
04/12/2021, 15:12 ProjectsFIT

https://projects.fit.cvut.cz/theses/114/assignment-print 1/1

Instructions

Sentiment analysis is an approach that aims to extract the polarity of a given text. Such polarity may,

for example, correspond to a positive or negative review of some product. The problem is that

sentiment analysis is a very domain-specific task and fine-tuning a whole model for a domain takes a

lot of computational power. The aim of this thesis is to use light-weight domain-specific adapters on

top of a frozen general base model to achieve similar performance as a fine-tuning approach would

while using a minimum amount of trainable parameters.

1) Review the state of the art approaches for sentiment analysis using transfer learning. Focus on the

usage of domain-specific adapters.

2) Experiment with different architectures of the base model and the adapters. Compare the achieved

results with a fine-tuned model baseline.

3) Propose a direction for further improvement of selected approaches.

Electronically approved by Ing. Karel Klouda, Ph.D. on 12 February 2021 in Prague.

Assignment of master’s thesis

Title: Sentiment Analysis using Domain Specific Adapters

Student: Bc. Lukáš Langr

Supervisor: Ing. Daniel Vašata, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of winter semester 2022/2023

Master’s thesis

Sentiment Analysis using Domain Specific
Adapters

Bc. Lukáš Langr

Department of Applied Mathematics
Supervisor: Ing. Daniel Vašata, Ph.D.

February 10, 2022

Acknowledgements

I would like to immensely thank my girlfriend Julie for believing in me and
for supporting me during the creation of this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on February 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Lukáš Langr. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Langr, Lukáš. Sentiment Analysis using Domain Specific Adapters. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2022.

Abstrakt

Ve zpracováńı přirozeného jazyka v posledńı době dominuj́ı velké předtrénované
modely vyžaduj́ıćı mnoho výpočetńıho výkonu na přizp̊usobeńı se konkrétńı
úloze. V této práci je navržena jiná metoda přenášeńı znalost́ı zvaná doménově
specifické adaptéry pro úlohu analýzy sentimentu. Adaptované modely jsou
porovnány s fine-tune-ovanou baselinou v několika experimentálńıch scénář́ıch
a jejich výkonnost je srovnatelná s mnohem větš́ımi modely, ikdyž jsou mno-
hem méně výpočetně náročné. Tento př́ıstup se jev́ı být použitelnou alterna-
tivou k velkým model̊um v prostřed́ıch s ńızkým výpočetńım výkonem.

Kĺıčová slova Analýza sentimentu, Transfer learning, Doménově specifické
adaptéry, Recenze filmů, Recenze aerolinek

vii

Abstract

Natural language processing has become a domain of large pre-trained models
requiring a great deal of computing power to adjust to a custom task. In
this work a different transfer learning method of domain specific adapters is
proposed for the task of sentiment analysis. The adapted models are com-
pared to a fine-tuning baseline in multiple experimental scenarios and their
performance is comparable to considerably larger models while being much
less computationally intensive. This approach looks to be a viable alternative
to large models in lower computing power environments.

Keywords Sentiment analysis, Transfer learning, Domain specific adapters,
Movie reviews, Airline reviews

ix

Contents

Introduction 1

1 Goals 3

2 Sentiment analysis 5
2.1 What is Sentiment Analysis . 5
2.2 Levels of Analysis . 5

3 Language Classification Models 7
3.1 Lexicon-based Approach . 7
3.2 Machine Learning Approach . 9
3.3 The Age of the Transformer . 16
3.4 Model Evaluation . 20

4 Transfer Learning 23
4.1 Transfer Learning in NLP . 24
4.2 Related Work . 26
4.3 Domain Specific Adapters . 27

5 Implementation 29
5.1 Datasets . 29
5.2 Tools . 32
5.3 Model . 33

6 Methodology 39
6.1 Data Split . 39
6.2 Preprocessing . 40
6.3 Scenarios . 41
6.4 Hyperparameters . 43
6.5 Benchmark . 43

xi

7 Results 45
7.1 Base Models . 45
7.2 IMDb Base Model . 46
7.3 Skytrax Base Model . 47

8 Discussion 51
8.1 Fine-tuning vs Base Models . 51
8.2 Adapters vs Base Models . 52
8.3 Adapters vs Fine-tuning . 53
8.4 Proposed Models vs Benchmark 54

Conclusion 55

Bibliography 57

A List of Abbreviations 63

B Contents of Enclosed CD 65

xii

List of Figures

3.1 Tree of sentiment analysis techniques [1]. 7
3.2 Two model architectures of Word2vec [2]. 12
3.3 A deep feed-forward neural network [3]. 13
3.4 Plot of ReLU and GELU . 14
3.5 Plot of the sigmoid function [4]. 15
3.6 Example of RNN: Long term short memory cell [5]. 15
3.7 CNN for text classification [6]. 16
3.8 The attention mechanism [7]. 17
3.9 Positional encoding [7]. 18
3.10 Transformer model architecture [7]. 19
3.11 BERT input representation [8]. 20

4.1 Illustration of transfer learning [9]. 23
4.2 Adapter architecture [10]. 27

5.1 Token and positioning Embedding code 34
5.2 Adapter code . 35
5.3 Transformer block code . 36
5.4 Example classification model summary 37

xiii

List of Tables

5.1 IMDb dataset statistics . 29
5.2 Skytrax dataset statistics . 31
5.3 Tweets dataset statistics . 32

6.1 Train, test, validation split of the IMDb dataset 40
6.2 Train, test, validation split of the Skytrax dataset 40
6.3 Train, test, validation split of the Tweets dataset 41
6.4 Hyperparameter values for all experiments 43
6.5 Performance and size of BERT-base and DistilBERT on the IMDb

dataset [11]. 43

7.1 Results for base models only. 45
7.2 Results for the IMDb base model with Adapters 46
7.3 Results for the IMDb base model using Fine tuning 47
7.4 Results for the Skytrax base model with Adapters 48
7.5 Results for the Skytrax base model using Fine tuning 49

8.1 Comparison of test results from base models, pre-fine-tuning and
fine-tuning. 51

8.2 Comparison of test results from base models, pre-adapters and
adapted. 52

8.3 Comparison of test results of fine-tuned and adapted models. . . . 53
8.4 Comparison of test results of proposed models to a third party

benchmark. 54

xv

Introduction

The growth of user-generated reviews and opinions has been going nowhere
but up in the last decade or two. That has created a huge demand for internet
based businesses to develop efficient and accurate tools to computationally
evaluate this content and extract valuable knowledge about their customers.

Therefore, sentiment analysis became a prominent direction of the natu-
ral language processing field. The methods employed by sentiment analysis
have been steadily leaning away from hand made lexicons with heuristic rules
towards machine learning approaches. With the computing power rising and
hardware prices falling, neural networks became the go-to machine learning
technique used by sentiment analysis researchers.

Nowadays, laptops and smartphones contain sufficient performance to run
inference of neural networks in real time and to train some smaller personalized
networks as well. However, these devices still do not possess adequate power
to train a whole language model from scratch. As a result, this creates a need
for using an already trained model.

To expand on that, computing power is not the only issue. Companies with
international customer bases and numerous domains of business are trying to
understand and evaluate multiple different types of datasets. These datasets
might not be large or diverse enough for training their own dedicated model.
This creates a need for general language models whose knowledge can be
adapted to the use on low resource datasets and domains.

Transfer learning has been trending in the recent years. In the field of
computer vision, transfer learning has enabled the pre-training of massive
convolutional networks on enormous amounts of images e.g. VGG-19 [12] or
ResNet-50 [13]. Subsequently, these models can be shared to be fine-tuned
to particular tasks. This approach is now becoming prevalent in the field of
natural language processing, notably with the arrival of the Transformer in
2017 [7] and its derivatives BERT [8], GPT-2 [14] and GPT-3 [15].

Nevertheless the aforementioned models are still too computationally de-
manding to possess the ability to be fine-tuned on a consumer’s device. Con-

1

Introduction

sequently, light-weight adapters present a potential solution. Adapters pro-
posed by Bapna et al. in [10] can be used to solve both previously mentioned
problems. Firstly, they are light-weight and for that reason training them to
customize an already pre-trained model is computationally inexpensive. Sec-
ondly, while keeping the large base model the same, having multiple adapters
for high and low resource domains makes it very straightforward to swap them
if necessary.

2

Chapter 1
Goals

The aim of the theoretical part of this thesis is to research the state-of-the-
art methods for the use of transfer learning in sentiment analysis or natural
language processing in general. Adapting smaller parts of machine learning
models to different in-and-out of domain datasets represents the main focus
of the research. This approach is then put into contrast with fine-tuning of
entire models.

The implementation part aims to conduct experiments with a proposed
model using light-weight adapters, in order to utilize transfer learning on
multiple datasets. These experiments should provide evidence that the per-
formance of the proposed model is comparable to the fine-tuning baseline.

Both of these parts aim to either prove or disprove whether a model using
light-weight adapters can be considered a worthy alternative to fine-tuning in
certain scenarios.

3

Chapter 2
Sentiment analysis

2.1 What is Sentiment Analysis

Sentiment analysis, also referred to as Opinion mining, is natural language
processing (NLP) task of classifying opinions of authors of given texts. [16]
These opinions can be a polarity - whether or not the author thinks positively
or negatively about the subject or it might be a scale 1-5 stars, x out of 10
etc.

Sentiment analysis is divided into many subcategories and approaches.
Generally, there are three levels of analysis and two approaches which will be
explained in the following chapters. [17]

2.2 Levels of Analysis

Sentiment analysis is mostly performed on three levels: document level, sen-
tence level and aspect level. [17]

Document Level

The document level sentiment analysis attempts to classify whether a whole
document voices a positive or negative opinion about a single subject. Usually,
this is the case of some product reviews or company feedback. The presump-
tion that the analyzed document expresses one coherent sentiment about an
individual entity is very important. As a result this technique is inadequate
for texts evaluating multiple entities. [17] [16]

Sentence Level

A role of the sentence level is to determine the opinion of each sentence in a
document. A sentence can be either positive or negative, or it have a neutral
sentiment, meaning it is simply stating a fact without expressing any emotion

5

2. Sentiment analysis

about it. These sentence classes can also be labeled objective or subjective
[18]. Although, subjectivity and opinion must not be confused for the same
thing. An objective sentence can carry sentiment e. g. “The new computer we
bought is broken.” compared to a subjective sentence without any sentiment
“I think this building is old.” [17] [16]

Aspect Level

The most complex sentiment analysis task is aspect level classification. It aims
to discover the author’s opinion about each entity in the text. For example
in a sentence “I love apples.” there is only one aspect, “apples”, about which
an opinion is expressed. In this case “apples” is the opinion target. Using
opinion targets gives us a much finer understanding about all sentiments being
conveyed in a sentence. [17]

A single sentence can express multiple sentiments about multiple targets,
for example “Although the food is horrible, I still like the atmosphere in this
cafe.” If this review was analyzed using the sentence level approach, it would
be really hard to say if it is completely positive or completely negative. It
states that the “food” is negative but the “atmosphere” is positive. As a
result for sentences like the above it is clear that this approach is necessary
to extract maximum knowledge. [17] [16]

6

Chapter 3
Language Classification Models

3.1 Lexicon-based Approach

Figure 3.1: Tree of sentiment analysis techniques [1].

The most straight-forward approach for classifying texts is to use some kind
of indicator words. For example “good”, “great” and “wonderful” are positive
words and “bad”, “horrible” and “poor” are negative ones. Consequently
words expressing positive and negative sentiments are compiled into sentiment
lexicons. Sentiment words are important for classification but by no means
sufficient. [17]

7

3. Language Classification Models

The following section outlines some issues a lexicon-based approach can
run into:

1. A word can mean the opposite sentiment in another domain or a different
sentence context. For example, the word suck is used in a negative
connotation as it is in a sentence “This camera sucks”, but in another
domain “This vacuum cleaner really sucks” it means the exact opposite.
[17]

2. The existence of sentiment words in a sentence does not necessarily
mean there is an opinion being expressed. For example, in questions and
conditional sentences, “Can you tell me which Sony camera is good?”
or “If I can find a good camera in the shop, I will buy it.” Even though
both of these texts contain the word “good” there is no evidence of it
meaning that the sentiment of the sentence is positive. [17]

3. Sarcastic sentences are notoriously very hard for lexicons to deal with
because they contain the opinion words of one polarity group but their
meaning is exactly the opposite, for example “What a great car! It
stopped working in two days.” [17]

4. Some sentences may imply the negative opinion without the use of sen-
timent words. For example “This washer uses a lot of water.” conveys
a negative opinion about the product since a high water consumption is
a bad thing but it will not be categorized properly just by searching for
negative opinion words. [17]

Due to these shortcomings, the focus has been shifting from lexicon-based
sentiment analysis towards machine learning approaches in the recent years.
[17] [16]

Examples

AFINN lexicon

AFINN is a lexicon developed by Finn Årup Nielsen. It consists of around
2500 words and phrases which produces a sentiment analysis score for a given
sequence. [19]

VADER

VADER (Valence Aware Dictionary and sEntiment Reasoner) is an open-
source lexicon and rule-based sentiment analysis tool that is specifically at-
tuned to sentiments expressed in social media. [20]

8

3.2. Machine Learning Approach

3.2 Machine Learning Approach

Machine learning (ML) has seen a huge boom in the last decade with the
improvements in computing power. In consequence this is why it became a
viable strategy for sentiment classification. [21]

In general, machine learning focuses on creating mathematical models and
feeding it data for it to learn to recognize patterns. [21] There are two impor-
tant approaches to machine learning:

Supervised learning = a model learns to a function that maps an input to
an output based on input-output pairs [22].

Unsupervised learning = a model learns patterns in the input even though
no explicit feedback is supplied [22].

ML sees sentiment analysis as either binary (positive or negative) or n-ary
(varying degrees of positivity, negativity and neutrality) supervised classifica-
tion problem.

Classification Workflow

Every classification task follows these steps:

1. Load input data.

2. Split input data into training and testing subsets.

3. Select models and their parameters.

4. Train models using only the training dataset.

5. Evaluate trained models using the testing dataset.

Ever since, Pang and Lee introduced a new approach for solving Sentiment
analysis tasks in 2002 [23], the traditional approach of manually creating lex-
icons gained an alternative of using supervised machine learning algorithms
on texts. This revolutionary idea increased the performance of classifiers and
opened a door for a new branch of research. [23]

There are multiple challenges to be tackled when classifying texts using
ML. The first is how to represent text as numbers. Since ML models expect
vectors of numbers as their input, they are incompatible with text. Techniques
how to represent text will be discussed in detail in the following section.

The next challenge is picking a model. There are several good options
in both traditional statistical models as well as modern deep learning neural
networks (NNs). Most notable of those is the Transformer which is the
model of choice of the practical part of this thesis.

9

3. Language Classification Models

Representing Texts

Text is an example of unstructured data. Machine learning models require
vectors of numbers as inputs so it is necessary to transform words into num-
bers. [24] Since languages are messy and multitudinous words are redundant,
some preprocessing is always useful. Preprocessing can have many forms, here
are the most common ones:

• Tokenization – converting sentences to lists of words,

• Removing punctuation – converting sentences to lists of words,

• Removing stop words – words such as ”the”, ”a” or conjunctions and
prepositions which do not convey any meaning,

• Stemming – reducing words to a root,

• Lemmatization – reducing different forms of the same word to a lemma,
e.g. reducing ”was” and ”were” to ”be”. [25]

When the texts are preprocessed, the next step is to extract features.

Bag of Words

The simplest way to represent a text as a vector of numbers is a bag of words
(BOW). A sentence s is transformed to a vector v of size n, where v[i] is the
count of the i-th word of the corpus in s and n is the size of the corpus. [24]
[26]

For example the sentence: ”John likes to watch movies and Mary likes
them too.” in a corpus of [a, and, John, likes, Mary, movies, something, the,
them, to, too, watch] would be represented as [0, 1, 2, 1, 1, 0, 0, 1, 1, 1]. [24]
[26]

TF-IDF

TF-IDF stands for Term Frequency – Inverse Document Frequency. It is a
greatly used technique for transforming a set of documents, also called cor-
pus, to a set of vectors of numbers representing said documents. The TF-IDF
values are products of two quantities. [24] [27]

TF

The first is term frequency (tf). It measures how much is a word used in
a document. There are many ways how tf can be produced. [27] The most
common formulas are:

tf(w, d) =
{

1 if w ∈ d,
0 otherwise,

10

3.2. Machine Learning Approach

tf(w, d) = fw,d,

where fw,d is the number of occurrences of w in d,

tf(w, d) = log (1 + fw,d),

tf(w, d) = fw,d∑
w′∈D fw′,d

.

IDF

The second is inverse document frequency (idf) which quantifies how common
or rare a word is in the whole corpus. [27] Its values can be calculated like
this:

idf(w,D) = |D|
|{d ∈ D : w ∈ d}|

idf(w,D) = |D|
1 + |{d ∈ D : w ∈ d}| .

The final TF-IDF value for a word w and document d ∈ D is a product of
term frequency and inverse document frequency

tf-idf(w, d) = tf(w, d) · idf(w,D). (3.1)

Word2vec

In 2013, Mikolov at el. introduced a new way of representing words in com-
puters [2]. They created a two-layer neural network (NN) which takes text
as input and produces n-dimensional vectors called word embeddings. What
they discovered is that the neural net preserves syntactic and semantic word
similarities without requiring labeled data as input (it is unsupervised). E.g.
if high dimensional vectors are trained on a large amount of data, the factual
relation between two words like Berlin is a capital city of Germany can be
applied similarly to France just by using vector arithmetic

vec(“Berlin”)− vec(“Germany”) + vec(“France”) = vec(“Paris”).

Word2vec can work in two different modes. CBOW – continuous bag of
words is method when the NN is trying to predict the target word from context
and Skip-gram when it is trying to predict the context from the target word.
Both architectures can be seen in 3.2. [2]

11

3. Language Classification Models

Figure 3.2: Two model architectures of Word2vec [2].

Statistical Models

Naive Bayes

Naive Bayes is a probabilistic model using the Bayes theorem. It was used by
Pang and Lee in the first ML sentiment analysis paper [23].

P(Ck|x) = P(Ck) P(x|Ck)
P(x) (3.2)

It aims to calculate the conditional probability that an instance represented
by a vector of features x is from a class Ck based on the features x and it used
the assumption that all the features xi are mutually independent. This is not
usually the case in the real world hence the name Naive Bayes. [22]

Deep Learning

With the improvement of computing power, the deep learning neural networks
have become popular in almost all machine learning branches. A simple neu-
ral network consists of layers. There is an input layer, output layer and a
possibility of many hidden layers, as can be seen in 3.3.

In a fully connected neural network, each neuron is connected to the
outputs of all the neurons from the previous layer. Those connections are
multiplied by weights and passed into an activation function.

There are many activation functions to choose from. For example the
linear function, ReLU and the sigmoid function are all very useful.

12

3.2. Machine Learning Approach

Figure 3.3: A deep feed-forward neural network [3].

Linear function is defined as

linear(x) = x (3.3)

meaning the input is the output. ReLU stands for Rectified Linear Unit
and it can be seen in figure 3.4. It is defined as

ReLU(x) = max(0, x). (3.4)

ReLU is non-linear for x < 0 and linear x > 0.
Another useful activation function is the sigmoid function also known as

the logistic curve. Its plot can be seen in figure 3.5. The sigmoid function is
defined as follows

σ(x) = 1
1 + e−1 . (3.5)

The simplest neural network is the fully connected or feed-forward network
(FFN) which can be seen in 3.3. As the name suggests, FFNs have only
forward connections between nodes.

13

3. Language Classification Models

Figure 3.4: Plot of ReLU and GELU

RNNs and CNNs

Two types became particularly useful in the natural language processing field -
recurrent neural networks (RNNs) and convolutional neural networks (CNNs).

In comparison to feed-forward networks, recurrent neural networks allow
for backward connections, giving them the ability to keep state which can
be seen as an example in image 3.6. This enables them to be sequence to
sequence models meaning that inputs and outputs are time series.

Recurrent networks are strictly sequential which makes them very slow to
train.

On the other hand convolutional neural networks are much more light-
weight in terms of computational complexity. They are primarily used for
images which they can learn to extract simple features from instead of using
the whole 2D array as inputs which would be inefficient. This can be applied
to text data in a similar fashion.

The words are represented as n dimensional vectors and a weight matrix is
slid horizontally across the sentence with a stride of 1. This filter matrix which
usually takes a maximum or average value from a window extracts features

14

3.2. Machine Learning Approach

Figure 3.5: Plot of the sigmoid function [4].

Figure 3.6: Example of RNN: Long term short memory cell [5].

from the sentence which are then fed into the fully connected network and
classified as can be seen in image 3.7.

15

3. Language Classification Models

Figure 3.7: CNN for text classification [6].

3.3 The Age of the Transformer

Since the publication of Attention Is All You Need (Vaswani et. al., 2017) [7]
many NLP researchers have been using the Transformer.

Attention

The key component of the Transformer is attention, which is a mechanism
which allows the model to learn the parts of data which are more important
than the rest. To put it simply it simulates how a human would pay attention
to reading a text. [7]

There are multiple different flavors of attention. The most important con-
cepts in the context of the Transformer are key, query, value attention, self
attention, multi-head attention and a scaled dot-product attention.
[7]

The key, query, value terms come from information retrieval. It represents
mapping keys to some values and then querying those key when searching
for values. In the Transformer case the embeddings matrix is multiplied by
learned weight matrices Wk, Wq a Wv to create keys, queries and values ma-
trices K, Q and V .

Z = softmax(QK
T

√
dk

)V (3.6)

These matrices are then used to calculate Z using the scaled dot prod-
uct attention formula from 3.6. The Z matrix is used to multiply the em-
beddings and produce the output.

16

3.3. The Age of the Transformer

Figure 3.8: The attention mechanism [7].

In the actual transformer there are multiple heads performing multi-head
attention. This simply means that each matrix Wki

, Wqi a Wvi produces
matrices Ki, Qi and Vi resulting in Zi for i ∈ 0, ..., n where n is the number
of attention heads. All the Zi matrices are then concatenated and multiplied
by a learned W0 matrix into the final Z matrix as can be seen in 3.8.

The key, query, value attention can be calculated using embedding keys,
queries and values from the same set which is called self-attention or us-
ing keys and values from one set and queries from another which is cross-
attention. Both of these principles are used in different parts of the trans-
former.

17

3. Language Classification Models

The Transformer

The Transformer is a sequence to sequence model which compared to recurrent
neural networks (RNNs) takes all of its input at the same time. Although this
drastically improved its performance compared to strictly sequential RNNs,
it poses a problem of determining the order of tokens in the input sequence.

Figure 3.9: Positional encoding [7].

The solution is positional encoding. Each input embedding gets a posi-
tional vector added to it. These positional vectors can be learned or they can
used a pre-calculated pattern. The pattern example can be seen in image 3.9.

The Transformer is based on the encoder-decoder architecture which can
be seen in picture 3.10. Both encoder and decoder are composed of N stacked
identical layers.

The encoder layer consists of a multi-head self-attention mechanism and a
position-wise fully connected feed-forward network (FFN). There is a residual
connection around each of these sub-layers, followed by layer-normalization.
[7]

The decoder is similar to encoder in that it has also multi-head self-
attention and position-wise feed-forward network as well as a residual connec-
tions and layer normalization. The difference is that the decoder adds a first
sub-layer of multi-head cross-attention which performs the attention calcula-

18

3.3. The Age of the Transformer

Figure 3.10: Transformer model architecture [7].

tion on the outputs of the encoder. Furthermore it uses masking to prevent
positions from attending to subsequent positions. This combined with the
output embedding being offset by one position, makes sure that predictions
only depend on known outputs from previous positions. [7]

19

3. Language Classification Models

BERT

The transformer architecture inspired multiple pre-trained language models.
BERT stands for Bidirectional Encoder Representations from Transformers.
It uses up to 345 million parameters and supports more than 100 languages.

BERT was designed for fine-tuning, adding a custom output layer to the
pre-trained network. “. . .the pre-trained BERT representations can be fine-
tuned with just one additional output layer to create state-of-the-art models
for a wide range of tasks, such as question answering and language inference,
without substantial task-specific architecture modifications” [8].

Figure 3.11: BERT input representation [8].

BERT outperformed previously used methods because it is the first unsu-
pervised, deeply bidirectional system for pre-training NLP. BERT was trained
using only an enormous plain text corpus publicly available on the web in many
languages. [8]

3.4 Model Evaluation

When talking about machine learning models, it is important to define metrics
for comparing models to each other. Since sentiment analysis is classification
task, appropriate classification metrics have been chosen:

• Classification Accuracy,

• Precision,

• Recall,

• and F1 score.

20

3.4. Model Evaluation

Classification Accuracy

The accuracy of a classification model can be simply calculated as follows

accuracy(y, ŷ) = 1
N

N∑
i=1

1(ŷi = yi), (3.7)

where y is a set of test samples, ŷ a set of predictions and 1(x) an indicator
function which is equal to 1 only if x is true. Clearly accuracy(y, ŷ),→ [0, 1]
where if it is 0 it means that no predictions were correct and if it’s 1 then all
predictions were correct.

Precision

In a simple binary classification, the precision metric is defined as follows

precision = TP
TP + FP , (3.8)

where TP is the number of true positives and FP is the number of false
positives.

A generalized version of precision for multiclass classification can be cal-
culated as follows

Precision = 1∑
l∈L |ŷl|

∑
l∈L

|ŷl|R(yl, ŷl), (3.9)

where L is the set of labels and R(A,B) := |A∩B|
|A| .

Recall

In a simple binary classification, the recall metric is calculated as follows

recall = TP
TP + FN (3.10)

where TP is the number of true positives and FN is the number of false
negatives.

A generalized version of recall for multiclass classification can be calculated
as follows

Recall = 1∑
l∈L |ŷl|

∑
l∈L

|ŷl|R(ŷl, yl), (3.11)

where L is the set of labels and R(A,B) := |A∩B|
|A| .

21

3. Language Classification Models

F1 Score

The F-measure can be interpreted as a weighted harmonic mean of the pre-
cision and recall. A measure reaches its best value at 1 and its worst score
at 0. In F1 score both recall and the precision are equally important. It is
calculated as follows

f1 = 2 · precision · recall
precision + recall . (3.12)

A generalized version of the F1 score for multi-class classification can be
calculated as follows

F1 = 1∑
l∈L |ŷl|

∑
l∈L

|ŷl| f1(yl, ŷl), (3.13)

where f1(A,B) is the binary formula from (3.12) applied for one class from
L.

22

Chapter 4
Transfer Learning

Transfer learning will be the next driver of machine learning’s com-
mercial success after supervised learning. – Andrew Ng [28]

Traditional machine learning uses the training and testing data from the
same input feature space and same data distribution. The is the fundamental
presupposition for fitting statistical models.

Figure 4.1: Illustration of transfer learning [9].

Formally, transfer learning (TL) is, according to Pan and Yang from 2009,
defined as a domain D is a two-element tuple consisting of feature space X
and marginal probability PX, where X is a sample data point. The domain
can be represented as D = {X , P (X)}. [29]

For a given domain D a Task T is defined by two components T =
{Y,P(Y |X)} where Y ∈ Y. Y is a label space and P(Y |X)} is a predic-

23

4. Transfer Learning

tive function learned from feature vector and label pairs (xi, yi) where xi ∈ X
and yi ∈ Y. [29]

Let DS be a source domain, TS be a corresponding source task and DT

and TT target domain and task, the objective of transfer learning is to enable
to learn the the target conditional probability distribution P(YT |XT) in DT

using the information gained from DS and TS where DS 6= DT or TS 6= TT .
[29]

Parameter Transfer

Parameter-transfer method leverages the parameter sharing model of the source
and target domains. Using the parameter transfer method, the trained model
parameters can be transferred in a large number of datasets to the target task.
[30]

An example of a parameter transfer method is Word2vec [2].

Instance Transfer

Instance-transfer method refers to the data sharing of the source and target
domain. It can be filtered from the source domain by re-weighting. The data
from the target domain can be augmented with the labeled source domain
samples. [30]

An example of an instance transfer algorithm is TrAdaBoost which allows
users utilize a small amount of newly labeled data and leverage old data to
construct a classification model for new data. [31]

Feature Representation Transfer

Feature-representation-transfer method is based on the condition that the
source domain and the target domain have part crossover features. It is
necessary to transform the data of the two domains into the same feature
space through feature transformation, and then perform traditional machine
learning.

This method has lower requirements for similarity between the two do-
mains, it is more widely used and performs well in various tasks of NLP. [30]

4.1 Transfer Learning in NLP

In some scenarios, including natural language processing, it might be quite
difficult to obtain training data for a specific task (e. g. translation from a
language with limited resources) or it might be computationally expensive to
train a certain model (e. g. a large Transformer with many layers).

Transfer learning tries to solve these problems. It is a technique in machine
learning which takes already learned knowledge from one problem and applies

24

4.1. Transfer Learning in NLP

it to another. It simulates a phenomenon which occurs when humans go
through the process of learning a new thing. For example, if someone knows
how to play a guitar, it is going to be much easier to also learn how to play
a piano. The basic knowledge of playing a musical instrument is already
there giving them a head start before someone with no musical experience
whatsoever.

This technique is particularly useful in domains such as image recognition.
The hierarchical convolutional networks can be interpreted as identifying edges
in the earlier layers, shapes in the middle layers and task-specific features in
the later layers [32]. This allows to ”cut” away the last few layers of a fully
trained network and keep a network capable of understanding shapes and
simple objects.

The same can be performed for a natural language. There are a vast
number of language tasks - machine translation, next sentence prediction,
question answering, text classification and many more. All of those need to
learn to understand the texts which are being fed into them. This is exactly
where transfer learning comes into play. By removing the last few layers from
an NLP model for translation, a basic model for understanding a particular
language domain is left to be reused for another task.

Especially in NLP tasks transfer learning, which is more a general term,
is sometimes called domain adaptation [33].

25

4. Transfer Learning

4.2 Related Work

DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter

In 2020 Sanh et al. proposed a smaller and faster version of a BERT model
[8] using a technique known as knowledge distillation [11]. BERT is in and of
itself an example of transfer learning as it uses a large pre-trained model for
fine-tuning to a specific task. DistilBERT attempts to get to a performance
level of a regular BERT by highly optimizing its layers to fit into a parameter
budget.

Simple, scalable adaptation for neural machine translation

Bapna et al. in 2019 [10] proposed a model architecture of light-weight
adapters for neural machine translation. The details of this paper will be
discussed in the next section as it is the main inspiration for this paper.

Multi-label aspect-based sentiment analysis using TL

In 2020 Tao et al. used a transfer learning extended aspect based sentiment
analysis methods for multi-label classification. They also proposed an As-
pect Enhanced Sentiment Analysis (AESA) for sequence classification with
consideration of the entity aspects [34].

Deep transfer learning baselines for sentiment analysis in
Russian

Smetanin et al. in 2021 fine-tuned Multilingual BERT, RuBERT, and two
versions of the Multilingual Universal Sentence Encoder on seven sentiment
analysis datasets [35]. They achieved state-of-the-art result using transfer
learning on a low resource language like Russian.

26

4.3. Domain Specific Adapters

4.3 Domain Specific Adapters

In 2019 a new approach was proposed in the field of neural machine translation.
The motivation behind the idea by Bapna et al. was to create a simple, scalable
architecture allowing to take advantage of high resource language knowledge
in low resource language translation.

Their version is motivated by a 2019 paper Parameter-Efficient Transfer
Learning for NLP by Houlsby et al. [33]. They proposed a new strategy for
tuning a large model on several downstream tasks. They stated that this
strategy has three key properties:

1. it attains good performance,

2. it does not require simultaneous access to all datasets and

3. it adds only a small number of extra parameters per task [33].

Figure 4.2: Adapter architecture [10].

Bapna et al.’s approach consisted of two phases – first train a generic base
language model and second adapt it to new tasks using small network modules.
They took a regular Transformer from [7] and pre-trained it on a large source
corpus. After that the researchers added per-task light-weight adapters after
every layer in both encoder and decoder blocks. Finally, they fine-tuned the
parameters of these adapters on a specialized corpus. This algorithm can be
performed for every task meaning that only one model has to trained from
scratch and many tasks can be adapted on top of it. [10]

27

4. Transfer Learning

The adapter design had to be simple and flexible. The proposed archi-
tecture consists of layer normalization followed by a single layer feed forward
down projection layer with a non-linear activation function. The projection
dimension is the only hyper-parameter of the adapter making it very simple
to tune. This embedding is then projected back up to its original size and the
input vector is added to it. The residual connection is there to represent a no
operation in case it is needed. The whole architecture can be seen in picture
4.2. [10]

In mathematical terms, let zi be the output of the i-th layer with dimension
d. Layer normalization LN is first applied to the input of the adapter for task
T .

z̃T
i = LN

T
(zi). (4.1)

Next the down projection onto the dimension b is applied. The dimension
is picked based on the complexity of the task and size of the adaptation corpus.

hT
i = ReLU(W T

bdz̃
T
i). (4.2)

Finally the inner representation is up projected back to its original dimen-
sion d and the residual connection is added to it.

xT
i = W T

dbh
T
i + zi. (4.3)

28

Chapter 5
Implementation

5.1 Datasets

The IMDb Dataset

The original movie reviews dataset contains 50000 highly polar movie reviews,
25000 for training and 25000 for testing [36]. This dataset is very popular in
sentiment analysis tasks and all of NLP in general. For example in the past
few years it has been used by Tripathy et al. to perform sentiment analysis
using multiple different ML approaches [37], by Shaukat et al. who used both
lexicon based methods as well as neural nets [38] and Ali at al. who used
LSTMs and CNNs as well as hybrid CNN LSTM to classify these review [39].

The IMDB dataset was used for its ubiquity which makes it a good bench-
mark for comparing new approaches with the rest of the world.

Dataset statistics

Statistic Value
min length 4
max length 2470
mean length 231
median length 173
length standard deviation 171
10 most common words [’the’, ’a’, ’and’, ’of’, ’to’, ’is’, ’in’, ’I’, ’that’, ’this’]

Table 5.1: IMDb dataset statistics

Sample negative review:
Story of a man who has unnatural feelings for a pig. Starts out with a

opening scene that is a terrific example of absurd comedy. A
formal orchestra audience is turned into an insane, violent mob by

29

5. Implementation

the crazy chantings of it’s singers. Unfortunately it stays
absurd the WHOLE time with no general narrative eventually making
it just too off putting. Even those from the era should be turned
off. The cryptic dialogue would make Shakespeare seem easy to a
third grader. On a technical level it’s better than you might
think with some good cinematography by future great Vilmos
Zsigmond. Future stars Sally Kirkland and Frederic Forrest can be
seen briefly.

Sample positive review:
If you like adult comedy cartoons, like South Park, then this is

nearly a similar format about the small adventures of three
teenage girls at Bromwell High. Keisha, Natella and Latrina have
given exploding sweets and behaved like bitches, I think Keisha is
a good leader. There are also small stories going on with the

teachers of the school. There’s the idiotic principal, Mr. Bip,
the nervous Maths teacher and many others. The cast is also
fantastic, Lenny Henry’s Gina Yashere, EastEnders Chrissie Watts,
Tracy-Ann Oberman, Smack The Pony’s Doon Mackichan, Dead Ringers’
Mark Perry and Blunder’s Nina Conti. I didn’t know this came from
Canada, but it is very good. Very good!

The Skytrax Airline Reviews Dataset

Skytrax is consultancy company in the United Kingdom specializing in airline
and airport reviews [40].

The Skytrax dataset is a collection of more than 64000 airline reviews given
by customers via a questionnaire [41]. The data from years between 2006 and
2019 includes 1-5 and 1-10 point reviews as well as free text answers making
it a great choice for classification. The 1-10 scales can be simply transformed
into many n-class classification tasks.

The dataset is enormous, making it suitable for pretraining models to be
later used for fine-tuning and/or adapting. The dataset is skewed towards
positive reviews (6-10 points) - around 53 % to the 47 % of negative reviews
(1-5 points) but it is still pretty balanced.

The Skytrax dataset has been used by Hui et al. in 2019 to create an
explainable NLP system [42].

To conclude, this dataset was picked for its size and being of a different
domain to movie reviews.

Dataset Statistics

Sample negative review:
Trip Verified | Istanbul to Bucharest. We make our check in in the

airport, they Take our luggage , we go to the gate and at the gate
surprise they dont let you board with two children, because they

30

5.1. Datasets

Statistic Value
min length 1
max length 1003
mean length 138
median length 112
length standard deviation 94
10 most common words [’the’, ’to’, ’and’, ’was’, ’a’, ’I’, ’in’, ’of’, ’on’, ’for’]

Table 5.2: Skytrax dataset statistics

say the flight is overbooked. We had to wait in the airport with
two children until 5 oclock in the morning until they bring you to
a hotel 2 hours far away from the airport without luggage,

without eat without nothing. Our first and last flight with this
airline.

Sample positive review:
Trip Verified | Flew on Turkish Airlines IAD-IST-KHI and return KHI-

IST-IAD. Turkish Airlines has consistently maintained its quality
since I first flew with them in 2007. The flights leave on time,
the catering is excellent, the inflight entertainment is extensive
and the interface easy to use, and the cabin crew is excellent.

Interesting though the A330 on the KHI-IST route and return seemed
to have more leg room and was newer than the A330 on the IAD-IST

route which was showing its age. The A330 on the IAD-IST route had
a slow responding interface for the inflight entertainment and a

broken table on the return flight. But Turkish Airlines will be
replacing the A330 on its flight to IAD with the 787 sometime in
the summer. Turkish food was served on the return leg which I
personally like, and I saw the cabin staff helping elderly
passengers walk to the lavatory which was nice. Overall another
wonderful experience with Turkish Airlines."

The Airline Tweets Dataset

Twitter is a very popular platform for people to voice their opinions about
their customer experiences [43]. The dataset of tweets is smaller than the
other two. It consists of 14000 English tweets describing people’s experiences
with airlines from February 2015. The opinions are highly skewed towards the
negative with 63 % to 21 % neutral and only 16 % positive.

The tweets have been also widely used in the NLP field, e. g. Rustam et
al. used multiple text representations and ML methods to classify it [44], Wan
et al. tried six different classification approaches including ensemble methods
to improve maximize the accuracy [45] and Kumar et al. extracted its features
using word embeddings with Glove dictionary approach and n-gram approach
for SVM and multiple NN architectures [46].

31

5. Implementation

The tweets dataset shares the same domain (airline reviews) with the Sky-
trax dataset making it a good choice for comparing in domain knowledge
transfer.

Dataset statistics

Statistic Value
min length 2
max length 36
mean length 19
median length 20
length standard deviation 6.7
10 most common words [’to’, ’the’, ’I’, ’a’, ’for’, ’and’, ’@united’, ’on’, ’you’, ’my’]

Table 5.3: Tweets dataset statistics

Sample negative review:
@AmericanAir you have my money, you change my flight, and don’t answer

your phones! Any other suggestions so I can make my commitment??"

Sample positive review:
@VirginAmerica not worried, it’s been a great ride in a new plane with

great crew. All airlines should be like this."

5.2 Tools

Python

Python3 is a general purpose programming language created by Guido van
Rossum in 1991. It is the most popular among data scientists and researchers
in general for its low barrier of entry, easy syntax and many great packages
for working with data. [47]

A package is a self-contained code library dealing with a specified task, e.g.
working with tables or machine learning algorithms. As the number one choice
for data scientists, there are many packages solving everyday tasks in machine
learning research while abstracting complicated implementation away.

The most useful Python packages used during the implementation phase
of this thesis are Numpy, Pandas and Scikit learn.

Numpy implements data types and methods to work with multi-dimensional
numerical data. It is implemented in the C language making it much faster
to work with high volume data than Python. [48]

Pandas is a data analysis and manipulation tool for Python. It is mostly
used in the data exploration and preprocessing phase of any machine learning
task. [49]

32

5.3. Model

Scikit learn is a machine learning library offering not only ready to use
statistical models but also preprocessing, evaluation and data augmentation
tools. This thesis mostly uses it for data splitting. [50]

TensorFlow + Keras

TensorFlow is a free and open-source library developed by Google Brain team
in 2015. It is one of the most used libraries in the field of training and infer-
ence of deep neural networks. The TensorFlow backend is implemented and
optimized for multiple platforms such as CPUs, GPUs and TPUs. This allows
it take advantage of all the performance available by the hardware. [51]

TensorFlow supports a number of APIs into multiple programming lan-
guages, most notably Python, C++ and JavaScript. Keras is a very popular
high-level API for Python. High-level means that it is easier to create sim-
ple working prototypes without the need to build custom components and
configuring a lot of parameters. [51]

When building a model in Keras, layers are combined using either a se-
quential or functional approach. A sequential model allows to append layers
to a model until the desired model is built. The functional approach uses
recursion to send outputs of one layer into another layer. It makes building
some more complex architectures very elegant. Therefore, it was the approach
of choice in this thesis. [52]

Google Colaboratory

Google Colaboratory is cloud notebook environment. Google offers CPU,
GPU and TPU hardware to computationally intensive models for free. In
addition to that having the source code in the cloud makes it safe and easy
to share among other researchers. Since NLP models perform well on GPUs,
Google Colaboratory was an obvious choice for this thesis. [53]

5.3 Model

The model is based on the Transformer mentioned in section 3.3. The actual
implementation is heavily inspired by the Keras code example Text classifica-
tion with Transformer [54].

The implementation consists of three parts:

1. token and positional embedding,

2. the adapter

3. and the actual transformer block.

33

5. Implementation

Token and Positional Embedding

The token and positional embedding takes maximum length of a sequence
maxlen, the size of the corpus vocab size and the desired dimension of an
embedding embed dim as arguments.

This layer utilizes two Embedding layers from Keras [55]. The first takes
the input and creates a token embedding of size embed dim. The second
takes the size of the input and adds an embedding of an increasing vector
[0, 1, 2, ...,maxlen] to the token embedding. The sum of these two embeddings
is the output of this layer.

from tensorflow.keras import layers

class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, embed_dim):

super(TokenAndPositionEmbedding, self).__init__()
self.token_emb = layers.Embedding(input_dim=vocab_size,

output_dim=embed_dim)
self.pos_emb = layers.Embedding(input_dim=maxlen,

output_dim=embed_dim)

def call(self, x):
maxlen = tf.shape(x)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
x = self.token_emb(x)
return x + positions

Figure 5.1: Token and positioning Embedding code

Adapter

The adapter has been implemented based on the adapter from Simple, Scalable
Adaptation for Neural Machine Translation from section 4.3.

Its only argument is the desired embedding dimension and it is therefore
its only hyperparameter.

The adapter consists of five layers:

1. initial dropout,

2. layer normalization,

3. dense layer with half of the embedding dimension and ReLU activation,

4. dense layer with linear activation and

5. final dropout.

34

5.3. Model

Finally, when the input gets sequentially modified throughout the adapter,
it is added to the original output to allow the adapter to represent a no-op.

from tensorflow.keras import layers

class Adapter(layers.Layer):
def __init__(self, embed_dim, rate=0.1):

super(Adapter, self).__init__()
self.layernorm = layers.LayerNormalization(epsilon=1e-6)
self.relu = layers.Dense(embed_dim / 2, activation="relu",

name=’ReLU’)
self.linear = layers.Dense(embed_dim, activation="linear",

name=’Up_projection’)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
self.add = layers.Add()

def call(self, inputs):
x = self.dropout1(inputs)
x = self.layernorm(x)
x = self.relu(x)
x = self.linear(x)
x = self.dropout2(x)
return self.add([inputs, x])

Figure 5.2: Adapter code

Transformer block

The transformer block combines all the previous parts together and forms the
main building block of the final model.

It is actually just the transformer encoder as the decoder is not necessary
for classification purposes. The block consists of seven layers in total:

1. the Keras MultiHeadAttention layer, which implements the multihead
attention algorithm mentioned in subsection 3.3,

2. first dropout layer,

3. first layer normalization,

4. a two layer feed forward network with ReLU activation in the middle,

5. second dropout layer,

6. second layer normalization and

7. lastly, the adapter 5.2 mentioned in the previous paragraph.

35

5. Implementation

from tensorflow.keras import layers

class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):

super(TransformerBlock, self).__init__()
self.att = layers.MultiHeadAttention(num_heads=num_heads,

key_dim=embed_dim)
self.ffn = keras.Sequential(

[layers.Dense(ff_dim, activation="relu"), layers.Dense(
embed_dim),]

)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
self.adapter = Adapter(embed_dim)

def make_only_adapter_trainable(self):
self.att.trainable = False
self.ffn.trainable = False
self.layernorm1.trainable = False
self.layernorm2.trainable = False
self.dropout1.trainable = False
self.dropout2.trainable = False

def call(self, inputs, training):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
layer_norm2 = self.layernorm2(out1 + ffn_output)
return self.adapter(layer_norm2)

Figure 5.3: Transformer block code

Complete Model

The last part necessary for a classification model is the output layer. In this
case of sequence classification, after the final transformer block a GlobalAv-
eragePooling1D makes an average of all the encoded tokens from a sequence.
This averaged embedding is than run through one dropout layer, a dense layer
of exactly 20 neurons with ReLU as its activation function, another dropout
and its output using a one neuron with a sigmoid activation function.

The final model consisting of the token and positional embedding layer 5.1,
n transformer blocks 5.3 with adapters 5.2 and the final classification output
layer.

36

5.3. Model

Model: "imdb_model"

Layer (type) Output Shape Param #

===
input_1 (InputLayer) [(None, 200)] 0

token_and_position_embeddin (None, 200, 64) 1292800
g (TokenAndPositionEmbeddin
g)

transformer_block (Transfor (None, 200, 64) 62688
merBlock)

transformer_block_1 (Transf (None, 200, 64) 62688
ormerBlock)

global_average_pooling1d (G (None, 64) 0
lobalAveragePooling1D)

dropout_8 (Dropout) (None, 64) 0

dense_4 (Dense) (None, 20) 1300

dropout_9 (Dropout) (None, 20) 0

dense_5 (Dense) (None, 1) 21

===
Total params: 1,419,497
Trainable params: 1,419,497
Non-trainable params: 0

Figure 5.4: Example classification model summary

37

5. Implementation

The example of a compiled model using all the previously mentioned parts
and the hyperparameters of embeddim = 64 and numblocks = 2 can be seen
in figure 5.4.

38

Chapter 6
Methodology

The experiment is a document level binary classification of three datasets
– IMDb, Skytrax and Airline tweets using a machine learning approach.
There are three scenarios which are being explored:

1. base models only,

2. usage of a base model with adapters and

3. usage of a base model with fine-tuning.

All the performances of these scenarios are later compared to each other
and to a third party benchmark.

6.1 Data Split

All of the following experiments have been performed on the same exact data.
The IMDb dataset comes split half and half - training data and testing data.
Furthermore, the training data has been split into training and validation
data using the ratio of 0.2. The number of positive reviews is the same as the
number of negative ones making the dataset perfectly balanced.

The absolute numbers can be seen in table 6.1.
The Skytrax dataset was split 30 % test data and validation data 20 % of

the rest leaving 56 % of total training data.
The absolute numbers can be seen in table 6.2.
The Tweets dataset, even though it is smaller, was split 30 % test data

and validation data 20 % of the rest leaving 56 % of total training data.
As can be seen in table 6.3, the tweets dataset is highly skewed towards

the positive labels, therefore, a class weighting compensation has been used
when training the models.

39

6. Methodology

Dataset subset Percentage Count
Training data 40 % 20000
Testing data 50 % 25000
Validation data 10 % 5000
Positive training data 50 % 10000
Negative training data 50 % 10000
Positive validation data 50 % 2500
Negative validation data 50 % 2500
Positive testing data 50 % 12500
Negative testing data 50 % 12500

Table 6.1: Train, test, validation split of the IMDb dataset

Dataset subset Percentage Count
Training data 56 % 35848
Validation data 14 % 8963
Testing data 30 % 19206
Positive training data 52 % 18932
Negative training data 48 % 16916
Positive validation data 53 % 4823
Negative validation data 47 % 4140
Positive testing data 53 % 10246
Negative testing data 47 % 8960

Table 6.2: Train, test, validation split of the Skytrax dataset

6.2 Preprocessing

The raw textual data are not immediately usable for training and as such
need to be preprocessed. The algorithm of preprocessing chosen for these
experiments is follows established steps. The data from all three datasets
undergoes these standardization steps:

• lower-casing,

• removal of HTML tags and

• removal of punctuation.

The removal of stop words was also considered and experimented with.
Nevertheless, it turned out to negatively effect the performance there it has
not been used.

After the data has been standardized it is converted to a vectorized form
using the Keras TextVectorization layer. [52]

40

6.3. Scenarios

Dataset subset Percentage Count
Training data 56 % 6462
Validation data 14 % 1616
Testing data 30 % 3463
Positive training data 79 % 5108
Negative training data 20 % 1354
Positive validation data 80 % 1299
Negative validation data 20 % 317
Positive testing data 80 % 2771
Negative testing data 20 % 692

Table 6.3: Train, test, validation split of the Tweets dataset

6.3 Scenarios

The scenarios selected for the experiments part of this thesis are as follows:

1. fitting a model with adapters for each of the three datasets,

2. fitting a base model with adapters on the IMDb dataset, evaluating
on the other datasets before and after fitting the adapters with those
datasets,

3. fitting a base model with adapter on the Skytrax dataset, evaluating
on the other datasets before and after fitting the adapters with those
datasets,

4. fitting a base model with adapters on the IMDb dataset, evaluating on
the other datasets before and fine-tuning the whole model with those
datasets and

5. fitting a base model with adapters on the Skytrax dataset, evaluating
on the other datasets before and fine-tuning the whole model with those
datasets.

Base Model

The first scenario establishes the performance of all models on all the datasets
without the use of any transfer learning techniques. It should serve as a
baseline for comparing the results from the advanced scenarios.

Using Adapters

The second scenario is designed to show how fitting the adapters increases the
performance of the base model on different out of domain datasets. Similarly,

41

6. Methodology

the third scenario is designed to do the same on in domain datasets of Skytrax
and airline tweets.

In these scenarios the flow of the experiment goes as follows:

1. build the base model as it is shown in 5.4,

2. fit the base model using the base dataset (IMDb, Skytrax),

3. evaluate the base model using the test data on that dataset,

4. evaluate the base model using the test data on the secondary dataset,

5. make all parameters non-trainable except for the adapters,

6. fit the secondary dataset,

7. evaluate the model on that dataset,

8. evaluate the model on the Tweets dataset,

9. fit the Tweets dataset and

10. finally evaluate the model on the Tweets dataset again.

Fine-tuning

The fourth and fifth scenarios are the traditional fine-tuning approaches used
to compare the fitting of the light-weight adapters to the fitting of the entire
network of the IMDb base model and Skytrax base model respectively.

In these scenarios the flow of the experiment goes as follows:

1. build the base model as it is shown in 5.4,

2. fit the base model using the base dataset (IMDb, Skytrax),

3. evaluate the base model using the test data on that dataset,

4. evaluate the base model using the test data on the secondary dataset,

5. leave all parameters trainable,

6. fit the secondary dataset,

7. evaluate the model on that dataset,

8. evaluate the model on the Tweets dataset,

9. fit the Tweets dataset and

10. finally evaluate the model on the Tweets dataset again.

42

6.4. Hyperparameters

6.4 Hyperparameters

The hyperparameters used in all of the experiments are as follows:

• the dimension of the transformer embedding - embed dim,

• the number of attention head - num heads,

• the dimension of the feed forward network inside the transformer -
ff dim,

• number of transformer blocks - num transformer blocks,

• the size of the batch - batch size,

• number of epochs - epochs and

• maximum length of a sequence - sequence length.

Hyperparameter Value
embed dim 64
num heads 3
ff dim 32
num transformer blocks 2
batch size 32
epochs 20
sequence length 200

Table 6.4: Hyperparameter values for all experiments

The choices of hyperparameters which can be seen in table 6.4 produce a
base model with around 1.4 million parameters of which around 8.6 thou-
sand are the parameters of the adapters.

6.5 Benchmark

Model Test accuracy Params (Millions)
BERT base 0.93 110
DistilBERT 0.92 66

Table 6.5: Performance and size of BERT-base and DistilBERT on the IMDb
dataset [11].

As a benchmark the 2019 paper DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter by Sanh et al. mentioned in section 4.2

43

6. Methodology

was used [11]. This paper was chosen because of the researchers’ intentions
(reducing model size while keeping performance) being the same to those of
this thesis, moreover because of their choice of datasets. They used a non-
augmented IMDb dataset to fit a BERT-base from [8] and their proposed
DistilBERT model. The accuracy on the test dataset together with the model
sizes can be seen in table 6.5.

44

Chapter 7
Results

7.1 Base Models

Dataset Accuracy Precision Recall F1
imdb base train 1.0 1.0 1.0 1.0
imdb base val 0.86 0.84 0.89 0.86
imdb base test 0.84 0.84 0.84 0.83
skytrax base train 0.96 0.98 0.95 0.96
skytrax base val 0.9 0.93 0.89 0.91
skytrax base test 0.9 0.92 0.88 0.9
tweets train 0.98 0.99 0.93 0.96
tweets val 0.89 0.73 0.75 0.73
tweets test 0.91 0.76 0.76 0.74

Table 7.1: Results for base models only.

In the base model scenario without the usage of any transfer learning
techniques the models performance can be found in table 7.1.

The IMDb model reached a perfect performance of all metrics equal to one
in the training phase. On the validation dataset it reached around 0.85–0.89
in all the metrics and on the testing data the metrics were all around 0.84.

The Skytrax model got very close to a perfect model with scores around
0.97 on the training dataset. The score of both validation and test data were
very close with both accuracy and F1 score being 0.9.

The Tweets dataset model also reached an almost perfect model with met-
rics close to 1 on the training dataset. The performance of the validation and
testing data was around 0.9 accuracy and the other metrics in the vicinity of
0.75.

45

7. Results

7.2 IMDb Base Model

The metrics in the section are from the experiment where the IMDb dataset
was used to train the base model, then the Skytrax dataset was used to either
adapt or fine-tune the model and finally the model was fitted on the Tweets
dataset.

IMDb Adapters

Dataset Accuracy Precision Recall F1
imdb base train 1.0 1.0 1.0 1.0
imdb base val 0.86 0.84 0.89 0.86
imdb base test 0.84 0.84 0.84 0.83
skytrax test on imdb base 0.72 0.76 0.69 0.72
tweets test on imdb base 0.61 0.31 0.71 0.41
skytrax adapters train 0.99 1.0 0.98 0.99
skytrax adapters val 0.88 0.92 0.86 0.89
skytrax adapters test 0.88 0.91 0.86 0.88
tweets test on skytrax adapters 0.78 0.47 0.8 0.58
tweets adapters train 0.98 0.9 0.99 0.94
tweets adapters val 0.9 0.69 0.85 0.75
tweets adapters test 0.89 0.68 0.77 0.71

Table 7.2: Results for the IMDb base model with Adapters

In the table 7.2, the results from the IMDb base model with adapters
can be seen. In this particular case, the training metrics on the base dataset
indicate it was a perfect model with accuracy, precision, recall and F1 score
all equal to 1. The validation and test metrics are all around 0.84-0.86.

On the Skytrax dataset before fitting the adapters of the base model
showed both accuracy and F1 score of 0.72. After training the adapters
on this dataset the performance in both previously mentioned metrics on the
test dataset went up to 0.88.

The Tweets dataset’s performance was low by having a recall of 0.31 on
the IMDb base model which brought the F1 score to 0.41. After training the
Skytrax adapters the performance on Tweets rose up to accuracy of 0.78 and
but recall and F1 remained low around 0.47 and 0.58 respectively. When the
adapters were trained, all the metrics went up, e.g accuracy to 0.89 and F1
score to 0.71.

46

7.3. Skytrax Base Model

Dataset Accuracy Precision Recall F1
imdb base train 1.0 1.0 1.0 1.0
imdb base val 0.86 0.84 0.89 0.86
imdb base test 0.84 0.84 0.84 0.83
skytrax test on imdb base 0.72 0.76 0.69 0.72
tweets test on imdb base 0.61 0.31 0.71 0.41
skytrax fine-tuned train 0.99 0.99 0.98 0.99
skytrax fine-tuned val 0.89 0.91 0.88 0.89
skytrax fine-tuned test 0.89 0.91 0.88 0.89
tweets test on skytrax fine-tuned 0.76 0.45 0.78 0.56
tweets fine-tuned train 0.98 0.91 1.0 0.95
tweets fine-tuned val 0.89 0.67 0.85 0.74
tweets fine-tuned test 0.88 0.68 0.79 0.72

Table 7.3: Results for the IMDb base model using Fine tuning

IMDb Fine-tuning

In the fine-tuning version of this experiment, which can be seen in table 7.3,
the IMDb base model remained the same with perfect metrics on the training
dataset and tightly around 0.85 in all the metrics on the test dataset.

The Skytrax dataset reached accuracy of 0.72 and F1 score of 0.71. After
the whole model was fine-tuned using the Skytrax dataset, test accuracy as
well as F1 score reached 0.89.

The Tweets dataset achieved low accuracy of 0.61 on the IMDb base model
and reached accuracy of 0.67 on the Skytrax fine-tuned model and with recall
at 0.31 the F1 score got to only 0.41. After fine-tuning it with the last dataset
the performance reached accuracy of 0.88 and F1 score of 0.72.

7.3 Skytrax Base Model

The metrics in the section are from the experiment where the Skytrax dataset
was used to train the base model, then the IMDb dataset was used to either
adapt or fine-tune the model and finally the model was fitted on the Tweets
dataset.

Skytrax Adapters

In the table 7.4, the results from the Skytrax base model with adapters can be
seen. In this particular case, the training metrics on the base dataset indicate
it was very close to a perfect model with accuracy, precision, recall and F1
score all around 0.96. The validation and test accuracy are both 0.9 with the
rest of the metrics all around 0.9.

47

7. Results

Dataset Accuracy Precision Recall F1
skytrax base train 0.96 0.98 0.95 0.96
skytrax base val 0.9 0.93 0.89 0.91
skytrax base test 0.9 0.92 0.88 0.9
imdb test on skytrax base 0.68 0.67 0.71 0.68
tweets test on skytrax base 0.79 0.47 0.77 0.57
imdb adapters train 0.87 0.82 0.95 0.87
imdb adapters val 0.83 0.78 0.91 0.84
imdb adapters test 0.83 0.78 0.91 0.84
tweets test on imdb adapters 0.8 0.49 0.77 0.58
tweets adapters train 0.97 0.9 1.0 0.94
tweets adapters val 0.91 0.72 0.89 0.78
tweets adapters test 0.88 0.66 0.83 0.72

Table 7.4: Results for the Skytrax base model with Adapters

On the IMDb dataset before fitting the adapters of the base model showed
both accuracy and F1 score of 0.68. After training the adapters the perfor-
mance in both previously mentioned metrics on the test dataset went up to
0.83 and 0.84 respectively.

On the Tweets dataset the performance on the Skytrax base model was
low by having a recall of 0.47 on the base model which brought the F1 score to
0.54. After the IMDb adapter were trained, the performance rose to accuracy
of 0.8 but the F1 score stayed low at 0.57. When the adapters were trained
on the Tweets dataset, all the metrics went up, e.g accuracy to 0.89 and F1
score to 0.71.

Skytrax Fine-tuning

In the fine-tuning version of this experiment which can be seen in table 7.5,
the Skytrax base model remained the same with almost perfect metrics on the
training dataset and tightly around 0.9 in all the metrics on the validation
and test dataset.

The IMDb test dataset reached accuracy as well as the F1 score of 0.84
after the the whole model was fine-tuned, the exact same as in the adapter
scenario. Before that it only had accuracy and F1 of 0.68 on the Skytrax base.

The Tweets dataset reached accuracy of 0.73 on the Skytrax base model
and with recall at 0.47 the F1 score got to only 0.57. After fine-tuning it
with IMDb it did not get better arguably getting worse in F1 score of 0.52.
Nevertheless after fine-tuning the already IMDb fine-tuned model with the
last dataset the performance reached accuracy of 0.89 and F1 score of 0.71.

48

7.3. Skytrax Base Model

Dataset Accuracy Precision Recall F1
skytrax base train 0.96 0.98 0.95 0.96
skytrax base val 0.9 0.93 0.89 0.91
skytrax base test 0.9 0.92 0.88 0.9
imdb test on skytrax base 0.68 0.67 0.71 0.68
tweets test on skytrax base 0.79 0.47 0.77 0.57
imdb fine-tuned train 0.89 0.86 0.94 0.89
imdb fine-tuned val 0.83 0.8 0.88 0.84
imdb fine-tuned test 0.84 0.81 0.89 0.84
tweets test on imdb fine-tuned 0.7 0.39 0.87 0.52
tweets fine-tuned train 0.97 0.87 1.0 0.92
tweets fine-tuned val 0.9 0.69 0.91 0.77
tweets fine-tuned test 0.87 0.63 0.84 0.71

Table 7.5: Results for the Skytrax base model using Fine tuning

49

Chapter 8
Discussion

In the following sections, the results of base models are compared to dataset
cross model evaluation where datasets were evaluated before the base models
were trained on that dataset and to actual fine-tuned or adapted models.

8.1 Fine-tuning vs Base Models

Model Dataset Accuracy Precision Recall F1
base imdb imdb test 0.84 0.83 0.84 0.83
base skytrax skytrax test 0.9 0.92 0.88 0.9
base tweets tweets test 0.91 0.76 0.76 0.74
base imdb skytrax test 0.72 0.76 0.69 0.72
base imdb tweets test 0.61 0.31 0.71 0.41
base skytrax imdb test 0.68 0.67 0.71 0.68
base skytrax tweets test 0.79 0.47 0.77 0.57
ISF skytrax test 0.89 0.91 0.88 0.89
ITF tweets test 0.88 0.68 0.79 0.72
SIF imdb test 0.84 0.81 0.89 0.84
STF tweets test 0.87 0.63 0.84 0.71

Table 8.1: Comparison of test results from base models, pre-fine-tuning and
fine-tuning. ISF = IMDb base model with Skytrax fine-tuning, ITF = IMDb
base model with Tweets fine-tuning, SIF = Skytrax base model with IMDb
fine-tuning and STF = Skytrax base model with Tweets fine-tuning.

In the table 8.1, the performance of base models compared to the fine-
tuned models can be seen. The IMDb base model and the SIF (Skytrax base
with IMDb fine-tuning) both reached accuracy of 0.84 therefore both of these
approaches are equivalent.

51

8. Discussion

The Skytrax base model reached 0.9 in all the metrics while ISF (IMDb
base model with Skytrax fine-tuning) performed a bit worse but very close
with accuracy and F1 score of 0.89. As a result both of these approaches are
also equivalent.

On the Tweets dataset the performances of fine-tuned did not reach the
highs of the base model of accuracy 0.91 and F1 of 0.74. The ITF (IMDb base
model with Tweets fine-tuning) got the closest with accuracy 0.88 and F1 of
0.72. The in-domain similarity of Skytrax and Tweets can be observed in the
Skytrax base on Tweets evaluation where the model without ever seeing the
data reached 0.79 accuracy which with IMDb base it reached only 0.61.

8.2 Adapters vs Base Models

Model Dataset Accuracy Precision Recall F1
base imdb imdb test 0.84 0.83 0.85 0.84
base skytrax skytrax test 0.9 0.9 0.9 0.9
base tweets tweets test 0.91 0.76 0.76 0.74
base imdb skytrax test 0.72 0.76 0.69 0.72
base imdb tweets test 0.61 0.31 0.71 0.41
base skytrax imdb test 0.68 0.67 0.71 0.68
base skytrax tweets test 0.79 0.47 0.77 0.57
ISA skytrax test 0.88 0.91 0.86 0.88
ITA tweets test 0.89 0.68 0.77 0.71
SIA imdb test 0.83 0.78 0.91 0.84
STA tweets test 0.88 0.66 0.83 0.72

Table 8.2: Comparison of test results from base models, pre-adapters and
adapted. Boldface indicates the best accuracy and F1 score for each dataset.
ISA = IMDb base with Skytrax adapters, ITA = IMDb base with Tweets
adapters, SIA = Skytrax base with IMDb adapters and STA = Skytrax base
with Tweets adapters.

The performance of models with adapters can be seen in table 8.2. The
performance of the adapter variants compared to the base models is lower
nonetheless it is comparable. The base IMDb model reaches accuracy of 0.84
while the SIA (Skytrax base adapted on the IMDb dataset) reached 0.83 which
is almost exactly the same performance.

The same can be said about the Skytrax base having 0.9 accuracy and the
ISA (IMDb base adapted on the Skytrax dataset) reaching 0.88 making them
comparable in performance.

Performance on the Tweets dataset was low before the adapting with ac-
curacy of 0.61 and F1 of 0.41 on the IMDb base and 0.73 and 0.54 on the

52

8.3. Adapters vs Fine-tuning

Skytrax base. After the model was adapted these numbers rose up to accu-
racy of 0.89 from the IMDb base and 0.88 from the Skytrax base making it
very similar to the Tweets base model with accuracy of 0.91.

8.3 Adapters vs Fine-tuning

Model Params Dataset Accuracy Precision Recall F1
ISF 1400 skytrax test 0.89 0.91 0.88 0.89
ITF 1400 tweets test 0.88 0.68 0.79 0.72
SIF 1400 imdb test 0.84 0.81 0.89 0.84
STF 1400 tweets test 0.87 0.63 0.84 0.71
ISA 8.6 skytrax test 0.88 0.91 0.86 0.88
ITA 8.6 tweets test 0.89 0.68 0.77 0.71
SIA 8.6 imdb test 0.83 0.78 0.91 0.84
STA 8.6 tweets test 0.88 0.66 0.83 0.72

Table 8.3: Comparison of test results of fine-tuned and adapted models.
Params = number of trainable parameters for evaluated dataset in thousands.
Boldface indicates the best accuracy and F1 score for each dataset. ISF =
IMDb base model with Skytrax fine-tuning, ITF = IMDb base model with
Tweets fine-tuning, SIF = Skytrax base model with IMDb fine-tuning and
STF = Skytrax base model with Tweets fine-tuning. ISA = IMDb base with
Skytrax adapters, ITA = IMDb base with Tweets adapters, SIA = Skytrax
base with IMDb adapters and STA = Skytrax base with Tweets adapters.

Overall the performances between the adapted and fine-tuned models are
very similar across all the datasets. In table 8.3 can be seen which models
performed the best on which datasets with regard to the number of trainable
parameters used to fit the dataset in question.

From the number of trainable parameters a conclusion can be made that
models using adapters are almost as good as fine-tuned models by a very small
margin while having a much smaller number of trainable parameters, making
them that much cheaper and faster to train.

Having concluded in section 8.1 that the fine-tuned models are equivalent
in performance to the base models, it should be noted that with adapters we
are getting two performant models for two datasets with almost no expensive
calculation necessary while getting the two base models facilitates the need to
train both from the ground up.

53

8. Discussion

Model Params Train time Dataset Accuracy
BERT 110000 - imdb test 0.93
DistilBERT 66000 90 hours imdb test 0.92
SIF 1400 10 min imdb test 0.84
SIA 8.6 6 min imdb test 0.83

Table 8.4: Comparison of test results of proposed models to a third party
benchmark. Params = number of trainable parameters for evaluated dataset
in thousands. Boldface indicates the best accuracy. SIF = Skytrax base model
with IMDb fine-tuning and SIA = Skytrax base with IMDb adapters.

8.4 Proposed Models vs Benchmark

As can clearly be seen from table 8.4 the fine-tuned and adapted models
for the IMDb dataset are not as performant as the BERT and DistilBERT
benchmarks from [11]. However it should be noted that the proposed SIA and
SIF models have many orders of magnitude fewer parameters (tens of millions
vs. thousands) and they take much less time to train (days vs minutes) while
not being that much worse in accuracy (within 10 percentage points). This
makes the proposed models a potentially viable alternative for scenarios where
computational power is limited and having the absolute best accuracy in not
necessary.

54

Conclusion

In conclusion, in this thesis the methods for performing sentiment analysis us-
ing transfer learning have been researched and explored. An approach using
domain specific adapters inspired by Bapna et. al from 2019 [10] has been
selected and a model architecture using a modified transformer has been pro-
posed. This proposed model has been compared in multiple scenarios, firstly
against a base variant of the model without the use of transfer learning, sec-
ondly against a fine-tuning variant of the same model and lastly against a
third party benchmark using a state-of-the-art approach.

Experiments on all these models have been conducted using three datasets:
movie reviews from IMDb, airline reviews from Skytrax and Twitter. The
airline reviews have been selected for testing the in-domain knowledge transfer.
These datasets have been used to train multiple combinations of base, fine-
tuned and adapted models and evaluated on testing data.

From the obtained performance results, it has been concluded that the
proposed models using adapters have similarly good performance compared
to base models and fine-tuned models while having the advantage in being less
computationally intensive. In comparison to a third party benchmark model
by Sahn et. al from 2020 [11] the proposed models fell short in accuracy.
However, by comparing the number of parameters of these proposed models it
has been concluded that adapters are a viable alternative in low computational
environments and they should be further studied and improved.

To conclude, the potential fields of further improvement are a usage of a
bigger transformer architecture while training the base model on a different
task. For example an unsupervised task of next word prediction could help
the base model become more general and therefore improve the subsequent
adapters.

55

Bibliography

[1] Medhat, W.; Hassan, A.; Korashy, H.: Sentiment analysis algo-
rithms and applications: A survey. Ain Shams Engineering Jour-
nal, ročńık 5, č. 4, 2014: s. 1093 – 1113, ISSN 2090-4479,
doi:https://doi.org/10.1016/j.asej.2014.04.011. Dostupné z: http://
www.sciencedirect.com/science/article/pii/S2090447914000550

[2] Mikolov, T.; Chen, K.; Corrado, G.; aj.: Efficient Estimation of Word
Representations in Vector Space. In 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, 2013, s. 1–10. Dostupné z:
http://arxiv.org/abs/1301.3781

[3] IBM: Neural network. Dostupné z: https://1.cms.s81c.com/
sites/default/files/2021-01-06/ICLH_Diagram_Batch_01_03-
DeepNeuralNetwork-WHITEBG.png

[4] Sigmoid plot. Dostupné z: https://upload.wikimedia.org/wikipedia/
commons/thumb/8/88/Logistic-curve.svg/2880px-Logistic-
curve.svg.png

[5] ReLU and GELU plot. Dostupné z: https://upload.wikimedia.org/
wikipedia/commons/thumb/4/42/ReLU_and_GELU.svg/2560px-ReLU_
and_GELU.svg.png

[6] Sarnovsky, M.: Convolutional neural network for text classifi-
cation. Dostupné z: https://www.researchgate.net/profile/
Martin-Sarnovsky/publication/339851022/figure/fig2/AS:
867996377559041@1583957871629/Convolutional-neural-network-
for-text-classification.jpg

[7] Vaswani, A.; Shazeer, N.; Parmar, N.; aj.: Attention Is All You Need.
2017, 1706.03762.

57

http://www.sciencedirect.com/science/article/pii/S2090447914000550
http://www.sciencedirect.com/science/article/pii/S2090447914000550
http://arxiv.org/abs/1301.3781
https://1.cms.s81c.com/sites/default/files/2021-01-06/ICLH_Diagram_Batch_01_03-DeepNeuralNetwork-WHITEBG.png
https://1.cms.s81c.com/sites/default/files/2021-01-06/ICLH_Diagram_Batch_01_03-DeepNeuralNetwork-WHITEBG.png
https://1.cms.s81c.com/sites/default/files/2021-01-06/ICLH_Diagram_Batch_01_03-DeepNeuralNetwork-WHITEBG.png
https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/2880px-Logistic-curve.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/2880px-Logistic-curve.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/2880px-Logistic-curve.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/4/42/ReLU_and_GELU.svg/2560px-ReLU_and_GELU.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/4/42/ReLU_and_GELU.svg/2560px-ReLU_and_GELU.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/4/42/ReLU_and_GELU.svg/2560px-ReLU_and_GELU.svg.png
https://www.researchgate.net/profile/Martin-Sarnovsky/publication/339851022/figure/fig2/AS:867996377559041@1583957871629/Convolutional-neural-network-for-text-classification.jpg
https://www.researchgate.net/profile/Martin-Sarnovsky/publication/339851022/figure/fig2/AS:867996377559041@1583957871629/Convolutional-neural-network-for-text-classification.jpg
https://www.researchgate.net/profile/Martin-Sarnovsky/publication/339851022/figure/fig2/AS:867996377559041@1583957871629/Convolutional-neural-network-for-text-classification.jpg
https://www.researchgate.net/profile/Martin-Sarnovsky/publication/339851022/figure/fig2/AS:867996377559041@1583957871629/Convolutional-neural-network-for-text-classification.jpg
1706.03762

Bibliography

[8] Devlin, J.; Chang, M.-W.; Lee, K.; aj.: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805, 2018.

[9] Martinez, D.: Traditional machine learning vs Transfer learning. Dos-
tupné z: https://datascience.aero/wp-content/uploads/2020/03/
transferlearning-119.jpg

[10] Bapna, A.; Arivazhagan, N.; Firat, O.: Simple, Scalable Adaptation for
Neural Machine Translation. 2019, 1909.08478.

[11] Sanh, V.; Debut, L.; Chaumond, J.; aj.: DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. 2020, 1910.01108.

[12] Simonyan, K.; Zisserman, A.: Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv 1409.1556, 09 2014.

[13] He, K.; Zhang, X.; Ren, S.; aj.: Deep Residual Learning for Image
Recognition. CoRR, ročńık abs/1512.03385, 2015, 1512.03385. Dostupné
z: http://arxiv.org/abs/1512.03385

[14] Radford, A.; Wu, J.; Child, R.; aj.: Language Models are Un-
supervised Multitask Learners. OpenAI blog, 2018. Dostupné z:
https://d4mucfpksywv.cloudfront.net/better-language-models/
language-models.pdf

[15] Brown, T. B.; Mann, B.; Ryder, N.; aj.: Language Models are Few-Shot
Learners. CoRR, ročńık abs/2005.14165, 2020, 2005.14165. Dostupné z:
https://arxiv.org/abs/2005.14165

[16] Feldman, R.: Techniques and Applications for Sentiment Analysis. Com-
mun. ACM, ročńık 56, č. 4, apr 2013: str. 82–89, ISSN 0001-0782,
doi:10.1145/2436256.2436274. Dostupné z: https://doi.org/10.1145/
2436256.2436274

[17] Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments,
and Emotions. Cambridge University Press, 2015, ISBN
1107017890,9781107017894.

[18] Bruce, R.; Wiebe, J.: Recognizing Subjectivity: A Case Study of Manual
Tagging. Natural Language Engineering, ročńık 5, 10 2000, doi:10.1017/
S1351324999002181.

[19] Årup Nielsen, F.: A new ANEW: Evaluation of a word list for sentiment
analysis in microblogs. 2011, 1103.2903.

58

https://datascience.aero/wp-content/uploads/2020/03/transferlearning-119.jpg
https://datascience.aero/wp-content/uploads/2020/03/transferlearning-119.jpg
1909.08478
1910.01108
1512.03385
http://arxiv.org/abs/1512.03385
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/2436256.2436274
https://doi.org/10.1145/2436256.2436274
1103.2903

Bibliography

[20] Hutto, C.; Gilbert, E.: VADER: A Parsimonious Rule-Based Model
for Sentiment Analysis of Social Media Text. Proceedings of the Inter-
national AAAI Conference on Web and Social Media, ročńık 8, č. 1,
May 2014: s. 216–225. Dostupné z: https://ojs.aaai.org/index.php/
ICWSM/article/view/14550

[21] Koza, J. R.; Bennett, F. H.; Andre, D.; aj.: Automated Design of
Both the Topology and Sizing of Analog Electrical Circuits Using Ge-
netic Programming. Dordrecht: Springer Netherlands, 1996, ISBN 978-
94-009-0279-4, 151–170 s., doi:10.1007/978-94-009-0279-4 9. Dostupné z:
https://doi.org/10.1007/978-94-009-0279-4_9

[22] Russell, S.: Artificial intelligence : a modern approach. Hoboken, NJ:
Pearson, 2021, ISBN 0-13-461099-7.

[23] Pang, B.; Lee, L.; Vaithyanathan, S.: Thumbs up? Sentiment Clas-
sification Using Machine Learning Techniques. In Proceedings of the
ACL-02 Conference on Empirical Methods in Natural Language Pro-
cessing - Volume 10, EMNLP ’02, USA: Association for Computational
Linguistics, 2002, str. 79–86, doi:10.3115/1118693.1118704. Dostupné z:
https://doi.org/10.3115/1118693.1118704

[24] LIU, L.; ÖZSU, M. T. (editoři): Encyclopedia of Database Systems.
Springer US, 2009, doi:10.1007/978-0-387-39940-9. Dostupné z: https:
//doi.org/10.1007/978-0-387-39940-9

[25] Haddi, E.; Liu, X.; Shi, Y.: The Role of Text Pre-processing in
Sentiment Analysis. Procedia Computer Science, ročńık 17, 2013: s.
26–32, ISSN 1877-0509, doi:https://doi.org/10.1016/j.procs.2013.05.005,
first International Conference on Information Technology and Quan-
titative Management. Dostupné z: https://www.sciencedirect.com/
science/article/pii/S1877050913001385

[26] Green, T. J.: Bag Semantics. Springer US, 2009, 201–206 s., doi:10.1007/
978-0-387-39940-9 979. Dostupné z: https://doi.org/10.1007/978-0-
387-39940-9_979

[27] El-Khair, I. A.: TF - IDF. Springer US, 2009, 3085–3086 s., doi:10.1007/
978-0-387-39940-9 956. Dostupné z: https://doi.org/10.1007/978-0-
387-39940-9_956

[28] Ng, A.: NIPS 2016 tutorial: ”Nuts and bolts of building AI applications
using Deep Learning” by Andrew Ng. 2016.

[29] Pan, S. J.; Yang, Q.: A Survey on Transfer Learning. IEEE Transactions
on Knowledge and Data Engineering, ročńık 22, č. 10, 2010: s. 1345–1359,
doi:10.1109/TKDE.2009.191.

59

https://ojs.aaai.org/index.php/ICWSM/article/view/14550
https://ojs.aaai.org/index.php/ICWSM/article/view/14550
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.1007/978-0-387-39940-9
https://doi.org/10.1007/978-0-387-39940-9
https://www.sciencedirect.com/science/article/pii/S1877050913001385
https://www.sciencedirect.com/science/article/pii/S1877050913001385
https://doi.org/10.1007/978-0-387-39940-9_979
https://doi.org/10.1007/978-0-387-39940-9_979
https://doi.org/10.1007/978-0-387-39940-9_956
https://doi.org/10.1007/978-0-387-39940-9_956

Bibliography

[30] Liu, R.; Shi, Y.; Ji, C.; aj.: A Survey of Sentiment Analysis Based on
Transfer Learning. IEEE Access, ročńık 7, 2019: s. 85401–85412, doi:
10.1109/ACCESS.2019.2925059.

[31] Dai, W.; Yang, Q.; Xue, G.-R.; aj.: Boosting for Transfer Learning. In
Proceedings of the 24th International Conference on Machine Learning,
ICML ’07, New York, NY, USA: Association for Computing Machinery,
2007, ISBN 9781595937933, str. 193–200, doi:10.1145/1273496.1273521.
Dostupné z: https://doi.org/10.1145/1273496.1273521

[32] Donges, N.: What Is Transfer Learning? Exploring the Popular Deep
Learning Approach. Dostupné z: https://builtin.com/data-science/
transfer-learning

[33] Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; aj.: Parameter-Efficient Trans-
fer Learning for NLP. 2019, 1902.00751.

[34] Tao, J.; Fang, X.: Toward multi-label sentiment analysis: a transfer
learning based approach. Journal of Big Data, ročńık 7, č. 1, Leden 2020,
doi:10.1186/s40537-019-0278-0. Dostupné z: https://doi.org/10.1186/
s40537-019-0278-0

[35] Smetanin, S.; Komarov, M.: Deep transfer learning baselines
for sentiment analysis in Russian. Information Processing & Man-
agement, ročńık 58, č. 3, 2021: str. 102484, ISSN 0306-4573,
doi:https://doi.org/10.1016/j.ipm.2020.102484. Dostupné z: https://
www.sciencedirect.com/science/article/pii/S0306457320309730

[36] Maas, A. L.; Daly, R. E.; Pham, P. T.; aj.: Learning Word Vectors for
Sentiment Analysis. In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies,
Portland, Oregon, USA: Association for Computational Linguistics, June
2011, s. 142–150. Dostupné z: http://www.aclweb.org/anthology/P11-
1015

[37] Tripathi, S.; Mehrotra, R.; Bansal, V.; aj.: Analyzing Sentiment using
IMDb Dataset. In 2020 12th International Conference on Computational
Intelligence and Communication Networks (CICN), 2020, s. 30–33, doi:
10.1109/CICN49253.2020.9242570.

[38] Shaukat, Z.; Zulfiqar, A. A.; Xiao, C.; aj.: Sentiment analysis on
IMDB using lexicon and neural networks. SN Applied Sciences, ročńık 2,
č. 2, Leden 2020, doi:10.1007/s42452-019-1926-x. Dostupné z: https:
//doi.org/10.1007/s42452-019-1926-x

[39] Ali, N. M.; Abd El Hamid, M. M.; Youssif, A.: Sentiment Analysis
for Movies Reviews Dataset Using Deep Learning Models. International

60

https://doi.org/10.1145/1273496.1273521
https://builtin.com/data-science/transfer-learning
https://builtin.com/data-science/transfer-learning
1902.00751
https://doi.org/10.1186/s40537-019-0278-0
https://doi.org/10.1186/s40537-019-0278-0
https://www.sciencedirect.com/science/article/pii/S0306457320309730
https://www.sciencedirect.com/science/article/pii/S0306457320309730
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1007/s42452-019-1926-x
https://doi.org/10.1007/s42452-019-1926-x

Bibliography

Journal of Data Mining & Knowledge Management Process, ročńık 2, č. 2,
Červen 2019. Dostupné z: https://ssrn.com/abstract=3403985

[40] Skytrax: Quality is our journey. Dostupné z: https://
skytraxresearch.com/

[41] Efehan: Skytrax Airline Reviews. Dostupné z: https:
//www.kaggle.com/efehandanisman/skytrax-airline-reviews

[42] Liu, H.; Yin, Q.; Wang, W. Y.: Towards Explainable NLP: A Gen-
erative Explanation Framework for Text Classification. CoRR, ročńık
abs/1811.00196, 2018, 1811.00196. Dostupné z: http://arxiv.org/abs/
1811.00196

[43] Eight, F.: Twitter us airline sentiment. Oct 2019. Dostupné z: https:
//www.kaggle.com/crowdflower/twitter-airline-sentiment

[44] Rustam, F.; Ashraf, I.; Mehmood, A.; aj.: Tweets Classification on the
Base of Sentiments for US Airline Companies. Entropy, ročńık 21, č. 11,
2019, ISSN 1099-4300, doi:10.3390/e21111078. Dostupné z: https://
www.mdpi.com/1099-4300/21/11/1078

[45] Wan, Y.; Gao, Q.: An Ensemble Sentiment Classification System of Twit-
ter Data for Airline Services Analysis. In 2015 IEEE International Con-
ference on Data Mining Workshop (ICDMW), 2015, s. 1318–1325, doi:
10.1109/ICDMW.2015.7.

[46] Kumar, S.; Zymbler, M.: A machine learning approach to analyze cus-
tomer satisfaction from airline tweets. Journal of Big Data, ročńık 6,
č. 1, Červenec 2019, doi:10.1186/s40537-019-0224-1. Dostupné z: https:
//doi.org/10.1186/s40537-019-0224-1

[47] Van Rossum, G.; Drake, F. L.: Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009, ISBN 1441412697.

[48] Harris, C. R.; Millman, K. J.; van der Walt, S. J.; aj.: Array program-
ming with NumPy. Nature, ročńık 585, č. 7825, Zář́ı 2020: s. 357–362,
doi:10.1038/s41586-020-2649-2. Dostupné z: https://doi.org/10.1038/
s41586-020-2649-2

[49] pandas development team, T.: pandas-dev/pandas: Pandas. Únor 2020,
doi:10.5281/zenodo.3509134. Dostupné z: https://doi.org/10.5281/
zenodo.3509134

[50] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; aj.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, ročńık 12,
2011: s. 2825–2830.

61

https://ssrn.com/abstract=3403985
https://skytraxresearch.com/
https://skytraxresearch.com/
https://www.kaggle.com/efehandanisman/skytrax-airline-reviews
https://www.kaggle.com/efehandanisman/skytrax-airline-reviews
1811.00196
http://arxiv.org/abs/1811.00196
http://arxiv.org/abs/1811.00196
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.mdpi.com/1099-4300/21/11/1078
https://www.mdpi.com/1099-4300/21/11/1078
https://doi.org/10.1186/s40537-019-0224-1
https://doi.org/10.1186/s40537-019-0224-1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Bibliography

[51] Abadi, M.; Agarwal, A.; Barham, P.; aj.: TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. 2015, software available from
tensorflow.org. Dostupné z: https://www.tensorflow.org/

[52] Chollet, F.; aj.: Keras. 2015. Dostupné z: https://github.com/
fchollet/keras

[53] Bisong, E.: Google Colaboratory. Berkeley, CA: Apress, 2019, ISBN 978-
1-4842-4470-8, s. 59–64, doi:10.1007/978-1-4842-4470-8 7. Dostupné z:
https://doi.org/10.1007/978-1-4842-4470-8_7

[54] Keras: Keras documentation: Text classification with Transformer.
Dostupné z: https://keras.io/examples/nlp/text_classification_
with_transformer/

[55] Keras: Keras documentation: Embedding layer. Dostupné z: https:
//keras.io/api/layers/core_layers/embedding/

62

https://www.tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1007/978-1-4842-4470-8_7
https://keras.io/examples/nlp/text_classification_with_transformer/
https://keras.io/examples/nlp/text_classification_with_transformer/
https://keras.io/api/layers/core_layers/embedding/
https://keras.io/api/layers/core_layers/embedding/

Appendix A
List of Abbreviations

API Application Programming Interface

BOW Bag of Words

CNN(s) Convolutional Neural Network(s)

CPU Central Processing Unit

FFN(s) Feed-forward Network(s)

GELU Gaussian Error Linear Unit

GPU Graphics Processing Unit

LSTM Long Term Short Memory

ML Machine Learning

NLP Natural Language Processing

NN(s) Neural Network(s)

ReLU Rectified Linear Unit

RNN(s) Reccurent Neural Network(s)

TL Transfer Learning

TPU Tensor Processing Unit

63

Appendix B
Contents of Enclosed CD

readme.md.........................the file with CD contents description
experiments.......the directory with the notebooks for the experiments
preprocessing the directory with the notebooks for the preprocessing of
datasets
statisticsthe directory with the notebooks for datasets statistics
thesis.................the directory of LATEX source codes of the thesis
thesis.pdf... the thesis in PDF

65

	Introduction
	Goals
	Sentiment analysis
	What is Sentiment Analysis
	Levels of Analysis

	Language Classification Models
	Lexicon-based Approach
	Machine Learning Approach
	The Age of the Transformer
	Model Evaluation

	Transfer Learning
	Transfer Learning in NLP
	Related Work
	Domain Specific Adapters

	Implementation
	Datasets
	Tools
	Model

	Methodology
	Data Split
	Preprocessing
	Scenarios
	Hyperparameters
	Benchmark

	Results
	Base Models
	IMDb Base Model
	Skytrax Base Model

	Discussion
	Fine-tuning vs Base Models
	Adapters vs Base Models
	Adapters vs Fine-tuning
	Proposed Models vs Benchmark

	Conclusion
	Bibliography
	List of Abbreviations
	Contents of Enclosed CD

