
Instructions

The aim of this thesis is to design and implement algorithms that will recognize malicious behavioral 

patterns in datasets of behavioral graphs and evaluate them as a means for malware detection. The 

datasets are generated by Avast internal systems, and they contain behavioral graphs from multiple 

well-known active malware families.

The following steps will be part of our work:

1. Study the selected supervised (e.g., Graph neural networks) and unsupervised (e.g., K-means, 

DBSCAN) learning methods.

2. Analyze multiple well-known malware families with respect to their malicious behavioral 

characteristics.

3. Perform experiments with different clustering methods. Evaluate the quality of clusters and 

generate signatures from them.

4. Evaluate the quality of the output signatures of malware families and discuss the results.
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Abstrakt

Behaviorálny št́ıt je komponenta antiv́ıroveho softvéru firmy Avast zodpovedná za monitorovanie
systému a identifikovanie podozrivého správania bežiacich procesov. Správanie procesov je
zachytené vo forme behaviorálnych grafov. Prebiehajúci interný výskum skúma možnosti ap-
likácie neurónových modelov, takzvaných grafových neurónových siet́ı, za účelom umožnenia stro-
jového učenia nad týmito grafmi. Ciel’om práce je skúmat’ tri rozličné komprimované reprezentácie
grafov, ktoré boli vyprodukované existujúcimi modelmi neurónových siet́ı, a overit’, či tieto
reprezentácie umožnujú rozlǐsovat’ škodlivé správanie jednotlivých malvérových rod́ın. Analýza
štruktúry týchto reprezentácíı bola vykonaná použitim známych klastrovaćıch algoritmov, a to
k-means, DBSCAN a aglomerat́ıvne klastrovanie. Výsledky klastrovacieho procesu boli vyhod-
notené pomocou interných a externých meŕıtok. Ciel’om je overenie hypotézy, že vytvorené klastre
by mali reprezentovat’ správanie jednotlivých malvérových rod́ın a umožnit’ jeho zachytenie vo
forme detekcie. Avšak, experimenty ukazujú, že aplikovanie spomenutých klastrovaćıch metód
nevedie k uspokojivým výsledkom a metódy produkujú nekvalitné klastre, ktoré neoddel’ujú grafy
jednotlivých rod́ın. To je primárne spôsobené dvoma faktormi. Prvý je, že behaviorálne grafy
nezachycujú správanie rod́ın dostatočne na to, aby mohli byt’ použité na ich rozĺı̌senie. Druhý
faktor je ńızka kvalita poskytnutých označeńı malvérových rod́ın.

Kl’́učové slová škodlivý softvér, rodina škodlivého softvéru, behaviorálna detekcia škodlivého
softvéru, grafová neuronová siet’, zhlukovanie, behaviorálna analýza, behaviorálny graf

Abstract

The behavioral shield is a component of Avast AV responsible for monitoring the system and
identifying suspicious behavior of running processes. The behavior is captured in the form of
behavioral graphs. There is ongoing internal research that studies the options to use novel deep
learning models, i.e., graph neural networks, to allow high-scale learning on these graphs. This
thesis aims to study three different graph embeddings, which were produced by the existing graph
neural network models, and verify whether the embedded representations allow distinguishing
the malicious behavior of various malware strains. The structure of embedded spaces is analyzed
using well-known clustering methods, namely k-means, DBSCAN, and agglomerative clustering.
The results of the clustering process are evaluated by intrinsic and extrinsic measures. The
hypothesis is that the formed clusters should represent individual malware families and thus can
be used to create a behavioral signature to detect them. However, performed experiments show
that the applied clustering methods produce low-quality clusters that do not allow separating
the selected malware strains. There are two factors that cause the low performance. The first
one is the poor expressibility of the behavioral graphs with respect to the individual malware
strains. The second one is the low quality of the provided labels.

Keywords malware, malware strain, malware behavioral detection, graph neural network,
clustering, behavioral analysis, behavioral graph
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Introduction

Modern AV solutions have multiple layers of protection that defend the user endpoints from
malicious programs. In Avast AV, these layers are represented by individual protection units,
also called shields, where each shield is capable of detecting the threat on a different level.
There is file system protection, network communication protection, or behavioral protection,
while each detection mechanism has certain advantages. The advantage of behavioral malware
protection is that it allows detecting previously unseen malware that naturally cannot be detected
by signature-based detections. A good example is a modern ransomware malware where the
distributed samples usually evolve and morph rapidly, but it requires untrivial effort from the
adversary side to change the ransomware behavior.

The behavior is captured in the form of graphs, where the individual running processes and
system objects, which processes interact with, are represented as graph nodes, and the performed
actions are represented as graph edges. The novel deep learning approaches allow training
the deep neural network models that can process such graph structures directly on the input
and generate the embedded representation of the nodes, edges or whole graphs. These models
are called graph neural networks (GNN). There are emerging practical applications in areas
such as antibacterial discovery, physics simulations, fake news detection, traffic prediction and
recommendation systems, where these neural networks outperform the traditional approaches
used for machine learning on graphs [1].

Due to the promising results of GNNs, there is an ongoing company internal research that
attempts to create graph neural network models capable of learning to distinguish malicious be-
havior from harmless non-malicious behavior. However, the behavioral graphs are very complex
data structures where nodes alone contain hundreds of features and graph structure brings ad-
ditional information complexity into the given task. Thus, it is challenging to interpret whether
the neural network learns some sensible features useful for separating malware and clean graphs.
One of the ideas, which could help understand the extracted features, is to examine the low-
dimensional graph embeddings produced by these models and check whether the compressed
graph representations allow differentiation of distinct types or strains of malware. This hypoth-
esis can be verified using clustering methods in the space of embedded representations. If any of
the clustering algorithms produce results that separate the graphs into clusters according to the
malware strain or type well, the assumption is that the neural network selected “valuable” fea-
tures. Moreover, the behavioral graphs in such clusters can then be used to produce a behavioral
signature for the specified malware family.

The main goal of this thesis is to perform an exploratory data analysis of the provided graph
embeddings that are produced by three different GNN models. The embeddings are analyzed
using well-known clustering methods, i.e., k-means, DBSCAN, and agglomerative clustering.
The clustering results are evaluated by selected intrinsic and extrinsic measures. In case of good
cluster separation regarding distinct malware types or strains, the formed clusters should be used

1



2 Acronyms

to produce behavioral signatures for the malicious behavior they represent.
Chapter 1 sums up the formal graph theory background and the possible approaches to a

graph representation. Chapter 2 continues by introducing the deep learning techniques focusing
mainly on graph neural networks. Chapter 3 is devoted to cluster analysis. It contains a de-
scription of selected cluster algorithms, and it discusses how can the cluster results be evaluated.
Chapter 4 introduces the behavioral graphs and describes what kind of information they store.

The practical part begins with Chapter 5, where the one day of data provided by the be-
havioral shield is analysed and filtered. There is also a discussion regarding the quality of the
behavioral graphs with strain labels assigned. Chapter 6 describes the clustering experiments
and evaluates the results of clustering, followed by the discussion of clusters quality.



Chapter 1

Graph Theory

This chapter starts with basic formal definitions of graph theory, followed by an introduction
to the possibilities for storing information within graph structure. Then, two methods for
comparing graphs are presented, one traditional (graph isomorphism) and the second one
adapted from the set domain (Jaccard index). The first chapter ends with an overview of
different possibilities on how to represent a graph in a digital form, both in compressed and
uncompressed form. This chapter lays a foundation for the following chapter describing graph
neural networks and provides tools for working with graphs in the practical part of this thesis.

1.1 Formal definitions
Graph can be formally defined as a pair G = (V,E) where:

V = {v1, v2, ...} is a nonempty set of nodes (or vertices);

and E = {e1, e2, ...} is a set of edges.

Affiliation to a particular graph G can be denoted with subscript, i.e. VG, EG sets belong to
graph G. Further, |VG| (resp. |EG|) stands for the number of nodes (resp. number of edges).
The edges of a graph can be either directed or undirected. Directed graph edge e = (vi, vj) is an
ordered pair of two nodes, whereas undirected edge e = {vi, vj} is a two-element subset from V.
Some graphs can also have weighted edges which means that each edge has assigned a weight
wi ∈ R.

Node vj is adjacent to the node vi when there exists such edge e = {vi, vj} that e ∈ E and
the nodes are connected with an arc. Then, both vi and vj are incident with the edge e and vice
versa. The number of incident edges with node v is called degree d(v). An isolated node is one
that is not incident with any edge. The degree is in case of isolated node v equal to d(v) = 0.
The graph definition generally permits loops - an edge to be associated with a node pair {vi, vi}.

All the adjacent nodes of v define a node neighborhood. If node v is included in the set, the
neighborhood is denoted as closed. In case v is not included, the neighborhood is called open.
Formally, an open neighborhood of node v of graph G would be defined as:

Nv = {u ∈ VG \ {v}|(u, v) ∈ EG} (1.1)
A graph with a finite set of nodes as well as a finite set of edges is denoted as a finite graph;

otherwise, it is an infinite graph. A very significant graph structure feature is cyclicity. A graph
is considered to be cyclic whenever there exists a non-empty path from a node back to itself. A
path is a sequence of edges that joins a sequence of nodes that are all distinct. When there are
no cycles in the graph, the graph is called acyclic [2].

3



4 Graph Theory

1.1.1 Storing information in graph
The versatility of the graph structure lies in the expressiveness of its individual elements. In
many practical applications, it is useful to enrich the graph elements with additional attributes.
A most basic extension of a node is to imbue it with a type, meaning that the set V will be
partitioned into disjoint sets V = V1 ∪ V2 ∪ · · · ∪ Vk where Vi ∩ Vj = ∅,∀i ̸= j. The same
can be done for the edges to allow modelling different types of interactions between nodes – a
multi-edge graph. The edge notation is extended to include an edge type or a relation type τ ,
such as (u, τ, v) ∈ E. Graphs where both nodes and edges are extended with types are called
heterogeneous graphs [3].

A more sophisticated extension associates each node v ∈ V with a feature vector xv =
(x1, . . . , xd) where d ∈ N is the vector dimension. All the nodes in graph G can be then rep-
resented via feature matrix X ∈ R|V |×d. The edge-level feature matrix is defined likewise as
I ∈ R|E|×d′ where each row is a particular edge feature vector iuv = (i1, . . . , id′). The graph
definition is extended into G = (V,E,X, I) [2].

1.1.2 Comparing graphs
To express similarity between two graphs, two additional definitions need to be introduced:

Graph H is said to be a subgraph of graph G if VH ⊆ VG and EH ⊆ EG.

Two graphs G and G′ are isomorphic when there exists a one-to-one correspondence between
their nodes and between their edges such that it preserves the incidence relations. This
correspondence can be mathematically expressed as a bijective function f : VG → VG′ such
that (u, v) ∈ EG if and only if (f(u), f(v)) ∈ EG′ for every pair of nodes u, v ∈ VG. The
example of two isomorphic graphs is presented in Figure 1.1.

Graph isomorphism can also be seen as an equivalence relation on graphs. In the isomorphism
definition, graphs are understood to be directed simple graphs without any labels as the definition
focuses purely on the structure. Although, isomorphism may be applied to all other variants
of graph from the previous section by adding the requirements to preserve the corresponding
additional elements of a structure. However, graph isomorphism is relatively computationally
expensive, and it gives only true-false statement, i.e., it does not express how (dis)similar two
graphs are [4].

Figure 1.1 Example of two isomorphic directed unlabeled
graphs

Despite the fact that there are more sophisticated methods for calculating graph similarity [5],
for the purpose of this thesis, the comparison of the two graphs will be reduced to a comparison
of the node sets of two graphs. Jaccard index is a classic measure of similarity between two sets,
and it is defined by:
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J(A,B) = |A ∩B|
|A ∪B|

= |A ∩B|
|A| + |B| − |A ∩B|

(1.2)

By design, Jaccard index values are from the interval 0 ≤ J(A,B) ≤ 1. If both sets are empty,
Jaccard index is set to J(A,B) = 1. A complementary measure to the Jaccard index is Jaccard
distance that express dissimilarity of two sets:

dJ(A,B) = 1 − J(A,B) = |A ∪B| − |A ∩B|
|A ∪B|

(1.3)

Even though this metric completely ignores the graph structure (which is more acceptable for
behavioral graphs, see Section 4.2.1), it gives some notion about graphs similarity by comparing
their node elements. Also, calculating the Jaccard index is much faster than solving the isomor-
phism problem and, therefore, more suitable for application on big clusters of graphs where one
needs to compare all graphs with each other. An example of the Jaccard Index application for
comparison of two graphs can be seen in Figure 1.2.

Y

G Y

B

G

B

Y

G

BG

Figure 1.2 There are two heterogeneous graphs on the picture; both
nodes and edges have a 1-dimensional attribute – type. Graphs are no
longer isomorphic if one takes into account also type information. The
Jaccard Index is J({G, Y, B, G, Y }, {Y, B, G, B, G}) = 4/6 = 0.6

1.2 Graph representations

There are a couple of approaches how to turn a graph into a format that is suitable for computa-
tional tasks and can be stored in the computer memory. The challenge is in expressing effectively
both the feature information and relationships. Matrices come as a very natural representation
of graph structure. To represent a graph with a matrix, one needs to artificially order the nodes
in the graph so that every node indexes a particular row and column.

Degree matrix D ∈ N|V |×|V | is a diagonal matrix, i.e., non-diagonal entries are all zeros, where
the nodes index rows and columns, and each diagonal entry gives the degree of the corresponding
node. This matrix alone does not allow correct graph reconstruction since it does not contain
information about the incidence. The formal definition is:

Dij =
{
d(vi) if i = j
0 otherwise

Adjacency matrix A ∈ N|V |×|V | is a widespread matrix representation that captures the ad-
jacency relation. The formal definition is:
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Aij =
{

1 if (vi, vj) ∈ E

0 otherwise

It is possible to use edge labels or types instead of 1 in the adjacency matrix in the case of
weighted or heterogeneous graphs. The other option for multi-edge graphs is to have multiple
adjacency matrices for each edge type. By the definition, the adjacency matrix of an undirected
graph is always symmetric. This does not hold for the directed graph since the edge is an ordered
pair, i.e., (vi, vj) ̸= (vj , vi),∀i ̸= j.

If the graphs do not contain loops (edges like (vi, vi)), then the adjacency matrix diagonal
contains just zero elements. Therefore, the diagonal can be used to store additional information.
Usually, it is a degree of a particular node d(v). The combination can be achieved by subtracting
the degree matrix from the adjacency matrix. This particular matrix, L = D − A, is called the
Laplacian matrix [6]. Besides having useful mathematical properties [3], the Laplacian matrix
represents the graph structure without any loss of information.

Both the Laplacian matrix L and the adjacency matrix A can be used together with the
node feature matrix X as a viable option for digital graph representation. Figure 1.3 depicts a
simple graph and its respective matrix representation.

Y

G Y

B

G
0

1 2

3 4


1 0 −1 0 0

−1 1 0 0 0
0 0 0 0 0
0 −1 −1 2 0
0 −1 −1 0 2

 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 2

 −


0 0 1 0 0
1 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 1 1 0 0



Figure 1.3 An example of a heterogeneous oriented graph with L, D, A matrices (from left to right).
In the case of an oriented graph, the degree matrix only takes into account the incident edges from the
node (outdegree).

These graph representations, which represent graphs without loss of information, have several
drawbacks. The number of graph nodes in practical applications can be in the order of millions.
Moreover, most natural graphs tend to have the number of edges linear with the number of
vertices. That leads to big and sparse matrices with most of the elements set to 0 [7].

Consequently, graph algorithms that work with these representations suffer from high com-
putation cost. Furthermore, some machine learning methods, such as clustering, do not work
well with high dimensional data.

1.2.1 Graph embedding
To tackle the above mentioned issues, there exist methods that convert the graph data into a low
dimensional space whilst maximally preserving properties like structure and information stored
in graph elements. This conversion process is called graph embedding.

Embedding graphs into low dimensional spaces is a daunting task, mainly due to the diversity
and flexibility of practical graphs. For example, the representation of molecules may lead to small
and sparse graphs, whereas a social network could form a big, dense graph structure. Hence, it
is quite difficult to find one silver-bullet technique.
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As a consequence, there exist many approaches to graph embedding, such as Laplacian matrix
factorization, graph kernel methods, deep learning (with/without random walk) or generative
models [8]. Each of these methods brings different insights into the graph structure. This thesis
will focus on the deep learning approach, and precisely, deep convolutional neural networks, i.e.,
without random walk.

The selection of a preferred method depends on the embedding output that is usually given in
accordance with the expected result. Depending on the task that needs to be solved, the output
granularity differs. There are four variants of graph embedding output [8]:

Node embedding is encoding nodes as low-dimensional vectors that summarize their po-
sition and information about local graph neighborhood. The goal is to project nodes into a
latent space where geometric relations in this latent space correspond to relationships. This
embedding can be used for solving problems, such as node classification or node clustering.

Edge embedding aims to represent edges as an embedded vector. This variant projects
both ending nodes together with additional edge information like type and orientation. It is
useful for prediction on probable node relationships - link prediction.

Whole-graph embedding embeds the graph G into a n-dimensional space in a way that
the graph-level similarity is preserved. The key challenge of whole-graph embedding is to
find the compromise between expressiveness of embedding and efficiency of algorithm. This
embedding is commonly used for solving graph classification or graph clustering problems.

Hybrid embedding is a combination of aforementioned methods. It can be used for embed-
ding different graph structures, for instance node and edge sequences, communities in graph,
paths. This embedding can be used for community identification or graph-level information
extraction.
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Chapter 2

Deep Graph Learning

This chapter provides an overview of deep learning methods designed specifically to process
graphs. Section 2.1 presents fundamental concepts of deep learning and introduces the models
for processing euclidean data, such as images and sequences. Section 2.2 describes the con-
volution operation and explains how is the convolution used in convolutional neural networks,
a popular method for image processing. Section 2.3 contains a description of convolution
applied in the context of graphs. Section 2.4 further expands on this topic and explains how
are the graphs neural networks (GNN) build. The chapter ends with an explanation of the
supervised and unsupervised approaches to training the GNNs.

2.1 Deep learning fundamentals
Deep learning is a class of machine learning algorithms based on computational models composed
of multiple processing layers capable of learning complicated data representations with multiple
levels of abstraction. Artificial neural networks are popular realizations of those multilayer
hierarchies. In recent years, the growing computational power of graphics processing units has
allowed the training of deep neural networks with many hierarchical layers. Also, the availability
of large training datasets helped improve the ability of model generalization. As a result, the
neural network models have brought significant improvements in a variety of practical tasks,
from speech recognition and translation to image analysis and computer vision.

The power of neural networks lies in their ability to leverage the statistical properties of the
data and distil the important features from it without any human supervision. There is no need
to select the features manually, as other machine learning methods usually require, which is one
of the most significant advantages of this approach. Book Deep Learning by Goodfellow et al. [9]
provides a good background on this topic. The following list presents a short sum-up of essential
definitions from this book:

Neuron (Perceptron) is the basic building block of neural networks. The input is an n-
dimensional vector x = (x1, . . . , xn), and the output is scalar value y ∈ R. A neuron has
three different attributes: a weight vector w = (w1, . . . , wn), a bias b ∈ R and activation
function f . Internally, the output value y is computed as y = f(b+

∑n
i=1 xiwi). Weight w

and bias b are denoted as trainable variables. Their values are usually randomly assigned at
the beginning of the training and then continuously adjusted during the training process to
reflect the data and capture the learned knowledge.

Activation function f is a non-linear function inside the neuron that “activates” the neuron
output y and keeps it within a reasonable range. Some examples of activation function are
ReLU, i.e., f(x) = max(0, x), sigmoid, i.e., f(x) = 1/(1 + e−x), or hyperbolic tangent.

9
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Neural network layer is a group of neurons at the same “depth level” in a neural network.
With the exception of recurrent networks, there are no connections between the neurons
within this group. The neurons of a particular layer process the previous layer’s outputs and
produce inputs for the next one. The shape of the first layer of the neural network, i.e., the
input layer, is determined by the data that network processes. The type of last layer, i.e.,
an output layer, depends on the task that the neural network needs to solve (e.g., binary
classification, regression). All the in between layers the input and output layer are called
hidden, and their purpose is to enable a model to learn complex tasks. The size of each
hidden layer and depth of the neural network influences the number of trainable parameters
and, thus, affect the model learning capacity. Too small and shallow models do not have the
capacity to approximate the output properly. On the other hand, too deep networks have
significant problems with information propagation through all the layers.

Loss function is used to determine the error between the output of the neural network and the
real value from training data during the training process. The function expresses how far the
computed output is from the ground truth. The selection of loss function depends on the
task that the neural network solves. For example, mean squared error – f(x, y) = (x− y)2 is
a commonly used loss function for continuous output, i.e. regression, while cross-entropy is
used for classification tasks.

Forward propagation is a term for computing the output of a neural network. Each hidden
layer accepts the input data, processes it and passes the output to the successive layer until
the output layer is reached. Forward propagation is used during training to get a network
output that is compared with the actual value using the loss function. Further, forward
propagation is used for model predictions after the training. This process is called model
inference.

Backpropagation is the process of updating trainable neural network variables during the
model training phase. It can be seen as a reverse process to forward propagation. Backprop-
agation computes the gradient of the loss function with respect to the trainable variables, i.e.,
weights and biases, of each network layer by the chain rule, starting from the output layer
and iterating backwards to the input layer. The outcome of the backpropagation algorithm
is that the trainable variables are updated accordingly to minimize the loss function, which
is in the direction of gradient descent. This process is repeated for every input-output pair
from the training set.

2.1.1 Selected types of neural networks
The most basic type of neural network is Multilayer perceptron (MLP), which serves as a
base of all other types of models. The model consists of at least three fully connected layers,
where every neuron in each layer is connected to all neurons in the successive layer. MLPs are
poorly scalable and computationally expensive, and thus are not really suitable for processing
big and complex inputs. In practice, the fully connected layers are often combined with more
sophisticated approaches and they usually learn from the output produced by the other methods.
MLP is a typical example of a feed-forward network, where the information moves only from the
input layer directly through any hidden layers to the output layer without any cycles. The
expected input of MLP is a vector.

Recurrent Neural Network (RNN) is an example of a network that contains loops. Hence
it does not belong to the feed-forward network category but into recurrent networks. The RNNs
are able to process sequences of vectors on the input. The training process as well as model
inference run in iterations where, in each iteration, the next element from the input is processed.
The building block of RNN is the recurrent layer that propagates the output (in addition to the
forward pass) back to the cell input for the next iteration. The backward loop is led through
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the state memory that allows storing important information about the previous iterations. The
input of the recurrent layer consists of the new data to analyze and the state of this memory.
The RNNs are useful for processing sequential data, such as speech, voice or text.

Convolutional neural network (CNN) is a type of network that was specifically designed
to process image data. The input layer expects a 3D vector with height × width × channels
dimensions. The network uses convolution layers to allow the processing of huge inputs. Using the
convolutional layer brings two advantages. Firstly, it reduces the number of trainable parameters,
which leads to the possibility to build much deeper networks since the computation complexity
is reduced. Secondly, the convolution allows the network to recognize and learn local spatial
patterns regardless of their position. The CNNs belong to the feed-forward network model
category. A more detailed description of the convolution process is provided in the next section.

2.2 From Euclidean to graph data

The previous section introduced three different neural networks, each specialized for a specific
type of input data. This specialization of models leads to better predictive performance, lower
training time and better generalization since the model can leverage the characteristics of that
particular data type. When labeling images, the model can take advantage of the fact that an
object has the same meaning, whether it is in the top-left or bottom-right corner.

Therefore, the CNN models that use convolutions achieve much better results in image pro-
cessing than regular MLP. In the case of text, the sentence tokens, e.g., words or letters, have
their natural order, so the RNN models process the tokens in the iteration. That allows tokens
to pass the information on the successive elements. However, the information from the begin-
ning of the sequence fades away after a few iterations. Some words (e.g., not) that significantly
affect the rest of the sentence can be washed out after a while. Therefore, transformers that
have the ability to give “attention” quality to input sequence consequently outperform the RNN
models in the task of text comprehension [10]. Models that reflect regularities, symmetries and
constraints of input data have far better results than those that do not take that into account.
These inherent characteristics of particular data types are been denoted as inductive biases.

So far, the models have taken into account the inductive bias of Euclidean data only. Eu-
clidean data is data that can be sensibly plotted in n-dimensional linear space, which is the case
of image or text data. However, some data does not map neatly into Rn space. Such data can be
embedded into the physical shape to fit n-dimensional space but only with some consequences
since it is not the data natural representation. Graphs are a prime example of non-euclidean
data, i.e., data without underlying Euclidean or grid-like structure. The field of deep learning
specializing in the processing of non-euclidean data types is called Geometric deep learning [11].

In the case of graph processing, one needs to design a new class of models that would be able
to reflect the relational inductive biases of graph components. Such models are called Graph
neural networks (GNN). GNNs allow analyzing graph structures in their native form rather
than reducing the representation to the lower-dimensional space before processing it.

Most of the GNN models can be partitioned into two classes based on the information dif-
fusion mechanisms. It can be either recurrent or convolutional (feed-forward) approach [2]. In
this thesis, the focus will be on the latter, where the information diffusion is accomplished by
stacking multiple graph convolutional layers on top of each other. Such networks are denoted as
Graph Convolutional Networks. The inner workings of a graph convolutional layer could be
explained through the optics of better-known image convolutions.
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2.2.1 Image convolution
Formally, convolution is defined as an operation where a filter function g applied to the input
function f produces function g ∗ f as a filtered result. Formally, it is defined as:

(g ∗ f) =
∫
f(t− a)g(a)da (2.1)

In the case of image convolution, the input is a 2-dimensional vector. Therefore, the convo-
lutional operation is also generalized to two dimensions:

K ∗ Ii,j =
∑
m,n

Ii−m,j−nKm,n, (2.2)

where I is the input image, and K is called filter or kernel. Usually, the input image has a
whole vector of values for a single pixel representing channels (i.e., RGB), but each channel has
its own filter Kc. The process of image convolution consists of 2 primary operations [12]:

1. Applying kernel of the size w × h on the input image. This operation aggregates the
information from the pixel’s neighbourhood into each s-th pixel, where s is the kernel stride.
For example, if the kernel stride s = 2, then the aggregation is applied to every other pixel,
and the image size is reduced to half. The number of trainable parameters is equal to w×h×o,
where o denotes the number of output channels. Those channels are called also feature maps.
This allows the neural network to produce multiple filters that are applied simultaneously.
The non-linear function is usually applied after kernel operation.

Figure 2.1 An example of applying kernel on the input image. [13]

2. Pooling is a similar operation to convolution, but a fixed operation is performed instead of
kernel multiplication. Pooling reduces the dimension of input data by combining the outputs
of surrounding pixels. However, instead of aggregation, pooling either singles out only the
most important values (max pooling) or averages all the values into one. Pooling layers can
be intertwined in between the kernel application layers or can be used at the end of the
convolutional process.

Compared to fully connected layers, where the number of trainable parameters is equal to the
size of the input, the convolutional layers have only w × h × o trainable parameters. The same
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weights are reapplied over the whole input, which brings two significant advantages. The first
one is that a convolutional network respects translational invariance. It means that patterns are
recognized irrespective of their position. The second advantage is that the number of parameters
is significantly reduced, so convolutional networks are usually deeper and allow processing of big
images.

2.3 Graph convolution

As discussed in Section 1.2, graphs can be represented by two matrices: matrix X containing
node features in the rows and adjacency matrix A describing the node relations. These matrices
are used as input of the neural network. Therefore, one could get an idea to define the graph
neural network simply as an MLP model and use flattened X and A as [3]:

y = MLP (X1 ⊕ · · · ⊕ X |V | ⊕ A1 ⊕ · · · ⊕ A|V |) (2.3)

However, it should be clear from the previous discussion that this network model has several
drawbacks. Firstly, it does not respect inductive biases of the graph structure on the input at all.
Secondly, it expects graphs of identical size, and it does not scale up well for really big graphs,
i.e., big input leads to a combinatorial explosion of vector operations with trainable variables [3].

When processing images, the convolutional operation was used to reduce the number of
trainable parameters and enable sharing of the same parameters over the whole image to respect
the translational variation. Similar operation can be also defined for graphs but it has to meet
additional requirements.

Graphs are much more irregular and flexible structures compared to images. Each graph node
can have a different number of neighbours, while images have a strict grid-like structure with
each pixel having exactly 8 neighbours (except the border pixels). Also, images can be inserted
into the 2-dimensional grid, and the kernel in convolutional operation can move up, down, right
or left, which is not possible in the case of non-euclidean graphs, which do not have any notion
of the direction.

Moreover, the graph convolution needs to preserve the isomorphism transformation. If there
are two isomorphic graphs G and H, the result of the convolutional operation should be the
same in both cases. When looking back on the input representation of the graph, one could
notice that both matrices X and A introduce an inherent node ordering by stacking the node
information in a specific order. Therefore, any convolutional transformation defined upon the
graph input should produce the same result without any regard to the node ordering of input
matrices. To rephrase this constraint in the graph language, convolution operation should enforce
isomorphism-preserving transformation. The following section reformulates the isomorphism-
preserving requirement in a more formal way.

2.3.1 Permutation invariance and equivariance
To describe the restrictions of graph convolutional operation, one has to define an operation
that shuffles the node ordering of input matrices into a different one. Such operation is known as
permutation. An example of 4 node permutation, out of 4! possibilities, could be π = (4, 3, 1, 2)
that reorders the four nodes in the following manner:

π([x1, x2, x3, x4]) = [x4, x3, x1, x2]

Permutation can also be defined as a {0, 1}n×n matrix. Permutation matrices P have only
single 1 per every row (or column) and zeros elsewhere. They can be applied to permute rows
of matrix X like in the following example:
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P (4,3,1,2)X =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0



x1
x2
x3
x4

 =


x4
x3
x1
x2

 (2.4)

The intention of the following paragraphs is to design functions over graph representation
matrices where the result does not depend on the node ordering. For a start, only the node
feature matrix X (graph with no edges and only nodes) is considered. The designed function
g(X) should always return the same result without regard to the permutation of the node
features [1]:

g(P X) = g(X) (2.5)

Such function g(X) is then denoted as a permutation invariant function. Permutation
invariance is sufficient for obtaining the outputs on the level of the entire set of nodes. However,
it is not a sufficient criterion for a node-level task since it does not require the result to keep
the ordering of the nodes the same. Thus, it is impossible to identify the specific node outputs
after the function application. A typical example of a permutation invariant function is any
aggregator, e.g., sum, maximum or average.

For node-level tasks, the designed function f(X) should not be allowed to shuffle the node
order. The function needs to adhere to a more strict assumption [1]:

f(P X) = P f(X) (2.6)

If this expression holds true for all permutation matrices P , then the function f(X) is called
permutation equivariant. Permutation equivariance allows permuting the nodes before or
after the function application. Equivariance mandates that each node’s row is unchanged by the
function f . Therefore, one can think of equivariant set functions as local transformations of each
node xi (row of X) into a vector hi [1]:

f(hi) = ψ(xi) (2.7)

The function ψ can be any function applied in isolation to each node. Stacking hi yields
H = f(X). For the adjacency matrix A, one needs to appropriately permute both rows and
columns of A because each of them indexes nodes in inherent order. The permutation matrix
P has to be applied twice. i.e., P AP T . The adjusted definitions of permutation invariance
g(X,A) and permutation equivariance f(X,A) look like this:

g(P X,P AP T ) = g(X,A) (2.8)
f(P X,P AP T ) = P f(X,A) (2.9)

2.3.2 Graph neighborhood as a convolution filter
If a convolution filter function is either permutation invariant or permutation equivariant, the
graph convolution operator respects the isomorphism-preserving transformation. To make sure
that the convolutional operator can be used to produce node-level output, one has to choose
the latter. Permutation equivariant function can be any arbitrary function applied to each node
separately. The convolution filter has to aggregate the localized information about node features
while respecting the graph structure. This can be achieved by applying node’s neighbourhood (see
Section 1.1), whose definition can be expanded to aggregate the node features. The adjacency
information is explicitly expressed by aggregating only adjacent nodes. The expanded definition
is:

XNi
= {xj : j ∈ Ni}, (2.10)
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where Ni denotes the i-th node neighbourhood, and xj is a neighbour feature vector. Then, any
local function g can be applied over this set as g(xi,XNi

) [1]. By applying this function g locally
over all neighbourhoods, one can construct a permutation equivariant function f(X,A) as:

f(X,A) =


g(x1,XN1)
g(x2,XN2)

...
g(xn,XNn

)

 (2.11)

The permutation equivariance is ensured only when the function g does not depend on the
order of the vertices in XNi

. As a consequence, a local function g(xi,XNi
) needs to be permu-

tation invariant. To sum it up, the convolutional filter function is constructed as a permutation-
equivariant function f(X,A) that is composed by locally applying the permutation-invariant
function g(xi,XNi

) [1].
This approach brings similar advantages as the convolution function in CNNs. The local

function g(xi,XNi) usually contains trainable parameters that are applied all over the graph, so
that the local pattern can be learned and recognized no matter their position in the graph. This
also significantly reduces the number of parameters required by GCN, as the same parameters are
being reused across all nodes. Moreover, it effectively and efficiently combines the information
of all nodes and graphs in the dataset to learn a single function. The permutation invariance
of the local function g(xi,XNi) also elegantly solves the problem with variable neighbourhood
shape thanks to the aggregation properties of permutation invariant functions [2].

2.4 Graph convolutional network
The application of a function f(X,A) in GCN is a complementary operation to applying kernel in
CNN. From the perspective of neural network models, both operations are seen as convolutional
layers. The GNN usually contains multiple convolutional layers, similarly to the CNN. The reason
for using multiple convolutional layers is to diffuse the information to more remote parts of the
graph (or image). This diffusion mechanism is also denoted as a “message passing” algorithm in
the domain of GNN.

2.4.1 Message passing
Each convolutional layer in GNN can be seen as one iteration of the message passing algorithm,
which outputs a hidden embedding h(k)

u for each node u ∈ V . This embedding represents infor-
mation aggregated from u’s graph neighbourhood Nu. The embedding of the node u in the k+1
layer can be expressed as [3]:

ak+1
u = AGGREGATE(k)

({
h(k)

v : v ∈ Nu

})
(2.12)

h(k+1)
u = UPDATE(k)

(
h(k)

u ,ak+1
u

)
(2.13)

Both UPDATE and AGGREGATE are arbitrary differentiable functions, and ak+1
u is the ag-

gregated message from u’s adjacent nodes. Superscripts distinguish the embeddings and functions
at different iterations of the message passing algorithm. The function UPDATE is semantically
equivalent to the local permutation invariant function g(xi,XNi).

At the k+1 iteration, the AGGREGATE function gathers k-th embeddings of the nodes in the
u’s neighbourhood and generates a message ak+1

u . The UPDATE function combines the message
with the previous embedding h(k)

u of the node u and creates a new node embedding h(k+1)
u .

In the first iteration, where k = 0, the embeddings are initialized with input node features, i.e.



16 Deep Graph Learning

h(0)
u = xu,∀u ∈ V . After running all K iterations, where K corresponds to the number of

convolutional layers in the network, the network generates the final embeddings for each node:

zu = hK
u ,∀u ∈ V (2.14)

To give a specific example of UPDATE and AGGREGATE operators, a basic GNN model
[3], which is a simplification of the original GNN model, can be presented:

h(k+1)
u = σ

(
W

(k+1)
self h(k)

u + W
(k+1)
neigh

∑
v∈Nu

h(k)
v + b(k+1)

)
(2.15)

Matrices W
(k+1)
self ,W

(k+1)
neigh ∈ Rd(k+1)×d(k) , and bias b(k+1) ∈ Rd(k+1) are trainable variables,

and σ denotes an activation function.
In the provided definition of node neighbourhood Nu (see Section 1.1), the neighbourhood

does not take into account the node itself. Because of that, the node features need to be com-
bined with the neighbourhood via the UPDATE function that can have its own weights. This
way, the information coming from the node itself can be differentiated from the neighbourhood
information. On the other hand, such approach has the inclination to overfitting [3].
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Figure 2.2 The illustration of the message passing algorithm from the node’s point of view. The
diagram on the right shows the second iteration of the message passing process. The messages coming
from A’s neighbours (i.e., B, C, D) are based on information aggregated from their respective neighbour-
hoods. This way, node A aggregates information from the whole graph. The computation graph forms
a tree structure by unfolding the neighbourhood around the target node. [3]

The iterative application of message passing allows spreading the information across the graph
in the form of aggregated messages. After the first iteration, every node embedding contains
information from its local neighbourhood. After the second iteration, every node embedding
contains information from its 2-hop neighbourhood (see Figure 2.2). As these iterations progress,
each node embedding incorporates more information from further nodes of the graph [2].

Each iteration represents a new convolutional layer. If there are K iterations of the message
passing algorithm, the GCN contains K convolutional layers, and every node embedding gathers
information from its K-hop neighbourhood. In this case, the multiple-layer architecture not only
performs automatic feature extraction, but also serves for context diffusion [2].

On the other side, the message passing paradigm also has some drawbacks [3]. Researchers
have empirically found out that message-passing suffers from over-smoothing. Over-smoothing
describes a process when a node-specific information becomes “washed out” or “lost” after several
iterations of GNN message passing. Distinct node features are wiped at the expense of more
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common features shared in the node neighbourhood, and representations for all the nodes in the
graph can become very similar to one another. Due to this fact, it is really challenging to build
deeper GNN models with the ability to aggregate deeper dependencies in the graph since these
deep GNN models tend to generate over-smoothed embeddings.

At a more intuitive level, one can see that the AGGREGATE and UPDATE message-passing
structure of GNNs inherently induces a tree-structured computation (see Figure 2.2). This
points out another limitation that is their inability to identify cycles consistently and to capture
long-range dependencies between nodes [3].

2.4.2 Graph pooling
The output of the message passing algorithm is a set of node embeddings {zu,∀u ∈ V }, where
each embedding consists of locally aggregated information of every node’s surroundings. These
embeddings are suitable for solving node-level tasks, such as node classification. However, certain
types of problems require to embedding the whole graph into the one vector zG ∈ Rn, where
n ∈ N is the specified dimension of the graph embedding.

The reduction of node embeddings {z1, . . . ,z|V |} into single graph embedding vector zG is
called graph pooling. Graph pooling is identical to the pooling mentioned in CNN networks (see
Section 2.2.1). The most straightforward approach for generating graph-level embeddings is to
take any aggregation, e.g., sum, max or mean of the node embeddings:

zG =
∑

v∈V zu

fn(|V |) , (2.16)

where fn is some normalizing function (e.g., identity). This simple variant is often sufficient for
practical applications [3]. The disadvantage of simple aggregation is that it does not exploit the
structural information of the graph. An example of a more sophisticated method that takes that
into account is graph coarsening.

Graph coarsening is able to decrease the size of the graph iteratively. Hence, it can be
interleaved between the convolutional layers and repeated multiple times. When applying graph
coarsening, one has to define a function that maps the node embeddings ({h

(l)
1 , . . . ,h

(l)
|V |}) into

vector a ∈ R+|V |×c – an assignment over c clusters. This function could be implemented as
simple neural network with softmax applied in the last layer to learn the clustering on the nodes.
The neural network then produces a soft-membership matrix S(l+1) that returns the probability
of a node belonging to cluster class c. The S(l+1) matrix is used to recombine the current graph
representation into one of reduced size:

X(l+1) = S(l+1)T

X(l)

A(l+1) = S(l+1)T

A(l)S(l+1)
(2.17)

The result is a coarser graph representation with a denser adjacency matrix and a set of aggre-
gated node features. This new adjacency matrix represents the strength of association between
the clusters in the graph, and the new node feature matrix represents aggregated embeddings
for all the nodes assigned to each cluster [3].

2.5 Training process
The GNN training process does not differ from the training process of any other neural network.
The problem of training is equivalent to the problem of minimizing the loss function. At the
beginning of training, the trainable variables, i.e., weights and biases, are initialized with random
values. Afterwards, the variables are adjusted in each iteration to better represent the training
data by minimizing the defined loss. The optimization of the loss function is performed using
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gradient descent methods (e.g., SGD, ADAM) that approximate the objective function gradient
and move in the descent direction to reach the function minimum. An adjustable learning rate
parameter determines the step size of each iteration.

The learning process can be divided into two main categories based on the learning task.
The first one is supervised learning, which learns to produce desired output by approximating
the “ground truth” labels that need to be provided with training data. The second category
is unsupervised learning, which learns by discovering patterns in the unlabeled data using, for
example, generative models.

2.5.1 Binary classification
Binary classification is an example of the supervised learning approach. The neural network
learns to classify the output as one of the two mutually exclusive classes. For example, the GNN
accepting behavioral graphs on the input (see Section 4.2) could learn to distinguish malware
from clean graphs. The most commonly used loss function is binary cross-entropy:

BCE(x, x̂) = − 1
n

n∑
i=1

(
x̂i ln(xi) + (1 − x̂i) ln(1 − xi)

)
, (2.18)

where xi represents the value produced by the neural network and x̂ is the “ground truth” label.

2.5.2 Variational autoencoder
Autoencoder is a type of generative model that is used for learning on unlabeled data – unsuper-
vised learning. The model learns to efficiently encode data into low-dimensional representations
(i.e., embeddings) by attempting to regenerate the input from compressed embedding. The bot-
tleneck embedding should ignore the insignificant “noise” in the data and extract only valuable
properties.

Autoencoder architecture consists of two parts: an encoder that maps the input into the
embedding and a decoder that maps the embedding to a reconstructed output. The training
process consists of copying input X from the encoder, generating the low-dimensional embedding,
and producing the decoder output X ′ from it. Afterwards, the loss function compares how the
regenerated output differs from the provided input.

Practical applications have proven that it is more advantageous to represent the embedding
not as a single latent vector but rather as a probability distribution. Variational autoencoder
(VAE) is an extension of classical autoencoder models that implements this idea. It consists of
two parts:

Encoder: This part is responsible for encoding input data X. It generates a mean µ ∈ Rd

and a variance parameter log σ ∈ Rd for a single embedding using two separate neural
networks. It defines a distribution qϕ(Z|X) that is used to sample latent embeddings z.

Decoder: The decoder takes a latent representation z as an input and uses it to specify a
prior distribution pθ(X|Z).
A loss function of the variational autoencoder has two goals. The first goal is to reduce

reconstruction errors between the network’s input and output. The second goal is to have
qϕ(Z|X) distribution as close as possible to pθ(X|Z). Both goals can be achieved by minimizing
the evidence likelihood lower bound (ELBO) [3]:

ELBO = Eqϕ(Z|X)(log pθ(X|Z)) −KL(qϕ(Z|X)||pθ(Z)), (2.19)
where the first term represents the reconstruction likelihood (i.e., binary cross-entropy) and the
other term ensures that the learned distribution q is similar to the true prior distribution p (i.e.,
KL-divergence loss).



Chapter 3

Clustering Methods

This chapter presents an overview of cluster analysis methods useful for the exploratory anal-
ysis of unlabeled data. Clustering works with the data in the form of n-dimensional vectors.
The caveats of this representation are discussed in the introduction, followed by a description
of the most common distance metrics used to measure the distance between two data points.
Section 3.2 sums up different approaches to cluster definition and presents three instances of
clustering algorithms: K-means, Agglomerative clustering, and DBSCAN. This chapter ends
with a discussion on the cluster quality evaluation and the proposal of suitable evaluation
metrics.

Clustering is one of the essential tasks in the data mining. It is a form of data analysis which
divides the observed data into groups that share some common characteristics. These groups
are referred to as clusters. The aim of clustering analysis is to construct clusters so that objects
in the same cluster are in a certain way more similar to each other than to objects in other
clusters. Clustering is a typical example of unsupervised learning, where the provided dataset
has no labels. It means no supervisor or teacher tells the model what to learn specifically. The
model learns valuable properties of the presented data with minimal human supervision.

The objects that clustering methods usually work with are in the form of n-dimensional
vectors x ∈ Rn. Each vector dimension represents a certain feature of the expressed object
x = (x1, . . . , xn). In general, the object features can be divided into three categories:

Numeric feature is naturally expressed as a numerical value that describes a measurable quan-
tity. Its domain range can be either continuous (e.g., time, height) with an infinite number
of different values or discrete (e.g., age, size) with values from a finite set.

Ordinal feature values can be split into mutually exclusive and exhaustive (i.e., finite) cat-
egories. They tend to be expressed by non-numeric values, but they still can be logically
ordered or ranked. An example of an ordinal feature would be grades (A, B, C) or clothing
sizes (S, M, L, XL). Since ordinal features can be easily converted into numerical represen-
tation, because of their intrinsic ordering, it is possible to treat them similarly to numeric
features.

Nominal feature values are also split into categories but without intrinsic ordering. That
means they cannot be easily organized in a numerical sequence. The examples of nominal
features are: color, place of birth, university, etc. These features are usually encoded with
the one-hot encoding method, where each possible value is assigned its own dimension. Each
nominal value is thus expanded into a binary feature that is also a nominal feature but with
only two possible states represented by 0 or 1.

19
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When working with real-world data, the vector usually consists of all three types of features.
The usual procedure is to convert all features into numerical types. However, each feature has
a different span of possible values, or the features can be in distinct measurement units. For
example, a person could be represented by a vector with two features: height and weight. Height
can be expressed in meters or inches, and the weight can be either in kilograms or pounds, which
results in a different range of values for any choice. Expressing a vector feature in smaller units
leads to a bigger range, giving the particular feature greater emphasis.

Due to a varying range of vector features, some of them could be undesirably given a higher
significance. To help avoid the dependence on the value ranges, the data should be normalized.
Normalization is a process of transforming the data into a particular range, such as [0.0, 1.0]. That
helps to prevent features with initially large ranges from outweighing attributes with initially
smaller ranges [14].

3.1 Distance metrics
Data is split into clusters based on the (dis)similarities between them. However, it is very
challenging to define the notion of similarity rigorously. Since the data are represented in the
form of n-dimensional feature vectors, they can be interpreted as points in the n-dimensional
space, where the similarity between two objects can be expressed in terms of distance between
them. A distance metric is an important parameter of the clustering algorithm. It defines how
the distance of two elements x,y is calculated, which influences the shape of the created clusters.

The most commonly used distance metric is Euclidean distance, which measures a distance
of two points using classical Euclidean geometry. It is defined as follows:

ED(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (3.1)

The ED is not scale-invariant, which means that distances between the points might be
skewed depending on the units of features. Therefore, the data needs to be normalized before
using this metric. The other disadvantage of ED is that it does not work well with high-
dimensional data. The reason is a curious phenomenon denoted as the curse of dimensionality.
In high dimensions, the points essentially become uniformly distant from each other. This
phenomenon can be observed for a variety of distance metrics, but it is more pronounced for ED
[15]. Nonetheless, the ED is still a reasonable default to choose for experiments.

Another well-known measure is the Manhattan distance (sometimes called city block dis-
tance) which calculates the distance between two points as if they were on a uniform grid. The
diagonal movement is not allowed when calculating Manhattan distance, so only orthogonal turns
are possible. Its definition is:

MD(x,y) =
n∑

i=1
|xi − yi| (3.2)

When compared to ED, the MD is less prone to the curse of dimensionality. Therefore, MD
is more appropriate for high-dimensional data than the ED. Another difference is that MD is
more likely to assign higher values than ED since it does not find the shortest possible path.
MD is also a reasonable choice in case the dataset consists only of discrete and binary features.

The last metric that will be mentioned is called cosine similarity. The cosine similarity
does not express the distance but rather reflects the angle between data points. It is defined as
a cosine of the angle between two vectors. Two vectors pointing in the same direction have a
cosine similarity equal to 1, whereas two diametrically opposed vectors have a similarity of -1. A
cosine value of 0 means that the two vectors are orthogonal to each other. The formal definition
is:
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CS(x,y) = x · y

||x|| ||y||
, (3.3)

where ||x||, respectively ||y||, is the Euclidean norm of a vector. It is defined as
√∑n

i=1 x
2
i ,

which is conceptually the length of the vector. Formula x · y represents a scalar product that
sums the products of corresponding vector components together.

CS is less sensitive to the curse of dimensionality than ED. Another important aspect
of CS is that it does not take into account the magnitude of vectors. It means that the data
normalization beforehand is not necessary. A good example of CS application is the text analysis,
where each document is represented as a vector of word counts. Such vector is very sparse, and
the feature values depend heavily on the length of the text. Therefore, CS is a suitable measure
since it disregards the magnitude of word counts. All three metrics are illustrated in Figure 3.1.

Euclidean Cosine Manhattan

Figure 3.1 The illustration of Euclidean distance, cosine similarity, and Manhattan distance.

3.2 Clustering methods overview
There are a number of different ways how to define a cluster as well as how to evaluate the quality
of found clustering (see Section 3.3). As the Estivill-Castro pronounced [16]: “Clustering is in
the eye of the beholder”. Researchers have come up with a plethora of various cluster models,
and for each of these models, a number of algorithms can be designed. One can apply two
different methods on the same dataset and get very distinct results, whilst both of them could
be interpreted as correct (Figure 3.2).

Figure 3.2 On the left side of the picture, there is a clustering method that prefers to keep the close
points in the same cluster. On the right side, the clustering method focuses on reducing the distance
between any two points in one cluster to a minimum. Both approaches produce reasonable clusters and
it is not clear which method is superior.

The following list contains some requirements that should be considered when selecting a
clustering algorithm [14]:

Discovering arbitrary shaped clusters: Clusters can be of any shape. Some clustering
algorithms discover only clusters that are convex, have similar size, or are flat geometry
objects. To detect specifically shaped clusters like non-flat manifold, one needs to consider
other methods that work with non-flat geometry.
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Performance: The most basic methods work well on small data containing fewer than several
hundred objects but are not reasonably effective with large datasets consisting of millions of
objects. A scalable algorithm is capable of keeping the time and memory complexity within
a reasonable threshold and scales well for huge datasets and a big number of clusters.

Intuitive parameters: Many clustering methods require a number of different input pa-
rameters that significantly influence the quality of produced clusters. For example, a user
needs to specify the number of clusters that should be created or the stopping criterion.
These parameters are often hard to determine and require a certain domain knowledge that
is data-dependent. That can make the quality of clustering difficult to control. If one varies
the clustering algorithm parameters, the clustering should change in a somewhat stable, pre-
dictable fashion.

Ability to remove noise: In real-world use cases, the data contains noise. This noise
can be caused by an error in measurements, missing data, unknown features or the presence
of outliers in data. Clustering algorithms can be sensitive to such noise and may produce
poor-quality clusters. Therefore, it might be beneficial for clustering methods to be able to
filter out such data and not assign them to any clusters. Such clustering methods can then
be used in applications where those outliers are more interesting than the actual data, i.e.,
credit cart fraud systems or detection of malicious activities.

Incremental and stable clustering: Sometimes it is required to process data in sequential
order as they arrive. Some clustering algorithms cannot deal with new incoming data and
update the existing structures. Instead, it is necessary to recalculate the whole clustering
from scratch. Also, clustering methods can be sensitive to the ordering of input data or
random initialization. Usually, it is more convenient to get predictable clusters that do not
depend on the data order or random initialization.

Capability of clustering high-dimensional data: Finding clusters of data objects in
a high-dimensional space is challenging, especially considering that such data can be very
sparse. Every clustering algorithm eventually reaches its dimensional limit due to the curse
of dimensionality. Nevertheless, some clustering methods are less prone to it than others.

Clustering algorithms can be categorized based on their approach toward cluster definition.
These categories may overlap so that an algorithm may have features from several categories.
Jiawei Han et al., in their book Data Mining: Concepts and Techniques [14], provide a relatively
organized overview and possible categorization of clustering methods into the following categories:

Partitioning methods divide the data into k groups where k ∈ N and k is lower or equal
to the number of objects in the dataset. Each group must contain at least one object, and
each object must be assigned to exactly one group (there exists an extension called fuzzy
partitioning that relaxes this criterion allowing one object to belong to multiple clusters).
Most of these algorithms require the number of clusters k to be specified in advance, which
is considered to be one of the biggest drawbacks. Reaching global optimality requires an
exhaustive enumeration of all possible partitions, and it is often very computationally expen-
sive. Because of that, most of the applications work with greedy heuristics that improve the
quality of clustering in iterations and approach (only) local optimum. Partitioning methods
are usually distance-based and discover geometrically flat clusters exclusively. These meth-
ods can be scaled for small up to medium size data sets. Algorithms such as k-means and
k-medoids belong to this category.

Density-based methods define clusters as areas with a high density of data points. The
density-based methods have the ability to identify outliers, i.e., data that do not have any
close neighbors and can be considered noise. The general idea of density-based methods is
to continue growing a given cluster as long as the density (number of objects or data points)
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in its neighborhood exceeds some threshold. For each point within a cluster, the neighbor-
hood of a given radius has to contain at least a certain number of points. Therefore, the
implementations usually require parameters modifying algorithm sensitivity to density and
also a number of minimal samples to consider the dense area to be the cluster. These param-
eters have to be adjusted according to particular data. Density-based methods can discover
clusters of arbitrary shapes (e.g., non-flat manifolds) and are scalable enough to perform on
very large data sets. Typical practical implementations of this method are DBSCAN and
OPTICS clustering.

Hierarchical methods (also called connectivity-based methods) create a hierarchical decompo-
sition of the given set of data objects. There are two possible approaches, i.e., agglomerative
and divisive. Agglomerative clustering starts with each object having its own cluster. Then,
the algorithm gradually merges the closest clusters together, one after another. Divisive clus-
tering works exactly the opposite way, starting with one big cluster of all data and splitting
it into smaller and smaller parts. In both cases, a termination condition is usually defined,
which stops the process at a certain point. The termination condition can be, for example, a
number of expected clusters or a maximum distance of two clusters. Agglomerative clustering
or BIRCH are typical representatives of these methods.

Grid-based methods divide the object space into a finite number of cells in the form of a grid
structure. The process of clustering is performed on the grid in the quantized space. The grid-
based methods are fast and have low computational complexity that is typically independent
of the number of data objects and dependent only on the number of cells in the provided grid.
These methods can be integrated with other clustering methods, such as density-based and
hierarchical methods. An example of practical implementation is WaveCluster algorithm.

Three selected clustering algorithms will be discussed in greater depth in the following sec-
tions. Those algorithms are also applied and evaluated in the practical part of the thesis.

3.2.1 K-means
K-means algorithm is a typical representative of the partitioning method. Instead of “looking
for the clusters”, k-means partitions the whole space into k sub-spaces (Figure 3.3). Parameter
k defines the number of expected clusters and it have to be set by the user beforehand.

One can think of k-means as an optimization problem. Given a set of observations (x1, . . . ,xn)
where n is the size of the dataset and each xi where 1 ≤ i ≤ n is a d-dimensional vector, the
k-means aims to partition the observations into k disjoint clusters C = {C1, . . . , Ck} in a way
that would minimize the criterion known as clusters inertia (or within-cluster sum-of-squares
error). Formally, the objective function expressing inertia is defined as:

arg min
C

k∑
i=1

∑
x∈Ci

||x − µi||2 (3.4)

Each cluster is described by µi – the mean of all the samples in the cluster. The mean is
commonly referred to as the centroid, a cluster centre. The centroid does not have to be one
of the data points, although it lives in the same n-dimensional space as the data. The adapted
version of k-means, where the centroid is “rounded” to the closest data point, is called k-medoids.

Expression ||.|| denotes the Euclidean distance function. Clusters discovered by k-means are
convex and isotropic. K-means is not suitable for high-dimensional data.

Finding a global optimum of the objective function from Equation 3.4 is an NP-hard problem
[17]. Therefore, k-means implementation applies a greedy heuristic and approaches only the
local optimum. For that reason, the algorithm is run multiple times with different random
chosen initial centroids. The steps of k-means are:
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1. Randomly choose k initial centroids from all samples, i.e. data points.

2. For each sample calculate, the Euclidean distance between the sample and all centroids. Then,
assign the sample to the nearest centroid. After this step, all the samples are partitioned to
k clusters.

3. Recalculate the cluster centroids by taking the mean value of all the samples assigned to each
cluster.

4. Find out the Euclidean distance between the old cluster centroids and a new one from step 3.
If the shift of new centroids is below some threshold, stop the process and return the current
labels. Otherwise, go back to step 2.

Figure 3.3 This figure illustrates how k-means algorithm partitions the whole 2D space into k = 10
chunks. The white marks are cluster centroids, and black dots are 2D data vectors. The background
color represents an assignment to a particular cluster. [18]

Given enough time, k-means eventually converges to a local optimum. However, the quality
of the resulting clusters depends on the random initialization of the centroids in step 1. The
extension of the algorithm called k-means++ addresses this issue by initializing the centroids to
mutually distant data points.

3.2.2 Agglomerative clustering
Agglomerative clustering is an implementation of the hierarchical clustering model that creates
a “bottom-up” cluster hierarchy. It starts with each object forming its own cluster. Then, it
iteratively merges the two closest clusters until all the objects are in a single cluster or predefined
termination conditions are satisfied.
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Let N denote the number of objects in the dataset. Then, the agglomerative clustering
takes N − 1 iterations at maximum. After the last iteration, the merged cluster contains all
the objects from the dataset and becomes the hierarchy’s root. The process of agglomerative
clustering could be represented via a tree structure with a huge cluster of all objects as the root
and clusters containing only one data point as its leaves. A graph that captures the evolution of
clustering from its node to the root is denoted as dendrogram (Figure 3.4).

In every iteration, the algorithm has to decide which two clusters are the closest and should
be merged. So far, the notion of distance was defined only between the two vectors as a distance
metric d(x,y) (see Section 3.1), but there are multiple ways how to expand this definition
to compare the distance between two clusters. The linkage criterion determines the distance
between sets of observations, i.e., clusters, as a function of the pairwise distances d(x,y) between
individual points. Some commonly used linkage criteria between clusters A and B are:

Single linkage minimizes the distance between the closest objects in a pair of clusters:

D(A,B) = min
x∈A,y∈B

d(x,y) (3.5)

Complete (Maximum) linkage minimizes the distance between the furthest objects in a
pair of clusters:

D(A,B) = max
x∈A,y∈B

d(x,y) (3.6)

Average linkage minimizes the average of distances between all objects in a pair of clusters:

D(A,B) = 1
|A||B|

∑
x∈A,y∈B

d(x,y) (3.7)

Ward’s linkage minimizes the sum of squared differences within a pair of clusters. Simi-
larly to k-means objective function, µI is a centroid of cluster I, and ||.|| denotes Euclidean
distance. Ward’s linkage does not allow the use of other than the Euclidean distance metric.
The formula is:

D(A,B) =
∑

x∈A∪B

||x − µA∪B ||2 −
∑
x∈A

||x − µA||2 −
∑
x∈B

||x − µB ||2 (3.8)
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Figure 3.4 An example of the agglomerative clustering process with complete linkage criterion. The
left graph shows a 2-dimensional dataset consisting of 5 objects. The right graph depicts the generated
dendrogram. The dendrogram y-axis shows at what distance each cluster merged. If one defined a
termination condition as a linkage distance equal to 3, the result of clustering would be 3 clusters:
{0,2,4}, {1} and {3}.
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Agglomerative clustering has a tendency to create a few clusters with uneven sizes that can
grow very quickly. This is denoted as “rich get richer” behavior [19]. In this regard, a single
linkage is the most pathological strategy, whilst Ward’s linkage clusters the most evenly. On the
other hand, the distance metric used in Ward cannot be varied (Euclidean). Thus, an average
linkage is a good alternative for non-Euclidean metrics. Despite these facts, the single linkage
is often used for larger datasets since it can be computed efficiently and performs well on non-
globular data [19].

3.2.3 DBSCAN
The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm defines
clusters as dense regions in the data space that are separated by low-density areas. Intuitively,
dense regions contain many objects gathered closely together, whilst the object in low-density
regions are scattered with greater distances between them. DBSCAN searches for dense areas
from the perspective of data points. If the object’s close neighborhood contains at least a certain
number of objects, then a cluster can be formed around such object, and it can be iteratively
expanded over its neighborhood.

A C

B

N

Figure 3.5 The illustration of DBSCAN categorization process with minP ts = 4. The circles depict
the ε-neighborhood. The arrow between the points indicates the direct reachability relation. Red points
are categorized as the core objects, yellow as the border objects, and blue as the noise. [20]

Three user-specified parameters define an object neighborhood. The first one is the size of
the neighborhood, denoted as ε > 0. The second is the density threshold minPts specifying the
minimal number of neighbors necessary to consider the area dense. The third one is a distance
metric d(x,y) that determines the shape of the object’s neighborhood, e.g., the neighborhood of
Manhattan distance has a rectangular shape. After these parameters are specified, the DBSCAN
can define the following categories for each object from the dataset [21]:

An object x is a core object if there are at least minPts objects in its ε-neighborhood.

An object y is directly reachable from x if y belongs to the x ε-neighborhood.

An object xn is reachable from x1 if there exists a path x1,x2, . . . ,xn where each xi is
directly reachable from xi−1 where 1 < i ≤ n.

Objects not reachable from any other object are outliers.
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Then, any core object x together with all its reachable objects form a cluster. Each cluster
have to contain at least one core object and at least minPts objects. Objects that are reachable
from some core object but do not have minPts neighbors in ε-neighborhood are called border
objects. Border objects are located on the fringes of a cluster. Figure 3.5 depicts the possible
categories and their location within the cluster.

The following list presents a possible high-level implementation of DBSCAN. The data points
are categorized in this order [20]:

1. For each object, count the number of neighbors in the ε-neighborhood and identify core
objects.

2. Join neighboring core objects into one cluster.

3. Identify the objects that were not categorized as core objects in step 1. Iterate over them
and check whether they are directly reachable from some core object. If yes, add them to the
corresponding cluster. Otherwise, categorize them as noise.
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Figure 3.6 An illustration how different ε values affect the final clustering. The color indicates a
cluster membership. Larger circles denote core objects, smaller circles denote border objects, and the
outliers are indicated by black dots. [19]

The density approach allows DBSCAN to find arbitrary shaped clusters, not only those of
convex and isotropic shape [19]. This behavior can be seen on the bottom graph in Figure 3.6,
where the prolonged red cluster on the left side is accurately identified as one. Nonetheless,
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DBSCAN can have trouble identifying clusters if their density varies widely [21]. Ideally, the
density parameters ε and minPts would be defined for each cluster specifically, but it is prob-
lematic to distil the proper values for every cluster automatically. In practical implementations,
the parameters are set according to a simple effective heuristic that determines the least dense
cluster from the dataset and sets the parameters correspondingly.

The parameter minPts controls the tolerance of the algorithm towards noise. Increasing the
parameter leads to more objects ending outside the clusters, which is ideal for noisy datasets.
The ε, together with the distance function d(x,y), controls the notion of density for a given
dataset and has to be chosen according to the input data. When ε is too small, most data will
not be clustered at all and end up classified as noise. If it is too large, it causes close clusters to
be merged into one cluster, and eventually, the entire dataset is identified as a single cluster (see
Figure 3.6) [20].

The DBSCAN algorithm is deterministic, but the result may change when the input data are
provided in a different order. Firstly, cluster labels can change depending on the order in which
the clusters are discovered. Secondly and more importantly, border objects in the DBSCAN
model can be reachable from more than one cluster. This happens when a border sample has a
distance lower than ε to the two core samples in different clusters. In that case, most DBSCAN
implementations assign border points to the first cluster they are reachable from [20].

3.3 Clustering quality evaluation

The quality evaluation of clustering results is a daunting task. Firstly, there are no apparent
“ground-truth” labels as it is in the case of supervised learning, where the evaluation is an integral
part of the model development. Secondly, due to the variety of equally valid cluster definitions,
it is not possible to define one specific way how to measure the quality of created clusters.

Clustering can be seen as an exploratory data analysis, so the evaluation might even seem
to be an unnecessary step in this process. However, the clustering algorithms are not able to
distinguish between bad and good clusterings. If one took, for example, uniformly distributed
data, most of the clustering methods would still return some results. Therefore, having some
evaluation methods is vital, but the results should always be taken with a grain of salt.

Besides a very valid and valuable manual evaluation by a human expert, which is especially
helpful for identifying bad clusterings, there exist two other approaches: intrinsic and extrinsic.
Both of them are discussed in the following sections, together with examples of particular evalua-
tion metrics. The list of metrics and their description were taken from the scikit-learn clustering
documentation page [19].

3.3.1 Intrinsic methods
Intrinsic approach judges the quality of a clustering structure without respect to external infor-
mation, i.e., in an unsupervised way. It considers two concepts when defining a well-formed set
of clusters. The first one is cohesion, which determines how close are the observations within
a cluster. The second one is separation, which determines how distinct or well-separated the
clusters are from each other. The drawback of this approach is that each intrinsic measure is
also based on a particular notion of cluster. The evaluation is, thus, biased towards algorithms
that use the same cluster model. Good evaluation results mean that model specific structure
exists in the data, which does not necessarily have to result in effective information retrieval.

Evaluation of two different clustering models requires two different intrinsic measures. Also,
any intrinsic measure can be used as an objective function of a clustering algorithm and vice
versa. Comparing two measures produced by two algorithms only shows which algorithm results
in a better approximation of the optimization problem for that particular model. Because of
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that, intrinsic metrics are usually used to estimate reasonable model parameters to get the best
results for a particular model and data.

3.3.1.1 Silhouette Index
The Silhouette Index (SI) is defined for each object and is composed of two values: the mean
distance between an object and all other objects in the same cluster (a) and the mean distance
between an object and all the other points in the next nearest cluster (b). SI is calculated as:

SI = b− a

max(a, b) (3.9)

To calculate the index for the whole cluster, the mean of all SI values for each object in
that particular cluster is taken. The silhouette range is [−1, 1], where the higher score indicates
well-separated clusters. SI can be used with any distance metric. In general, SI tends to be
higher for convex clusters than other types, such as density-based clusters.

3.3.1.2 Davies-Bouldin Index
The Davies-Bouldin Index (DBI) is defined only on the cluster level. It represents the similarity
of two clusters Ci, Cj as a measure Rij that trades off: the average distance between each point in
the cluster and its centroid (si, respectively sj); and the distance between the clusters’ centroids
(dij). Rij can be constructed as:

Rij = si + sj

dij
(3.10)

The Davies-Bouldin index is defined as:

DBI = 1
k

k∑
i=1

max
i ̸=j

Rij (3.11)

DBI lowest possible score is 0. Values closer to zero indicate better partitioning. DBI is
limited only to the Euclidean distance metric and is generally lower for convex cluster types.

3.3.2 Extrinsic methods
Extrinsic approach requires the existence of some external information that was not used during
the clustering process. This external information is usually in the form of externally derived
class labels. Those labels could be, for example, produced by a human expert. Extrinsic meth-
ods measure the degree of correspondence between the cluster and class labels, as is usual for
supervised learning. These methods can, for example, evaluate the extent to which a cluster
contains objects of a single class or measure the extent to which two objects in the same class
are in the same cluster and vice versa.

The extrinsic measures compare the clustering results with the “ground truth” and evaluate
whether the manual classification process can be automatically produced by cluster analysis.
However, from a knowledge discovery point of view, the reproduction of known knowledge may
not necessarily be the intended result of the clustering process, as the clustering might reveal
other data structures that do not correspond with the information provided via labels.

3.3.2.1 Purity Index
The purity Index (PI) measures the extent to which the clusters contain a single class. As a first
step, the metric selects the most prevalent label within each cluster and counts the number of
occurrences in that particular cluster. Then, the occurrences are summed together and divided
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by the total number of objects in the dataset. Formally, given a set of clusters C, a set of labels
M , and a dataset of size N , purity is defined as:

PI = 1
N

∑
c∈C

max
m∈M

|m ∩ c| (3.12)

The range of PI is [0, 1]. PI does not penalize for too many clusters, so the maximum score
of 1 is always possible by putting each object into its own cluster. If the provided data labels
are not balanced, meaning some labels are more common than others, PI might return “skewed”
results towards higher values, even though the clustering is not separating the clusters properly.

3.3.2.2 Rand Index
Random Index (RI) is a function that computes the similarity of two set assignments: ground
truth class assignments L and clustering algorithm assignments C, ignoring permutations. It
can be calculated using the formula:

RI = TP + TN

TP + FP + FN + TN
, (3.13)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. RI range is [0, 1] with lower
values indicating different labeling, i.e. worse clustering with regard to “ground truth”. The
adjusted Rand index [22] corrects for chance and will give such a baseline.



Chapter 4

Behavioral Graphs

This chapter is dedicated to behavioral graphs, which capture the behavior of running programs
and applications in the Windows operating system within a small time window. The chapter
starts with an explanation of how the graphs are created and why they are useful for malware
detection. Then, it continues with the description of the behavioral graph components, what
information they can store, and what kind of malware-related labels could be assigned to them.
The last section describes three neural network models that process behavioral graphs and
produce their low-dimensional representation in the form of 32-dimensional vectors.

4.1 Behavioral shield

The behavioral shield is a technology that was introduced in 2017 as one of the new protection
mechanisms in the Avast antivirus program [23]. Its purpose is to monitor the behavior of all
running processes on the computer, look for unusual activity, and, in case of very suspicious
behavior, stop the threat and notify the user in real-time. Examples of suspicious behavior that
behavioral shield aims to detect are: installation of a password capture program that captures
the keystrokes, a PDF document trying to download something from the web, or a calculator
app trying to delete all the personal documents.

In its default state, the behavioral shield sits in the background and silently monitors selected
parts of the operating system. In case of some unusual activity, the behavioral shield is triggered
and becomes active. The shield captures executed actions and relations between the individual
processes running in the operating system in the form of a graph. This graph can be seen as
a snapshot of the state of the operating system within a certain time window. Depending on
the severity of the captured actions, the shield calculates a score that denotes the probability of
maliciousness of the actions and relations for a given graph. If the score is sufficiently high, the
system neutralizes the threat immediately.

Otherwise, the snapshot of graph is submitted to the Avast cloud and is subjected to further
analysis. This ensures a continual stream of recent data from user endpoints and allows quick
identification and detection of new unknown threats. The submitted snapshots are then processed
on the Avast back-ends. Namely, uninteresting activity is filtered out (a snapshot of the whole
system would be too big and noisy), the graphs are split into smaller parts, i.e., communities,
enriched with other information from internal back-end systems and stored in the graph database.
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4.1.1 Motivation
The first antivirus software (AV) products were basically huge virus definition databases that
were constantly compared against all the files, URLs, IP addresses and other artefacts that users
encountered while using the computer. These databases stored various Indicators of compromise
(IOCs) for all discovered malware in the form of file hashes, blacklists of IPs and URLs, signature
byte sequences identifying malicious code and potentially other forms of static detection.

Although, it is no surprise that the adversaries came up with countermeasures that circum-
vented these protections and started to use more sophisticated methods. The attackers started
to deploy polymorphic malware prone to classical signature-based detection. Instead of statically
embedded domain names into the binaries, they used DGAs (Domain Generating Algorithms)
[24] to get around the blocklists. They challenged the AV scanning capabilities with file-less mal-
ware [25], which uses various techniques to stay for the whole time of execution in the computer
memory, making it harder for AV to scan it. File-less malware also leverages legitimate pro-
grams and pre-installed system tools (“Living off the Land” technique - LOLBins, LOLScripts)
for malicious activities to make the attacks harder to observe.

This forced the AV systems to evolve and respond to the adversaries with better ways of
protection. The AVs started to use a combination of the old signature-based approach and new
methods aimed at detecting the behavior. The combination is necessary since both approaches
have their pluses and minuses. Static detections work very well for precise identification and
naming of the threat and are less prone to false positives when compared to behavioral detections.
On the other hand, static signatures can only detect previously seen tools and indicators. The
hybrid approach allows to leverage the advantages of both methods and makes it harder for
malware creators to bypass the protection.

Some of the adversary techniques mentioned above (polymorphism, DGA) can be addressed
using “classical” behavioral analysis, i.e., running the sample in an emulator, sandbox, or virtual
machine. This type of behavioral analysis is usually used when the AV runs into an artefact that
it has not seen before. The execution of the unknown artefact is postponed until the behavioral
analysis finishes outside of the user environment. The sample could be either run in a specialized
sandboxed environment within the AV engine or sent to the AV back-end systems for evaluation.
In both cases, the behavioral analysis is strictly time-limited since the user has to wait for the
results, and thus, the malicious behavior might be overlooked.

The other issue with this type of behavioral analysis is that the related artefact does not
run in the intended environment, which might cause the execution of malicious actions to be
unsuccessful. The adversary might use some fingerprinting technique that recognizes the virtual
environment, i.e., anti-VM protections. Further, there might be some dependency on the real
user environment, e.g., specific tools have to be installed/running, environment variables need to
be set, or the attacker makes a targeted payload for the specific machine. Running the samples
in other environments is especially problematic in the case of file-less malware, which is highly
interconnected with running OS and split into the chain of actions that have to be executed in
a particular order. Therefore, there is a very low chance that AV would capture the whole chain
of actions and execute it properly somewhere else. Any of those issues might cause AV not to
be able to discover malware in the pre-execution phase.

Considering these facts, most modern AVs introduce an EDR-like functionality (Endpoint
detection and response) that detects the threats on the fly directly on the running system. This
adds an additional layer of protection for threats unnoticed by regular AV protections and brings
multiple benefits. Firstly, it allows killing already running malware that was not discovered in
the pre-execution phase. Secondly, it improves the AV’s ability to stop a more sophisticated
attack by allowing to look at the attack as a chain of malicious actions, not only focusing on the
analysis of individual artefacts, which, if discovered in isolation, might appear to be harmless.
This is especially true for file-less malware that uses standard system tools as an attack chain.
It also gives the AV the ability to detect tactics, techniques, and procedures (TTP) instead of
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blocking only IOCes that are much easier for the attacker to change (see David Bianco Pyramid
of Pain [26]). Thirdly, it allows a better reaction to previously unknown threats and adheres
more to the modern “assume breach” mentality shift.

4.2 Components of behavioral graphs
A behavioral graph is a snapshot of running processes produced by the behavioral shield. When
a suspicious action triggers graph generation, the behavioral shield gathers information about
running processes and their interaction with each other as well as with OS during a particular
time interval in the form of a graph [27]. The notion of time is not captured explicitly in the
graph structure, meaning nodes and relations do not evolve in time as it is in the case of dynamic
graphs. A behavioral graph is just a simple graph that depicts all the actions from a particular
time window, so it is not possible to tell exactly in which order the actions were executed.
Although, there are some implicit cues that suggest the order of actions, e.g. the node_id
feature allows the topological ordering of the nodes by the time of creation or SPAWN relation
defining a parent-child relationship between processes indicates which process was created sooner.

At the very beginning, the behavioral graph contains information about all the processes run-
ning in the system. Given the complexity of modern operating systems, the graph has hundreds
of nodes and relations where only a tiny part of the graph possesses the interesting informa-
tion regarding the malicious activities happening in the OS. This initial snapshot, also called
fullgraph, can be naturally split into smaller connected communities - subgraphs. The isolated
nodes are filtered out, and the connected communities are later even more simplified based on
some heuristic that tries to keep only the relevant part of graphs. These simplified connected
subgraphs are then used as the input to the learning system.

In general, the behavioral graphs are directed heterogeneous graphs with multi-feature nodes.
Each node is characterized by hundreds of features [27], while the edges hold only 1-dimensional
information – label. The behavioral graphs may contain cycles as well as loops. An example of
the simplified subgraph can be seen in Figure 4.1. It depicts only the most relevant information,
i.e., the graph structure, edge labels and node type with its most significant feature (process
name, IP address, URL, command-line, . . . ). Other node features are proprietary information
of the Avast company, and they cannot be presented in this thesis.

The behavioral graph nodes can be divided into different types based on what they represent.
Each type of node has its own node features and allows forming different kinds of relations. The
following list details the most important node types:

Process represents a running process or application. It is the most complex node and contains
many features, e.g., process id, process name, process creation time, or command-line with
arguments used to start the process. Process nodes are the centres of action and connect
together other types of nodes which are mostly just results of their actions. Examples of
the edges that can be connected with process node are: SPAWN - connects parent and child
process, CODE_INJECT - indicates that process injected code into another process, TERMINATE
- the process terminated another process.

Executable represents an executable file from which is the running process instantiated. The
file does not necessarily have to be only Windows Portable Executable (PE) but can also
be any script (.bat, .vbs, .vba, . . . ) or link file (.lnk). The most important attribute is
file hash, which serves as a file unique identifier for back-end systems. Executable node is
usually connected with the process node via INSTANCE_OF relation and sometimes mirrors
the relations of the corresponding process.

Registry Operation Info node expresses the modification of a specific key in the Windows
registry. Relevant attributes are the name of the modified registry key and the new value.
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Registry Operation Info node is connected with PROPERTY edge to the process node that
changed the particular registry key.

Named Object node represents a creation of Windows NT named object. Named objects are
used for sharing object handles between processes in Windows. Examples of named objects
are mutexes, semaphores, pipes, events, created windows, or file mapping objects. Named
Object node’s attributes are name and type. Similarly to Registry Operation Info, Named
Objects are connected via edge PROPERTY with process node.

Connection node represents a network connection with some service on the internet and con-
tains either IP address or URL address as its attribute. An example of edge type is HTTP_GET,
which indicates HTTP type of connection.

623868e8566e1_mon122
7f76e62.exe

623868e8566e1_mon122
7f76e62.exe

cmd.exe \c 623868e85
66e1_mon1227f76e62…

cmd.exe

149.28.253.196

149.28.253.196

INSTANCE_OF

SPAWN

INSTANCE_OF

HTTP_GET

HTTP_GET

Figure 4.1 This is an example of a behavioral graph from the graph database. Purple square nodes
represent executable nodes, the orange circles are process nodes, and the blue rhombuses are connec-
tion nodes. The graph describes the following events: Process 623868e8566e1 mon1227f76e62.exe was
started via Windows command-line (cmd \c [process name]), and it established an HTTP connection
with the malicious IP address.

4.2.1 Comparing behavioral graphs
For the purpose of comparing two behavioral graphs, the Jaccard distance metric is applied
to their node sets. The only node feature, which is considered when comparing nodes, is
the node type. For example, the behavioral graph from Figure 4.1 is transformed to the
set G1 = {Process, Process, Executable, Executable, Connection, Connection}. If
one compared this graph with the a similar graph except for the “cmd branch” with the node
set G2 = {Process, Executable, Connection, Connection}, the resulting Jaccard distance
would be dJ(G1, G2) = 2/6 = 0.3.
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4.3 Learning on behavioral graphs
Every day, the behavioral shield produces around 1 million behavioral subgraphs that are stored
in the graph database. This huge number of graphs creates an opportunity to leverage that
amount of data for a machine learning system. The tasks that this system could solve are
numerous, from binary classification of graphs into clean/malware class to detection of outliers
for discovering new types of behavior, and many others.

When choosing the appropriate machine learning method, there is one significant factor that
influences what kind of methods can be used for learning, which is the existence of reliable labels.
Given the number of graphs, it is not possible for a human analyst to assign the labels manually.
One must bear in mind that it is not a viable option to have one old labeled dataset since the
threat landscape is very quickly evolving, and the system has to be scalable enough to allow
regular retraining with the new dataset.

4.3.1 Labels
The process of obtaining labels for behavioral graphs starts by gathering all the artefacts present
in the graph, i.e., file hashes, named objects, IPs, and URLs. These artefacts are then sent to
a back-end service called Tagger. If this service is able to “tag” the provided artefact with the
label, this label is then expanded on the whole graph. There is also a possibility that Tagger will
not be able to assign any label, and the artefact remains unlabeled.

The Tagger response contains several pieces of information. The first one is confidence,
which signalizes how much Tagger trusts the assigned label. Tagger internally queries various
other systems where each of them has different reliability. If the confidence is below a reasonable
threshold, which could be somewhere between 60-90%, the label is not taken into account.
The Tagger also returns severity label that indicates whether the artefact is considered to be
clean or malware. Besides those two, severity can also be set to PUP (Potentially Unwanted
Application) but for the sake of simplicity, this value is not taken into account and is equal
to no label. Lastly, there are malware type and malware strain/malware family labels
that classify more precisely the artefact with malware severity according to a classical malware
taxonomy. Malware can be assigned one of many malware types based on its functionality and
objectives. Examples of more known malware types are ransomware, spyware, backdoor, RAT,
adware, or bot. Malware strain is a more granular label than malware type, and it denotes a
group of malware samples that have a common code base. Malware strain label usually groups
malware samples spreading in a particular malicious campaign or samples produced by one actor.
However, malware strain labeling is often inconsistent, as the malicious code is shared between
multiple entities, often with parts of code reused or modified. Therefore, it might not be clear
what can still be considered one family and what is already a different one. Moreover, malware
strain naming lacks any standardization across the security industry, leading to the existence of
multiple different names for one malware family and vice versa [28]. Despite that, there exists a
quite comprehensive collection created by Daniel Plohmann and Steffen Enders - Malpedia [29].
Malware type and malware strain labels are left empty for clean artefacts, i.e., clean samples are
not divided into any classes.

The severity labels from artefacts are expanded to behavioral graphs using the following
rules. A graph is considered clean if and only if all the artefacts were labeled as clean. A graph
is considered malware if and only if there is at least one artefact that is labeled as malware.
Otherwise, a graph is labeled as grey, which is equivalent to no label. The empirical observations
show that half of the graphs are usually labeled as clean for one day of data, while only less
than 20% of graphs end up labeled as malware graphs. The reason causing this ratio is that the
behavioral shield does the snapshot of the whole OS when some suspicious action happens, which
is later split into several subgraphs. In an ideal case, only one of the subgraphs captures the
malicious behavior, while the other captures regular OS processes that should end up classified as
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clean. Malware type and malware strain labels are expanded to malware graphs, but only in the
case when there is no conflict between the artefacts labels. When two artefacts in one subgraph
contain two distinct strain or malware type labels, the values are left empty. The number of
graphs, which have the strain label set, is only in order of thousands (6-10K) for one day of
data, contributing to only 0.01% of the dataset. The cause for such a low number of labeled
graphs is that the behavioral shield producing these graphs can be seen as the AV’s last layer of
malware protection. When the AV back-end systems can identify the malware strain, there is a
high chance that there already exists a static detection for that particular strain, which causes
the threat neutralization before its execution.

A practical example of graph labeling can be seen in Figure 4.1. Two files and one IP address
were extracted from the graph and labeled by Tagger:

cmd.exe executable is tagged as clean because it is a well-known system executable.

623868e8566e1_mon1227f76e62.exe executable is tagged as malware. Tagger identified it
as a variant of Redline stealer strain belonging to password stealer malware type [30].

IP address x.x.x.x is not present in the tagger database, and thus, no label is set.

Finally, the whole graph is labeled as: severity - malware, malware type - password stealer,
and strain - Redline stealer. This example points out one of the issues with the behavioral
graphs that have a strain label set. Redline stealer strain has various functionalities [30], but the
presented graph shows only a single connection. This is because the behavioral shield probably
decided that there is enough evidence that the running process is malicious (e.g., the process
created malicious mutex) and should be immediately killed. As a result, the strain graph does
not contain any interesting strain related activity.

4.4 Preceding work

This thesis builds on the preceding work of Adam Varga presented in his master thesis, Identi-
fication and characterization of malicious behavior in behavioral graphs [31], where the author
proposed a GCN system capable of processing the behavioral graphs on the input and producing
classification into selected malware strains. The author chose a supervised approach where the
GCN was built to perform binary classification that distinguished whether the behavioral graph
belongs to a particular strain or not. His work was further internally expanded into a classifier
that was trained to distinguish between graphs with malware vs. clean severity (see Figure 4.2).

The up-to-date supervised model learns to recognize malware graphs from clean graphs based
only on the severity label. The malware type and malware strain labels are not taken into account
during the training process. Internally, the GCN produces a supervised embedding of the
graph as an intermediate step. If the training is successful, meaning the metrics such as accuracy
are high enough, one could assume that the GCN managed to filter out graph features relevant
for distinguishing malicious and clean behavior. Since the malware type and strain labels were
not considered during the training phase, they can be used as a sanity check to verify that the
embedded graph space behaves “reasonably”. The assumption is that the GCN whole-graph
embedding should allow the distinction of different malware strains or types. That could be
experimentally verified by clustering the graph embedded representations and analyzing the
resulting clusters from the perspective of malware strain or type separation.
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Figure 4.2 The current state of the supervised binary classifier. Behavioral graphs, represented via
X, A matrices, are processed by a convolutional layer and pooled to 32-dimensional representation, i.e.,
whole-graph embedding. The GCN is trained on the labeled part of the dataset to perform a binary
classification into malware/clean classes.

In addition to the supervised model, two more approaches were taken when training a GCN
to learn a graph embedding. The second approach was also supervised and based only on the
severity label. In this case, the graph embedding was learned in a way that isomorphic (similar)
graphs were projected into nearby regions while distinct graphs were projected further away from
each other. This approach is still trying to separate the malware and clean graphs. To distinguish
two supervised approaches, this embedding will be denoted as matching embedding.

The third type of embedding was trained purely in an unsupervised manner using a generative
VAE model (see Section 2.5.2). Therefore, it will be referred to as unsupervised embedding.
During the training process, the encoder part is trained to generate such low-dimensional rep-
resentations of graph zG that the decoder is able to reconstruct the input graph back. This
bottleneck representation zG can be used as a whole-graph embedding. The advantage of this
approach is that the unlabeled graphs can be used as inputs during the training process. Fig-
ure 4.3 shows the diagram of the VAE model.
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The specific parameters of the neural networks as well as description of their training process
are confidential information of Avast company. All produced whole-graph embeddings have
32 dimensions. The number of dimensions was chosen based on intuition as a compromise
between the size and expressibility, but no rigorous experiments were performed that would
prove correctness of this choice.
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Figure 4.3 Diagram of the generative VAE model. The bottleneck representation can be used as a
whole-graph embedding.



Chapter 5

Dataset analysis

The provided dataset consists of behavioral graphs captured by Avast behavioral shield during
48 hours. The first section contains an overview of the whole dataset and explains which part
of the dataset is selected for further analysis. Afterwards, the top 5 malware strains, whose
graphs were the most prevalent ones in the dataset, are described. The chapter ends with a
discussion of behavioral graph labeling issues.

5.1 Data cleanup
The dataset contains 1 280 000 behavioral graphs that were captured during two days (from 1st
to 3rd April 2022) by Avast behavioral shield. The graphs were collected from approx. 270 000
unique machines. There are 18% of malware graphs, 36% of grey (unlabeled) graphs, and 56%
are clean graphs. Total number of graphs with malware type set is 9 540. Out of those, 8 836
graphs have also malware strain label set.

fareit
redline
smokeloader
glupteba
stop

Figure 5.1 Pie chart showing the prevalence ratio of malware strain in the provided dataset. The
legend mentions only the five most prevalent strains.

There are 171 unique strains present in the dataset overall. Most of them have a very low
prevalence, i.e., below ten graphs. Figure 5.1 shows the prevalence ratio of all strains. It is
obvious that the labels are unevenly distributed. This is not unexpected, given that the dataset
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consists of live data from users’ endpoints from all around the world. The high prevalence of
a particular malware strain might be caused by an ongoing live campaign, where the strain
samples are distributed, leading to a higher number of infected users and thus a higher number
of behavioral graphs. The other reason for unbalance might be the bias of what the behavioral
shield sees. Some strains might be better covered with static detections, so they are not that
often executed. For the purpose of clustering analysis, the low prevalent strains will not be taken
into account, and only the top five prevalent strains will be selected. The label disbalance will
be solved by sampling the remaining strains onto the prevalence of the last one in this selection.
The final number of graphs is around 270 graphs per strain, which gives 1 350 graphs in total.

The significant reduction of the dataset down to 1 350 specifically selected graphs is made for
the following reasons. Firstly, the selected graphs seem to be suitable for starting exploratory
data analysis from the domain knowledge perspective. This type of analysis also requires manual
evaluation, which is doable with that number of graphs. Secondly, it is very challenging to pick
the correct parameters for the clustering algorithms due to the nature of the data, i.e., data are
noisy and have unbalanced labels. The data cleanup can help deduce the proper parameters.
For example, in the case of k-means, the number of clusters can be estimated as a value around
n ·k, where n is the number of selected strains and k ∈ N is a small constant. The final sampling
of selected strains was performed to allow using extrinsic metrics for clustering evaluation. In
the case of unbalanced labels, the Purity and Rand Index metrics might be skewed due to high
prevalent labels.

On the other hand, given that all three graph embeddings are 32-dimensional, this low num-
ber of samples might worsen the high-dimensionality issues that clustering algorithms have.
Although, some preliminary clustering attempts with more samples did not show much differ-
ence between the structure of created clusters. Furthermore, the conclusions that are drawn on
this specific labeled part of the dataset might be somehow biased by the selection of graphs.
Therefore, the conclusions that will be presented should be verified later in the other parts of
the dataset.

5.2 Description of prevalent malware strains

The following subsections contain a short description of the top 5 prevalent malware strains.
Examples of behavioral graphs for each strain can be found in the strain analysis.ipynb
jupyter notebook together with a more specific description of malicious behavior. Given the size
of behavioral graphs, they cannot be presented here because they would not be readable.

5.2.1 Fareit
Fareit, also known as Pony Stealer, is categorized as a password stealer malware type. Fareit
spreads through drive-by downloads, phishing emails, fake updates or free software downloads.
After infecting the computer, Fareit collects information about the system and attempts to steal
credentials from more than 100 programs, including browsers, mail clients and various crypto-
wallets. The information is exfiltrated onto the command and control server controlled by the
adversary. Besides stealing capabilities, Fareit can also serve as the botnet controller that spreads
additional malware [32].

Fareit samples usually drop their copies with names similar to Windows essential processes,
e.g., explorer.exe, svchost.exe, into Windows resource directory. Afterwards, the malware
schedules system tasks that start these binaries regularly. It also adds these binaries into the win-
dows registry key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce that ensures
the samples are run after every system boot.



Description of prevalent malware strains 41

5.2.2 Redline
RedLine Stealer is categorized as a password stealer that is capable of harvesting system inventory
information, stealing saved credentials, autocomplete data and credit card information from
browsers and stealing credentials for crypto-wallets. Besides that, this malware has the ability to
upload and download files, execute commands, and periodically send back information about the
infected computer. Redline Stealer is mainly distributed through phishing emails or malicious
software disguised as installation files such as Telegram, Discord, and cracked software. Data
exfiltration is performed via a TCP connection [33].

5.2.3 Smokeloader
The SmokeLoader strain can be categorized as a dropper malware type. Dropper malware is used
to install other malware components once it compromises the system. Smokeloader frequently
tries to hide its communication by generating requests to legitimate sites, and the actual download
returns a 404 error but still contains data in the response body. The downloads are dropped into
the %AppData% folder. The dropped binaries are mapped into a suspended instance of legitimate
Windows process explorer.exe. Smokeloader instances create dynamic mutexes, which usually
consist of some combination of computer name and Windows drive serial number, to ensure there
is only one instance of the dropper running on the machine [34].

5.2.4 Glupteba
Glupteba malware, first seen in the year 2014, is a multi-functional malware written in Go
language that is categorized as a dropper malware type but posses also other functionalities,
like rootkit capabilities. Glupteba is able to spread using EternalBlue exploits. Once it has
breached a system, the malware looks for SMB vulnerabilities and tries to exploit them to move
laterally within the LAN. There are various versions of Glupteba, and each of them can behave
in a slightly different way, so the following description is about particular samples present in the
submitted behavioral graphs.

Glupteba copies itself to C:\Windows\rss\, as csrss.exe and windefender.exe binaries,
and it creates persistence by changing the Windows registry autorun values. Glupteba modi-
fies the registry key HKLM\SOFTWARE\Microsoft\Windows Defender\Exclusions\Paths to add
exclusions to the paths of the dropped binaries and evade detection on Windows Defender.
The registry HKCU\Software\Classes\mscfile\shell\open\command with default key value is
created by the malware in order to abuse CompMgmtLauncher.exe and bypass Windows User
Account Control. Consequently, an unchallenged execution or download of the further payload
is enabled [35].

5.2.5 Stop
Stop malware, also known as DJVU, is a ransomware malware type. This ransomware uses a
public key downloaded from the command and control server to encrypt data on the victim’s
machine using the Salsa20 encryption algorithm. Upon the execution, the malware copies itself
into the %AppData%\Local\[SYSTEM_GUID] directory and tries to execute itself with the escalated
privileges. The dropped binary is run with --Admin IsNotAutoStart IsNotTask parameters,
but it can also be executed in other modes like --Task and --Service.

Regarding the communication, Stop ransomware attempts to make a few network connections
for purposes such as geo-checking, key retrieval, and machine infection with additional malware.
Very often, Vidar Stealer malware strain, which is malware with password and credentials stealing
capabilities, is downloaded after the initial infection. After completing the encryption process,
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the executed binary calls the adversary server with the unique ID based on the victims’ MAC
address. Stop ransomware also generates a scheduled task called the Time Trigger Task that
regularly encrypts newly added files. As a final step, the ransomware drops a ransom note
_readme.txt with instructions on how to pay the ransom into every encrypted directory [36].

5.3 Issues with strain labeling

Before the application of any clustering algorithms on the embedded graph representations,
manual analysis of a few behavioral graphs was performed for each strain. The behavioral
graphs selected for analysis were not picked randomly, but they were sorted per strain by the
mean value of Jaccard distance between the particular graph and all the other graphs belonging
to the same strain. Then, the most distant indexes from this sorted array were selected. The
reasoning behind this selection was to pick the graphs with the lowest resemblance to each other
and show how diverse are the graphs that belong to one strain. The diversity of strain graph
structures can be seen in Figure 5.3

One of the first observations that can be made is that the graphs with the same label can
have a totally different structure. That is not a big issue since malware strains can have various
functionalities, and thus, the graph can capture distinct behaviors. This endorses the intuition
that the number of clusters will not be equal to the number of selected strains, but it will probably
be multiplied by some small number.

Another quick observation can be that the behavioral graphs belonging to a specific strain
have some notable common features. For example, Glupteba behavioral graphs seem to be very
big and fuzzy, or the SmokeLoader graphs contain one noticeable circle in the graph. Unfortu-
nately, these differences cannot be directly attributed to a specific strain behavior and are more
a by-product of present system noise. So even if those differences allow separating the strains
into different clusters and give statistically pleasant results, this would not be interpreted as a
correct solution from a domain knowledge standpoint.

After closer examination, it is evident that the graphs do not capture significant strain behav-
ior that would allow distinguishing the individual strains. The reasons for that are AV protection
mechanisms that tend to neutralize known threads. Figure 4.1 shows one such example, where
spawned malicious binary has only one connection node and nothing else. Figure 5.2 shows two
histograms with the number of nodes distribution. The left histogram shows the distribution for
all malware graphs, while the right histogram shows node counts only for malware graphs with
the strain label. Most of the labeled graphs have only around seven nodes.
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Figure 5.2 Histograms that depict the distribution of number of nodes for unlabeled vs. labeled
malware graphs.
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SMOKELOADER -  V:42, E:41 SMOKELOADER -  V:41, E:40

SMOKELOADER -  V:36, E:35 SMOKELOADER -  V:8, E:7

FAREIT -  V:11, E:10 FAREIT -  V:8, E:7

FAREIT -  V:5, E:6 FAREIT -  V:21, E:22

GLUPTEBA -  V:302, E:318 GLUPTEBA -  V:167, E:179

GLUPTEBA -  V:464, E:661 GLUPTEBA -  V:10, E:9

REDLINE -  V:12, E:11 REDLINE -  V:23, E:23

REDLINE -  V:32, E:31 REDLINE -  V:52, E:55

STOP -  V:8, E:7 STOP -  V:7, E:6

STOP -  V:11, E:13 STOP -  V:41, E:40

Figure 5.3 The overview of behavioral graph skeletons per strain. The graphs were selected in a way
that the most distinct graphs from each strain should be displayed.
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Besides that, the behavioral graphs capture events within a short time window after some
suspicious action triggers the behavioral shield. However, malware is often executed in multiple
stages, and there can be significant time breaks (e.g., deliberate sleeps, network communication)
between them. The behavioral graphs usually contain only actions that happened around the
time of the behavioral shield trigger, so the whole chain of actions is never present in the graphs.
This partial information might be sufficient for the identification of malicious activity, but the
identification of strain usually requires seeing “the whole picture”. Also, modern malware is
usually very modular, and one attack chain is composed of multiple different strains, where each
strain is responsible for a specific activity, e.g., Stop ransomware encrypts the disk but also
downloads Vidar Stealer that steals the user credentials. This might cause additional confusion
with labeling since the actions of multiple strains present in the graph can overlap.

Furthermore, the behavioral graphs contain noise from the operating system, which some-
times contributes a significant amount of nodes to the graph. In Figure 5.3, three out of four
SmokeLoader graphs have this notable circle, whose centre is actually Windows system process
svchost.exe, and the adjacent nodes are the system mutexes or named objects that were mod-
ified as a consequence of regular system activities. The relevant malicious part of those graphs
is the svchost.exe spawning malicious binary (i.e., the furthest adjacent node), while the rest
of the graph is just system noise.

Another quite specific but prevalent issue in the dataset is mislabeling caused by other security
products present on the running system, which is the case of Glupteba graphs seen in Figure 5.3.
The analysis showed that those huge Glupteba graphs are capturing the behavior of another
security software that creates the same mutexes as the Glupteba malware. This protection
technique is known as malware vaccination. The Glupteba uses the specific mutex name to
check whether its instance is already running on the system and if yes, the malware is not started.
Therefore, security solutions create the same mutex to prevent the malware from running, which
causes the behavioral shield submits.

Based on the conducted analysis, the author believes that the behavioral malware graphs in
their current form do not possess the information needed for distinguishing individual malware
strains. On the other hand, what is usually present in the behavioral graphs and can be inter-
esting from an analytical perspective, is the information about the infection vector, i.e. how was
the malicious binary executed. For example, if the malicious process was spawned as a conse-
quence of a scheduled task, the usual spawner of that process is the svchost.exe, which can be
identified in the multiple skeleton graphs in Figure 5.3 as a centre of the notable circle of nodes.
Such patterns can be seen across different strains, e.g., SMOKELOADER - V:41, E:40 or STOP -
V:41, E:40.



Chapter 6

Evaluation of clustering methods

This chapter outlines the process of selecting adequate clustering algorithm and whole-graph
embedding for the purpose of generating malware signatures. At the beginning, the preliminary
analysis of provided embeddings is done to ensure that the data are suitable for clustering.
Then, three clustering methods will be consecutively applied. Each clustering algorithm re-
quires different parameters that need to be properly selected. The clustering results of each
method are evaluated via presented matrices and the best method is selected. Last section
presents the process of selecting a graph from cluster that can be used as a base for malware
signature.

The experiments presented in this chapter aim to apply the selected clustering algorithms, k-
means, DBSCAN and agglomerative clustering, on three existing 32-dimensional whole-graph
embeddings, i.e., supervised, unsupervised and matching, and evaluate the quality of constructed
clusters. For the experimentation, dataset consisting of 1 350 behavioral graphs from 5 different
strains is used. For the evaluation, the following metrics were selected:

Intrinsic metrics - Silhouette Index (SI) and Davies-Bouldin Index (DBI).

Extrinsic metrics - Purity Index (PI) and Rand Index (RI). The malware strain labels are
assumed to be the “ground truth“.

Biggest cluster size ratio (BCR), average cluster size (AC), median cluster size
(MC). These metrics were added due to the observation that the application of clustering
methods leads to clusters of uneven sizes.

Jaccard Distance dJ . This metric is calculated per graph as a mean of Jaccard distances of
each graph compared to the rest of graphs in the same cluster. Then, cluster dJ is computed
as a mean of all graph dJ in that particular cluster. Similarly, the mean value of all cluster
dJ is taken to get the dJ value for the whole clustering.

When applying a clustering algorithm, the first step is to check the input data features and
verify whether they need to be normalized. In this case, all three embeddings were created
by a neural network, so the assumption is that the data features will be more or less in the
same range. To check the range and the variance of features, feature values histograms are
plotted in the embeddings_analysis.ipynb, together with the statistics like maximum, mean
and standard deviation.

The range of the features does not significantly differ, so there is no need to apply any
normalization. However, the statistics show that some of the features have a low span of values
and contain mostly 0. The unsupervised embedding has half of the features low-variant, meaning

45



46 Evaluation of clustering methods

that more than 60% of values are 0, while the matching and supervised embedding have two low-
variant features. There are few theories why unsupervised embedding has so many “degenerated
features”. The first theory is that the unsupervised neural network is overfitting on particular
input characteristics of the data, such as the size of the graph. Another theory is that the
degenerated features might represent some binary output features, so their variance is not that
big since they only represent 0 or 1, which might also be caused by overfitting. It would be
interesting to perform experiments with fewer dimensions in the unsupervised embedding to see
if this problem vanishes or not.

For the sake of simplicity, the distance metric will be set to the Euclidean metric as a default.
During the first iterations of experiments, there were some attempts to modify the metric. Both
cosine and Manhattan distances were probed, but the results did not differ significantly, i.e., up
to a few points clustered differently, the structure of clusters remained the same.

Each clustering algorithm has different input parameters that need to be selected based on
the particular input data. In the following sections, the process of picking the suitable parameters
for each clustering algorithm is presented.

6.1 K-means

K-means algorithm requires one parameter, which is the number of expected clusters K. The
optimal value of K is usually determined by elbow method. The procedure for finding the value
K is repeated separately for each embedding. All three embeddings are analysed in the jupyter
notebook kmeans all embeddings.ipynb. Since the process is very similar, this section contains
the detailed description of the process only for one selected embedding – matching embedding.

Given the fact that there are 5 malware strains, the expected number of clusters will start
at this number. The first search for elbow can be more coarse, so the upper range is set to 100,
and the step is set to 5. Plots of the monitored metrics can be seen in Figure 6.1.
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Figure 6.1 The plots of selected metrics for k-means clustering with matching embedding. The x-axis
shows the K parameter values, while y-axis depicts the particular metric value.

Besides the aforementioned intrinsic and extrinsic metrics, the plots also depict k-means iner-
tia value, the objective function optimized during the clustering process. There is no significant
elbow in the plots of intrinsic metrics, inertia, or Jaccard distance. Although, the extrinsic met-
rics show the elbow somewhere below 20. So, in the next iteration, similar graphs are drawn
but with a finer range starting at 10 and ending at 25 with step 1. The new graphs show that
the most notable elbow is around 15. Therefore, K = 15 is set as the best parameter for the
matching embedding. The same value is set for supervised embedding. With the unsupervised
embedding, the optimal number of clusters is identified as K = 20.
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6.2 DBSCAN

DBSCAN algorithm requires two input parameters that are set according to the density of
the “least dense” cluster. Those parameters are minPts and ε-distance. The usual process of
choosing the parameters [20] is to set minPts first. Sander et al. [37] suggest that minPts should
be set to 2 ∗ dim, where dim is the dimensionality of data, which is, in this case, minPts = 64.
However, due to a small number of data points, the author chooses the maximum minPts = 60
but lower values are tested as well, i.e., minPts = 10 and minPts = 3.
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Figure 6.2 Sorted k-distance plots of all embeddings with various minPts values. The x-axis denotes
sorted data points, while y-axis shows ε distance to the k-th neighbor. If the parameter minP ts is set
to k and ε is set to some arbitrary value on y-axis, all the data points that are below the ε value on the
graph will be categorized by DBSCAN as the core objects.

To select the appropriate ε-distance range for specific minPts, Ester et al. [21] suggest
defining a function k-dist that returns the distance to the k-th nearest neighbor for a given data
point. This function can be then plotted as a sorted k-distance graph, where the data points are
sorted in the ascending order according to their distance from k-th neighbor. Figure 6.2 shows
a sorted k-distance plot for each embedding and three options of minPts parameter.

The plot of unsupervised embedding shows that most of the data points have their k-th
neighbor in a very small distance close to zero for any choice of minPts parameter, which
indicates that the unsupervised space lack any density structure. The matching and supervised
embedding plots show the appropriate ranges of ε-distance. The author chooses minPts = 10 for
the following experiments. The minPts value also determines the minimal number of samples in
the formed clusters, and the experiments showed that the minPts = 60 creates maximally up to
3 clusters, while minPts = 3 leads to forming clusters with only three samples, which produces
a lot of noise.
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Figure 6.3 Statistics of DBSCAN clustering results for all three embeddings with minP ts = 10.
The x-axis indicates the value of ε-distance parameter, and y-axis displays the ratio of the dataset. The
graphs depict how does the ratio of the noise compared to clustered graphs and the biggest cluster evolve
with rising ε.
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Plots in Figure 6.2 only show how many data points end up classified as the core objects.
However, they do not give any information about the clustering structure, meaning how and
whether the core objects are separated into distinct clusters or not. Figure 6.3 presents plots
that show the resulting clustering structure with respect to changing ε-distance parameter. The
plots indicate that most points end up as noise, or they are clustered into one big cluster.
These results suggest that the DBSCAN clustering is not a suitable option for clustering any of
the embeddings. Jupyter notebook dbscan all embeddings.ipynb contains all the performed
regarding the DBSCAN clustering.

6.3 Agglomerative clustering
Agglomerative clustering allows defining either the number of clusters or the linkage distance
threshold as input parameters. The first experimental attempts used the linkage distance as a
terminating criterion, but for the purpose of comparison with k-means, the terminating criterion
is set to the number of created clusters. The process is very similar to the k-means algorithm,
where the appropriate number of clusters is selected based on the elbow technique. This section
presents this approach only on the matching embedding. All agglomerative clustering experiments
are shown in the jupyter notebook agglomerative all embeddings.ipynb.

A complete linkage is selected as a linkage distance criterion. No experiments were performed
with regard to different linkage criterion. The author chose this criterion based on the intuition
that it better separates denser data, which seems to be the case regarding the used behavioral
graph embeddings. However, additional experiments would need to be performed to verify the
correctness of the hypothesis.
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Figure 6.4 The plots of selected metrics for agglomerative clustering with matching embedding. The
x-axis shows the number of clusters, while y-axis depicts the particular metric value. Instead of inertia,
the biggest cluster ratio is depicted.

Similarly to k-means results, the elbow is only present on the extrinsic metrics graph (see
Figure 6.4). The breaking points seem to be around 20, so for the next iteration, the range is
set from 10 to 30 clusters with step 1. The zoomed graphs show that the number of graphs set
to 20 is a reasonable termination criterion.

6.4 Comparison of algorithms and embeddings
The previous sections show the procedure of choosing the parameters for each clustering algo-
rithm. These experiments were performed for all three clustering algorithms and embeddings to
pick the best performing variant.
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For the final comparison, the DBSCAN algorithm is not taken into account due to the low
quality of the produced clusters. Therefore, only agglomerative clustering and k-means are
compared together. Both of the algorithms accept the number of clusters as an input parameter,
and in all six cases, the reasonable values seem to be around 15 and 20 clusters. Table 6.1 and
Table 6.2 show the values of clustering metrics for K = 15 and K = 20.

agglomerative clustering k-means
K = 15 matching supervised unsupervised matching supervised unsupervised
SI 0.131293 0.182285 0.411038 0.161151 0.210476 0.556896
DBI 2.021368 1.529351 0.704561 1.949308 1.535314 0.723828
PI 0.680620 0.594976 0.412858 0.707752 0.614600 0.412084
RI 0.788309 0.733267 0.599300 0.806067 0.760897 0.577060
dJ 0.491947 0.492154 0.429396 0.524297 0.561550 0.441869
BCR 0.161240 0.185243 0.591789 0.136434 0.182104 0.620449
AC 86.000000 84.933333 86.066667 86.000000 84.933333 86.066667
MC 75.0 42.0 19.0 73.0 57.0 11.0

Table 6.1 Clustering results for the number of clusters K = 15.

agglomerative clustering k-means
K = 20 matching supervised unsupervised matching supervised unsupervised
SI 0.155865 0.186401 0.417140 0.154271 0.213520 0.257042
DBI 1.875045 1.568177 0.761903 1.929138 1.459807 0.884757
PI 0.706202 0.610675 0.418280 0.665891 0.621664 0.538342
RI 0.807301 0.749972 0.602048 0.792267 0.761344 0.715108
dJ 0.490013 0.483407 0.414982 0.526629 0.498898 0.458994
BCR 0.161240 0.185243 0.591789 0.100000 0.170330 0.333850
AC 64.500000 63.700000 64.550000 64.500000 63.700000 64.550000
MC 46.0 41.5 13.5 60.5 42.5 18.0

Table 6.2 Clustering results for the number of clusters K = 20.

The matching embedding achieves the lowest score in intrinsic metrics compared to the other
two embeddings, indicating a worse cluster structure. On the other hand, the extrinsic metrics
score was the highest, so the matching embedding is more successful at separating different
strains. BCR, AC and MC metrics show that this embedding creates more evenly sized clusters.
The unsupervised embedding has more than two times higher intrinsic scores. The noticeable
difference is caused by the fact that most of the points end up in one cluster since BCR value is
above 50 %. As a consequence, the extrinsic metrics are lower. Also, the differences in cluster
sizes are significant, which is indicated by the small median cluster size. On the other hand,
unsupervised embedding has the lowest Jaccard distance, which indicates higher similarity of
graphs in one cluster. The supervised embedding results are very similar to the results of matching
embedding. Although, the cluster sizes are more uneven.

The measured results show that there is not much difference in the quality of created clusters
between the agglomerative clustering and k-means. The selection of the embedding has a much
more significant impact. Although agglomerative clustering provides more helpful information
about the clustering process, i.e., the process can be plotted in a dendrogram and allows the
linkage distance to be used as a termination criterion.

To summarize the results, the clustering experiments and their evaluation lead to a conclusion
that the majority of the graphs cannot be properly separated into distinct clusters. Several
arguments support this statement. Firstly, DBSCAN algorithm tends to cluster all data into
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one giant component. This tendency to keep one big cluster is also seen with other clustering
algorithms, and it is most noticeable with unsupervised embedding. Secondly, the low score of
intrinsic metrics in the case of agglomerative clustering and k-means indicates a bad separation
of the data from the perspective of those metrics. Thirdly, the size of created clusters is very
uneven, and most of the formed clusters are small.

On the other hand, the manual analysis of the formed clusters confirmed that they consist of
similarly looking graphs. It is proof that graphs with similar input features are put closer together
in the embedded space, so the embeddings have some notion of similarity. The insufficient
separation of graphs could be caused by the low quality of the dataset or the neural networks
overfitting during the training process to particular input features.

6.5 Selecting graph for signature
For the generation of malware signatures, the embedding and clustering algorithm with the
highest extrinsic metrics is selected. Matching embedding scored the highest in two cases: ag-
glomerative clustering with K = 20 and k-means with K = 15. The experiment with a higher
number of clusters is chosen, i.e., matching embedding with agglomerative clustering and K = 20.
Figure 6.5 shows all the data points, which is 1 350 behavioral graphs, in a 2D colored graph
where colors are assigned according to the labels of selected clustering. The 32-dimensional data
points are reduced into 2-dimensional space using UMAP reduction method [38].
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Figure 6.5 Clusters of the matching embedding with agglomerative clustering for K = 20. Colors
are assigned according to the clustering labels.
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Additional statistics are calculated for each cluster to get some notion about what the cluster
represents. Those statistics are listed below:

ID - cluster label that was assigned as a result of the clustering process,

N - number of graphs in a cluster,

SI - Silhouette Index per cluster,

MS - majority strain label,

MSR - majority strain label ratio or how many graphs in a cluster have majority label,

ANC - average node count,

dJ - Jaccard distance between the graphs in a cluster.

Table 6.3 shows the cluster statistics for the selected clustering method, but only clusters
with dJ < 0.5 are depicted and are further considered for signature generation. That leads to
10 clusters in total. Also, the clusters in the table are sorted according to dJ column. The dJ

threshold was selected based on manual analysis since graphs in clusters with dJ ≥ 0.5 were
too diverse and contained a lot of noise. Interestingly, the dJ values do not correlate with SI,
suggesting that silhouette index is not a reliable indicator of graph similarity within the cluster.
Another interesting observation is the significant differences between cluster sizes. The biggest
cluster has 208 samples, while the smallest have only 15.

ID N SI MS MSR ANC dJ

10 22 0.439616 stop 1.000000 9.181818 0.151160
17 48 0.523142 stop 0.687500 7.937500 0.268396
12 39 0.136799 smokeloader 0.769231 42.538462 0.315350
13 60 0.316575 stop 0.733333 9.283333 0.322935
11 35 0.087149 glupteba 0.942857 21.514286 0.345859
16 15 0.342623 stop 0.733333 8.800000 0.389757
0 208 0.224803 smokeloader 0.649038 48.225962 0.396466
6 26 0.092985 fareit 1.000000 17.153846 0.407847
3 18 0.074842 redline 0.722222 26.333333 0.432771
18 16 0.431126 fareit 1.000000 24.500000 0.486314

Table 6.3 Cluster statistics for clusters with dJ < 0.5 sorted by the dJ . Bold rows mark the clusters,
whose signature graphs are presented at the end of this section.

The most representative graph is selected for each cluster by choosing the behavioral graph
with the lowest Jaccard distance. This graph is the most similar to all graphs in a cluster and
is denoted as signature graph. The restriction of dJ < 0.5 ensures that the signature graph
should be a good representative of all behavioral graphs assigned to same cluster. Signature
graph can be seen as a basic building block of the malware signature for a given cluster.

Signature graph cannot be used as a malware signature straight away because the behavioral
graph still contains many features that are irrelevant to the malicious behavior. Therefore, there
has to be additional post-processing that will filter out only relevant features from the graph.
The implementation of this filtering mechanism is considered to be out of the scope of this
thesis, given the complexity of the task. Though, the idea of what this process would look like
is presented here. At first, one could try to delete an arbitrary node from the signature graph
and then embed and cluster the reduced graph again. If such graph does not end up in the same
cluster, the node is considered relevant and will be part of the malware signature. Otherwise,
the node is left out. This process is repeated for each signature graph node. Afterwards, an
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analogous reduction is applied for the graph edges and also for the features of every node. This
way, only the features that cause the graph attribution to a particular cluster are left. The result
of this post-processing then can be used as a behavioral malware signature.

The manual analysis of the cluster signature graphs was performed to verify whether they
contain some relevant information for a particular strain or malicious behavior. Analysis of
clusters from Table 6.3 can be found in the jupyter notebook signature_analysis.ipynb. In
the text of the thesis, only the three selected signature graphs are shown in detail.

Figure 6.6 depicts a signature graph of a cluster with ID = 10, where all behavioral graphs
are labeled as Stop malware strain. The signature graph contains a process with four-letter
random name that is instantiated from the executable located in %AppData%\Local\Temp folder.
The process is registered as a Windows service. The mentioned characteristics signify malicious
behavior but are not enough to identify the strain. It is possible that signature consisting of
these characteristics could cause false positives, so it should be tested before release. All the
other graphs in the cluster have the same interesting characteristics as the signature graph.

Besides the relevant characteristics, the signature graph also contains noise. The named
object nodes, e.g. mutex windows_shell_global_counters, are a by-product of system actions
and are not relevant to malicious behavior. They are also not present in all the graphs in the
cluster with ID = 10.
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Figure 6.6 Signature graph of a cluster with ID = 10.

Figure 6.7 shows a signature graph of a cluster with ID = 13. The signature graph has one
process that is launched as a scheduled task called Time Trigger Task and was executed with
the command-line argument --Task. Both characteristics are indicators of Stop Ransomware
behavior (see Section 5.2.5) and could be used for reliable detection. Besides Stop strain labels,
the cluster also contains a significant amount of SmokeLoader strain labels. That is due to
the fact that SmokeLoader dropper sometimes drops the Stop ransomware in the next stage.
Further, both Figure 6.7 and Figure 6.6 show the signature graphs for Stop malware strain, but
Figure 6.7 has much more context than Figure 6.6. That is a good example of why are the strains
represented by multiple graphs. It also shows that the behavioral graphs always capture very
partial information regarding the strain behavior.
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Figure 6.8 shows a signature graph of a cluster with ID = 6, which contains behavioral graph
with Fareit (see Section 5.2.1) malware strain labels only. The signature graph contains two
processes. The first one, RunOnce, is a system process responsible for running tasks, which
were registered at Windows autorun registry, when the OS boots up. This process spawns
svchost.exe with unconventional executable path C:\WINDOWS\RESOURCES\, which indicates
that it is probably malicious binary masquerading as a regular Windows process.
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Figure 6.7 Signature graph of a cluster with ID = 13.
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Conclusion

The goal of this thesis was to perform an exploratory analysis of the behavioral graph embeddings
that were produced as a part of internal research of the Avast company. The embeddings were
created using novel techniques for training deep neural networks explicitly designed to process
data in the form of graphs. Three distinct approaches were taken towards the model training:
supervised learning on clean vs. malware labels, unsupervised learning using variational au-
toencoder model, and supervised learning matching the isomorphism metric. The analysis was
performed using three clustering algorithms: k-means, DBSCAN, and agglomerative clustering.
The main aim of the analysis was to verify whether the trained whole-graph embeddings allow
distinguishing behavioral graphs of different malware strains. The positive result would suggest
that the features extracted from behavioral graphs are relevant for differentiating the malicious
and clean behavior. Furthermore, in case of good strain separation in resulting clustering, the
clusters would be used to create behavioral signatures for a given malware strain.

As the first step in the analysis process, the behavioral graphs of selected malware strains
were examined, and the results were discussed in Chapter 5. The examination pointed out that
behavioral graphs do not capture the behavior of selected malware strains sufficiently, primarily
due to the fact that the known threats are neutralized, or the graphs capture only partial strain
behavior. The behavioral graphs also contain a lot of system noise, which in certain cases
contributes to a significant part of the graph, and thus overwhelms the relevant information.
The issue with inconsistent strain labeling and mixing of strain labels was discussed as well.

The clustering evaluation in Chapter 6 showed that DBSCAN is not a suitable method for
clustering the embedded behavioral graphs since all the graphs ended up either as noise or clus-
tered as one big component. Agglomerative clustering and k-means method performed similarly
well. The selection of particular embedding had a more significant effect on the evaluation metrics
than choosing k-means or agglomerative clustering. The best performing embedding concerning
extrinsic metrics was matching embedding. In combination with agglomerative clustering and
parameter K = 20, denoting the number of formed clusters, the evaluation metrics Purity Index
reached 70%, while Rand Index reached 80%.

The last step in the analysis process was dedicated to discussion regarding the possibility of
creating behavioral signatures from the created clusters. Section 6.5 described how a behavioral
signature can be generated based on the clustering results. The successful signature generation
was out of the scope of this work, though the foundations of the signature generation process
had been laid.

In future work, more focus should be put on improving the quality of the input data. Some
methods could be developed that would reduce the amount of noise present in the behavioral
graphs. Also, the analysis from the perspective of malware domain knowledge suggests that
the behavioral graphs are not suitable for distinguishing different malware strains. Instead,
the behavioral graphs contain information that allows distinguishing different infection vectors,

55



56 Evaluation of clustering methods

so future research should take that into account. Furthermore, the suggestions presented in
Section 6.5 regarding the graph signature generation could be empirically tested.
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