
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Vulnerability Prioritization in the Cloud Environment

Bc. Ondřej Vokoun

RNDr. Daniel Joščák, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2022/2023

Instructions

Vulnerability management (VM) is essential for organizations to prioritize threats and

minimize their attack surface. VM is ongoing, regular process which consists of five core

parts:

identification, assessment, prioritization, remediation and measurement of progress.

Those are usually well covered and supported by tools from cloud providers, except the

prioritization.

The aim of this work is to develop a tool that will provide insight into the cloud network

infrastructure and identity access for VM teams in regards to prioritizing vulnerabilities.

We will consider the following vectors that could contribute to the prioritization process:

vulnerability severity scoring, endpoint reachability, identity access and custom tags.

Steps to cover:

1. Analyze current solutions and tools for analyzing network reachability and identity

accessibility - focus on AWS.

2. Design own solution or enhance existing one.

3. Implement the proposed solution.

4. Test the solution on sample data.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 7 February 2022 in Prague.

Master’s thesis

Vulnerability Prioritization in the Cloud
Environment

Bc. Ondřej Vokoun

Department of Information Security
Supervisor: RNDr. Daniel Joščák, Ph.D

May 2, 2022

Acknowledgements

First of all, I would like to thank the supervisor, RNDr. Daniel Joščák,
Ph.D., for guidance, valuable advice and suggestions. I gratefully acknowledge
the help of my colleagues Štěpán Šimek and Zdeněk Sloupenský for their
patience and practical suggestions. Most importantly, I would like to thank my
parents and my brother for their endless support and encouragement during
my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 2, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Ondřej Vokoun. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Vokoun, Ondřej. Vulnerability Prioritization in the Cloud Environment. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Tato práce se zabývá prioritizací zranitelností v prostředí cloudu, zejména
pak v AWS. Na začátku je popsán proces vulnerability managementu násle-
dovaný VM procesem v cloudu a jeho odlišnostmi. Následuje analýza frame-
worků pro hodnocení závažnosti zranitelností a nástrojů pro jejich prioriti-
zaci. S využitím předchozích znalostí je navržena a implementována aplikace
CloneM, která dokáže prioritizovat zranitelnosti nalezené na EC2 instancích.
Výstupem aplikace je risk skóre, které bere v potaz CVSS skóre, možnost
vzdálené exploitace zranitelnosti či důležitost aktiva.

Klíčová slova management zranitelností, prioritizace zranitelností, sken-
ování zranitelností, cloud, AWS

vii

Abstract

The focus of this thesis is on prioritizing vulnerabilities in the cloud environ-
ment, specifically in AWS. The general vulnerability management process is
described, followed by the specifics of the process in the cloud. Risk scoring
frameworks and tools available for prioritization in the cloud are discussed.
The application called CloneM is designed using the knowledge gained from
the previous research. As a result, the developed application allows prioritiza-
tion of vulnerabilities found on EC2 instances based on the risk factors such
as CVSS score, vulnerability exposure and asset importance. The application
is evaluated on sample data.

Keywords vulnerability management, vulnerability prioritization, vulnera-
bility scanning, cloud, AWS

viii

Contents

Introduction 1

1 Introduction to Vulnerability Management 3
1.1 Key terms used in VM . 3
1.2 Vulnerability Management Life Cycle 4
1.3 Asset Discovery . 6

1.3.1 Service asset and configuration management 6
1.4 Vulnerability Assessment . 6

1.4.1 Scan direction . 7
1.4.2 Level of access privileges 7
1.4.3 Scope of scanned devices 8
1.4.4 Scheduling . 8
1.4.5 Environments . 9
1.4.6 Vulnerability scanning tools 10

1.5 Prioritization . 10
1.5.1 Common Vulnerability Scoring System 11
1.5.2 Tenable Vulnerability Priority Rating 12

1.6 Reporting . 14
1.7 Remediation . 14
1.8 Verification . 14

2 VM in the Cloud 15
2.1 Cloud computing . 15

2.1.1 Types of Cloud . 15
2.1.2 Types of services . 16
2.1.3 Shared responsibility model 17
2.1.4 Regions and availability zones in AWS 17

2.2 Specifics of VM in the Cloud 18
2.3 Asset Discovery . 18

ix

2.4 Vulnerability Assessment . 18
2.4.1 Amazon Inspector2 . 19
2.4.2 Microsoft Defender for Cloud 19
2.4.3 Other tools . 20

2.5 Prioritization . 20
2.5.1 Amazon Inspector2 Score 20

2.6 Reporting . 23
2.7 Remediation and verification 23
2.8 Identity and Access Management in the cloud 23

2.8.1 Analyzing policies . 24

3 Design of the CloneM 25
3.1 Goals . 25
3.2 Architecture of the CloneM application 26
3.3 Neo4j database . 26

3.3.1 A brief introduction to Cypher 27
3.4 Graph Data Model . 28
3.5 Data synchronization . 29
3.6 Module for AWS . 31
3.7 Modules for vulnerabilities and findings 32
3.8 Evaluating the network . 32
3.9 Evaluating identity access . 33

4 Implementation of the CloneM 35
4.1 Module for AWS . 35

4.1.1 Supported resources . 38
4.2 Modules for vulnerabilities and findings 39
4.3 Evaluating the data . 40
4.4 Steps to extend the project . 41

5 Evaluation, use-cases and testing of the CloneM 43
5.1 Setup . 43
5.2 Testing . 48
5.3 Discussion and outcomes . 50
5.4 Further technical improvements 50

Conclusion 53
Future work . 53

Literature 55

A Acronyms 61

B Graph data model 65

x

C User Guide 67

D Testing setup 71

E Contents of enclosed flash drive 73

xi

List of Figures

1.1 Vulnerability Management Life Cycle diagram. 5
1.2 The difference between traditional and agent scanning [17]. 8
1.3 Distributions of CVSSv3 CVEs by CVSSv3 and VPR Criticality [27]. 13

2.1 Differences in responsibility for different types of cloud service
models [33]. 17

3.1 Architecture of the application [43, created with Diagrams.net]. . . 27
3.2 Building blocks of the property graph data model [47]. 28
3.3 Simple friendship data model [48]. 29
3.4 Connection between NACL node and its rules [50, created with

Arrows.app]. 30
3.5 Snippet of the graph data model with artificial nodes [50, created

with Arrows.app]. 31
3.6 Findings connected to their respective nodes [50, created with Ar-

rows.app]. 32
3.7 Traversal example [50, created with Arrows.app]. 34

4.1 Routing table with its relationships [53, taken in Neo4j Browser]. . 38

5.1 Deployed infrastructure with Terraform template [43, created with
Diagrams .net]. 46

5.2 Nessus remote scan setup for port scanning [56, taken in Tenable.io]. 47
5.3 Nessus remote scan setup for service discovery [56, taken in Tenable

.io]. 48
5.4 Simplified picture of the deployed infrastructure [53, taken in Neo4j

Browser]. 49

xiii

List of Tables

1.1 CVSSv3 severity scoring and quantitative representation [24]. . . . 12
1.2 VPR Scoring [29]. 13

2.1 Network reachability scoring in Amazon Inspector2 [40]. 22

xv

List of Listings

3.1 Example of a basic Cypher pattern [48]. 28
4.1 Run function for executing modules. 36
4.2 A snippet of the code to retrieve data via AWS Config. 36
4.3 Cypher query to load routing tables and all their components. . 37
C.1 Application usage example . 69
C.2 Application usage example . 69
C.3 Application usage example . 69

xvii

Introduction

In today’s world, modern businesses have data centers with servers, firewalls,
load balancers, routers, switches and other kinds of devices. Some use the
cloud for hosting their applications and workloads, and their employees have
business laptops, smartphones and other devices. All these devices do have
vulnerabilities, without exception. National Vulnerability Database (NVD)
reported over 20000 new vulnerabilities found in 2021, with over 2600 with
critical severity [1]. These numbers are alarming and are likely to grow even
more as we adopt more technologies.

Critical vulnerabilities are at constant risk of being exploited by attackers
to steal sensitive user data, intellectual property, put ransomware, keyloggers
or other malware onto devices. Since so many critical vulnerabilities are out
there, organizations simply cannot patch them all. Instead, they need to focus
their resources on remediating those that pose the highest risk to the organi-
zation. This thesis aims to analyze current tools for prioritizing vulnerabilities
in the cloud and proposes new application CloneM, that was developed.

The thesis is divided into the following chapters. The first chapter, In-
troduction to Vulnerability Management, is dedicated to the introduction to
vulnerability management, describing basic concepts and terms. The second
chapter, VM in the Cloud, discusses the VM process in the cloud and how
it deviates from the general VM process. The third chapter, Design of the
CloneM, introduces the main goals of the application and proposes its design.
Chapter Implementation of the CloneM describes the implementation details
of the application. The last chapter, Evaluation, use-cases and testing of the
CloneM, is dedicated to evaluating the implemented application on the sample
data.

1

Chapter 1
Introduction to Vulnerability

Management

Vulnerability management (VM) is a continuous process of automated asset
discovery, vulnerability scanning, prioritization, reporting and remediation.
Typically, a security team leverage a vulnerability management tool to detect
vulnerabilities and utilize different processes to report and remediate them.
Well-developed VM programs utilize IT and business operations knowledge to
prioritize risk and address high-impact vulnerabilities as quickly as possible.

1.1 Key terms used in VM
Essential terms relevant to security and VM are shortly explained. There
are countless definitions of these terms in various acts and standards. The
following were chosen.

Stakeholder
“Individual or organization having a right, share, claim, or interest in a sys-
tem or in its possession of characteristics that meet their needs and expecta-
tions.” [2]

Asset
“The term asset refers to an item of value to stakeholders. An asset may be
tangible (e.g., a physical item such as hardware, firmware, computing plat-
form, network device, or other technology component) or intangible (e.g.,
humans, data, information, software, capability, function, service, trademark,
copyright, patent, intellectual property, image, or reputation). The value of
an asset is determined by stakeholders in consideration of loss concerns across
the entire system life cycle. Such concerns include but are not limited to

3

1. Introduction to Vulnerability Management

business or mission concerns. The meaning of loss and the associated conse-
quences of loss vary based on the nature of the asset. For example, a data or
information asset will have a different loss interpretation than a capability or
function. The value of an asset can also be represented in different ways to
include criticality, irreplaceability, and the degree to which the asset is relied
upon to achieve stakeholder objectives. From these characteristics, the ap-
propriate protections are engineered to provide the requisite system security
performance and effectiveness and to control, to the extent reasonable and
practical, asset loss and the associated consequences.” [3, p. 13]

Vulnerability
“A known weakness in a system, system security procedures, internal con-
trols, or implementation by which an actor or event may intentionally exploit
or accidentally trigger the weakness to access, modify, or disrupt normal oper-
ations of a system resulting in a security incident or a violation of the system’s
security policy.” [4, p. 212]

Exploit
“A technique to breach the security of a network or information system in
violation of security policy.” [5]

Threat
Threat is an event, either intentional or unintentional, capable of causing harm
to an asset, undesirable consequences or impact from such loss. [3, p. 175]

Risk
Risk expresses the impact of a threat that exploits a vulnerability. It is mea-
sured in terms of the probability of occurrence and its consequence. [6]

Incident
A security incident, cybersecurity, or computer security incident is a violation
of information security in an information system, information processed by
the system, security policies or procedures. Its occurrence results in actual
or potential jeopardy to the confidentiality, integrity, or availability of the
information. [7, 8]

1.2 Vulnerability Management Life Cycle
VM life cycle faces numerous challenges. For easier understanding, it can be
broken down into stages, where each tackles a different problem. As discussed

4

1.2. Vulnerability Management Life Cycle

in the NIST publication [9], managing assets on a large scale can be challenging
due to the vast diversity of hardware and software.

With such a diverse ecosystem, vulnerability assessment of all devices poses
another challenge for the security teams. For the assessment, teams utilize
vulnerability scanners. However, scanners can output several false-positive
findings and ‘noise’, which would slow down response to problems that need
to be fixed. Hence, prioritization of such findings is needed.

Moreover, an organization can have outstanding results from scanning and
prioritizing; reporting is a key to a successful vulnerability management pro-
gram. Effective reporting to the asset owners helps the organization act faster
upon found vulnerabilities and improve the organization’s security posture.
Once the asset owners are informed about the findings, it is up to them to
remediate the findings in a timely manner following the service level agree-
ments (SLAs) defined by the organization. Last but not least, verification of
the remediated findings helps the organization understand the effectiveness of
the processes and the vulnerability program.

All the steps described above form a vulnerability management life cycle,
which is visualized as a cycle in Figure 1.1. The following sections describe
each stage.

Figure 1.1: Vulnerability Management Life Cycle diagram.

5

1. Introduction to Vulnerability Management

1.3 Asset Discovery
An organization has to know its attack surface before taking action to pro-
tect it adequately. The environment can be very diverse, including on-premise
servers, network devices, cloud infrastructure, portable and mobile devices, In-
ternet of Things (IoT) devices, Industrial IoT (IIoT) devices and other kinds
of devices, making inventorying difficult. The objective of asset discovery is
to map every hardware and software asset across the organization. It helps
to assess risk and identify asset owners who are responsible for mitigating the
risk in later stages. Not only is the discovery important for vulnerability man-
agement, but it is also part of security frameworks like NIST Cyber Security
Framework [10, p. 24], ISO-IEC 27000 [11], or CIS Controls [12].

1.3.1 Service asset and configuration management

There are few strategies that can be utilized to cover asset discovery and re-
porting steps, such as service asset and configuration management (SACM),
IT service management (ITSM), configuration management or IT asset man-
agement (ITAM). They are quite similar to each other with the goal to prop-
erly track assets and configuration items (CIs) in their lifecycle with their
respective owners.

Configuration management is enabled by CMDB (configuration manage-
ment database) and stores CIs within their lifecycle and manages relationships
between them. ITAM is a process to ensure that assets are properly accounted
for, deployed, maintained, upgraded and disposed at the end of their lifecy-
cle [13]. SACM (or ITSM) combines both processes, asset management and
configuration management. There are many vendors of these platforms, just
to mention a few, such as ServiceNow (IT Asset Management, IT Service
Management, CMDB), Jira (Service Management), BMC (IT Service Man-
agement), or SolarWinds (IT Asset Management, IT Service Management).

1.4 Vulnerability Assessment
Vulnerability assessment refers to the assessment stage of the VM Life Cy-
cle. Committee on National Security Systems (CNSS), in their glossary [4,
p. 212], describes vulnerability assessment as a “systematic examination of
an information system or product to determine the adequacy of security mea-
sures, identify security deficiencies, provide data from which to predict the
effectiveness of proposed security measures, and confirm the adequacy of such
measures after implementation.”

Assessing an organization’s attack surface via vulnerability scanning helps
understand the risk and adequately protect it. In the NIST glossary [14],
vulnerability scanning is referred to as “a technique used to identify hosts or

6

1.4. Vulnerability Assessment

host attributes and associated vulnerabilities.” Scan results are then compared
against a database of known vulnerabilities to identify possible gaps in security.

However, there are some challenges with the scanning. Diverse asset types
might need different tools and scanners for assessment. This increases the
complexity that needs to be handled by VM teams. Another thing that teams
need to have in their mind is that scanning can pose a load on the network
and its core devices like switches, routers or firewalls. Scanning can also
disrupt the operation of the devices. In that case, passive monitoring might be
a better approach. Last but not least, it is worth mentioning that vulnerability
scanning is excellent for regular testing. However, penetration tests should be
included in the organization’s security program for more thorough tests.

1.4.1 Scan direction
Vulnerability scans can be differentiated based on the network from which they
scan. Internal scans are deployed inside the corporate network and identify
vulnerabilities within it. Internal scans are useful in scenarios where an at-
tacker has already compromised some devices and has access to the network.
These scans then help to prevent from attacker moving laterally to other de-
vices on the network. As opposed to internal scans, the external scans are
targeted at the Internet-facing infrastructure of the company. [15]

1.4.2 Level of access privileges
Regarding the level of access privileges, there are two general types of scans,
one being an unauthenticated (or sometimes called non-authenticated or non-
credentialed) scan, the other one authenticated (also known as credentialed).
As the names suggest, an unauthenticated scan does not have system priv-
ileges. Its main goal is to discover and enumerate services, open ports, and
protocols that are exposed on the host. Unauthenticated scans can iden-
tify vulnerabilities including, but not limited to, expired certificates, exposed
services unpatched software, weak passwords, or poor encryption protocols.
This approach emulates the attacker from the outside. It is limited by missing
client-side vulnerabilities such as detailed patch information. [16]

On the other hand, authenticated scans are more in-depth as they can
log in to the device with a regular user. The most significant advantage is that
the authenticated scan can directly look up installed software, including the
version number and applied patches. It can also help with misconfigurations
such as bad password policies. Authenticated scans are required when doing
compliance scans on the host.

It is worth noting that authenticated scans add complexity to the creden-
tials management. This means that there must be a valid credential with
adequate permissions for every scanned host. Teams also need to monitor if
the authentication was successful or not. Authentication can fail due to many

7

1. Introduction to Vulnerability Management

Figure 1.2: The difference between traditional and agent scanning [17].

reasons, like expired password or certificate, wrong password, removed user
from the device or any other reason that could prevent from authenticating.
When the permissions were mentioned, it is common for the scanner to log
in with the regular user rather than with a root or admin. In many scenar-
ios, however, a regular user does not have adequate permissions, which means
an escalation of privileges is needed, and it might need a different password
for escalation from the one that the scanner uses for login.

Besides these two types mentioned above, another type that stands alone
is agent scan. The main difference between traditional network-based scan
and agent scan is that in the traditional approach, the scanner reaches out to
the target over the network, while agent-based scanning works the opposite
way. The agent runs on the host, performs the scan and then reports back
to some manager or collector, which will collect the output. To make better
sense of it, the difference between these two can be seen in Figure 1.2, in which
Tenable.io acts as a scanner manager.

1.4.3 Scope of scanned devices
Besides the types that were mentioned in the previous text, vulnerability
scans can be categorized based on their primary focus. Their focus might be
limited to just some specific devices, like user workstations, mobile devices,
web applications, databases, network devices, containers, etc. Or, it can be
a comprehensive scan that scans all kinds of devices connected to the network.

1.4.4 Scheduling
How often an organization scans the assets is not a simple question. Most
security frameworks do not specify the frequency of how often the scans should
run. And even though some do, like PCI DSS, which requires quarterly scans

8

1.4. Vulnerability Assessment

[18], that might not be enough to stay secure. There are multiple approaches
that can be considered.

It is important to run scans regularly in a more static environment such as
on-premises. It can be on a monthly, weekly or even daily basis, which depends
on the maturity of the cybersecurity program and on the organization itself.
Some organizations like financial or healthcare institutions might be more
sensitive to cyberattacks, requiring scans more often.

In the change-based approach, scans run after every minor change made to
the application or system. This suits well for cloud environments, which tend
to implement continuous integration and continuous deployment (CI/CD)
pipelines, and there might be new features introduced on a daily basis. Putting
it together in a cloud environment or any other dynamic environment is a sen-
sible approach to run a scan after each change [19]. When the environment
is so dynamic, it is also worth considering including the scans in the pipeline
itself, which could prevent deploying a new application build when high-risk
vulnerabilities are present.

That was all about vulnerability scans, but the vulnerability management
team might run compliance scans as well. This might be needed for audit
reasons, where an annual scan could be enough, or compliance with standards
that define the frequency of the scans.

1.4.5 Environments

There are few noticeable differences between scanning on-premises and the
cloud. There are two ways how to detect vulnerabilities in the cloud assets.
Either by using a third-party tool, like Nexpose, Nessus, etc. or using a cloud
provider’s native tool. This might be Qualys in Microsoft Azure, Amazon
Inspector for AWS and so on. Both approaches have their own pros and cons.

Native tools tend to be a cheaper option with a payment model pay-as-
you-go, built into the cloud and integrated well with cloud provider services.
Usually, they are less feature-rich than third-party tools, results of scans might
lack information or be incomplete, and also, capabilities of remediating and
reporting might be limited.

On the other hand, non-native tools are way more expensive if they are not
open-source. They might lack the support of some cloud services. It might
take more time to integrate with services for vendors of these solutions. On
the pros side, the companies behind these tools are usually companies with
years of experience with on-premise scanning. Thus, the scans provide better
information about found vulnerabilities, have more capabilities in terms of
reporting, etc. Another advantage is also using the same tool for multi-cloud
setups or hybrid setups (scanning both on-premise and cloud).

9

1. Introduction to Vulnerability Management

1.4.6 Vulnerability scanning tools
There are tens of scanning tools available on the market, some of which are
open-source and some commercial only. Providing a complete list of available
vulnerability scanners here would not make much sense. Instead, it is provided
with a link to the OWASP web page, on which the OWASP project maintains
a list of vulnerability scanning tools.1 Just to mention a few popular options:

• Burp Suite

• Tenable Nessus

• Rapid7 Nexpose

• Nikto

• Nmap

• Greenbone OpenVAS

• Qualys Guard

1.5 Prioritization
As the next step comes prioritization step. Prioritization of vulnerabilities
is important due to one fact. It is impossible for organizations to patch and
remedy every single vulnerability found. And it might even be a waste of
resources. Prioritization helps teams to focus on vulnerabilities with high
impact. After all, according to Kenna Security research [20], only approxi-
mately 2% of published vulnerabilities have exploits in the wild.

There are multiple risk factors associated with the vulnerability. Common
strategies of vulnerability prioritization discussed in [21] consider the following
factors:

• vulnerability severity score,

• threat context,

• exposure,

• business impact.

Vulnerability scoring plays a key role in vulnerability management as it is
used to determine a potential risk that vulnerability may have on a system and
therefore is important for prioritization. There are multiple scoring systems
and frameworks. Some are briefly explained in the following text.

1List can be found at https://owasp.org/www-community/Vulnerability_Scanning_
Tools

10

https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools

1.5. Prioritization

The Real Risk prioritization scoring framework is developed by Rapid7
and used in their products like InsightVM. The Real Risk Score (RRS) consid-
ers the CVSS score, malware exposure, exploit exposure, exploit complexity,
and vulnerability age to prioritize vulnerabilities. The output of the RRS is
a granular risk score on a scale from 1 to 1000. [22]

Skybox Risk Score is used in the Skybox Vulnerability Control product
developed by Skybox Security. It is a complex risk scoring system with a cus-
tomizable risk formula. The risk formula supports the most important aspects
of the prioritization, such as severity score, exposure in the network, the ex-
ploitability of a vulnerability, and the asset’s importance. Each customer can
adjust the formula and the weights of each category which contributes to the
final risk score. The given visibility to the network by Vulnerability Control
helps to determine exposed vulnerabilities with active exploitation and thus
provides risk-based vulnerability management. [23]

1.5.1 Common Vulnerability Scoring System
The Common Vulnerability Scoring System (CVSS) is an open framework
managed by FIRST.Org, Inc, a US-based non-profit organization that pro-
vides principal characteristics of a vulnerability. Its part is a numerical score
reflecting vulnerability’s severity for software, hardware or firmware vulner-
abilities and also produces qualitative severity ratings such as None, Low,
Medium, High or Critical (for CVSS v3). [24, 25]

As described in [25], CVSS consists of three metric groups:

• Base: represents the innate characteristics of each vulnerability that
are constant over time and environment.

• Temporal: adjusts the Base severity of a vulnerability depending on
factors that change over time, such as the availability of exploit code.

• Environmental: adjusts the Base and Temporal severities to a specific
computing environment. They consider factors such as the presence of
mitigations in that environment.

CVSS has three major versions of which, the most recent, as of writing this
thesis, being CVSS v3.1. Version v3.1 slightly differs from v3.0 in guidance on
how to clarify vulnerabilities. Version v3.1 is also nowadays used by National
Vulnerability Database (NVD) for assigning the score to the new CVEs. [24]
Comprehensive documentation for CVSS v3 can be found on the official web
page.2 Mappings between numerical score and qualitative representation are
presented in Table 1.1.

The major flaw of the CVSS is that it is designed to identify the technical
severity of a vulnerability, but it is more often used for scoring a security

2https://www.first.org/cvss/specification-document

11

https://www.first .org/cvss/specification-document

1. Introduction to Vulnerability Management

Severity CVSSv3 Range
Critical 9.0 to 10.0

High 7.0 to 8.9
Medium 4.0 to 6.9

Low 0.1 to 3.9
None 0

Table 1.1: CVSSv3 severity scoring and quantitative representation [24].

risk since that is what people and organizations need. Why the CVSS fails
at scoring a security risk is well explained in the white paper [26] – Time
to Change the CVSS? Not only the CVSS is not meant for prioritizing, but
also the fact that a high percentage of vulnerabilities are scored with critical
severity makes CVSS cumbersome. As of 2020, there were more than 16000
vulnerabilities reported with CVSSv2 rated as 9.0 or higher, which makes
it 13% of all vulnerabilities. CVSSv3 is no different, with more than 60000
vulnerabilities rated with CVSSv3 which 9400 are rated as 9.0 or higher. [27]
This makes it extremely difficult to prioritize based on just a CVSS score,
which is why other vendors came up with their scoring for prioritization.

1.5.2 Tenable Vulnerability Priority Rating

Vulnerability Priority Rating (VPR) developed by Tenable, Inc, is a more
modern approach to vulnerability risk rating. Tenable is the industry solu-
tions provider for vulnerability management and is also behind the Nessus
vulnerability scanner, a de facto industry standard for vulnerability scanning.
Unlike CVSS, VPR takes into account the relevancy of the vulnerability and
proactively reevaluates the risk score based on the information. Its goal is
to solve the enormous number of vulnerabilities with a critical CVSS rating.
This does not mean simply reducing the number of critical vulnerabilities but
rather observing the likelihood of actual exploiting of the vulnerability and
rating the vulnerabilities in a more appropriate manner. The Figure 1.3 shows
the comparison in distribution between CVSSv3 and VPR.

Although VPR is a more risk-driven approach to scoring the vulnerabili-
ties, it is not an open-source framework, thus being only part of the Tenable
products and cannot be widely adopted by the industry. Furthermore, it is
worth mentioning that the VPR does not treat the CIA triad the same way
CVSS does, and it considerably does not play a key role in the score. [28]

Tenable calculates a dynamic VPR for most vulnerabilities. It is a dynamic
companion to the data provided by the vulnerability’s CVSS score since Ten-
able updates the VPR to reflect the current threat landscape. VPR values
range from 0.1 to 10.0, with a higher value representing a higher likelihood
of exploitation. [29] Mapping table between numerical score and qualitative

12

1.5. Prioritization

Figure 1.3: Distributions of CVSSv3 CVEs by CVSSv3 and VPR Critical-
ity [27].

VPR Category VPR Range
Critical 9.0 to 10.0
High 7.0 to 8.9
Medium 4.0 to 6.9
Low 0.1 to 3.9

Table 1.2: VPR Scoring [29].

representation is shown in Table 1.2. Note that VPR does not include Info
severity.

Furthermore, users cannot adjust the ranges based on their needs. Vul-
nerabilities without CVEs in the National Vulnerability Database (NVD) do
not receive a VPR score and these vulnerabilities are usually assigned with
info severity. According to Tenable, they should be remediated based on their
CVSS severity [29].

In this section, some scoring frameworks were discussed with their advan-
tages and disadvantages. Some are purely for assigning severity (like Common
Vulnerability Scoring System), while others are trying to take into account the
threat context, such as Tenable Vulnerability Priority Rating. The exposure
context for prioritization is included in tools like Skybox Vulnerability Control
with their Skybox Risk Score.

It is important to keep in mind that there is not any one-size-fits-all ap-
proach for scoring. Especially if the scoring is not fully aware of the environ-

13

1. Introduction to Vulnerability Management

ment, for example, network exposure, business criticality, identity access and
other factors.

1.6 Reporting
Discovering assets, assessing them and prioritizing the found vulnerabilities
are fundamental to the VM. But for the organization to be able to reduce
the risk and attack surface, reporting to the right people is key part of the
process. It is critical to address found vulnerabilities to the asset owners in
a timely manner, so they can act upon a findings criticality. This also refers
back to the importance of proper asset management.

Each vulnerability after prioritization has its risk rating, which also defines
remediation target time. With higher criticality comes shorter timelines for
fixing the vulnerability. Reporting can be part of the tool used for scanning
and prioritizing, but it can be done externally.

1.7 Remediation
Many vulnerability scanners not only discover vulnerabilities, but can also
propose a solution to fix the found vulnerability, which is important in the
remediation step. Asset owners are responsible for remediating found vulnera-
bilities. The remediation process is based on the remediation target timelines,
which the organization processes define. Remediation can include patching,
blocking network access, removing permissions, removing components of the
system or application, or any other solution that prevents exploiting the vul-
nerability.

If the vulnerability cannot be patched or mitigated any other way, risk
acceptance may be required. Risk acceptance has to provide alternate mitiga-
tion options, documentation and processes on how to act upon exploitation.
It might need approval from a higher security officer in the organization. [30]

1.8 Verification
Verification is the last step of the cycle and is closely connected with the
assessment step. Once the vulnerabilities are mitigated, re-scanning has to be
done to make sure vulnerabilities are not present in the system anymore.

14

Chapter 2
VM in the Cloud

Chapter 1 was dedicated to introducing vulnerability management and its key
components and processes. This chapter analyzes VM life cycle in the cloud
and its specifics. A few paragraphs are dedicated to the identity and access
management in the cloud.

2.1 Cloud computing
In simple terms, cloud computing delivers computing services with on-demand
access. The access is given over the Internet, thus called ‘cloud comput-
ing’ [31]. Computing resources might be physical and virtual servers, applica-
tions, databases, storage, networs, software, analytics or intelligence. A third
party typically maintains these resources, known as a cloud provider or cloud
service provider (CSP).

In terms of the payment model, most services are provided on a pay-
as-you-go basis. Also, there are possibilities where customers can pay for
months/years upfront to get a better price. The disadvantage is that once the
resources are not needed anymore, it has already been paid for them. Multiple
types of clouds exist, like public, private, or hybrid clouds. These types are
explained in more detail in Section 2.1.1. Different types of provided services
are categorized into Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS). These are explained in Section 2.1.2.

2.1.1 Types of Cloud

As mentioned earlier, multiple cloud deployment options are public, private,
and hybrid. Public clouds are the most common type of cloud deployment.
They ease the responsibility for managing the infrastructure and lower the
cost of maintenance since they are hosted by a public cloud providers such as
AWS, Azure, Google Cloud, IBM Cloud, or any other provider. The cloud

15

2. VM in the Cloud

provider owns all hardware, software, and any other infrastructure. An im-
portant aspect of the public cloud is that the infrastructure is shared between
customers, so-called tenants.

Even though the CSP owns the core infrastructure and guarantees its se-
curity with SLA to customers, the customers have several responsibilities too.
This model is known as the shared responsibility model. When the company
moves to the cloud, standard practice is that DevOps teams take ownership
and responsibility of the deployed virtual machines, network appliances, and
other services, which means that the teams are responsible for what they put
on the infrastructure and its security. [32]

On the other hand, private cloud infrastructure is dedicated to only one
customer. Since it is dedicated to one customer, the term on-premises data
center can also be used. The organization can own it or manage it by a third-
party company. The private cloud is a great choice for customers who need to
meet specific requirements. It can apply, for example, to government agencies
or financial institutions.

As the name suggests, a hybrid cloud is the combination of the previous
two mentioned, public and private clouds. It gives the advantages of both
solutions but also brings additional complexity to management. [31]

2.1.2 Types of services

Most cloud services fall into three categories, IaaS, PaaS or SaaS. Together,
they form the cloud computing stack. Other types of services could be Data
as a Service (DaaS), Analytics as a Service (AaaS), and others. However,
these are usually empowered through SaaS, so they will not be described
furthermore. The differences between the main three types are described
below.

Infrastructure as a Service or IaaS for short, is closest to the traditional
on-premises infrastructure. Users of the cloud can rent virtual machines, stor-
age, networks, operating systems, or other infrastructure. Their responsibility
includes operating systems, any data, middleware, applications, etc.

PaaS is stepping up further in the model, where the provider takes more
responsibilities. CSP owns infrastructure, hardware and software to deliver
the platform as an integrated ready-to-use solution accessible via the Inter-
net. Customers do not have to worry about updates or maintenance. Some
examples can include services like AWS Elastic Beanstalk, Heroku, or Red
Hat OpenShift. [33]

The last type is SaaS, also known as cloud application services. It features
a pay-as-you-go payment model or customers paying monthly/yearly fees to
use the application. The application and all the underlying infrastructure, like
servers, storage, network, etc., are managed by vendor of the application. [34]

16

2.1. Cloud computing

Figure 2.1: Differences in responsibility for different types of cloud service
models [33].

2.1.3 Shared responsibility model

Previous paragraphs described the type of services available in the cloud. The
crucial part of this segregation is that each type has different responsibilities
for both provider and customer. This segregation is known as the shared
responsibility model, which defines responsibilities for providers and customers
for each type of service. Figure 2.1 shows how the responsibilities are divided
for each service category. The main focus of this work is on IaaS cloud services
on which customer has the most responsibilities.

2.1.4 Regions and availability zones in AWS

AWS uses the concept of regions and availability zones (AZs). It is important
to understand the difference between them and how it impacts deployed re-
sources. The region consists of multiple isolated and physically separate AZs
within a geographic area. All AZs within one region are interconnected with
high-bandwidth and low-latency networking, giving customers the option to
operate applications that need replication or high availability [35]. For some
resources, customer cannot specify the availability zone in which the resource
will be created. An example could be VPCs or subnets. From a networking
perspective, it does not matter in which AZ customer deploys resources such
as EC2s. The traffic will be routed between them regardless of AZ.

On the other hand, regions are completely separated between themselves.
Customers can deploy two VPCs in different regions, no routing will take place
between them by default.

17

2. VM in the Cloud

2.2 Specifics of VM in the Cloud

In the first chapter 1, the general VM process was described. This section is
dedicated to the VM process in the cloud, its specifics and how it deviates
from the general VM life cycle.

2.3 Asset Discovery

ITAM in the cloud is a bit more straightforward than on-premises. Cloud
providers provide tools and services to audit and map all resources deployed
in one place in a standardized form. For this purpose, CSPs offer a master
account. Alternatively, sometimes called an organizational or management
account. An example could be a management account in AWS Organiza-
tions [36]. This kind of account can manage other accounts in the organiza-
tion, configure services for the whole organization and collect data from all
member accounts. With this feature, it is a much simpler task to manage all
assets in the cloud.

When the organization uses multiple CSPs or combines them with on-
premises as a hybrid environment, ITAM can get a bit more complex. In that
case, an organization needs to import data from every CSP and on-premises,
which makes it more difficult.

2.4 Vulnerability Assessment

Vulnerability assessment and scanning do not differ much from scanning on-
premises. It can utilize the same set of tools to do so or native tools provided
by the CSP. The biggest difference is the life cycle of the assets deployed in
the cloud.

Typically, assets in the on-premise environment are deployed with a much
longer life cycle than cloud assets. Assets in the cloud can be deployed for
months, weeks, days, or even hours. Since cloud assets can be deployed only
for a short period, it might require specifics on when the actual asset will get
scanned.

Another slight difference is the way how the assets can get scanned. One
example could be the infrastructure deployed in the pipeline. Pipeline defines
exactly what will be deployed (image of the OS, software and its version, other
components). Therefore assessment can be done in the pipeline before actual
deployment takes place. It depends on defined processes by the organization,
but for instance, if vulnerabilities are found, it can even stop the pipeline and
prevent the resource from being deployed.

18

2.4. Vulnerability Assessment

2.4.1 Amazon Inspector2

Amazon provides a tool called Amazon Inspector for vulnerability manage-
ment in their cloud. This tool has been available since 2015 in AWS. In
November 2021, Amazon introduced a new version of it, which overtook the
name Inspector and the previous version got renamed to Amazon Inspector
Classic. New Inspector is referred to as Inspector2 in the SDK to get even
more confusing, while the old version is just Inspector. From now on, the new
version will be referred to as Inspector2, while the previous version will be as
Inspector, or explicitly Inspector Classic.

It supports scanning Amazon Elastic Cloud Computing (EC2) instances
and Amazon Elastic Container Registry (ECR) images. The downside worth
mentioning here is that Inspector2 does not support any Windows operating
system as of writing this thesis3. Findings are pushed to Amazon Security Hub
and Amazon EventBridge, which also helps with automation of reporting and
remediating. Inspector2 is integrated with AWS Organizations, contributing
to an even better reporting workflow. [37]

Inspector2 is native automated solution which does not require any setup.
However, it does not give users any control over it without any options to
configure the scans.

In addition to the Inspector2, AWS provides other tools that can help
in improving the security posture, such as the Network access analyzer4 for
assessing network access, reachability analyzer5 for evaluating network reach-
ability or IAM access analyzer6 analyzing identity access.

2.4.2 Microsoft Defender for Cloud

Microsoft Defender for Cloud is a security solution for Azure with the aim to
improve security posture and provide threat protection. Besides security rec-
ommendations and alerts, it provides Qualys vulnerability scanner (no license
required) for continuous vulnerability assessment and Microsoft Defender for
Endpoint for risk-based vulnerability management and assessment. [38]

Qualys solution is quite similar to the Inspector2 in AWS, it requires an ex-
tension on the machines, and it is a no setup solution without any configura-
tion. On the other hand, MS Defender for Endpoint is an agent-less solution.

3Complete list of currently supported operating systems can be found at https:
//docs.aws.amazon.com/inspector/latest/user/supported.html.

4https://docs.aws.amazon.com/vpc/latest/network-access-analyzer/what-is-
vaa.html

5https://docs.aws.amazon.com/vpc/latest/reachability/what-is-reachability-
analyzer.html

6https://aws.amazon.com/iam/features/analyze-access/

19

https://docs.aws.amazon .com/inspector/latest/user/supported.html
https://docs.aws.amazon .com/inspector/latest/user/supported.html
https://docs.aws.amazon.com/vpc/latest/network-access-analyzer/what-is-vaa.html
https://docs.aws.amazon.com/vpc/latest/network-access-analyzer/what-is-vaa.html
https://docs.aws.amazon.com/vpc/latest/reachability/what-is-reachability-analyzer.html
https://docs.aws.amazon.com/vpc/latest/reachability/what-is-reachability-analyzer.html
https://aws.amazon .com/iam/features/analyze-access/

2. VM in the Cloud

2.4.3 Other tools
Native tools are not the only vulnerability assessment solutions available.
Other tools used to scan on-premise assets, discussed in Section 1.4.6, can
also be utilized in the cloud.

2.5 Prioritization
So far, the steps in the cloud were not much different from the classical VM
process. The same frameworks for severity and risk scoring can be used for
prioritization, such as CVSS or VPR covering the severity scoring and threat
context. The following text introduces other possible options for prioritization
in the cloud, such as Skybox or Amazon Inspector2. However, prioritization
based on asset exposure and importance is relatively new in the cloud and is
not covered well by these tools. Thus, the CloneM application was developed
to solve this challenge.

Skybox Security claims in [39] that it is integrated with public and pri-
vate cloud infrastructure platforms. Unfortunately, very little information is
publicly available, and since Skybox is a commercial product, it is not easy to
evaluate its capabilities regarding prioritization in the cloud.

2.5.1 Amazon Inspector2 Score
Amazon describes the new Inspector2 risk assessment in the documenta-
tion [40] as a highly contextualized risk score assessment for each finding,
which considers factors such as CVE, network access and exploitability. Ama-
zon Inspector2’s score is based on the NVD base score and adjusted to the
organization’s environment. Its score is in the same format as CVSS, where
each finding’s severity rating is represented as untriaged, informational, low,
medium, high, or critical. Moreover, Inspector2 provides findings based on
network reachability, which informs the customer about open ports. How-
ever, these findings are only for open ports to the Internet. And since the
Inspector2 is only able to detect local vulnerabilities, it cannot prioritize the
remote ones based on the open ports (especially to the local network). [40]

Inspector2 uses the NVD/CVSS score for software packages, which is
the vulnerability severity score published by the NVD and defined by the
CVSS [40]. CVSS was already described in great detail in Section 1.5.1, and
the scoring corresponds to the CVSS table. For network reachability scoring,
severity is determined by open ports, running services and protocols. These
are predefined in Table 2.1.

Even though the documentation states that the risk considers different
factors such as network access or exploitability, it is not clear how these factors
contributes the final risk score. The documentation does not specify it any
further.

20

2.5. Prioritization

Moreover, during the evaluation (described in Chapter 5) vulnerabilities
found on the deployed systems had the same Inspector2 score as was their
CVSS, even for machines with public IP address! Other issue with the In-
spector2 scoring is that the customers do not have any control over it and
cannot adjust it according to their needs.

This work aims to address these issues and the CloneM application gives
users complete control over the factors contributing to the final risk score.
Furthermore, the application provides insight into IAM findings which can
contribute to the risk as well.

21

2. VM in the Cloud

Se
rv

ic
e

T
C

P
po

rt
s

U
D

P
po

rt
s

In
te

rn
et

pa
th

ra
tin

g
O

pe
n

pa
th

ra
tin

g
D

H
C

P
67

,6
8,

54
6,

54
7

67
,6

8,
54

6,
54

7
M

ed
iu

m
In

fo
El

as
tic

se
ar

ch
93

00
,9

20
0

N
A

M
ed

iu
m

In
fo

FT
P

21
21

H
ig

h
M

ed
iu

m
G

lo
ba

lc
at

al
og

LD
A

P
32

68
N

A
M

ed
iu

m
In

fo
G

lo
ba

lc
at

al
og

LD
A

P
ov

er
T

LS
32

69
N

A
M

ed
iu

m
In

fo
H

T
T

P
80

80
Lo

w
In

fo
H

T
T

PS
44

3
44

3
Lo

w
In

fo
K

er
be

ro
s

88
,4

64
,5

43
,5

44
,7

49
,7

51
88

,4
64

,7
49

,7
50

,7
51

,7
52

M
ed

iu
m

In
fo

LD
A

P
38

9
38

9
M

ed
iu

m
In

fo
LD

A
P

ov
er

T
LS

63
6

N
A

M
ed

iu
m

In
fo

M
on

go
D

B
27

01
7,

27
01

8,
27

01
9,

28
01

7
N

A
M

ed
iu

m
In

fo
M

yS
Q

L
33

06
N

A
M

ed
iu

m
In

fo
N

et
BI

O
S

13
7,

13
9

13
7,

13
8

M
ed

iu
m

In
fo

N
FS

11
1,

20
49

,4
04

5,
11

10
11

1,
20

49
,4

04
5,

11
10

M
ed

iu
m

In
fo

O
ra

cl
e

15
21

,1
63

0
N

A
M

ed
iu

m
In

fo
Po

st
gr

eS
Q

L
54

32
N

A
M

ed
iu

m
In

fo
Pr

in
t

se
rv

ic
es

51
5

N
A

H
ig

h
In

fo
R

D
P

33
89

33
89

M
ed

iu
m

Lo
w

R
PC

11
1,

13
5,

53
0

11
1,

13
5,

53
0

M
ed

iu
m

In
fo

SM
B

44
5

44
5

M
ed

iu
m

In
fo

SS
H

22
22

M
ed

iu
m

Lo
w

SQ
L

Se
rv

er
14

33
14

34
M

ed
iu

m
In

fo
Sy

slo
g

60
1

51
4

M
ed

iu
m

In
fo

Te
ln

et
23

23
H

ig
h

M
ed

iu
m

W
IN

S
15

12
,4

2
15

12
,4

2
M

ed
iu

m
In

fo

Ta
bl

e
2.

1:
N

et
wo

rk
re

ac
ha

bi
lit

y
sc

or
in

g
in

A
m

az
on

In
sp

ec
to

r2
[4

0]
.

22

2.6. Reporting

2.6 Reporting
Reporting can be a bit easier in the cloud. At least the phase of assigning
the findings to the right people. It depends on the organization’s maturity,
but once the member accounts or subscriptions are created, they should be
tied to people responsible for deployed resources. Thus, findings should be
easily assigned to the account owners, assuming that accounts are not shared
between multiple teams.

2.7 Remediation and verification
The last two steps of the VM life cycle in the cloud do not deviate from the
classical VM process.

2.8 Identity and Access Management in the cloud
The defense-in-depth approach leverages multi-layer security measures to pro-
tect an organization’s assets. In an on-premise environment, it is usually per-
formed through network-layer controls [41]. And it is still required in the
cloud environment! However, it is not sufficient there. Cloud providers offer
many services that need to be secured from the network perspective and from
an identity and access management (IAM) point of view.

This section introduces IAM in the cloud and how it works in general. IAM
is further discussed in Section 3.9 how it can contribute to the risk assessment
of assets.

Every user, application, or service needs some permissions to operate in the
cloud. This is where IAM, its policies and roles come in. In the text below,
AWS IAM will be taken as an example, and although other vendors might
deviate from it a bit, the principles remain the same. The smallest building
block for permissions are policies. In its simplest way, policies are defined as
a set of permissions (sometimes called statements). Each permission defines:

• its effect, which is either allow or deny,

• list of actions,

• list of resources,

• conditions when it is applicable.

These permissions form a policy, which can be later attached to users or roles.
As roles were mentioned in the previous paragraph, they represent con-

tainers for policies. Roles contain permissions described above and something
called trust relationships. A trust relationship defines who can use the role
(or assume the role), such as the user, other services, or if the trust is set to

23

2. VM in the Cloud

an external entity. While the concept of IAM is straightforward, it is chal-
lenging to implement regarding the least privilege principle and scaling for
organizations.

By default, IAM policies in AWS have deny effect, and users need to add
allow statements to allow actions explicitly. Even though there is a default
deny, adding explicit deny is a good practice. Permissions within roles are
cumulative, which means if one policy does not have some specific action
listed while the other policy allows it, the result is that the action is allowed.
Nevertheless, if any policy explicitly denies some action, it does not matter
on the rest of the policies; they are overridden by the deny statement.

These concepts are easy to understand, but hard to implement in prac-
tice. Users will not go through the documentation and spend the day just
figuring out, which permissions they need to add in order to set up their
workload. Moreover, the need for some permissions can change over time.
For this purpose, Amazon provides so-called AWS Managed policies. With
their descriptive name and informative descriptions, these policies help users
quickly set up what they need. However, they are built in the way to make
things work, so usually, they still have too broad permissions!

Achieving the least privilege is a continuous process since the cloud is
an ever-evolving environment. Users need to set, monitor, verify and refine
permissions to grant the right fine-grained set of them.

2.8.1 Analyzing policies
AWS itself provides tools that can help with analyzing access within IAM
policies. IAM Access Analyzer7 offers a variety of features to set and mon-
itor permissions. There is a feature for validating policies, which checks for
syntax errors, missing required elements, constructs, etc. There are over 100
checks for security, which look for bad security practices and patterns in poli-
cies [42]. The other one is called policy generation. It can generate a policy
template based on the access activity on an entity in some time period. It uses
CloudWatch logs to extract this information and then creates the template.

However, a built-in access analyzer is not the only tool out there. Parlia-
ment8 is another excellent open-source linting tool for reviewing IAM policies.
It checks for similar things as a policy validator in AWS, such as malformed
JSON format or missing actions, and it has its own set of bad policy patterns.
As a result, it generates findings that can be later reviewed.

7https://aws.amazon.com/iam/features/analyze-access/
8https://github.com/duo-labs/parliament

24

https://aws.amazon.com/iam/features/analyze-access/
https://github.com/duo-labs/parliament

Chapter 3
Design of the CloneM

Chapter 1 covered vulnerability management in general, essential stages of the
VM life cycle, and technical details of vulnerability scanning and prioritizing.
Chapter 2 was dedicated to VM in the cloud.

This chapter proposes an application called CloneM capable of prioritizing
vulnerabilities in the cloud. Prioritization helps the organization understand
the attacker’s point of view. The application considers both an outside at-
tacker and an attacker that has already gained access to the network.

3.1 Goals

Whether it be ransomware attacks, data breaches, stealing intellectual prop-
erty or disrupting the business, the most significant cyber threats are coming
from the Internet without any doubt. However, attackers usually do not get
direct access to the data as organizations monitor and secure their perimeter.
They have to get access to the network first and then move into the network
to access the data.

Still, threats are not only coming from the outside Internet. Many orga-
nizations outsource some services to third-party providers, which eventually
gain access to the company’s internal network. Employees of a third party
can be vulnerable to social engineering or bribes, and they can be an easier
target for the attacker. Nevertheless, internal employees might be a threat as
well.

This work focuses on both threats, either coming from the Internet or
internal network when an attacker has already gained access and is preparing
for lateral movement.

The main goal is to evaluate firewall rules, network access control lists,
and routing tables and determine reachability between endpoints based on
the evaluation. The focus is on virtual machines running in the cloud.

25

3. Design of the CloneM

Based on the possible reachability between virtual machines, the applica-
tion can update the risk of vulnerabilities found on them to prioritize those
with the highest risk. Prioritization includes other factors such as if the end-
point is onboarded into the SIEM program, if it is reachable from the Internet
or how critical the system is to the business operations.

A secondary usage of the application is that it can help teams and orga-
nizations determine the coverage of scanned devices in the cloud.

3.2 Architecture of the CloneM application
The following section discusses the architecture of the application which is
divided into modules. Modules provide functionality for fetching the data,
either cloud resources or vulnerabilities and findings, and are responsible for
loading them into the database. The core part then is analyzing the data
imported to the database. The application uses a graph database called Neo4j,
which is described in Section 3.3 in greater detail. The tool aims to be as
modular as possible to make it easily extendable in the future. Figure 3.1
shows a simple diagram of the tool’s architecture.

Using a graph database came naturally since the network itself is a graph.
While there are many graph DBMS available, Neo4j was a choice based on
the ranking of DB-engines9, where Neo4j is all-time number one. There are
many available resources for learning, developing and troubleshooting Neo4j
and a great community around it. The query language of Neo4j Cypher is
also intuitive and easy to get into.

Some data are stored in the document-oriented database MongoDB. The
document-oriented database comes in handy since AWS Config output is a
structured JSON document that can be directly loaded into MongoDB.

3.3 Neo4j database
Neo4j is a graph database developed by Neo4j, Inc. It is a transactional,
ACID-compliant database meant for graph usage, thus having native support
for storing the graph data and processing them. Neo4j features two license
models. Neo4j Community Edition is fully open source, licensed and dis-
tributed under GPL v3. The other one is Neo4j Enterprise Edition, a closed
source intended for commercial deployments [44]. Neo4j has an available Neo4j
Desktop application, which also includes Neo4j Enterprise Edition for devel-
opers.

Neo4j is written in Java and, as such, can run any code that will compile
on JVM. That allows users to write their procedures, which can extend the ca-
pabilities of the database and Cypher query language. Neo4j can be extended

9https://db-engines.com/en/ranking/graph+dbms

26

https://db-engines.com/en/ranking/graph+dbms

3.3. Neo4j database

Neo4j MongoDB

Vulnerability
Scanner 2

Vulnerability
Scanner 1

Vulnerability
Scanner m

Cloud Provider 1

Cloud Provider 2

Cloud Provider n

Analysis of
the data

Prioritized
Vulnerabilities

Vulnerability 1

Vulnerability 2

Vulnerability k

Figure 3.1: Architecture of the application [43, created with Diagrams.net].

in other ways with plugins for authentication or authorization to extend the
security framework or with other server extensions. [45]

Neo4j uses its own query language called Cypher. Cypher is mainly in-
spired by SQL and pattern matching borrowed from SPARQL [46]. It is a
powerful query language optimized for graphs. A brief introduction to Cypher
can be found in Section 3.3.1.

Neo4j allows for a variety of deployment options. It can run in the cloud,
in a cluster, on a personal computer, in a container, or it can be embedded in
Java applications.

Information in Neo4j is represented as nodes, relationships and proper-
ties. These building blocks make the property data graph model, as shown in
Figure 3.2. When building a graph model in Neo4j, nodes can have assigned
labels and hold multiple key-value pairs (properties). Nodes labelled with the
same label belong to the same set. Labels can also attach metadata to certain
nodes, such as indexes or constraints. Similarly, as nodes have labels, rela-
tionships between nodes can have types. When working with the database,
queries can often work with these node and relationship sets instead of the
whole graph, making the execution of the queries much more efficient. While
nodes can have multiple labels, relationships can hold up to one relationship
type. Relationships can have properties just like the nodes. They are always
directed and have a start node and an end node. While the direction of the
relationship is mandatory, it can be traversed in both directions. [47]

3.3.1 A brief introduction to Cypher
This section introduces Cypher query language before diving deeper into the
modules themselves. As stated earlier in Section 3.3, the Neo4j database
used in this project was developed by Neo4j, Inc. The same applies to the

27

3. Design of the CloneM

Figure 3.2: Building blocks of the property graph data model [47].

(emil)<-[:KNOWS]-(jim)-[:KNOWS]->(johan)-[:KNOWS]->(emil)

Listing 3.1: Example of a basic Cypher pattern [48].

Cypher language as well. Note that the other implementations of Cypher
query language exist, such as OpenCypher. The following text describes the
Cypher implementation made by Neo4j, Inc, and it serves as a high-level
overview of the language. For a more comprehensive manual of Cypher, take
a look at https://neo4j.com/docs/cypher-manual/current/.

Cypher queries are based on patterns, where the user asks the database
to match them. As noted in the documentation [48], creating patterns in
Cypher is denoted as an ASCII art. Nodes use rounded brackets, while the
relationships are expressed in square brackets with an arrow. An example
of such a pattern can be seen in Listing 3.1. While Emil, Jim, and Johan
represent nodes (for example, with the label Person), relationship (KNOWS)
expresses their friendship. The pattern expressed in Listing 3.1 would be
drawn as Figure 3.3 on the whiteboard.

3.4 Graph Data Model
The crucial part of the design is the graph data model, which describes how
the data are stored and connected. Sometimes, it is referred to as whiteboard-
friendly since people often draw example data on a whiteboard and connect it
to other data while designing the data model. This whiteboard drawing can
be put into the graph database exactly as it is [49].

In the case of AWS, resources are represented in the database almost the
same as in AWS. Nodes represent resources, and they have an AWS label
to distinguish the cloud provider and then a resource label to put the same
resources into one set. Most of the information about the resource is then

28

https://neo4j.com/docs/cypher-manual/current/

3.5. Data synchronization

Figure 3.3: Simple friendship data model [48].

kept as properties of the node.
Application Arrows.app10 was used to create the graph data model. Neo4j

develops it to support modelling the graph data models for Neo4j database.
It allows exporting the model in different formats like SVG, PNG, JSON, and
Cypher query to load the data directly to Neo4j. Since the built graph data
model is quite complicated, only some parts are shown.

In some cases, properties are broken down into individual nodes connected
to the resource node with a relationship. An example could be AWS Network
Access Control Lists (NACLs), which hold information such as NACL id, the
default state or region, but they also have the inbound and outbound rules.
Instead of being kept as properties, these rules are created as new nodes
connected to the NACL by relationship. An example is shown in Figure 3.4.

The graph data model was built with a focus on making the later traversal
as easy as possible. It also needs to be able to cover and represent all possible
configurations that can be created in AWS. The complete graph data model
can be found in Appendix B as an exported JSON file.

3.5 Data synchronization
While this work focuses on prioritizing vulnerabilities, it is crucial to have all
the data up to date. In order to solve this, there must be synchronization
between the cloud providers, vulnerability scanners and the databases. When
the user wants to synchronize the data, the user has to run the module for
the selected CSP or vulnerability scanner to download fresh data.

10https://arrows.app/

29

https://arrows.app/

3. Design of the CloneM

HAS_LABEL

HA
S_L

AB
EL HAS_LABEL

AWS

Nacl

id:
isDefault:

vpcId:
region:

AWS

NaclRule

id:
cidrBlock:

egress:
protocol:

ruleAction:
ruleNumber:

AWS

NaclRule

id:
cidrBlock:

egress:
protocol:

ruleAction:
ruleNumber:

AWS

NaclRule

id:
cidrBlock:

egress:
protocol:

ruleAction:
ruleNumber:

Figure 3.4: Connection between NACL node and its rules [50, created with
Arrows.app].

This approach is practical for a certain amount of accounts, regions, and
cloud providers. Once the user would like to synchronize hundreds of accounts,
multiple environments and regions across the globe, every synchronization
could take hours to complete and would make the data immediately out of
date. For example, the Cartography tool similarly synchronizes the data, and
this issue can be seen and recalled on GitHub issues [51] and [52].

A better approach planned for future work is to have a subscribing process
that watches for creating, deleting or modifying events published by the CSP.
In the case of AWS, this would be a CloudTrail11 service, but other vendors
have similar services that could be used. This approach would require writing
a handler for every such event. The handler would have to create, delete
or modify nodes in the Neo4j database or documents MongoDB, create new
relationships, or delete the ones not needed anymore in the Neo4j. Such
synchronization is beyond the scope of this work.

In the case of vulnerability scanners, downloading the vulnerabilities and
findings is much faster and should not take much time. Hence, having full
synchronization for them should not be such an issue. Moreover, if it is possible
to filter the vulnerabilities upfront based on the assets, data downloaded are
limited just to the needed data.

11https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-
guide.html

30

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

3.6. Module for AWS

Ec2

id: 1

Nic

Fw

Acl

Ec2

id: 2

NicSubnet

Fw

Acl

SecGroup SecGroup

Ec2

id: 3

Nic

Fw

Acl

Subnet

Nacl

Vpc

NaclRule

SgRuleSgRule SgRule

Figure 3.5: Snippet of the graph data model with artificial nodes [50, created
with Arrows.app].

3.6 Module for AWS
The module loading the data is closely connected to the graph data model.
A few artificial nodes are added to the graph that does not represent any AWS
resource to make the traversing easy. These are FW and NetworkAcl. They
are added to every network interface present in the AWS account, as shown
in Section 3.5.

This approach makes it easy to represent cases when the network inter-
face is inside multiple security groups or when the security group spans over
multiple subnets within VPC. At the same time, it makes it easy to traverse
between EC2s within the subnet or outside the subnet with the proper evalua-
tion of network ACLs. It also prevents data duplication as the security group

31

3. Design of the CloneM

HAS_VULNERABILITY

HAS
_VUL

NER
ABIL

ITY

RO
LE
_H
AS
_FI
ND

ING

H
A
S
_PA

R
LIA

M
E
N
T
_FIN

D
IN
G

H
AS
_P
O
LI
CY
_V
AL
ID
AT
IO
N
_F
IN
D
IN
G

AWS

Ec2

id:
instanceType:

privateIpAddress:
...:

AWS

InstProf

id:
arn:
...:

AWS

Role

id:
arn:

roleName:

Vuln

Nessus

id:
cvss:

severity:
title:
...:

Vuln

Inspector2

id:
cvss:

severity:
title:
...:

AWS

Policy

id:
arn:

policyDocument:
...:

AWS

Policy

id:
arn:

policyDocument:
...:

AccessA

AAFinding

Parliament

id:
issue:
title:

severity:

AccessA

PolicyValFind

id:
findingType:
issueCode:

...:

Figure 3.6: Findings connected to their respective nodes [50, created with
Arrows.app].

and network ACLs rules are stored only once and referenced by relationships
from Fw and NetworkAcl labelled nodes. Similarly, there is an Internet node
which can be used for evaluating attacks from the Internet.

3.7 Modules for vulnerabilities and findings
Modules for loading data from vulnerability scanners or tools that look for
IAM potential insecure configurations are relatively simple. They only need to
retrieve the data from the respective source and connect them in the graph to
the correct node. An example can be seen in Figure 3.6, where vulnerabilities
are connected to the EC2 instance, Parliament and access analyzer findings
to policies and roles.

3.8 Evaluating the network
Once all the data are loaded into Neo4j, the next step is to analyze the data.
The first level on which the data can be analyzed is the network level. Evalu-
ating all the routing tables, firewall rules, security groups (for some platforms
known as network security groups), network access control lists, and other

32

3.9. Evaluating identity access

security appliances on the network can help determine reachability between
endpoints. This could reveal the exposure of some critical vulnerabilities to
the rest of the network.

Evaluating the network can be done by traversing the graph and checking
the rules. An example of such traversal can be seen in Figure 3.7. Considering
the starting node is an EC2 instance with id 2, red arrows display the algo-
rithm’s path to reach the other two EC2 instances. Note that as mentioned
in Section 3.3, the relationships can be traversed in both directions. Green
arrows then show paths to check on rules of security groups and network
ACLs.

3.9 Evaluating identity access
The second level on which the graph can be analyzed is based on identity
access and management. Unlike the network evaluation, where it is clear and
easily determined what should be allowed on the network, evaluating permis-
sions and identity access is much more difficult. There might be scenarios
where single permission will not cause any harm but, combined with other
permissions, can let the attacker hop on other services, deploy malicious code,
etc. Also, it is not rare that some services themselves require more permis-
sions than they would need for their operation. Yet this gives the user no
other choice than assign the required permissions.

Given these conditions, it is much more challenging to automate the priori-
tization of findings and vulnerabilities based on IAM. The application provides
all the data connected together and lets an analyst review the findings.

33

3. Design of the CloneM

Ec2

id: 1

Nic

Fw

Acl

Ec2

id: 2

NicSubnet

Fw

Acl

SecGroup SecGroup

Ec2

id: 3

Nic

Fw

Acl

Subnet

Nacl

Vpc

NaclRule

SgRuleSgRule SgRule

Figure 3.7: Traversal example [50, created with Arrows.app].

34

Chapter 4
Implementation of the CloneM

In Chapter 3, the tool’s design was discussed. This chapter is dedicated to
implementation details. The steps needed to extend the CloneM application
are described at the end of the chapter.

For the development, the Python language was used. Python is easy to
use, fast to develop and enables fast application prototyping. AWS has an
extensive SDK for Python known as boto312.

As mentioned in Section 3.2, the application is divided into modules, which
all form the backend of the app. Modules can be separated into three cate-
gories:

• modules for cloud providers (or any provider of the infrastructure)

• modules for vulnerability scanners (or any tool that provides findings)

• modules for analyzing the data in the database

Class CLI is the main class to execute the application, parse the arguments
and set up the environment for the application. Together with the Sync class,
it handles stages executed in the current run. The function run from the Sync
class then executes each module. A code snippet of this function can be seen
in Listing 4.1.

4.1 Module for AWS
The following paragraphs introduce aws module responsible for retrieving data
from AWS. In the beginning, the module creates a boto3 session, deletes all
data in the database labelled AWS and then the module pulls fresh data from
AWS. Concerning synchronization, more details can be found in Section 3.5.

12https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

35

https://boto3.amazonaws .com/v1/documentation/api/latest/index.html

4. Implementation of the CloneM

for stage_name, stage_func in self._stages.items():
try:

self.logger.info(f'Executing stage: {stage_name}')
stage_func(self._conn, config, self._log_level)

except Exception:
self.logger.exception(f'Unhandled exception during syncing')
pass

Listing 4.1: Run function for executing modules.

conf = AWSConfig()
for func, expression in conf.expressions.items():

self.logger.debug(expression)
data = config_client.select_resource_config(

Expression=expression
)

func(self, data)

Listing 4.2: A snippet of the code to retrieve data via AWS Config.

The key role in the aws module is the Config service13 in AWS, which
allows querying the current configuration state of AWS resources. This module
heavily depends on it. Since the queries can be written in a (limited) SQL, it
makes it easy to retrieve the data and, most importantly, reduces the codebase
needed for pulling the data. The code snippet responsible for that operation
can be seen in Listing 4.2. It goes through items where each item consists
of the query and the corresponding function. Once the data are retrieved
from Config, the corresponding function is called, and the data are passed as
an argument. Supporting class AWSConfig is used to store all the queries and
function names responsible for handling the data for each resource.

Despite the fact that AWS Config is used for most queries, it is not capable
of retrieving all AWS resources. In those cases, boto3 client for the respective
resources is used.

Once the appropriate function is called, it processes the data and loads
them to the Neo4j database. In order to do that, every function needs to
implement its Cypher query based on the resource the query handles. For
some resources, it is fairly straightforward, but some queries are a bit more
complicated.

An example of such a complex query can be a case for routing tables. The
complete query is shown in Listing 4.3. The routing table holds metadata
about itself, such as the table’s id, the VPC’s id to which it belongs, and
then routes and associations of the routing table. The first part of the query

13https://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html

36

https://docs.aws.amazon .com/config/latest/developerguide/WhatIsConfig.html

4.1. Module for AWS

query = """
UNWIND $rts as rt
MERGE (new_rt:
""" + f'{nodes_relationships.nodes.get("aws")}:

{nodes_relationships.nodes.get("routeTable")}' + """
{id: rt.configuration.routeTableId })
SET

new_rt.rtid = rt.configuration.routeTableId,
new_rt.region = rt.awsRegion

WITH new_rt, rt
MATCH (vpc:
""" + f'{nodes_relationships.nodes.get("aws")}:

{nodes_relationships.nodes.get("vpc")}' + """
{id: rt.configuration.vpcId })

MERGE (vpc)-[r:
""" +
f'{nodes_relationships.relationships.get("hasRouteTable")}' +
"""
]->(new_rt)
WITH rt, new_rt
UNWIND rt.configuration.associations as rtbassoc
MERGE (new_rtbassoc:
""" + f'{nodes_relationships.nodes.get("aws")}:

{nodes_relationships.nodes.get("routeTableAssociation")}' + """
{id: rtbassoc.routeTableAssociationId })
SET

new_rtbassoc.main = rtbassoc.main,
new_rtbassoc.association_state = rtbassoc.associationState.state

MERGE (new_rt)-[r2:
""" +
f'{nodes_relationships.relationships.get("rtHasAssoc")}' +
"""
]->(new_rtbassoc)
WITH rtbassoc, new_rtbassoc
MATCH (subnet:
""" + f'{nodes_relationships.nodes.get("aws")}:

{nodes_relationships.nodes.get("subnet")}' + """
{id: rtbassoc.subnetId })
MERGE (subnet)-[r3:
""" +
f'{nodes_relationships.relationships.get("subnetHasRtAssoc")}' +
"""
]->(new_rtbassoc)"""

Listing 4.3: Cypher query to load routing tables and all their components.
37

4. Implementation of the CloneM

Figure 4.1: Routing table with its relationships [53, taken in Neo4j Browser].

expands the list of routing tables into a sequence of rows with UNWIND clause.
Routing table nodes are created and connected to the appropriate VPC.

Associations give information about which subnet is associated with which
routing table and if it is the main routing table of the VPC. Hence, the query
for loading the routing table must take associations into account and associate
the routing table with appropriate subnets. The next part of the query is
responsible for that. Query expands the list of associations for each routing
table, creates a node per association, and connects it to the routing table.
The created node then connects the association to the correct subnet.

Another query creates nodes for each route. Figure 4.1 shows the visual-
ization of the result. Other resources are loaded similarly.

4.1.1 Supported resources
The main focus was on the core infrastructure of the network, EC2 instances
and IAM roles and related policies. Supported resources include:

• VPCs

• Subnets

• Routing tables (and their associations)

• Internet gateways

• NATs

• Transit gateways

38

4.2. Modules for vulnerabilities and findings

• Peering connections

• Network ACLs (and their associations)

• Security groups

• Network interfaces

• EC2 instances

• IAM policies

• IAM roles

• Tags

However, not all possible configurations are supported. For instance, cur-
rent state of the application does not support prefix lists for routing tables
and security groups.

4.2 Modules for vulnerabilities and findings
Multiple modules were implemented in order to retrieve vulnerabilities and
findings. Vulnerabilities are getting assigned CVEs. On the other hand, find-
ings do not have CVEs and typically are misconfigurations. Vulnerabilities
are retrieved via module that connects to Tenable.io14. AWS native tool In-
spector2 is another source of vulnerabilities. For IAM findings, the built-in
tool AWS Access Analyzer was used to retrieve IAM findings. Open-source
tool Parliament is implemented as well.

Tenable.io
Both Nessus scanners and agents are allowed to connect to Tenable.io. This
makes it easy to obtain data from one source while having both types of scans
(remote and local).

The module uses the pyTenable library15, the official Python library de-
veloped by Tenable, Inc. Tenable.io is a quite evolving product, so the API
changes a lot. The pyTenable library is usually a little behind and does not
implement the latest API.

The module is quite simple. It retrieves the list of assets and vulnerabilities
and pairs the vulnerabilities with corresponding assets based on the asset id
(that is internal to Tenable.io). Once it is done, the Cypher query will match
the resulting assets with virtual machines present in the database and load
the vulnerabilities with the relationship to the corresponding machine.

14https://www.tenable.com/products/tenable-io
15https://pypi.org/project/pyTenable/

39

https://www.tenable .com/products/tenable-io
https://pypi.org/project/pyTenable/

4. Implementation of the CloneM

Tenable.io aggregates data from multiple accounts. It also supports other
cloud providers such as Microsoft Azure or Google Cloud Platform.

AWS Inspector2
AWS Inspector2 is an agent-based scanner, so it can only find local vulnerabil-
ities. The module implementation is very straightforward. This time module
uses the boto3 library to retrieve the data from AWS. If the configuration
specifies it, the module can also assume other accounts and pull the data from
them. Once the data are retrieved, they are loaded into the Neo4j database
and vulnerabilities and findings are connected to the respective EC2 instances.

AWS Access Analyzer
AWS Access Analyzer was discussed before in Section 2.8.1. It serves the pur-
pose of checking harmful patterns within IAM policies and access permissions.
The module is divided into two core functions, one being validate_policy
and the other one retrieve_findings.

Validate_policy retrieves the policies from MongoDB and checks them
with the function validate_policy provided by the boto3 client for the access
analyzer. As a result, if any findings are found, they are loaded into Neo4j
and attached to the corresponding policy.

Function retrieve_findings retrieves findings via function list_findings
available for boto3 client for access analyzer. These findings are attached to
their corresponding roles in the next step.

Parliament
The last module implemented for checking IAM policies uses the open-source
library parliament, already introduced in Section 2.8.1. Parliament is available
as a library and can be installed via pip install parliament. Parliament
stands out because it is great for customization, where users can define their
own checks, override the severity of some findings, or skip certain types alto-
gether.

Similar to the validate_policy function in Section 4.2, the parliament
module retrieves policies from MongoDB and checks them against its checks.
Findings are loaded into the Neo4j in the following step.

4.3 Evaluating the data
Python is also the language of choice for evaluating the data. Using Python
means that the application needs to query the database server over the network
every time it needs the next node. This approach is highly inefficient in terms
of performance. On the other hand, the data model can change significantly

40

4.4. Steps to extend the project

during its development, and these changes to the model might require changes
to the analyzing algorithm.

The module for evaluating the network is probably the most complicated
one. Its goal is to find paths between endpoints and evaluate vulnerabilities
on the targeted node if the path exists. Evaluation starts on the node based
on the initial configuration. The user has to provide either id of the resource
or a valid IP address which tells the algorithm from which node it should start
traversing the graph.

Every label has predefined possible options, where the algorithm can go
in the next step. For labels such as Fw or NetworkAcl, the algorithm eval-
uates their security group rules and network ACL rules, respectively. If the
rules permit it, the algorithm continues deeper in the graph. Otherwise, the
algorithm returns.

When the target is reached, the algorithm looks up vulnerabilities present
on the node. If there is a match between target (which consists of a combi-
nation of protocol and port) and a vulnerability’s protocol and port, the risk
might be increased for such vulnerability. Note that the path is traversed
only in one direction. However, the user can run the application in the other
direction to discover if the path exists in both.

Nevertheless, other factors might have an impact on risk as well. These
include tags on an EC2 whether the instance is critical to business operations,
onboarded to a SIEM, or any other user-defined tags.

Finally, all the traversed data are copied over to the second instance of
the Neo4j database together with all the exposed vulnerabilities, IAM roles,
policies and their respective findings. Later, the analyst can review the copied
data, making it much easier to look at it without any noise and disturbance.

Section 4.1.1 discussed supported resources. However, not all possible
configurations are supported for traversing. For instance, traversing the graph
currently supports only IPv4.

4.4 Steps to extend the project

This last section of the implementation chapter will shortly discuss the steps
needed to extend the project. Adding modules for retrieving data, either from
a cloud provider or another vulnerability scanner, is quite straightforward.
There must be added a parameter to the command line arguments or a section
in a configuration file so that the program knows which stage to add to the
current run.

Every module is supplied with a connection to the Neo4j instance, a con-
figuration file and a logging level. The module can make use of them or not.
Since most of the data are stored in Neo4j, it is highly recommended to use at
least the Neo4j connection unless there are specific requirements. As discussed

41

4. Implementation of the CloneM

in Section 5.4, the database engine is currently Neo4j, but this requirement
could be lifted in the future.

The evaluation stage requires most of the work. It needs to support new
nodes, their labels and properties, and relationships and handle them accord-
ingly. In Section 5.4 is discussed how this could be improved to make it more
pleasant to extend.

42

Chapter 5
Evaluation, use-cases and

testing of the CloneM

The following chapter is focused on testing and presenting the capabilities of
the developed application. The first part describes the testing environment
and setup. In the second, the actual testing of the application and results are
shown.

5.1 Setup
In order to create a testing environment and repeatable tests, Terraform tool
was utilized. Terraform16 is a so-called Infrastructure as Code (IaC) tool
developed by HashiCorp Inc. IaC automates the provisioning of the infras-
tructure in a repeatable manner and enables versioning and testing of the
infrastructure. Tools such as tfsec17 can check created templates and spot
potential misconfigurations and security holes.

Terraform is not the only tool available on the market. There are plenty
of other options, such as CloudFormation for AWS, Azure Resource Manager
for Azure or Google Cloud Deployment Manager for GCP.

The AWS setup
A few things need to be set up and enabled on the AWS side. AWS Config has
to be enabled in the account to retrieve most of the data. For the Inspector2
module, the Inspector2 service needs to be enabled. Moreover, AWS must
have a created resource access analyzer for the Access Analyzer module. All
the mentioned services are on a per-region basis, which means that users who
want to retrieve data must enable these services per region.

16https://www.terraform.io
17https://github.com/aquasecurity/tfsec

43

https://www.terraform.io
https://github.com/aquasecurity/tfsec

5. Evaluation, use-cases and testing of the CloneM

The second part of the AWS setup is to have a user/role with permissions
to retrieve the data. In order to pull data from AWS from one account, the
application must be supplied with the credential that has permissions for the
AWS Config service and IAM ListPolicies. Users can use AWSServiceRoleFor-
Config or AWS_ConfigRole, AWS managed policies defined in the documen-
tation AWSManagedPolicies [54]. Either of them gives enough permissions to
access AWS resources, except the permission iam:ListPolicies. As mentioned
in Section 4.1, the AWS Config service itself is not capable of listing IAM
policies. Hence the permission must be supplied separately.

For Inspector2, users can use AWS managed policy called AmazonInspec-
tor2ReadOnlyAccess, which gives read permission over all Inspector2 findings.
There is no other configuration needed for Inspector2. However, it is worth
noting here that the EC2 machines the user wants to include in the scanning
must have installed and configured the SSM agent (AWS Systems Manager
Agent).

Similarly, AWS managed policy called IAMAccessAnalyzerReadOnlyAccess
is recommended for Access Analyzer. Notice that the Parliament module is a
Python library with built-in checks. There are no calls to the AWS, and thus,
Parliament does not need any extra permission.

The database setup

The application uses two databases. The first is Neo4j, the second MongoDB.
For the testing, the Neo4j Desktop application was installed on a testing ma-
chine, which includes an Enterprise license for developers. This is useful since
the application uses one database to store the data and another one to display
the analysis result, in total, two databases within one DBMS. An Enterprise
license is required to use multiple databases within one DBMS.

However, the application expects the databases to be created beforehand.
Thus, the first and default database created was neo4j, the second traversal.

Another advantage of the Neo4j Desktop is the ease of setup and instal-
lation. All the required software (like Java) is bundled with the application.
Furthermore, tools such as Neo4j Browser and Neo4j Bloom for querying the
database and visualizing the data are part of it as well.

MongoDB was set up on a testing machine as a Docker container. Refer-
ence of the setup can be found in Appendix D.

The Nessus setup

Concerning making use of the Tenable.io module, the scanner of choice had to
be Nessus. Nessus scanner was used for remote scanning, and Nessus agents
were installed on the target machines for local scans, which all were linked to
the Tenable.io instance. Tenable.io is a cloud-based vulnerability management

44

5.1. Setup

solution that collects data from various environments such as on-premises,
AWS, Azure or GCP.

Nessus scanner can be easily installed on a Linux machine with the com-
mand:

curl -H 'X-Key: your-linking-key'
'https://cloud.tenable.com/install/scanner?name=scanner-name'
| bash}

The user has to provide a valid linking key, which can be retrieved via the Ten-
able.io web interface. Other optional parameters can be set, such as scanner
group or network. Installed version of Nessus scanner for testing was 10.1.2
with plugin set 202204231148.

Nessus agent can be installed on Linux in a similar way:

curl -H 'X-Key: your-linking-key'
'https://cloud.tenable.com/install/agent?name=agent-name'
| bash

The requirement to provide a valid linking key applies here as well. Other
parameters like agent groups or network can be provided. For installing Nessus
on Windows, refer to the documentation for an agent18 or scanner19. Version
of all Nessus agents was 10.1.3 with plugin set 202204231148. When the
valid linking key is provided, Nessus scanners and agents are connected to the
desired Tenable.io instance, and data can be collected from them.

The infrastructure setup
A few Terraform templates were developed to build an infrastructure and
to speed up the process of testing. Deployment was divided into two parts.
One is responsible for building an underlying infrastructure, the other one for
deploying vulnerable machines and configuring different security group rules
and network access control lists.

Terraform template responsible for the deployment of the infrastructure is
called core. It creates IAM roles necessary for connecting and managing both
Windows and Linux machines via AWS Systems Manager (formerly known
as AWS SSM). Then it creates two VPCs. The first one, vpc-core, has two
subnets, one being public, the other one private. The internet gateway (IGW)
and NAT gateway are deployed inside the VPC. Subsequently, an EC2 ma-
chine with the Red Hat Enterprise Linux (RHEL) operating system inside
the private subnet is deployed with an installed Nessus scanner. The second
VPC, vpc-testing, is connected with the first one over the peering connection.
Appropriate routes are added to both to maintain routing between them. No

18https://docs.tenable.com/nessus/Content/InstallNessusAgentWindows.htm
19https://docs.tenable.com/nessus/Content/InstallNessusWindows.htm

45

https://docs.tenable .com/nessus/Content/InstallNessusAgentWindows.htm
https://docs.tenable .com/nessus/Content/InstallNessusWindows.htm

5. Evaluation, use-cases and testing of the CloneM

Private Su...

Public Sub...

Internet G...
NAT...

EC2 Ness...

vpc-core

Security G...

NACL

vpc-testing

VPC Peering

Internet

Figure 5.1: Deployed infrastructure with Terraform template [43, created with
Diagrams .net].

other resources are deployed in the second VPC by this template. The in-
frastructure deployed by this template is depicted in Figure 5.1. More details
about the template can be found in Appendix D.

Machines setup
Different machines were set up in different ways. Some were configured directly
via Terraform, some manually, and some were imported from various templates
and sources. In this section, configured machines will be briefly introduced.

Following Windows machine was created manually. As a base image was
used Windows Server 2016 with public AMI ami-0f16f67df3939369c. On top
of it was installed XAMPP20, which is an Apache distribution containing
MariaDB, PHP, and Perl, and it was loaded with the vulnerable application
downloaded from GitHub21. After the setup was done, a new custom AMI was
created from this machine using the built-in feature to do so. This machine
is referred to with AMI ami-0bbe3b1dc84a92226. In the same fashion was
created another Windows machine. Based on the Windows Server 2016, AMI
ami-0f16f67df3939369c and with XAMPP installed. This time with installed
Damn Vulnerable Web Application22 (DVWA).

20https://www.apachefriends.org/index.html
21https://github.com/ShinDarth/sql-injection-demo/
22https://github.com/digininja/DVWA

46

https://www.apachefriends.org/index.html
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/digininja/DVWA

5.1. Setup

Figure 5.2: Nessus remote scan setup for port scanning [56, taken in Ten-
able.io].

Some images were created from templates publicly available and imported
to AWS. AWS allows importing VMs in various formats and creating im-
ages from them. More about importing can be found in the documenta-
tion23. Web Security Dojo is an open-source training environment for web
application penetration testing [55]. Different tools and vulnerable applica-
tions are provided in the image, which is freely available as an OVA template
to download from https://sourceforge.net/projects/websecuritydojo/.
This template was imported into AWS and is referred to with AMI ami-
03bc8cab6d501e60c.

The rest of the machines were configured directly with Terraform tem-
plates. Either RHEL 7 or RHEL 8 were used as a base OS. In most cases, the
webserver and the database were installed on top of them. Installation scripts
are also referenced in Appendix D.

The scan setup

This section briefly introduces scan setups in Tenable.io for both traditional
remote scan and agent scans. The complete configuration of the scans can be
found in Appendix D. Figures 5.2 and 5.3 depict some of the most important
settings of the remote scan. Agent scans are configured similarly.

23https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-
import.html)

47

https://sourceforge.net/projects/websecuritydojo/
https://docs.aws.amazon .com/vm-import/latest/userguide/vmimport-image-import.html)
https://docs.aws.amazon .com/vm-import/latest/userguide/vmimport-image-import.html)

5. Evaluation, use-cases and testing of the CloneM

Figure 5.3: Nessus remote scan setup for service discovery [56, taken in Ten-
able .io].

5.2 Testing
Another Terraform template was created to deploy infrastructure into the
VPC designated for testing. The template deploys one public subnet and two
private subnets. A few EC2s are deployed in each of the private subnets.
The whole infrastructure is depicted in the Figure 5.4, and even though the
infrastructure is not complicated, the graph can get dense and hard to read
quickly.

The most interesting part of the setup is security groups and network
access control lists since they restrict the network-level access to resources.
During the testing, their rules were changed to permit or deny access to test
different scenarios.

After the infrastructure had been deployed, Nessus scans were run on the
hosts to find local or remote vulnerabilities. SSM agent was installed on all
machines together with the attached instance profile with required permissions
to collect findings and vulnerabilities found by Inspector2. The next step was
to collect the data and load them to the Neo4j and MongoDB databases.

Important disclaimer, once the machines were scanned for vulnerabilities,
they were stopped to reduce the cost and to actually prevent exploitation from
the real world attackers (since some machines were exposed to the Internet).
Then, tweaks were made to the NICs, security groups, and NACLs to simulate
different scenarios.

With all the data in the DBs, it was time to traverse the graph from dif-
ferent starting points to find vulnerable machines. Together with the results,
all the configurations are referenced in Appendix D.

Test 1
In the first test scenario, the attacker was assumed to be outside the network.
Particularly there was one EC2 with public IP address with security group
allowing outside access. However, the risk calculator was set up and would

48

5.2. Testing

IGW_TOW
ARDS_

INTE…

IGW_TOWARDS_IN
TERNET

EC
_IN

_SU
B
N
ET

EC_IN_SUBNET

EC
_IN

_SU
BN

ET

EC_IN_SUBNET

EC_IN_SUBNET

EC_IN
_SU

BN
ET

EC
_I
N_
SU
BN
ET

EC_
IN_S

UBN
ET

E
C
_IN

_S
U
B
N
E
T

EC_TOW
ARDS_RT

H
A
S
_R
O
U
T
E

HA
S_
RO
UT
E

HAS_ROU
TE

EC
_T
O
W
AR
D
S_
RT

EC
_T
O
W
AR
D
S_
RT

EC_TOW
AR…

E
C
_T
O
W
A
R
D
S
_R
T

EC_TOWARD…

EC_T
OWA

RDS
_RT

EC_TO
W
ARD

S_RT

H
A
S
_R
O
U
T
E

H
A
S
_R
O
U
T
E

HAS_ROUTE

EC
_TO

WA
RD

S_R
T

H
A
S
_R
O
U
T
E

H
AS
_R
O
U
TE

HA
S_
RO
UT
E

HAS_ROUTE

H
A
S
_R
O
U
T
E

H
A
S
_R
O
U
TE

TO
W
A
R
D
S_
TA
R
G
ET

T
O
W
A
R
D
S
_T
A
R
G
E
T

TO
W
AR
DS
_T
AR
GE
T

TOWARDS_TARGET

T
O
W
A
R
D
S
_T
A
R
G
E
T

TOWARDS_TARGET

N
A
T
_T
O
W
A
R
D
…

TO
WA

RD
S_T

ARG
ET

T
O
W
A
R
D
S
_TA

R
G
E
T

T
O
W
A
R
D
S
_T
A
R
G
E
T

T
O
W
A
R
D
S
_T
A
R
G
E
T

T
O
W
A
R
D
S
_T
A
R
G
E
T

NA
T_
TO
WA

RD
S_
RO

UT
E

TO
W
A
R
D
S_TA

R
G
ET

HA
S_
IN
ST
AN
CE
_P
RO
FI
LE

HA
S_T

AG

H
A
S_
TA
G

HA
S_
TA
GH
A
S
_T
A
G

HAS_INS
TANCE_P

ROFILE

H
A
S
_T
A
G

HAS_TA
G

HA
S_T

AGH
AS
_T
AG

HA
S_
IN
ST
AN
CE
_P
RO
FI
LE

HAS_TAG

H
A
S
_TA

G

HAS_TAG

H
A
S
_I
N
S
TA

N
C
E
_P
R
O
…

H
A
S_TA

G

H
A
S
_TA

G

HAS_TAG

HAS_INSTANCE_PROFILE HAS_
TAG

HAS_TAG

HAS_TAG

HAS_TAG

HAS
_INS

TAN
CE_

PRO
FILE

HAS_TAG

HA
S_
TA
G

HAS_TAG

HAS_
TAG

H
A
S
_I
N
S
TA
N
C
…

HAS_TAG

H
A
S
_T
A
G

H
A
S
_TA

G

HA
S_T

AG

HAS_INSTANCE_PRO…

HAS_TAG

H
A
S
_TA

G

H
A
S
_T
A
G

HAS_TAG

H
A
S
_TA

G

HAS_POLICY

HAS_POLICY

HAS
_PO

LICY

HAS_POLICY

H
AS
_P
…

H
A
S
_P
O
LIC

Y

HA
S_P

OLI
CY

H
A
S_PO

…

H
A
S
_P
O
LIC

Y

HAS_PO
LICY

HA
S_
PO
LI
CY

HA
S_
IN
ST
AN
CE
_P
RO
FI
LE

HA
S_
IN
ST
AN
CE
_P
RO
FI
LE

H
AS
_P
O
LI
CY
_…

HAS_PA
RLIAME

NT_F…

internet

i…

i…

subnet-0…

10.10.1.100

10.10.3.150

10.10.3.200

10.10.3.100

subnet-0…

subnet-0…

10.1.2.100

subnet-0…

10.10.2.200

10.10.2.125

10.10.2.150

rtb-0af2b77…

igw-0cc…

vpc-008f…

pcx-087…

rtb-0b01a25…

nat-0c81…

vpc-008f…

pcx-087…

rtb-0dc4c19…

nat-070…

pcx-087…

vpc-06b…

rtb-0f92c25…

igw-0b6…

pcx-087…

vpc-06b…

v…

p…

s…

v…

s…

tf-ssmrole

Y…

tf…

P…

S…

S…

tf…

Y…

N…

tf-ssm_…

tf…

P…

S…

P…

tf…

S…

tf…

N…

S…

Y…

P…

Y…

tf…

S…

S…

tf… Y…

P…

P…

S… tf…

Y…

T…

tf-corrup…

tf-ssmrole

tf-windo…
tf-ssm_wind…

Amazon…

EC2Instanc…

AmazonSS…

EC2Inst…

EC2Inst…

Amazon…

SECURI…

RESOU…

Figure 5.4: Simplified picture of the deployed infrastructure [53, taken in
Neo4j Browser].

increase risk on all vulnerabilities with CVSSv3 above 6 on production ma-
chines, only one low severity vulnerability was found, thus the final risk score
remained the same.

Test 2

The second scenario simulates the attacker that is already inside the network.
All machines are reachable within the 10.0.0.0/8 subnet with no other restric-
tions.

49

5. Evaluation, use-cases and testing of the CloneM

Test 3
The third test simulates an inside attacker similar to the second test scenario.
This time, with restrictions on security group and NACL level. Furthermore,
the risk is lowered on vulnerabilities found in non-production machines.

5.3 Discussion and outcomes
During the testing period, some pitfalls came concerning selected technologies.
On the AWS side, the Config service allowed easier data retrieval with only
a few lines of code and SQL queries. On the other hand, Config does not
support all resources in AWS. That could be seen in the case of IAM policies,
which need to be retrieved via boto3 iam client. Second, Config is not 100%
reliable regarding the returned results. Over the testing period, the Config
service did not return Network ACL Associations with subnets, even though
these associations could be seen in the web console or retrieved via boto3
afterwards. This prevents associating Network ACLs with the subnets and
the right resources inside the subnets. This kind of error is hard to detect
since there could be Network ACLs without any association.

Neo4j is great for connecting the data via its relationships, allowing insight
into the data. However, it is a shame that it does not allow storing more com-
plex data structures in nodes (or even relationships). This could be seen with
IAM policies stored in MongoDB as they are complex documents. Moreover,
it would take much more effort to break them into simple key-value pairs to
store them in Neo4j.

In Neo4j 4.4.3, another missing feature is that Neo4j does not support
generating any UUID for nodes.

5.4 Further technical improvements
The application uses the Neo4j database, but there are multiple options that
support Cypher query language (more precisely, openCypher); hence this re-
quirement could be lifted, and any database that supports openCypher could
be used.

The algorithm to traverse the graph was written in Python, which was
great during development. Especially when the data model was changing
quite often, the code could be updated quickly. Nevertheless, it also came
with the downside of the performance penalty. Once the data model is not
expected to change much, the algorithm should be reimplemented in Java (or
any JVM supported language) since the Neo4j database can run JVM code
natively. It would remove the need to query the database over the network
and thus remove this performance hit. Overall this could pose a significant
performance improvement.

50

5.4. Further technical improvements

Not only the performance would be advantageous, but also an improved
design for evaluating the graph could be beneficially chained together with
normalized data. In the current stage, data are not normalized, and nodes are
always specific to the cloud provider or scanner vendor.

The output of the traversed graph can point out remotely found vulnera-
bilities. However, it does not return the rules that allowed the connection on
its path. This would be helpful for later analysis.

51

Conclusion

The main goal of this thesis was to analyze the current state of vulnerability
prioritization in the cloud and implement a tool that would help vulnerability
management teams with it. The general vulnerability management process
was discussed with its specifics in the cloud. The application design was
proposed, and the built prototype was evaluated on sample data and deployed
in the corporate environment.

The goals of the thesis were met. The CloneM application was developed
in Python and deployed on a few AWS accounts. I suggest methods how the
application could be used to reduce the costs of the organization’s prioritiza-
tion process within the vulnerability management. It could save the human
resources needed to analyze the vulnerabilities manually and help them to be
more efficient.

The CloneM application could serve as a great starting point for further
development so that it can accommodate other services within AWS, other
cloud service providers and vulnerability scanners.

Future work
The CloneM application has many possibilities to be enhanced. It could add
support for other cloud providers such as Microsoft Azure, Google Cloud
Platform, OpenStack, DigitalOcean, Oracle Cloud, Linode, or any other.
The CloneM application should be thoroughly evaluated in the organization.
Lastly, technical improvements are discussed in Section 5.4.

53

Literature

1. NVD - Search and Statistics [online] [visited on 2022-05-01]. Available
from: https://nvd.nist.gov/vuln/search.

2. ISO/IEC/IEEE 15288:2015 [online] [visited on 2022-04-09]. Available
from: https://www.iso.org/cms/render/live/en/sites/isoorg/
contents/data/standard/06/37/63711.html.

3. ROSS, Ron; MCEVILLEY, Michael; CARRIER OREN, Janet. Systems
Security Engineering: Considerations for a Multidisciplinary Approach in
the Engineering of Trustworthy Secure Systems [online]. 2016-11 [visited
on 2022-02-25]. NIST SP 800-160. National Institute of Standards and
Technology. Available from doi: 10.6028/NIST.SP.800-160.

4. Committee on National Security Systems (CNSS) Glossary [online]. 2022
[visited on 2022-04-09]. Available from: https://www.cnss.gov/CNSS/
openDoc.cfm?MoQwsz3tuBdKgIomP5vj+w==.

5. ISO/IEC 27039:2015 [online] [visited on 2022-04-09]. Available from:
https : / / www . iso . org / cms / render / live / en / sites / isoorg /
contents/data/standard/05/68/56889.html.

6. EDITOR, CSRC Content. Risk - Glossary | CSRC [online] [visited on
2022-02-25]. Available from: https://csrc.nist.gov/glossary/term/
risk.

7. Act No. 181/2014 Sb. - Zákon o Kybernetické Bezpečnosti a o Změně
Souvisejících Zákonů (Zákon o Kybernetické Bezpečnosti) [online]. 2014
[visited on 2022-02-25]. Available from: https://nukib.cz/images/
icons/2021-08-31_novelizace_zneni_zakona_181_2014.pdf.

8. EDITOR, CSRC Content. Computer Security Incident - Glossary | CSRC
[online] [visited on 2022-02-25]. Available from: https://csrc.nist.
gov/glossary/term/Computer_Security_Incident.

55

https://nvd.nist.gov/vuln/search
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/37/63711.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/37/63711.html
https://doi.org/10.6028/NIST.SP.800-160
https://www.cnss.gov/CNSS/openDoc.cfm?MoQwsz3tuBdKgIomP5vj+w==
https://www.cnss.gov/CNSS/openDoc.cfm?MoQwsz3tuBdKgIomP5vj+w==
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/68/56889.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/68/56889.html
https://csrc.nist.gov/glossary/term/risk
https://csrc.nist.gov/glossary/term/risk
https://nukib.cz/images/icons/2021-08-31_novelizace_zneni_zakona_181_2014.pdf
https://nukib.cz/images/icons/2021-08-31_novelizace_zneni_zakona_181_2014.pdf
https://csrc.nist.gov/glossary/term/Computer_Security_Incident
https://csrc.nist.gov/glossary/term/Computer_Security_Incident

Literature

9. STONE, Michael; IRRECHUKWU, Chinedum; PERPER, Harry; WYNNE,
Devin; KAUFFMAN, Leah. IT Asset Management: Financial Services
[online]. Gaithersburg, MD, 2018-09 [visited on 2022-04-10]. NIST SP
1800-5. National Institute of Standards and Technology. Available from
doi: 10.6028/NIST.SP.1800-5.

10. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Frame-
work for Improving Critical Infrastructure Cybersecurity, Version 1.1
[online]. Gaithersburg, MD, 2018-04-16 [visited on 2022-02-18]. NIST
CSWP 04162018. National Institute of Standards and Technology. Avail-
able from doi: 10.6028/NIST.CSWP.04162018.

11. ISO/IEC27000: Asset Management [online]. 2016-06-20 [visited on 2022-
05-02]. Available from: https://www.tenable.com/sc-dashboards/
isoiec27000-asset-management.

12. CIS Controls Version 8 [online] [visited on 2022-05-02]. Available from:
https://www.cisecurity.org/controls/v8/.

13. ATLASSIAN. Asset & Configuration Management in Jira Service Man-
agement [online] [visited on 2022-04-13]. Available from: https://www.
atlassian . com / software / jira / service - management / product -
guide/getting-started/asset-and-configuration-management.

14. EDITOR, CSRC Content. Vulnerability Scanning - Glossary | CSRC
[online] [visited on 2022-02-18]. Available from: https://csrc.nist.
gov/glossary/term/Vulnerability_Scanning.

15. Vulnerability Scanner: What Is It and How Does It Work? [Online]
[visited on 2022-05-01]. Available from: https : / / snyk . io / learn /
vulnerability-scanner-2/.

16. Traditional Active Scans (Non-credentialed) (Nessus Agents) [online] [vis-
ited on 2022-03-25]. Available from: https : / / docs . tenable . com /
nessusagent/Content/TraditionalScansUncredentialed.htm.

17. Benefits and Limitations (Nessus Agents) [online] [visited on 2022-02-27].
Available from: https://docs.tenable.com/nessusagent/Content/
BenefitsAndLimitations.htm.

18. PCI DSS Quick Reference Guide [online]. 2018-06 [visited on 2022-02-18].
Available from: https://www.pcisecuritystandards.org/documents/
PCI_DSS-QRG-v3_2_1.pdf.

19. Vulnerability Scanning Frequency Best Practices [online] [visited on 2022-
02-27]. Available from: https://thehackernews.com/2021/12/vulnerability-
scanning-frequency-best.html.

20. KENNA. Prioritization to Prediction [online] [visited on 2022-02-26].
Available from: https://website.kennasecurity.com/wp-content/
uploads/2020/09/Kenna_Prioritization_to_Prediction_Vol1.pdf.

56

https://doi.org/10.6028/NIST.SP.1800-5
https://doi.org/10.6028/NIST.CSWP.04162018
https://www.tenable.com/sc-dashboards/isoiec27000-asset-management
https://www.tenable.com/sc-dashboards/isoiec27000-asset-management
https://www.cisecurity.org/controls/v8/
https://www.atlassian.com/software/jira/service-management/product-guide/getting-started/asset-and-configuration-management
https://www.atlassian.com/software/jira/service-management/product-guide/getting-started/asset-and-configuration-management
https://www.atlassian.com/software/jira/service-management/product-guide/getting-started/asset-and-configuration-management
https://csrc.nist.gov/glossary/term/Vulnerability_Scanning
https://csrc.nist.gov/glossary/term/Vulnerability_Scanning
https://snyk.io/learn/vulnerability-scanner-2/
https://snyk.io/learn/vulnerability-scanner-2/
https://docs.tenable.com/nessusagent/Content/TraditionalScansUncredentialed.htm
https://docs.tenable.com/nessusagent/Content/TraditionalScansUncredentialed.htm
https://docs.tenable.com/nessusagent/Content/BenefitsAndLimitations.htm
https://docs.tenable.com/nessusagent/Content/BenefitsAndLimitations.htm
https://www.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf
https://thehackernews.com/2021/12/vulnerability-scanning-frequency-best.html
https://thehackernews.com/2021/12/vulnerability-scanning-frequency-best.html
https://website.kennasecurity.com/wp-content/uploads/2020/09/Kenna_Prioritization_to_Prediction_Vol1.pdf
https://website.kennasecurity.com/wp-content/uploads/2020/09/Kenna_Prioritization_to_Prediction_Vol1.pdf

Literature

21. GMBH, CodeShield. Automated Vulnerability Prioritization in the Con-
text of the Cloud [online]. 2021-08-04 [visited on 2022-04-24]. Available
from: https : / / codeshield . io / blog / 2021 / 08 / 04 / automated _
vulnerability_prioritization/.

22. Real Risk Prioritization [online]. 2022-02-04 [visited on 2022-02-04]. Avail-
able from: https://www.rapid7.com/products/insightvm/features/
real-risk-prioritization/.

23. Skybox Risk Scoring [online] [visited on 2022-04-25]. Available from: https:
//lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_TB_
Risk_Scoring.pdf.

24. NVD - Vulnerability Metrics [online]. 2019-11-09 [visited on 2019-11-09].
Available from: https://nvd.nist.gov/vuln-metrics/cvss.

25. CVSS v3.1 Specification Document [online]. 2019-11-09 [visited on 2019-
11-09]. Available from: https://www.first.org/cvss/specification-
document.

26. SPRING, Jonathan; HATLEBACK, Eric; HOUSEHOLDER, Allen; MAN-
ION, Art; SHICK, Deana. Time to Change the CVSS? IEEE Security
Privacy. 2021, vol. 19, no. 2, pp. 74–78. issn 1558-4046. Available from
doi: 10.1109/MSEC.2020.3044475.

27. What Is VPR and How Is It Different from CVSS? [Online]. 2020-04-16
[visited on 2022-02-11]. Available from: https://www.tenable.com/
blog/what-is-vpr-and-how-is-it-different-from-cvss.

28. TryHackMe | Vulnerabilities 101 [online]. 2022-02-02 [visited on 2022-02-
02]. Available from: https://tryhackme.com/room/vulnerabilities101.

29. CVSS vs. VPR (Tenable.Sc) [online] [visited on 2022-02-11]. Available
from: https://docs.tenable.com/tenablesc/Content/RiskMetrics.
htm.

30. Changes to Vulnerability Management - Risk Acceptance Process [online]
[visited on 2022-02-25]. Available from: https://www.it.ucsb.edu/
vulnerability-management/changes-vulnerability-management-
risk-acceptance-process.

31. What Is Cloud Computing? [Online] [visited on 2022-03-02]. Available
from: https://azure.microsoft.com/en-us/overview/what-is-
cloud-computing/.

32. SAWITSKY, Aaron. Vulnerability Management in the Cloud: Address-
ing the AWS Shared Responsibility Model [online]. 2020-01-22 [visited
on 2022-02-04]. Available from: https : / / www . rapid7 . com / blog /
post / 2020 / 01 / 22 / vulnerability - management - in - the - cloud -
addressing-the-aws-shared-responsibility-model/.

57

https://codeshield.io/blog/2021/08/04/automated_vulnerability_prioritization/
https://codeshield.io/blog/2021/08/04/automated_vulnerability_prioritization/
https://www.rapid7.com/products/insightvm/features/real-risk-prioritization/
https://www.rapid7.com/products/insightvm/features/real-risk-prioritization/
https://lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_TB_Risk_Scoring.pdf
https://lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_TB_Risk_Scoring.pdf
https://lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_TB_Risk_Scoring.pdf
https://nvd.nist.gov/vuln-metrics/cvss
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://doi.org/10.1109/MSEC.2020.3044475
https://www.tenable.com/blog/what-is-vpr-and-how-is-it-different-from-cvss
https://www.tenable.com/blog/what-is-vpr-and-how-is-it-different-from-cvss
https://tryhackme.com/room/vulnerabilities101
https://docs.tenable.com/tenablesc/Content/RiskMetrics.htm
https://docs.tenable.com/tenablesc/Content/RiskMetrics.htm
https://www.it.ucsb.edu/vulnerability-management/changes-vulnerability-management-risk-acceptance-process
https://www.it.ucsb.edu/vulnerability-management/changes-vulnerability-management-risk-acceptance-process
https://www.it.ucsb.edu/vulnerability-management/changes-vulnerability-management-risk-acceptance-process
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://www.rapid7.com/blog/post/2020/01/22/vulnerability-management-in-the-cloud-addressing-the-aws-shared-responsibility-model/
https://www.rapid7.com/blog/post/2020/01/22/vulnerability-management-in-the-cloud-addressing-the-aws-shared-responsibility-model/
https://www.rapid7.com/blog/post/2020/01/22/vulnerability-management-in-the-cloud-addressing-the-aws-shared-responsibility-model/

Literature

33. IaaS vs PaaS vs SaaS [online] [visited on 2022-03-02]. Available from:
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-
paas-vs-saas.

34. EDUCATION, IBM Cloud. IaaS vs. PaaS vs. SaaS [online]. 2021-09-16
[visited on 2022-03-02]. Available from: https://www.ibm.com/cloud/
learn/iaas-paas-saas.

35. Global Infrastructure Regions & AZs [online] [visited on 2022-04-13].
Available from: https : / / aws . amazon . com / about - aws / global -
infrastructure/regions_az/.

36. AWS Organizations Terminology and Concepts - AWS Organizations
[online] [visited on 2022-04-10]. Available from: https://docs.aws.
amazon . com / organizations / latest / userguide / orgs _ getting -
started_concepts.html.

37. Automated Vulnerability Management – Amazon Inspector – Amazon
Web Services [online]. 2022-02-04 [visited on 2022-02-04]. Available from:
https://aws.amazon.com/inspector/features/.

38. KRIEGER, Elazar; MANSHEIM, Ben. Microsoft Defender for Cloud -
an Introduction [online] [visited on 2022-04-25]. Available from: https://
docs.microsoft.com/en-us/azure/defender-for-cloud/defender-
for-cloud-introduction.

39. Skybox: Security Integrations Provide Attack Surface Visibility and Con-
text [online] [visited on 2022-04-29]. Available from: https : / / www .
skyboxsecurity.com/products/integrations/.

40. Severity Levels for Amazon Inspector Findings - Amazon Inspector [on-
line] [visited on 2022-02-12]. Available from: https://docs.aws.amazon.
com/inspector/latest/user/findings-understanding-severity.
html.

41. HARNIK, Ron; SCHWARTZ, Bar. The Role of Identity Access Manage-
ment (IAM) in Cloud Security [online]. 2020-02-26 [visited on 2022-04-
27]. Available from: https://www.paloaltonetworks.com/blog/2020/
02/cloud-iam-security/.

42. IAM Access Analyzer Update – Policy Validation [online]. 2021-03-16
[visited on 2022-03-23]. Available from: https : / / aws . amazon . com /
blogs/aws/iam-access-analyzer-update-policy-validation/.

43. Diagram Software and Flowchart Maker [online] [visited on 2022-04-09].
Available from: https://www.diagrams.net/.

44. Neo4j Licensing [online] [visited on 2022-02-24]. Available from: https:
//neo4j.com/licensing/.

58

https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://www.ibm.com/cloud/learn/iaas-paas-saas
https://www.ibm.com/cloud/learn/iaas-paas-saas
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_getting-started_concepts.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_getting-started_concepts.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_getting-started_concepts.html
https://aws.amazon.com/inspector/features/
https://docs.microsoft.com/en-us/azure/defender-for-cloud/defender-for-cloud-introduction
https://docs.microsoft.com/en-us/azure/defender-for-cloud/defender-for-cloud-introduction
https://docs.microsoft.com/en-us/azure/defender-for-cloud/defender-for-cloud-introduction
https://www.skyboxsecurity.com/products/integrations/
https://www.skyboxsecurity.com/products/integrations/
https://docs.aws.amazon.com/inspector/latest/user/findings-understanding-severity.html
https://docs.aws.amazon.com/inspector/latest/user/findings-understanding-severity.html
https://docs.aws.amazon.com/inspector/latest/user/findings-understanding-severity.html
https://www.paloaltonetworks.com/blog/2020/02/cloud-iam-security/
https://www.paloaltonetworks.com/blog/2020/02/cloud-iam-security/
https://aws.amazon.com/blogs/aws/iam-access-analyzer-update-policy-validation/
https://aws.amazon.com/blogs/aws/iam-access-analyzer-update-policy-validation/
https://www.diagrams.net/
https://neo4j.com/licensing/
https://neo4j.com/licensing/

Literature

45. Extending Neo4j - Java Reference [online] [visited on 2022-03-27]. Avail-
able from: https://neo4j.com/docs/java-reference/4.4/extending-
neo4j/.

46. The Neo4j Graph Data Platform [online] [visited on 2022-04-15]. Available
from: https://neo4j.com/product/.

47. What Is a Graph Database? - Developer Guides [online] [visited on
2022-03-19]. Available from: https://neo4j.com/developer/graph-
database/.

48. Graph Databases for Beginners: Why a Database Query Language Mat-
ters (More Than You Think) [online]. 2018-08-15 [visited on 2022-03-26].
Available from: https://neo4j.com/blog/why- database- query-
language-matters/.

49. Graph Modeling Guidelines - Developer Guides [online] [visited on 2022-
03-19]. Available from: https://neo4j.com/developer/guide-data-
modeling/.

50. Arrows.App [online] [visited on 2022-03-25]. Available from: https://
arrows.app/.

51. CHANTAVY, Alex. Cartography near Real-Time Updates · Issue #420
· Lyft/Cartography [online] [visited on 2022-03-19]. Available from: https:
//github.com/lyft/cartography/issues/420.

52. Feature Request: Threading for Faster Account Processing · Issue #257
· Lyft/Cartography [online] [visited on 2022-03-19]. Available from: https:
//github.com/lyft/cartography/issues/257.

53. Neo4j Browser - Neo4j Browser [online] [visited on 2022-04-09]. Available
from: https://neo4j.com/docs/browser-manual/4.4/.

54. AWS Managed Policies for AWS Config - AWS Config [online] [visited on
2022-03-26]. Available from: https://docs.aws.amazon.com/config/
latest/developerguide/security-iam-awsmanpol.html.

55. Web Security Dojo [online] [visited on 2022-04-06]. Available from: https:
//www.mavensecurity.com/resources/web-security-dojo.

56. Vulnerability Management Solution for Modern IT | Tenable.Io® [online]
[visited on 2022-04-09]. Available from: https://www.tenable.com/
products/tenable-io.

59

https://neo4j.com/docs/java-reference/4.4/extending-neo4j/
https://neo4j.com/docs/java-reference/4.4/extending-neo4j/
https://neo4j.com/product/
https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/graph-database/
https://neo4j.com/blog/why-database-query-language-matters/
https://neo4j.com/blog/why-database-query-language-matters/
https://neo4j.com/developer/guide-data-modeling/
https://neo4j.com/developer/guide-data-modeling/
https://arrows.app/
https://arrows.app/
https://github.com/lyft/cartography/issues/420
https://github.com/lyft/cartography/issues/420
https://github.com/lyft/cartography/issues/257
https://github.com/lyft/cartography/issues/257
https://neo4j.com/docs/browser-manual/4.4/
https://docs.aws.amazon.com/config/latest/developerguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/config/latest/developerguide/security-iam-awsmanpol.html
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.tenable.com/products/tenable-io
https://www.tenable.com/products/tenable-io

Appendix A
Acronyms

AaaS Analytics as a Service

ACID Atomicity, Consistency, Isolation, Durability

AMI Amazon Machine Image

ASCII American Standard Code for Information Interchange

AWS Amazon Web Services

AZ Availability Zone

CI Configuration Item

CIA Confidentiality, Integrity, Availability

CIDR Classless Inter-Domain Routing

CI/CD Continuous integration, continuous deployment

CMDB Configuration Management Database

CSP Cloud Service Provider

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DaaS Data as a Service

DBMS Database Management System

EC2 Elastic Cloud Computing

ECR Elastic Container Registry

61

A. Acronyms

GPL General Public License

HW Hardware

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IAM Identity and Access Management

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

IR Incident Response

ISMS Information Security Management System

ITAM IT Asset Management

ITSM IT Service Management

JSON JavaScript Object Notation

JVM Java Virtual Machine

NACL Network Access Control List

NAT Network Address Translation

NIST National Institute of Standards and Technologies

NVD National Vulnerability Database

OVA Open Virtualization Appliance

OVF Open Virtualization Format

OWASP Open Web App Security Project

PaaS Platform as a Service

PCI DSS Payment Card Industry Data Security Standard

PNG Portable Network Graphics

PoC Proof of Concept

RRS Real Risk Score

SaaS Software as a Service

62

SLA Service Level Agreement

SVG Scalable Vector Graphics

SW Software

UUID Universally unique identifier

VM Vulnerability Management

VPC Virtual Private Cloud

VPR Vulnerability Priority Rating

63

Appendix B
Graph data model

As mentioned in 3.4, the whole graph data model put in the PDF would be
unreadable to the reader. Instead, JSON exported from the Arrows app24

is attached to the flash media in the folder graph. To open the graph data
model, open the Arrows app in your browser, click the yellow arrow button
and select import. There you can import the attached JSON to see the whole
graph data model.

24https://arrows.app

65

https://arrows.app

Appendix C
User Guide

In this section, the reader can find a brief user guide and requirements to be
able to run the application. Also, a similar user guide is available on the flash
media in Markdown format.

Prerequisites
There are prerequisites that the user needs to meet.

• The application uses AWS Config to retrieve AWS data, thus needs to
be enabled for all required regions.

• Use Neo4j database version 4.0.x or above (tested to be working on
4.4.3).

• Use Neo4j with Enterprise Edition.

• MongoDB (tested on 5.0.6).

• Python 3.6 or above (tested on Python 3.10)

• AWS Inspector2 must be enabled per region.

• AWS Access Analyzer must be created beforehand per region.

The application relies on a few Python packages, this list can be also found
in requirements.txt in attached media.

• boto3 =1.20.48

• botocore =1.23.48

• neobolt =1.7.17

• neo4j =4.4.1

67

C. User Guide

• pymongo =4.0.2

• netaddr =0.8.0

• pyTenable =1.4.3

• parliament =1.5.2

Configuration
The user must supply a few arguments to the application: First the path to
the configuration file. Second, the stages that the user wants to run. The
configuration template with all possible settings can be found on the enclosed
flash drive. Currently supported stages are:

• aws

• aws-inspector2

• aws-access-analyzer

• tenable-io

• parliament

• traversal

68

Usage
In usage example C.1, the application will retrieve all the data from AWS.
Example C.2 retrieves all findings and vulnerabilities from Tenable.io, AWS
Inspector2, AWS Access Analyzer and Parliament. And finally, in exam-
ple C.3, it runs the traversal on the data. The configuration file template
can be found on the attached media in the clonem folder under the name
config_template.json.

python3 cli.py --aws \
--config "config.json"

Listing C.1: Application usage example

python3 cli.py --tenable-io \
--aws-inspector2 \
--aws-access-analyzer \
--parliament \
--config "config.json"

Listing C.2: Application usage example

python3 cli.py --traversal \
--config "config.json"

Listing C.3: Application usage example

69

Appendix D
Testing setup

If not stated otherwise, all configuration files mentioned in this section can be
found on the attached flash drive in the folder test_setup.

For testing, MongoDB was running on a testing machine in a Docker. Con-
figuration of the container can be found under the name docker-compose.yml.
The Neo4j database was running within the Neo4j Desktop application. Con-
figuration of the database can be found in the file neo4j.conf.

Folder nessus contains configurations of remote Nessus scan and Nessus
agent scan. Folder terraform_templates contains all Terraform files used to
deploy the infrastructure and install shell scripts to configure machines.

Each test run has its own folder containing Terraform files for NACLs, Se-
curity groups and NICs, configuration JSON for the application, and exported
JSON and PNG from Neo4j Browser containing the results. Unfortunately,
the resulting JSON file cannot be imported back to the Neo4j Browser or
Arrows.app.

71

Appendix E
Contents of enclosed flash drive

readme.txt..................the file with flash drive contents description
clonem..................................... the directory of source codes

src...implementation sources
docs..documentation
wiki...wiki
requirements.txt.........................python required packages

test_setup configuration files for testing
terraform_templates........................... terraform templates
nessus...Nessus scan setup
test01......................................test 01 setup and results
test02......................................test 02 setup and results
test03......................................test 03 setup and results

graph...graph data model
thesis..the thesis text directory

src..................the directory of LATEX source codes of the thesis
thesis.pdf............................the thesis text in PDF format

73

	Introduction
	Introduction to Vulnerability Management
	Key terms used in VM
	Vulnerability Management Life Cycle
	Asset Discovery
	Service asset and configuration management

	Vulnerability Assessment
	Scan direction
	Level of access privileges
	Scope of scanned devices
	Scheduling
	Environments
	Vulnerability scanning tools

	Prioritization
	Common Vulnerability Scoring System
	Tenable Vulnerability Priority Rating

	Reporting
	Remediation
	Verification

	VM in the Cloud
	Cloud computing
	Types of Cloud
	Types of services
	Shared responsibility model
	Regions and availability zones in AWS

	Specifics of VM in the Cloud
	Asset Discovery
	Vulnerability Assessment
	Amazon Inspector2
	Microsoft Defender for Cloud
	Other tools

	Prioritization
	Amazon Inspector2 Score

	Reporting
	Remediation and verification
	Identity and Access Management in the cloud
	Analyzing policies

	Design of the CloneM
	Goals
	Architecture of the CloneM application
	Neo4j database
	A brief introduction to Cypher

	Graph Data Model
	Data synchronization
	Module for AWS
	Modules for vulnerabilities and findings
	Evaluating the network
	Evaluating identity access

	Implementation of the CloneM
	Module for AWS
	Supported resources

	Modules for vulnerabilities and findings
	Evaluating the data
	Steps to extend the project

	Evaluation, use-cases and testing of the CloneM
	Setup
	Testing
	Discussion and outcomes
	Further technical improvements

	Conclusion
	Future work

	Literature
	Acronyms
	Graph data model
	User Guide
	Testing setup
	Contents of enclosed flash drive

