first and then redirecting the call.

49

Chapter 6
Testing against real-world

potentially unwanted installer

As it was discussed in the chapter “Real-world scenarios of a malicious use of
installers” 1 there exists a framework around InnoSetup that allows adding
PUP to a program to enable monetization. Since InnoSetup is a rather popular
tool to use when it comes to pushing software, it was chosen as a real-world
software that will be used to test the proposed sand-boxing technique.

InnoSetup uses itself for the installation process, so it will be a good repre-
sentation of other programs using it for potentially malicious use. To test the
installation process, all the customizable parameters were left at the default
values.

6.1 InnoSetup installation outside the sandbox
The installation process begins with InnoSetup creating two folders in
C:\Users\user\AppData\Local\Temp\is-*.tmp, where * is a random five
letter alphanumeric string. Both folders contain only one file
each – innosetup-6.2.0.tmp. One of the files is used to create a new process
as shown in figure 6.1.

Figure 6.1: InnoSetup new process created.

The installation continues from the new process. In the final stages of the
installation another process is created

50

6.1. InnoSetup installation outside the sandbox

Figure 6.2: InnoSetup new process at the final stage.

After the installation is finished folders in the \Temp directory are removed
and folder C:\Program Files (x86)\Inno Setup 6 and registry key in loca-
tion Computer\HKEY CLASSES ROOT\nnoSetupScriptFile were created.

If the user will uninstall InnoSetup from Windows:
Control Panel\Programs\Programs and Features. Then all files mentioned
above are deleted, including the registry keys. So during the normal installa-
tion/deinstallation process, InnoSetup doesn’t leave files on the user’s PC.

Now suppose that due to some external reason the installer fails during
the installation process. This can be imitated by killing the process with
Windows’ task manager utility. If done at the right time, the registry keys
and InnoSetup files may be already created but the program still isn’t visible
from the Windows uninstall utility. And temporary files are also not removed
as shown in figure 6.3.

Figure 6.3: Files and registry keys on the user’s PC after InnoSetup installa-
tion process was interrupted.

51

6. Testing against real-world potentially unwanted installer

As it is demonstrated even installers created by developers of the soft-
ware can’t recover after some unexpected external errors. Such as a power
outage or a random hardware fault, or a background application failing and
causing the whole system to shut down. Now even if a user was paying at-
tention and selecting carefully where the program is going to be installed,
they would have no way of knowing that some files were also created in the
C:\Users\user\AppData\Local\Temp folder and that these files should also
be removed from the computer. It is easy to overlook registry keys that were
created by the installer. So subsequent attempts to install the software might
be unsuccessful — even if the “InnoSetup” original installer can recover from
it, other installers might not be able to. The problem of folders with random
names being created on the system isn’t very likely to cause issues, however,
some values might potentially be overwritten and data might be lost.

In the case of malicious or potentially unwanted software, it may try to
create copies of itself in di�erent places on the drive. Even some legitimate
programs can try to establish persistence so that they are run on every boot
of the system, and if this behavior is unsolicited, then it becomes annoying
and the user might want to remove the application due to broken trust.

So as it was demonstrated installing an application with the assumption
that it can always be fully removed later isn’t always true.

6.2 InnoSetup installation in the sandbox
To test the sandbox application InnoSetup was run and examined. It was im-
portant to determine whether the sandbox application can contain all created
files within a directory and to simulate registry key creation and modifica-
tion. After running InnoSetup in the sandbox mode and upon reaching the
first dialog window sandbox folder contained several files. Upon inspecting
them there were DLL libraries, font files, and files used by the “InnoSetup” to
launch a secondary process that handles the UI and installation as shown in fig-
ure 6.5. No folders were created in the C:\Users\user\AppData\Local\Temp
path and from ApiMonitor the path to process executable it can be observed
to be originating in the sandbox folder as shown in figure 6.4. After instal-
lation is finished all files are located in the sandbox folder and no registries
were created by the installer. If, after inspection of created files and registries,
the user chooses to delete the program, all they have to do is to remove the
sandbox folder and the SQLite database file.

Figure 6.4: Origin of the child process during InnoSetup installation.

52

6.2. InnoSetup installation in the sandbox

Figure 6.5: Content of the sandbox folder upon reaching the first screen.

Now suppose the installer failed due to external reasons and a user wants to
remove the generated files. Unlike the case where the program was installed
outside of the sandbox, process of deletion of created files doesn’t rely on
the software provider creating an uninstallation utility, and once the sandbox
folder is deleted all the files associated with the installer will be removed.

Removing process of the program installed within the sandbox is more
intuitive and secure because it doesn’t depend on the third party that is
directly interested in tracking users’ data and having their software on as
many PCs as possible.

53

Chapter 7
Discussion

Because there is a market for potentially unwanted programs installers them-
selves might be modified to detect and avoid proposed sandboxing solutions.

Since sandbox is injected as a DLL it is possible to list all libraries that
are being used by the current process and if a library matches a predefined
name then the program should change its behavior. This technique can be
categorized as blacklisting. For example, if the installer detects that it is being
run in sandbox mode it might not perform actions that can be categorized as
suspicious and only install software that was originally advertised. Then after
inspection users will think that the program is legitimate and install it without
sandbox, and might get a PUP installed on their PC. Implementing this logic
would require a low amount of e�ort from the attacker’s side.

To mitigate this the injected sandbox DLL can have a random name, this
will help to avoid being detected, especially if the name will be overwritten
dynamically to some well-known library that is often used, but not loaded in
the current process, and if such a library becomes loaded later, then sandbox
would have to change its name. This is a moderate to low e�ort amount of
work that would be required from the sandbox side.

Another approach that can be implemented by malicious installers is
whitelisting. By only allowing a certain set of libraries they would be able to
detect any unregistered DLLs and change the program’s behavior to act as
legitimate software. This approach is more reliable, but also harder to imple-
ment since installers are designed to be flexible and defining a certain set of
possible libraries might be too restrictive, so it is less likely to be implemented.

The current version of the sandbox is using function names as a way to
identify the function that needs to be swapped. The name doesn’t necessarily
have to be there. Functions can be imported exclusively by ordinals. Since
ordinals and function addresses would be still possible to locate, logic could
be implemented that matches assembly instructions to functions and decides
if swapping is required. This approach from the attacker’s side would require
a moderate amount of e�ort, but from the side of the sandbox, a rather

54

7.1. Options for improvement

significant amount of work would be required.
As an ultimate defense against sandbox the attackers might implement

all the functions targeted by sandbox in assembler and use their functions in-
stead. However, this approach would require a significant amount of e�ort and
maintenance, since system functions can change between versions of Windows
and be completely incompatible within themselves. And since the installer
has to work on as many versions of Windows as possible, otherwise having
one defeats the purpose a lot of the versions would have to be supported and
constantly updated, so this approach is rather impractical.

7.1 Options for improvement
The proof of concept that was designed in the scope of this work is geared
towards working with installers and the typical installation process. Some
design decisions were chosen based on the normal case for the installer and
would not support in the current stage more general use-cases. And as a
result, this sandbox might not work with a general program.

Registry management is currently accomplished by maintaining map con-
tainers in the process memory. While this approach works with a single process
and multiple threads, if the installer or some other program creates a new pro-
cess that depends on the registry data from the original process, it will fail,
since it is currently not shared. This can be resolved by completely remov-
ing the dependency on maps and using SQLite database not only for logging
but as main the storage and communication channel between processes. In
this case, processes would have access to the same data. But the problem
described in the “Registry key management” section would 5.9 have to be
resolved. It is possible that Windows reserves some handle values and if they
are invoked, libraries are being loaded as a part of some optimization process.
In this case, such handle values would have to be identified and avoided. It
is also possible that during the NtOpenKey process Windows has to perform
some internal preparations and so the handle needs to be registered, in this
case, the issue can be resolved by calling the original NtOpenKey and then
return some random handle value, this is a more likely scenario, based on the
observed behavior.

Another improvement that could be implemented that potentially could
help to resolve some anti-sandbox techniques described in the previous section
is the ability to write through the installed files. Currently, after inspection
of the files in the sandbox, a user would have to install the program again to
use it as it was designed, but it is possible to record all the intercepted actions
and play them back in reverse, e�ectively installing the application without
the installer. This would help to reduce the risk of the installer detecting that
it is being sandboxed and installing only advertised software, since even if a
sandbox was detected, only verified files and registry keys would be deployed,

55

7. Discussion

so the installer won’t have an opportunity to run outside the sandbox. As
a part of this feature, users might be able to choose if they want to write
through all the changes, or not. For example, they might not want a program
to run on system start-up, which is a common practice for even legitimate
programs to do by default, forcing users to search and disable it in the setting
post factum.

To improve user-friendliness, some sort of UI can be implemented, so the
user can drag and drop programs that they want to run in the sandboxed
mode. Sandbox can also be extended to generate a report that will help users
to spot and understand di�erent suspicious behaviors and their severity.

7.2 Modifications and cooperation
The core idea developed in this work can be easily adapted to function as
a logger for files created and changed by some program. This would allow
programs to work normally but users would no longer depend on the developer
to remove the software because they would be able to delete all files that were
ever created by the program. So the problem of residual files and registries
will be solved. If the strategy of “copy on access” would be preserved then it
would be possible not only to delete all the files and registers but also to restore
files that were modified by the program to their original state. This can be
especially useful in cases when there are no alternatives to the software, but
it is rather obnoxious and forces some themes or extensions or widgets on the
user that has to be removed separately after the main program is removed. In
the real world, this behavior is typical for some antivirus software, that will
try to add various utilities and browser extensions upon installation. Also,
this would allow avoiding forceful data collection practices that companies
implement when it is impossible to remove their software without answering
some questionnaire first.

Software sandboxing might also become a part of an antivirus. It would
allow users to install suspicious software in a safer environment. As was de-
scribed above, software sandbox doesn’t guarantee absolute security and it can
be defeated by a sophisticated attack, but most commonly the easiest route is
chosen and installers are more commonly pushing potentially unwanted legit-
imate programs that might be willingly installed by some users, and are only
problematic when installed without proper disclosure or if installer designed
to encourage miss inputs and accidental agreements. This also allows for soft-
ware distributors that are utilizing installers to remain in the legal zone, even
if it isn’t a morally right thing to do.

If software emulation was o�cially supported by Windows it would be the
best approach, since they have access to all proprietary functions and can
implement it on a lower level that would have the potential to be impossible
to defeat by a regular program without access to low-level functionality.

56

Chapter 8
Final conclusion

In this work, it was shown that some frameworks and companies exist with
the purpose to push unwanted programs on the user. And even taking into an
account that more and more work can be done in the browser companies have
equally increased incentive to develop a proprietary application to collect as
much data as possible and by leaving some files on the user’s PC they can
profile them better and gather the information that user wouldn’t be willing
to share otherwise. Another thing to consider is that with every year amount
of abandoned software increases and there is no other choice for a user other
than to use distributors that are doing their best to be as profitable as possible
even if that means tricking users into installing programs that they don’t want
if distributors operate on “pay per install” model.

Sandbox application was successfully implemented and tested on the real-
world program. This work demonstrates a way how to reduce the risk associ-
ated with installing programs from sources that can’t be fully trusted even if
they are primary distributors of the software. By allowing users to install a
program in the sandboxed mode it becomes possible for them to examine the
created files. In addition all the files will be located in a single folder that is
easy to scan and registries will be accessible from an SQLite database file, so if
the software in question doesn’t meet the user’s expectations then the remove
process is as simple as deleting a file and a folder, and there is no need to rely
upon provided uninstaller. This can be especially useful if one has to rely on
software distribution websites to access some f.e. abandonware or freeware.
In cases of abandoned software and free one, there is a strong incentive from
the distributor to push some potentially unwanted programs to recuperate the
costs of running the website and to make a profit. An additional benefit of
using the sandbox for installation is that in case of some unexpected excep-
tion or improperly handled error due to system incompatibility the installer
won’t just quit and leave unaccounted files and registries that can be a cause
of errors later.

The main di�culties in implementation are related to the fact that the

57

8. Final conclusion

underlying code is proprietary, and function description doesn’t always cor-
respond to the actual behavior. Also since the path of emulating NTDLL
functions was chosen this means that the solution has to account for the ways
that the NTDLL library is used within other libraries. As a direct consequence
of frequent involvement by various subroutines debugging process becomes a
lot harder and zeroing in on a problem might require a significant e�ort.

There are also significant benefits to choosing lower-level functions. NT-
DLL is always loaded and is always available in the process memory space, so
a lot of libraries rely on it to function and this creates an additional challenge
for anyone who attempts to create an installer that will be resilient to the
proposed solution. If functions were intercepted on a user level it would be
relatively easy to develop a library that implements all the required function-
ality from AdvApi.dll and Kernel32.dll and generate a random name for those
functions, so intercepting them would require an advanced code recognition
techniques. Or just adapt the code to use the NTDLL library directly, without
invoking any user-level code.

Benefits compared to using existing isolating solutions:

• Lightweight – system requirements are low.

• Shared environment – no need to purchase additional licenses to run sep-
arate versions of Windows or auxiliary programs that might be required
for an installer in question to run.

• Software-based sandbox – doesn’t require support from hardware to
work.

• No additional setup – running the installer inside the sandbox is no
harder than executing the installer itself.

• File conglomeration – after installation all files are located in a single
directory making the scanning process easier. Even if users install and
test software in the VM they would still have to find and scan all created
or changed files and this process can be time-consuming.

• Registry key storage – since information about registry keys is located
inside the SQLite database it is possible to inspect this file and use SQL
language to execute a more advanced search to help in the detection of
suspicious behavior.

Drawbacks compared to other solutions:

• Less isolation – since the installer process can still directly interact with
a real file system it carries the risk of a program escaping the sandbox
higher.

58

• Tied to the underlying OS – unlike VM or Container, the proposed
solution only runs in the current operating system, so di�erent versions
of the OS can’t be used.

• Privilege level – other solutions allow the user to have full admin access
inside the emulated environment. The proposed solution can’t give a
user more access than they had originally.

• Higher risk – since the installation process is run on the user’s sys-
tem there is more potentially valuable data that can be damaged by a
malicious agent. If a malicious program infects a VM, Container, or
Windows Sandbox, the image can be disposed of and no valuable data
will be a�ected.

So software sandboxing is and will remain a good additional level of pro-
tection. While not as sophisticated as VM or Containers it is easier to run and
doesn’t require hardware support and is a good enough solution to prevent
opportunistic agents from dictating their terms.

59

Bibliography

1. CHEATENGINE. Downloads. 2021. Available also from: https://www.
cheatengine.org/downloads.php.

2. DYNAMICDOWNLOADER. Dynamic downloader. 2018. Available also
from: http://www.dynamic-downloader.com/#about.

3. WEAVEWORKS. A practical guide to choosing between Docker Con-
tainers and VMS. 2020. Available also from: https : / / www . weave .
works/blog/a- practical- guide- to- choosing- between- docker-
containers-and-vms.

4. ORACLE. In: 2013. Available also from: https://docs.oracle.com/
cd/E36500_01/E36503/html/desktop-images.html.

5. MICROSOFT. Windows 11 Specs and System Requirements: Microsoft.
2022. Available also from: https://www.microsoft.com/en-us/windo
ws/windows-11-specifications?r=1.

6. SIMPSON, Daniel. Windows Sandbox Architecture - Windows Security.
2020. Available also from: https : / / docs . microsoft . com / en - us /
windows/security/threat-protection/windows-sandbox/windows-
sandbox-architecture.

7. SIMPSON, Daniel. Windows Sandbox - Windows Security. 2022. Avail-
able also from: https : / / docs . microsoft . com / en - us / windows /
security/threat-protection/windows-sandbox/windows-sandbox-
overview.

8. WEBMASTER. Sandbox web browser: Security for windows PC. 2022.
Available also from: https://www.shadesandbox.com/what- is- a-
sandbox.

9. HAN, Deland. Windows Registry for Advanced Users - Windows Server.
2022. Available also from: https : / / docs . microsoft . com / en - us /
troubleshoot/windows- server/performance/windows- registry-
advanced-users.

60

https://www.cheatengine.org/downloads.php
https://www.cheatengine.org/downloads.php
http://www.dynamic-downloader.com/#about
https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms
https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms
https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms
https://docs.oracle.com/cd/E36500_01/E36503/html/desktop-images.html
https://docs.oracle.com/cd/E36500_01/E36503/html/desktop-images.html
https://www.microsoft.com/en-us/windows/windows-11-specifications?r=1
https://www.microsoft.com/en-us/windows/windows-11-specifications?r=1
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-architecture
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-architecture
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-architecture
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
https://www.shadesandbox.com/what-is-a-sandbox
https://www.shadesandbox.com/what-is-a-sandbox
https://docs.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://docs.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://docs.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users

Bibliography

10. MATEUSZ, Jurczyk. Windows WIN32K.SYS System Call Table. 2020.
Available also from: https://j00ru.vexillium.org/syscalls/win32k
/32/.

11. BRIDGE, Karl. CREATEPROCESSW function (processthreadsapi.h) -
win32 apps. 2022. Available also from: https://docs.microsoft.com/
en-us/windows/win32/api/processthreadsapi/nf-processthreads
api-createprocessw.

12. UNDOCUMENTED. NtCreateProcess NtCreateProcess. [N.d.]. Available
also from: http://undocumented.ntinternals.net/index.html?
page=UserMode%5C%2FUndocumented+Functions%5C%2FNT+Objects%
5C%2FProcess%5C%2FNtCreateProcess.html.

13. MICROSOFT. Microsoft Portable Executable and Common Object File
Format Specification. Revision 6.0. 1999.

14. GIBERT, Daniel; MATEU, Carles; PLANES, Jordi. The rise of machine
learning for detection and classification of malware: Research develop-
ments, trends and challenges. Journal of Network and Computer Appli-
cations. 2020. Available from doi: 10.1016/j.jnca.2019.102526.

15. PIETREK, Matt. Inside windows: Win32 portable executable file format
in detail. 2019. Available also from: https://docs.microsoft.com/
en-us/archive/msdn-magazine/2002/february/inside-windows-
win32-portable-executable-file-format-in-detail.

16. BRIDGE, Karl. PE format - win32 apps. 2021. Available also from: htt
ps://docs.microsoft.com/en-us/windows/win32/debug/pe-format.

17. KOKEŠ, Josef; ZAHRADNICKÝ, Tomáš. Code generation. 2022.
18. RUSSINOVICH, Mark; SOLOMON, David A.; IONESCU, Alex. Image

Loader. In: Windows internals: Part 1. Microsoft Press, 2012, pp. 232–
244.

19. WHIMS, Steve. DllMain entry point (process.h) - win32 apps. 2021.
Available also from: https://docs.microsoft.com/en-us/windows/
win32/dlls/dllmain.

20. JRSOFTWARE. Pascal Scripting: Support Functions Reference. 1999.
Available also from: https://jrsoftware.org/ishelp/index.php?
topic=scriptintro.

21. BRIDGE, Karl. System services - win32 apps. 2021. Available also from:
https://docs.microsoft.com/en-us/windows/win32/api/_base/.

22. LUEVELSMEYER, Bernd. The PE file format. 1999. Available also from:
http://www.pelib.com/resources/luevel.txt.

23. STEVEWHIMS. Remote procedure call (RPC) - win32 apps. 2022. Avail-
able also from: https://docs.microsoft.com/en-us/windows/win32/
rpc/rpc-start-page.

61

https://j00ru.vexillium.org/syscalls/win32k/32/
https://j00ru.vexillium.org/syscalls/win32k/32/
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
http://undocumented.ntinternals.net/index.html?page=UserMode%5C%2FUndocumented+Functions%5C%2FNT+Objects%5C%2FProcess%5C%2FNtCreateProcess.html
http://undocumented.ntinternals.net/index.html?page=UserMode%5C%2FUndocumented+Functions%5C%2FNT+Objects%5C%2FProcess%5C%2FNtCreateProcess.html
http://undocumented.ntinternals.net/index.html?page=UserMode%5C%2FUndocumented+Functions%5C%2FNT+Objects%5C%2FProcess%5C%2FNtCreateProcess.html
https://doi.org/10.1016/j.jnca.2019.102526
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://jrsoftware.org/ishelp/index.php?topic=scriptintro
https://jrsoftware.org/ishelp/index.php?topic=scriptintro
https://docs.microsoft.com/en-us/windows/win32/api/_base/
http://www.pelib.com/resources/luevel.txt
https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-start-page
https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-start-page

Bibliography

24. GOLDEN, Barry. Zwcreatekey function (WDM.H) - windows drivers.
2022. Available also from: https : / / docs . microsoft . com / en - us /
windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatekey.

25. ASHCRAFT, Alvin. Maximum path length limitation - win32 apps. 2021.
Available also from: https://docs.microsoft.com/en-us/windows/
win32/fileio/maximum-file-path-limitation?tabs=cmd.

62

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatekey
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatekey
https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd
https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd

Appendix A
Acronyms

API Application Programming Interface

CPU Central Processing Unit

DLL Dynamically linked library

IAT Import Address Table

MB Mega Bytes

MSDN Microsoft Developer Network

OS Operating system

PC Personal Computer

PEB Process environment block

PE Portable executable

PID Process ID

POC Proof of concept

PUP Potentially unwanted program

RAM Random access memory

TEB Thread environment block

UI User interface

URL Uniform Resource Locator

VM Virtual machine

63

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
executables the directory with executables
src.......................................the directory of source codes

code..implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

64

	Introduction and motivation
	Real-world scenarios of the malicious use of the installers
	Official distribution
	uTorrent
	GOM player

	Third party software distribution websites
	Examining the distributed files
	Motivation for PUP

	Antivirus protection

	Isolating installers
	Docker
	Virtual machines
	Windows Sandbox
	SHADE Sandbox

	Design overview
	Windows registry
	Design
	Sandbox design

	Image file structure
	Image file in memory

	Implementation details
	Function hooking
	Registry key management
	File management

	Testing against real-world potentially unwanted installer
	InnoSetup installation outside the sandbox
	InnoSetup installation in the sandbox

	Discussion
	Options for improvement
	Modifications and cooperation

	Final conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

