
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Data �ow analysis of scripts in SAP Hana SQL dialect
Bc. Ond�ej Hlavá�
Ing. Jan Trávní�ek, Ph.D.
Informatics
Software Engineering
Department of Software Engineering
until the end of summer semester 2022/2023

Instructions

Study the SAP Hana dialect of SQL language – its syntax and semantics.
Familiarize yourself with the Manta project and the way it represents data �ow.
Analyze whether it is possible to retrieve information about data �ow between data
structures in an SAP Hana database from scripts in SAP Hana language using static
analysis of these scripts.
Propose an approach to parsing and representing SAP Hana scripts. Describe its
statements relevant to the later data �ow analysis.
Continue with a design of analysis of SAP Hana scripts capable of retrieval of the data
�ow between data structures in SAP Hana database from SAP Hana scripts and an
approach to represent this data �ow in the Manta project.
Create a prototype implementation of a tool that is able to retrieve data �ow between
data structures in an SAP Hana database from SAP Hana scripts and is able to store this
data �ow in the Manta project.
Propose and implement testing of your prototype.

Electronically approved by Ing. Michal Valenta, Ph.D. on 7 October 2021 in Prague.

Master’s thesis

Data flow analysis of scripts in SAP Hana
SQL dialect

Bc. Ondřej Hlaváč

Department of Software engineering
Supervisor: Ing. Jan Trávńıček, Ph.D.

May 5, 2022

Acknowledgements

I would like to express my gratitude to everyone who helped me or supported
me to complete my thesis. First and foremost, I would like to thank my super-
visor Ing. Jan Trávńıček, Ph.D., for his help, time and guidance. Invaluable
help also came from the whole Manta team, notably, I would like to thank
the parser team leader Mgr. Jǐŕı Toušek. My appreciation also goes towards
my family and friends for all their support, not only during the time I was
working on this thesis but also during the whole university studies.

Declaration

I hereby declare that I have authored this thesis independently, and that all
sources used are declared in accordance with the “Metodický pokyn o etické
př́ıpravě vysokoškolských závěrečných praćı”.

I acknowledge that my thesis (work) is subject to the rights and obliga-
tions arising from Act No. 121/2000 Coll., on Copyright and Rights Related
to Copyright and on Amendments to Certain Laws (the Copyright Act), as
amended, (hereinafter as the “Copyright Act”), in particular § 35, and § 60
of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work)
and with respect to all documentation related to the computer programs
(“software”), in accordance with Article 2373 of the Act No. 89/2012 Coll.,
the Civil Code, I hereby grant a nonexclusive and irrevocable authorisation
(license) to use this software, to any and all persons that wish to use the soft-
ware. Such persons are entitled to use the software in any way without any
limitations (including use for-profit purposes). This license is not limited in
terms of time, location and quantity, is granted free of charge, and also cov-
ers the right to alter or modify the software, combine it with another work,
and/or include the software in a collective work.

In Prague on May 5, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Ondřej Hlaváč. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Hlaváč, Ondřej. Data flow analysis of scripts in SAP Hana SQL dialect.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstract

This thesis deals with the analysis of data flows specified in the SQL state-
ments used by the SAP Hana database. First, it describes what data lineage
is and why it is useful, then the di�erent data lineage retrieval approaches.
After that, it shows selected SAP Hana’s SQL statements and their data flow.
It also describes the design and implementation of a prototype tool to automa-
tise the analysis as a component of the Manta Flow. This prototype tool can
generate graphs describing the data movements/flows of given SQL scripts.

Keywords SAP, SAP Hana, Hana, SQL, parsing, Manta, Manta Flow, data
flow, dataflow, data warehouse

vii

Abstrakt

Tato práce se zabývá analýzou datových tok̊u specifikovaných v př́ıkazech
SQL dialektu využ́ıvaným databáźı SAP Hana. Nejdř́ıve popisuje, co data
lineage je, a r̊uzné postupy jej́ıho źıskáńı. Dále popisuje jednotlivé SQL př́ıkazy
a jejich datové toky. Zahrnuje taktéž návrh a implementaci prototypového
nástroje, integrovaného do Manta Flow, který dokáže tvořit grafy na základě
poskytnutých vstupńıch skript̊u.

Kĺıčová slova SAP, SAP Hana, Hana, SQL, parsováńı, Manta, Manta Flow,
datové toky, datový sklad

viii

Contents

Introduction 1

1 Theoretical background 3

1.1 Graph . 3
1.1.1 Oriented graph . 3

1.2 Language . 4
1.3 Context-free grammar . 4

1.3.1 Derivations . 5
1.3.2 LL(k) grammar . 5
1.3.3 Context-free language 6
1.3.4 Backus-Naur form . 6

1.3.4.1 Extended Backus-Naur form 6
1.3.4.2 SAP Extended Backus-Naur form 7

1.4 Finite-state automaton . 7
1.4.1 Push down automaton 8

1.5 Parsing . 8
1.5.1 LL parser . 8

1.5.1.1 Lookahead . 9
1.5.1.2 LL(k) parser 9
1.5.1.3 LL(*) parser 9

2 Technologies description 11

2.1 Data lineage . 11
2.2 Manta . 11
2.3 SAP Hana . 12
2.4 Acquiring data lineage . 12

2.4.1 Business data lineage 12
2.4.2 Manual analysis . 12
2.4.3 Tracing/tagging . 13

ix

2.4.4 Self lineage . 13
2.4.5 Decoded lineage . 13

2.5 Static code analysis . 13
2.5.1 Lexical analysis . 14
2.5.2 Syntax and semantic analysis 15
2.5.3 Generation of data flows 15

3 Analysis 17

3.1 Requirements analysis . 17
3.1.1 Functional requirements 17

3.1.1.1 FR1: Script analysis 17
3.1.1.2 FR2: Input . 17
3.1.1.3 FR3: Data flow processing 17
3.1.1.4 FR4: Error processing 18

3.1.2 Non-functional requirements 18
3.1.2.1 NFR1: Manta framework 18
3.1.2.2 NFR2: Time complexity 18

3.2 Technologies used . 18
3.2.1 Java . 18
3.2.2 ANTLR . 18
3.2.3 Apache Maven . 18

3.3 SAP Hana SQL dialect . 19
3.3.1 SQLScript . 19
3.3.2 Data types . 19
3.3.3 Identifiers . 20
3.3.4 Functions . 21
3.3.5 Expressions . 21

3.3.5.1 Simple expressions 21
3.3.5.2 Case expressions 22
3.3.5.3 Function expressions 23
3.3.5.4 Aggregate expressions 23
3.3.5.5 Subqueries . 23

3.3.6 Reserved words . 23
3.3.7 Statements . 24

3.3.7.1 Query . 24
3.3.7.2 INSERT statement 26
3.3.7.3 UPDATE statement 26
3.3.7.4 MERGE INTO statement 26
3.3.7.5 CREATE TABLE statement 27
3.3.7.6 Variable assignment statement 27

3.4 Data flow . 28
3.4.1 Query . 28
3.4.2 Functions . 30
3.4.3 INSERT statement . 31

x

3.4.4 UPDATE statement . 31
3.4.4.1 MERGE INTO statement 31
3.4.4.2 CREATE TABLE statement 32

4 Design 39

4.1 Parser and Resolver module . 40
4.1.1 References representation 40

4.2 Data flow generator module . 41

5 Implementation 43

5.1 Parser . 43
5.1.1 Lexer rules . 43
5.1.2 Parser rules . 45

5.1.2.1 Expressions . 45
5.1.2.2 Query . 46
5.1.2.3 Other statements 46

5.2 Resolver . 46
5.2.1 Context resolving . 46

5.3 Data flow generation . 47

6 Testing 49

6.1 Parser and Resolver module testing 49
6.2 Data flow generator testing . 50

Conclusion 51

Bibliography 53

A Acronyms 55

B Contents of enclosed SD card 57

xi

List of Figures

1.1 Possible graphical representation of the graph 1.1 4

2.1 Analysis process . 14
2.2 Example SELECT statement lexer processing 14
2.3 AST of the example SELECT statement 2.2 15

3.1 Data flow graph of the Example simple SELECT statement query
3.12 . 29

3.2 Data flow graph of the Example SELECT statement with WHERE
clause query 3.13 . 30

3.3 Data flow graph of the Example SELECT statement with the JOIN
clause query 3.14 . 31

3.4 Data flow graph of the Example SELECT statement with the
GROUP BY and HAVING clauses query 3.15 33

3.5 Data flow graph of the Example SELECT statement with the
WITH clause query 3.16 . 34

3.6 Data flow graph of the Example INSERT statement query 3.17 . . 34
3.7 Data flow graph of the Example UPDATE statement query 3.18 . 35
3.8 Data flow graph of the Example MERGE INTO statement query

3.19 . 36
3.9 Data flow graph of the Example CREATE TABLE LIKE statement

query 3.20 . 37
3.10 Data flow graph of the Example CREATE TABLE AS statement

query 3.21 . 37

4.1 Resolver and Model class diagram 42

5.1 Sequence diagram of resolving the example 5.6 47

xiii

List of Tables

1.1 SAP EBNF notation [14] . 7

3.1 Data types and data type classes [14] 20
3.2 Unary operators [14] . 22
3.3 Binary operators [14] . 22

xv

Introduction

Companies nowadays need complex systems to stay competitive and see de-
tailed business reports. The reporting is commonly done through multiple
systems and, sometimes, can lead to conflicting information from various data
sources. That is why data analysts try to automatise processes. [16] Automa-
tised processes are better than manual processing but can lead to the loss of
data origin information. This scenario can be seen especially in large data
warehouses.

Tracking the data movement is called data lineage. Data lineage is a vital
part of data warehouses. Data warehouses are complex systems comprising
multiple stages, databases, and tools. Businesses typically need to know where
the data from each system are consumed for legal or internal auditing reasons.
Mapping the lineage might be challenging as it relies on documentation of the
scripts. That is prone to human error since the documentation can di�er from
the actual scripts. To solve this, project Manta with its Manta Flow tool
automates this process by analysing the warehouse’s databases, scripts, and
ETL tools.

1

Chapter 1
Theoretical background

This chapter describes the theoretical concepts required for understanding the
technologies used in this thesis.

1.1 Graph

A graph G is an ordered triple (V (G), E(G), �G) consisting of a nonempty set
V (G) of vertices, a set E(G), of edges, disjoint from V (G), and an incidence
function �G, a that associates with each edge of G an unordered pair of (not
necessarily distinct) vertices of G. If e is an edge and u and u are vertices
such that �G(e) = (uv), then e is said to join u and v; the vertices u and v
are called the ends of e. [3]

Graphs can be represented graphically. Vertices can be shown as circles
and edges as lines connecting two vertices. The listing 1.1shows an example
definition of a graph that can be represented graphically, as shown in the
figure 1.1.

1 G = (V (G), E(G), �G)
2 V (G) = A, B, C
3 E(G) = e1, e2
4 �G(e1) = AB
5 �G(e2) = BC

Listing 1.1: Example graph G

1.1.1 Oriented graph

The aforementioned graph definition defines edges as non-directional. The so-
called unoriented graph definition might be su�cient for many applications,
but this thesis requires an extended version – the oriented graph. Oriented
graphs also have vertices, edges, and an incidence function, but the value of
the incidence function is an ordered pair. The graphical representation can

3

1. Theoretical background

A B

C

e1

e2

Figure 1.1: Possible graphical representation of the graph 1.1

reflect the direction as an arrow on one side of the line representing a (directed)
edge.

1.2 Language

An arbitrary set of chains (that is, words, cf. Word) over some (finite or
infinite) alphabet V (sometimes also called a dictionary), that is, a set of
expressions of the form Ê = a1...ak, where a1...ak œ V ; the number k, usually
denoted by |Ê|, is the length of the chain Ê. One also considers the empty
chain, denoted by ‘; one sets |‘| = 0. [11]

1.3 Context-free grammar

Context-free grammar is a 4-tuple of G = (V, �, P, ‡), where

1. V is a finite non-empty set

2. � is a non-empty subset of V

3. P is a finite non-empty set of pair (›, �), with › in V ≠ � and � in V ú

4. ‡ is an element of V ≠ �

• Each element of V ≠ � is called a variable.

• Each element of � is called a (terminal) letter.

• Each element (›, �) in P is called a production rule and is written
› æ �.

• ‡ is called a start variable, and represents whole language.

4

1.3. Context-free grammar

1.3.1 Derivations

Let G be a Context-free grammar defined in 1.2. The grammar is a set of
variables, terminal symbols and rules for generating new symbols.

1 G = (V, �, P, ‡)
2 V = {S, A, B, c, d}
3 � = {c, d}
4 P = {S æ AB, A æ Ac, A æ d, B æ cBd, B æ c}
5 ‡ = S

Listing 1.2: Example grammar G

The rules replace the non-terminals (defined on the left side of the rules)
with the right side. The start symbol represents all the strings the grammar
can generate. The example 1.3 uses the rules. One usage of a rule is called a
derivation step. [7]

If the leftmost non-terminal symbol only is being replaced, the derivation
is called leftmost derivation.

1 S => AB => AcB => dcB => dccBd => dcccd

Listing 1.3: Example derivation in the grammar G

Determining whether a grammar can generate some input can be achieved
by finding a derivation. The construction of derivations is referred to as pars-
ing. [7]

1.3.2 LL(k) grammar

For a natural number k Ø 0, a context-free grammar G = (V, �, P, ‡) is an
LL(k) grammar if

• for each terminal symbol string Ê œ
qú of length up to k symbols,

• for each nonterminal symbol A œ V , and

• for each terminal symbol string Ê1in
qú,

there is at most one production rule r œ R such that for some terminal symbol
strings Ê2, Ê3 œ

qú,

• the string Ê1AÊ3 can be derived from the start symbol S,

• Ê2 can be derived from A after first applying rule r, and

• the first k symbols of Ê and of Ê2Ê3 agree.

[2]

5

1. Theoretical background

1.3.3 Context-free language
L ™ �ú is a context-free language if there exists a context-free grammar
G = (V, �, P, ‡) such that L = L(G), where L(G) = {w œ

qú | ‡ æú w}
is said to be the context-free language generated by G. [1] If the grammar is
LL(k), then the language generated by the production rules is called restricted
Context-free Language.

1.3.4 Backus-Naur form
Programming languages are commonly designed to conform to Context-free
grammar, and as such, can they be described as one, using the same notation.
However, to simplify the notation, the Backus-Naur form (BNF) notation
is used. Because the Backus-Naur form describes programming languages,
it is sometimes called a metalanguage. The syntax is very similar to the
grammar description notation – it di�ers because it distinguishes the non-
terminal symbols in the notation (enclosing them in <and >). The symbol
::= is used to indicate metalinguistic equivalence – used in replacing non-
terminal symbols on the left with the right side. [6] The example 1.4 shows a
possible integer representation in the BNF notation.

1 <digit > ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
2 <unsigned_integer > ::= <digit > | <unsigned_integer ><digit >
3 <integer > ::= <unsigned_integer > | + <unsigned_integer > | - <

unsigned_integer >

Listing 1.4: Example number definition in BNF notation

1.3.4.1 Extended Backus-Naur form

The Extended Backus-Naur form (abbreviated EBNF) is an addition to the
original BNF. It changes the notation for terminal and non-terminal symbols
as terminal symbols are denoted with quotes, and non-terminal symbols are
not enclosed. These changes have advantages in that the described language
may contain the symbols of the metalanguage. The extensions also add some
additional syntax for shortening the rules, such as the repetition notation.
EBNF also denotes the end of the rule (by a semicolon) so that it is not
ambiguous and explicitly marks rule concatenation by a comma symbol. For
the complete reference, see [22]. The example 1.5 shows the exact integer
definition as the BNF 1.4. As it is apparent, the definition is shorter and
much more human-readable.

1 digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ |
’9’;

2 unsigned_integer = {digit}, digit;
3 integer = [(’+’ | ’-’)], unsigned_integer ;

Listing 1.5: Example number definition in EBNF notation

6

1.4. Finite-state automaton

Symbol Description
<> Angle brackets are used to surround the name of a

syntactic element (BNF nonterminal) of the SQL lan-
guage.

::= The definition operator is used to provide definitions of
the element appearing on the left side of the operator
in a production rule.

[] Square brackets indicate optional elements in a for-
mula. Optional elements can be specified or omitted.

{ } Braces group elements in a formula. Repetitive ele-
ments (zero or more elements) can be specified within
brace symbols.

| The alternative operator indicates that the portion of
the formula following the bar is an alternative to the
portion preceding it.

[...] Ellipsis with square brackets around it indicates op-
tional repetition of the preceding element or grouped
elements.

!! Introduces standard English text. This symbol is used
when the definition of a syntactic element is not ex-
pressed in BNF.

Table 1.1: SAP EBNF notation [14]

1.3.4.2 SAP Extended Backus-Naur form

SAP defines its version of EBNF to document syntax for the SAP Hana.
Its terminal and non-terminal symbol notation come from the BNF with the
extensions from EBNF. The table 1.1 lists the notation conventions. The
example 1.6 shows the exact integer definition as the EBNF 1.5 and the BNF
1.4.

1 <digit > ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
2 <unsigned_integer > ::= <digit >...
3 <integer > ::= [{+ | -}] unsigned_integer

Listing 1.6: Example number definition in SAP EBNF notation

1.4 Finite-state automaton
Automatons are concept machines with a defined input set of symbols, called
the alphabet, that either accept a string (finite sequence of symbols from the
alphabet) or not. Formally, it is a 5-tuple A = (S, A, i, ”, T), where S is a set
of states, A is the finite input alphabet, i is the initial state (element of S),

7

1. Theoretical background

” is a transition function (S x A æ S), and T is a set of terminal states (a
subset of S).[5]

The automaton then keeps track of the current state and the unread sym-
bols from the input. It begins the processing in the initial state and on the first
symbol of the input. Deciding whether to accept the input uses the transition
function to compute the next state upon reading the input. The transition
function defines the next state for a pair of the current state and input. If the
input contains no more symbols and the current state belongs to the set of
terminal states, the input is accepted. Otherwise, the automaton rejects the
input (if it cannot continue applying the transition function).

1.4.1 Push down automaton

Push down automaton is an extension of the finite State automaton – adding
a pushdown store that can be used during the process of deciding whether the
input is accepted or not. Formally, it is a 6-tuple A = (S, A, �, ”, Z0, q0), where
S is a set of states, A is the finite input alphabet, � is a finite non-empty set
of push down symbols, ” is a transition function (S x (A fi ‘) x � æ S x �ú),
Z0 is an element of � and starting symbol on the tape, and q0 is the initial
state (element of S). [1] The defined Push Down Automaton accepts the input
when all of the symbols in the pushdown store have been processed and the
store is empty.

1.5 Parsing

Parsing is an action of analysing a string of symbols according to formal gram-
mar rules. The concrete implementation of the parser required depends on
the language being analysed. This thesis deals with a programming language
defined in BNF-like notation containing recursive elements, requiring context-
free grammar [7].

It turns out that given any context-free grammar, there is a Push down
automaton (PDA) that accepts precisely the language of the grammar. Tools
that take a string and determine whether or not it is a sentence are called
recognisers. [7]

When the language has been described by context-free grammar, there
exist rules for the string generation. If the recogniser for that language can
record the rules used for a particular string, it is called a parser.

1.5.1 LL parser

LL parser is a parser that analyses restricted Context-free language by derivat-
ing left-to-right and leftmost.

8

1.5. Parsing

1.5.1.1 Lookahead

Lookahead is a property of a parser that can peek at the unread input and
decide which rule to use while derivating. This feature is then used to choose
between ambiguous derivation steps (more than one rule is applicable to the
input).

1.5.1.2 LL(k) parser

LL(k) parser is a LL parser with a lookahead of k Ø 0 characters.

1.5.1.3 LL(*) parser

LL(*) parser uses regular expressions rather than a fixed constant or back-
tracking 1 with a full parser to do lookahead. The analysis tries to construct
a deterministic finite automaton for each nonterminal in the grammar to dis-
tinguish between alternative productions (rules). If the analysis cannot find a
suitable DFA for a nonterminal, it fails over to backtracking. [4]

1More than one derivation step option; the parser tries all of them by returning to the
conflicting state when the derivation does not succeed.

9

Chapter 2
Technologies description

2.1 Data lineage
Data lineage maps all direct and indirect data flows in a system between data
entities [21]. In the context of a data warehouse (which is a typical use for
SAP Hana database [15]), this means describing the origins of data in reports.
Data lineage can be represented in natural language, used by human data
analysts, or by a graph. The data lineage graph is always an oriented graph
that shows data entities as nodes and flows as edges. For purposes of this
thesis, the edges of the graph will be distinguished into two groups – direct
flows that represent the movement of data from one entity to another and
filter flows that mean filtering of data (but not direct movement).

2.2 Manta
This thesis uses the framework of the Manta Flow tool. Manta Flow is a
utility that analyses source codes of many databases, ETL tools, programming
languages, and others. The tool internally represents data movements between
databases and systems. Then Manta Flow shows them as a graph of data
lineage.

Manta Flow comes with a framework for working with di�erent systems
– it provides tools for storing objects (data dictionary), helper methods for
working with some common processing tasks, or graph representation and
generation. The data dictionary may also add additional context from the
Dictionary extractor module. Manta has a dictionary extractor for the SAP
Hana database – implemented as a part of [17]. The Dictionary extractor
provides knowledge of tables, types, schemas, or other database objects stored
in the database.

Manta Flow usually runs analysis on multiple systems and merges the
resulting graphs – providing a complete picture of data movement throughout
complex and diverse systems. The graph processing step also involves graph

11

2. Technologies description

cleanup as the output of this tool involves information not needed for simple
data lineage – such as constants and variables.

2.3 SAP Hana

SAP Hana is a tenant, in-memory, column-store database with built-in online
and analytical data processing features. It also includes ETL capabilities and
an application server. [19]

Its features allow for high performance in BI (business intelligence) and
make it suitable for warehouse usage. The database engine is very modular
and allows a wide range of configurations, such as switching the table storage
from column-store to row-store, multiple snapshotting (saving the memory to
a hard drive), graph processing, or running application containers.

SAP Hana uses a dialect of the SQL called SQLScript. As the name
says, this language also comes with scripting capabilities used in functions or
procedures. Scripting is widely used in SQL dialects and adds complexity to
the data lineage. Its advanced features allow developers to move some business
logic into the database and save processing time by reducing data movement
and optimisations in the database engine.

2.4 Acquiring data lineage

Data lineage can be acquired in multiple ways. There is even an option not
to care about it at all. [13] describes possible scenarios used.

2.4.1 Business data lineage

It is a valid option to build lineage by asking the people working on a project
what data are used or exported. This method may introduce issues such
as incorrect people’s knowledge, two people contradicting themselves or even
missing part of the lineage.

2.4.2 Manual analysis

When working on a relatively small project, it is possible to read all relevant
source code and write down what data is used and exported. This approach
also has some significant drawbacks – namely, requiring expensive and skilled
human workers that can read the code and decide. Alternatively, the need
to keep the lineage updated as many systems undercome changes through
their lifetime – may put the existing lineage out of sync with the system
and introduce errors. And lastly, as before – human error as in the previous
method.

12

2.5. Static code analysis

2.4.3 Tracing/tagging

A more automated method may be to tag the data in the source systems and
then look for those tags on the output. This solution may look like a great
solution, but the main issue is integrating multiple systems as the engine of the
execution environment must track all data movements. Moreover, this does
not show a complete lineage for every run. It only shows execution lineage.
That means it may generate a completely di�erent lineage for every run if
there are some conditional switches for data sources that depend on the data
shown.

2.4.4 Self lineage

Another possible way is to use only one engine for every transformation with
built-in data lineage generation capabilities. Self lineage is the most stable
and error-prone method since every transformation and data movement is
controlled by a single entity. The apparent disadvantage comes from the same
feature – it is impossible to use any other system. This fact means that it is
constrained to the capabilities of a single system.

2.4.5 Decoded lineage

Building a complete lineage requires reading all of the sources and understand-
ing them. That is the goal of the Manta project, and this thesis is a part of
it. Reading source codes and building data lineage from it comes with draw-
backs as well – it is not possible to show the execution lineage (lineage of the
current output). Only the static lineage is possible. It is also very demanding
to implement data linage analysis as it requires building a parser and analyser
for every given language used by each system. Furthermore, with the growing
complexity of each system, it is unfeasible for companies that use the systems
(databases and ETL tools in the case of Manta) to automatise the analyses
by themselves.

2.5 Static code analysis

Reading and analysing the scripts is necessary when decoded analysis of the
data lineage. That process is called static code analysis. Static code analysis
is a process of analysing a program’s code without running it. It is performed
by compilers and code analysers that try to find patterns that lead to errors.
They also use a technique called data-flow analysis that keeps track of data
passed through variables and operations. [8] That is useful for data lineage as
the data movement can be shown in a graph.

13

2. Technologies description

The process itself is comprised of Lexical analysis, Syntax analysis,
and Semantic analysis. The figure 2.1 shows the inputs and outputs of each
phase.

Lexer Parser Resolver

Dataflow

- - - -

- -

Character
stream

Abstract
syntax
tree

Token
stream

Syntax
tree

Dataflow graph

Figure 2.1: Analysis process

2.5.1 Lexical analysis

Lexical analysis (Lexer) is the first part of the analyser. The input is a raw
character stream. The analyser has definitions of groups of characters, called
lexemes. The benefit behind this step is to reduce and simplify the input – the
Lexer removes irrelevant parts (such as whitespaces or comments). Further
analyser steps then do not have to include those in their language represen-
tation. The lexer itself has a a definition of the valid tokens in the language,
usually by regular expressions. [12]

In the case of SQL, the lexer should also di�erentiate between reserved
and non-reserved keywords as the parser uses that information. Reserved
keywords can not be used as names for objects (identifiers). A more detailed
description of reserved words is in the dialect section 3.3.6.

The figure 2.2 shows how the lexer tokenises the sample SELECT state-
ment.

SELECT

Keyword

a

ID

,

COMMA

b

ID

FROM

Keyword

table

ID

;

SC

Figure 2.2: Example SELECT statement lexer processing

14

2.5. Static code analysis

2.5.2 Syntax and semantic analysis
The token stream from the lexer is then passed to the parser that either accepts
or discards the input based on the language grammar. In the later stages, it
then builds a representation of the given input as the Syntax Tree or Abstract
Syntax Tree (AST). The Syntax Tree transformation to the Abstract Syntax
Tree usually means discarding some irrelevant syntax that is not useful for
later analysis or adding some details that can be then used. [10]

The figreffig:selectparser shows a sample AST built from the example 2.2.

SCRIPT

?

STATEMENTS

?

SELECT STATEMENT

@
@
@@R

�
�
��

PPPPPPPPPPq

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠9

XXXXXXXXXXXXXXz

SELECT

a COMMA b

SELECT LIST

�
�
�� ?

@
@
@@R

FROM TABLE LIST

table

?

SC

Figure 2.3: AST of the example SELECT statement 2.2

2.5.3 Generation of data flows
The AST created by the parser contains so-called AST nodes. AST node is
some logical unit generated by the Parser – the most notable logical unit in

15

2. Technologies description

SQL is the SQL statement. The nodes are used as a reference for the data
flows. In case of the example 2.3 SELECT STATEMENT node indicates that there
are data flows from the sources/tables inside TABLE LIST node to the nodes
inside SELECT LIST node. This structure allows the module to create graph
nodes for data lineage and connect them. Of course, this example is very
simplified and to get accurate results, the data flow generator needs context
and standardised interfaces for the nodes.

16

Chapter 3
Analysis

This chapter presents the analysis of the requirements for the tool. First, it
describes functional and non-functional requirements in the first subsection.
Then, the second section shows what technologies are used. The last part
introduces the SQL dialect used (SQLScript).

3.1 Requirements analysis

This section lists the functional and non-functional requirements of the proto-
type script analysis tool. The requirements come from the Manta’s needs as
Manta Flow can scan databases as stand-alone or scan the whole environment
– as in scripts that may be embedded in some other system (e.g. SAP Hana
scripts in other database’s scripts). The tool should be then used as a plug-in
module for Manta Flow.

3.1.1 Functional requirements

3.1.1.1 FR1: Script analysis

The tool shall analyse SQLScript/SAP Hana scripts and generate a data lin-
eage graph describing data movement between data entities used in SAP Hana.

3.1.1.2 FR2: Input

The tool shall accept inputs in the form of files and/or strings.

3.1.1.3 FR3: Data flow processing

The tool shall process both direct and indirect data flows.

17

3. Analysis

3.1.1.4 FR4: Error processing

The tool shall inform the user when an error has been encountered and should
recover at least on the following statement.

3.1.2 Non-functional requirements

3.1.2.1 NFR1: Manta framework

The tool shall integrate with the Manta framework. This means using com-
patible language and conventions.

3.1.2.2 NFR2: Time complexity

The tool shall take an appropriate amount of time to analyse scripts.

3.2 Technologies used

3.2.1 Java

The programming language of choice is the Java programming language.
There are multiple advantages and drawbacks to Java. Advantages may in-
clude significant prevalence amongst software developers, according to [18].
Widespread language usage makes for easy access to mature libraries and
tools for automating some parts of the development process. Java is also mul-
tiplatform, bytecode-compiled language, resulting in great compatibility with
di�erent systems. The main disadvantage remains in lower performance, but
as with other Manta’s modules, this does not seem to be that much of an is-
sue for this use case. Most performance issues in script analyses can be solved
either by improving the algorithms or by making the analysis run in parallel.

3.2.2 ANTLR

ANTLR is a parser generator that supports Java. ANTLR dramatically re-
duces the complexity of the code as it allows for e�cient and straightforward
representation of the language in the grammar that is then used for code gen-
eration of the parser in the selected language. It uses LL(*) parsing algorithm
to generate the parser.

ANTLR uses a syntax similar to EBNF, simplifying the process of speci-
fying the language. Other data flow analyser modules already use ANTLR in
Manta Flow.

3.2.3 Apache Maven

Apache Maven is a dependency and build manager for Java/JVM languages.
Building software is a complex process for any modern program, and with the

18

3.3. SAP Hana SQL dialect

increasing number of dependencies, managing versions becomes very hard to
ensure. For that, Apache Maven has been chosen. It allows for defining build
steps that are very useful for the parser generation from ANTLR.

3.3 SAP Hana SQL dialect

SAP Hana uses a dialect of the Structured Query Language (SQL – ISO/IEC

9075). The query language is similar to other SQL dialects (such as Post-
greSQL or T-SQL used by the Microsoft SQL Server). Definitions in this
section use the SAP Extended Backus-Naur form, and some of them are sim-
plified for the usage of this thesis. Simplified definitions do not contain all
clauses, or the rules are not entirely defined. They do have only the necessary
clauses for the data flow analysis.

3.3.1 SQLScript

The norm for Structured Query Language – ISO/IEC 9075 defines only
declarative-style statements. This results in unnecessary copying of data and
ine�ciency as most programming languages are imperative. They work with
tuples (for example, looping over table record by record). This programming
style is straightforward to understand and very hard to optimise for the com-
piler. SAP Hana tries to solve this by extending SQL with imperative state-
ments to ease the development. After executing queries with the extended
features, the query optimiser transforms the operations into a data-flows ex-
ecution plan. Data-flow execution plans can often be executed in parallel
and significantly reduce execution times on modern machines. SAP Hana es-
pecially benefits from this as it is a memory-based database, and hence the
storage is not a bottleneck. [20]

SAP Hana SQL scripts are comprised of statements delimited by the semi-
colon symbol. [14]

The dialect is not case sensitive, except for the delimited identifiers 3.3.3
– all keywords can be used in lower case or upper case with no impact on
semantics.

3.3.2 Data types

Data type characterises the data saved in the database. It defines how the
values are represented. In SAP Hana, there are di�erent classes of data types.
Certain data types might be required in the context of some expressions (for
example, indexing arrays). See the table 3.1 for the complete reference. Note
that some data types have aliases that are not listed in the documentation
[14]. Data types are used when defining data structures that store data – such
as columns of a table or variables.

19

3. Analysis

Classification Data type
Datetime
types

DATE, TIME, SECONDDATE, TIMESTAMP,
LONGDATE, DAYDATE

Numeric types TINYINT, SMALLINT, INTEGER, INT, BIGINT,
SMALLDECIMAL, DECIMAL, DEC, REAL, DOU-
BLE, FLOAT

Boolean type BOOLEAN
Character
string types

VARCHAR, NVARCHAR, ALPHANUM, SHORT-
TEXT, CHAR, NCHAR

Binary types VARBINARY
Large Object
types

BLOB, CLOB, NCLOB, TEXT, BINTEXT,
VARBINARY

Multi-valued
types

ARRAY

Spatial types ST GEOMETRY, ST POINT

Table 3.1: Data types and data type classes [14]

SAP Hana also allows creating custom data types with the CREATE TYPE
statement. Custom types behave almost precisely like tables, but they don’t
contain any data. This means that tables can also be used as custom types –
for function parameters or variables.

3.3.3 Identifiers

Identifiers represent names of database objects like tables, views, or users.
SAP Hana, like most SQL dialects, di�erentiates delimited and undelimited
identifiers. Undelimited identifiers must start with a letter and must contain
only letters, digits, or underscore symbol. Delimited identifiers are enclosed
in double quotes and can contain any character. Apart from that, delimited
identifiers are case-sensitive. Meaning that 3.1 and 3.2 are two di�erent tables
that can coexist in one schema. On the contrary, 3.1 and 3.3 refer to the same
table and can not be executed in the same schema. The reason for that is
that undelimited identifiers are normalised to upper-case, so the table name
in 3.1 is saved in the database as TABLE.[14]

The identifiers can contain multiple segments. The period symbol splits
segments. 2-segment identifier refers to the schema. 3-segment identifier refers
to the (remote) database, schema, and object.

1 CREATE TABLE Table (c int);

Listing 3.1: Create table statement with undelimited identifier 1

20

3.3. SAP Hana SQL dialect

1 CREATE TABLE "Table " (c int);

Listing 3.2: Create table statement with delimited identifier

1 CREATE TABLE TABLE (c int);

Listing 3.3: Create table statement with undelimited identifier 2

3.3.4 Functions

Functions are blocks of code that can be reused in multiple places without
repeating the code. Functions have parameters and return values. Return
values have multiple types – scalar and tabular. This di�ers from the way
functions output data. Scalar functions output either one value or numerous
single-value variables. Multiple return variables are not a common approach
in SQL dialects, as most SQL databases only allow one output value. Tabular
functions return a table.

Functions also di�er between parameters – there are IN, OUT, and IN-

OUT parameters. IN parameter is used as an input and any value is discarded
after the execution ends. OUT parameter pass the value at the end of execu-
tion back, outside of the function body scope, to the variable in the function
call. INOUT is a combination of both IN and OUT parameters – it inputs
value and returns it back.

There are two kinds of functions – user-defined and built-in. User-defined
functions have a defined body in a supported language. Built-in functions are
present in the database engine by default and may not have a definition in
any scripting language (they can be implemented outside of the script envi-
ronment).

3.3.5 Expressions

Expressions are clauses that can be evaluated to temporary constant values.
[14] Expressions are used to make calculations or some other data transfor-
mations. It may be helpful to show what transformations were used on the
data in data lineage.

There are multiple types of expressions.

3.3.5.1 Simple expressions

Simple expressions comprise constant values (such as number literals or string
literals) and operators performing operations on them.

There are two kinds of operators in SAP Hana – Unary and Binary. Unary
operators apply to one operand 2. Binary operators apply to two operands 2.

2Target of the operation.

21

3. Analysis

Operator Usage
Unary plus operator +<expression >

Unary minus operator -<expression >
Logical negation operator NOT(<expression >)

Table 3.2: Unary operators [14]

Operators Usage
Multiplicative
operators

expression*expression
expression/expression

Additive
operators

expression+expression
expression-expression

Comparison
operators

expression=expression
expression!=expression
expression<expression
expression>expression

expression<=expression
expression>=expression

String concatenation expression||expression

Table 3.3: Binary operators [14]

Tables 3.2 and 3.3 list the unary and binary operators defined in SAP Hana,
respectively.

Operators have defined precedence – the order in which they are evaluated
when there are multiple operators in one expression. It is possible to enclose
the expression in parenthesis to change the precedence.

3.3.5.2 Case expressions

Case expressions are conditional clauses that can be used to choose between
values based on conditions. The listing 3.4 shows the syntax. This statement
has multiple branches as values and one condition.

1 <simple_case_expression > ::=
2 CASE <expression >
3 WHEN <expression > THEN <expression >
4 [{ WHEN <expression > THEN <expression >}...]
5 [ELSE <expression >]
6 END

Listing 3.4: Case expression definition in the SAP EBNF notation [14]

22

3.3. SAP Hana SQL dialect

3.3.5.3 Function expressions

Functions expressions are references to functions. The process of referencing a
function is called calling. Function call requires parameter values. The listing
3.5 shows the syntax of the function expressions.

1 <function_expression > ::= <function_name > (<expression > [{, <
expression >}...])

Listing 3.5: Function expression definition in the SAP EBNF notation [14]

3.3.5.4 Aggregate expressions

Aggregate expressions use aggregate functions to calculate a single value from
multiple rows. They need to be addressed separately in the parser as they come
with a special syntax. The functions can only be used when the GROUP BY
clause is used in the SELECT statement 4.

1 <aggregate_expression > ::=
2 COUNT (*)
3 | COUNT (DISTINCT <expression_list >)
4 | <agg_name > ([ALL | DISTINCT] <expression >)
5 | STRING_AGG (<expression > [, <delimiter >] [<

aggregate_order_by_clause >])
6
7 <agg_name > ::= CORR | CORR_SPEARMAN | COUNT | MIN | MEDIAN | MAX

| SUM | AVG | STDDEV | VAR | STDDEV_POP | VAR_POP |
STDDEV_SAMP | VAR_SAMP

8 <delimiter > ::= <string_constant >
9 <aggregate_order_by_clause > ::= ORDER BY <expression > [ASC |

DESC] [NULLS FIRST | NULLS LAST]

Listing 3.6: Aggregate expression definition in the SAP EBNF notation [14]

3.3.5.5 Subqueries

A subquery is a SELECT statement enclosed in parentheses. The
SELECT statement can contain no more than one select list item.
A scalar subquery can only return a zero or a single value when
used as an expression.[14] The data flows here are processed recursively
from the enclosed SELECT statement3.3.7.1. The graph then outputs the
single select item.

3.3.6 Reserved words
Reserved words are words with special meaning to the SAP Hana parser and
can not be used as undelimited identifiers. Reserved words reduce the com-
plexity of parsers and grammar definitions, limiting the number of alternatives
for the possible parse tree. The complete list can be found in the documenta-
tion [14].

23

3. Analysis

3.3.7 Statements
Each statement of the language has some functionality and usually some form
of switches to configure additional options. This section lists SQL statements
relevant to data flow analysis for data lineage. Most statements do not gen-
erate any data flow relevant to data lineage and are not listed.

3.3.7.1 Query

SAP Hana queries the data by the standard SELECT statement. Queries are
used to retrieve data from the database and are the most critical data flow
generators. The SELECT statement also allows many clauses and switches,
even SELECT statement nesting, and hence it can generate very complex data
flows throughout transformations. Listing 3.7 shows a simplified definition of
the SELECT statement. All clauses are documented in [14].

1 <select_statement > ::=
2 [<with_clause >] <subquery > | [<with_clause >] (<subquery >) |

{ <subquery > | (<subquery >) } INTO { <table_ref > | <
variable_name_list > } [(<column_name_list >)]

3
4 <subquery > ::= <select_clause > <select_into > <from_clause > [<

where_clause >]
5 [<group_by_clause >]
6 [<having_clause >]
7 [<set_operator > <subquery > [{, <set_operator > <subquery > }...

]]
8 [<order_by_clause > <limit_clause >]
9

10 <select_clause > ::=
11 SELECT [TOP <unsigned_integer >] [ALL | DISTINCT] <

select_list >

Listing 3.7: Simplified SELECT statement definition in the SAP EBNF
notation [14]

1. Base query
The base SELECT statement is comprised of SELECT <select items>
FROM <table name> WHERE <expression>. Select items are columns or
expressions referencing sources in the FROM clause.

2. FROM clause
The SELECT statement defines the sources and outputs of data. Out-
puts are represented by the <select list>clause. The FROM clause de-
fines inputs – it can contain multiple tables, table variables, array func-
tions, a SELECT statement in brackets, or table with a JOIN clause.
JOIN clause is a method to merge two (or more) sources. The clause
defines a condition to join the table expression. Then, it creates a virtual
table (result set) that contains all the tables.

24

3.3. SAP Hana SQL dialect

3. WHERE clause

An important part of the query is the ability to filter out the data. That
is done using the WHERE clause. The clause is comprised of expressions
that reference sources from the FROM clause.

4. GROUP BY clause

Group by clause aggregates the rows in the result set. The clause is
designed alongside the Aggregate functions described in 3.3.5.4. When
the GROUP BY clause is specified, all columns in the select list must
be specified either in the GROUP BY clause or specify the Aggregate
function. This ensures that all columns are comprised of unique values
or aggregated.

5. HAVING clause

HAVING clause is the filtering clause for the queries using the GROUP
BY clause. HAVING is a filtering clause that is very similar to the
WHERE clause with the di�erence that it filters out aggregated columns.

6. WITH clause

WITH clause (also abbreviated CTE – Common Table Expression) cre-
ates a temporary result set (table). They are usually used to simplify
the queries (to prevent code duplication) and to reduce querying the
same tables multiple times. The data flows are simple – the CTE is
represented as a temporary result set (same as the SELECT) used in
the FROM clause.

7. Set operations

Set operations add multiple SELECT statements together. In SAP
Hana, it is possible to unite, intersect, or remove rows (except) from
one or more SELECT statements.

Unite has two modes – UNITE and UNITE ALL. The di�erence is that
UNITE does not keep duplicate rows, while UNITE ALL does.

8. ORDER BY clause

ORDER BY is a clause that changes the order of the result rows. The
sorting can be specified as ascending or descending.

9. LIMIT clause

The clause removes part of the results as it limits the number of rows.
It specifies the number of rows and o�set – how many rows are skipped
until the limit is applied.

25

3. Analysis

10. SELECT INTO
SELECT INTO is a di�erent way of writing the select statement but also
comes as a clause. The SELECT INTO clause is located after the select
items and causes the results to be stored in variables. This requires the
SELECT to have only one result row. The statement variant causes the
result set (resulting queries) to be inserted into a table, and syntactically,
it is placed after the FROM clause.

3.3.7.2 INSERT statement

Insert statement adds a row to a table. The simplified syntax of the statement
is 3.8. As defined, the insert statement can insert values from the VALUES
clause that contain expressions or values represented by a select statement.

1 <insert_statement > ::= INSERT INTO <table_name >
2 [(<column_list_clause >)]
3 { { <value_list_clause > | <select_statement > }

Listing 3.8: Simplified INSERT statement definition in the SAP EBNF
notation [14]

3.3.7.3 UPDATE statement

For changing the data in tables, the update statement is used. The simplified
syntax of this statement is shown in 3.9. The statement itself sets values
defined in the set clause in the table. The FROM clause provides additional
context for the values in the SET clause. The values changed can be limited
by the WHERE clause.

1 <update_statement > ::= UPDATE [<top_clause >] <table_name > [AS
<alias_name >]

2 [<from_clause >]
3 <set_clause >
4 [WHERE <condition >]
5 <set_clause > ::=
6 SET {< column_name > = <expression >
7 | (<select_statement >) } ,...

Listing 3.9: Simplified UPDATE statement definition in the SAP EBNF
notation [14]

3.3.7.4 MERGE INTO statement

When processing data from multiple sources, it might be necessary to choose
a di�erent source for some kind of a condition and probably some values range
restriction. For those cases, the MERGE INTO statement might ease the com-
plexity. It has a target table in its definition, table reference, and a condition
for values in those two tables. Then it defines matched/not matched branches.

26

3.3. SAP Hana SQL dialect

Each branch has an action assigned – INSERT, UPDATE, or DELETE. Then,
the matched branch is executed when the condition is met at a particular row.
In all other rows, the not matched branch is used. If the branch defines IN-
SERT, it inserts a row into the target table when called. UPDATE branch
updates the current row, and DELETE removes it.

1 <merge_into_statement > ::= MERGE INTO <target_table >
2 USING <table_reference >
3 ON <search_condition >
4 { <when_matched_clause >
5 | <when_not_matched_clause >
6 | <when_matched_clause > <when_not_matched_clause >
7 }
8 <when_matched_clause > ::=
9 WHEN MATCHED [AND <search_condition >] THEN { UPDATE SET <

set_clause_list > | DELETE }
10 <when_not_matched_clause > ::=
11 WHEN NOT MATCHED [AND <search_condition >] THEN INSERT [(<

insert_column_list >)] (<insert_value_element > [{, <
insert_value_element > } ...])

Listing 3.10: Simplified MERGE INTO statement definition in SAP EBNF
notation [14]

3.3.7.5 CREATE TABLE statement

The statement creates tables to store data in. It comes with a wide range of
options and clauses, most notably the option to store data in rows (CREATE
ROW TABLE) as opposed to the default COLUMN store of SAP Hana. CRE-
ATE TABLE also specifies columns of the table. Columns define the structure
of the data stored and have a data type specified – the section 3.3.2 shows
possible data types. SAP Hana also allows creating a table from a source table
and inserting data after creating the table. This can be done in two ways –
using CREATE TABLE LIKE clause or using CREATE TABLE AS clause. The first
clause mentioned above creates a copy of a defined table and the second clause
creates a table based on the SELECT statement’s result set. Both clauses do
not copy data by default, and the keyword WITH DATA must be specified to
copy the data. The listing 3.11 shows the simplified syntax of this statement.

1 <create_table_statement > ::= CREATE TABLE <table_name >
2 { (table_element , ...) | LIKE <table_name > [WITH [NO] DATA] |

[(< column_name >, ...)] AS (< select_statement >)}

Listing 3.11: Simplified CREATE TABLE statement definition in the SAP
EBNF notation [14]

3.3.7.6 Variable assignment statement

Storing results is an integral part of the programming capabilities of the
SQLScript programming language. Variable assignments have the form of

27

3. Analysis

a variable reference, followed by the equals sign and the assigned expression.

3.4 Data flow
This section shows the example data flow for the statements listed in 3.3.1.
Data flow nodes represent result sets (entities with data) and operation nodes
(nodes of statements or entities that only transform the data). Nodes have a
hierarchical structure (columns have a parent – a table, for example). Data
flow edges (data flows) have two kinds – direct flow and filter flow. Direct
flows represent data source scenario – the node directly uses the values. Filter
flows only use the data for filtering output.

3.4.1 Query

Query – represented by the SELECT statement, usually creates the most
complex data flow graph as it is the primary statement for the data retrieval.

1. Base query

The base query creates nodes for the expressions and two result set nodes
– one for the master select and the child select, with flows from the table
columns to the items of the result set, and filter flows to the references in
the WHERE clause expression. Examples 3.12 and 3.13 are represented
in the data flow diagrams 3.1 and 3.2 respectively.

2. JOIN clause

JOIN clause creates a result set for the table expression in the FROM
clause. The figure 3.3 depicts the data flows of the query 3.14.

3. GROUP BY clause

GROUP BY adds filter flows for the references used. The figure 3.4
shows the data flow of the query 3.15 that compiles GROUP BY with
the HAVING clause.

4. HAVING clause

HAVING clause adds filter flows for the references used. The figure 3.4
shows the data flow of the query 3.15 that compiles GROUP BY with
the HAVING clause.

5. WITH clause

WITH clause creates a node for the source – a temporary resultset that
has direct flows from the select defined. The figure 3.5 depicts the data
flows of the query 3.16.

28

3.4. Data flow

6. Set operations

Set operations behave the same for the data flows. As the SELECT
statement is split between the master select and child select, all the set
operations add a child select node to the master select.

7. ORDER BY clause

ORDER BY adds filter flows for all the columns in the clause.

8. LIMIT clause

Limit behaves the same way as ORDER BY – adding filter flows.

9. SELECT INTO SELECT INTO clause adds direct flows to the variables
from the select item list. SELECT INTO statement adds direct flows to
the specified table.

1 CREATE TABLE tbl (a int , b int);
2 SELECT a, b FROM tbl;

Listing 3.12: Example simple SELECT statement query

Figure 3.1: Data flow graph of the Example simple SELECT statement query
3.12

1 CREATE TABLE tbl (a int);
2 SELECT a FROM tbl WHERE a > 5;

Listing 3.13: Example SELECT statement with WHERE clause query

1 CREATE TABLE tbl (a int , b int);
2 CREATE TABLE tbl2 (c int , d int);
3 SELECT a, c FROM tbl JOIN tbl2 ON b = d;

Listing 3.14: Example SELECT statement with JOIN clause query

29

3. Analysis

Figure 3.2: Data flow graph of the Example SELECT statement with WHERE
clause query 3.13

1 CREATE TABLE tbl (a int , b int);
2 SELECT SUM(a), b FROM tbl GROUP BY b HAVING COUNT(b) > 10;

Listing 3.15: Example SELECT statement with the GROUP BY and
HAVING clauses query

1 CREATE TABLE tbl (a int , b int);
2 WITH q1 AS (SELECT * FROM tbl) SELECT * FROM q1;

Listing 3.16: Example SELECT statement with the WITH clause query

3.4.2 Functions

Data flows of functions are complex. A function can be represented by node
with child parameter nodes for each input parameter and child output param-
eter node. The input parameter type determines the direction of the flow. IN

parameter has a flow to the function node, OUT parameter has a flow to the
variable in the function call. INOUT has both flows. The output/function
type has to be determined by the definition of the function. To get a more
detailed data flow, it is necessary to process the function body. And connect
the parameters (that behave as variables in the function body) and the output
node – which can have variables or columns as child nodes.

30

3.4. Data flow

Figure 3.3: Data flow graph of the Example SELECT statement with the
JOIN clause query 3.14

3.4.3 INSERT statement
The INSERT statement is very similar to the SELECT INTO statement be-
cause it represents the VALUES clause as a SELECT statement. This comes
with the advantage of simple data flows. The statement connects the results
of the SELECT with the inserted table. The figure 3.6 shows possible data
flows of the example 3.17.

1 CREATE TABLE tbl (a int , b int);
2 INSERT INTO tbl VALUES (1, 2);

Listing 3.17: Example INSERT statement query

3.4.4 UPDATE statement
The UPDATE statement creates direct flows from the SET clause, augmented
by the filter flows from the WHERE clause. The figure 3.7 shows possible data
flows of the example 3.18.

1 CREATE TABLE tbl (a int , b int);
2 UPDATE tbl SET a = 5 WHERE b = 10;

Listing 3.18: Example UPDATE statement query

3.4.4.1 MERGE INTO statement

Lineage follows the operations of the statement. The Merge Into statement
is represented by a node with children for each branch. The data flow flows
into the target table from the action branches. The action branches have filter

31

3. Analysis

flows from the values condition and, possibly, since branches can have another
condition, filter flows from them. The figgure 3.8 shows possible data flows of
the example 3.19.

1 CREATE TABLE tbl1 (a int , b int);
2 CREATE TABLE tbl2 (a int , b int);
3 MERGE INTO tbl1 USING tbl2 ON tbl1.a = tbl2.a
4 WHEN MATCHED THEN UPDATE SET tbl1.b = tbl2.b
5 WHEN NOT MATCHED THEN INSERT VALUES (tbl2.a, tbl2.b);

Listing 3.19: Example MERGE INTO statement query

3.4.4.2 CREATE TABLE statement

Creating tables doesn’t add any data flows – only the table node. But the
CREATE TABLE statement still does add data flows – though CREATE TABLE
AS and CREATE TABLE LIKE clauses with the essential WITH DATA option. Fig-
ures 3.9 and 3.10 show data flow graphs of the CREATE TABLE LIKE 3.20 and
CREATE TABLE AS 3.21 queries, respectively.

1 CREATE TABLE tbl1 (a int , b int);
2 CREATE TABLE tbl2 LIKE tbl1 WITH DATA;

Listing 3.20: Example CREATE TABLE LIKE query

1 CREATE TABLE tbl1 (a int , b int);
2 CREATE TABLE tbl2 AS (SELECT * FROM tbl1);

Listing 3.21: Example CREATE TABLE AS query

32

3.4. Data flow

Fi
gu

re
3.

4:
D

at
a

flo
w

gr
ap

h
of

th
e

Ex
am

pl
e

SE
LE

C
T

st
at

em
en

t
w

ith
th

e
G

R
O

U
P

B
Y

an
d

H
AV

IN
G

cl
au

se
s

qu
er

y
3.

15

33

3. Analysis

Figure 3.5: Data flow graph of the Example SELECT statement with the
WITH clause query 3.16

Figure 3.6: Data flow graph of the Example INSERT statement query 3.17

34

3.4. Data flow

Figure 3.7: Data flow graph of the Example UPDATE statement query 3.18

35

3. Analysis

Fi
gu

re
3.

8:
D

at
a

flo
w

gr
ap

h
of

th
e

Ex
am

pl
e

M
ER

G
E

IN
T

O
st

at
em

en
t

qu
er

y
3.

19

36

3.4. Data flow

Figure 3.9: Data flow graph of the Example CREATE TABLE LIKE state-
ment query 3.20

Figure 3.10: Data flow graph of the Example CREATE TABLE AS statement
query 3.21

37

Chapter 4
Design

This chapter introduces the design of the prototype tool structure. It is based
on the facts presented in the first chapter and SAP Hana SQL dialect analysis.
All of the modules have dependencies on common parts of the Manta Flow
tools that it uses as a framework. These modules are out of scope for this
thesis.

Mainly, it shows the detailed design of the data flow analysis tool and its
modules:

• Data dictionary

The objects extracted from the database or recognised in the scripts
must be represented accordingly and stored. That is the purpose of the
Data dictionary module. It contains the object factory and dialect rules.
The object factory is responsible for creating and configuring the object
representations. Dialect specifies hierarchy rules for the entities created
(what entity types can have a particular entity type as a parent) and
built-in functions, types, and definitions of objects in the SYS schema.
The full description can be found in [17].

• Model

The Model module contains interfaces for nodes and some helper classes
used by the Resolver and Data flow generator. This module does not
include implementation for the AST nodes.

• Parser and Resolver

The Parser and Resolver module reads the input files (or strings) and
contains the SAP Hana SQL language parser. It also builds the AST
with custom nodes that implement interfaces defined in the Model mod-
ule. While resolving the AST, the data dictionary is being updated
too.

39

4. Design

• Data flow generator

After the AST has been built and the data dictionary completed, this
module visits the nodes and builds the graph. The graph representation
is based on the common data flow generator module and is not part of
this thesis.

4.1 Parser and Resolver module
The first step of the tool is to parse the input. The interface for the parser and
resolver must meet the functional requirement,3.1.1.2 and so it must imple-
ment a method for string processing and file loading. The figure 4.1 shows the
methods of the main interface that invokes the processing – ParserService.

ParserService, implemented by ParserServiceImpl, manages the pro-
cess of transforming the input into the AST. The first step is to tokenise the
input using the lexer. As mentioned in 3.2.2, lexer and parser are generated
by the ANTLR from the grammar definitions. The rules define the tokens in
SapHanaLexer. The tokens that are not a part of the reserved words are then
used by SapHanaNonReservedKW to define identifiers by matching what is an
identifier – as explained in 3.3.3.

SapHanaMain and SapHanaExpressions contain the parser rules. The
rules represent some logical unit, for example, a script, a statement, a clause
from a script, or a reference to a named object. These rules also use what
is called a rewrite rule that defines a custom structure of the AST [9]. The
custom structure allows for adding new nodes or even defining classes used for
instantiating AST nodes. Custom classes in the AST nodes ensure that cus-
tom code for resolving is inserted into the tree. The AST nodes, instantiated
from custom classes, apart from resolving references (identifiers of objects),
also add helper functions that query the surrounding nodes and eliminate the
need to use direct XPath queries on the tree nodes in the Data flow generator
module. The functions are simple XPath selectors.

XPath is a querying language that addresses nodes in an XML document.
The parser builds a hierarchical structure – AST. Since the AST is very similar
to an XML file, XPath can be used to select its nodes. It o�ers a variety of
functionalities to select nodes and eases development.

The main rule for the whole script is to be defined in SapHanaMain. Each
rule is translated to a function that reads the token stream [9]. After tokenising
the input character stream into the token stream, the ParserService executes
it to parse the input.

4.1.1 References representation

As shown in 3.3.3, identifiers can represent di�erent objects. References are
constructed from identifiers to disambiguate what is meant by the last iden-

40

4.2. Data flow generator module

tifier. The example 4.1 shows schema identifier in the table reference. The
identifiers, delimited by a period, are called segments. Segment types depend
on the context of the reference. For example, there can be two segments be-
fore the table name identifier. The first is always a schema identifier, and the
second is a server’s name that stores the table.

1 test_schema . table

Listing 4.1: Example reference

4.2 Data flow generator module
When generating the data flow graph, this module is used. The generation of
the graph is based on the visitor pattern to separate the functionality into a
di�erent module. The module is primarily implemented in the FlowVisitor
class. It contains functions called process with specific parameters for each
AST node that generates data flows. As the ISapHanaAstNode requires all
nodes to implement the accept function, the function can be recursively called
by the FlowVisitor and process all the nodes.

The processing involves defining graph nodes (vertices in the graph) and
flows (edges in the graph). The graph nodes also have a hierarchical struc-
ture as they can have child nodes – such as tables having columns. The
SapHanaGraphHelper class is responsible for creating both nodes and flows.
The graph nodes di�erentiate between an object node (such as a table node)
and an operation node (such as a merge statement).

41

4. Design

Connector SAP Hana

manta-connector-saphana-resolver

ANTLR

SapHanaLexer.g

SapHanaMain.g SapHanaExpressions.g

SapHanaNonReservedKW.g

manta-connector-saphana-model

<<Interface>>
ISapHanaAstNode

+ getParent(): ISapHanaAstNode
+ getChildren(): List<ISapHanaAstNode>
+ accept(ISapHanaAstVisitor visitor)
 : Object

<<Interface>>
ParserService

+ parseStringScript
(String script, ...)
 : ISapHanaAstNode
+ parserFileScript
(String fileName, ...)
 : ISapHanaAstNode

<<Interface>>
IAstResultSet

+ getColumns(): List<IAstResultSetColumn>

<<Interface>>
IAstTable

+ getAliasName(): EntityName
+ getColumnAliasNames(): List<EntityName>

Extends

<<Interface>>
IAstSelect

+ findTopClause(): IAstSapHanaNode
+ findWhereClause(): IAstSapHanaNode

Extends

AST nodes for each logical unit.
Each node extends ISapHanaAstNode

parser

SapHanaMain

+ SapHanaMain(tokenStream,..)
 : SapHanaMain
+ saphana_script()
 : saphana_script_return

SapHanaLexer

SapHanaExpressions

SapHanaNonReservedKW

Auto-generated classes
from ANTLR

ParserServiceImpl

- process(CharStream s)
 : ISapHanaAstNode

Use

SapHanaAstNode

+ resolve(): IResEntity

Extends

ast

Implementation of each interface defined in model.
Every AST node has to extend SapHanaAstNode

Figure 4.1: Resolver and Model class diagram

42

Chapter 5
Implementation

This chapter describes the concrete implementation of the modules and issues
encountered during the development process.

5.1 Parser
The processing by a parser is the first step of the analysis. It is split into a
Lexer part that tokenises the input and the Parser that uses the tokens to
define logical units used in the scripts. Both Lexer and Parser are defined as
ANTLR grammar rules (.g files) and are translated into Java code as part of
the build process. The custom classes for some AST nodes are implemented in
the ast/impl folder and implement interfaces from the Model module. This
section will describe the ANTLR rules.

5.1.1 Lexer rules
The Lexer defines tokens. In the project, they are split into multiple kinds:

• Identifiers
As discussed in 3.3.3, identifiers have two forms – delimited and unde-
limited. The lexer rules have to reflect that. The identifiers have been
implemented as two rules – REGULAR ID 5.1 and DELIMITED ID 5.2. The
delimited identifier consumes every symbol after the opening quotation
mark until the ending quotation mark. SAP Hana represents period
symbols as part of the name in this case, as opposed to some SQL di-
alects.

• Reserved words
Reserved words, as described in 3.3.6, are di�erentiated from the non-
reserved words by name. In Lexer, this has no functional impact. This is
because Manta provides the so-called GrammarChecker, which ensures

43

5. Implementation

that all defined keywords, reserved and non-reserved, are used in rules
for identifiers in the parser rules.

• Comments and whitespaces
Comments are also defined as character sequences from the comment
start symbol sequence to the ending sequence. There are two types
of comments – single-line and multi-line. Single-line comments have
double hyphens as the starting sequence and newline as the end. Multi-
line comments start with slash and asterisk and end with asterisk and
slash (in the reverse order). [14] They are defined as such in the Lexer
– 5.3 and 5.4 respectively. Important to note here is the $channel =
HIDDEN; option. This configuration ensures that the Parser ignores the
comments and they do not take part in any other process.
Whitespaces are defined similarly – 5.5 – the Lexer rule consumes the
whitespace symbols and ignores them.

• Special characters/sequences of characters
The last thing for the lexer is to define sequences used by expressions
or characters denoting some action – such as semicolons, or left or right
brackets.

1 REGULAR_ID
2 : (UNDERSCORE | LETTER | CROSSHATCH) (UNDERSCORE | LETTER |

DIGIT)*
3 ;

Listing 5.1: Undelimited Identifier implementation in the Lexer

1 DELIMITED_ID
2 : QUOTATION_MARK (˜(QUOTATION_MARK) | QUOTATION_MARK

QUOTATION_MARK)* QUOTATION_MARK
3 ;

Listing 5.2: Delimited Identifier implementation in the Lexer

1 SINGLE_LINE_COMMENT
2 : (
3 ’--’ (˜(CR|LF))* (NEWLINE | EOF)
4) { $channel = HIDDEN ; }
5 ;

Listing 5.3: Single-line comment Lexer rule

1 MULTI_LINE_COMMENT
2 : (
3 ’/*’ .* ’*/’
4) { $channel = HIDDEN ; }
5 ;

Listing 5.4: Multi-line comment Lexer rule

44

5.1. Parser

1 WHITESPACE
2 : (BLANK)+
3 { $channel = HIDDEN ; }
4 ;

Listing 5.5: Whitespaces Lexer rule

5.1.2 Parser rules

The parser processes the token stream per the defined parser rules. The rules
also form the AST structure, and so they begin with the saphana script
rule as the root of the tree. Statement aggregation is implemented in the
statement list rule. ParserServiceImpl instantiates SapHanaMain.java
and calls the main rule function. The main function returns the root node of
the AST created for the parsed input. On the root node, it is possible to call
the resolve() function that recursively resolves all the references in the tree.

Statements are merged into a single rule single statement that is part
of the rule statement int. The statement int rule also contains syntactic
predicate 3 for variable assignments.

5.1.2.1 Expressions

Expressions are represented in the SapHanaExpressions.g parser rules file as
a expression rule. Expressions are implemented in the following hierarchical
order:

1. Boolean operations (OR, AND, NOT)

2. Comparison operators (EQUALS, LESS THAN, GREATER THAN,
BETWEEN, LIKE (REGEXP), IS, IN)

3. Concatenation operator

4. Arithmetic operators in their respective mathematical, order (addition,
multiplication)

5. Unary operators (PLUS, MINUS)

6. Atom values (literal values, EXISTS predicate, CONTAINS predicate,
CASE expression, SELECT as a subquery, reference to an object)

Parenthesis in the expression is represented as a subquery and thus recog-
nised as select statement.

3Predicate is an expression used for indicating the validity of continuing the parse. [4]

45

5. Implementation

5.1.2.2 Query

Query is represented in the SapHanaExpressions.g parser rules file as a rule
select statement. This rule is divided into two logical parts (AST nodes)
– AstMasterSelect, and AstSelect. AstMasterSelect is the outer/parent
node, and can contain multiple AstSelects, representing SELECT statements
in the set operations.

As aforementioned in the Expressions description 5.1.2.1,
select statement is designed to also act as an expression. This en-
sures that parenthesis can be used either in specifying the order in arithmetic
operation or denoting a subquery. Syntactic predicates are used for this to
build the AST correctly.

5.1.2.3 Other statements

The rest of the statements are implemented in SapHanaMain.g.

5.2 Resolver
The resolver is implemented as a part of the custom AST nodes. The custom
AST nodes, as shown in 4.1, implement a method resolve() that handles the
resolving – creates and finds representations of database objects in the Data
dictionary.

Resolving is implemented as idempotent – when the resolve() is called
multiple times on the same entity, it does not cause any side-e�ects (the
resolving does not create the entities in the Data dictionary more than once).

5.2.1 Context resolving

This hierarchical resolving is, in some cases, augmented by a function
resolveInternal(Deque<Map<EntityName, IResObject>> context). The
function is intended for statements that require additional context for refer-
ences (for example, nested statements). This can be shown in an example
listing 5.6 – the context for the inner query contains a reference for tbl1. The
resolveInternal function in the inner query then finds it while resolving the
column/reference a.

This is implemented as a record in the Queue (Deque). The map contains
names and references to the Data dictionary objects. The Queue has been
used to represent possible nesting of the statements – each level may add
references with the same name. References searching then looks into the
last/most recent map in the context and, if not found, continues on the upper
level. The figure 5.6 shows the sequence diagram of resolving the example 5.6.
Note that the AST SELECT calls resolveInternal(context) on the second
AST MASTER SELECT.

46

5.3. Data flow generation

1 CREATE TABLE tbl1 (a int , b int);
2 CREATE TABLE tbl2 (c int , d int);
3 SELECT * FROM tbl1 WHERE (SELECT c FROM tbl2 WHERE d = a) = 5;

Listing 5.6: Example context resolving

AST_SCRIPT

resolve()

AST_CREATE_TABLE

return

resolve()

AST_MASTER_SELECT

resolveInternal(context)

return

Repeats the same sequence
for the other table

resolve()

AST_SELECT

return

AST_MASTER_SELECT

resolveInternal(context)

AST_SELECT

return

resolveInternal(context)

return

Figure 5.1: Sequence diagram of resolving the example 5.6

5.3 Data flow generation
As proposed in 4.2, the FlowVisitor is run by calling the process(SapHanaAstNode
node) function on an instance with the script (root) node of the AST. This
commences the data flow graph building process. The FlowVisitor has
generic process(SapHanaAstNode node) that calls accept(ISapHanaVisitor
flowVisitor) with an reference to itself as the parameter on all child nodes.
This repeats until the FlowVisitor encounters an entity that has a custom
process function implemented. For example, the CREATE TABLE statement
is represented by the AstCreateTable class in the Parser and Resolver mod-
ule. This class implements interface IAstCreateTable located in the Model
module. Since the Data flow module is designed not to have a dependency
on the Parser and Resolver module, the process function is defined for the
IAstCreateTable interface.

The nodes and edges generation is, as mentioned, handled by the SapHanaGraphHelper
class. The class extends AstGraphHelper which is an internal class of the
Manta framework with definitions of the graph and edge representations/-
classes. SapHanaGraphHelper augments this base class with SAP Hana’s spe-
cific node and edge generating functions.

Each process function then invokes functions from SapHanaGraphHelper
according to the output of the helper functions defined in the AST node inter-

47

5. Implementation

faces and the dictionary object. In the case of the CREATE TABLE example,
the processing creates graph nodes for the columns of the table (defined as chil-
dren of the dictionary object). It optionally creates flows/edges in the graph
when the table has some initialisation clause defined (CREATE TABLE LIKE
or CREATE TABLE AS) – defined by the functions findSourceSelect and
isSelectLikeWithData.

48

Chapter 6
Testing

While implementing the resolving and data flow module, it was essential to see
the resulting structures – the AST for the Parser and Resolver module and the
data flow graph for the Data flow module. With those AST representations in
place, it was possible to automatise the tests to verify that the representations
are still the same. The prototype tool uses JUnit for the tests.

All tests depend on the manta-connector-saphana-testutils module
that implement the base testing class SapHanaTestBase. The class inherits
from Manta’s internal helper testing class and is used as a base for all tests in
all testing classes in all SAP Hana modules.

The primary issue with testing the Parser, Resolver, or the Data flow
generator is that, due to the complexity of the query language, the tests can’t
possibly cover all use cases. The testing approach chosen was to make sure the
basic structure and use cases work and then try out all the examples found
in the documentation. The tests were then automated, with the results saved
and compared on every run of the tests. Both Parser and Resolver and the
Data flow generator modules tests are placed in the JUnit test folder.

6.1 Parser and Resolver module testing
The module includes the AstBasicTest class, which is the parent class for all
the tests. The class is responsible for initiating the test scenario. All other
test classes extend this class.

The test that is used for debugging purposes – it parses and resolves only
the test script – is called AstResolverTest. The test only checks for errors
in the AST structure and passes if there are none. But the primary purpose
is to display the AST structure when the logger is set to debug output level.

The test classAstResolverBasicTest contains tests for error recovery.
Then there are two tests that use prepared test scripts – AstInvariantsTest
and AnnotatedFilesResolverTest. AstInvariantsTest checks whether the
AST contains all tokens (whether the input script can be reconstructed from

49

6. Testing

the AST). This ensures that all rewrite rules do not leave out any tokens.
AnnotatedFilesResolverTest verifies that the AST does not contain error
nodes and deducted entities. Input scripts are located in the folder Sim-
pleTests in the test resources.

6.2 Data flow generator testing
Similar to the Parser and Resolver module, the Data flow generator module
defines the base test class BaseAstFlowTest. This class defines helper func-
tions for processing data flow graphs. All test classes then extend this class.

The test class ScriptPathTest has two purposes – the first purpose is
to verify the correct data flow nodes structure – as they have a hierarchical
structure (a script has statements, a table has columns). This is done on an
example structure of folders – the input script is located in 2 nested folders.
The second purpose is to be used for debugging purposes.

The test class AstFilesFlowTest automates the repeated runs as it im-
plements a mechanism for comparing the data flow graph structure. Each
statement, and sometimes particular statement, is represented by one input
.sql file and one expected.txt file that contains data flow graph. This
method provides a way to automatically verify that the structure has not
changed after introducing changes anywhere in the processing pipeline.

50

Conclusion

This thesis aimed to analyse the query language of the SAP Hana database
and the design and implementation of a prototype tool that could be used as
a module for the Manta Flow data flow analysis tool.

First, this thesis introduced the theoretical concepts used. The analysis
part described the suitable technologies and listed the SQL statements that
impact the data flow. After that, it described them in appropriate detail. The
last part showed the possible data flows of these statements with examples.

The design chapter proposed the architecture for the Parser and Resolver
module, alongside the architecture for the Data flow module. It explained the
structure and process of parsing, resolving, and generating data flows.

The last chapter described the process and architecture for testing the
prototype tool.

All goals of the thesis were accomplished. The module has been suc-
cessfully integrated with the Manta Flow tool and is being deployed to the
customers at the time of writing this thesis. The next step might involve
adding the data flow analysis of the Calculation views that have already been
requested as a part of the common way SAP Hana is being used. The Calcu-
lation views analysis was not included because they are a di�erent part of the
SAP Hana system that is not based on SQL. Calculation views depend on a
client execution engine that lets the users define queries in a graphical envi-
ronment. The representation of such Calculation views is saved in an XML
file and would need a di�erent and probably simpler analyser as they resemble
the working of ETL tools.

51

Bibliography

1. GINSBURG, Seymour; SPANIER, Edwin H. Finite-Turn Pushdown Au-
tomata. SIAM Journal on Control. 1966, vol. 4, no. 3. Available from
doi: 10.1137/0304034.

2. ROSENKRANTZ, D.J.; STEARNS, R.E. Properties of deterministic
top-down grammars. Information and Control. 1970, vol. 17, no. 3, pp. 226–
256. issn 0019-9958. Available from doi: https://doi.org/10.1016/
S0019-9958(70)90446-8.

3. BONDY, John Adrian; MURTY, Uppaluri Siva Ramachandra, et al.
Graph theory with applications. Macmillan London, 1976.

4. PARR, Terence J; QUONG, Russell W. Adding semantic and syntac-
tic predicates to LL (k): pred-LL (k). In: International Conference on
Compiler Construction. 1994, pp. 263–277.

5. LAWSON, Mark V. Finite automata. Chapman and Hall/CRC, 2003.
6. MCCRACKEN, Daniel D.; REILLY, Edwin D. Backus-Naur Form (BNF).

In: Encyclopedia of Computer Science. John Wiley and Sons Ltd., 2003.
isbn 0470864125.

7. ECONOMOPOULOS, Giorgios Robert. Generalised LR parsing algo-
rithms. 2006. PhD thesis. Citeseer.

8. LOURIDAS, P. Static code analysis. IEEE Software. 2006, vol. 23, no.
4, pp. 58–61. Available from doi: 10.1109/MS.2006.114.

9. PARR, Terrance. ANTLR v3 documentation [online]. 2009 [visited on
2022-04-15]. Available from: https://theantlrguy.atlassian.net/
wiki/spaces/ANTLR3/pages/2687234/ANTLR+v3+documentation.

10. COOPER, Keith D; TORCZON, Linda. Engineering a compiler. Else-
vier, 2011.

53

https://doi.org/10.1137/0304034
https://doi.org/https://doi.org/10.1016/S0019-9958(70)90446-8
https://doi.org/https://doi.org/10.1016/S0019-9958(70)90446-8
https://doi.org/10.1109/MS.2006.114
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687234/ANTLR+v3+documentation
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687234/ANTLR+v3+documentation

Bibliography

11. MATHEMATICS, Encyclopedia of. Formal language [online]. 2011 [vis-
ited on 2022-04-30]. Available from: http://encyclopediaofmath.org/
index.php?title=Formal_language&oldid=46955.

12. PLATZER, André. Lecture Notes on Lexical Analysis. 2013.
13. KRÁTKÝ, Tomáš. Di�erent Approaches To Data Lineage [online]. 2018

[visited on 2022-04-08]. Available from: https://getmanta.com/blog/
different-approaches-to-data-lineage/.

14. SAP. SAP HANA SQL Reference Guide for SAP HANA Platform [on-
line]. 2019 [visited on 2022-04-04]. Available from: https://help.sap.c
om/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/
b4b0eec1968f41a099c828a4a6c8ca0f.html.

15. SAP HANA & Data Warehousing for non-experts. SAP Community blogs
[online]. 2019 [visited on 2022-04-03]. Available from: https://blogs.
sap . com / 2019 / 05 / 15 / sap - hana - data - warehousing - for - non -
experts/e.

16. WATTANAJANTRA, Asavin. Business reporting: With great growth comes
great complexity [online]. 2019 [visited on 2022-04-20]. Available from:
https://www.sage.com/en-gb/blog/business-reporting-growth-
complexity/.

17. HLAVÁČ, Ondřej. SAP Hana database metadata extraction tool. 2020.
Bachelor’s thesis. České vysoké učeńı technické v Praze.

18. STACKOVERFLOW. 2021 Developer survey [online]. 2021 [visited on
2022-04-04]. Available from: https://insights.stackoverflow.com/
survey/2021.

19. SAP. What is SAP HANA [online]. 2022 [visited on 2022-04-03]. Avail-
able from: https://www.sap.com/products/hana/what- is- sap-
hana.html.

20. SAP. What is SQLScript? [Online]. 2022 [visited on 2022-04-03]. Avail-
able from: https://help.sap.com/docs/SAP_HANA_PLATFORM/de2486e
e947e43e684d39702027f8a94 / 297af2926307446cbbfb1a8f96fec941 .
html.

21. KRATKY, Tomas. The Ultimate Guide to Data Lineage in 2022. Novem-
ber 2021. MANTA, [n.d.].

22. Information technology — Syntactic metalanguage — Extended BNF.
Geneva, CH, 1996-12. Standard. International Organization for Stan-
dardization.

54

http://encyclopediaofmath.org/index.php?title=Formal_language&oldid=46955
http://encyclopediaofmath.org/index.php?title=Formal_language&oldid=46955
https://getmanta.com/blog/different-approaches-to-data-lineage/
https://getmanta.com/blog/different-approaches-to-data-lineage/
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://blogs.sap.com/2019/05/15/sap-hana-data-warehousing-for-non-experts/e
https://blogs.sap.com/2019/05/15/sap-hana-data-warehousing-for-non-experts/e
https://blogs.sap.com/2019/05/15/sap-hana-data-warehousing-for-non-experts/e
https://www.sage.com/en-gb/blog/business-reporting-growth-complexity/
https://www.sage.com/en-gb/blog/business-reporting-growth-complexity/
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://www.sap.com/products/hana/what-is-sap-hana.html
https://www.sap.com/products/hana/what-is-sap-hana.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/de2486ee947e43e684d39702027f8a94/297af2926307446cbbfb1a8f96fec941.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/de2486ee947e43e684d39702027f8a94/297af2926307446cbbfb1a8f96fec941.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/de2486ee947e43e684d39702027f8a94/297af2926307446cbbfb1a8f96fec941.html

Appendix A
Acronyms

AST Abstract Syntax Tree

SQL Structured Query Language

CFG Context-free Grammar

CFL Context-free Language

LL Left-to-right, Leftmost

BNF Backus-Naur form

EBNF Extended Backus-Naur form

DFA Deterministic finite automaton

PDA Push down automaton

ETL Extract-Transform-Load

ANTLR ANother Tool for Language Recognition

55

Appendix B
Contents of enclosed SD card

readme.txt...................the file with SD card contents description
impl.............................the directory with the implementation

manta-connector-saphana-manta-connector-saphana-model
sources of the Model interfaces
manta-connector-saphana-resolver......sources of the Parser and
Resolver module
manta-dataflow-generator-saphana....... sources of the Data flow
generation module

text..the thesis text directory
thesis..............the directory of LATEX source codes of the thesis
DP Ondrej Hlavac.pdf................the thesis text in PDF format

57

	Introduction
	Theoretical background
	Graph
	Oriented graph

	Language
	Context-free grammar
	Derivations
	LL(k) grammar
	Context-free language
	Backus-Naur form
	Extended Backus-Naur form
	SAP Extended Backus-Naur form

	Finite-state automaton
	Push down automaton

	Parsing
	LL parser
	Lookahead
	LL(k) parser
	LL(*) parser

	Technologies description
	Data lineage
	Manta
	SAP Hana
	Acquiring data lineage
	Business data lineage
	Manual analysis
	Tracing/tagging
	Self lineage
	Decoded lineage

	Static code analysis
	Lexical analysis
	Syntax and semantic analysis
	Generation of data flows

	Analysis
	Requirements analysis
	Functional requirements
	FR1: Script analysis
	FR2: Input
	FR3: Data flow processing
	FR4: Error processing

	Non-functional requirements
	NFR1: Manta framework
	NFR2: Time complexity

	Technologies used
	Java
	ANTLR
	Apache Maven

	SAP Hana SQL dialect
	SQLScript
	Data types
	Identifiers
	Functions
	Expressions
	Simple expressions
	Case expressions
	Function expressions
	Aggregate expressions
	Subqueries

	Reserved words
	Statements
	Query
	INSERT statement
	UPDATE statement
	MERGE INTO statement
	CREATE TABLE statement
	Variable assignment statement

	Data flow
	Query
	Functions
	INSERT statement
	UPDATE statement
	MERGE INTO statement
	CREATE TABLE statement

	Design
	Parser and Resolver module
	References representation

	Data flow generator module

	Implementation
	Parser
	Lexer rules
	Parser rules
	Expressions
	Query
	Other statements

	Resolver
	Context resolving

	Data flow generation

	Testing
	Parser and Resolver module testing
	Data flow generator testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD card

