
Instructions

Discord is a widely used communication platform where users exchange large amounts of

information. Discord chat logs are very valuable as they often contain useful information. However, the

existing access mechanisms do not provide easy and full access to these chat logs, and access to

them may be withdrawn at any time. The main goal of the thesis is to design and implement a tool for

creation of backups of chats and media from the Discord social platform.

- Analyse existing web archival tools and best practises.

- Analyse the current access mechanisms for the Discord platform.

- Design and implement a tool for the backup of Discord discussion servers. The tool should enable

backup creation and search capabilities.

- On a selected Discord server validate the tool and perform anonymized analysis over collected data.

- Evaluate the functionalities of the tool.

Electronically approved by Ing. Karel Klouda, Ph.D. on 10 February 2022 in Prague.

Assignment of master’s thesis

Title: Archival tool for the Discord communications platform

Student: Bc. David Labský

Supervisor: Ing. Milan Dojčinovski, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Master’s thesis

Archival tool for the Discord
communications platform

Bc. David Labský

Department of applied mathematics

Supervisor: Ing. Milan Dojčinovski, Ph.D

May 4, 2022

Acknowledgements

I would like to thank my supervisor, Ing. Milan Dojčinovski, Ph.D., for taking
on this topic with me, for his feedback and guidance.

Thank you, Jǐŕı, for the mutual support during the making of this thesis
and throughout our studies, we make a good team and I couldn’t have done
it without you.

Thank you, dear Clanga, for moral support as well as proofreading.
Thanks to Tiido for proofreading as well.

Thank you to all the friends and colleagues who have been patient with
me in the process of writing this thesis.

A final thank you goes to my parents for continuously encouraging and
backing my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on May 4, 2022

Czech Technical University in Prague

Faculty of Information Technology

© 2022 David Labský. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Labský, David. Archival tool for the Discord communications platform. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Discord je populárńı chatovaćı platforma která v současnosti neumožňuje
uživatel̊um exportovat všechna data, ke kterým maj́ı př́ıstup. Možnost
tvořit zálohy online dat je d̊uležitá jak pro osobńı d̊uvody, tak za účelem
umožněńı dlouhodobého uchováváńı dat. Ćılem této práce je vytvořit open-
source nástroj pro archivaci Discordových chat̊u ke kterým má daný uživatel
př́ıstup. Využ́ıváme strategii zachycováńı śıt’ové komunikace prováděné he-
adless webovým prohĺıžečem. Tato metoda je široce aplikovatelná pro archivaci
single page aplikaćı jiných než Discord, se kterými současné nástroje obt́ıžně
funguj́ı. Funkcionalita je prokázána skrze provedeńı analýzi dat stažených ze
zvoleného Discord serveru.

Kĺıčová slova Discord, chat logy, webová archivace, uchováváńı digitálńıch
dat, Puppeteer

vii

Abstract

Discord is a popular instant messaging platform which currently does not
allow its users to export all data which they can access. The ability to create
backups of online data is important for personal reasons as well as to enable
long term preservation. The goal of this thesis is to create an open-source
tool for the archival of Discord chats to which one has gained access. We use
a strategy of capturing network traffic performed by a headless web browser.
This method is broadly applicable to archiving single page applications other
than Discord which current tools have difficulty working with. Functionality
is demonstrated by performing analysis of data downloaded from a chosen
Discord server.

Keywords Discord, chat logs, web archival, digital preservation, Puppeteer

viii

Contents

1 Introduction 1
1.1 Thesis goals . 5
1.2 Thesis strucutre . 5

2 Background and Related Work 7
2.1 Motivation . 7

2.1.1 Digital preservation . 8
2.1.2 Online content is at risk 9
2.1.3 Archival of online content 10
2.1.4 Difficulty archiving modern websites 12

2.2 Applications for archived chat logs 13
2.2.1 Search engines . 13
2.2.2 OSINT . 14
2.2.3 Machine learning . 15

2.3 Data liberation . 16
2.3.1 Digital Markets Act . 16

2.4 Related work . 17
2.4.1 Third party Discord clients 17
2.4.2 Discord Archivers . 18

2.4.2.1 DiscordChatExporter 19
2.4.2.2 Discord History Tracker 21
2.4.2.3 Pullcord . 22
2.4.2.4 Discard . 23

2.4.3 Comparison . 24

ix

2.5 Findings . 25

3 Analysis and Specification 27
3.1 Discord architecture . 27

3.1.1 Users . 28
3.1.2 Servers . 29
3.1.3 Channels . 30
3.1.4 Messages . 30

3.2 Means to access Discord . 32
3.3 Tool specification . 33

3.3.1 Objects . 33
3.4 Legality . 34
3.5 Ethics . 35

3.5.1 Requirements . 36

4 Technologies 39
4.1 Development of Discord bots 39
4.2 Archiving web content . 40

4.2.1 Formats . 40
4.2.2 Software . 42

4.3 Capturing network traffic . 43
4.3.1 Proxy software . 44
4.3.2 Packet capture software 44

4.4 Headless browsers . 45
4.4.1 Selenium . 46
4.4.2 Puppeteer . 46
4.4.3 Playwright . 46

4.5 TypeScript and Node.js . 46
4.6 Linux containers . 47
4.7 Elasticsearch . 47

5 Implementation 49
5.1 Crawler . 50

5.1.1 Browser . 51
5.1.2 Jobs . 51
5.1.3 Discord project . 52
5.1.4 Capture tools . 54

x

5.1.4.1 mitmproxy . 54
5.1.4.2 Wireshark . 54

5.2 Reader . 54
5.2.1 Output formats . 55

5.3 Command-line interface . 57
5.4 End-to-end tests . 58
5.5 Findings . 59

6 Validation 61
6.1 Analysis . 62

7 Conclusion 67
7.1 Future work . 68

Bibliography 69

A Acronyms 79

B Supplemental Material 81

xi

List of Figures

1.1 A screenshot of the mIRC IRC client displaying a chat room[1].
mIRC logs received messages automatically. 2

1.2 A screenshot of the Discord client displaying a chat room[2].
. 3

2.1 Internet Archive’s Wayback Machine displaying the 1998 version
of the website of the Czech Technical University in Prague.[3].
. 11

2.2 Screenshot of DiscordChatExporter. 20

3.1 Discord architecture from the perspective of a user. 28
3.2 A variety of sample messages. 31

4.1 Marketing screenshot of Elastic’s Kibana, demonstrating its ability
to create data dashboards. 48

5.1 A diagram describing the architecture of Discard2. 50
5.2 Processing of a job in Discard2’s crawler. 51
5.3 Hierarchy of tasks in the Discord project. 53
5.4 Screenshot of Discard2 output during a crawling job. 57
5.5 Diagram describing Discard2 architecture during end-to-end tests. 58

6.1 Activity over time. 62
6.2 Heatmap of activity over the course of a week. 63
6.3 20 most active channels. 64
6.4 50 most active users. 64
6.5 Messages sent per minute (blue) against average sentiment (green). 65

xiii

6.6 Word cloud of thread names. 66

xiv

List of Tables

2.1 Overview of popular Discord archivers1 19

6.1 Number of results for various search strings 62

xv

Chapter 1
Introduction

Ever since its inception, the Internet has transformed the way humans com-
municate. E-mail, instant messengers, and social media have had an impact
on culture worldwide. However, the landscape of online services is constantly
changing, and has been a shift from open, federated solutions like e-mail to
proprietary platforms backed by for-profit corporations. Instant messaging
has also undergone this shift. The earliest chat protocol to achieve wide adop-
tion, IRC, was fully decentralized, with numerous large networks. The open
model resulted in a proliferation of clients suitable for various hardware and
users. However, full decentralization also brings downsides. Without an au-
thority or consensus on evolution of the protocol, changes in the computing
landscape can leave a platform out of date. IRC’s usability suffers in the era
of mobile devices, as it is not designed for spotty broadband connection.

Discord is an instant messaging and VoIP platform introduced to the
public in May 2015. Owing to its ease of use and readily available voice
over IP services, it quickly garnered adoption in the e-sports and streaming
audiences[4]. Although continuously favored by gamers, Discord has success-
fully broadened its audience and is now targeting student groups1, hobbyists,
fandoms, and more. As of 2021, Discord has over 350 million registered users,
nearly half of which are active monthly[5]. Every minute, Discord users are
collectively sending 668 thousand chat messages[6].

Traditionally, providers for instant messengers (such as IRC, AIM, ICQ,
1As of April 2022, the Discord server for the Faculty of Informatics of the Czech Technical

University in Prague has 3,547 members in it, primarily students.

1

1. Introduction

Figure 1.1: A screenshot of the mIRC IRC client displaying a chat room[1].
mIRC logs received messages automatically.

or MSN) acted only simple gateways. Messages would be passed from user
to user immediately without the option to access them again. Instead, clients
typically had a logging feature, keeping a local record of all personal commu-
nications involving the user. The advent of cloud services has upended this
principle. Modern social platforms like Discord store all user data server-side.
This provides practical utility as users no longer have to stay connected in
order to read backlog (i.e. conversation that happened when they were dis-
connected), and it also allows the server to index chat logs for faster search.
On the downside, however, this means the user is at the mercy of the service
provider for their data. Should the user lose access to their account for any
reason, including being banned at the discretion of the service provider, they
lose access to their historical records. In fact, since users can delete messages
in private chats without leaving a notice, there is a real risk of gaslighting over
past conversations2.

2The term gaslighting refers to interpersonal manipulation resulting in the victim ques-
tioning their sense of reality. For instance, a person may end up in a situation where they
have to decide whether the second party had deleted a message and is lying about the fact,

2

The Discord client does not perform any client-side logging, and Dis-
cord forbids the use of third party clients[7], which may provide such function-
ality. While a competing chat platform, Telegram, offers its users a powerful
chat export tool[8], Discord has no such feature. As a for-profit company, Dis-
cord may find itself lacking motivation to allow users to download complete
chat logs, in part because it would ease migration to other platforms. It is
hoped that the work done in this thesis will benefit communities interested in
moving from Discord to open, decentralized chat platforms such as Matrix[9].

Figure 1.2: A screenshot of the Discord client displaying a chat room[2].

As closed services like Discord continue to displace traditional plat-
forms of the open web like forums3 and personal homepages, the Internet is
shifting its look. Discourse is mounting around Google search result quality
deteriotating[12]. Savvy researchers know to scourge communities for a given
topic on platforms such as Reddit and Discord to find answers to their ques-
tions. Invite links to many Discord servers are public, and after joining, all
history is there to read, however a Discord account is required and content
or if they are misremembering the past conversation.

3Although Discord is primarily a chat platform, communities which close forums often
justify it by claiming Discord is simply a more popular place for people to talk, albeit this
is not without pushback[10]. Additionally, at the time of writing, Discord is noted to be in
the middle of developing a ”forum” feature, the description of which can already be found
in the API documentation[11].

3

1. Introduction

from the server cannot be discovered by search in the first place. Discord’s
status can be described as deep web, as chats are unable to be indexed by
conventional search engines, even if the intention is for them to be public.

The ability to create backups of online data is essential for reasons of
keeping a personal record, data liberation, and long term preservation. As
such, the goal of this thesis is to create an open-source tool for archival of
Discord chats to which one has gained access. We will utilize the strategy
of capturing network traffic performed by a headless browser running in a
container. This method will be broadly applicable to archiving single page
applications other than Discord which current tools have difficulty working
with.

4

1.1. Thesis goals

1.1 Thesis goals

The goals of this thesis are:

• analyze best practices in digital archival and the existing tools for archival
of web applications,

• inspect the current state of the art in the field of archiving Discord
servers,

• create a tool for archival of Discord chats to which one has gained access,

• allow exporting archived data to a variety of formats for further process-
ing, including enabling search,

• demonstrate the tool’s functionality by downloading data from a chosen
Discord server and performing simple analysis.

1.2 Thesis strucutre

This thesis is structured as follows. In Chapter 2 - Background and Related
Work, we discuss the motivations for archiving chat logs, the background of
archiving online content, tools that are currently available which partially
solve this problem, and other developments in the area. In Chapter 3 - Anal-
ysis and Specification, we discuss the architecture of the Discord platform
and come up with suitable requirements and design for the tool we’re devel-
oping. In Chapter 4 - Technologies, we describe the technologies that were
considered and used to implement the tool. In Chapter 5 - Implementation,
the architecture and capabilities of the tool are explored in detail. Chapter 6
- Validation has us demonstrate the functionality of the tool by analyzing
the chat logs of a chosen Discord server. Finally, in Chapter 7 - Conclusion,
we discuss the results of the research, the implications of the tool, and future
work.

5

Chapter 2
Background and Related Work

In this chapter, we go over the important place chat logs hold in the modern
world, discuss the motivations for archival of online data, the challenges as-
sociated with data preservation, and the myriad applications for information
gathered from Discord. We also go over the existing tools that may solve this
problem for us today, making note of their limitations.

2.1 Motivation

The goal of archiving is to ensure the continued availability of valuable records
for long-term use, to allow for their efficient retrieval and to prevent loss.

Archiving is important because it ensures the availability of records
which can tell stories about events, people, or organizations. Individuals may
have practical and sentimental reasons to ensure the longevity of their per-
sonal data, and businesses just as well have motivation to prevent loss of data
which may be critical. Materials properly archived can also be used as evi-
dence during legal procedures to ensure justice. Over a period of decades and
centuries, archived materials become of interest particularly to researchers and
historians.

Chat logs, in contrast to written publications or grey literature, offer
a window into the minutiae of life. They may contain trivial information
which becomes signal over time or in larger quantities, knowledge the long
term importance of which was not known at time of writing, and more often
than ever before photos and attachments of value. Archived chat logs allow us

7

2. Background and Related Work

to document the birth of ideas or to study contemporary reactions to major
world events, such as the September 11 terrorist attacks[13].

The Discord platform has been available since 2015[4] and has garnered
hundreds of millions of users worldwide. But no online service can guarantee
the continued availability of data hosted on the platform. That is why it is
important to develop tools allowing users to download their data and retain
it themselves.

2.1.1 Digital preservation

In case of archiving digital materials, preservation is of particular importance.
Unlike physical objects such as books, which, when stored under stable con-
ditions can last nearly forever, regular effort must be put to ensure digital
objects don’t become inaccessible. There are multiple layers to this risk. The
term bitrot typically refers to the phenomenon in which digital media, such
as optical disks or memory chips, loses data over time. This can be due to
improper storage conditions or handling, but broadly speaking, no digital me-
dia has a lifespan compatible with long term preservation, and so the most
secure and economical way to store data in the long term requires redundancy
(i.e. backups) to ensure data integrity, and processes in place which regularly
check and migrate the data onto new devices in cases of failure.

However, even when data integrity is ensured, it may still become more
difficult to work with it in time. While data can be kept constant in time,
the world changes around it. The software necessary to work with it doesn’t
exist in a vacuum, it’s a part of a complex digital ecosystem, and systems can
change or become obsolete and eventually unavailable. Common examples
include image or text data stored in obsolete file formats, or expired software
licenses barring access. Thus, in contrast to physical artifacts which wear out
with use, it can be said that digital artifacts wear out when work is not put
into maintaining them[14].

There are two main solutions to sustain the capacity to understand
digital objects. The first is to continuously re-interpret the data into newer
formats and onto newer platforms. The second is to ensure reproduction of
the old platforms by means of emulation, for example of an older operating
system which supports the relevant software. During the design phase of a new

8

2.1. Motivation

format intended for long term preservation, both methods should be carefully
considered and enabled.

2.1.2 Online content is at risk

The era of so-called cloud services has changed the manner most people inter-
act with their data. Cloud services have their advantages: the user no longer
has to think about files and data storage, and their data is available anywhere
with an internet connection. That is convenient. However, when data is only
available over the network, the situation concerning its availability can change
at any time. When the user goes offline for any reason, the data will be un-
available to them, however, that is typically only a temporary inconvenience.
Service providers carry the risk of short and prolonged outages of their own.
As an example, at time of writing, an estimated 50 to 400 thousands users
of Attlasian Cloud services, including the popular issue and project tracker
JIRA, were impacted by an outage which barred them from accessing critical
company data[15]. This outage has lasted for two weeks[16] and one researcher
discovered few of the companies had any backups[15]. It is likely cloud data
backup practices among individuals are worse yet than those of businesses4.

Going beyond outages, every year, scores of websites become unavail-
able and online services get shut down[18]. Product Hunt is a website report-
ing on new products in tech. 22 % of the websites of products featured on
Product Hunt since December 2013 are no longer reachable[19]. Major com-
panies such as Google and Yahoo are infamous for sunsetting products which
are still popular with their users, in some cases mere years after acquiring
them[20][21]. When notice is given, which is not universal, these services oc-
casionally offer their users to download an export of their content. Sometimes
these exports are reported to be unreliable or incomplete, such as in the case
of Yahoo! Answers[21]. Even when user data export is offered, it has to be
requested and downloaded, which a minority of users will do, and it contains
only data authored by a given user. Most information that was previously

4As of 2021, according to backup provider company Backblaze, 80 % of U.S. adults who
own computers make backups at least once a year[17]. This is an encouraging number, but
it can be understood to concern data stored on their personal computers. Indeed, 61 %
of respondents indicated their primary backup method was ”the cloud”. Those users are
unlikely to back up data stored on the cloud in the first place. 31 % also indicated they do
not understand how the cloud works.

9

2. Background and Related Work

available publicly becomes difficult to locate or lost forever, contributing to a
phenomenon known as link rot[22].

Hyperlinks are references in text pointing to other documents which
can be followed with a click or a tap. Hyperlinks were integral to the creation
of the World Wide Web which transformed the way people use the Internet.
The pervasion of broken links which no longer point to their original intended
destination, that is link rot, erases important context and hurts the Internet’s
ability to preserve information. Estimates of the rate of link rot varies between
studies and categories of links, but the half-life of a link is reported as anywhere
between two years[23] to about 14 years in academic corpora[24]5.

2.1.3 Archival of online content

Prevention and remedy of link rot is a major concern for digital archivists.
This typically involves the creation of backups of publicly available content
which is suspected or known to be at risk or is deemed culturally signifi-
cant. The Internet Archive[25] is the principal player in this space. It
is an American digital library which provides public access to collections of
digitized materials, including books, music, video, and software. As of 2022,
the Internet Archive hosts over 100 petabytes of data[26]. A major endeavor
developed by the Internet Archive is the Wayback Machine[27], which hosts
captures of 681 billion web pages. Internet Archive develops and runs its own
crawler infrastructure on the World Wide Web. They expose web captures
through the interface of the Wayback Machine, which enables everybody to
view captured historical versions of webpages, including those which have gone
offline.

Journalists, academics, and regular users alike have an interest in pre-
serving online content they care about. They may desire to reference it in
the future or wish to ensure public availability. Lacking proper methods,
however, they resort to crude methods like copy-pasting text or taking screen-
shots. These low fidelity methods are problematic, because they only capture
fractions of content, lose valuable metadata, and are more difficult to verify
the authenticity of. When people have the means to make higher quality
captures, they do make use of them. Besides automated captures of websites

5Note that research may not account for content drift, which refers to significant changes
of the linked content which is nonetheless online.

10

2.1. Motivation

Figure 2.1: Internet Archive’s Wayback Machine displaying the 1998
version of the website of the Czech Technical University in Prague.[3].

by means of a spider, the Wayback Machine offers an interface called Save
Page Now which allows anybody to make copies of web pages important to
them. In a process that has been described as participatory web archiving[28],
in 2018, 100 pages were being saved per second using the Save Page Now
interface[29].

While Save Page Now is excellent at empowering users to save content
online, it only allows for saving a single page at a time. When websites
announce shutdowns, dedicated groups come together to help preserve the
content. Volunteer groups of archivists such as Archive Team[30] monitor
services at risk, or rely on requests from users, especially for smaller or local
sites where the language barrier prevents news from reaching the group. With
the help of a distributed network of machines also provided by volunteers,
Archive Team has been preserving content at risk online since its founding
in 20096. Owing to a versatile arsenal of tools and a strategy that can be

6Archive Team describes itself as a ”loose collective of rogue archivists, programmers,
writers and loudmouths dedicated to saving our digital heritage”. The author has been an
active member of the group beginning with 2015.

11

2. Background and Related Work

described as ”archive first, ask questions later”, Archive Team has been able
to act quickly in face of tight deadlines to preserve copies of online content.

2.1.4 Difficulty archiving modern websites

It is difficult to overstate the speed at which technologies evolve and change.
The stack behind the World Wide Web, developed at its inception with a basic
capability for hypertext documents, serves today as a backbone for complex
real-time applications. Single-page applications (SPAs) are websites which
interact with the user by dynamically rewriting parts of the web page using
JavaScript. The added complexity over traditional web pages proves trouble-
some for many tools developed for digital preservation in the past. For in-
stance, GNU Wget, which is commonly used to recursively download websites
lacks the capabilities to execute JavaScript completely. The WARC format
currently standard for archives of web content has no support for capturing
data transferred over the WebSocket protocol, as used by applications such as
Discord.

Increasingly, headless browsers are used to support the full range of in-
teractions possible with modern websites. The Webrecorder group employs
this technique in a suite of open source tools they are developing to enable
capture and replay of interactive websites in a high fidelity manner[31]. In
cases when user data in an online service is only available behind login or
through an application, specialized tools have to be developed to download
it. There are always risks associated with storing personal data in such appli-
cations. Even if the product stays online, companies can withhold access to
it without any justification or notice. Whether done because of a legitimate
user error or due to some other cause, communication over lost accounts is
often poor7. Among those suites which specialize in helping users retrieve
personal data from online silos are HPI (Human Programming Interface)[35]
and Dogsheep[36].

The tools currently available for archiving data from Discord are dis-
7Google is among those companies known to disable user accounts without communica-

tion or clear paths to a solution, as a result of which users lose access to their email and
documents permanently, as in [32] or [33]. The Google account of a historian and military
expert was locked after his research files were flagged as ”terrorism-related content”[34]. As
noted in Section 2.4.1 (Third party clients), Discord users have also suffered from data loss
resulting from account suspensions.

12

2.2. Applications for archived chat logs

cussed in Section 2.4.2.

2.2 Applications for archived chat logs

Inter-human communication is a keystone to intelligence and much of the
information passed this way is never processed into formal literature like ar-
ticles, white papers, and other documents. In the era of instant communica-
tions, companies like Slack8, which provides a chat platform geared towards
businesses and workplaces, encourages team members to treat chat logs as a
knowledge base and make liberal use of the search feature[38]. The skills and
tools to work with chat history are critical for research today.

In this section, we briefly cover some of the fields where a tool to archive
Discord chat logs is applicable and useful.

2.2.1 Search engines

The Internet is a vast resource and the amount of information available is be-
yond comprehension. Traditionally, search engines have served an important
role in assisting navigation of the Web by providing automatic curation and
surfacing results relevant to a query. Google Search, by far the most popular
search engine, has become so entrenched in daily lives that ”to google some-
thing” functions as a readily understood verb. Nevertheless, in 2022 numerous
sources observed that Google’s search quality has been detoriating[12].

The problem is partly caused by the prominence Google has started
giving to advertisements, its primary source of revenue[39]. Not only have
ads become less clearly marked over time, for some search queries, sponsored
results cover the whole screen[40]. However, even the quality of organic results
has perceivingly been on the decline. Good understanding of search engine
optimization (SEO) techniques has enabled the practice of spamdexing[41],
which pushes artificial, low quality content (often known as blogspam) to the
top of the search results.

When searching on the Internet, people often seek the opinions of other
people, not commercialized content. It was noted that many people have

8Underscoring this point is the origin of the name Slack, it being an acronym for ”Search-
able Log of All Conversation and Knowledge”[37].

13

2. Background and Related Work

started suffixing ”reddit” to their Google search queries to find authentic dis-
cussions from real people and enthusiasts as opposed to paid reviews[42]. Red-
dit is a popular social news aggregation and discussion website[43]. Keen to
capitalize on this trend, on 2022-04-14, Reddit has introduced a new search
engine for comments on their website[44].

To researchers looking for genuine conversations on a given subject,
Discord is another avenue. With over one million publicly listed Discord
servers[45], many of which are centered about various technological, edu-
cational, and hobby topics, it is a treasure trove of information. However,
searching through Discord servers requires the user to join them, even when
invite links are public. Moreover, the Discord client allows for searching in
only a single Discord server at a time. Tools which enable users to create
backups of Discord servers also empower users to employ local tools to search
across many at a time and enable integration into personal search engines.

2.2.2 OSINT

Open-source intelligence (OSINT) is broadly defined as the collection and
analysis of data gathered from publicly available sources in order to produce
actionable intelligence. OSINT has applications in national security, law en-
forcement, business intelligence, as well as citizen science. The Internet is a
vast resource of user submitted data on a variety of topics in real time. Dis-
cussion fora, social media, and indeed chat platforms can produce a valuable
insight into local events. Such information can help keep the public informed
about current events and keep governments and other groups accountable
when they release information which can be shown to be false. Groups such
as Project OWL[46] which perform OSINT covering geopolitical events or-
ganize themselves on Discord and similar platforms, with the Disboard server
aggregator listing 19[47].

Open source intelligence has recently risen into prominence in the wake
of the war in Ukraine. Given a population with smartphones in hand and
access to the Internet, social media has become awash with images and videos
of military vehicles on the move, missile strikes, and interactions of citizens
with occupiers of towns and cities. At the same time, we are not yet at the
point where it would be easy to routinely create forged material (deepfakes)
that skilled people cannot tell apart from reality. Thus, unclassified citizens

14

2.2. Applications for archived chat logs

are able to collect data from a variety of resources to derive information which
helps clear the fog of war. A few examples include the use of satellite imagery
to geolocate recordings of military hardware posted on TikTok or Twitter, or
the use of Google Maps’ crowdsourced traffic information to determine the
location of military conwoys[48].

One prominent OSINT and forensic analysis organization, Bellingcat,
demonstrates how the online media environment regarding the war is volatile:
content can be deleted by users and channels can be removed by platform
moderators. They encourage users to archive communication platforms such
as Telegram[49].

Information gathered from public sources such as open Ukrainian and
Russian Discord servers, particularly those discussing the current situation,
may affect the course of the war. It is possible that nation states and other
major actors already have the capabilities to gather data from Discord and
other platforms (such as Twitter or Instagram) at scale. Democratizing this
ability can put power in the hands of people as well as remind individuals
about the possible impact of the information they post publicly.

2.2.3 Machine learning

The rise in machine learning and artificial intelligence in the past few years has
been staggering. With new techniques, progress has been made particularly
in the areas of language comprehension and image manipulation.

OpenAI’s GPT-3 language model from 2020[50] is one of the largest
models of its type. The quality of text produced by this model is so good,
it is difficult to distinguish it from text written by humans[51]. Among a
myriad uses, GPT-3 has been used to produce various kinds of chatbots[52].
The full version of GPT-3 constitutes 175 machine learning parameters and
of particular interest to us is the corpus of text used to train the model.
Although a part of this training data was sourced from books and Wikipedia,
the majority of it – over 429 billion tokens, 86 % of total tokens – came from
sources on the open Internet (the Common Crawl and WebText2 datasets)[50].
The WebText series of datasets are comprised of URLs harvested from Reddit
submissions with a minimum score of 3 as a proxy of quality[53].

15

2. Background and Related Work

It is clear that for continued growth of these generative language models
and artificial intelligence at wide, larger datasets will be needed. Continuing
to harvest texts available on the open web will eventually yield diminishing
returns, and chat logs such as those found in large, public Discord servers are
one possible avenue for future datasets of human text particularly suitable for
training chatbots.

2.3 Data liberation

Data liberation is the principle that users have the right to download and
migrate their data from online services[54]. It’s aimed at reducing vendor
lock-in and protecting user freedoms. Some companies independently take
measures to enable data liberation, for instance, Google Takeout enables
users to download a copy of their data hosted on Google services. Regula-
tion in the area of data liberation has been slowly arising, with the European
Union spearheading this space with the infamous General Data Protection
Regulation, or GDPR[55]. The GDPR ensures that individuals have control
and right over their personal data held by companies. In particular, Article
15, the right of access, gives people the right to learn how their data is pro-
cessed and request a copy of the actual data. Article 20, the right to data
portability, ensures that the data is provided in a ”structured, commonly used
and machine-readable format”.

The GDPR is a powerful instrument, and Discord offers a GDPR ex-
port. However, as further elaborated on in Section 3.2, Discord’s GDPR ex-
port only includes messages sent by the user (arguably the ”personal data”).
Fragmented, one-sided records of conversations are of little use for archival.
When companies don’t offer useful and complete exports of data, independent
users will develop custom archiving and ”downloader” solutions.

2.3.1 Digital Markets Act

On 2022-03-24, The European Union Parliament and Council has agreed to
a new set of rules regarding so-called tech gatekeepers, the Digital Markets
Act[56]. This regulation, the text of which is at time of writing only provision-
ally agreed, is set to force the largest messaging services, such as Whatsapp,
Facebook Messenger, or iMessage, to document their APIs and open them to

16

2.4. Related work

the public in order to enable alternative clients and bridges to connect.

The definition of a tech gatekeeper according to the DMA is a tech
company with a market capitalization of at leat 75 billion euro or an an-
nual turnover of 7.5 billion. The company must also provide services such as
browsers, messengers, or social media, with at least 45 million monthly end
users in the EU. In 2020, Discord was valued at only 3.5 billion U.S. dollars[57],
and as such falls outside of the scope of this regulation. Nonetheless, this act
shows how the dynamics of instant messengers is changing, and there will be
additional pressure towards open messaging.

The DMA does not specify any particular standard the messengers
should adopt, only that they should document and publish their current APIs.
At first, it is expected that messengers will implement interoperability with
other providers using dedicated bridges for each service. In the future, the
DMA may expand to include group chats in its scope. At that point, it may
be effective for service providers to agree on an open standard like Matrix
or XMPP to enable interoperability[58]. In addition, the DMA is unlikely to
force service providers to allow communities to migrate their chat history, only
allow new messages to be bridged over. As such, a tool to enable migration
of data from Discord to the Matrix protocol would be especially useful for
communities making use of such a bridge.

2.4 Related work

As a large social platform, Discord has attracted a lot of attention from tech
savvy users. These users have developed frameworks, bots, and even third
party clients. Some of these which are relevant to the topic of archival are
described in this section.

2.4.1 Third party Discord clients

Third party clients are programs which are not officially developed and sanc-
tioned by the developer of a platform. They provide a custom interface to the
platform, and may provide additional features and plug-ins for user conve-
nience. Typically, they rely on a re-implementation of the platform’s protocol
and API achieved by reverse-engineering. This is similar to how an archiver
may be implemented. A common motivation for using a third party Discord

17

2. Background and Related Work

client is performance. The Discord desktop application is implemented in
Electron[59], and has been noted to be heavy on system resources like CPU
and RAM. Users with weaker computers who wish to communicate on Discord
may want to use a client which is native and thus lighter on resources.

Discord has publicly stated in a tweet that the use of third party clients
or client modifiers is against their Terms of Service and can result in account
termination[7]. However, neither the Terms of Service at time of posting,
nor the version at times of writing state this explicitly; the closest come the
provisions against reverse engineering and modifying Discord’s software[60],
which are difficult to enforce.

Users of third party clients such as Ripcord[61] and cordless[62] have
reported their accounts being suspended for violating the Discord Terms of
Service[63][64]. In response to one of the cases, a Discord developer has stated
that they are not specifically banning people for using third party clients, but
rather accounts which use their API in ways the official client doesn’t as a part
of their spam detection strategy[65]. Albeit this particular user got unbanned
after multiple appeals, the use of third party clients is going to continue being
a risky proposition, since it can be difficult for third party clients to keep
up with the changes made to the protocol and act in a manner that doesn’t
trigger spam protection.

Rather than re-implement the Discord API in order to fetch data from
Discord, the tool developed in this thesis will make use of the official client,
which should provide correct behavior and minimize the risks of account sus-
pension.

2.4.2 Discord Archivers

The idea of exporting, archiving, or otherwise downloading data form Discord
is not particularly novel. Users of any platform which provides limited ability
to export data will seek to implement the ability to do so themselves. To
accomplish this task, users can make use of one of the several open source
tools available today. In this section, we examine their implementation and
output formats.

In addition to these broadly used tools, the author of this work has

18

2.4. Related work

Name Int. Upd. Stars License Language
DiscordChatExporter 2017 2022 3,624 GPLv3 C#
Discord History Tracker 2016 2022 277 MIT C#, more
pullcord 2017 2021 45 Unlicence Go

Table 2.1: Overview of popular Discord archivers1

previously attempted to create a Discord archiver called Discard. A section
will be dedicated to its design and lessons learned.

2.4.2.1 DiscordChatExporter

With 3.6k stars on its GitHub repository DiscordChatExporter[66] may be
the most popular Discord archiver in use. It has been under active develop-
ment since 2017.

DiscordChatExporter provides both a command line interface and a
straightforward GUI (only available for Windows). After providing a bot or
a user token, the user can choose which channels and servers they wish to
export. When given a user token, the tool also supports exporting direct
messages with other users. Message logs can be output messages in one of the
following formats: HTML, TXT, CSV, JSON.

DiscordChatExporter is written in C# and re-implements the Discord
API from scratch. As such, using it with a user token – which, while discour-
aged, can be the only way to download most chats – use carries a similar risk
to using third party clients in that behavior which deviates from the official
client’s behavior can result in account suspension. Reports of people getting
banned for use of the tool are scant but not nonexistent[67].

DiscordChatExporter is an excellent tool for end users, owing to its
GUI and easy to view HTML export format. However, from the position of
a digital archivist, it is difficult to accept some of the choices made resulting
in a lower fidelity capture. While most of the Discord API uses the JSON
format, the JSON files exported by DiscordChatExporter are processed and
differ in capitalization and wording. For instance, in message objects, the
official Discord API uses edited timestamp and pinned field names, while

1Int. stands for year introduced. Upd. stands for year last updated. Stars refers to the
number of stars on the project’s GitHub repository.

19

2. Background and Related Work

Figure 2.2: Screenshot of DiscordChatExporter.

DiscordChatExporter opts for timestampEdited and isPinned. This may
seem trivial, but it hampers efforts to work with this data and ultimately the
longevity of the format. Unfortunately, the author of the tool has stated this
is a design choice that won’t be fixed[68].

Recording API responses with minimal data processing allows for cer-
tainty that no data is missed, even for exotic types of content, or in case
Discord changes its API. For instance, when Discord introduced the reply
feature[69], DiscordChatExporter did not include the data in its exports for
a month until the author of this work implemented it[70]. All data exported
during this period has thus undergone silent corruption possibly affecting the
semantics of the conversations when later interpreted. Saving raw message

20

2.4. Related work

data as received from the server would prevent cases such as this. Unfortu-
nately, a pull request to add this functionality to DiscordChatExporter was
rejected[71].

Even though the author of this work considers DiscordChatExporter
to be a fine tool and respects the continued work put in by its maintainer,
the previous issue, combined with other omissions marked as out of scope
including the ability to fetch the list of users in a chat[72] or the authors of
reactions to messages[73] motivate the creation of a more thorough archival
tool designed around the idea of raw packet capture.

2.4.2.2 Discord History Tracker

Discord History Tracker[74] is another popular open-source Discord archiver.
First released in in 2017, it was originally implemented as a bookmarklet,
running in the browser. Beginning with 2021, a desktop app companion (im-
plemented in C#) is also available.

As a browser script, Discord History Tracker interacts directly with the
official Discord client. It listens to changes to the UI and when a new message
is received, it transmits it to the desktop app, which saves it in an SQLite
database. In this way, it can record incoming messages in real-time as well
as scroll through the chat history of a channel in order to fetch all messages.
Discord History Tracker also comes with a GUI for reading archived messages
in the database.

Technologically, building the archiver in part as a browser script is
a very interesting choice. It subverts the need to reimplement the Discord
API, which, as determined earlier, risks account suspension. Instead, the
tool scrolls the chat and clicks on buttons in a manner similar to a human.
Although unlikely to be of consequence, it should be noted that Discord could
easily detect the presence of this script.

Since Discord History Tracker reads message data from the DOM of the
browser, it is not able to reconstruct the original JSON object as transmitted
over the network. While arguably a nitpick, this method makes it unfeasible to
archive data from certain exotic types of messages. For instance, Discord His-
tory Tracker does not support archiving messages which contain buttons, and

21

2. Background and Related Work

the author of the program has admitted that ”Discord has so many features
now that I don’t have the time to figure out how everything works, faithfully
replicate it, and fix it every time they change something.” [75]. Both parsing
the DOM and updating the database schema to keep up with the changes is
a complicated undertaking. Storing raw data received from the server dur-
ing archival helps preclude these situations, since extraction can always be
implemented in the future as long as the data is there.

2.4.2.3 Pullcord

Pullcord[76] is a Discord archiver written in Go. At its core, it uses the
discordgo library. It’s a command line application.

Pullcord can fetch channel history, server history, and all related files
including attachments, user avatars, or emoji. Pullcord’s output format is a
directory of TSV (tab separated values) files, one for each channel. It functions
in an append-only mode where newer messages are stored following the previ-
ous ones. Although this is a custom, non-standard format, it is well specified
in the FORMAT.md file of the program’s repository.

There are some advantages and limitations to this format. The advan-
tage is that the format is relatively simple and compact. The disadvantage
is that as more fields or object variants get introduced, the fields have to
become more complicated with amendments to the end to avoid losing back-
wards compatibility. It suffers from the same problem as other archivers in
that processing received objects can result in lost or inadvertently mangled
data.

Pullcord also currently downloads file attachments at time of process-
ing, which may be undesirable because attachments can have large file sizes,
which can slow down the download and put pressure on disk space. In the
case of failure of downloading an attachment, the entire fetch is stopped with
a fatal error. It may be desirable to leave attachments downloads for separate
processing, as they can be downloaded from Discord servers without user au-
thentication. A ”light mode” along with the possibility to make certain kinds
of errors non-fatal are planned[77][78].

At time of writing, Pullcord was last updated on 2021-02-13. Pullcord

22

2.4. Related work

is functional, but may no longer under active development. It does not support
newer Discord features like threads[79].

2.4.2.4 Discard

Discard is the author’s first attempt at creating an archival tool for Discord.
Developed in early 2021, it is written in Python and works as a command
line application as well as a library. It is released under the MIT license and
available on GitHub[80].

Discard supports archiving the chat history from channels and entire
servers in given text ranges. It is compatible with both bot tokens and user
tokens.

The idea behind Discard was to use the Discord.py library to com-
municate with Discord servers as a bot. The Discord.py library is popular
among bot developers9, it has been in development since 2015, it has 10.3
thousands stars on GitHub[82] and excellent developer documentation[83]. As
opposed to working with the data fetched using Discord.py directly, Discard
monkeypatched methods performing HTTP and WebSocket requests in order
to capture and log the raw traffic with the Discord server. This was meant
to avoid the pitfalls that come with processing the data which other archivers
encounter.

The term selfbotting, also called userbotting, refers to the practice of
using the Discord API in a manner that is intended for bots, but with a
user account. Since sanctioned Discord bots only have access to those servers
administrators add them to, in order to access the messages in servers the
user can access, but does not have the permission to add bots to, archivers
have to make use of the selfbotting practice, which is prohibited according to
Discord’s support[84], albeit the Terms of Service are not clear on this10.

Following the release of Discard (but independently of it), the dis-
cord.py developers have announced that support for selfbots will be removed
from the discord.py library[85]. This is an understandable move, since Dis-

9According to the developer, it is the second most popular library in the ecosystem[81].
10The closest comes the provision against ”auto-messaging” other users on the platform.

However, archivers operate in a read-only mode and have no intention to message other
people at all.

23

2. Background and Related Work

cord provides no support for selfbots whatsoever, and users of them risk a
ban from the service. Although users have since created a fork of the library
called discord.py-self which restores support for selfbots[86], it was not im-
mediately evident whether use of the discord.py library is sustainable for the
development of an archiver.

In August 2021, the core maintainer of the discord.py library announced
that he is stepping down as the maintainer of the project[87]. Among the rea-
sons to end his involvement in the project, he cited the Discord developers’
neglect of the official bot API and overall poor communication between Dis-
cord employees and the developers of popular bots and libraries, who are
volunteers. A particular point of contention was the introduction of a ”priv-
ileged intents” feature, which limits the actions a bot can perform, including
reading message contents, once it’s present in more than 75 servers[88]. Mo-
tivated by prevention of abuse on the platform, Discord required developers
of popular bots to provide verification with a government issued ID. This
privacy-invasive verification system proved unpopular among bot developers.
Although the discord.py developer announced a return to development six
months after their departure (in March 2022)[81], they stated that their con-
cerns over the lack of communication, as well as uncertain evolution of the
API remain.

The fact that the bot API looks tumultuous and uncertain has con-
tributed to the author’s conclusion that building an archiver which interfaces
the official client in a manner that a human does may be more future-proof.

2.4.3 Comparison

We have taken a look at four different Discord archiver tools. What follows
is a comparison of the strategy each one uses to access Discord and process
data.

• DiscordChatExporter - Interfaces with the API directly, exports pro-
cessed data into a variety of formats.

• Discord History Tracker - Interfaces with the client using a browser
script, exports processed data into SQLite.

24

2.5. Findings

• Pullcord - Interfaces with the API using a library, exports processed
data into a custom format.

• Discard - Interfaces with the API using a library, exports raw data into
a custom format.

The primary limitation of interfacing with the API directly is the risk
of account suspension due to improper handling. Libraries exist primarily to
enable bot development and support for selfbotting is waning. In addition,
processing data at capture time can result in incomplete archives, especially
given the fast pace Discord adds new features at. A new tool which manip-
ulates the official client while recording raw interactions with the server may
provide a solution for long term archival of data on Discord.

2.5 Findings

Digital archival is an important topic, yet many obstacles stand in the way of
long term preservation of data. As online services grow more complex, so too it
becomes more difficult to extract data from online silos, although legislation
in regions such as the EU is on the right track to enable interoperability.
Discord’s stance on third party clients interacting with its service is ambiguous
at best, and improper usage of APIs can result in account termination. While
tools exist to download data from Discord, they have limitations and do not
reach the level of fidelity of archival the author would like to see.

25

Chapter 3
Analysis and Specification

In this section, we take a look at specifying the problem the design of the
new Discord archiver tool. We start by going over the architecture of the Dis-
cord platform and the resources available on it. Next, we proceed by defining
the desired characteristics of the archiver tool. We consider issues such as
longevity of the chosen format, resilience of the program against network is-
sues, scalability, et cetera. The non-technical requirements of legality and
ethics are also considered.

3.1 Discord architecture

On the surface, the Discord platform is not very complicated. The majority
of interaction happens within the context of the relation between a user of the
platform and a three-level structure. A Discord server (also called internally
a guild) is a collection of channels and users present in it. Channels within a
server are set up by a server’s moderators and represent chat rooms centered
around a given topic. Textual channels consist of a stream of messages by
users who are present in them.

Under a section of the application called Direct messages, users can also
create one-on-one chats with other users. Here, it is also possible to create
”group DMs”, or group chats, with up to 10 members, outside of the server
structure.

On the technical side, every object on the Discord platform can be
uniquely identified with a 64-bit ID containing a timestamp in Snowflake for-

27

3. Analysis and Specification

Figure 3.1: Discord architecture from the perspective of a user.

mat pioneered by Twitter[89]. When a user enables ”Developer Mode” in the
settings of the Discord client, it becomes possible to right-click objects such
as channels and servers and copy their IDs.

3.1.1 Users

User accounts on Discord are registered using an e-mail or a phone number
as a login method along with a password. The general user identifiers are in
the Username#1234 format, where 1234 is a discriminator, also called a tag, a
four-digit number present to make differentiate users with the same username.
Usernames can be changed at any time. Users also have an avatar and can

28

3.1. Discord architecture

provide a short public bio for their profile.

Bots on the platform are also deemed as users, however, messages de-
livered using webhooks do not have a user associated with them.

3.1.2 Servers

Discord enables any user to create a server (or guild). Typically, they are
communities centered around a given topic and come in sizes ranging from a
few members (such as small friend groups) to 100s of thousands (in large public
servers). Servers have a name, an icon image, and an optional description.
Within a server, administrators can create text and voice channels where
members then interact.

Server admins can create roles, which are a set of permissions that
can be assigned to users. Typically, roles are used to control which subset of
channels a given group of users can view or write in. Roles can also serve a
cosmetic or informational purpose, as they can change name colors and are
visible on a given user’s server profile.

Servers can have up to 100 custom emoji, small icons which can be
used in messages and reactions on the server, or in any server if the user has
the paid Discord Nitro upgrade. Similarly, it is possible to configure up to 60
stickers, which are larger images that can be attached to messages.

Depending on permissions, the admins of a Discord server or regular
users can create invite links, which are short links which enable their recipi-
ents to join the server. Invite links can be set to expire after a certain amount
of time, or to have a limited number of uses. Another method to join Discord
servers is through the ”Discover” tab, where public servers are listed and can
be browsed. Discord allows users to join up to 100 servers at a time, unless
they purchase the Discord Nitro upgrade to their account, in which case the
number grows to 200. Server moderators can kick or ban users from the server
at any time.

Discord offers a search feature, which can be used to find messages
fulfilling specified criteria in the scope of a single server. It is possible to filter
by user or channel, and clamp the results within a given date interval. The
text search is fulltext and stems words.

29

3. Analysis and Specification

3.1.3 Channels

Discord offers two types of channels: text channels and voice channels. Text
channels behave like a chat room in which users may send messages and ex-
change files. Voice channels resemble a conference call which can be joined and
left at any time. Voice channels also offer video and screen sharing capabilities.

A user who joins a Discord server has access to full history of the
channels they can see, except for channels with the seldom denied ”Read
Message History” permission11.

Moderators can pin any number of messages in a channel to bring
attention to them and make them easier to access.

When a channel is open, the user can see a list of users who are also
present in it. This list sorts users who are online first and can be grouped
by roles. The list is lazy-loaded, meaning that in order to fetch all users in a
channel, it’s necessary to scroll through the list until the end is reached. In
channels with more than 1000 members, those who are offline won’t be shown.

3.1.4 Messages

Messages, sent by users or bots, appear in channels and private chats. Mes-
sages can be made in response to a previous message (as a reply), in which
case they contain a reference.

Message text is formatted in a Markdown-like syntax and can contain
mentions of other users, roles, and channels. It can also contain custom emoji.
Attached to messages can be images and files up to 8 MB (100 MB with Nitro),
GIFs, and stickers.

Messages can have a number of reactions, which are default or custom
server emoji chosen by other users in response to the message. The list of
users who responded with a certain emoji is made available in a modal dialog.

Messages, including those made in the past, can be edited by the author

11A user lacking this permission for a given channel can only see the messages that
were received during the current client session. Many users have noted that the feature
is essentially broken, as it e.g. prevents mobile users from holding a conversation while
switching applications[90].

30

3.1. Discord architecture

Figure 3.2: A variety of sample messages.

31

3. Analysis and Specification

at any time. The date and time a message was edited last can be seen.
Messages can be deleted by their authors or server moderators at any time
without leaving a notice.

Messages can indicate the start of a thread. Threads as a feature were
introduced in July 2021 and they allow users to branch off a conversation into
an isolated channel. All threads started in a channel can be listed.

When a channel is opened, the client loads 50 messages at a time. More
can be reached by simply scrolling the chat log.

3.2 Means to access Discord

Discord offers the following sanctioned methods to access data on the platform.

Web browser. The Discord client can be accessed using modern web
browsers such as Chrome or Firefox.

Desktop application. Discord offers a desktop application for Win-
dows, Mac, and Linux. The application behaves largely like the browser client,
but offers better integration with the operating system. The desktop applica-
tion is implemented using Electron[59].

Mobile app. Discord offers a mobile application for iOS and Android
available to download on their respective app stores. It offers similar function-
ality to the desktop application, but is designed to be used on mobile devices.
The iOS version is implemented using React Native, while the Android port
is done using an in-house solution[91].

Bot API. Discord allows users to create bot accounts on the Discord
Developer Portal. With a bot token, a script can interface with the HTTP
Discord API in a standard and documented manner. Discord enforces some
restrictions on bots, notably the ability to read messages when in more than
100 servers without additional verification. While there are bots which imple-
ment message archival functionality, and tools such as DiscordChatExporter
can make use of bot tokens to work, since only administrators can add Discord
bots to a server, it is not a viable option for most people to get a copy of their
messages. Additionally, a bot cannot be added or granted access to private

32

3.3. Tool specification

messages.

GDPR export. As required by law in the European Union, Discord
offers its users to export personal data which Discord stores about them.
This export can be requested once a month and comes as a .zip package
on the requester’s email within days. This export includes information on
the user account, the names of servers joined, user activity (including details
about sign-in times and program navigation), and the contents of all messages
sent by the user, as long as they have not been deleted[92]. While certainly
better than nothing, a one-sided record of conversations is of limited use for
archivists.

3.3 Tool specification

To fulfil the functionality of an archiver, the program will provide a basic user
interface. In order to access Discord, a user account is needed, so the archiver
will require one to be provided. Using provided credentials, a specified task
(such as archiving a single channel) will be performed by the program. While
working, the program should continuously output progress information to the
user. Once finished, the program should save all recorded information to a
directory. The data should either be in a human-readable format, or a method
must be provided to transform it.

3.3.1 Objects

In order to specify the functionality of the archiver, we have to first define the
objects of interest that we want to download from the Discord platform.

We focus on the following objects: users, DMs, servers, channels, threads,
and messages.

For given objects, these are the contexts we encounter them in and the
attributes we are interested in capturing:

Users. We want to know which user has sent a given message. For a
given user, we want to know their name and avatar.

Servers. We want to be able to choose a single server to archive or
multiple. For the archived servers, we want to save the name, icon, and list

33

3. Analysis and Specification

of channels. We want to fetch a list of emoji the server offers.

DMs, Channels, and Threads. For a given channel, we want to
save the topic and messages sent within a specified timeframe.

Messages. We want to capture messages in their entirety, including
the text, the date and time, the author, and the reactions. We want to be
able to download images and attachments.

3.4 Legality

Although not a lawyer, the author would like to share their understanding of
the legal aspect of this work. Since Discord Inc. as a company is founded in
the United States, attention has been focused on the legal aspects there.

While violating the Terms of Service of a service is not generally consid-
ered a crime[93], it can have undesired consequences, like account termination.
Albeit the legal status of bypassing technological barriers imposed by a web-
site intended to enforce the terms of service, such as IP address blocking,
may appear contested, the author concedes with the Electronic Frontier
Foundation, which has stated[94]:

There’s nothing inherently wrong or unlawful about avoiding IP
address blocking, and there are valid reasons why someone might
choose to do so, including to sidestep anticompetitive behavior
by other Internet services. As long as an end user is authorized to
access a computer and the way she chooses doesn’t cause harm, she
should be able to access the computer any way she likes without
committing a crime.

Software intended to download content from online services has been
successfully defended multiple times. youtube-dl is a command line pro-
gram which enables users to download videos from the YouTube platform.
In 2020, GitHub, which provides hosting for the repository where developers
collaborate as well as release downloads, received a DMCA letter requesting a
takedown of the repository. The DMCA notice made the claim of anticircum-
vention: that the code was designed to circumvent technical measures which

34

3.5. Ethics

control access or copying of copyrighted material, in violation of Section 1201
of the DMCA. GitHub initially complied with this request, but later deemed
it unwarranted and reinstated it, noting that[95]:

As we explained, the key claim in the youtube-dl takedown is cir-
cumvention. Although we did initially take the project down, we
understand that just because code can be used to access copy-
righted works doesn’t mean it can’t also be used to access works
in non-infringing ways. We also understood that this project’s
code has many legitimate purposes, including changing playback
speeds for accessibility, preserving evidence in the fight for human
rights, aiding journalists in fact-checking, and downloading Cre-
ative Commons-licensed or public domain videos.

Despite emulating the behavior of a browser in order to receive video
data from YouTube’s servers, youtube-dl was shown to not ”circumvent” an
access control as was claimed in the takedown request. Similar purposes and
circumstances apply in the case of downloading content from Discord.

Most recently, on 2022-04-18, a landmark ruling by the U.S. Ninth Cir-
cuit of Appeals involving LinkedIn has shown that scraping publicly accessible
data is legal in the U.S.[96].

Please note that while creating a personal backup of data available
online is broadly admissible, much content can be considered creative work
and fall under the realm of copyright law. Reproduction and distribution may
be restricted. The implications of copyright in the digital age are a heavily
discussed matter and beyond the scope of this thesis.

3.5 Ethics

Ethics are an often overlooked aspect of the software development discipline.
Like any tool which can be used to gather data, the user can choose to use
it for good or to do harm. The author would like to stress that the software
developed in this thesis is intended as an archival tool. The software, or any
data gathered from it, should not be used for unethical purposes, including
but not limited to selling data to third parties, or researching and publicly

35

3. Analysis and Specification

broadcasting private or identifying personal information (commonly called
”doxxing”).

Occasionally, archivists may find themselves in a dilemma with regard
to privacy. Respecting the privacy of individuals while curating a public
archive can be difficult. This is not a new problem: archivists have been work-
ing with materials concerning personal conversations such as letters, tapes, or
transcripts for centuries. There are legal and ethical requirements which can
often be met with legal aid as well as, in cases of research organizations,
pre-existing sets of ethical guidelines[97]. While sometimes there is no right
answer as to what should be publicly reproduced, ultimately, since collections
can stay private, privacy does not have to stand in the way of preservation.

In the Discord Privacy policy[98], distinction is made between private
and public servers. The author would like to encourage users of any archiver
software to take this into consideration when working with data collected using
archival tools.

3.5.1 Requirements

Based on the previous analysis, we specify functional requirements for the
application as follows:

• Log in to a Discord account using provided credentials.

• Perform tasks according to user choice.

– Download direct messages received from other users.

– Download messages from a channel posted within a given time-
frame.

– Iterate over all channels available in a server.

– Iterate over all servers available in a user’s account.

• Show a basic summary in output (i.e. number of messages recorded).

• Take a screenshot on error.

The non-functional requirements are:

36

3.5. Ethics

• Capture novel message types without changes to program code (forward
compatibility).

• Resilience to network failure - the possibility to resume a failed job.

• Operate headlessly (i.e. without a desktop environment and human
interaction).

• Output in JSON format.

• Export into a database capable of fulltext search.

The program will not support:

• Running continuously in order to archive messages arriving in real time.

• Recording or otherwise capturing information from voice channels.

• Joining servers without user intervention.

• Sending messages, using reactions, or otherwise interacting with other
users.

A real-time mode may be considered in the future. Voice channels are
widely understood to be ephemeral, and consent should be received for record-
ing other people. Easy to use bots exist which can record voice channels[99],
alternatively, system audio and video can be recorded using desktop tools
such as OBS. Performing any user interactions is undesirable behavior for
an archiver and automating messaging is explicitly forbidden by the Discord
Terms of Service.

37

Chapter 4
Technologies

In this section, we discuss the techniques and technologies that were considered
for the project.

4.1 Development of Discord bots

Discord offers a bot API which can be used directly or via a library. There
are more than ten libraries for creating Discord bots available for various
languages[100].

The option to pick up a Discord bot development framework like Dis-
cord.py or Discord.js to interface with the Discord API in a standard way is
tempting. However, Discord bots can only access messages in servers they
have been added to by server admins. This requirement makes bots too lim-
ited to be useful to most archivists, who need to download messages they can
access in any server they have joined.

Albeit some of the bot libraries allow for use of user tokens, they provide
no guarantees that the interactions with the Discord server will adhere to
official client behavior. Running a selfbot in this way is forbidden by Discord
and can result in account termination.

Nonetheless, since bot libraries provide constants and deserialization
methods for objects used in the Discord API, they may prove useful for work-
ing with data downloaded from Discord, even if they are not used for network
interactions.

39

4. Technologies

4.2 Archiving web content

There are many methods to capture data from websites. A widely recognized
method is called web scraping. Web scraping is the process of using a script to
repeatedly request and extract information from websites. Since Discord is a
web application, many of the techniques used in web scraping are applicable.
However, most approaches to web scraping yield low fidelity output, as the
goal is not preservation, but gathering of specific information. Processing and
reducing data during capture is a recipe for losing data which is not expected
to be necessary. We look at techniques which can save as much data and
metadata as possible.

The techniques employed in web scraping vary considerably depending
on the complexity of the website. We first go over the formats suitable for
long term archival of websites, and then over the programs which can produce
them.

4.2.1 Formats

A single webpage can be thought of as an HTML file together with its linked
dependencies: typically CSS stylesheets, possibly JavaScript scripts, images,
fonts, and other. For many purposes, a copy of these files may be deemed
sufficient. The files may be packaged together using a format like ZIP or
tar.gz to ease transfer and reduce file size. The HTMLZ file format takes
this approach one step further by being a set of HTML files compressed with
ZIP. Many browsers and command line tools allow users to save webpages
directly in these formats.

While commonly done, there are multiple downsides to this technique.
Since files in this case get stored to the filesystem, it must be stressed that
URLs cannot be mapped to filenames directly. URLs inside the page’s files
must be adjusted to point to the files located relative for the files to render
correctly in browsers. In archival, altering the file that is being preserved
should already be a big red flag. Dependencies that link to other domains
have to be collapsed, losing important information about the source of files.
Any characters in filenames that are not supported by the filesystem have to
be mangled, and URLs with different cases, although uncommon, will cause
problems on case-insensitive systems like Windows.

40

4.2. Archiving web content

In general, dynamic websites which make use of query parameters
(such as ”?page=2”) are unsuitable for this type of archival. Importantly, this
technique completely disregards the context in which the files are served in.
HTML files are not isolated, they are most commonly served over a protocol
called HTTP. In HTTP, the request made by the client contains a lot of im-
portant metadata: the version of the HTTP protocol used, the URL requested,
the name of the client (or User-Agent) that made the request, cookies which
may be required to be presented with the response, and so on. Similarly, the
response provides crucial information such as whether the request succeeded,
the file type and encoding of the data, and more.

To solve these challenges, the WARC format was created. A 2008
revision of an earlier ARC format created by the Internet Archive, it is today
the most widely used format for archival of web pages. The WARC format
supports capturing HTTP request and responses with headers and all relevant
data, and provides space for additional metadata such as the date and time
of the catpure, or IP addresses of the relevant parties. The specification of
the WARC format in version 1.1 is formalized and available from [101].

The WARC format powers the Wayback Machine and is also in use
by many national libraries around the world. Although there is a number of
known ambiguities and issues with regard to the standard[102]12, it is widely
supported and the tooling surrounding it is relatively mature. The most im-
portant omission for our case is the complete lack of support for WebSockets.
The WebSocket protocol, which enables full-duplex communication over TCP
as an upgrade over HTTP and was standardized in 2011[103], does not cur-
rently appear to be under consideration for a future version of the WARC
standard.

Since Discord makes use of Websockets for some (but not all) of its
data transmission, we are forced to look further. Among formats which are de-
signed to capture HTTP traffic and also support WebSocket is HAR (HTTP
Archive). HAR files are JSON-encoded archives which support logging the
interaction between browsers and websites. It is primarily designed for pur-
poses of studying the performance of web pages as they load, as opposed to

12The author considers the lack of support for storing certificates exchanged during secure
connections a particularly disappointing omission.

41

4. Technologies

long term preservation. While a draft standard of the format by the W3C
is available, it is marked as abandoned and cautions against its use[104]. In
spite of that, the format is alive and major browsers like Chrome and Firefox
can export HAR interactions with web servers from their respective developer
tools. Chrome 76 (released in 2019) added support for WebSockets to its
HAR export[105]. Unlike WARC files, HAR does not support storing some
supplemental data such as DNS lookup results.

While the HAR format appears promising, one major stumbling block
is the lack of support for streaming onto disk. Browsers are able to capture
traffic in memory and save a HAR archive on demand. Lack of support for
streaming means workarounds must be employed such as creating an export
at regular intervals to prevent the memory from filling up.

4.2.2 Software

Wget[106] is an example of a tool which can handle many typical cases of
web archival. When provided with a list of URLs, it can download HTML and
other files, and it also supports outputting in the WARC format, albeit Archive
Team notes the implementation is incomplete and immature compared to
other specialist archiving systems[107]. Wget does not support the execution
of JavaScript.

Frequently employed by Archive Team is Wpull, a Wget-compatible
downloader implemented in Python. In an attempt to support archiving mod-
ern sites, Wpull had implemented PhantomJS support, enabling it to exe-
cute JavaScript on websites. However, PhantomJS development has ceased
in 2018[108], demonstrating the difficulty of keeping up with the fast pace of
evolution of the web.

To handle interacting with complex modern websites, the author con-
cludes the only tool that can keep up with the ever evolving landscape of
the web is web browsers themselves. Recent versions of major browsers such
as Chrome and Firefox offer APIs which allow them to be driven headlessly
using programming language APIs. Those will be discussed individually in
Section 4.4.

42

4.3. Capturing network traffic

4.3 Capturing network traffic

If we find ourselves dissatisfied with the formats and techniques available to
capture websites, it is possible to go one level higher. Since all interaction
between an HTTP client and server happens in the context of packets sent
over a network, capturing network traffic is a valid and interesting strategy
to save all relevant data. Since formats of network protocols are widely known
(indeed, they are the perfect representation as no processing is done from the
original), in theory, as long as it is contained in the packet capture, the web
data can always be derived.

There are two primary methods to network traffic capture: proxying
and packet capture.

A proxy is a server application which behaves as an intermediary be-
tween a client making a request and the server providing a response. Proxies
are effective for capturing network traffic and can even dissect and modify data
transmitted in real time. However, some concessions have to be made. Since
many important protocols today employ encryption to protect data confidence
over the line, proxies have to act as a MITM (man-in-the-middle). This re-
quires support and awareness of the client software interfacing with the proxy,
or modifications to program code. By necessity of the observer effect, since
proxy servers have to process the packets that they pass through, the behavior
of the client and server may not be equivalent to their behavior without the
proxy server.

Software which employs packet capture does not have to interact
with the client program, instead, it makes use of operating system APIs to
listen to network adapters and register packets that pass through it. This
enables high fidelity capture of the interactions between the client and server
on the network layer, including minute details such as routing decisions and
packet retransmissions. Since most traffic today is encrypted, this capture
alone cannot suffice to read the data. Conveniently, client programs such as
browsers or wget support logging the session keys used during TLS traffic to
a file, typically using an environmental variable called SSLKEYLOGFILE13. The
packet capture together with the keylog file allow for decrypting the data.

13The previous version of the protocol widely known as TCP today was called SSL.

43

4. Technologies

4.3.1 Proxy software

warcprox[109] is a MITM HTTP proxy developed by the Internet Archive.
In conjunction with a client, it can capture HTTP traffic and store it in a
WARC file. It is a part of the wider infrastructure that powers the Wayback
Machine. However, warcprox does not handle Websocket since the underlying
WARC format does not support it.

mitmproxy[110] is a free and open-source interactive HTTPS proxy.
It provides a command line interface as well as a web interface, and it offers
a Python API for scripting. As opposed to a classic proxy server it has func-
tionality to intercept HTTPS traffic, decrypting it and re-encrypting it as it
travels between the client and the server. This naturally requires coopera-
tion from the client, which must be configured to accept mitmproxy’s root
certificate.

mitmproxy supports saving captured HTTP and WebSocket traffic to a
file. An interesting feature mitmproxy offers is server-side replay of server re-
sponses from saved HTTP conversations. This feature is useful for debugging
and testing, as it sidesteps the need for repeated interactions with a server
and improves reproducibility.

The file format of mitmproxy dumps is not particularly well described.
It uses a nonstandard implementation of an obscure serialization format called
TNetStrings. This format has its problems: it’s append-only, meaning streams
aggregate in memory before being written, and the fact that it postfixes data
types after data makes it difficult to index and stream. There have been talks
to replace the flow storage format with SQLite[111][112], Protocol Buffers[113]
and PCAP[114]. The author will be following these developments with vested
interest.

4.3.2 Packet capture software

Packet capture software largely makes use of libpcap, which provides a
system-independent interface for packet capture.

tcpdump[115] is a free and open source command-line packet analyzer
from the libpcap developers. It supports saving packets in the PCAP format.

44

4.4. Headless browsers

PCAP is a relatively simple binary format which stores a series of pack-
ets captured on a single network interface. PCAP uses 32-bit timestamps with
up to to nanosecond precision14. To solve some problems with the PCAP for-
mat, PCAPNG was created. Although not as widespread as PCAP yet,
PCAPNG timestamps are now 64-bit timestamps and the format supports
making storing captures made from multiple network interfaces simultane-
ously. Arbitrary comments and metadata may also be stored alongside packet
data. These improvements come at the cost of random seeking, but it may
still be possible to create indexes to PCAPNG files if they do not involve
hotplugging network interfaces. Rust[116] and Node.js[117] PCAPNG parsers
are available.

Wireshark[118] is a powerful free and open source packet analyzer
which comes with a graphical user interface. The command line tool is called
tshark. Wireshark also supports saving traffic in the PCAP and PCAPNG
formats. Notably, when processing packet captures, Wireshark supports fol-
lowing and reconstructing TCP stream data even when the packets arrive out
of order or are retransmitted. Wireshark supports dissecting many protocols,
including HTTP2 and Websockets, and outputting their information and con-
tents in structured formats such as XML and JSON. When provided with a
TLS keylog file, it can decrypt TLS traffic. In addition, Wireshark allows
users to write Lua scripts to work with parsed packet data directly.

While the packet capture capabilities of tcpdump and Wireshark are
similar, support for parsing hundreds of protocols directly makes Wireshark
more useful than tcpdump for in-depth protocol analysis.

4.4 Headless browsers

In the recent years, it became possible to control browsers such as Chrome
and Firefox headlessly using automation APIs. The primary motivation for
this is automated testing of websites, web applications, and extensions; but
additional uses include screenshot generation, pre-rendering content of web-
sites (i.e. SSR, server-side rendering), inspecting performance, crawling web
content, and more. There are many applications for this: automated testing,
scraping, and automation of web applications.

14This will make the PCAP format fall victim to the Year 2038 problem.

45

4. Technologies

4.4.1 Selenium

Selenium[119] is one of the earliest projects in this space, with its development
beginning in 2004[120]. Initially implemented as a browser extension inject-
ing JavaScript into the page, today it is implemented using browser APIs.
Selenium offers libraries for many projects like Python, Java, and C#. It is
primarily designed to enable testing websites with a wide variety of browsers
as opposed to general automation.

4.4.2 Puppeteer

Puppeteer[121] is a Node.js library capable of driving a browser headlessly. It
is maintained by the Chrome DevTools team and as such primarily designed
for Chrome, but experimental Firefox support is available. It is primarily
designed for testing and automation. There are many helper libraries available
for Puppeteer, such as puppeteer-extra offering convenience features like ad-
blocking and stealth[122]. Puppeteer can also be used to directly interact with
Electron apps.

4.4.3 Playwright

Playwright[123] is a Node.js web testing and automation framework from Mi-
crosoft. It supports Chromium, Firefox, and WebKit. Besides Node.js, it also
provides libraries for Python, C#, and other languages. The API is similar to
Puppeteer and the two are highly comparable15, but Puppeteer is still broadly
better supported by add-ons such as puppeteer-extra.

4.5 TypeScript and Node.js

JavaScript is the standard programming language of the Web. Single page
web applications use JavaScript by necessity and are either written in it or
are transpiled into it. As such, for a project which interfaces with a web
application, JavaScript is a natural fit.

TypeScript is a programming language developed by Microsoft which
is a syntactic superset of JavaScript and adds support for static typing to
the language. TypeScript is compiled into JavaScript. TypeScript makes

15In fact, much of the original developers of Puppeteer essentially moved to Microsoft to
work on Playwright.[124]

46

4.6. Linux containers

it possible to define types and interfaces and makes writing code targeting
JavaScript environments overall safer and more pleasant. Strong typing is
useful when developing a program which relies on external input and where
edge cases may not be easily reproducible.

Node.js is a JavaScript runtime environment is designed for execut-
ing JavaScript outside of a web browser, but permits the use of many of the
same libraries and similar APIs. Frameworks which provide APIs to con-
trol browsers headlessly, such as Puppeteer, are frequently implemented for
Node.js.

4.6 Linux containers

Containers refer to technology which enables OS-level virtualization, typically
in terms of Linux systems. Containers isolate the environment a given ap-
plication runs in and can simplify the deployment of software by ensuring
all dependencies are installed[125]. For archival, it’s especially important to
ensure a stable, reproducible environment, so any archival tool which relies
on multiple software with different versions (browsers, libraries, etc.) benefits
from being possible to set up and run in a container. Additionally, since con-
tainers isolating the network stack, packet capture software such as Wireshark
can be used without the need for special permissions.

Docker[126] and Podman[127] are representative in this space.

4.7 Elasticsearch

Elasticsearch[128] is a free and source-available search and analytics engine.
It offers a REST-ful HTTP interface and operates on schema-free JSON docu-
ments. This is particularly useful when working with data which may have an
uncertain shape and attributes, such as chat message objects received through
an API. Elasticsearch is able to index these objects automatically and provides
a fulltext search interface. Kibana[129], another part of the Elastic stack, is
data visualization dashboard software which allows the user to quickly explore
and visualize the data.

47

4. Technologies

Figure 4.1: Marketing screenshot of Elastic’s Kibana, demonstrating its ability
to create data dashboards.

48

Chapter 5
Implementation

In this section, we look at the implementation of the main project of this
thesis, the archival tool for the Discord chat platform. For simplicity, the
project will henceforth be dubbed Discard2.

Discard2 is written in TypeScript using Node.js. It consists of two
main components: the crawler and the reader. The crawler is responsible
for connecting to the Discord servers and downloading the requested data
into a specified directory in a format suitable for archival. It uses a capture
tool to accomplish the task of saving the client-server traffic. The reader is
responsible for reading the data from the archive and converting it to other
usable formats.

Discard2 is designed to run on Linux and can either run as a regular
program when all dependencies are installed, or operate inside a Docker or
Podman container. Running Discord2 in a container makes installation eas-
ier and establishes a more consistent, reproducible environment, and is thus
encouraged for production uses.

Discard2 is made available as an open-source project and is licensed
under the MIT license. The repository is hosted on GitHub at https://
github.com/Sanqui/discard2.

49

https://github.com/Sanqui/discard2
https://github.com/Sanqui/discard2

5. Implementation

Figure 5.1: A diagram describing the architecture of Discard2.

5.1 Crawler

The crawler part of Discard2 is implemented as a headless browser controlled
using Puppeteer. Is operates on a task-oriented job system. The user (or
another script) assigns the crawler a job, which consists of any number of
tasks, such as downloading specified channels. Meanwhile, a capture tool
is deployed which captures traffic between the client and server to the output
directory.

When working with dates, Discard2 operates in UTC to eliminate am-
biguity.

50

5.1. Crawler

5.1.1 Browser

The browser in the crawler is controlled using Puppeteer. Puppeteer ex-
perimentally supports Firefox, but is primarily designed for Chrome. Since
Chrome is the more widely used browser, to ensure the best compatibility it
is also used by Discard2.

In deployment and in containers, the browser is launched headlessly,
i.e. with no user interface. However, for debugging purposes, it is also possible
to launch the browser with a GUI and observe the behavior of the crawler.
Even when running headlessly, when an error is encountered during the crawl,
a screenshot is taken to help diagnose the issue.

The crawler also enables the user to provide a data directory for use
by the browser. This enables cookie re-use between sessions and can alleviate
the need to re-authenticate the account every time a job is run.

Finally, to reduce traffic and improve performance, the browser can be
configured to block requests to images. Because images can be accessed from
Discord servers without authentication, other standard tools can be used to
archive them after the fact without the overhead of a browser.

5.1.2 Jobs

Figure 5.2: Processing of a job in Discard2’s crawler.

51

5. Implementation

A job is a single run of the crawler with predetermined settings and
tasks. The crawler performs these tasks in sequential order, in some cases
breaking a task down into smaller tasks as information is received from the
server. Completed and pending tasks are stored to a file in the output directory
as a part of the job state. This enables resumption of a job if the crawler
crashes or is terminated.

The current state of the job is saved to a state file after the completion
of every task. Should a job be suspended or fail, it is possible to resume it
from the failed task using this file, so that long-running tasks don’t have to
be repeated.

The user specifies a starting task using the CLI. It is possible to provide
multiple tasks by providing a starting JSON state file.

5.1.3 Discord project

In Discard2, the project refers to the website or platform being archived. For
the sake of this thesis, only a single type of project has been implemented,
that being Discord, but the crawler is written to support projects with other
types of tasks.

The Discord project implements the following main tasks:

Login. The login task is automatically performed on the start of a
Discord project. It navigates to the Discord login screen. If presented with
a login form, it fills it with the account e-mail and password, which must
be provided. Should it encounter a CAPTCHA, it informs the user to log-in
manually in a separate browser from the same IP, which clears the account
flag.

Profile. The profile task opens the user settings in order to fetch
additional information about the current user as well as verify the account
e-mail to prevent use with an unexpected account.

DM. The DM task is provided with four parameters: the ID of the
DM and optionally, ”before” and ”after” dates. It opens the specified DM
and performs a search for messages between the specified dates. It chooses
the earliest message and proceeds to scroll the chat until reaching the latest

52

5.1. Crawler

Figure 5.3: Hierarchy of tasks in the Discord project.

message.

Channel. The channel task is provided with four parameters: the
server ID, the channel ID, the same ”before” and ”after” dates. It opens
the server, locates the channel, and proceeds to download the chat history
similarly to the DM task.

Thread. The thread task requires the server ID, the channel ID, and
the thread ID. It opens the server, locates the channel, in the list of threads,
finds and opens the requested threads, and proceeds to download chat history
in the thread. Because Discord doesn’t offer searching within threads, it’s not
possible to fence the download by dates.

Server. The server task is provided with a server ID and the same
”before” and ”after” dates as the channel task. It opens the specified server
and creates a new task for each channel in the server.

53

5. Implementation

5.1.4 Capture tools

While the Discard2 crawler does by necessity parse some data displayed in
the application, its main purpose is to access the data and no effort is made
to register and save it. Instead, a capture tool is employed to save the
traffic between the client and the server. Besides the ”dummy” capture tool,
Discard2 supports two primary capture tools: mitmproxy and Wireshark.

5.1.4.1 mitmproxy

The mitmproxy capture tool, also called mitmdump by the command-line pro-
gram employed, is the best functional capture tool. It behaves as a proxy
between the browser and the server, intercepting traffic and logging HTTP
and Websocket flows to a file (mitmproxy does not specify a name for its
capture format; Discard2 uses capture.mitmdump for the filename).

5.1.4.2 Wireshark

The Wireshark capture tool, also called tshark by, again, the command-line
program employed, is the second capture tool implemented. Wireshark is
able to capture network traffic using the pcap interface without the need for
a proxy. The capture is more high fidelity, because includes DNS requests,
unmodified TCP/IP packet headers, and the handshakes for encrypted com-
munication. Wireshark saves traffic in the pcapng format.

Wireshark requires the user account on the host machine to have per-
mission to capture traffic using the operating system’s pcap interface. Since
Wireshark cannot differentiate or filter traffic from a single application, it
captures all traffic made on the system, some of which may be sensitive. For
these reasons, it is recommended to use Discard2 with the Wireshark capture
tool only inside a container.

5.2 Reader

The reader part of Discard2 exists to process the archives from completed
jobs containing captured data and output them in formats suitable for further
work. In archival, this process is called derivation.

54

5.2. Reader

When provided with a job path, the reader validates the job state and
depending on the capture tool used, reads data from the capture. In cases of
both mitmproxy and Wireshark, it’s necessary to have the program installed
(or run the tool reader in the standard container).

When the mitmdump capture tool is used, it’s possible to read all
data gathered from the server. However, due to a bug in Wireshark, it
was not possible to implement reliable retrieval of data from the
pcapng format. When parsing the packet data, Wireshark is typically able
to follow the TCP stream and provide decrypted and reassembled HTTP
data. However, in case of an out-of-order or retransmission event of a TCP
packet, Wireshark may lose its ability to follow the stream. This is despite
the implementation of TCP reassembly support in 2018[130]. The author has
contacted the Wireshark community with regard to the issue.

5.2.1 Output formats

Discard2’s reader currently supports the following output formats:

• raw-print - plain text overview of requests and responses,

• raw-jsonl - machine-readable JSON lines with full request and response
data,

• print - plain text log of messages (suitable for grep),

• elasticsearch - message data in format for import to an Elasticsearch
index,

• derive-urls - URLs of images and attachments for archival by other
tools.

raw-print. The raw print output format is a simple text format show-
ing an overview of HTTP and Websocket requests without their full content.
It’s intended for developers to quickly understand the data contained in the
archive.

Sample output:

55

5. Implementation

HTTP > GET /api/v9/users/@me/billing/country-code
HTTP < 200 {"country_code":"CZ"}
HTTP > GET /api/v9/users/954364925218783293/profile?with_mutua...
HTTP < 200 {"user":{"id":"954364925218783293","username":"test...
HTTP > GET /api/v9/users/@me/billing/payment-sources
HTTP < 200 []
HTTP > GET /api/v9/channels/954365197735317517/messages?limit=50
HTTP < 200 [{"id":"961971917856862238","type":0,"content":"355...

raw-jsonl. The raw JSONL format is a plain list of HTTP requests
and responses, as well as Websocket interactions read from the capture, with
timestamps. It’s particularly suitable for processing by further applications.

Sample output:

{"type":"http","timestamp_start":1649614252.9561036,"timestamp_
end":1649614254.0228916,"request":{"method":"GET","path":"/api/
v9/channels/961993711884062751/messages?limit=50"},"response":{
"status_code":200,"data":[]}}
{"type":"ws","timestamp":1649614268.277466,"direction":"recv","
data":{"t":"THREAD_LIST_SYNC","s":4,"op":0,"d":{"threads":[],"m
ost_recent_messages":[],"guild_id":"954365197735317514"}}}

print. The print format outputs all messages contained in the capture.
While such output is not a complete representation of message data (it does
not include reactions, embeds etc.), it may be used to get an overview of
contents of the archive, and may be useful for searching through archives
using standard tools such as grep.

Sample output:

[2022-03-20T13:14:37.700000+00:00] 954365219411460138:
<test_ahcae#7949> test 0

[2022-03-20T13:15:49.983000+00:00] 954365219411460138:
<test_ahcae#7949> image attachment

[2022-04-08T12:59:45.398000+00:00] 961973542663122944:
<test_ahcae#7949> chat msg

56

5.3. Command-line interface

elasticsearch. Outputs JSONL of messages in a format suitable for
direct import into an Elasticsearch index called discord messages.

derive-urls. A newline-separated list of URLs pointing to images
and attachments of all messages in the archive. This list can be directly piped
into a downloader such as wget or wpull.

5.3 Command-line interface

Figure 5.4: Screenshot of Discard2 output during a crawling job.

Discard2 provides a simple command-line interface which follows the
standards of Linux programs. It mimics the structure of the program and
allows the user to provide a single task to fulfil. For instance, to down-
load all messages from the channel ID 954365219411460138 in server ID
954365197735317514 sent between 2022-01-01 and 2022-03-18 and using the
mitmproxy capture tool, one could use:

discard2 crawler --capture-tool mitmproxy --headless
channel 954365197735317514 954365219411460138
--after 2022-01-01 --before 2022-03-18

The crawler resume command, when provided with a path to a pre-
vious job, allows the user to resume a job that was interrupted or failed.

57

5. Implementation

The --help option shows all available commands and options. Com-
plete usage instructions may be found in the README.md file of the project’s
repository.

When the crawler is running, Discard2 outputs information about the
tasks being fulfilled, allowing the user to track progress. When a channel is be-
ing downloaded, a progress bar is shown providing an automatically calculated
ETA (Figure 5.4).

5.4 End-to-end tests

Figure 5.5: Diagram describing Discard2 architecture during end-to-end tests.

In modern software development, tests are of essence to evaluate and
verify that the application does what it’s supposed to do. For testing Discard2,
the end-to-end testing technique was employed, since the project has many

58

5.5. Findings

components that need to work together: the crawler controls a browser while
a capture tool is running, and the reader extracts the data from the resulting
capture and verifies that the test data is present. However, while testing,
it is undesirable to hit the servers of the target service, since that causes
unnecessary load and hampers reproducibility. Instead, mitmproxy’s server-
side replay feature is used, simulating interaction with the real server from a
pre-existing capture, while enabling the tests to re-capture the data and test
deriving it. The Jest library for Node.js is used to run multiple test scenarios,
such as archiving a single channel or server. Thanks to GitHub’s free GitHub
Actions service, tests are run automatically on every commit (referred to as
CI).

5.5 Findings

Discord2 works according to the design specification. Still, some limitations
to the approaches chosen were identified.

Overall, implementing the crawler was of medium difficulty. In-
terfacing with the UI of Discord is done mainly by utilizing CSS se-
lectors. For instance, to locate the button which opens the server
with the ID 954365197735317514, it is possible to use the selec-
tor [data-list-item-id=guildsnav 954365197735317514] and click the
found element. Then, it is necessary to wait for the desired content to appear,
or retry the click. If a given object is in a list which may be scrolled, it may be
loaded dynamically, requiring scrolling of the list to locate it. In one instance,
that being the list of threads in a given channel, IDs of items in the list are not
exposed through the DOM. This necessites the capture of the relevant HTTP
request and determining the index of the desired object in the list in order to
click it.

When compared to work with an API directly, interacting with the UI
of the application is more complicated. It is necessary to strategically wait for
elements to load and unexpected dialogs may pose problems. However, when
identified, these issues can be addressed relatively easily. Whether this strat-
egy will be resilient in face of long term changes to the application will have
to be determined in the future, however, the author believes that as Discord
adds more features which may be undocumented in the API, implementing

59

5. Implementation

them by interfacing the UI will be relatively quick and give this archiver an
edge.

In terms of the reader, interfacing with the capture tool in order to
extract data from captured packets was the most difficult. While mitmproxy
provides a relatively simple Python API to extract request data, Wireshark’s
export methods are complicated and messy. With the correct combination of
command line flags, it’s possible to get JSON output which is not ambiguous
(by default, Wireshark has no problem with outputting duplicate keys in ob-
jects). However, Wireshark does not provide HTTP request-response pairs,
so it was necessary to re-implement parts of the HTTP2 protocol’s behavior
in order to extract the data. Even then, it was discovered Wireshark cannot
reliably reconstruct TCP streams after out-of-order or retransmission events.
Although the captures made by Wireshark are most likely complete, it is not
currently possible to reconstruct the data from all of them.

Once request-resopnse pairs are attained, parsing the data is a matter
of identifying interesting HTTP requests by reading the path. For instance,
every request for messages in a channel is in the form
GET /api/v9/channels/962731115729276948/messages?after=
956547528042635264&limit=50, where the first number is the ID of the chan-
nel, and the after parameter denotes the ID of message to fetch messages fol-
lowing. The response is a JSON serialized list of message objects. Discard2’s
reader can output these messages directly as JSONL for future processing.
Besides these API requests, the capture contains the code for the Discord ap-
plication at time of capture, which is a benefit for longevity of the archive and
future understanding.

60

Chapter 6
Validation

In order to demonstrate the functionality of the tool, a server was chosen to
be archived and a simple analysis of the data was performed to verify that the
data appears correct. ”FIT ČVUT” is a Discord server ran by students of
the Faculty of Informatics on the Czech Technical University in Prague. It was
started in 2017 and currently has 3,547 members in it, primarily students. It
can be described as a medium-sized server. With the permission of the server’s
owner, a Discord user account was created, joined the server, and was granted
the roles necessary to see the channels for Bachelor’s and Master’s students.

On 2022-04-23, Discard2’s crawler was used to download approximately
590 thousand chat messages from the FIT ČVUT server. This process took
approximately 4.5 hours and the resulting archive totals 345.2 MB. On 2022-
04-28, an additional approximately 40 thousand messages were downloaded
from threads, which were not covered by the original capture. Discard2’s
reader was used to import this data into an Elasticsearch database for further
analysis.

On 2022-05-02, searches for test strings were performed on the dataset
and in the Discord server using the same account that was used to download
the data. The number of search results was compared in Table 6.1 and found
to be very similar. A slight deviation can be explained by different fulltext
indexing methods as well as messages that have changed in the meantime. We
can therefore conclude that the downloaded archive is practically complete and
the tool works well.

61

6. Validation

Number of results
Search string Discord Archive
”test” 3,267 3,302
”Discord” 1,457 1,601
”FIT” 4,237 4,225
”web” 563 566

Table 6.1: Number of results for various search strings

6.1 Analysis

630,514 total messages in the ČVUT FIT server sent between July 2017
and April 2022 were analyzed with the use of Elasticsearch and Kibana.

Figure 6.1: Activity over time.

Figure 6.1 displays the amount of messages per month and already re-
veals interesting facts about activity on the server. We will note how activity
sprung up from February 2020 to March 2020, with the amount of messages
more than tripling from 2,881 to 10,125. This is easily explained by the world-
wide lockdowns caused by the COVID-19 pandemic. Internet use rose greatly
during the pandemic, including in the Czech Republic[131]. While decreased
activity is noted in the summer months of 2020, beginning with September,
activity rose again, and with 56,767 messages, October 2020 yielded peak

62

6.1. Analysis

activity. This can be explained by the influx of first year students to the
server, who, unable to attend classes in person, sought a way to socialize with
their new peers. After another drop the following summer, in the semesters
of the 2021/2022 academic year, activity on the server has been at a stable
approximately 27,000 messages per month.

Figure 6.2: Heatmap of activity over the course of a week.

Figure 6.2 displays the accumulated activity in each hour of the week.
It allows us to see how people gradually wake up between 7 and 9, with
activity being stable from 10:00 onwards. Peaks of activity are seen in the
evening, around 21:00. After midnight, activity rapidly drops, with very little
people posting messages after 2:00. Activity beings about two hours later on
weekends, which is consistent with the fact that most people have no class or
work on these days. Saturday is the weakest day overall, with Sunday seeing
consistent activity in the evening, which might be correlated with Sunday
midnight being a common deadline for assignments.

Figure 6.3 lists the 20 most active channels, or chat rooms by count
of messages. The top four channels, about politics, dating, off-topic, and the
novel coronavirus respectively, reflect the social nature of the server. However,
it makes sense that channels about individual subjects see more spread out
activity. Still, two channels about programming subjects, PA1 and PA2, two
channels about math subjects, ZMA and LIN, and a channel for the algorithms
and graphs subject, AG1, all make it to the top 20. Overall, 55 % of activity
takes place outside the top 20 channels.

63

6. Validation

Figure 6.3: 20 most active channels.

Figure 6.4: 50 most active users.

64

6.1. Analysis

The pie chart at Figure 6.4, while not particularly enlightening due to
anonymization of the data, does show that the majority of messages, about
71 %, are sent by the top 50 users. 2,034 unique users have sent messages in
total.

Figure 6.5: Messages sent per minute (blue) against average sentiment (green).

In Figure 6.5, the number of messages per minute beginning with 2020
was plotted against the average message sentiment16, smoothed over 3 days.
Again, activity can be seen to rise in the wake of the pandemic, and further
yet once new students come in September. We note that message sentiment
does not correlate to the absolute activity. Overall, message sentiment is going
down, the author interprets this as messages sent in the server becoming more
neutral (perhaps less humorous in tone) over time. A small yet notable dip
can be seen at immediately after 2022-02-24, the day of the Russian invasion
of Ukraine.

16Because the majority of text is in Czech, sentiment for a given message was determined
using the simple technique of adding together sentiment values of emoji present in the
message and in reactions to the message. Sentiment ranking was provided by the Sentiment
of emojis paper, which determined emoji polarity using tweets in European languages[132].

65

6. Validation

Figure 6.6: Word cloud of thread names.

Threads are a relatively recent Discord feature (introduced in July
2021) which allows users to create temporary channels for a single topic. Users
of the FIT ČVUT server have created 3,231 threads to date. Figure 6.6 shows
a word cloud of common words used in thread names. We observe that the
most common threads are started in relation to exams, or tests. Progtest
refers to the faculty platform on which weekly programming homework is
served. Similarly, Marast is a platform for math exercises.

66

Chapter 7
Conclusion

In this work, we have noted the importance of digital archival, the value in
making backups of chat logs, and possible uses for them. We have gone over
the situation with regard to archiving content on the Internet, in particu-
lar websites. We have learned that existing generalized web archival tools
have trouble with modern single page applications such as Discord. While
advancements in legislation are being made on the front of personal data free-
dom, Discord does not offer its users to download complete chat logs they
have access to.

Specialized archival tools which assist users in making backups of Dis-
cord chats were compared. However, by reimplementing the Discord API,
some of them carry heightened risk of account suspension. They also process
the data while downloading it, which is poor practice in preservation as it
carries the risk of silently losing data and makes it difficult to keep up with
changes and updates made to the protocol. Requirements for a new Discord
archiver were concepted, one which manipulates the official Discord client us-
ing a headless browser while performing a raw capture of the transmitted
data.

The new archiver for the Discord platform, named Discard2, is imple-
mented using Node.js and consists of two parts. The crawler, which downloads
data from Discord’s servers, controls a headless Chrome browser using Pup-
peteer. It uses a flexible task system which allows for downloading messages
from channels, threads, servers, and DMs. Mitmproxy and Wireshark were
implemented as capture tools, saving traffic between the client and the server

67

7. Conclusion

into an archive. Discard2’s reader is a separate component which can extract
message data from a given archive. It supports outputting to a variety of
formats, including Elasticsearch, which can be used to search and analyze the
data. Discard2 is licensed under the MIT license and can be downloaded on
GitHub at https://github.com/Sanqui/discard2.

Functionality of the archiver tool was demonstrated by archiving 630,514
messages from the student Discord server of the Czech Technical University’s
Faculty of Informatics. The completeness of this archive was validated and
simple statistical analysis on the data was performed.

7.1 Future work

During the development of the archiver, it was discovered that Wireshark’s
support for reassembling TCP streams is incomplete. Therefore, archives
made using the Wireshark capture tool cannot be reliably read. Because of
this limitation, mitmproxy is the preferred capture tool. The author hopes to
cooperate with Wireshark developers to implement this functionality, because
it would result in higher fidelity captures.

In general, the tool implemented in this thesis is functional according
to the specification. Improvements can be made on the front of reliability.
Browsers are complex pieces of software and a variety of situations, such as
network errors and out of memory events, can make them fail. Discard2’s
crawler supports resuming a job from failure, but these restarts do not yet
happen automatically, and task resumption is not as fine-grained as it could
be (some data is downloaded twice). Discard2’s reader can be made to under-
stand more Discord features (such as stickers). Because archives are complete
thanks to the traffic capture strategy, more export functionality can always
be implemented in the future without blocking current archival efforts.

The tool has been presented to interested Archive Team members and
a roadmap for future functionality is underway. The author also intends to
re-use the framework for archival projects of other online applications, as it
has been built with flexibility in mind.

68

https://github.com/Sanqui/discard2

Bibliography

[1] Jones, Q.; Mihai, M.; et al. Empirical evidence of information overload con-
straining chat channel community interactions. 01 2008, pp. 323–332, doi:
10.1145/1460563.1460616. Available from: https://www.researchgate.net/
publication/220878890_Empirical_evidence_of_information_overload_
constraining_chat_channel_community_interactions

[2] Discord. What makes Discord different? 2022. Available from: https://discord.com/
why-discord-is-different

[3] Czech Technical Unvirseity in Prague. Czech Technical Unvirseity in Prague [Wayback
Machine]. 1998. Available from: https://web.archive.org/web/19981206104022/
http://www.cvut.cz/ascii/index.html

[4] Pierce, D. How Discord (somewhat accidentally) invented the future of the internet.
2020. Available from: https://www.protocol.com/discord

[5] Curry, D. Discord Revenue and Usage Statistics (2022). 2022. Available from: https:
//www.businessofapps.com/data/discord-statistics/

[6] Domo. Data Never Sleeps 9.0. 2021. Available from: https://www.domo.com/learn/
infographic/data-never-sleeps-9

[7] @discord Twitter account. All 3rd party apps or client modifiers are against our
ToS, and the use of them can result in your account being disabled. I don’t rec-
ommend using them. 2022. Available from: https://twitter.com/discord/status/
1229357198918197248

[8] Telegram Team. Chat Export Tool, Better Notifications and More. 2018. Available
from: https://telegram.org/blog/export-and-more

[9] The Matrix.org Foundation C.I.C. Matrix.org: An open network for secure, decentral-
ized communication. 2021. Available from: https://matrix.org/

[10] Plunkett, L. Please Stop Closing Forums And Moving People To Discord. 2021.
Available from: https://kotaku.com/please-stop-closing-forums-and-moving-
people-to-discord-1847684851

69

https://www.researchgate.net/publication/220878890_Empirical_evidence_of_information_overload_constraining_chat_channel_community_interactions
https://www.researchgate.net/publication/220878890_Empirical_evidence_of_information_overload_constraining_chat_channel_community_interactions
https://www.researchgate.net/publication/220878890_Empirical_evidence_of_information_overload_constraining_chat_channel_community_interactions
https://discord.com/why-discord-is-different
https://discord.com/why-discord-is-different
https://web.archive.org/web/19981206104022/http://www.cvut.cz/ascii/index.html
https://web.archive.org/web/19981206104022/http://www.cvut.cz/ascii/index.html
https://www.protocol.com/discord
https://www.businessofapps.com/data/discord-statistics/
https://www.businessofapps.com/data/discord-statistics/
https://www.domo.com/learn/infographic/data-never-sleeps-9
https://www.domo.com/learn/infographic/data-never-sleeps-9
https://twitter.com/discord/status/1229357198918197248
https://twitter.com/discord/status/1229357198918197248
https://telegram.org/blog/export-and-more
https://matrix.org/
https://kotaku.com/please-stop-closing-forums-and-moving-people-to-discord-1847684851
https://kotaku.com/please-stop-closing-forums-and-moving-people-to-discord-1847684851

Bibliography

[11] Discord. Discord API Change Log. 2022. Available from: https://discord.com/
developers/docs/change-log

[12] Surge AI. Is Google Search Deteriorating? Measuring Google’s Search Quality
in 2022. 2022. Available from: https://www.surgehq.ai/blog/is-google-search-
deteriorating-measuring-search-quality-in-2022

[13] Keeton, J. September 11th, 2001, through the eyes of IRC channels. 2022. Avail-
able from: https://www.dailydot.com/debug/september-eleventh-through-eyes-
irc-channels/

[14] Hochstein, L. Bitrot. 2022. Available from: https://surfingcomplexity.blog/2022/
01/23/bitrot/

[15] Orosz, G. The Scoop: Inside the Longest Atlassian Outage of All Time. 2022. Available
from: https://newsletter.pragmaticengineer.com/p/scoop-atlassian

[16] Viswanath, S. Update on the Atlassian outage affecting some customers. 2022. Avail-
able from: https://www.atlassian.com/engineering/april-2022-outage-update

[17] Pusin, Y. The State of Backups: Who’s Most at Risk. 2021. Available from: https:
//www.backblaze.com/blog/the-state-of-backups-whos-most-at-risk/

[18] Archive Team wiki editors. Deatchwatch - Archive Team Wiki. 2022. Available from:
https://wiki.archiveteam.org/index.php/Deathwatch

[19] Wootten, I. Are Product Hunt’s featured products still online today? 2022. Available
from: https://www.scrapingbee.com/blog/producthunt-cemetery/

[20] Ogden, C. Killed by Google. 2022. Available from: https://killedbygoogle.com/

[21] Archive Team wiki editors. Yahoo! - Archive Team wiki. 2021. Available from: https:
//wiki.archiveteam.org/index.php/Yahoo!

[22] The Free Dictionary. ”link rot”. American Heritage® Dictionary of the English Lan-
guage, Fifth Edition, Houghton Mifflin Harcourt Publishing Company. 2011. Available
from: https://www.thefreedictionary.com/link+rot

[23] ZOMDir. The half-life of a link is two years. 2017. Available from: https://
blog.zomdir.com/2017/10/the-half-life-of-link-is-two-year.html

[24] Weblock. All-Time Weblock Report. 2015. Available from: https://web.archive.org/
web/20160304081204/https://weblock.io/report?id=all

[25] Internet Archive. Internet Archive: Digital Library of Free & Borrowable Books,
Movies, Music & Wayback Machine. 2022. Available from: https://archive.org/

[26] Internet Archive. Used Paired Space. 2022. Available from: https://archive.org/

˜tracey/mrtg/du.html

[27] Internet Archive. Internet Archive: Wayback Machine. 2022. Available from: https:
//archive.org/web/

70

https://discord.com/developers/docs/change-log
https://discord.com/developers/docs/change-log
https://www.surgehq.ai/blog/is-google-search-deteriorating-measuring-search-quality-in-2022
https://www.surgehq.ai/blog/is-google-search-deteriorating-measuring-search-quality-in-2022
https://www.dailydot.com/debug/september-eleventh-through-eyes-irc-channels/
https://www.dailydot.com/debug/september-eleventh-through-eyes-irc-channels/
https://surfingcomplexity.blog/2022/01/23/bitrot/
https://surfingcomplexity.blog/2022/01/23/bitrot/
https://newsletter.pragmaticengineer.com/p/scoop-atlassian
https://www.atlassian.com/engineering/april-2022-outage-update
https://www.backblaze.com/blog/the-state-of-backups-whos-most-at-risk/
https://www.backblaze.com/blog/the-state-of-backups-whos-most-at-risk/
https://wiki.archiveteam.org/index.php/Deathwatch
https://www.scrapingbee.com/blog/producthunt-cemetery/
https://killedbygoogle.com/
https://wiki.archiveteam.org/index.php/Yahoo!
https://wiki.archiveteam.org/index.php/Yahoo!
https://www.thefreedictionary.com/link+rot
https://blog.zomdir.com/2017/10/the-half-life-of-link-is-two-year.html
https://blog.zomdir.com/2017/10/the-half-life-of-link-is-two-year.html
https://web.archive.org/web/20160304081204/https://weblock.io/report?id=all
https://web.archive.org/web/20160304081204/https://weblock.io/report?id=all
https://archive.org/
https://archive.org/~tracey/mrtg/du.html
https://archive.org/~tracey/mrtg/du.html
https://archive.org/web/
https://archive.org/web/

Bibliography

[28] Jessica Ogden, S. W., Ed Summers. Participatory Web Archiving: Opening the Black
Box of ’Save Page Now’. 2019. Available from: https://jessogden.github.io/assets/
pdf/Ogden-Summers-Walker-RESAW19-Slides.pdf

[29] Kahle, B. 651,621,510,000 web URL’s now in the Wayback Machine by @inter-
netarchive. ... 2018. Available from: https://twitter.com/brewster_kahle/status/
994380510011928578

[30] Archive Team. Archive Team. 2022. Available from: https://wiki.archiveteam.org/
index.php/Main_Page

[31] Webrecorder. Webrecorder. 2022. Available from: https://webrecorder.net/

[32] redigit (@Demilogic). @Google my account has now been disabled for over
3 weeks. ... 2021. Available from: https://twitter.com/Demilogic/status/
1358661840402845696

[33] haistakaavittukaikkisaatana. My Google account got suspended because of NewPipe ·
Issue #2723 · TeamNewPipe/NewPipe. 2019. Available from: https://github.com/
TeamNewPipe/NewPipe/issues/2723

[34] Bode, K. Google Locks Historian’s Account Over Terrorism Research Videos.
2021. Available from: https://www.vice.com/en/article/qj8yj7/google-locks-
historians-account-over-terrorism-research-videos

[35] karlicoss. karlicoss/HPI: Human Programming Interface. 2022. Available from: https:
//github.com/karlicoss/HPI

[36] Willison, S. Dogsheep. 2022. Available from: https://dogsheep.github.io/

[37] Hernbroth, M. Slack, the newly-public chat app worth about $20 billion, has a hidden
meaning behind its name. 2019. Available from: https://www.businessinsider.com/
where-did-slack-get-its-name-2016-9

[38] Haughey, M. Shrinking the haystack: how to narrow search results in Slack. 2021.
Available from: https://slack.com/blog/productivity/shrinking-the-haystack-
how-to-narrow-search-results-in-slack

[39] Graham, M.; Elias, J. How Google’s $150 billion advertising business works. 2021.
Available from: https://www.cnbc.com/2021/05/18/how-does-google-make-money-
advertising-business-breakdown-.html

[40] Potoroaca, A. Google updated look of search results makes ads less obvi-
ous. 2020. Available from: https://www.techspot.com/news/83683-google-updated-
look-search-results-makes-ads-less.html

[41] Martori, A. Spamdexing: What is SEO Spam and How to Remove It. 2020. Available
from: https://blog.sucuri.net/2020/02/spamdexing-seo-spam.html

[42] dkb868. Google Search Is Dying. 2022. Available from: https://dkb.io/post/google-
search-is-dying

[43] Reddit. Reddit. 2022. Available from: https://www.reddit.com/

71

https://jessogden.github.io/assets/pdf/Ogden-Summers-Walker-RESAW19-Slides.pdf
https://jessogden.github.io/assets/pdf/Ogden-Summers-Walker-RESAW19-Slides.pdf
https://twitter.com/brewster_kahle/status/994380510011928578
https://twitter.com/brewster_kahle/status/994380510011928578
https://wiki.archiveteam.org/index.php/Main_Page
https://wiki.archiveteam.org/index.php/Main_Page
https://webrecorder.net/
https://twitter.com/Demilogic/status/1358661840402845696
https://twitter.com/Demilogic/status/1358661840402845696
https://github.com/TeamNewPipe/NewPipe/issues/2723
https://github.com/TeamNewPipe/NewPipe/issues/2723
https://www.vice.com/en/article/qj8yj7/google-locks-historians-account-over-terrorism-research-videos
https://www.vice.com/en/article/qj8yj7/google-locks-historians-account-over-terrorism-research-videos
https://github.com/karlicoss/HPI
https://github.com/karlicoss/HPI
https://dogsheep.github.io/
https://www.businessinsider.com/where-did-slack-get-its-name-2016-9
https://www.businessinsider.com/where-did-slack-get-its-name-2016-9
https://slack.com/blog/productivity/shrinking-the-haystack-how-to-narrow-search-results-in-slack
https://slack.com/blog/productivity/shrinking-the-haystack-how-to-narrow-search-results-in-slack
https://www.cnbc.com/2021/05/18/how-does-google-make-money-advertising-business-breakdown-.html
https://www.cnbc.com/2021/05/18/how-does-google-make-money-advertising-business-breakdown-.html
https://www.techspot.com/news/83683-google-updated-look-search-results-makes-ads-less.html
https://www.techspot.com/news/83683-google-updated-look-search-results-makes-ads-less.html
https://blog.sucuri.net/2020/02/spamdexing-seo-spam.html
https://dkb.io/post/google-search-is-dying
https://dkb.io/post/google-search-is-dying
https://www.reddit.com/

Bibliography

[44] Reddit Staff. New on Reddit: Comment Search, Improved Search Re-
sults Relevance, Updated Search Design. 2022. Available from: https:
//www.redditinc.com/blog/new-on-reddit-comment-search-improved-search-
results-relevance-updated-search-design

[45] Disboard. Public Discord Servers — DISBOARD: Discord Server List. 2022. Available
from: https://disboard.org/servers

[46] OWL, P. Project Owl OSINT. 2022. Available from: https://projectowlosint.org/

[47] Disboard. Discord servers tagged with osint — DISBOARD. 2022. Available from:
https://disboard.org/servers/tag/osint

[48] Peter Aldhous, C. M. How Open-Source Intelligence Is Helping Clear
The Fog Of War In Ukraine - BuzzFeed news. 2022. Available from:
https://www.buzzfeednews.com/article/peteraldhous/osint-ukraine-war-
satellite-images-plane-tracking-social

[49] Bellingcat Investigative Tech Team. How to Archive Telegram Con-
tent to Document Russia’s Invasion of Ukraine. 2022. Available from:
https://www.bellingcat.com/resources/how-tos/2022/03/08/how-to-archive-
telegram-content-to-document-russias-invasion-of-ukraine/

[50] Brown, T. B.; Mann, B.; et al. Language Models are Few-Shot Learners. 2020. Avail-
able from: http://arxiv.org/abs/2005.14165

[51] Sagar, R. OpenAI Releases GPT-3, The Largest Model So Far. 2020. Available from:
https://analyticsindiamag.com/open-ai-gpt-3-language-model/

[52] Apideck. Chatbots — GPT-3 Demo. 2022. Available from: https://gpt3demo.com/
category/chatbots

[53] Radford, A.; Wu, J.; et al. Language Models are Unsupervised Multitask Learners.
2018. Available from: https://d4mucfpksywv.cloudfront.net/better-language-
models/language-models.pdf

[54] Dima. What is Data Liberation. 2014. Available from: https://medium.com/dima-
korolev/what-is-data-liberation-50c0fca31eee

[55] EUR-Lex. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL. 2016. Available from: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A02016R0679-20160504&qid=1532348683434

[56] European Parliament Press Releases. Deal on Digital Markets Act: EU rules
to ensure fair competition and more choice for users. 2022. Available from:
https://web.archive.org/web/20220404000556/https://www.europarl.europa.eu/
news/en/press-room/20220315IPR25504/deal-on-digital-markets-act-
ensuring-fair-competition-and-more-choice-for-users

[57] Jonathan Shieber, T. Discord now has a $3.5B valuation and $100M for a sales pitch
lighter on the gaming. 2020. Available from: https://techcrunch.com/2020/06/30/
discord-now-has-a-3-5b-valuation-and-100m-for-a-sales-pitch-lighter-on-
the-gaming/

72

https://www.redditinc.com/blog/new-on-reddit-comment-search-improved-search-results-relevance-updated-search-design
https://www.redditinc.com/blog/new-on-reddit-comment-search-improved-search-results-relevance-updated-search-design
https://www.redditinc.com/blog/new-on-reddit-comment-search-improved-search-results-relevance-updated-search-design
https://disboard.org/servers
https://projectowlosint.org/
https://disboard.org/servers/tag/osint
https://www.buzzfeednews.com/article/peteraldhous/osint-ukraine-war-satellite-images-plane-tracking-social
https://www.buzzfeednews.com/article/peteraldhous/osint-ukraine-war-satellite-images-plane-tracking-social
https://www.bellingcat.com/resources/how-tos/2022/03/08/how-to-archive-telegram-content-to-document-russias-invasion-of-ukraine/
https://www.bellingcat.com/resources/how-tos/2022/03/08/how-to-archive-telegram-content-to-document-russias-invasion-of-ukraine/
http://arxiv.org/abs/2005.14165
https://analyticsindiamag.com/open-ai-gpt-3-language-model/
https://gpt3demo.com/category/chatbots
https://gpt3demo.com/category/chatbots
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://medium.com/dima-korolev/what-is-data-liberation-50c0fca31eee
https://medium.com/dima-korolev/what-is-data-liberation-50c0fca31eee
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504&qid=1532348683434
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504&qid=1532348683434
https://web.archive.org/web/20220404000556/https://www.europarl.europa.eu/news/en/press-room/20220315IPR25504/deal-on-digital-markets-act-ensuring-fair-competition-and-more-choice-for-users
https://web.archive.org/web/20220404000556/https://www.europarl.europa.eu/news/en/press-room/20220315IPR25504/deal-on-digital-markets-act-ensuring-fair-competition-and-more-choice-for-users
https://web.archive.org/web/20220404000556/https://www.europarl.europa.eu/news/en/press-room/20220315IPR25504/deal-on-digital-markets-act-ensuring-fair-competition-and-more-choice-for-users
https://techcrunch.com/2020/06/30/discord-now-has-a-3-5b-valuation-and-100m-for-a-sales-pitch-lighter-on-the-gaming/
https://techcrunch.com/2020/06/30/discord-now-has-a-3-5b-valuation-and-100m-for-a-sales-pitch-lighter-on-the-gaming/
https://techcrunch.com/2020/06/30/discord-now-has-a-3-5b-valuation-and-100m-for-a-sales-pitch-lighter-on-the-gaming/

Bibliography

[58] Matthew Hodgson, M. How do you implement interoperability in a DMA
world? 2022. Available from: https://matrix.org/blog/2022/03/29/how-do-you-
implement-interoperability-in-a-dma-world

[59] @discord Twitter account. We use electron for the desktop app, so it’s all
javascript and react! 2017. Available from: https://twitter.com/discord/status/
822874230631100416

[60] Discord. Discord’s Terms of Service. 2022. Available from: https://discord.com/
terms

[61] cancel. Ripcord: Desktop Chat Client. 2021. Available from: https://cancel.fm/
ripcord/

[62] Bios-Marcel. ios-Marcel/cordless: The Discord terminal client you never knew you
wanted. 2021. Available from: https://github.com/Bios-Marcel/cordless

[63] Clemens, A. Discord bans me, then Discord ghosts me. 2020. Available from: https:
//annaclemens.io/discord

[64] Schramm, M. Cordless: Add notice about closing the project. 2020. Available from:
https://github.com/Bios-Marcel/cordless

[65] jhgg. We are not banning people for using Ripcord. [...]. 2020. Available from: https:
//news.ycombinator.com/item?id=25214777

[66] Holub, O. GitHub - Tyrrrz/DiscordChatExporter: Exports Discord chat logs to a file.
2022. Available from: https://github.com/Tyrrrz/DiscordChatExporter

[67] nischay876. is this banable from discord ?? :(· Discussion #726 ·
Tyrrrz/DiscordChatExporter. 2021. Available from: https://github.com/Tyrrrz/
DiscordChatExporter/discussions/726

[68] Holub, O. This is on purpose actually. [...] Field name consistency with the official
API · Issue #454 · Tyrrrz/DiscordChatExporter. 2020. Available from: https://
github.com/Tyrrrz/DiscordChatExporter/issues/454

[69] Mehrotra, P. Discord starts rolling out inline replies on desktop and mobile. 2020.
Available from: https://www.xda-developers.com/discord-rolling-out-inline-
replies-desktop-mobile/

[70] Sanqui. Add support for replies · Pull Request #455 · Tyrrrz/DiscordChatExporter.
2020. Available from: https://github.com/Tyrrrz/DiscordChatExporter/pull/455

[71] Holub, O. Add a raw json export format by rtm516 · Pull Request #553 ·
Tyrrrz/DiscordChatExporter. 2020. Available from: https://github.com/Tyrrrz/
DiscordChatExporter/pull/553

[72] Holub, O. Download list of all users for a server (online & offline) · Issue #104
· Tyrrrz/DiscordChatExporter. 2018. Available from: https://github.com/Tyrrrz/
DiscordChatExporter/issues/104

73

https://matrix.org/blog/2022/03/29/how-do-you-implement-interoperability-in-a-dma-world
https://matrix.org/blog/2022/03/29/how-do-you-implement-interoperability-in-a-dma-world
https://twitter.com/discord/status/822874230631100416
https://twitter.com/discord/status/822874230631100416
https://discord.com/terms
https://discord.com/terms
https://cancel.fm/ripcord/
https://cancel.fm/ripcord/
https://github.com/Bios-Marcel/cordless
https://annaclemens.io/discord
https://annaclemens.io/discord
https://github.com/Bios-Marcel/cordless
https://news.ycombinator.com/item?id=25214777
https://news.ycombinator.com/item?id=25214777
https://github.com/Tyrrrz/DiscordChatExporter
https://github.com/Tyrrrz/DiscordChatExporter/discussions/726
https://github.com/Tyrrrz/DiscordChatExporter/discussions/726
https://github.com/Tyrrrz/DiscordChatExporter/issues/454
https://github.com/Tyrrrz/DiscordChatExporter/issues/454
https://www.xda-developers.com/discord-rolling-out-inline-replies-desktop-mobile/
https://www.xda-developers.com/discord-rolling-out-inline-replies-desktop-mobile/
https://github.com/Tyrrrz/DiscordChatExporter/pull/455
https://github.com/Tyrrrz/DiscordChatExporter/pull/553
https://github.com/Tyrrrz/DiscordChatExporter/pull/553
https://github.com/Tyrrrz/DiscordChatExporter/issues/104
https://github.com/Tyrrrz/DiscordChatExporter/issues/104

Bibliography

[73] Holub, O. Display reaction authors · Issue #133 · Tyrrrz/DiscordChatExporter.
2019. Available from: https://github.com/Tyrrrz/DiscordChatExporter/issues/
133

[74] chylex. Discord History Tracker. 2022. Available from: https://github.com/chylex/
Discord-History-Tracker

[75] TheTechRobo, chylex. Save button data? · Issue #158 · chylex/Discord-History-
Tracker. 2021. Available from: https://github.com/chylex/Discord-History-
Tracker/issues/158

[76] tsudoko. tsudoko/pullcord: Discord archiver. 2021. Available from: https://
github.com/tsudoko/pullcord

[77] tsudoko. Light mode · Issue #1 · tsudoko/pullcord. 2018. Available from: https:
//github.com/tsudoko/pullcord/issues/1

[78] tsudoko. Too many non-fatal errors are treated as fatal · Issue #21 ·
tsudoko/pullcord. 2020. Available from: https://github.com/tsudoko/pullcord/
issues/21

[79] mraof. Thread support · Issue #28 · tsudoko/pullcord. 2021. Available from: https:
//github.com/tsudoko/pullcord/issues/28

[80] Sanqui. Sanqui/discard: Python tool for medium-scale Discord server archival opera-
tions. 2021. Available from: https://github.com/Sanqui/discard

[81] Rapptz. On Resuming discord.py Development. 2022. Available from: https://
gist.github.com/Rapptz/c4324f17a80c94776832430007ad40e6

[82] Rapptz. Rapptz/discord.py: An API wrapper for Discord written in Python. 2022.
Available from: https://github.com/Rapptz/discord.py

[83] Rapptz. discord.py documentation. 2022. Available from: https://
discordpy.readthedocs.io/en/latest/index.html

[84] Discord Trust & Safety Team. Automated user accounts (self-bots). 2021.
Available from: https://support.discord.com/hc/en-us/articles/115002192352-
Automated-user-accounts-self-bots-

[85] Rapptz. discord.py changelog - v1.7.0. 2021. Available from: https://
discordpy.readthedocs.io/en/latest/whats_new.html#v1-7-0

[86] dolfies. dolfies/discord.py-self: A fork of the popular discord.py for self-bots. 2022.
Available from: https://github.com/dolfies/discord.py-self

[87] Rapptz. The Future of discord.py. 2021. Available from: https://gist.github.com/
Rapptz/4a2f62751b9600a31a0d3c78100287f1

[88] Weh. Message Content Privileged Intent FAQ. 2022. Available from: https://
support-dev.discord.com/hc/en-us/articles/4404772028055

[89] Discord. Discord API Reference - Snowflakes. 2022. Available from: https://
discord.com/developers/docs/reference#snowflakes

74

https://github.com/Tyrrrz/DiscordChatExporter/issues/133
https://github.com/Tyrrrz/DiscordChatExporter/issues/133
https://github.com/chylex/Discord-History-Tracker
https://github.com/chylex/Discord-History-Tracker
https://github.com/chylex/Discord-History-Tracker/issues/158
https://github.com/chylex/Discord-History-Tracker/issues/158
https://github.com/tsudoko/pullcord
https://github.com/tsudoko/pullcord
https://github.com/tsudoko/pullcord/issues/1
https://github.com/tsudoko/pullcord/issues/1
https://github.com/tsudoko/pullcord/issues/21
https://github.com/tsudoko/pullcord/issues/21
https://github.com/tsudoko/pullcord/issues/28
https://github.com/tsudoko/pullcord/issues/28
https://github.com/Sanqui/discard
https://gist.github.com/Rapptz/c4324f17a80c94776832430007ad40e6
https://gist.github.com/Rapptz/c4324f17a80c94776832430007ad40e6
https://github.com/Rapptz/discord.py
https://discordpy.readthedocs.io/en/latest/index.html
https://discordpy.readthedocs.io/en/latest/index.html
https://support.discord.com/hc/en-us/articles/115002192352-Automated-user-accounts-self-bots-
https://support.discord.com/hc/en-us/articles/115002192352-Automated-user-accounts-self-bots-
https://discordpy.readthedocs.io/en/latest/whats_new.html#v1-7-0
https://discordpy.readthedocs.io/en/latest/whats_new.html#v1-7-0
https://github.com/dolfies/discord.py-self
https://gist.github.com/Rapptz/4a2f62751b9600a31a0d3c78100287f1
https://gist.github.com/Rapptz/4a2f62751b9600a31a0d3c78100287f1
https://support-dev.discord.com/hc/en-us/articles/4404772028055
https://support-dev.discord.com/hc/en-us/articles/4404772028055
https://discord.com/developers/docs/reference#snowflakes
https://discord.com/developers/docs/reference#snowflakes

Bibliography

[90] MolSno and commenters. Change read message history permission. 2019. Available
from: https://support.discord.com/hc/en-us/community/posts/360046946331-
Change-read-message-history-permission

[91] u/Flippi273. What framework does Discord for Android use? 2017. Available
from: https://www.reddit.com/r/discordapp/comments/76szr8/what_framework_
does_discord_for_android_use/

[92] D. Your Discord Data Package. 2022. Available from: https://support.discord.com/
hc/en-us/articles/360004957991

[93] Lee, T. B. Court: Violating a site’s terms of service isn’t criminal hacking. 2020. Avail-
able from: https://arstechnica.com/tech-policy/2020/03/court-violating-a-
sites-terms-of-service-isnt-criminal-hacking/

[94] Hofmann, M. Court: Violating Terms of Service Is Not a Crime, But Bypassing Techni-
cal Barriers Might Be. 2010. Available from: https://www.eff.org/deeplinks/2010/
07/court-violating-terms-service-not-crime-bypassing

[95] Vollmer, A. Standing up for developers: youtube-dl is back. 2020. Available
from: https://github.blog/2020-11-16-standing-up-for-developers-youtube-
dl-is-back/

[96] Whittaker, Z. Web scraping is legal, US appeals court reaffirms. 2022. Available from:
https://techcrunch.com/2022/04/18/web-scraping-legal-court/

[97] History Associates Incorporated. Privacy: The Archivist’s Dilemma. 2020. Available
from: https://www.historyassociates.com/privacy-the-archivists-dilemma/

[98] Discord. DISCORD PRIVACY POLICY. 2022. Available from: https://
discord.com/privacy

[99] Yahweasel. Craig Records! 2022. Available from: https://craig.chat/home/

[100] Discord. Discord Developer Portal - Community Resources. 2022. Available from:
https://discord.com/developers/docs/topics/community-resources

[101] IIPC members. The WARC Format 1.1. 2015. Available from: https://
iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/

[102] GitHub users. Issues · iipc/warc-specifications. 2022. Available from: https://
github.com/iipc/warc-specifications/labels/warc-format

[103] Melnikov, A.; Fette, I. The WebSocket Protocol. RFC 6455, Dec. 2011, doi:10.17487/
RFC6455. Available from: https://www.rfc-editor.org/info/rfc6455

[104] Odvarko, J.; Jain, A.; et al. HTTP Archive (HAR) format. 2012. Available from:
https://w3c.github.io/web-performance/specs/HAR/Overview.html

[105] Basques, K. What’s New In DevTools (Chrome 76). 2019. Available from: https:
//developer.chrome.com/blog/new-in-devtools-76/

[106] GNU Wget. GNU Wget. 2020. Available from: https://www.gnu.org/software/wget/

75

https://support.discord.com/hc/en-us/community/posts/360046946331-Change-read-message-history-permission
https://support.discord.com/hc/en-us/community/posts/360046946331-Change-read-message-history-permission
https://www.reddit.com/r/discordapp/comments/76szr8/what_framework_does_discord_for_android_use/
https://www.reddit.com/r/discordapp/comments/76szr8/what_framework_does_discord_for_android_use/
https://support.discord.com/hc/en-us/articles/360004957991
https://support.discord.com/hc/en-us/articles/360004957991
https://arstechnica.com/tech-policy/2020/03/court-violating-a-sites-terms-of-service-isnt-criminal-hacking/
https://arstechnica.com/tech-policy/2020/03/court-violating-a-sites-terms-of-service-isnt-criminal-hacking/
https://www.eff.org/deeplinks/2010/07/court-violating-terms-service-not-crime-bypassing
https://www.eff.org/deeplinks/2010/07/court-violating-terms-service-not-crime-bypassing
https://github.blog/2020-11-16-standing-up-for-developers-youtube-dl-is-back/
https://github.blog/2020-11-16-standing-up-for-developers-youtube-dl-is-back/
https://techcrunch.com/2022/04/18/web-scraping-legal-court/
https://www.historyassociates.com/privacy-the-archivists-dilemma/
https://discord.com/privacy
https://discord.com/privacy
https://craig.chat/home/
https://discord.com/developers/docs/topics/community-resources
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://github.com/iipc/warc-specifications/labels/warc-format
https://github.com/iipc/warc-specifications/labels/warc-format
https://www.rfc-editor.org/info/rfc6455
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://developer.chrome.com/blog/new-in-devtools-76/
https://developer.chrome.com/blog/new-in-devtools-76/
https://www.gnu.org/software/wget/

Bibliography

[107] Archive Team wiki editors. Wget with WARC output. 2022. Available from: https:
//wiki.archiveteam.org/index.php/Wget_with_WARC_output

[108] ariya. Archiving the project: suspending the development · Issue #15344 ·
ariya/phantomjs. 2018. Available from: https://github.com/ariya/phantomjs/
issues/15344

[109] Internet Archive. internetarchive/warcprox: WARC writing MITM HTTP/S proxy.
2022. Available from: https://github.com/internetarchive/warcprox

[110] Mitmproxy Project. mitmproxy - an interactive HTTPS proxy. 2022. Available from:
https://mitmproxy.org/

[111] dufferzafar. SQLite Flow Storage Format · Issue #1029 · mitmproxy/mitmproxy.
2016. Available from: https://github.com/mitmproxy/mitmproxy/issues/1029

[112] cortesi. Serialization format · Issue #3075 · mitmproxy/mitmproxy. 2022. Available
from: https://github.com/mitmproxy/mitmproxy/issues/3075

[113] madt1m. Shifting to Protobuf Serialization by madt1m · Pull Request #3232
· mitmproxy/mitmproxy. 2018. Available from: https://github.com/mitmproxy/
mitmproxy/pull/3232

[114] kryptpt. PCAP support · Issue #408 · mitmproxy/mitmproxy. 2014. Available from:
https://github.com/mitmproxy/mitmproxy/issues/408

[115] The Tcpdump Group. tcpdump & libpcap. 2022. Available from: https://
www.tcpdump.org/

[116] Chifflier, P. rusticata/pcap-parser: PCAP/PCAPNG file format parser written in pure
Rust. Fast, zero-copy, safe. 2022. Available from: https://github.com/rusticata/
pcap-parser

[117] Collinear Group. pcap-ng-parser - npm. 2018. Available from: https://
www.npmjs.com/package/pcap-ng-parser

[118] Wireshark. Wireshark. 2022. Available from: https://www.wireshark.org/

[119] Software Freedom Conservancy. Selenium. 2022. Available from: https://
www.selenium.dev/

[120] Software Freedom Conservancy. Selenium History. 2019. Available from: https://
www.selenium.dev/history/

[121] Google Developers. Puppeteer. 2021. Available from: https://
developers.google.com/web/tools/puppeteer

[122] berstend. puppeteer-extra. 2021. Available from: https://github.com/berstend/
puppeteer-extra/tree/master/packages/puppeteer-extra#puppeteer-extra---
--

[123] Microsoft. Playwright. 2022. Available from: https://playwright.dev/

76

https://wiki.archiveteam.org/index.php/Wget_with_WARC_output
https://wiki.archiveteam.org/index.php/Wget_with_WARC_output
https://github.com/ariya/phantomjs/issues/15344
https://github.com/ariya/phantomjs/issues/15344
https://github.com/internetarchive/warcprox
https://mitmproxy.org/
https://github.com/mitmproxy/mitmproxy/issues/1029
https://github.com/mitmproxy/mitmproxy/issues/3075
https://github.com/mitmproxy/mitmproxy/pull/3232
https://github.com/mitmproxy/mitmproxy/pull/3232
https://github.com/mitmproxy/mitmproxy/issues/408
https://www.tcpdump.org/
https://www.tcpdump.org/
https://github.com/rusticata/pcap-parser
https://github.com/rusticata/pcap-parser
https://www.npmjs.com/package/pcap-ng-parser
https://www.npmjs.com/package/pcap-ng-parser
https://www.wireshark.org/
https://www.selenium.dev/
https://www.selenium.dev/
https://www.selenium.dev/history/
https://www.selenium.dev/history/
https://developers.google.com/web/tools/puppeteer
https://developers.google.com/web/tools/puppeteer
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra#puppeteer-extra-----
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra#puppeteer-extra-----
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra#puppeteer-extra-----
https://playwright.dev/

Bibliography

[124] Guo, D. Playwright vs. Puppeteer: Which should you choose? 2020. Available from:
https://blog.logrocket.com/playwright-vs-puppeteer/

[125] Red Hat, Inc. Understanding Linux containers. 2022. Available from: https://
www.redhat.com/en/topics/containers

[126] Docker Inc. Docker. 2022. Available from: https://www.docker.com/

[127] Containers. Podman. 2022. Available from: https://podman.io/

[128] Elasticsearch B.V. Elasticsearch: The Official Distributed Search & Analytics Engine.
2022. Available from: https://www.elastic.co/elasticsearch/

[129] Elasticsearch B.V. Kibana: Explore, Visualize, Discover Data. 2022. Available from:
https://www.elastic.co/kibana/

[130] Wu, P.; Broman, A. tcp: add support for reassembling out-of-order seg-
ments (ca423314) · Commits · Wireshark Foundation / wireshark · Git-
Lab. 2018. Available from: https://gitlab.com/wireshark/wireshark/-/commit/
ca423314373b0a4ce7d6bc1cf94c4995e1263ea2

[131] Vokál, D.; Šmahel, D.; et al. Excesivńı použ́ıváńı internetu českými dosṕıvaj́ıćımi:
Srovnáńı před a během pandemie Covid-19. 2021. Available from: https://
irtis.muni.cz/media/3345543/excessive-internet-use-report_v13_final.pdf

[132] Kralj Novak, P.; Smailović, J.; et al. Sentiment of emojis. PLoS ONE, vol-
ume 10, no. 12, 2015: p. e0144296. Available from: http://dx.doi.org/10.1371/
journal.pone.0144296

77

https://blog.logrocket.com/playwright-vs-puppeteer/
https://www.redhat.com/en/topics/containers
https://www.redhat.com/en/topics/containers
https://www.docker.com/
https://podman.io/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana/
https://gitlab.com/wireshark/wireshark/-/commit/ca423314373b0a4ce7d6bc1cf94c4995e1263ea2
https://gitlab.com/wireshark/wireshark/-/commit/ca423314373b0a4ce7d6bc1cf94c4995e1263ea2
https://irtis.muni.cz/media/3345543/excessive-internet-use-report_v13_final.pdf
https://irtis.muni.cz/media/3345543/excessive-internet-use-report_v13_final.pdf
http://dx.doi.org/10.1371/journal.pone.0144296
http://dx.doi.org/10.1371/journal.pone.0144296

Appendix A
Acronyms

AIM AOL Instant Messenger

CI Continuous Integration

CSS Cascading Stylesheets

CSV Comma separated values

DM Direct Message

DMA Digital Markets Act

DMCA Digital Millennium Copyright Act

DOM Document Object Model

EFF Electronic Frontier Foundation

GDPR General Data Protection Regulation

GPT Generative Pre-trained Transformer

HAR HTTP Archive

HTML HyperText Markup Language

HTMLZ HTML ZIP

HTTP Hypertext Transfer Protocol

IP Internet Protocol

79

A. Acronyms

IRC Internet Relay Chat

JSON JavaScript Object Notation

JSONL JSON Lines

MITM Man in the middle

MSN Microsoft Network

OBS Open Broadcaster Software

OSINT Open-source intelligence

PCAP Packet Capture

PCAPNG PCAP Next Generation

REST Representational state transfer

SEO Search Engine Optimization

SPA Single Page Application

SSL Secure Sockets Layer

SSR Server-Side Rendering

TCP Transmission Control Protocol

TLS Transport Layer Security

TSV Tab separated values

UI User Interface

WARC Web ARChive

80

Appendix B
Supplemental Material

The complete source code of this thesis and the projects described within can
be found on the attached medium.

The same content is also available online on GitHub. Versions at the submis-
sion of this thesis bear the tag thesis.

Thesis https://github.com/Sanqui/discard2-thesis

Discard2 https://github.com/Sanqui/discard2

README.txt.....................................description of contents
DP Labsky David 2022.pdf thesis text in PDF format
src .. source codes

thesis....................................source code for the thesis
discard2.......................source code for the Discard2 project

81

https://github.com/Sanqui/discard2-thesis
https://github.com/Sanqui/discard2

	Introduction
	Thesis goals
	Thesis strucutre

	Background and Related Work
	Motivation
	Digital preservation
	Online content is at risk
	Archival of online content
	Difficulty archiving modern websites

	Applications for archived chat logs
	Search engines
	OSINT
	Machine learning

	Data liberation
	Digital Markets Act

	Related work
	Third party Discord clients
	Discord Archivers
	DiscordChatExporter
	Discord History Tracker
	Pullcord
	Discard

	Comparison

	Findings

	Analysis and Specification
	Discord architecture
	Users
	Servers
	Channels
	Messages

	Means to access Discord
	Tool specification
	Objects

	Legality
	Ethics
	Requirements

	Technologies
	Development of Discord bots
	Archiving web content
	Formats
	Software

	Capturing network traffic
	Proxy software
	Packet capture software

	Headless browsers
	Selenium
	Puppeteer
	Playwright

	TypeScript and Node.js
	Linux containers
	Elasticsearch

	Implementation
	Crawler
	Browser
	Jobs
	Discord project
	Capture tools
	mitmproxy
	Wireshark

	Reader
	Output formats

	Command-line interface
	End-to-end tests
	Findings

	Validation
	Analysis

	Conclusion
	Future work

	Bibliography
	Acronyms
	Supplemental Material

