
Title:

Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Improving deep learning precipitation nowcasting by using
prior knowledge
Bc. Matej Choma
Mgr. Petr Šimánek
Informatics
Knowledge Engineering
Department of Applied Mathematics
until the end of summer semester 2022/2023

Instructions

State-of-the-art models for precipitation nowcasting are based on weather radar data
and recurrent neural networks with convolutional cells. This thesis aims to improve the
performance of deep learning precipitation nowcasting by using more prior knowledge
about the atmosphere.
Explore human knowledge about atmosphere and precipitation.
Explore possibilities of enhancing neural networks with prior knowledge of physical
processes.
Propose and train a deep learning rainfall nowcasting model.
Evaluate the model, analyze and discuss the results.

Electronically approved by Ing. Karel Klouda, Ph.D. on 12 September 2021 in Prague.

Master’s thesis

Improving Deep Learning Precipitation

Nowcasting by Using Prior Knowledge

Bc. Matej Choma

Department of Applied Mathematics

Supervisor: Mgr. Petr Šimánek

May 5, 2022

Acknowledgements

My deep thanks to my supervisor, Mgr. Petr Šimánek, for his leadership
during the work on this thesis. By showing me the direction but letting me
work the way there alone, he truly helped me grow during the last year. I
appreciate our discussions about the influence and physical interpretation of
various neural network layers. They enabled me to understand deep learning
on a new level.

I would like to express my sincere gratitude to the company Meteopress for
the resources and support provided during the writing of this thesis. I am
grateful for the opportunity to work on a research topic with real-life impact
in an environment where every problem is solvable.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 5, 2022

Czech Technical University in Prague

Faculty of Information Technology

© 2022 Matej Choma. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Choma, Matej. Improving Deep Learning Precipitation Nowcasting by Using
Prior Knowledge. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2022.

Abstract

Deep learning methods dominate short-term high-resolution precipitation now-
casting in terms of prediction error. However, their operational usability is
limited by di�culties explaining dynamics behind the predictions, which are
smoothed out and missing the high-frequency features due to optimizing for
mean error loss functions. This thesis summarizes our progress in addressing
these issues.

Firstly, we present Intensity Classification Loss to improve the prediction of
severe rainfall. The model is trained to predict the probability of precipitation
with an intensity over 40 dBZ as a secondary output, which is compared
to binary ground truth. Experiments have shown that this approach helps
predict severe rainfall but does not predict precipitation with higher intensities
than the selected threshold.

Secondly, we experiment with hand-engineering of the advection-di�usion dif-
ferential equation into a PhyCell to introduce more accurate physical prior
to a PhyDNet model that disentangles physical and residual dynamics. Re-
sults indicate that while PhyCell can learn the intended dynamics, training of
PhyDNet remains driven by loss optimization, resulting in a model with the
same prediction capabilities.

Keywords Precipitation Nowcasting, Physics Prior, Deep Learning, Loss
Engineering

vii

Abstrakt

Pri krátkodobých predpovediach zrážok s vysokým rozĺı̌seńım z hl’adiska chyby
predpovede dominujú metódy hlbokého učenia. Avšak, ich operat́ıvne použ́ıvanie
je obmedzené problémami s vysvetlitel’nost’ou dynamiky za predpoved’ami.
Tieto sú zároveň vyhladené a chýbajú im vysokofrekvenčné prvky v dôsledku
optimalizácie pre stratové funkcie založené na strednej chybe. V tejto práci je
zhrnutý náš pokrok pri riešeńı týchto problémov.

V prvej časti predstavujeme Intensity Classification Loss na zlepšenie pred-
povede silných zrážok. Model je natrénovaný vytvárat’ sekundárny výstup
predpovedajúci pravdepodobnost’ zrážok s intenzitou nad 40 dBZ, ktorý sa
porovnáva s binárnou skutočnost’ou. Experimenty ukázali, že tento pŕıstup
pomáha predpovedat’ silné zrážky, ale nepredpovedá zrážky s vyššou intenzi-
tou, ako je zvolený prah.

V druhej časti experimentujeme s ručným vkladańım diferenciálnej rovnice
advekcie-difúzie do PhyCell. Ciel’om je vniest’ lepšiu apriornú znalost’ o fy-
zike do modelu PhyDNet, ktorý oddel’uje fyzikálnu a reziduálnu dynamiku.
Výsledky naznačujú, že zatial’ čo sa PhyCell dokáže naučit’ zamýšl’anú dy-
namiku, tréning modelu PhyDNet zostáva riadený optimalizáciou stratovej
funkcie. Toto vedie k modelu s nezmenenými predikčnými vlastnost’ami.

Kl’́učové slová nowcasting zrážok, apriorná znalost’ fyziky, hlboké učenie,
modelovanie stratových funkcíı

viii

Contents

Introduction 1

1 Theoretical Background 3
1.1 Atmosphere, Precipitation and Convection 3
1.2 Numerical Weather Prediction 6

1.2.1 Model Initialization and Ensemble Forecasts 8
1.3 Weather Nowcasting . 9
1.4 Weather Radars . 10
1.5 Di�erential Equations . 10

1.5.1 Advection-Di�usion Equation 11
1.5.2 Navier-Stokes Equations 12

1.6 Deep Learning . 12
1.6.1 Convolutional Layers . 12
1.6.2 Recurrent Neural Networks 13
1.6.3 Group Normalization . 13

2 Related Work 15
2.1 Precipitation Nowcasting . 15
2.2 Physics and Deep Learning . 16

3 PhyDNet Architecture 17
3.1 Disentanglement . 17

3.1.1 Data Dimensions . 19
3.2 Physical Model – PhyCell . 19

3.2.1 Prediction Step . 19
3.2.2 Approximation of Partial Derivatives 20
3.2.3 Correction Step . 20

3.3 Residual Model – ConvLSTM 21

4 Problem Setup 23

ix

4.1 Nowcasting Problem Formulation 23
4.1.1 Deep Learning Approach 23

4.2 Radar Echo Dataset . 25
4.2.1 Precipitation Intensity 26
4.2.2 Dataset Splitting . 27

5 PhyCell Adjustments for Precipitation Nowcasting 31
5.1 Intensity Classification Loss . 31
5.2 Non-linearity in the PhyCell . 33

5.2.1 Quadratic Non-linearity Approach 34
5.2.2 Advection-di�usion Equation 35

5.3 Implementation Details . 36
5.4 Settings of the Trained Models 36

6 Experiments 39
6.1 Intensity Classification Loss . 39
6.2 Non-linearity in the PhyCell . 43
6.3 Evaluation of PhyDNet AdvDi� 47
6.4 Advection Field Inferred by PhyCell AdvDi� 52
6.5 Summary of PhyCell Experiments 52

Conclusion 55
Limitations and Outline of Future Work 56

Bibliography 57

A Acronyms 61

B Contents of enclosed CD 63

C Sample Predictions of the Trained Models 65

x

List of Figures

1.1 The main causes of air ascension and cloud forming. [1] 5
1.2 Illustration of general cloud types. Precipitation occurs in Cumu-

lonimbus and Nimbostratus clouds. [1] 6
1.3 Processes that cannot be resolved on traditional model grid scale

but are important for accurate weather prediction. They are rep-
resented via parameterizations in the NWP. [2] 7

1.4 4D-Var data assimilation technique and ensemble forecasting. A
small uncertainty in the initial conditions may lead to completely
di�erent forecasts. [2] . 8

1.5 An example of 2D convolutional layer. The cross-correlation for the
blue output cell is computed as 0 ◊ 0 + 1 ◊ 1 + 3 ◊ 2 + 4 ◊ 3 = 19. [3] 13

1.6 RNN – a latent autoregressive model. [3] 14

3.1 Illustration of the PhyDNet cell architecture with two prediction
branches. [4] . 18

3.2 Illustration of the PhyCell architecture. The left gray block dis-
plays prediction step, the right one is correction. [4] 19

4.1 Illustration of sequence to sequence prediction with a recurrent cell.
Image courtesy of Meteopress. 24

4.2 Domain of the radar echo images in the dataset, visualized on
OpenStreetMatp [5]. 25

4.3 Mean radar reflectivity expressed in dBZ (top) and number of days
containing precipitation (bottom) per month. Every year is di�erent. 28

6.1 E�ect of training with ICLoss on prediction for 60 min (validation
set). By rows: ground truth, baseline prediction, baseline with
ICLoss prediction and “probability” of severe rainfall. 40

6.2 E�ect of training with ICLoss on metrics achieved on the test set
for 60 min predictions. 41

xi

6.3 E�ect of training with ICLoss on prediction for 30 min (test set).
By rows: ground truth, baseline prediction, baseline with ICLoss
prediction and “probability” of severe rainfall. 42

6.4 Sample prediction by pure PhyCell with di�erent designs of � for
60 min (validation set). The top left image is ground truth. 43

6.5 Sample prediction by pure PhyCell with di�erent designs of � for
120 min (test set). The top left image is ground truth. 44

6.6 Mean absolute value of ci,j linear combination coe�cients of Phy-
Cell predictions step. 45

6.7 Quantitative performance of pure PhyCell with di�erent designs of
� on the test set for 60 min predictions. 46

6.8 Sample prediction of convective precipitation by PhyDNet versions
for 60 min (test set). The top left image is ground truth. 47

6.9 Sample prediction of stratiform precipitation by PhyDNet versions
for 60 min (test set). The top left image is ground truth. 48

6.10 Quantitative performance of the proposed PhyDNet AdvDi� on
the test set for 60 min predictions. 49

6.11 MAE on the test set. 50
6.12 Decomposition of PhyDNet branches on a prediction for 60 min

(test set). The top row displays ground truth three times. 51
6.13 Advection field u plotted over a PhyCell partial prediction for 60

min (test set). 53

C.1 Sample prediction by every model for three lead times. The top
row displays ground truth. Convective precipitation, validation set. 66

C.2 Sample prediction by every model for three lead times. The top
row displays ground truth. Convective precipitation, test set. . . . 67

C.3 Sample prediction by every model for three lead times. The top
row displays ground truth. Stratiform precipitation, test set. . . . 68

xii

List of Tables

4.1 Precipitation intensity in 8-bit representation, dBZ radar echo mea-
surements and MLdBZ values. 26

4.2 Year statistics of radar echo data. 29
4.3 Dataset statistics. 30

6.1 Relative change in the metrics of PhyDNet ICLoss compared to
PhyDNet Baseline (red denotes performance loss). 40

6.2 Relative change in the metrics when compared to PhyCell Baseline
(red denotes performance loss). 45

6.3 Relative change in the metrics of PhyDNet AdvDi� and PhyDNet
ICLoss compared to PhyDNet Baseline (red denotes performance
loss). 48

xiii

Introduction

“Our vision is to protect people everywhere from the e�ects of dangerous
weather,” Meteopress.1

Human civilization is intertwined with the weather. It is normal to adapt
day-to-day activities with respect to temperature, wind, and precipitation
outside. Homes are built as a shelter from the weather, and its e�ects on
food production inspired cultures around the world. Thus, it is beneficial to
know in advance what the weather may be like, and adjust according to it
to increase comfort, safety, and profit. However, weather may sometimes be
severe, changing in tens of minutes and destroying anything standing in its
path. The tornado in Moravia, which happened on June 24, 2021, is a tragic
example still in the living memory [6]. In these cases, weather prediction
becomes a critical tool for protection.

Precipitation is not only dictating clothes, transport, or moisture for crops,
but in our latitudes, it accompanies most of the short-term storm-based severe
weather as well. Each time a dark cloud forms on the horizon, a question
regarding its future development and severity arises. Luckily, precipitation
may be monitored in real-time and in high resolution with weather radars.
It may be argued that the observations are su�cient for taking individual
protective measures. Nevertheless, humans have many activities when it is
impossible to monitor their surroundings actively, and a localized short-term
prediction may be game-changing.

For the past three years, we have been exploring the use of deep learning
(DL) techniques for short-time high-resolution rainfall prediction in coopera-
tion with the company Meteopress [7]. Building on the PhyDNet architecture

1https://www.meteopress.com

1

https://www.meteopress.com

Introduction

disentangling physical from unknown dynamics [4], we have achieved unpar-
alleled quantitative performance of an operational precipitation nowcasting
system [8].

However, this is not a competition, and there is still room for improvement.
The di�culty of explaining dynamics learned by a DL model lowers the trust-
worthiness of the predictions in the eyes of meteorologists. The regression
formulation of the learning problem, guided by mean error loss functions, re-
sults in the ignorance of hardly predictable high-frequency features, which
are the most important ones during storm events. Last but not least, the
performance decays quickly with prolonged forecast times.

PhyDNet is a neural network (NN) developed for a general video prediction,
where the underlying dynamics governing the system are unknown. However,
with the long history of weather forecasting [2], this is not the case for precip-
itation. In this thesis, we aim to progress in addressing the issues mentioned
above by exploiting the prior knowledge of precipitation physics. This work
will explore the human knowledge of the atmosphere and how it may be used
to enhance the physical part of the prediction in PhyDNet. Subsequently,
models incorporating the proposed changes will be trained on a radar echo
dataset and compared to a PhyDNet baseline. The results will be thoroughly
analyzed and discussed.

The first two chapters (1, 2) introduce the reader to precipitation nowcasting,
providing necessary theoretical background and exploring related work. In
Chapter 3, the architecture of PhyDNet is described in detail, and the pre-
cipitation nowcasting problem is formulated, alongside the description of data
used, in Chapter 4. Chapter 5 contains proposed changes to PhyDNet. Fi-
nally, the results of the concluded experiments are summarized and discussed
in Chapter 6.

2

Chapter 1
Theoretical Background

This chapter provides theoretical background necessary for the thesis. In Sec-
tion 1.1 we introduce the reader to precipitation, followed by an introduction
to weather prediction in Sections 1.2 and 1.3 and weather radars in Section
1.4. The Section 1.5 summarized di�erential equation concepts needed in this
thesis, followed by deep learning concepts in Section 1.6.

1.1 Atmosphere, Precipitation and Convection

The atmosphere is the gaseous envelope of air around the Earth that shields
us from outer space (e.g., ultraviolet radiation from the sun or objects coming
to Earth from interplanetary space). While the height of the atmosphere is
hundreds of kilometers, the weather we are familiar with is happening near
the surface, in the troposphere. The troposphere, which is the lowest part,
stretches up to the height of 11 km in middle latitudes and contains around
75% of the air mass. It consists of permanent gases, mostly 78% of nitrogen
(N2) and 21% of oxygen (O2), and variable gases as water vapor (H2O) and
carbon dioxide (CO2). [1]

Water is present in the atmosphere in all three states – as invisible water
vapor, liquid droplets, and solid ice crystals. It continuously circulates in the
atmosphere, evaporating from the surface and oceans, condensing into clouds,
and falling back to Earth as precipitation. The amount of water vapor in the
air is called humidity and can be measured in several ways. Considering an
enclosed volume of air in a thin elastic container, called a parcel, the humidity
may be measured as:

• absolute humidity – the ratio of the weight of the water vapor in the
parcel to the volume of the parcel,

3

1. Theoretical Background

• mixing ratio – the ratio of the weight of the water vapor to the weight
of the remaining dry air in the parcel,

• relative humidity – the ratio of the amount of water vapor present in the
air to the water vapor capacity at a particular temperature. [1]

Air has a limited capacity of how much water vapor it can take in before
it saturates, generally meaning that adding more vapor would lead to its
condensation. This capacity changes with air temperature – hotter air may
hold more water vapor. Based on this, it is common to refer to humidity in
terms of a dew point – the temperature to which the air needs to be cooled to
start the condensation of the water vapor currently in it. [1]

During condensation, water creates small visible droplets, called fog or clouds.
This process releases latent heat necessary for phase change from gas to liquid
into the atmosphere and consequently heats it. The opposite, evaporation, is
a cooling process as the heat is consumed by water molecules changing to the
gas state. Thus, water transportation is an important factor for heat transfer
in the atmosphere. [1]

Clouds form when the air is cooled to its dew point, and condensation nuclei
are present (aerosol particles that become centers of water droplets), typically
as a parcel of air rises through the atmosphere. It behaves similarly to an
adiabatic process – air pressure decreases with height, which allows the rising
parcel to expand (increase its volume), lowering pressure and temperature.
Likewise, sinking parcel compresses, increasing its pressure and temperature.
While the parcel contains only water vapor, it changes its temperature by
1¶C per 100 m of height, which is called dry adiabatic lapse rate (DALR). If
the rising parcel is cooled below its dew point, part of the cooling is o�set
by the latent heat released by condensation, and it consequently cools by
saturated adiabatic lapse rate (SALR) – approximately 0.6¶C per 100 m of
height. A typical cloud droplet has an average diameter of 0.02 mm, requiring
only slight upward air currents (updraft) to prevent its fall. Through the
di�usion, collision-coalescence, and ice-crystal processes (ice crystal riming
and aggregation), the droplets may grow enough to overcome the updraft and
fall as precipitation, such as rain, snow, sleet, or hail. [1]

Common causes for the rise of an air parcel and cloud formation are shown
in Figure 1.1. When moving air encounters an obstacle, such as a mountain
range, it is forced to lift along the slopes. The ascending air on the upwind
side cools, and the water inside condenses. If it falls as precipitation, the
descending air on the downwind side will be warmer due to the latent heat
released. Secondly, when two di�erent masses of air encounter, they push the

4

1.1. Atmosphere, Precipitation and Convection

Figure 1.1: The main causes of air ascension and cloud forming. [1]

air between them up. Last but not least, the clouds can be created through
convection. [1]

Convection is a process of vertical heat transfer that is most important on
hot sunny days. When the sun heats the surface unevenly (e.g., a concrete
parking lot will absorb more energy than the neighboring forest), an air par-
cel hotter than its surroundings is created. It expands, becomes less dense,
and consequently starts to rise, cooling along its way by dry adiabatic rate.
The altitude to which the air parcel ascends depends on the atmosphere’s
environmental lapse rate and vertical stability. The environmental lapse rate
describes the vertical profile of temperature in the atmosphere in 1¶C/100 m.
The atmosphere is stable if the environmental lapse rate is smaller than SALR
– ascending air parcel cools faster than the atmosphere and consequently sinks
back to the surface. In an unstable atmosphere, the environmental lapse rate
is higher than DALR, meaning a dislocated air parcel will remain hotter than
the surrounding air and rise. Finally, the atmosphere may be conditionally
unstable, meaning that a parcel lifted enough to start condensation continues
its way upwards but returns down if it remains dry. Cooler, heavier air flows

5

1. Theoretical Background

Figure 1.2: Illustration of general cloud types. Precipitation occurs in Cumu-
lonimbus and Nimbostratus clouds. [1]

in to replace the lifted air parcel, creating a convective circulation. It is a very
localized process that happens only on a scale of a few kilometers (Figure 1.1).
They may be several neighboring convective currents during a hot day. The
term convection is sometimes confused with advection – horizontal movement
of air (wind). [1]

Clouds forming through convection in an unstable atmosphere (e.g., cumu-
lonimbus) produce heavy short-duration rain showers that may turn into thun-
derstorms with hail and lightning. On the other hand, clouds forming in a
stable atmosphere tend to spread horizontally (e.g., nimbostratus), resulting
in long-lasted steady precipitation. [1]

1.2 Numerical Weather Prediction

Traditional multi-day weather forecasts are computed using numerical weather
prediction (NWP) models. The basic concept of NWP is that future weather
can be predicted by applying the laws of physics to the current weather obser-
vations. It is an initial value problem where forecasts are simulated from the
observed state of the atmosphere by integrating partial di�erential equations
(PDEs) governing the dynamics in it. This audacious idea dates back to the
beginning of the 20th century when there were too few routine atmospheric
observations and no computers. The first real-time forecasts were computed
in 1954 in Stockholm, but only in the 1970s, the supercomputing power has

6

1.2. Numerical Weather Prediction

Figure 1.3: Processes that cannot be resolved on traditional model grid scale
but are important for accurate weather prediction. They are represented via
parameterizations in the NWP. [2]

made it feasible to solve the full set of originally proposed equations. Over
the past decades, various technological and scientific advancements led to in-
creased forecast skills, but the paradigm stayed the same. [2]

According to [9], there are seven basic equations governing the speed, temper-
ature, pressure, mixing ratio of water vapor, and density of the atmosphere.
These equations, sometimes referred to as prognostic equations, should, in the-
ory, fully describe processes in the atmosphere. However, it is mathematically
intractable to obtain their analytical solutions, and spatial and temporal dis-
cretizations are needed to solve them numerically. Only part of the dynamics
is represented in the selected discrete step and scale, also called resolved. The
processes, which occur on smaller scales, such as evaporation and condensa-
tion, or heat and momentum originating from friction, are unresolved in the
discretization. To account for the e�ect of the unresolved processes, they enter
the equations as a source or sink terms, parametrized using resolved variables.
[2, 9]

To simulate weather for the whole globe in a reasonable time, the size of the
grid cell needs to be 10 km or larger. These scales do not resolve the radiative,
convective, and di�usive processes in the atmosphere or at the atmosphere-
surface interface. However, their e�ects are important for the prediction (Fig-
ure 1.3). Thus, representing the basic physics in the model through param-
eterization is an important step for accurate predictions of the atmosphere.
The degree of parametric formulation needed di�ers across processes. While

7

1. Theoretical Background

Figure 1.4: 4D-Var data assimilation technique and ensemble forecasting. A
small uncertainty in the initial conditions may lead to completely di�erent
forecasts. [2]

cloud microphysics is similar, independent of the spatial scale, processes like
deep convection occur only in one grid point or between them. Thus, the
respective parametrization needs to be adjusted for every scale. [2]

For regional NWP models, predicting the weather for a smaller area, the res-
olution may be increased to ≥ 1 km per grid cell. Most of the mesoscale
processes are resolved here, allowing their simulation with much higher ac-
curacy. However, regional model computation times still range from tens of
minutes to hours. [9, 10]

1.2.1 Model Initialization and Ensemble Forecasts

The numerical simulations of the atmosphere described above are determin-
istic given the input state. However, the system is chaotic, as discovered by
Edward Lorenz in the 1960s. Lorenz found that exceedingly small perturba-
tions in the input state lead after two weeks to predictions as di�erent as if
they were randomly chosen system states. Thus, two tasks arise. Obtaining
an as good representation of the input state as possible and quantifying the
uncertainty in the prediction. [9]

The chaotic nature of the atmosphere results in a decreasing skill of the fore-
casts with prediction time. As it is naive to assume a perfect measurement
of the state of the atmosphere, performing deterministic forecasts gives only
very limited information about the future. Moreover, due to the non-linear
complexity of the system, assigning uncertainty to predictions via statistical

8

1.3. Weather Nowcasting

methods is inadequate. The accepted and operationally deployed solution is
to compute an ensemble of predictions. A set of complete simulations of the
system is started from several slightly perturbed initial states. Based on the
predictability of the current weather, the obtained forecasts will be more or
less di�erent, providing a notion of the uncertainty of the predictions. This set
of deterministic forecasts is then used to estimate the probability distribution
of the state of the atmosphere at some point in the future (Figure 1.4). [9]

The main problem in determining the initial conditions for the forecast model
is that there are observations available only for part of it, and they are dis-
tributed non-uniformly in space and time. The number of observations is
several orders of magnitude lower than the number of model state degrees of
freedom, which are decided by the domain, grid-scale, and modeled variables.
The first approaches to filling these gaps in the grid were simple interpola-
tion methods that evolved into complex data assimilation techniques, such as
4D-Var, used in operational forecasts today. [9, 2]

The four-dimensional variational data assimilation technique (4D-Var) uses
ensemble modeling in two steps – analysis and forecasts. Short-range fore-
casts are first computed (e.g., for 6 hours), starting from some set of initial
states2, obtaining an ensemble of possible trajectories during this time win-
dow. Analysis of the current state of the atmosphere is selected from these
trajectories based on their di�erence from the newly available observations
(Figure 1.4). Afterward, a set of these analyses initialize the actual ensemble
forecast. Ensemble analyses and forecasts are used in cycles, always keeping a
model representation of the current state of the atmosphere and assimilating
observations into it. [2]

1.3 Weather Nowcasting

Nowcasting is short-term forecasting of the weather, defined by the World
Meteorological Organization (WMO) as: “forecasting with local detail, by any
method, over a period from the present to 6 hours ahead, including a detailed
description of the present weather,” [11].

Thanks to the recent advances in communication technologies, nowcasts may
be e�ectively utilized by air tra�c control, power utilities, or anyone conduct-
ing their work outdoors. However, the primary motivation behind nowcasting
is to provide tools for informed decision-making during high-impact small-
scale weather events, such as thunderstorms and related hazards. The time of
an issued warning is an essential factor, as a warning is only useful if it pro-

2
Commonly taken from a previous run of this or some larger domain NWP model.

9

1. Theoretical Background

vides the receiver with enough lead time to take action. Thus, high resolution
and real-time availability are important traits of nowcasting tools.[11]

1.4 Weather Radars

Radar is a system for measuring the distance to an object based on the object’s
ability to reflect electromagnetic pulses. Weather radar transmits pulses for
every rotation and several elevations, always waiting and receiving reflected
signals. As the surface of water droplets is electrically leading, it reflects a por-
tion of the energy from the transmitted pulse. When the radar receives the
reflected signal, the exact position of the water droplets in the atmosphere
may be determined based on the pulse direction and time. Thus, weather
radars provide a tool for real-time and high-resolution precipitation monitor-
ing. Radars have been detailly discussed in the Bachelor’s thesis [7] that serves
as a prelude to this work.

1.5 Di�erential Equations

The objective of many physical problems is to understand the relationship
between changing quantities – to find out how is a target variable changing
with respect to others on which it is dependent. In mathematics, the rate
of change is expressed through derivatives. Thus, mathematical models of
physical systems often involve derivatives of the unknown function, and when
they do, they are called di�erential equations. [12]

Considering an unknown function y of a variable x the simplest di�erential
equation is of the form

ˆy

ˆx
= f(x), (1.1)

describing a relation between the two variables, based on a known function f

of x. This equation is called an ordinary di�erential equation (ODE) as the
unknown function y depends only on one variable x. If it depended on several
variables and the equation contained partial derivatives of them, it would be
called partial di�erential equation (PDE). The order of the highest derivative
included is the order of the equation. [12]

The desirable outcome of analysis of di�erential equation

ˆ
n
y

ˆxn
(x) = f

A

x,
ˆy

ˆx
, . . . ,

ˆ
n≠1

y

ˆxn≠1

B

, (1.2)

where y is an n times di�erentiable unknown function of interest and f is
a known function, is to find an analytical solution. A function y satisfying

10

1.5. Di�erential Equations

Equation 1.2 for all x in an open interval x œ (a, b). Considering an example
first-order ODE

ˆy

ˆx
= x

3
, (1.3)

the analytical solution is

y = x
4

4 + c, (1.4)

for an arbitrary constant c. Equation like these are called initial value problems
– the constant c can be exactly determined by the initial conditions y(0) = –,
where – is a know value.[12]

When it is not possible to find an analytical solution, numerical methods need
to be used, out of which most simple is forward Euler’s method. Consider an
initial value problem

ˆy

ˆx
= f(x, y), y(x0) = y0. (1.5)

The value of y at point xn can be obtained by computing a sequence (y0, . . . , yn)

yi+1 = yi + hf(xi, yi), (1.6)

at points (x0, . . . , xn), equally spaced by h. [12]

This work deals with PDEs. A higher order PDE of an unknown function
y(t, x) is called linear, if it can be written in the form

a0(t, x)y + a1(t, x)ˆy

ˆt
+ a2(t, x)ˆy

ˆx
+ · · · + an(t, x) ˆ

i+j
y

ˆtiˆxj
= b(t, x), (1.7)

where ak(t, x), k œ {0, . . . , n} and b(t, x) are arbitrary di�erentiable functions.
PDEs not writable in this form are called non-linear. [12]

1.5.1 Advection-Di�usion Equation

The advection-di�usion equation, sometimes called convection-di�usion, is the
simplest model describing a chemical carried by motion in a fluid and di�using
along the way. The concentration of the observed quantity h(t, x), dependent
on time t and location x, is modeled as

ˆh

ˆt
= ≠u

ˆh

ˆx¸ ˚˙ ˝
advection

+ Ÿ
ˆ

2
h

ˆx2
¸ ˚˙ ˝

di�usion

, (1.8)

where u is a velocity guiding the advection term and Ÿ is di�usivity. [13]

11

1. Theoretical Background

1.5.2 Navier-Stokes Equations

Navier-Stokes equations are PDEs describing motion of the fluids. The un-
known variable is velocity vector field u, describing speed and direction of
flow in every point of it. Given the assumption of incompressible flow, the
momentum equation may be written as

ˆu

ˆt
+ (u · Ò)u ≠ ‹Ò

2
u = ≠

1
fl

Òp + g, (1.9)

where ‹ is viscosity of the fluid, fl is density, p is pressure and g represents
external sources. [14]

1.6 Deep Learning

We assume that the reader is familiar with DL, and we summarize here only
the concepts most important for the thesis, referencing [3]. In case more
information about the topic is requested, it can be studied in [3].

Deep learning is a part of machine learning using neural networks consist-
ing of large number of layers and neurons. The task of supervised deep
learning is to automatically learn weights needed for modeling an arbitrary
function, represented by training data. Given a batch of training examples
B = {(xi, yi)|i œ {1, . . . , N}} and weights of the model ◊, gradient descent
algorithm is used for updating the weights toward minimization of error as

◊ Ω ◊ ≠
–

N

ÿ

iœB

ˆL
(i)(◊)
ˆ◊

, (1.10)

where L
(i)(◊) is the error for i-th training sample and – is a learning rate. [3]

The default building block of neural networks is a perceptron. Given a vector
of its learned weights w, learned bias b and a vector of input features x, the
output o is computed as

o = ‡(x|w + b), (1.11)

where ‡ is a non-linear activation function, such as sigmoid, ReLU or tanh.
As the rest of the computation is linear, the activation is the key component
in learning complex functions. [3]

1.6.1 Convolutional Layers

Convolutional layers are designed to work e�ciently with image data. They
are processing 3D tensors of shape C◊H◊W with learned 3D kernels C◊k◊k,
where C is the number of image channels, and the rest describes its size.
The kernel is slid across the input image, computing cross-correlation at each

12

1.6. Deep Learning

Figure 1.5: An example of 2D convolutional layer. The cross-correlation for
the blue output cell is computed as 0 ◊ 0 + 1 ◊ 1 + 3 ◊ 2 + 4 ◊ 3 = 19. [3]

location (Figure 1.5). It should be noted that from a mathematical point of
view, the operation performed is better described as cross-correlation. [3]

1.6.2 Recurrent Neural Networks

Recurrent neural networks (RNN) keep an internal state ht that allows them
to process sequences. Their task is to predict the input state xt at time t,
given a sequence xt≠1, . . . , xt≠· of past · measurements. A summary of the
past is represented in ht, which is updated at each step as ht = g(ht≠1, xt≠1).
Thus, the following input state xt is estimated as ‚xt = arg maxxt

P (xt|ht).
Performing regression on themselves, using the latent representation ht, these
models are called latent autoregressive models (Figure 1.6). [3]

One of the most popular RNN architectures is Long Short-Term Memory
(LSTM) cell [15], which can learn both long-term dependencies in the pro-
cessed sequence and between the consecutive steps in it. ConvLSTM, their
version for processing spatio-temporal data (a sequence of spatial data – e.g.,
images), has been introduced in [16] and will be discussed in detail in Section
3.3.

1.6.3 Group Normalization

Group normalization (GN) [17] is an alternative standardization technique to
the famous batch normalization [18]. The role of these techniques is to make
training faster and more stable to the hyper-parameter changes. When dealing
with image data, memory constraints limits the number of samples in a batch.
GN ’s advantage over batch normalization is that it computes statistics over
groups of channels, not requiring large batch sizes to work. C channels of the
input x are split into g groups, each containing C/g channels. The input is

13

1. Theoretical Background

Figure 1.6: RNN – a latent autoregressive model. [3]

then standardized as
y = x ≠ E[x]


Var[x] + ‘

· “ + —, (1.12)

where the mean E[x] and variance Var[x] are computed over each group of
channels and “, — are learnable parameters. [17]

14

Chapter 2
Related Work

This chapter contains a brief overview of other work related to precipitation
nowcasting and enhancing DL models with prior knowledge of physical pro-
cesses.

2.1 Precipitation Nowcasting

Regional NWP models (Section 1.2) such as AROME-NWC [10] can explicitly
describe convection in the atmosphere and may be used in nowcasting for
longer time range 1 ≠ 6 h. AROME-NWC 6 h forecast is run every hour, on
a grid resolution 2.5 km, with a 60 s time step. The objective is to have the
predictions available 30 minutes after the analysis time, achieved by a data
assimilation window (-45 min, +15 min) and a short 15 min cut-o� time. Only
observations that become available within the cut-o� time window are used
in the analysis, making its selection a crucial balancing act between quickly
available forecasts and enough data necessary for a good performance.

Real-time high-resolution radar and satellite observations make accurate NWP
initializations possible. However, the cost of data assimilation and limitations
on the model resolution to maintain computability cause not an optimal use
of this data for short-range 0 ≠ 2 h nowcasting. A traditional approach is
to compute nowcasts as an extrapolation on a sequence of radar or satellite
measurements. [19]

In Lagrangian persistence models, it is assumed that the intensity of precip-
itation does not change. An advection field (optical flow) is estimated from
a sequence of past observations, and the future ones are predicted by advect-
ing the present rainfall. An open-source library containing these models is
rainymotion [20]. There have been advances, building on the Lagrangian
persistence, allowing probabilistic, more accurate nowcasts, such as models

15

2. Related Work

from the library pySTEPS [21]. However, the nowcasting of convective initia-
tion, development, and decay remains di�cult. [19]

“Machine learning provides an opportunity to capture complex non-linear spatio-
temporal patterns and to combine heterogeneous data sources for use in pre-
diction,” [19]. The ConvLSTM architecture [16] was initially designed for pre-
cipitation nowcasting, and improvements to spatio-temporal prediction were
introduced in PredRNN [22]. A Deep Generative Model may be used to pre-
dict high-frequency features in the precipitation [23].

2.2 Physics and Deep Learning

Enhancing DL models with a physics prior or a combination of physical model-
ing and DL can improve the ability of models to generalize to unseen samples,
reduce the size of models or help training when not enough training data is
available. A good overview of the topic may be found in [14].

The following work influenced this thesis:

• [24] – Physics informed neural networks are constrained by physical laws,
expressed as general non-linear PDEs. These can learn solutions to
supervised training problems data-e�ciently while respecting the given
laws.

• [25] – The authors present hidden fluid mechanics, a DL framework
for inference of hidden quantities, like fluid pressure and velocity, from
spatio-temporal visualizations of a passive scalar. Passive scalar is trans-
ported by the fluid but has no dynamical e�ect on the fluid motion.

• [4] – PhyDNet is RNN for general video prediction that learns disentan-
glement between physical and unknown dynamics governing the studied
system. It will be discussed in detail in Chapter 3.

• [26] – APHYNITY is a framework for augmenting physical models with
DL. The authors present a formulation of the learning problem that
allows the physical model to learn as much dynamics as possible.

16

Chapter 3
PhyDNet Architecture

Our work in precipitation nowcasting models is based on the ideas of Vin-
cent Le Guen and Nicolas Thome, which are presented in [4]. The authors
propose to model video data for future frame prediction with a recurrent cell
(PhyDNet) that disentangles physical dynamics governing the data from the
unknown factors. The approach proposed in the paper builds on the idea of
approximation of partial di�erential equations with convolutional layers and
creates a framework for including these equations in DL models. This chapter
contains a detailed description of PhyDNet’s architecture and design concepts
as understood from [4].

3.1 Disentanglement

PhyDNet is a recurrent cell designed for a general prediction of future video
frames. Given a frame u(t), the PhyDNet cell is trained to predict the following
frame u(t+�). Authors work with an assumption that the system, which is
captured in the video, can be at least partially described by some physical
laws. Following it, they design architecture with two branches (Figure 3.1).
The first branch consists of a novel PhyCell that models a broad class of
PDEs and handles physical dynamics in the prediction. The second one is a
deep ConvLSTM [16] cell handling all the residual dynamics. As the physical
laws may not apply at the pixel level of the video, this disentanglement is
preceded by a transformation into a conceptual latent space H that is learned
end-to-end by deep convolutional encoder E and decoder D. [4]

The main benefit of this disentangling architecture is the advanced cooperation
between physically constrained modeling and prediction by a deep model.
Thus, PhyCell leverages physical prior to improve generalization and allows
the model to learn prediction dynamics describable by PDE more e�ectively
(with less trainable parameters). ConvLSTM learns the complex unknown

17

3. PhyDNet Architecture

Figure 3.1: Illustration of the PhyDNet cell architecture with two prediction
branches. [4]

factors necessary for pixel-level prediction. [4]

In the latent space H, the memory of the PhyDNet cell remembers video up
to a time t, in a domain with coordinates x = (x, y), represented as h(t, x) =
h(t)

œ H and linearly disentangled into physical and residual components as
h(t) = h(t)

p + h(t)
r . Dynamics of the video are then governed by the following

PDE:

ˆh(t)

ˆt
= ˆh(t)

p

ˆt
+ ˆh(t)

r

ˆt
:= Mp(h(t)

p , E(u(t))) + Mr(h(t)
r , E(u(t))), (3.1)

where Mp is modeled by PhyCell and Mr by ConvLSTM. Prediction of the
next frame, discretized according to the forward Euler method (Section 1.5),
is computed as:

‚u(t+�) = D(h(t+�)
p + h(t+�)

r)
= D(h(t)

p + Mp(h(t)
p , E(u(t)))

+ h(t)
r + Mr(h(t)

r , E(u(t)))),

(3.2)

remembering the newly computed hidden states h(t+�)
p and h(t+�)

r . [4]

18

3.2. Physical Model – PhyCell

Figure 3.2: Illustration of the PhyCell architecture. The left gray block dis-
plays prediction step, the right one is correction. [4]
3.1.1 Data Dimensions

The input video frames are u(t)
œ RCu◊H◊W , where H, W describe size of

the frame and Cu is number of input channels (typically Cu œ {1, 3, 4}). The
dimensions change after the learned transformation into the latent space to
E(u(t)) œ H = RCh◊Hh◊Wh . In the default settings Ch = 64, height of the
transformed domain is Hh = H/4 and width Wh = W/4. PhyDNet design is
fully convolutional; thus, it can handle input images with arbitrary H and W .

3.2 Physical Model – PhyCell

PhyCell (Figure 3.2) is a novel physically constrained recurrent cell introduced
in [4] that models the dynamics in two steps:

Mp(hp, E(u)) := �(hp) + C(hp, E(u)). (3.3)

The first step is prediction in the latent space �(hp) (Equation 3.4) that fol-
lows the implemented PDE. Then, correction step C(hp, E(u)) (Equation 3.8)
handles the assimilation of input data into the latent representation similarly
as in a Kalman filter [27].

3.2.1 Prediction Step

The physical predictor �(hp) models a generic class of linear PDEs as

�(h(t)
p) :=

ÿ

i,j<k

ci,jDi,j(h(t)
p) =

ÿ

i,j<k

ci,j
ˆ

i+jhp

ˆxiˆyj
(t, x), (3.4)

19

3. PhyDNet Architecture

computing a linear combination of spatial derivatives using learned coe�cients
ci,j . Following the forward Euler discretization, the latent prediction is com-
puted as

h̃(t+�)
p = h(t)

p + �(h(t)
p). (3.5)

As this step relies solely on the hidden representation h(t)
p , prediction h̃(t+�)

p

can be computed even if the input frame u(t) is not available. [4]

The operation in Equation 3.4 is implemented using two convolutional layers
as displayed in the Figure 3.2. The first one ◊1 computes k

2 spatial derivatives
as „1 = ◊1 ~ hp, resulting in a tensor „1 œ Rk2◊Hh◊Wh . This operation is
described in detail in the following section 3.2.2. The second layer ◊2 performs
the linear combination as convolution „2 = ◊2 ~ „1. The Ch kernels of ◊2 are
sized 1 ◊ 1, assigning a scalar ci,j œ R to each partial derivative, represented
as a channel in „1 and performing combination for each spatial position.

3.2.2 Approximation of Partial Derivatives

The partial di�erential operators Di,j(hp) = ˆi+jhp

ˆxiˆyj = qi,j ~ hp are learned
through constrained convolutional kernels qi,j . The k ◊ k moment matrix
M(qi,j) = (ma,b)k◊k of a k ◊ k convolutional kernel qi,j is defined as

ma,b := 1
a!b!

k≠1
2ÿ

u,v=≠ k≠1
2

u
a
v

b
qi,j [u, v]. (3.6)

It is shown in [4] that if ma,b = 1 for a = i, b = j and ma,b = 0 otherwise, the
convolutional kernel qi,j approximates di�erential operator Di,j through finite
di�erence coe�cients. [4]

Thus, the correct kernels are learned through Lm moment loss regularization.
Defining a k ◊k matrix �k

i,j , which equals 1 at position (i, j) and 0 elsewhere,
the regularization term is computed as

Lm =
ÿ

i,jÆk

||M(qi,j) ≠ �k
i,j ||F , (3.7)

where || · ||F is Frobenius norm. [4]

3.2.3 Correction Step

The correction step C(hp, E(u)), guiding the assimilation of latent prediction
and input data, is defined as

C(h(t)
p , E(u(t))) := K(t)

§ (E(u(t)) ≠ (h(t)
p + �(h(t)

p))). (3.8)

20

3.3. Residual Model – ConvLSTM

Using this equation discretized according to forward Euler method, it is pos-
sible to derive the whole computation of the new hidden state of PhyCell as

h(t+�)
p = h(t)

p + �(h(t)
p) + C(h(t)

p , E(u(t)))
= h̃(t+�)

p + K(t)
§ (E(u(t)) ≠ h̃(t+�)

p)
= (1 ≠ K(t)) § h̃(t+�)

p + K(t)
§ E(u(t)).

(3.9)

The gating factor K(t)
œ [0, 1] in these two equations, can be interpreted as

a Kalman gain controlling the trade-o� between the prediction and correc-
tion steps. When K(t) = 0, the input frame u(t) has no contribution to the
computed hidden state h(t+�)

p . On the contrary, if K(t) = 1, the whole latent
prediction h̃(t+�)

p is discarded and the hidden state h(t+�)
p is reseted according

to the input. [4]

The Kalman gain K(t) is computed using two convolutional layers ◊3, ◊4 as
K(t) = ◊3 ~ h̃(t+�)

p + ◊4 ~ E(u(t)).

3.3 Residual Model – ConvLSTM

The unknown phenomena in the video dynamics that are not corresponding
to prior models are learned entirely from the data as the residual dynamics
Mr(hr, E(u)) (Equation 3.1). This task is handled by a deep neural network,
such as ConvLSTM [16], which was used by the PhyDNet authors in [4].

ConvLSTM [16] extends the idea of LSTM recurrent cell to spatio-temporal
data. Originally designed for radar echo precipitation fields, ConvLSTM works
with sequences of images, where each image is a 3D tensor – first dimension
denotes number of channels, the other two are spatial. In the cell, vector
products of the originally fully connected layers are replaced by convolutions
as (~ denotes the convolution operation, § denotes Hadamard product and
‡ is the sigmoid activation function)

i
(t) = ‡

1
Wxi ~ u(t) + Whi ~ h(t)

r + Wci § C
(t) + bi

2

f
(t) = ‡

1
Wxf ~ u(t) + Whf ~ h(t)

r + Wcf § C
(t) + bf

2

C
(t+�) = f

(t)
§ C

(t) + i
(t)

§ tanh
1
Wxc ~ u(t) + Whc ~ h(t)

r + bc

2

o
(t) = ‡

1
Wxo ~ u(t) + Who ~ h(t)

r + Wco § C
(t+�) + bo

2

h(t+�)
r = o

(t)
§ tanh

1
C

(t+�)
2

(3.10)

These equations follow notation of this chapter, where u(t) is the observed
image, C

(t) is the cell state and h(t+�)
r is both the new hidden state and

21

3. PhyDNet Architecture

prediction of the ConvLSTM. i
(t)

, f
(t)

, o
(t) are gates deciding how is the data

processed inside the cell. Finally, W⇤ are weights and b⇤ are biases of the
particular layers. [16]

22

Chapter 4
Problem Setup

Precipitation nowcasting, formulated as a spatio-temporal prediction of atmo-
spheric measurement sequences, poses an ideal problem for ML models, thanks
to the large amounts of real-time, well-defined, and relatively clean data. This
chapter formally defines the precipitation nowcasting problem explored and
elaborates on the data and tools used.

4.1 Nowcasting Problem Formulation

We formulate the precipitation nowcasting task as a sequence to sequence
prediction of tensors �(T)

œ RC◊H◊W , describing the state of the atmosphere
at a given time T , with a constant time step �. �(T) is a 3D tensor, where
H and W are respectively the height and width of the prediction domain, and
C is the number of di�erent data channels.

Given a sequence of past ·I measurements (�(T ≠(·I≠1)�)
, . . . , �(T)) up to a

time T , the task is to predict ·O future ones as

(‚�(T +�)
, . . . , ‚�(T +·O�)) =

arg max
(�(T +�),...,�(T +·O�))

P ((�(T +�)
, . . . , �(T +·O�))|(�(T ≠(·I≠1)�)

, . . . , �(T))),

(4.1)

where ‚�(t)
œ RCO◊H◊W is a prediction of future precipitation fields for each

timestamp t œ (T + �, . . . , T + ·O�). The number of input C and output CO

data channels may di�er.

4.1.1 Deep Learning Approach

We approach this task using convolutional RNN F predicting the sequence of
future states as a regression

F((�(T ≠(·I≠1)�)
, . . . , �(T)), ◊F) = (‚�(T +�)

, . . . , ‚�(T +·O�)), (4.2)

23

4. Problem Setup

Figure 4.1: Illustration of sequence to sequence prediction with a recurrent
cell. Image courtesy of Meteopress.
where ◊F are trainable parameters of F ’s inner recurrent cell F . This cell is
trained to predict the nearest future state as

F (�(T)
, ◊F , RF) = ‚�(T +�)

, (4.3)

where RF is the cell’s memory, which is updated after each use of the function.
To predict ·O future states the cell F is used recurrently as illustrated in
the Figure 4.1, processing the sequence chronologically. The prediction is
discarded during the input states (�(T ≠(·I≠1)�)

, . . . , �(T ≠�)), learning just
the inner representation of the seen precipitation situation RF . The state
‚�(T +�) for the first lead time is predicted according to the Equation 4.3, and
the following ·O ≠ 1 predictions are computed as

F (‚�(T +(i≠1)�)
, ◊F , RF) = ‚�(T +i�)

, (4.4)

for i œ {2, . . . , ·O}.

F is a supervised ML model, meaning that its parameters ◊F are learned on
a dataset of N training samples DT r = {X(i)

}i={1:N}. Each sample X(i) =
(�(T ≠(·I≠1)�)

, . . . , �(T)
, . . . , �(T +·O�)) is a sequence of ·I + ·O atmospheric

measurements, from which the first ·I measurements X(i)
I are used as an input

to the model and the following ·O as ground truth X(i)
O . Model parameters

◊F are learned through optimization of the loss function

L(◊F , DT r) = 1
N

ÿ

iœ{1:N}
Lsample(F(X(i)

I , ◊F), X(i)
O)

= 1
N

ÿ

iœ{1:N}

Q

a 1
·O

ÿ

jœ{1:·O}
Lstep(‚�(T +j�)

, �(T +j�))

R

b .

(4.5)

24

4.2. Radar Echo Dataset

Figure 4.2: Domain of the radar echo images in the dataset, visualized on
OpenStreetMatp [5].

4.2 Radar Echo Dataset

The dataset is crucial when approaching any task from the ML perspective.
The selected model, which may be capable of fully describing the studied
system dynamics, will be useless if the training samples are not representative
of the tackled task. Thus, improvements to any ML system are two-fold. On
one side is increasing the quality of the samples and dataset as a whole. On the
other are changes to the model architecture and its learning process defining
how is the information from the samples extracted.

In this work, we look into improvements of our ML precipitation nowcast-
ing model, and its training, considering a fixed dataset of radar echo image
sequences (Section 1.4). Thus, only C = 1 input channel is used for each mea-
surement �(T). The source radar echo data comes from the composite images
created by and distributed through the OPERA program of EUMETNET [28].
At the time of the dataset creation, Meteopress’s archives contained 249176
images from the time window from 2015-10-23 19:30 UTC to 2020-07-21 23:50
UTC with a time step of 10 min. The remaining 403 images from this time
range are missing or corrupted. Specifically, the five years from 2015 to 2019
are missing respectively (98, 174, 66, 34, 31) images (Table 4.2).

We have chosen to crop the prediction domain from the composite data to the
area of the Czech Republic with small surroundings (Figure 4.2). Our reason-
ing behind this decision is to develop the models in an area with good radar

25

4. Problem Setup

coverage and quality measurements, keep the domain small enough for reason-
able training times and memory requirements, and finally, a local preference.
The WGS 84 coordinates3 of the domain in degrees are

• North-West corner – 51.397001 N, 11.672296 E,

• South-East corner – 48.223874 N, 19.274628 E.

The images portray measurements above the Earth’s surface in the Pseudo-
Mercator geographic projection, known from the web mapping applications
(projection code EPSG:3857 [29]). We are aware of the potential pitfalls asso-
ciated with Mercator projection that keeps local shapes but not distances. A
more distant pixel from the equator represents a smaller area on the ground
than a nearer pixel. In this case, resolution of the data is ≥ 0.94 km/px at
the lowest latitude of the domain and ≥ 0.88 km/px at the highest latitude.
In the scope of this work, we do not identify the resolution di�erence 0.06 km
as a problem. However, an eye needs to be kept on the selected geographic
projection for larger-scale applications.

4.2.1 Precipitation Intensity

The precipitation intensity is represented in the source data with 8-bit values
using the dBZ units. The scale is linearly mapping values [0, 60] dBZ to inte-
gers in [0, 255], except the 0 dBZ measurement rendered as no precipitation.
In fact, any measurement from range (≠Œ, 0] dBZ is represented as the 0
value. An example of the used mapping may be seen in Table 4.1.

Table 4.1: Precipitation intensity in 8-bit representation, dBZ radar echo
measurements and MLdBZ values.

8-bit value dBZ MLdBZ
0 no precipitation 0
1 ≥ 0.235 ≥ 0.0039
2 ≥ 0.471 ≥ 0.0078
.
17 4 ≥ 0.0667
.
255 60 1

One of the rules of thumb in ML is scaling or standardizing input and output
values to small numbers to help stabilize the training process [3]. We have
chosen to simply linearly scale the 8-bit integers to float numbers in the range
[0, 1], internally called MLdBZ.

3
coordinates used in GPS, EPSG:4326 [29]

26

4.2. Radar Echo Dataset

For a domain of the size of the Czech Republic, it is not raining every day.
Thus, not every radar echo image contains information valuable for the ML
model training, and rainy images need to be selected.

Definition 1. A precipitation field �(T) is flagged as rainy if

• > 7% of its area contains non-zero values,

• or > 1% of its area has values > 24 dBZ.

After removing clearly noisy samples, we have identified 102873 rainy radar
echo measurements in the studied time range.

4.2.2 Dataset Splitting

An ML model is only useful if it is able to generalize – to perform predictions
on input samples never seen during the training process. Unfortunately, due to
their large expressive capacity, models can sometimes memorize the training
samples instead of learning a solution to the task. Despite its great perfor-
mance on the training dataset, such models become useless in applications. A
generally accepted solution for checking this behavior and objectively compar-
ing various models is to split the dataset into three subsets – train, validation
and test, using them isolated in various steps of the model development. [3]

The splitting of the dataset cannot be done arbitrarily. Ideally, the three
datasets should be sampled from the same “real-world” distribution. Thus, a
not overfitted model should achieve the same quantitative performance over
the datasets, and the test scores should be representative of the production
ones. Moreover, it is necessary to watch out for any information leakage
among the datasets to utilize this technique e�ectively. When two samples
are very similar, they need to be included in the same set. Otherwise, a
sample memorized during training may falsely generate performance on other
datasets.

With time-series data, such as radar echo sequences, two consecutive samples
capture the same atmospheric situation, just slightly shifted. Thus, the sam-
ples cannot be split randomly, as memorizing one sample will help predict the
following one. The inclusion of these in di�erent datasets would create a false
performance. We see two feasible approaches.

Firstly, the dataset may be split by years based on the seasonality of the
weather – few years are used in training, the next one for validation, and the
next for testing. However, the visualization of mean radar reflectivity and
the number of days containing precipitation per month in Figure 4.3 does
not show any seasonality throughout the years considered in the dataset. The

27

4. Problem Setup

Figure 4.3: Mean radar reflectivity expressed in dBZ (top) and number of
days containing precipitation (bottom) per month. Every year is di�erent.

28

4.2. Radar Echo Dataset

means of reflectivity per year (Table 4.2) tell a similar story of every year being
di�erent. These three comparisons, which exclude data from 2015 and 2020
as these years are incomplete, hint that precipitation distribution depends on
other variables than the time of the year. Consequently, we think that the
assumption of datasets being sampled from the same distribution would be
violated if they were split by years.

Table 4.2: Year statistics of radar echo data.

Year Mean reflectivity
[dBZ]

missing
samples

independent
situations

2015 – 98 15
2016 1.542 174 60
2017 1.668 66 53
2018 1.334 34 61
2019 1.481 31 57
2020 – 0 29

The other chosen approach is to identify whole precipitation situations, inde-
pendent among themselves, and split them randomly into the sets.

Definition 2. Two rainy precipitation fields �(ta) and �(tb) are considered
dependent if there is less than 24 hours between them, |tb ≠ ta| < 24 hours.
Definition 3. An independent precipitation situation S

Tb

Ta
is the shortest

chronologically sorted sequence of all precipitation fields between two times-
tamps S

Tb

Ta
= (�(t))tœ[Ta,Tb], containing all the precipitation fields dependent

with �(t) for every field �(t)
œ S

Tb

Ta
.

Following the Definition 3, two consecutive independent precipitation situa-
tions are separated by at least 24 hours without any rainy radar echo mea-
surements. The time delta of 24 hours was chosen empirically to ensure that
memorizing a sample from one situation will not help with the prediction from
a di�erent one.

We have identified 275 independent precipitation situations in the considered
time range with a median length of 78 hours and a mean length of 112 hours.
The number of situations per year is displayed in Table 4.2. These situations
were split randomly into the train, validation, and test set with ratios and
counts summarized in Table 4.3.

Each independent precipitation situation S
Tb

Ta
consists of a set of training se-

quences {X(t)}tœ[Ta,Tb], which are added to the corresponding dataset D. The
notation X(t) stands here for a sequence centered around the measurement
�(t) as X(t) = (�(t≠(·I≠1)�)

, . . . , �(t)
, . . . , �(t+·O�)).

29

4. Problem Setup

Table 4.3: Dataset statistics.

Dataset Situation split
percentage

independent
situations

Hours of
precipitation

Train 72% 198 22724
Validation ≥ 12.7% 35 3678
Test ≥ 15.3% 42 4570

30

Chapter 5
PhyCell Adjustments for

Precipitation Nowcasting

PhyDNet (Chapter 3) is a deep RNN designed to predict future frames of
general video sequences. PhyDNet’s authors [4] do not assume much about the
underlying physical dynamics governing the captured system and let PhyCell
learn some of the broad family of PDEs described in the Equation 3.4.

However, in the case of precipitation nowcasting (Section 1.3), there is both
some knowledge of precipitation physics and requirements for forecasts to be
operationally usable. In this chapter, we propose changes to the PhyDNet’s
architecture, aiming at utilizing its strengths to the full potential in the context
of nowcasting.

PhyDNet is used as the recurrent cell F in the Equation 4.3, where cell’s
memory RF = (hp, hr) contains hidden states of both physical and residual
branches.

5.1 Intensity Classification Loss

One of the primary motivations for implementing precipitation nowcasting
systems is the advantage of higher-resolution forecasts during storm events.
Most short-time severe weather risks, such as hail, flash floods, strong winds,
or lightning, are connected to convective systems and thus high-intensity pre-
cipitation. The ability to nowcast storms accurately, even if only dozens of
minutes into the future, benefits both the general public and operational me-
teorologists monitoring these situations. The automatization of nowcasting
brings unprecedented forecast localization to the end-users while providing
another valuable information source for meteorologists issuing severe weather

31

5. PhyCell Adjustments for Precipitation Nowcasting

alerts.

However, when the training of a neural network is formulated as a regression
problem, the model may not be motivated to predict pixels with high inten-
sities and other high-frequency features in general. Due to the chaoticness
of weather, the uncertainty of prediction naturally rises with increasing lead
time, and it needs to be handled. Given the limited information on the input,
it may not be possible to decide whether a storm will move to some point or
one 10 km souther. Traditional regression loss functions, such as MSE, are
penalizing an incorrect selection of the storm location twice – once for pre-
dicting it at a wrong place and the second time for not predicting it at the
correct one. To avoid these errors, regression-based models generally learn
to express the uncertainty with smoothed-out predictions, entirely omitting
high-frequency features in the predictions.

While smoothed out predictions achieve optimal prediction error, they do not
provide valuable information during storm events. To emphasize the pre-
diction of high intensities, we propose to create a new output of the model,
containing prediction of “probabilities” of severe rainfall over 40 dBZ. Accord-
ing to Equation 4.3, output of one recurrent cell’s prediction step is ‚�(T +�).
In the case of the PhyDNet, it is the output of the deep convolutional decoder
D that is combining and processing predictions of the two branches (Section
3.1). The new output is computed via a single convolutional layer ◊prob with
a kernel size 3 as

‚�(T +�)
prob = ◊prob ~ ‚�(T +�)

. (5.1)

Considering these two outputs, the error of prediction on one training sample
X(i) (Equation 4.5) decomposes to

Lsample(F(X(i)
I , ◊F), X(i)

O) = 1
·O

ÿ

jœ{1:·O}
Limg(‚�(T +j�)

, �(T +j�))+

Licl(‚�(T +j�)
prob , �(T +j�)

prob).
(5.2)

In this equation, the ground truth �(T +j�)
prob is a binary image obtained via

thresholding of the ground truth �(T +j�) – each pixel is assigned the value
one if its intensity is greater than 40 dBZ and zero otherwise. The comparison
of this binary ground truth and the predicted “probabilities” Licl is called
ICLoss (Intensity Classification Loss) and performed via a cross-entropy loss
as implemented in PyTorch4. The loss is weighted towards the one class with
a scaling factor 5 to reduce the imbalance of classes a bit.

4https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

32

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

5.2. Non-linearity in the PhyCell

Even though the prediction in a classification task like this can be generally
interpreted as a probability of the one class, we use quotation marks here.
The reason is that while the prediction of severe rainfall probabilities is an
interesting product from a meteorological point of view, the primary aim of
Licl here, is to improve the prediction of high intensities in the original output.

5.2 Non-linearity in the PhyCell

A general aim of NNs is to be able to model a wide variety of functions on
compact subsets of Rn. As the perceptron function is linear, this universal
function approximation trait is achieved by using a finite number of neurons
in single or multiple layers with non-linear activation functions. [3]

Similar is true for CNNs such as the ConvLSTM (Section 3.3) used in the
residual branch of the PhyDNet. In the default setting from [4], it is config-
ured with three stacked cells, which are respectively operating on inputs with
(128, 128, 64) channels. While this setting theoretically gives it the ability to
learn various functions, it is not designed to perform the point-wise multipli-
cation of two images e�ectively. PhyCell, with its linear prediction step is not
designed for multiplication as well (Equation 3.4, repeated here as Equation
5.3 for clarity). However, the multiplication of di�erent physical quantities is
a very common operation.

�(h(t)
p) :=

ÿ

i,j<k

ci,jDi,j(h(t)
p) =

ÿ

i,j<k

ci,j
ˆ

i+jhp

ˆxiˆyj
(t, x), (5.3)

In this equation, scalars ci,j relevant to particular di�erential operators are
learned during training and shared across all positions x of the domain. Con-
sidering the precipitation nowcasting task, the change of precipitation inten-
sity at all times and all places of the domain would only be linearly dependent
on the gradient of the hidden state. Referencing the non-linear advection term
in Navier-Stokes equations (Section 1.5.2) for modeling fluids, we identify this
linearity as a significant limitation for the correct precipitation prediction.

There is a second weakness in the default settings of PhyCell for the presented
use case as well – the parameter limiting the order of the partial derivatives
computed is set as k = 7. To the best of our knowledge, derivatives of this or-
der and higher are used, for example, in numerical methods trying to achieve
the target accuracy of computation, but rarely in equations robustly describ-
ing physical phenomenons. For instance, the prognostic equations of NWP
(Section 1.2) do not contain higher than second-order derivatives. We believe
that this setting reduces the potential of explainability of the predictions,
which is a trait highly valued by meteorologists. Moreover, it creates a large
space in the PhyCell for loss optimization, possibly reducing the robustness of

33

5. PhyCell Adjustments for Precipitation Nowcasting

PhyCell’s predictions and interfering with the task of ConvLSTM. Thus, we
use k = 3 in our later experiments (limiting to second-order derivatives).

In the following subsections, we propose two di�erent approaches to enable
non-linearity in the physical prediction of PhyDNet.

5.2.1 Quadratic Non-linearity Approach

The first approach, which we later started to call quadratic, is built on a
traditional DL paradigm of letting the deep model learn, what is important
for loss optimization. �(h(t)

p) from Equation 5.3 can be described as a first-
degree polynomial of spatial partial derivatives. Considering a vector of all
k

2 partial derivatives d(h(t)
p) =

1
D0,0(h(t)

p), . . . , Dk≠1,k≠1(h(t)
p)

2
up to some

hyperparameter k, and vector of learned scalars c = (c0,0, . . . , ck≠1,k≠1), the
prediction equation may be rewritten as5

� = c · d. (5.4)

We propose to compute all of the possible second-degree terms through matrix
multiplication, learn corresponding scalars and add them to this equation. The
matrix of second-degree terms d(2) is obtained as

d(2) = UT (d|
◊ d), (5.5)

where UT is a function selecting only the k2(k2+1)
2 upper triangular terms

Q

cccca

1 1 · · · 1
0 1 · · · 1
...
0 · · · 0 1

R

ddddb

to remove duplicates and flattens them by rows to a row vector. A vector of
corresponding scalars c(2) is learned by 1 ◊ 1 convolution as in the Section
3.2.1 and the prediction equation is extended to

� = c · d + c(2)
· d(2)

, (5.6)

which can be expressed in the expanded form as

�(h(t)
p) =

ÿ

i,j<k

ci,j
ˆ

i+jhp

ˆxiˆyj
(t, x)+

ÿ

m,n<k;iÆm;jÆn

c
(2)
i,j,m,n

ˆ
i+jhp

ˆxiˆyj
(t, x) ·

ˆ
m+nhp

ˆxmˆyn
(t, x).

(5.7)

5
The hidden state h(t)

p , which is input to the �, is omitted here for clarity.

34

5.2. Non-linearity in the PhyCell

5.2.2 Advection-di�usion Equation

The other approach relies on hand-engineering of prior knowledge, using the
advection-di�usion PDE (Section 1.5.1) to model the precipitation in the Phy-
Cell. The prediction step from Equation 5.3 theoretically changes to

�(h(t)
p) = ≠c0

ˆuxhp

ˆx
(t, x) ≠ c1

ˆuyhp

ˆy
(t, x)

¸ ˚˙ ˝
advection

+ c2
ˆ

2hp

ˆx2 (t, x) + c3
ˆ

2hp

ˆy2 (t, x)
¸ ˚˙ ˝

di�usion

,

(5.8)
where u = (ux, uy) is a vector field by which the precipitation is advected. The
original idea is inspired by the work on Hidden Fluid Mechanics by Raissi et
al. [25]. They assume that the flow of fluid is observed through a passive
scalar that is moved by the flow described by Equation 5.8 but not a�ecting
it.

However, in the case of precipitation nowcasting, we do not aim to infer global
advection field, interpretable as wind, that would move precipitation as a
passive scalar. We are rather interested in modeling of precipitation local
developments. Thus, based on the advection term of Navier-Stokes equations
(Section 1.5.2), u(t) is inferred from the system state h(t)

p , guided just by the
use of u(t) in Equation 5.8. This approach introduces non-linearity to the
PhyCell as u(t) is a function of h(t)

p .

The advection vectors u(t) at time t are computed with a single convolutional
layer ◊U with kernel size 5 as

u(t) = U(h(t)
p) = ◊U ~ h(t)

p . (5.9)

Following the original implementation of PhyCell, partial derivatives are com-
puted with learned di�erential operators Di,j . Thus, four terms of the imple-
mented PDE are6

d(hp) = (D1,0 (U(hp)xhp) , D0,1 (U(hp)yhp) , D2,0 (hp) , D0,2 (hp)) , (5.10)

which are linearly combined using coe�cients c = (c0, . . . , c3), learned through
1 ◊ 1 convolution.

Following problems with convergence during training, we have added Group
Normalization7 (GN) to standardize the equation terms as one group. While
we are struggling with interpretation of GN in terms of physical simulation,
it should be noted that the original implementation of PhyCell8 uses GN on

6
Omitting the time index

(t)
for clarity.

7https://pytorch.org/docs/stable/generated/torch.nn.GroupNorm.html
8https://github.com/vincent-leguen/PhyDNet

35

https://pytorch.org/docs/stable/generated/torch.nn.GroupNorm.html
https://github.com/vincent-leguen/PhyDNet

5. PhyCell Adjustments for Precipitation Nowcasting

the partial derivatives as well, splitting the 49 terms into 7 groups. Finally,
the prediction step is implemented as

�(h(t)
p) = c · GN(d(h(t)

p)). (5.11)

5.3 Implementation Details

Whole project is implemented in Python 3.89. The neural network, train-
ing and evaluation code is written with the libraries PyTorch 1.10 [30] (BSD
license) and PyTorch Lightning 1.510 (Apache 2.0 license). The implementa-
tion of PhyDNet model is derived from the original implementation11published
with [4] under MIT license. The rest of the submitted code is our work.

The dataset is saved on disk in the form of individual radar echo precipita-
tion fields �(T) that are loaded to form sequences during the training. Each
precipitation field �(T) is saved as an 8-bit grayscale .png file.

All of the training and experiments were computed locally on the computer
of Meteopress. The machine is running a Debian12 operating system on a
12-core AMD Ryzen 9 5900X processor, using two dedicated NVIDIA RTX
3090 GPUs (Graphics Processing Unit), each with 24 GB of RAM (Random
Access Memory).

5.4 Settings of the Trained Models

All of the models were trained primarily with L1,2 loss, which we define for
one prediction step (Equation 4.5) as the sum of Mean Absolute Error (MAE)
and Mean Squared Error (MSE)

L1,2(‚�(T +j�)
, �(T +j�)) =

1
H · W

ÿ
| ‚�(T +j�)

≠ �(T +j�)
| +

1
‚�(T +j�)

≠ �(T +j�)
22

,

(5.12)

where the sum is over spatial dimensions. The uniform input length is 10
images and the models are trained to predict the future 6. The resulting
models of trainings were selected after the validation loss stabilized, based on
the combination of loss and CSI.

See the enclosed CD (Appendix B) for exact definition of model trainings
and Appendix C for sample predictions by all models. The PhyDNet models

9https://docs.python.org/3.8/
10https://www.pytorchlightning.ai/
11https://github.com/vincent-leguen/PhyDNet
12https://www.debian.org/

36

https://docs.python.org/3.8/
https://www.pytorchlightning.ai/
https://github.com/vincent-leguen/PhyDNet
https://www.debian.org/

5.4. Settings of the Trained Models

use ConvLSTM module with the same configuration, PhyCell models lack the
ConvLSTM.

• PhyCell Baseline – loss L1,2 + Licl, di�erential operators limited by
k = 7, 49 linear terms in the PDE.

• PhyCell Quadratic – loss L1,2 + Licl, di�erential operators limited by
k = 3, 9 linear terms and 45 non-linear in the PDE.

• PhyCell AdvDiff – loss L1,2 + Licl, advection-di�usion PDE with 4
terms.

• PhyDNet Baseline – loss L1,2, PhyCell di�erential operators limited by
k = 7, 49 linear terms in the PDE.

• PhyDNet ICLoss – loss L1,2 +Licl, PhyCell di�erential operators limited
by k = 7, 49 linear terms in the PDE.

• PhyDNet AdvDiff – loss L1,2 + Licl, PhyCell with advection-di�usion
PDE with 4 terms.

37

Chapter 6
Experiments

This chapter summarizes concluded experiments, results, and findings acquired
during PhyDNet adjusting for precipitation nowcasting.

6.1 Intensity Classification Loss

The e�ects of ICLoss (Section 5.1) were studied during the development phase
on the validation set and PhyDNet Baseline model. Its e�ects are well seen at
Figure 6.1, where the baseline model concentrates on precipitation with larger
area but smaller intensity, not predicting the small-area storms at all. On the
other hand, PhyDNet ICLoss does better job in identification of the storms
and does not smooth them out, while the “probability” output correctly marks
at least the lower part of the storms.

The quantitative comparison of these two models on the test set (Figure 6.2)
displays the same trends as were observed on the validation one. As sum-
marized in Table 6.1 in terms of relative changes to performance, there is
almost no di�erence in achieved MAE, MSE or SSIM. However, the trade-o�s
of training with ICLoss can be seen in other metrics. The decrease in the low-
threshold CSI alongside better high-threshold CSI and the slight performance
improvement over time, which may seen in the plots, support the impression
that predictions are less smoothed out if ICLoss is used. The improvement in
Kolmogorov-Smirnov distance suggests that focus on intensities over 40 dBZ
makes empirical CDFs of the predictions more similar to the ground truth.

Following these observations, we have decided to use ICLoss in our later ex-
periments. However, closer inspection of its e�ects on the sample predictions
from the test set shows limitations of the proposed ICLoss implementation.
Due to setting of the threshold to 40 dBZ, the model tends to quickly lower the
predicted intensities to this value. This may be clearly seen in the Figure 6.3,

39

6. Experiments

Figure 6.1: E�ect of training with ICLoss on prediction for 60 min (valida-
tion set). By rows: ground truth, baseline prediction, baseline with ICLoss
prediction and “probability” of severe rainfall.

Table 6.1: Relative change in the metrics of PhyDNet ICLoss compared to
PhyDNet Baseline (red denotes performance loss).

CSI 8 dBZ ≠2.30 %
CSI 40 dBZ +6.46 %
MAE +0.25 %
MSE ≠0.38 %
Kolmogorov-Smirnov ≠2.13 %
SSIM ≠0.22 %

but it happens in the first example as well. Moreover, due to small capacity
of the convolutional module producing the “probabilities” (Section 5.1), these
outputs lack gradient and very closely resemble the predicted intensities to be
truly interpreted as probabilities of severe rainfall.

40

6.1. Intensity Classification Loss

Figure 6.2: E�ect of training with ICLoss on metrics achieved on the test set
for 60 min predictions.

41

6. Experiments

Figure 6.3: E�ect of training with ICLoss on prediction for 30 min (test set).
By rows: ground truth, baseline prediction, baseline with ICLoss prediction
and “probability” of severe rainfall.

42

6.2. Non-linearity in the PhyCell

Figure 6.4: Sample prediction by pure PhyCell with di�erent designs of � for
60 min (validation set). The top left image is ground truth.

6.2 Non-linearity in the PhyCell

The predictions possibly learned by PhyCell with various designs of the pre-
diction step � (Equation 5.3), are studied using PhyDNet models without the
deep ConvLSTM residual branch. Firstly, the designs di�er by the number of
terms in �.

• PhyCell Baseline computes linear combination of 49 spatial partial
derivatives Di,j(h(t)

p) for i, j < 7.

• PhyCell Quadratic combines 9 of the first-degree terms
Di,j(h(t)

p) for i, j < 3, with all 45 of their possible second-degree combi-
nations for a total of 54 terms.

• PhyCell AdvDiff utilizes only di�erential operators (D0,1, D1,0, D0,2, D2,0),
having 4 terms in �, out of which two are non-linear.

Consequently, PhyCell AdvDiff has significantly less capacity to encode pre-
cipitation dynamics than the other two. The utilization of these terms visu-

43

6. Experiments

Figure 6.5: Sample prediction by pure PhyCell with di�erent designs of � for
120 min (test set). The top left image is ground truth.
alized through c coe�cients of � in Figure 6.6 shows that PhyCell Quadratic
prioritizes some terms more than other, when compared to PhyCell Baseline.
The Top 10 utilized terms by PhyCell Quadratic expressed in terms of used
di�erential operators are

(D0,0, D1,0, D0,1, D1,2, D2,0, D0,2, D1,1, (D0,0 · D1,0), (D0,0 · D1,1), (D0,0 · D1,2)) .

The fact that these are either of first degree or multiplied with an undi�erenti-
ated hidden state (D0,0) hints that this implementation of non-linearity in � is
not e�ective. Moreover, both sample predictions (Figure 6.4) and quantitative
evaluations (Figure 6.7) do not show any interesting results.

As summarized in Table 6.2, the proposed designs of PhyCell have worse
quantitative performance when compared to the baseline. However, the aim
of PhyCell is to give physically sound predictions on which the residual ConvL-
STM module can build (Section 3.1) rather than to achieve the best possible
quantitative performance alone. Thus, the results of PhyCell AdvDiff, given
its much smaller capacity of �, indicate that it learns precipitation dynam-
ics much more e�ectively in terms of model size. It may be seen from the

44

6.2. Non-linearity in the PhyCell

Figure 6.6: Mean absolute value of ci,j linear combination coe�cients of Phy-
Cell predictions step.

Table 6.2: Relative change in the metrics when compared to PhyCell Baseline
(red denotes performance loss).

PhyCell
Quadratic

PhyCell
AdvDi�

CSI 8 dBZ ≠3.72 % ≠1.81 %
CSI 40 dBZ ≠9.41 % +2.70 %
MAE +2.34 % +1.00 %
MSE +4.29 % +2.46 %
Kolmogorov-Smirnov +16.26 % +9.73 %
SSIM ≠0.70 % +0.12 %

sample predictions that PhyCell Baseline tends to smooth out the outputs
to optimize for the loss, which is not the case for PhyCell AdvDiff (see the
borders of the predicted precipitation in Figure 6.4). The sample in Figure
6.5, containing predictions for twice the length of the training horizon, shows
that PhyCell AdvDiff is the only model to correctly predict the position of
the high-intensity precipitation this far into the future, even though without
the correct intensities. This hypothesis of less smoothed predictions that are
better at predicting the location of the phenomena is supported by the gain
in the high-threshold CSI alongside decay in the low-threshold one.

45

6. Experiments

Figure 6.7: Quantitative performance of pure PhyCell with di�erent designs
of � on the test set for 60 min predictions.

46

6.3. Evaluation of PhyDNet AdvDi�

Figure 6.8: Sample prediction of convective precipitation by PhyDNet versions
for 60 min (test set). The top left image is ground truth.

6.3 Evaluation of PhyDNet AdvDi�

In this section, PhyDNet AdvDiff is compared to the PhyDNet Baseline to
evaluate the overall e�ect of the proposed changes on the prediction per-
formance. PhyDNet ICLoss model is included, to distinguish between the
changes introduced by ICLoss and advection-di�usion equation in the Phy-
Cell. As may be seen in Figure 6.10 and is summarized in Table 6.3, all three
models achieve very similar mean errors, and their specifics are projected into
trade-o�s in other metrics. However, unlike in the previous section, sample
predictions on the test set subjectively do not show any features that would
clearly di�erentiate them (an example prediction of convective precipitation
in Figure 6.8 and of stratiform precipitation in Figure 6.9).

47

6. Experiments

Figure 6.9: Sample prediction of stratiform precipitation by PhyDNet versions
for 60 min (test set). The top left image is ground truth.

Table 6.3: Relative change in the metrics of PhyDNet AdvDi� and PhyDNet
ICLoss compared to PhyDNet Baseline (red denotes performance loss).

PhyDNet ICLoss PhyDNet AdvDi�
CSI 8 dBZ ≠2.30 % ≠3.41 %
CSI 40 dBZ +6.46 % ≠6.14 %
MAE +0.25 % +0.14 %
MSE ≠0.38 % ≠0.40 %
Kolmogorov-Smirnov ≠2.13 % +9.82 %
SSIM ≠0.22 % ≠0.11 %

48

6.3. Evaluation of PhyDNet AdvDi�

Figure 6.10: Quantitative performance of the proposed PhyDNet AdvDi� on
the test set for 60 min predictions.

49

6. Experiments

Figure 6.11: MAE on the test set.

A di�erence among the predictions may be observed if predictions are de-
composed into physical and residual branches, which are separately recon-
structed through decoder D and visualized (Figure 6.12). ConvLSTM of the
PhyDNet AdvDiff learns predictions containing a variety of objects and in-
tensities. In contrast, the ConvLSTM of PhyDNet Baseline predicts only
objects with high intensities and the predictions of PhyDNet ICLoss ConvL-
STM lack structure altogether. Thus subjectively, PhyDNet AdvDiff utilizes
the residual part the most. To partially quantify this hypothesis, Figure 6.11
presents values of MAE for PhyCell and PhyDNet in one plot. While there is
a di�erence in PhyCell errors, there is almost none in the case of PhyDNet –
in di�erent models, ConvLSTM contributed di�erent amounts to the overall
performance.

50

6.3. Evaluation of PhyDNet AdvDi�

Figure 6.12: Decomposition of PhyDNet branches on a prediction for 60 min
(test set). The top row displays ground truth three times.

51

6. Experiments

6.4 Advection Field Inferred by PhyCell AdvDi�

This section contains visualizations (Figure 6.13) of the advection field u(t),
inferred from the observed data through their use in advection-di�usion equa-
tion in PhyCell (Subsection 5.2.2). u(t) is computed from a single hidden
state h(t)

p , which should theoretically contain complete information about the
current precipitation situation. In the case of PhyCell AdvDiff, it may be
observed that direction of the vectors matters. However, instead of the general
motion vectors (interpretable as wind), these rather resemble the direction of
temporarily and spatially local development.

On the other hand, the PhyCell of PhyDNet AdvDiff seems to ignore the direc-
tion of u(t) and uses it just to multiply the h(t)

p with the observed precipitation
intensities. In this case, u(t) points uniformly South-East, independently of
the actual movement directions. Nevertheless, it has to be pointed out that
the eastward direction of precipitation movement prevails in the considered
Central-European geographical location.

6.5 Summary of PhyCell Experiments

There is a di�erence in the learned dynamics of advection-di�usion PhyCell
when trained alone and as a part of PhyDNet, alongside the di�erent amount
of contribution to the prediction by ConvLSTM (Figure 6.11). These results
lead us to speculate that only a limited amount of dynamics governing the pre-
cipitation are learnable under the current problem setting. Results in Section
6.2 indicate that PhyCell can utilize the provided physics prior to predicting
precipitation. However, combining PhyCell with a high-capacity ConvLSTM
and training it for regression using a mean error loss function neglects the
physics learned by the regularized PhyCell, in favor of smoothed predictions
with unchanged performance. Moreover, the varying contribution of ConvL-
STM hints that it can possibly learn more complex dynamics, given a change
in the training formulation. This observation points to the loss function se-
lection as the main limitation of the current approach.

However, there are caveats to this theory that need to be addressed. Firstly,
trying to infer a global advection field as well, we experimented with u(t)

computation from multiple previous states and with enforcing more physics
through a continuity equation

ˆux

ˆx
+ ˆuy

ˆy
= 0, (6.1)

both resulting in divergence during the training. Two possible reasons are that
the convolutional module U (Equation 5.9) does not have enough capacity to

52

6.5. Summary of PhyCell Experiments

(a) convective precipitation moving East-North-East

(b) stratiform precipitation moving East

(c) convective precipitation moving North-North-East

Figure 6.13: Advection field u plotted over a PhyCell partial prediction for 60
min (test set).

53

6. Experiments

capture this complicated vector field or that there is not enough input data
for its inference (e.g., it rains only in some parts of the domain). Secondly,
the training of disentanglement in PhyDNet was not studied su�ciently. It
may be possible that pre-training of some modules, introducing non-linear
disentanglement, or emphasizing predictions of the PhyCell over the ones of
ConvLSTM could lead to di�erent results.

54

Conclusion

Short-term high-resolution precipitation forecasts, called precipitation now-
casting, can increase everyday comfort and safety while providing information
beneficial for protecting human lives and property during storms. In this
thesis, we were working on addressing the limitations of DL models for pre-
cipitation nowcasting, such as smoothing out the important high-frequency
features and low explainability of prediction dynamics.

The thesis is divided into six chapters. Chapter 1 started the thesis by intro-
ducing the reader to a theory about precipitation and describing approaches
to weather measurements and forecasting. A summarization of important dif-
ferential equations and deep learning concepts follows. Related work relevant
to this thesis is presented in Chapter 2.

A detailed description of PhyDNet is provided in Chapter 3. The concept
of a convolutional RNN that disentangles physical and unknown dynamics
serves as a building stone for the practical part of this thesis. In Chapter 4
we formally define the tackled precipitation nowcasting problem and the DL
approach to it. A description of the radar echo sequence dataset on which the
presented models are trained closes this chapter.

We present researched changes to PhyDNet and explain our motivation for
them in Chapter 5. To shift the training of the model toward high-intensity
precipitation, we explore the use of the presented ICLoss. By engineering
advection-di�usion PDE into PhyCell, we aimed to introduce possibly missing
dynamics to the model and shed some light on the dynamics learned. This
chapter is ended with a list of details of all the models trained.

Results of the experiments and their analysis are presented in Chapter 6. We
found out that training with ICLoss results in better prediction of precipi-

55

Conclusion

tation over the selected threshold but, at the same time, predicts no rainfall
more intense than the threshold as well. Thus, this approach improves per-
formance during severe rainfall events but remains ignorant of the important
high-intensity features.

The introduction of advection-di�usion equation to PhyCell, resulted in a
regularized model with predictions more resembling actual dynamics in the
atmosphere. However, changes to PhyCell have not improved either the over-
all quantitative performance of PhyDNet or the problem with smoothed-out
predictions. This result indicates that even if a part of PhyDNet is regularized
with a physics prior and possibly learns the corresponding dynamics more ef-
fectively, the final predictions remain decided by the optimization of the loss
function during training.

The goals of this thesis were achieved. Contributing to bridging the gap
between physics-based and DL weather forecasting, we have explored human
knowledge of precipitation and how it may be used in a physics-constrained DL
model. We have presented ideas possibly addressing the identified problems of
DL nowcasting models. All of the trained models were tested, and the results
were analyzed.

Limitations and Outline of Future Work

Our implementation of the presented ideas has its limitations. The convolu-
tional modules added to the network to compute a new output for the ICLoss
and velocity vectors used in the advection-di�usion equation are possibly too
small to utilize these designs to their full potential. We have not experi-
mented su�ciently with the inclusion of advection-di�usion PhyCell into the
whole PhyDNet. These need to be addressed to verify the presented results.

We suggest that the future work is focused on the following steps.
• To better leverage the physics prior, its inclusion not only through reg-

ularization but in the loss term should be explored. Alternatively, this
could be improved by controlling the contribution ratio between PhyD-
Net branches.

• We are aware that equations governing the development and dynamics
of precipitation are more complex than the advection-di�usion. More
precise equations could possibly be inferred from the data.

• The prediction of high-intensity features could be achieved by training
under a Generative Adversarial Network framework.

• Modeling more complex dynamics in the PhyCell, and enlarging the
capacity of the residual network (ConvLSTM) could improve the quan-
titative performance.

56

Bibliography

[1] Donald Ahrens, C. Essentials of Meteorology: An Invitation to the At-
mosphere. Brooks/Cole/Thomson Learning, 2001, ISBN 9780534372002.

[2] Bauer, P.; Thorpe, A.; et al. The quiet revolution of numerical weather
prediction. Nature, volume 525, no. 7567, Sept. 2015: pp. 47–55.

[3] Zhang, A.; Lipton, Z. C.; et al. Dive into Deep Learning. June 2021,
arXiv:2106.11342.

[4] Le Guen, V.; Thome, N. Disentangling Physical Dynamics from Un-
known Factors for Unsupervised Video Prediction. Mar. 2020, arXiv:
2003.01460.

[5] OpenStreetMap. https://www.openstreetmap.org/copyright, ac-
cessed: 2022-4-16.

[6] Peštová, Z. Na Hodońınsku se vyskytlo tornádo. https:
//www.meteopress.cz/report/na-hodoninsku-se-dnes-vyskytlo-
tornado/, June 2021, accessed: 2022-5-2.

[7] Choma, M. Interpolation and Extrapolation of Subsequent Weather Radar
Images. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2019.

[8] Choma, M. MWNet v1.0 — AI precipitation nowcasting for the
public. https://medium.com/pocasi/mwnet-v1-0-ai-precipitation-
nowcasting-for-the-public-a9192b6dc652, Sept. 2021, accessed:
2022-5-1.

[9] Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability.
Cambridge University Press, 2003, ISBN 9780521791793.

57

arXiv:2106.11342
arXiv:2003.01460
arXiv:2003.01460
https://www.openstreetmap.org/copyright
https://www.meteopress.cz/report/na-hodoninsku-se-dnes-vyskytlo-tornado/
https://www.meteopress.cz/report/na-hodoninsku-se-dnes-vyskytlo-tornado/
https://www.meteopress.cz/report/na-hodoninsku-se-dnes-vyskytlo-tornado/
https://medium.com/pocasi/mwnet-v1-0-ai-precipitation-nowcasting-for-the-public-a9192b6dc652
https://medium.com/pocasi/mwnet-v1-0-ai-precipitation-nowcasting-for-the-public-a9192b6dc652

Bibliography

[10] Auger, L.; Dupont, O.; et al. AROME–NWC: a new nowcasting tool
based on an operational mesoscale forecasting system. Quart. J. Roy.
Meteor. Soc., volume 141, no. 690, July 2015: pp. 1603–1611.

[11] World Meteorological Organization (WMO). Guidelines for Nowcasting
Techniques. WMO, 2017, ISBN 9789263111982.

[12] Trench, W. F. Elementary Di�erential Equations with Boundary Value
Problems. Brooks/Cole-Thomson Learning, 2001, ISBN 9780534263287.

[13] Strang, G. Applied Mathematics and Scientific Computing. https://
math.mit.edu/classes/18.086/2006/am54.pdf, 2007.

[14] Thuerey, N.; Holl, P.; et al. Physics-based Deep Learning. Sept. 2021,
arXiv:2109.05237.

[15] Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Com-
put., volume 9, no. 8, Nov. 1997: pp. 1735–1780.

[16] Shi, X.; Chen, Z.; et al. Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting. June 2015, arXiv:
1506.04214.

[17] Wu, Y.; He, K. Group Normalization. Mar. 2018, arXiv:1803.08494.

[18] Io�e, S.; Szegedy, C. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. Feb. 2015, arXiv:
1502.03167.

[19] Prudden, R.; Adams, S.; et al. A review of radar-based nowcasting
of precipitation and applicable machine learning techniques. May 2020,
arXiv:2005.04988.

[20] Ayzel, G.; Heistermann, M.; et al. Optical flow models as an open
benchmark for radar-based precipitation nowcasting (rainymotion v0.1).
Geosci. Model Dev., volume 12, no. 4, Apr. 2019: pp. 1387–1402.

[21] Pulkkinen, S.; Nerini, D.; et al. Pysteps: an open-source Python library
for probabilistic precipitation nowcasting (v1.0). Geosci. Model Dev., vol-
ume 12, no. 10, Oct. 2019: pp. 4185–4219.

[22] Wang, Y.; Wu, H.; et al. PredRNN: A Recurrent Neural Network for
Spatiotemporal Predictive Learning. Mar. 2021, arXiv:2103.09504.

[23] Ravuri, S.; Lenc, K.; et al. Skillful Precipitation Nowcasting using Deep
Generative Models of Radar. Apr. 2021, arXiv:2104.00954.

58

https://math.mit.edu/classes/18.086/2006/am54.pdf
https://math.mit.edu/classes/18.086/2006/am54.pdf
arXiv:2109.05237
arXiv:1506.04214
arXiv:1506.04214
arXiv:1803.08494
arXiv:1502.03167
arXiv:1502.03167
arXiv:2005.04988
arXiv:2103.09504
arXiv:2104.00954

Bibliography

[24] Raissi, M.; Perdikaris, P.; et al. Physics Informed Deep Learning (Part I):
Data-driven Solutions of Nonlinear Partial Di�erential Equations. Nov.
2017, arXiv:1711.10561.

[25] Raissi, M.; Yazdani, A.; et al. Hidden Fluid Mechanics: A Navier-Stokes
Informed Deep Learning Framework for Assimilating Flow Visualization
Data. Aug. 2018, arXiv:1808.04327.

[26] Le Guen, V.; Yin, Y.; et al. Augmenting Physical Models with Deep Net-
works for Complex Dynamics Forecasting. Oct. 2020, arXiv:2010.04456.

[27] Kalman, R. E. A new approach to linear filtering and prediction problems.
J. Basic Eng., volume 82, no. 1, Mar. 1960: pp. 35–45.

[28] Eumetnet. OPERA. https://www.eumetnet.eu/activities/
observations-programme/current-activities/opera/, Aug. 2016,
accessed: 2022-5-4.

[29] EPSG Geodetic Parameter Dataset. https://epsg.org/home.html, ac-
cessed: 2022-4-16.

[30] Paszke, A.; Gross, S.; et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information
Processing Systems 32, edited by H. Wallach; H. Larochelle; A. Beygelz-
imer; F. d’ Alché-Buc; E. Fox; R. Garnett, Curran Associates, Inc., 2019,
pp. 8024–8035.

59

arXiv:1711.10561
arXiv:1808.04327
arXiv:2010.04456
https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/
https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/
https://epsg.org/home.html

Appendix A
Acronyms

CNN Convolutional Neural Network

DALR Dry Adiabatic Lapse Rate

DL Deep Learning

GPU Graphics Processing Unit

GN Group Normalization

LSTM Long Short-Term Memory

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

NWP Numerical Weather Prediction

ODE Ordinary Di�erential Equation

PDE Partial Di�erential Equation

RAM Random Access Memory

RNN Recurrent Neural Network

SALR Saturated Adiabatic Lapse Rate

61

Appendix B
Contents of enclosed CD

README.md.........................the file with CD contents description
example.ipynb........................Jupyter notebook with examples
train.py...training script
configs...................... the directory with training configurations
core.......................the directory containing training source files

data loader..............the directory containing data loading logic
model............... the directory containing model implementations

layers the directory with PhyDNet modules
phydnet constrain moments.py.....moments of convolutional
kernels
phydnet layers.py...........default ConvLSTM and PhyCell
phydnet phycells.py........................custom PhyCell

loss.py............................ loss function implementation
metric detail.py.......................metric implementations
phydnet.py............................PhyDNet implementation

utils......................the directory containing utility functions
env.yml............................conda environment specification

data.........................the directory with sample radar echo data
text..the thesis text directory

src.......................the directory with thesis LATEX source files
thesis.pdf...........................the thesis text in PDF format

63

Appendix C
Sample Predictions of the

Trained Models

65

C. Sample Predictions of the Trained Models

Figure C.1: Sample prediction by every model for three lead times. The top
row displays ground truth. Convective precipitation, validation set.

66

Figure C.2: Sample prediction by every model for three lead times. The top
row displays ground truth. Convective precipitation, test set.

67

C. Sample Predictions of the Trained Models

Figure C.3: Sample prediction by every model for three lead times. The top
row displays ground truth. Stratiform precipitation, test set.

68

	Introduction
	Theoretical Background
	Atmosphere, Precipitation and Convection
	Numerical Weather Prediction
	Model Initialization and Ensemble Forecasts

	Weather Nowcasting
	Weather Radars
	Differential Equations
	Advection-Diffusion Equation
	Navier-Stokes Equations

	Deep Learning
	Convolutional Layers
	Recurrent Neural Networks
	Group Normalization

	Related Work
	Precipitation Nowcasting
	Physics and Deep Learning

	PhyDNet Architecture
	Disentanglement
	Data Dimensions

	Physical Model – PhyCell
	Prediction Step
	Approximation of Partial Derivatives
	Correction Step

	Residual Model – ConvLSTM

	Problem Setup
	Nowcasting Problem Formulation
	Deep Learning Approach

	Radar Echo Dataset
	Precipitation Intensity
	Dataset Splitting

	PhyCell Adjustments for Precipitation Nowcasting
	Intensity Classification Loss
	Non-linearity in the PhyCell
	Quadratic Non-linearity Approach
	Advection-diffusion Equation

	Implementation Details
	Settings of the Trained Models

	Experiments
	Intensity Classification Loss
	Non-linearity in the PhyCell
	Evaluation of PhyDNet AdvDiff
	Advection Field Inferred by PhyCell AdvDiff
	Summary of PhyCell Experiments

	Conclusion
	Limitations and Outline of Future Work

	Bibliography
	Acronyms
	Contents of enclosed CD
	Sample Predictions of the Trained Models

