
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Improving Pedestrian Detector via Occlusion Prediction

Bc. Martin Koucký

Ing. Filip Naiser

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2022/2023

Instructions

A student is going to deal with pedestrian occlusion detection. Occlusion is a

phenomenon in computer vision that brings inaccuracy to the detection process. Since

the accuracy of detection affects tracking and all the other high-level tasks, we think it

could have a significant impact on tracking and high-level tasks built on top of that.

At first, he performs a literature review on this topic. Then, he will design a dataset

format. We expect most of the training data to be harnessed from our internal datasets. If

needed, the student will design heuristics to choose frames for annotation with a high

chance of occlusion to enlarge his dataset. Next, the student will design and train a

neural network predicting whether, in a given image crop, there is an occlusion

happening. He will collaborate with the tracking team and together evaluate the impact

of occlusion knowledge on tracking performance.

Electronically approved by Ing. Karel Klouda, Ph.D. on 12 October 2021 in Prague.

Master’s thesis

Improving Pedestrian Detector via
Occlusion Prediction

Bc. Martin Koucký

Department of Applied Mathematics
Supervisor: Ing. Filip Naiser

May 2, 2022

Acknowledgements

I would like to thank my supervisor, Ing. Filip Naiser, for his advice and
guidance throughout the process of developing and writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prag on May 2, 2022

Czech Technical University in Prague
Faculty of Information Technology
c© 2022 Martin Koucký. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Koucký, Martin. Improving Pedestrian Detector via Occlusion Prediction.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstract

Pedestrian occlusion is a well-known problem in camera vision detection and
tracking of pedestrians. We aim to improve the existing tracking system de-
veloped by iC Systems.ai by adding a new predicted feature – the probability
of detection being a pair of pedestrians.

The main contribution of this work is the description of the dataset cre-
ation process and the solutions to the encountered problems. Our approach
and the resulting model lead to promising results when being evaluated on
real-life data.

The data in our datasets come from iC Systems.ai cameras from several
shopping centers, where the existing tracking system is deployed.

Keywords CNN, camera vision, pedestrian tracking, occlusion detection

vii

Abstrakt

Okluze chodc̊u je dobře známým problémem při detekci a sledováńı chodc̊u
kamerovým viděńım. Naš́ım ćılem je vylepšit stávaj́ıćı systém sledováńı vyvi-
nutý společnost́ı iC Systems.ai přidáńım nové predikce pravděpodobnosti, že
detekce je ve skutečnosti dvojice chodc̊u.

Hlavńım př́ınosem této práce je popis procesu tvorby datové sady a řešeńı
vzniklých problémů. Náš př́ıstup a výsledný model vedou ke slibným výsledk̊um
při vyhodnocováńı na reálných datech.

Data v našich datasetech pocházej́ı z kamer iC Systems.ai z několika ob-
chodńıch center, kde je nasazen stávaj́ıćı sledovaćı systém.

Kĺıčová slova CNN, kamerová vize, sledováńı chodc̊u, detekce okluze

viii

Contents

Introduction 1

Goals 3

1 Related work 5
1.1 A novel method for detecting and counting overlapping tracks

in SSNTD by image processing techniques 5
1.1.1 Conclusion in relation to our work 6

1.2 Learning to detect partially overlapping instances 6
1.2.1 Conclusion in relation to our work 7
1.2.2 Related works . 7

1.2.2.1 Conclusion to the related works 11
1.2.3 Conclusion . 11

2 Methods 13
2.1 CNN . 13

2.1.1 Layers . 13
2.1.2 Other features . 19

2.2 Hydra architecture – multi-task learning 21
2.2.1 Motivation . 21
2.2.2 Multi-task learning methods 22
2.2.3 Multi-task learning advantages 23
2.2.4 Our hydra architecture 24

3 Datasets 25
3.1 Problem definition . 25
3.2 Heuristics for dataset creation 26

3.2.1 Picked detections heuristics 26
3.2.2 Heuristic to create datasets from annotations 28

3.3 Datasets . 29

ix

3.3.1 Datasets created from annotated picked detections . . . 30
3.3.2 Validation and train datasets created from separate cam-

era sources . 30
3.3.3 Validation and Train datasets created from the same

camera sources . 31
3.4 Unbalanced data . 31

4 Experiments 33
4.1 Datasets experiments . 33

4.1.1 Accuracy comparison across different margins between
singles and pairs measured on the dataset created from
the same camera sources 33

4.1.2 First results on a dataset with unbalanced validation
sampling . 34

4.2 Ignoring bad samples . 34
4.3 Augmentations . 40
4.4 Hyperparameters . 40

4.4.1 Testing various hyperparameters on the old dataset with
separate validation data sources 41

4.4.2 Testing various hyperparameters on the current cleaned
dataset with margin 0.10 with picked detections 42

4.5 Final tracking evaluation . 42

Conclusion 45

Bibliography 47

A List of used abbreviations 51

B Contents of the enclosed USB 53

x

List of Figures

1.1 visualisation of the perspective problem on theoretical (manually
drawn) density maps with top down camera image 7

2.1 edge detection filter matrix and its corresponding visualisation . . 14
2.2 moving window filter visualisation, image source: [17] 15
2.3 input and output of a pooling layer 16
2.4 deconvolution process visualized 17
2.5 input and output of an unpooling layer 17
2.6 confusion matrix . 19
2.7 multi-task learning via the hard sharing method 22
2.8 multi-task learning via the soft sharing method 23

3.1 example of the top-down pedestrian type 29

4.1 TensorBoard visualization of comparison of validation accuracy be-
tween datasets with 0.2 and with 0.1 margin between singles and
pairs over training epochs . 33

4.2 TensorBoard visualization of various validation metrics (accuracy,
precision, recall) when using weighted imbalanced-sampled dataset
for training and validation . 35

4.3 example of the artifact/distortion type of bad sample 36
4.4 visualisation of a misslabeled sample of a class single. Values from

left to right: error, predicted value, ground truth, id of the sample. 37
4.5 TensorBoard visualisation of the results from datasets cleaned to

various degrees . 38
4.6 heavily smoothed (with smoothing factor of 0.999) TensorBoard

visualisation of the three runs (with different hyperparameters)
with the highest maximum F1-score 43

xi

List of Tables

2.1 parameters of the convolutional layers in our CNNs backbone . . . 18

3.1 dataset sizes of the dataset with separate validation with margin
0.10 . 30

3.2 dataset sizes of the dataset created from the same camera sources
with margin 0.10 with picked detections 31

4.1 train dataset sizes of datasets with different margins 34
4.2 rounded ratios of pairs to samples in a validation batch in different

stages of cleaning . 38
4.3 accuracy measurements with various hyperparameters on the sep-

arate validation dataset . 41
4.4 accuracy, precision, recall and F1 score measurements with various

hyperparameters on the current clean dataset 43

xiii

Introduction

The problem of occlusion in camera vision is well known but rarely addressed
as explained in the chapter 1. Rather, occlusion is often the explaining factor
behind the error in tasks such as counting. In this work, we aim to improve
the existing tracking system of iC Systems.ai in the pedestrian counting task
by adding a pair occlusion classifier. The counting task is useful for example
during the pandemic, where the number of pedestrians in a shopping center
has to be under some threshold. It consists of first detecting and tracking
pedestrians and then counting them when they reach a predefined counting
zone.

We use data from iC Systems.ai cameras which are placed on the ceiling
looking directly down in many shopping centers. The cameras use limited
lightweight hardware so our tracking system has to be lightweight and fast as
well. The data are manually annotated by drawing a rectangle representing a
detection over each pedestrian in the image. The dataset creation process is
described in the chapter 3.

We use a Convolutional neural network described in the chapter 2 as well
as a multi-task learning system which we call hydra also described in the
chapter 2.

During the experiments described in the chapter 4 we encountered sev-
eral significant problems. First, our dataset created from the manual annota-
tions doesn’t currently have enough samples (the number of class pair samples
mostly fluctuates around a thousand depending on the dataset). Further, the
dataset is heavily imbalanced in favor of the class with single pedestrians
(more than 10 to 1 ratio with most settings). And finally, a big part of the
samples in the created dataset had unclean, often mislabeled data.

We solve some of these problems by manually cleaning the data, creat-
ing heuristics so that more annotations lead to the class pair (by sending
proportionally more images possibly containing pairs to the annotators), and
by adding augmentations. The final results on the validation dataset show
a promising precision of around 0.70, recall of around 0.78, and accuracy of

1

Introduction

around 81%. In the final evaluation, the pairs classifier is applied to track-
ing in the counting task to determine whether a detection of a pedestrian is
instead a detection of two pedestrians in which case, another detection is cre-
ated and two pedestrians are counted. This led to a decrease in the counting
error from 117 to 111 errors on 2251 passages. Note that this success may
be inflated because of the negation of false positives and false negatives. The
result is not yet applicable, but it is promising and shows that further research
and development may significantly improve the tracking.

2

Goals

Our goal in the theoretical part of the thesis is to research related works about
occlusion detection in camera vision, particularly in the domain of pedestrian
detection. We also aim to explain how the CNN used in the practical part of
this thesis works.

In the practical part of the thesis, our goal is to create suitable datasets
from the data harnessed from iC Systems.ai cameras. Then we train a pairs
occlusion binary classifier and use several data engineering methods to over-
come problems with the datasets and achieve satisfiable results on the valida-
tion dataset such as heuristics to enlarge our dataset or manual data cleaning.
Our final goal is to evaluate the performance of the existing tracking system
with the addition of the new pairs classifier in the counting task and discuss
the results.

3

Chapter 1
Related work

In this chapter, we explore work related to ours. This gives us more insight
and understanding of our problem as well as provides inspiration for new ideas
we could use to solve our task.

Research about the problem of occlusion is often tied to the problem of
counting. Carlos Arteta et. al. mention in their work[1] that methods of
counting generally fall into two categories. Density based counting and de-
tection based counting. While density based counting offers better results
in crowded environments with lots of overlapping instances. It is based on
probability and rarely offers more information than the estimated count. As
our framework requires additional information, we had to disregard most of
the works dealing with occlusion and focus solely on those that count using
detections.

When searching for papers related to our problem we found out that not
many papers deal with the problem of occlusion. The problem of occlusion is
often blamed for inaccuracies, but it is rarely directly addressed. Aside from
the works described below, we examined several others [2][3][4][5][6][7][8] but
ultimately did not find their contributions useful for our task or they were too
similar in concept to those described below.

1.1 A novel method for detecting and counting
overlapping tracks in SSNTD by image
processing techniques

Detecting objects for the purpose of counting is the focus of research in many
different fields of science. N. Ab Azar et. al. 1 deals with this problem in the
domain of round particles counting (eg. cells counting).

Their novel approach tries to solve the problem of overlapping particles
using junction points. Given two overlapping circles, junction points are the

1ABAZAR201636

5

1. Related work

points of their intersection, when we consider only the circle circumferences.
This means that two circles, that are both visible, can have at maximum 2
junction points.

Given the count of all junction points (njp), the total number of particles
(nt) can be calculated with the following formula.

nt = njp

2 + 1,

The junction points are determined by assigning local neighborhood values
to all pixels and choosing the ones with the highest value of a heuristic equation
for determining junction points.

1.1.1 Conclusion in relation to our work

Although the counting accuracy they were able to achieve was very high (97%
on pair overlap), the method could not be used for our problem. Our domain
of pedestrians has difficulties when we look for a heuristic approach. Shapes
of pedestrians don’t have the same geometric properties, so such a simple
heuristic with junction points can’t be applied.

1.2 Learning to detect partially overlapping
instances

To detect objects in images Carlos Arteta et. al.[1] divide the area into non-
overlapping regions and then classify them. Their addition is the novel clas-
sification system, where regions can be classified as tuples or single objects.
This, in comparison to the default idea of classifying each item as either an
object or nothing, has the potential to solve occlusion. This is because in
theory all the occluded objects are just classified as ”tuples”.

They conduct their experiments on the UCSD pedestrian dataset. In com-
parison to ours, this dataset has a less varied view angle of the pedestrians.
The UCSD images are taken from further away and have a less varied view
angle of the pedestrians. The images have a bigger scope and more people
present in one image than the images from our datasets.

Their method learns to assign different integer sizes to regions containing
objects based on density maps. Then it predicts the locations of the instances
of an object inside the region. The later location prediction being easier
because the method already has the total count of objects.

The addition of the novel classification system to their previous detection
method resulted in a 2 % increase in the counting accuracy on the UCSD
pedestrian dataset for a maximum of 0.895 F1 score accuracy.

6

1.2. Learning to detect partially overlapping instances

1.2.1 Conclusion in relation to our work

Unfortunately, our detector needs to be more lightweight and also work within
the hydra framework so their solution can’t be fully applied to our problem.
But we experiment with the same type of classification, where we first detect
a pedestrian and then try to determine whether the detection is actually a
single person or a pair of (occluding) people. The later classification being
done in one of the heads of our hydra architecture.

We also can’t apply their density-based method of estimating integer
counts of objects inside groups (regions), because our dataset of images taken
with a top-down camera has varied magnitude and density of pedestrian
groups, because of the varied camera angles. Thus, groups have different
densities despite having the same count of pedestrians.

Figure 1.1: visualisation of the perspective problem on theoretical (manually
drawn) density maps with top down camera image

green = pedestrians that are farther and appear smaller

1.2.2 Related works

As the aforementioned work[1] was closest in its solution to our problem, we
decided to examine all the works citing it. The interesting ones are summa-
rized in this section. Note that there is a year written next to each of the
examined works because we believe that the novelty of the research is crucial
in quick understanding of the relevancy of examined works citing the afore-
mentioned work from 2013. Also, note that the works are presented in order
of how many times they were cited on google scholar from most to least.

Reccurent instance segmentation, [2016]

Bernardino Romera-Paredes et. al.[9] focus on the problem of instance seg-
mentation. They try to create an algorithm that approaches this problem se-
quentially, examining one object after another just like a human would when
counting multiple objects in an image. They also use a recurrent neural net-
work, which means that they are able to reevaluate and recount the instances

7

1. Related work

of the objects. This is important for occlusion detection as their architecture
allows them to revisit instances that the segmentation previously classified as
single detections and reclassify them as multiples. The recurrent neural net-
works are used because of their spatial memory ability meaning that they can
keep the current state of instances in an internal memory similarly to human
counting.

In their architecture, the examined image is an input to a fully convolu-
tional network. The output of the FCN is then the input to the recurrent
neural network. The first iteration in the sequence finds the segmentation of
one instance in the image as well as the confidence score of the prediction.
The inner state of the RNN is updated to account for the newly found in-
stance. This is repeated until the stopping condition based on the threshold
of confidence score is met and ideally, all the instances have been correctly
segmented.

They show that their approach alone achieves results comparable to state-
of-the-art methods for image segmentation. Further, when conditional ran-
dom field is added in post-processing to supplement the low resolution rep-
resentation in the ConvLSTM, the results outperform their state-of-the-art
competitors.

Our company approach prevents us from using RNNs because our archi-
tecture has to be both more lightweight and more importantly has to work
within the wider framework of the hydra architecture. However, we have a
similar approach in a human-like detection of instances, where we first detect
the instance and then determine whether the detection is a single pedestrian
or multiple occluded pedestrians. Note that only the last part of this process
is the focus of this work.

Interactive object counting, [2014]

Carlos Arteta et. al.[10] focus on object counting in the field of biomedical
image analysis. They develop an interactive system, which means that the
user can add his own annotations to a part of the image and the system
annotates the rest of the image automatically based on the user’s input. If
dissatisfied with the result, the user can annotate the wrong parts and launch
the automatic annotation again. If the user is satisfied, the system returns
the final count of instances.

The system is based around density estimation as research shows that
for the ultimate goal of counting instances this density-based approach is the
most accurate. In contrast to us, they use a density-based model instead of a
detection-based model. Similarly to us, they first find regions but contrary to
us they integrate over the regions to get the count of instances inside them.

8

1.2. Learning to detect partially overlapping instances

Extremely overlapping vehicle counting, [2016]

Ricardo Guerrero-Gómez-Olmedo et. al.[11] explore the problem of counting
vehicles in a traffic congestion situation where a huge amount of occlusion
occurs. They introduce a novel dataset with 1200 annotated samples of over-
lapping vehicles as well as a new GAME (Grid Average Mean absolute Error)
metric. GAME is a modification of MAE (Mean Absolute Error) that im-
proves the precision of the metric for the counting task by dividing the full
image into regions. The MAE is then measured in each region separately
which prevents compensation of errors. For example when nothing is present
and it is falsely counted as an instance (+1) and sometimes the instance is
not counted (+0), which gives the right count but isn’t correct internally.

Beyond counting: Comparisons of density maps for crowd analysis
tasks—counting, detection, and tracking, [2018]

Di Kang et. al.[12] compare the density maps of crowds produced with dif-
ferent methods for crowd analysis tasks. The examined tasks are counting,
detection and tracking. Generally, it can be said that the methods that per-
formed the best in counting tasks such as density maps created with fully-
convolutional neural networks (such as MCNN) have performed poorly in
localization-based tasks. On the other hand, dense pixel-prediction using
CNN-pixel led to the best results in localization tasks but was worse in the
counting task.

Graphical model for joint segmentation and tracking of multiple
dividing cells, [2016]

Focusing on the problem of cell tracking, Martin Schiegg et. al.[13] aim to pre-
vent the propagation of segmentation error into tracking. Their probabilistic
model combines more segmentation hypotheses in time into the final tracking.
The process works as follows. First, the raw data from ti (first timestep) and
ti+1 are segmented separately. Then the segmentations are merged into bigger
segments forming segmentation hypotheses (ti and ti+1 are still handled sep-
arately). Finally, a graphical model is formed from the two hypotheses where
conflicts are resolved and the output is tracking. With this approach, they are
able to achieve better than state-of-the-art results on two challenging biology
datasets (cells and embryos tracking).

Where are the blobs: Counting by Localization with point
supervision, [2018]

Issam H. Laradji et. al.[14] try to solve the counting problem using a detection-
based method that does not need to learn the sizes and shapes of the objects
thus performing better for the easier task of counting. Their training dataset

9

1. Related work

of point-only annotations is input to a fully convolutional neural network.
Their novel loss function encourages the network to output a single blob for
an object annotated with point-only annotations. The loss function consists
of four terms, where the terms image-level and point-level loss encourage the
network to output segmentation labels for all pixels in the image. The other
two terms, split-level and false positive loss enforce the network to predict a
unique blob for each unique object and disregard blobs without unique object
instances assigned to them. They show that with their approach they are able
to outperform current state-of-the-art methods in counting on datasets where
a large amount of occlusion is present.

Small instance detection by integer programming on object
density maps, [2015]

Zheng Ma et. al.[15] propose a method to detect object instances with small
detail such as flocks of birds, biology cells, or crowds of pedestrians in small
resolution images. They use center-point annotations, which are then trans-
formed into approximate densities to train their model to estimate the density
map of an image. Those annotations are used because they are less labour
intensive.

Their approach works in the following way. First, they estimate the density
map of the whole image and divide the map into regions. Then a sliding
window goes through each of the ROI (regions of interest) and calculates the
count of objects. Finally, 2D integer programming is used to find the exact
locations of all the object instances from the ROI counts based on the density
map. The bounding box of the object instances is then determined with the
use of the density map.

Although their approach doesn’t specifically deal with the problem of oc-
clusion, it nonetheless achieves state-of-the-art results on some challenging
datasets containing occlusion such as the UCSD pedestrians dataset. They
even achieve the best F1 score out of all the other examined methods on the
UCSD dataset.

Pedestrian detection in crowded scenes via scale and occlusion
analysis, [2016]

Lu Wang et. al.[16] propose a novel detection algorithm with occlusion anal-
ysis, where the main idea is that the detector of pedestrians will work better
when the scale of the pedestrians is known. They try to estimate this scale
with neighbors of the pedestrian in question. If the detection is consistent
with its neighborhood then its score is not penalized, if it is inconsistent then
the score is penalized. This favours detections that are similar in scale to their
closest detections, which simulates behaviour in reality, where farther objects

10

1.2. Learning to detect partially overlapping instances

are similar to other far objects that are in their proximity in the image due to
perspective.

After scale estimation is done, occlusion analysis via root filter decompo-
sition follows for the purpose of discouraging false positive detections. The
fully-body root filter is decomposed into blocks which contain deformable body
parts. Then occluding pair detections are classified as either an occluder (the
one who occludes) or occludee (the one who is being occluded). Then the
confidence score of the occluded detection is recalculated based on its most
occluding (highest percentage overlap) occluder. The final confidence score of
a partly visible detection is the minimum between the confidence score of its
parts and the confidence score of its occludee detection.

The algorithm proposed in the examined work achieves better results than
state-of-the-art models on datasets of crowds of pedestrians with a significant
amount of occlusion. Note that in our algorithm for dataset creation we also
retain information about the detections being either occluded or occluding (or
both). As of writing this work, we do not use this gained information, but it
is part of our datasets and may be used in the future.

1.2.2.1 Conclusion to the related works

Many examined works related to the aforementioned work [1] had a similar ap-
proach of finding interesting regions thus dividing the space and then trying to
classify the smaller regions. Interesting note is that similarly to our approach
(dividing the image into regions), even the examined methods whose ultimate
goal is counting using density, applied similar divide and conquer based strate-
gies. We did not directly use any of the methods from the researched works,
but we learnt that other works about the topic of detection try to use similar
solutions to the problem of occlusion as we do.

1.2.3 Conclusion

Ultimately we couldn’t directly use any of the methods from the examined
papers, because the model had to fit into our hydra pipeline, which trains
multiple heads for multiple tasks at the same time so our task had to have
similar to the other tasks. Our architecture is described in more detail in the
next chapter. However we gained valuable insights about the challenges as
well as inspiration and confirmation that our method of divide and conquer
into specific regions is widely used in different forms.

11

Chapter 2
Methods

In this chapter, we introduce and describe the methods used later in Chapter 4.
The main part of this chapter explains how the convolutional neural network
works in general and then describes the structure of our CNN. The other
section describes our hydra architecture or as it’s also called the multi-tasks
learning architecture wherein a multitude of heads can be attached to one
backbone in a CNN and several tasks learn together.

2.1 CNN

Over the last few decades, Convolutional neural networks have become one of
the most popular solutions among deep neural networks due to their ability
to handle huge amount of data and have excellent performance in machine
learning problems. According to Saad Albawi et. al.[17] they are best used in
applications that deal with image data, computer vision, and NLP.

The most beneficial feature of a CNN is its ability to reduce the number of
parameters in a neural network. Problems that are to be solved with a CNN
should ideally have spatially independent features. For example, in image
classification, a convolutional network recognizing faces has only the concern
of finding faces and does not need to concern itself with the positions of the
faces in the image (although the positional information is still retained in a
simplified form). Another advantage of a CNN is that it can obtain abstract
features in its deeper layers. For example in image classification, this means
learning edges and simple shapes in its first two layers and more complex and
abstract constructs as the input is propagated deeper.

2.1.1 Layers

Convolutional neural networks comprise of many different layers. The most
important are the convolutional and the pooling layers. In this subsection, we

13

2. Methods

explain those as well as other layers. Finally, we describe what layers are used
in our CNN.

Convolution

We will explain the convolution layer with an example. Assume an input in the
form of an image with a height of 32 pixels, width of 32 pixels, and depth of 3
for the RGB channels. To connect this input to one neuron in the hidden layer
we would need 32× 32× 3 weight connections. If we connect another neuron
then the cost increases to 32×32×3×2 = 6000 weight parameters. However,
two neurons might not be enough for any meaningful image classification task
so we might want to make the network more efficient by increasing the number
of neurons in the hidden layer to match the weight and height of the image.
This means the complexity increases to (32× 32× 3)× (32× 32) = 3, 145, 728
connections. That is where convolution comes in to decrease this complexity.

It has been found[17], that to make the process more efficient, we can
look for local regions and connect only those regions instead of a full picture.
So each neuron in a hidden layer only gets part of the information from the
previous layer. For example, instead of 32 × 32 it would be connected to a
smaller area of 5 × 5 pixels reducing the previous complexity calculation to
(5 × 5 × 3) × (32 × 32) = 76, 800 connections which is significantly less than
the previous 3, 145, 728

The 5 × 5 matrices move through the input image matrix similarly to a
sliding window. This sliding process is called convolution giving the name
to the CNN. The matrices are called filters because they work similarly to
classic image processing filters like a sharpening filter or a gaussian blur filter.
Contrary to the simple graphical filters, the ones in CNNs are able to learn
high level features in the deeper layers. An example of a 3× 3 edge detection
filter can be seen in figure 2.1.

Figure 2.1: edge detection filter matrix and its corresponding visualisation

−1 −1 −1
−1 8 −1
−1 −1 −1

(a) edge detection filter matrix (b) visualisation of the learned edge detection, im-

age source: [17]

Stride

Notice that the sliding window matrix has a significant overlap of examined
pixels. To further reduce the parameters, we can use stride to manipulate how

14

2.1. CNN

big this overlap between neighbouring matrices is. Stride is essentially how
much we move the sliding window. As can be seen in figure 2.2 a 7× 7 input
with a 3×3 filter and stride 1 will produce a 7−(3−1)

1 × 7−(3−1)
1 = 5×5 output.

Notice that for example, the first and second matrices have an overlap of 6
(or 2

3 of the window). If we set stride to 2, the window will move by 2 pixels
to the right instead of 1, and the overlap of the first and second window will
only be 3 and the output will be reduced to a 3× 3 matrix.

Figure 2.2: moving window filter visualisation, image source: [17]

Padding

Notice that not all information is represented with the same attention. The
pixels in an image input close to the border will not be present in the sliding
window as many times as the ones closer to the middle when using a filter
matrix bigger than 1× 1. This can be solved using zero-padding which is the
process of creating an artificial border around the input image matrix filled
with zeros so that the sliding window gives all the real input pixels the same
amount of attention.

If we use a padding border with a width of 1 for the example with a 7× 7
input, a 3×3 filter, and a stride of 1, we make that input into an 9×9 matrix
(that is with padding) and we will get a 7× 7 final output instead of a 5× 5
one (resulting from the non-padded 7 × 7 input). Padding is also necessary
for deeper neural networks because otherwise the input of deep layers would
be too small.

ReLU

A ReLU function is used to introduce nonlinearity into the CNN. This is
beneficial because the semantic information in the image is nonlinear too.
The ReLU function is defined below.

ReLU = max(0, x)

To explain how ReLU is useful in a CNN we use an example. We might be
searching for a pattern of a dog in an image. When we examine one region, it

15

2. Methods

outputs a negative or zero value if the dog pattern is not found and positive
if it is. The ReLU then makes it so that all the negative values are set to 0.
Consequently, the output only activates if a pattern is found, which is great
for finding complex patterns in an image. This is because finding only the
head of a dog in one region is not as strong of an evidence as finding the head
in one region and other parts of the dog in other regions and having higher
confidence in the next layer that a dog exists in the image.

Pooling

The pooling layer is used in a CNN for the purpose of down-sampling the
input and reducing its complexity for the following layers. One of the most
common types of pooling is max-pooling which divides the input image matrix
into rectangular regions of size N×N (most commonly 2 × 2) and selects the
highest value among them. This highest value replaces the entire rectangular
region in the output. If we take for example 2 × 2 pooling with stride 2 and
a 4 × 4 input matrix we will get a 2 × 2 matrix as a result. This process is
demonstrated in the figure 2.3 below.

Figure 2.3: input and output of a pooling layer
1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4

 −→
[
6 8
3 4

]

This example of pooling without overlap should be used only when the
presence of information is what matters and the spatial information does not
matter, because it does not retain that information (or rather it does retain
it in a degraded/simplified form). Other types of pooling where the stride is
smaller than the width of the rectangular region are used as well. Those can
be more effective as they have some amount of overlap.

Deconvolution layer

The deconvolution layer or transposed convolution layer as it is sometimes
called is an inverse layer to the convolution layer. It tries to predict the
output matrix with knowledge from the input. As shown in the figure 2.4 it
moves a sliding window matrix of dimensions bigger than 1× 1 (as otherwise,
the output would not be bigger than the input) across the input. Note that
we first have to add padding with zeros to the input in order for this process
to work.

16

2.1. CNN

Figure 2.4: deconvolution process visualized

(a) blue is the input and green is the out-
put, white dashed line sqares area is the
padding with zeros, image source: [18]

Unpool layer

Similarly to the deconvolutional layer, unpool layer works inversely to its coun-
terpart – the pooling layer. For example in the figure 2.5 we have unpooling
with a 2× 2 kernel, stride 2 and a 2× 2 input which results in a 4× 4 matrix
output. First, we create a matrix filled with zeros of the same dimensions as
the future output matrix (4× 4 in this case). After that, for each of the num-
bers in the unpooling input matrix we look at the position it was taken from
as a maximum in the previous maxpooling layer and fill the corresponding
position in our zero-filled matrix with the number from the unpooling input
matrix. The new matrix filled with the numbers from the unpooling input is
now the unpooling layer output matrix.

Figure 2.5: input and output of an unpooling layer

[
9 7
7 8

]
−→

9 0 7 0
0 0 0 0
0 0 0 8
7 0 0 0

17

2. Methods

Fully-connected layer

The fully-connected layer which is also sometimes called dense or linear layer
has its neurons arranged in a way so that each of the neurons creates a con-
nection between every input neuron (in the previous layer) and every output
neuron (in the next layer). It is typically used at the end of a deep CNN
because it can create features with stronger capabilities from all the features
previously extracted with convolution and pooling layers.

Layers in our CNN

In our non-hydra integrated CNN (the default pipeline, where the task is
trained alone) we use a backbone with 8 convolution layers. Before each of
the convolutional layers, a dropout of various magnitude is applied to reduce
overfitting. After each convolution, a batch normalization over a 4D input
(BatchNorm2d) from the PyTorch library is applied. Finally, the output is
transformed with the ReLU function.

The convolution layers in our CNN are defined as Conv2d classes from the
PyTorch library. The parameters of those layers along with the corresponding
dropout are described in the table 2.1. Note that the IN denotes the input
channels and the OUT the output learned channels of the layer. Note that be-
fore the output of the third convolutional layer is passed as input to the fourth
layer, a coord convolution is applied. Coord convolution (or CoordConv) is
an extension of the input via concatenation with two extra channels. Those
channels contain coordinates in the form of hard-coded channels (numerical
values going from 1 to 0 depending on their coordinates), where one goes hor-
izontally and the other vertically. This adds spatial information which can
help the CNN in conditioning based on location.

Table 2.1: parameters of the convolutional layers in our CNNs backbone

order of layer IN OUT kernel size stride padding dropout
1 3 32 3× 3 2 1 0.1
2 32 32 3× 3 2 1 0.2
3 32 48 3× 3 2 1 0.3
4 48 + 2 48 3× 3 1 1 0.4
5 48 48 3× 3 1 1 0.5
6 48 64 3× 3 1 1 0.4
7 64 128 3× 3 1 0 0.3
8 128 128 2× 2 1 0 0.2

The output of the backbone is the input to the last layer called the head
(modified Conv1x1Head from PyTorch). The head is also a Conv2d class
with the following parameters. A dropout of 0.4 (or a 40% probability of an

18

2.1. CNN

element to be zero-ed), 128 input channels, 1 output channel, 5×5 kernel size,
0 padding and a (1, 1) stride. Note, that in the tuple stride, the first value
translates to the height and the second to the width dimension.

2.1.2 Other features

In this subsection we describe features of our CNN, which do not fall into the
previous subsections, but still need to be discussed. Those features include
dropout, classification accuracy measurement methods,

Evaluation methods

We use a variety of evaluation methods to measure the performance of our
binary classification. Those can be explained more clearly with the use of
the confusion matrix below in the figure 2.6, wherein our case p denotes the
class pairs, n denotes the predicted class singles, p′ denotes the ground truth
pairs and n′ denotes the ground truth singles. TP denotes True Positive, FN
denotes False Negative, FP and TN denote False Positive and True Negative
respectively.

Figure 2.6: confusion matrix

actual
value

prediction outcome

p n total

p′ TP FN P′

n′ FP TN N′

total P N

The most basic method is accuracy, which is simply the total number of
correct predictions divided by the total number of predictions calculated as
follows.

accuracy = TP + TN
FP + FN + TP + TN

Next we used two relevancy based methods, recall and precision. Recall
can be thought of as a measure of quantity while precision as a measure of
quality. They are calculated as follows.

19

2. Methods

recall = TP
FN + TP

precision = TP
FP + TP

The last evaluation method we use is the F1 score. It is a measure of the
model’s accuracy calculated from its recall and precision. The lowest possible
F1 score is a 0 and the highest possible is a 1. Note, that the F1 score has been
criticized for giving equal importance to recall and precision, even though for
some applications recall is more important and vice versa. For this reason, it is
still important to examine all the measurements even when F1 score combines
them. The F1 score is defined below.

F1 score = 2 · recall · precision
recall + precision

Note, that there are other F scores that can be used when we prefer some
metric over another such as the F2 score which weights the recall twice as
important as precision.

Dropout

To reduce overfitting, our CNN uses dropout (specifically PyTorch Dropout2d
class). Dropout is the practice of zeroing-out entire channels (in this case 2D
feature maps) inspired by averaging models, which can help with generaliza-
tion. Notice that in our CNN (table 2.1) we use very non-standard percentage
values of dropout. In theory dropout of the hidden layers should progressively
get higher the deeper the layer until it reaches a probability of retention of
around 0.5 (or 50 %). After experimenting, we found that the best known
dropout configuration for our network was sort of a hill-like process with in-
crease from the dropout of 0.1 in the first layer reaching the maximum of 0.5
dropout in the fifth layer followed by a decrease until the dropout reached a
probability of 0.2 in the eighth layer.

Note that the aforementioned dropout configuration is only used when our
model is not trained within the hydra framework. This is because when inte-
grated into the hydra framework, all the tasks (including our occlusion task)
had to use the same backbone with a more standard dropout configuration
of [0.0, 0.0, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3] (starting from dropout of the first
layer and ending with dropout of the eighth layer).

Batch normalization

Another method that can help with overfitting, as well as vanishing gradi-
ent in a CNN, is batch normalization (commonly referred to as batch norm).
Classical data normalization is a preprocessing technique that compensates
for differences in the data by transforming them to use the same scale. Batch
normalization is similar with the slight difference being that instead of nor-
malizing the raw input data, it normalizes the contributions to layers in a

20

2.2. Hydra architecture – multi-task learning

given mini-batch. This effectively speeds up the training because it reduces
the internal covariate shift of the network so that fewer epochs are needed for
convergence.

In our network, we use the BatchNorm2d batch normalization from Py-
Torch. It is applied each time after the convolutional (Conv2d) layer. Gener-
ally, batch normalization uses the following formula to normalize each of the
layer’s outputs in a given batch.

xn = x - E[x]√
Var[x]

· γ + β

Where xn is the normalized output, E[x] is the mean of the neurons output,√
Var[x] is the standard deviation of the neurons output, x is the input to the

barch norm and finally γ and β are the learnable parameter vectors (with sizes
of C, which equals to the size of the input).

2.2 Hydra architecture – multi-task learning

The general approach to machine learning problems is to train a model to
perform a single task, measure some score and tweak the model to achieve
the highest possible performance. Sebastian Ruder in his work An Overview
of Multi-Task Learning in Deep Neural Networks[19] describes that a bet-
ter approach might be to share representations between tasks which makes
the model generalize better on the desired task because in this way we do
not ignore some of the beneficial information and the model has to leverage
domain-specific information between related tasks (for example between a task
of finding the faces of pedestrians and a task of finding two occluded pedes-
trians). Multi-task learning has been successfully applied to fields such as
NLP, speech recognition, and most importantly for us, camera vision. Gener-
ally, whenever we are trying to optimize multiple loss functions, we are doing
multi-task learning. Thus many different approaches can be called multi-task
learning such as joint learning or learning to learn.

2.2.1 Motivation

To try to understand why it works, we will first look at multi-task learning
from an intuitive perspective. When humans learn, they often use previously
learned related knowledge to ease their learning. For example, a baby learns
to recognize faces and then uses this knowledge to learn to recognize different
objects. This is also true for adults, let us use the film The Karate Kid as
an example. In the movie, the old sensei teaches his apprentice many tasks
seemingly unrelated to karate which secretly build the general foundation skills
(such as coordination and perseverance) of the apprentice so that he can then
perform karate much better.

21

2. Methods

Figure 2.7: multi-task learning via the hard sharing method

shared layer 1

shared layer 2

shared layer 3

task-specific layertask-specific layer task-specific layer

From a machine learning perspective, we have an incentive to make the
model generalize better. Multi-task learning helps with that by introducing
inductive bias which favors some hypotheses over others. In the case of multi-
task learning, it favors those that can explain more than one task, which leads
to models that generalize better.

2.2.2 Multi-task learning methods

The two multi-task learning methods for deep learning are differentiated based
on their approach to parameter sharing. The first method uses hard and the
second soft sharing of parameters of the hidden layers.

Hard parameter sharing

As described in the layer schematic2.7, hard sharing uses the same hidden
layers for all tasks with task-specific output layers. It is the most common
approach and greatly reduces overfitting because the model has to find repre-
sentations that fit all the tasks.

Soft parameter sharing

In soft parameter sharing, there exists a separate model for each task, but each
model is encouraged to have parameters that are similar to the parameters of
other models. This encouragement is achieved with the use of regularization
of the distance between the models. For example, the L2 distance or the trace
norm can be used.

22

2.2. Hydra architecture – multi-task learning

Figure 2.8: multi-task learning via the soft sharing method

constrained layer 1

constrained layer 2

constrained layer 3

constrained layer 1

constrained layer 2

constrained layer 3

constrained layer 1

constrained layer 2

constrained layer 3

task-specific layertask-specific layer task-specific layer

2.2.3 Multi-task learning advantages

Ruder in his work[19] lists several advantages that multi-task learning brings to
neural networks and describes their underlying mechanisms. For the following
examples, consider two related tasks A and B which both rely on a common
representation R from a hidden layer.

First let’s examine the implicit data augmentation, which means that we
will effectively have a bigger sample size. This is because both task A and task
B have some noise patterns and when trained simultaneously the model will
learn a more generalized representation F through noise pattern averaging.

Another advantage of multi-task learning is that it focuses attention on
the features that are really important because all the tasks provide evidence
to each other about the relevancy of the various features. This can be ad-
vantageous when we deal with tasks that have complex and high-dimensional
data.

Some features (denoted as G) might be easier to learn for task B than
they are for task A. This is because other features of A might be discouraging
the task from learning G or because task A is interacting with the features in
a different way than B does. The advantage of task A learning a feature G
through task B learning it is referred to as eavesdropping.

Finally, multi-task learning introduces representation and inductive biases.
This means that the model will prefer representations that fit all the tasks,
which helps generalization on new tasks as the model that already fits many
tasks will perform better on new tasks as well. The inductive bias causes
regularization which reduces the risk of overfitting.

23

2. Methods

2.2.4 Our hydra architecture

We call our multi-task learning system hydra after the many-headed beast
from Greek mythology because just like that monster our architecture has
one backbone shared between the tasks and a multitude of heads, one for
each task. The multiple purpose heads add output features to the model.
Those features can be later used to optimize certain tasks. Our pairs classifier
head will output a number between 0 and 1 which will tell us the confidence
of the proposed region being a pair or a single. This additional information
can be useful for example in the task counting, which consists of detecting
and tracking pedestrians and then counting how many of them have gone
in and how many have gone out of the shopping center. In the counting
task, the domain is separated into counting regions, where the total count is
updated. When an occluded pair is present in the counting region, the output
of the pairs classifier head can help decide if the proposed region contains a
pair or a single pedestrian, in effect making the counting task more accurate.
Other heads, which are the work of my colleagues are predicting the gender
of the pedestrians or their age and other information useful in various tasks.
Note, that due to time constraints, all the experiments run within the hydra
framework, described in this thesis, are trained with just the pairs task purpose
head.

24

Chapter 3
Datasets

In this chapter, we first explain our approach to dataset creation, then describe
our heuristics, which we use to create our datasets or to enlarge our datasets.
In the section Datasets, we explain the differences between various datasets.
Finally, we explain the problem of the imbalance of classes present in our
datasets. Note, that this chapter is closely tied to the chapter 4, specifically
to its section 4.1, because its experiments are done during the dataset creation
phase.

3.1 Problem definition

Before we could even begin to start solving our problem and improving our
detector, we had to properly define what we are trying to solve. We wanted
to improve an existing detector of pedestrians and our improvement would
have to work within the confinements of the hydra framework. Our solution
is to use the existing detector to predict regions which are then classified as
having either a pair or a single person in them and this information is passed
on in the form of a confidence score. Based on the confidence score the final
detection is then doubled (with some variation/jiggle to prevent unstability)
if our classifier returns high enough confidence of a pair being present.

The problems with this definition lie in the dataset creation phase. This
is because we create all our datasets from the BBox annotations. Those are
human annotations drawn on data from iC systems.ai cameras in the form of
boxes around each detected pedestrian. We explain how exactly we gain the
data from those annotations in more detail later but in essence, we measure
the overlap of two boxes in an image and decide if it should be added to our
dataset as an occluded pair sample or as a single entirely based on this overlap.

This is a problem because the classes are not discretely separable. For
example, with an overlap threshold of 9% one sample of a pair could have an
overlap of 50% and another sample of a pair might have an overlap of 10%,
the difference being 40% of an overlap. A sample of a single might have an

25

3. Datasets

overlap of 8%, which is a difference of just 2% from the second pair sample. Of
course, this difference by itself might not cause any problems, it just illustrates
how much disparity there is between samples within the same class. We tried
to make the problem more discrete by setting a margin between the overlap
of pairs and singles samples. The singles have to have a maximum of 0%
overlap and the minimum overlap threshold (which equals a margin between
a pair and a single) for the sample to be considered a pair changes across
datasets (this is described later in the section 3.3). This is because, with a
bigger overlap margin, the classes are more clearly defined but the dataset size
of pair samples shrinks and the count of pairs is already disproportionately
smaller than that of the singles samples so we wanted to try more versions of
margins to see which dataset performs the best.

In this chapter we first explain the heuristics used to create our datasets,
then we explain the problems with our unbalanced datasets and how we tried
to solve them with cleaning and augmentations. Finally, we conduct various
experiments and discuss their results.

3.2 Heuristics for dataset creation

3.2.1 Picked detections heuristics

For the purpose of training, iC systems.ai uses its own data annotated in
different ways on a remote server with the help of human annotators. The
annotation task performed to gain the data for the purpose of this paper is
called BBox+ and requires the annotators to draw a box around the pedes-
trians present in the image. As the process of annotation is costly, we tried
to gain as much useful data as possible. Making use of the automatic track-
ing data, the following heuristics were used to pick our detections that were
suspicious of having occluded pairs of pedestrians.

In order to understand the heuristics below, it is first necessary to under-
stand the data structure of tracking. Each track represents the path of one
object which can exist across multiple frames. This path is represented with
detections. Detection mainly represents the position of the detected object in
the frame but also has other parameters. These include the frame in which
the detection lies, ground point coordinates, and region of interest. The re-
gion of interest contains the X and Y coordinates for a rectangle representing
the object’s silhouette. Note that the path doesn’t have to be continuous, the
detector can recognize a detection that belongs to the same track after it has
lost it for some frames. The images forming videos that correspond to frames
in tracking are kept separately from tracking data.

The first version of the heuristic2 tries to find pairs of pedestrians traveling
in the same direction, where one of them is missing for some frames, and picks

2both versions can be found inside the file pairs heuristic OUTPUT is frames+dataset.py

26

3.2. Heuristics for dataset creation

out those frames. We go through all the detections gained with automatic
tracking and transform them into a format containing suspicious detections
and directions for each frame. Directions are calculated using the difference
between the last and the first X and Y coordinates (denoted as lastx and
firstx for the X coordinates) of the track. After that, we get the arc tangent
of those differences which is then converted from radians to degrees as can be
seen below.

direction = degrees(atan2(diffx,diffy)), where
diffx = lastx−firstx and

diffy = lasty−firsty

This is done because we can set a threshold for the difference in the direction
of two detections later on. In the next part, we check each frame of each
track for its detections and pick out detections from the suspicious frames.
Suspicious frames are the ones that are missing in the tracking, which means
that the object of the tracking was followed then lost, and then picked up
again. This makes it more likely that the object was occluded. We also save
an array with the directions of all detected detections (this combination of
words might seem obsolete, but it is very important – it indicates that the
undetected detections, which may still be present, are not in this array) in
each frame.

Now we have set up our structures, an array with last seen detections of
suspicious tracks and their likely directions indexed with frames and another
array with directions of detected detections indexed with frames as well. For
each suspicious frame, we now examine the direction of its supposed missing
detection and the direction of its potential occluding partners. If the direc-
tions fall within the threshold cone of 70 degrees, the frame is finally flagged
as suspicious and the corresponding image is uploaded to the server to be
annotated.

The second version of the heuristic picks out all frames where two pedes-
trians are close enough. Again, we go through all the tracks gained with
automatic tracking and transform them into detections indexed by frames.
With this new transformed format, we go through all the frames and calculate
the Euclidean distance of their ground points. Ground points are estimated X
and Y coordinates of the pedestrian’s contact with the ground and are already
present in the automatic tracking. We then compare the smallest distance be-
tween any two detections in a frame to a preset threshold. If the smallest
distance falls below, we upload the corresponding image to the annotation
server.

27

3. Datasets

3.2.2 Heuristic to create datasets from annotations

This heuristic3 is used after annotators assign boxes to all objects in all sent
frames and we have to decide which ones have examples of tuples or singles
and transform them into the final format of an array of crops. We refer to the
boxes created by annotators as detections below.

We go through all the frames and examine each detection (denoted A) in
relation to other detections (denoted B) on that frame. First, we find the
maximum percentage overlap of A and B described below.

percentage overlap = (Ox∗Oy∗100)
θA

θA =xabs ∗ yabs, where
Ox = max(0,min(δx, A, δx, B) − max(γx,A, γx,B))

xabs = abs(γx,A − δx, A)
and likewise for y (instead of x).

Where γx,A denotes the X coordinate of the top left corner of the detection
A and δx, A the X coordinate of the bottom right corner. θA denotes the full
area of A and κ the overlap area. Ox denotes the x overlap. For the detection
B and coordinates Y, the denotations are similar (with the change of A to B
and X to Y).

Next, we find the corner of the detection that is closest to the center of
the image, because the cameras point downwards so whatever object is closest
to the center should be occluding others. Afterward, we compare it to the
corners that are closest to the center of the image of other detections. This
way we are able to gain information about the occlusion category of that
detection. When the distance of A is closer to the center than that of B, A is
occluding B. If the opposite is true, A is being occluded by B. So in the end all
detections in a frame have two boolean variables assigned to them, is occluded
and is occluding. We may use this for some heuristic or as a parameter for
our network later on.

Finally, we use the previously gained information about the maximum
percentage overlap to determine if a detection is a sample of a pair or a sample
of a single. Detections that are determined as being pairs are detections where
there are two or more people occluding each other and are always denoted
as zeros in our datasets and experiments. Detections determined as being
singles are detections where there is only one pedestrian with no amount of
occlusion. Whether a detection is a pair or a single is decided using a threshold
of the percentage of occlusion. Detections with a maximum overlap percentage
higher than that threshold are determined as pairs and detections with a
maximum overlap percentage equal to zero are determined as singles. After
the decision whether a detection is a pair or a single is made, we cut out crops
from the full image with a small margin around the detection and save them.

3can be found inside the file clf reg gt generator NEW.py

28

3.3. Datasets

This is the final step in the creation of our datasets. This creates a margin
between pairs and singles so that the decision isn’t continuous (meaning that
the difference between a pair and a single could theoretically be infinitely
small) and it is easier to train our network.

The threshold and subsequently the margin of percentage between pairs
and singles greatly affects the created datasets. When it is too low there
is less difference between a pair and a single. But as we are working with
human-annotated data, it cannot be too high either, because we have little
data available. Because of this, we create different datasets based on the
margin between the singles and tuples and as this name is too long, we will
further refer to a dataset created with this heuristic with a margin between
pairs and singles of XX% as ”with margin 0.XX”.

3.3 Datasets

In this section, we describe how the various datasets used in our experiments
were created. We further describe how well they performed in general and try
to find an intuitive explanation as to why that was the case.

iC systems.ai has cameras installed in several shopping centers. Those
cameras and their hardware perform detections of pedestrians and this is where
we get our training data from. The cameras are installed in such a way that
they look directly down, meaning that the center of the image is also the
closest ground point to the camera (provided there is a flat surface).

The crops of pedestrians from different quadrants of the image are mirror
transformed so that all of the pedestrians have feet and heads in roughly the
same direction. This transformation is done because we want the pedestrian
crops to be roughly aligned. Another challenging example present in our
datasets is the top-down pedestrian (example in figure 3.1) which the camera
captures walking directly below itself. This can be problematic because the
shape of the pedestrian is different from all the other angles and less of the
pedestrian’s body is visible so there is less information. On the other hand,
those types of positions should have little to no occlusion.

Figure 3.1: example of the top-down pedestrian type

29

3. Datasets

3.3.1 Datasets created from annotated picked detections

The heuristic above was also used to create datasets from picked detections, as
those were smaller in count, we didn’t attempt to try them out on their own.
Instead, they were joined with corresponding datasets (with the same margin
between singles and tuples). As was the case above, we want to simplify and
codename this dataset, so we will further refer to a joined dataset of picked
and other detections with a margin of XX% as ”with margin 0.XX with picked
detections”.

The addition (via simple concatenation) of the picked detections to an
already existing dataset led to an increase in accuracy, which is unsurprisingly
caused by the small training dataset of zero samples (pairs) increasing in size.

3.3.2 Validation and train datasets created from separate
camera sources

The first dataset that we experimented with was created in the following
manner. First, we separated all of our available image data according to the
shopping centres in which they were collected. Then we picked one of those
shopping centres, where the count of images was roughly in accordance with
the usual ratio of a validation dataset in proportion to the training dataset.
Then the validation dataset was created only with the data from this selected
shopping centre and the training dataset only with the data from the rest of
the shopping centres. To simplify, we will refer to a dataset created in this
way with the suffix ” val=separate”

These datasets were not as successful as the ones described below so we
stopped using them during experimentation. They would have uses if we were
trying to build a network for the general use case of recognizing occluded
people, but that was not our case. We were mainly trying to build a system
that performed as well as it could have in the few shopping centres that ordered
our services. This type of dataset creation may have its uses in the future.

Table 3.1: dataset sizes of the dataset with separate validation with margin
0.10

dataset # of single samples # of pair samples
Train 26240 1404
Val 3948 350

Note, that the addition of picked detections to this dataset increased the
size of Train-pair samples with 1094 samples from 1404 to 2498.

30

3.4. Unbalanced data

3.3.3 Validation and Train datasets created from the same
camera sources

Unlike the previous datasets, these datasets were created by random sampling
from the image data from all the shopping centres. To avoid confusion, even
though we tried them out as second, this process of creation can be thought
of as the standard in classification problem dataset creation. They immedi-
ately increased performance compared to the datasets with separated data
for validation and training. This is not surprising as the camera angles in
different shopping centres are varied so complete generalization of the task is
not possible. This is the dataset that we used the most in our experiments.

Table 3.2: dataset sizes of the dataset created from the same camera sources
with margin 0.10 with picked detections

dataset # of single samples # of pair samples
Train 19813 2388
Val 4984 627

3.4 Unbalanced data

Both our training and validation datasets were sampler-level balanced, mean-
ing that each batch consisted of the same amount of pairs samples as the
amount of singles. This balance was forced unnaturally because our dataset
contained many more singles than pairs, which would result in the model not
properly learning from the pairs samples. However, in reality, the data are
not balanced and thus the performance of our model on a balanced validation
dataset is misleading because it does not reflect the performance if the model
would be used in real-world conditions.

To better reflect reality, we applied imbalanced (unchanged and natural)
sampling. The amount of samples of pairs and singles in a given batch was
now sampled in proportion to the real dataset sizes, which were massively
imbalanced. To force the model to learn to classify pairs we used weights to
amplify their impact in the loss function in the following way.

W1 = 1−|{y=1}|
|{y=1}|+|{y=0}|

W0 = 1−W1

Where W1 denotes the weight with which we multiply the loss of the
samples of singles and W0 denotes the weight with which we multiply the loss
of the samples of pairs and |{y = 1}| denotes the count of samples with ground
truth set as a single and for pairs likewise.

31

Chapter 4
Experiments

4.1 Datasets experiments

The experiments in this section are done during the dataset creation process
described in the previous chapter and as such, they explain the differences
between different versions of the datasets.

4.1.1 Accuracy comparison across different margins between
singles and pairs measured on the dataset created from
the same camera sources

Figure 4.1: TensorBoard visualization of comparison of validation accuracy
between datasets with 0.2 and with 0.1 margin between singles and pairs over
training epochs

epochs

ac
cu

ra
cy

performance of datasets with margin 0.10 with picked detections (green), with margin
0.20 with picked detections (light blue) and with margin 0.30 with picked detections
(pink)

As we can see in the figure 4.1 The smallest margin between a ”pair” and a
”single” sample had the best performance overall (achieving the best accuracy

33

4. Experiments

score of 78.5 %). However, this can be deceiving as this is mainly caused by
the small dataset size or rather by the 0.10 margin dataset being larger than
the two much smaller ones. The 0.30 margin dataset trained the fastest as it
had the least samples but stopped improving relatively quickly. This was also
the case with the 0.20 margin dataset to a lesser degree.

Table 4.1: train dataset sizes of datasets with different margins

margin # of pairs in train dataset # of pairs in validation
0.10 2388 627
0.20 1264 344
0.30 685 192

Note that the number of singles is not needed in the table 4.1 as it remains
the same, margins changes only how many samples of pairs we get.

4.1.2 First results on a dataset with unbalanced validation
sampling

Because we previously achieved meaningful scores of around 70% precision,
85% recall, and 75% accuracy after 500 epochs we were at first surprised to
find that with the new imbalanced sampling we were no longer anywhere near
those results. As we can see in the figure 4.2, which visualizes the values of
accuracy, recall, and precision on the dataset with margin 0.20 with picked
detections the precision as well as the recall is really bad.

Looking at possible solutions to those bad results, we first tried other
datasets but those bad results were repeated with all of our datasets (with
different margins of overlap between a single and a pair). As the imbalanced
validation dataset was a correct approach and thus we didn’t want to change
it back, we looked for other reasons that could cause the model to have such a
low precision and recall. Finally, we visualized the data and found out that a
lot of the samples were mislabeled which will be discussed in the next section.

4.2 Ignoring bad samples

As mentioned in the previous section, after we visualized the data samples
that had the biggest loss, we discovered that a large part of our datasets is
mislabeled or labeled correctly but has a lot of noise to the point of being
detrimental to the training. To increase our performance as well as make
the validation measurements more accurate we manually went through the
images and picked out their IDs. The picked out image IDs are then inserted
into a separate file and skipped during the loading of the datasets and in this
way the bad samples are ignored. Note, that due to our method of dataset

34

4.2. Ignoring bad samples

Figure 4.2: TensorBoard visualization of various validation metrics (accuracy,
precision, recall) when using weighted imbalanced-sampled dataset for training
and validation

epochs

ac
cu

ra
cy

epochs

pr
ec

isi
on

epochs

re
ca

ll

35

4. Experiments

creation, the IDs are different across different datasets so we decided to pick
out the wrong IDs and subsequently clean only one dataset, specifically the
0.1 margin overlap dataset as this dataset performed the most consistently
during our previous experiments and had the most samples.

cleaning the pairs samples

As the pairs samples are smaller in number than the samples of singles, we
had to be more careful with picking out the wrong IDs, because we wanted
to pick out the least amount possible. For this reason, we manually classified
(based only on the judgement of a human) the samples into four categories
– right, wrong, weird, and separate. The right ones are the samples that are
the samples that we want and are not ignored in any of our experiments. The
wrong IDs are of the samples that are obviously wrong. In most instances,
this means that a clear single pedestrian is present in the crop instead of
an occluded pair or that no one is present in the crop at all. The wrong
IDs are ignored in all of our following experiments. The weird samples IDs
are picked out for a multitude of reasons, but most of them have a huge
amount of artifacts (usually because the annotators annotated pedestrians on
the edge of the image and the camera lens caused distortion like in figure 4.3)
from the camera and can’t be considered proper right samples even though
occlusion of pairs might be present. The IDs that are classified as separate
have no occlusion present in their corresponding samples and their supposed
paired pedestrians have a clear distinction margin between their bodies. We
experimented with the skipping of the last two types of samples but ultimately
found out that skipping them both is beneficial to the training. This picking
strategy concerns the training and validation datasets containing samples of
pairs internally referred to as train 0 and val 0.

Figure 4.3: example of the artifact/distortion type of bad sample

cleaning the singles samples

Note, that this concerns the training and validation datasets containing sam-
ples of singles internally referred to as train 1 and val 1. Because the datasets

36

4.2. Ignoring bad samples

containing singles are much bigger, we chose a different picking strategy than
with the pairs samples. Instead of picking out the wrong IDs, we pick out
the right IDs, which means that we manually go through the samples and
select only the examples which contain single pedestrians with no occlusion
and little to no image artifacts. An example of a mislabeled single sample
can be seen in the figure 4.4, where the sample clearly contains a pair with a
significant amount of occlusion but it is labeled as a single.

Figure 4.4: visualisation of a misslabeled sample of a class single. Values from
left to right: error, predicted value, ground truth, id of the sample.

Results of the cleaning

The cleaning of the datasets had a huge impact on the performance as can
be seen from the figure 4.5, where a comparison of the evaluation metrics
precision, recall, and accuracy in various stages of dataset cleaning can be
seen. First, we cleaned the full pairs train dataset (train0) and a 100 samples
from the pairs validation dataset (val0) with the biggest error after one epoch
– this is the orange plot in the figure. Then we additionally cleaned the singles
train dataset (train1) which is visualized as the pink plot. Finally, we cleaned
the singles validation dataset (val1) and the rest of the pairs validation dataset
(val0) – this is visualized as the grey plot. The datasets are again summarized
below for ease of reading because the datasets are referenced several times in
the following text.

• orange – cleaned train0 and a 100 samples with the worst error from
val0

• pink – cleaned everything above and additionaly train1

• grey – cleaned everything above and additionaly val1 and val0

37

4. Experiments

Figure 4.5: TensorBoard visualisation of the results from datasets cleaned to
various degrees

(a) orange=least cleaned, pink=more cleaned, grey=most cleaned – the datasets are
described in more detail below

epochs

pr
ec

isi
on

epochs

re
ca

ll

epochs

ac
cu

ra
cy

Table 4.2: rounded ratios of pairs to samples in a validation batch in different
stages of cleaning

stage rounded ratio of pairs to singles
1. – orange 1 : 15,3
2. – pink 1 : 1,47
3. – grey 1 : 2,22

38

4.2. Ignoring bad samples

To better understand the validation results from the various datasets, we
need to take into account the class ratios, since those have a significant impact
on all the metrics. The ratios are listed in the table 4.2. The first version
of the cleaned dataset (orange) has a really imbalanced ratio in validation.
The imbalance in favor of the singles samples negatively affects the precision,
because more of the misclassified pairs (false positives, positive being the class
pair) samples end up being counted as wrong (specifically false positives),
whereas if we had a more balanced dataset some of those misclassified samples
would still end up being counted as correct (specifically true positives) simply
because there is a higher chance of being a pair for each sample. Note that the
real performance is still bad in the second case described above as the model
doesn’t classify any better than the previous one, but the evaluation metrics
can differ greatly with various ratios so the ratios have to be considered when
evaluating each of the datasets. With just the pairs samples cleaned (orange),
we achieved 2% higher precision of 15% (2% increase in precision being an
increase of 15% from the previously achieved 13% precision). This motivated
us to continue with the cleaning process as precision was the most important
metric for our purpose of improving the pedestrian detector.

The pink dataset with all the train samples (pairs and singles) cleaned
achieves a huge increase in both precision and recall with a slight decrease in
accuracy. This would mean a perfect result of our cleaning, but a huge part
of the result has to be attributed to the change in class ratios, which are now
1 : 1,47 (pairs : singles) for the reason described in the paragraph above.
Still, the results have improved, the lower accuracy can be explained with the
changed ratio as well because the model now has a harder time predicting
since before all the model had to do to achieve high accuracy was to learn to
classify as many samples as singles.

The recall is much bigger after the cleaning of the training dataset as
well. This metric is interesting as it shouldn’t be higher simply because of
the change in ratios since we use weighted loss, which means that the higher
representation of singles samples in the training dataset is appropriately com-
pensated in the loss function so that the models learn both classes equally.
This means that the data cleaning really did improve the recall of the model
to a high enough value usable in a real application.

In the grey dataset, validation has been fully cleaned which has the ex-
pected effect of an increase in recall and accuracy. Interestingly there is a
small decrease in precision, but the decrease is small and it can be attributed
to fluctuations in training.

Another advantage over the uncleaned models is that previously the model
was never ’sure’ about the predictions meaning that the predicted value was
often close to an uncertain 0.5 (where 1.0 means a sure prediction of a single
single and 0.0 means a sure pair) even in the later epochs. With the cleaned
datasets, the model started to be differently sure about its predictions, mean-
ing it has – at least in theory – really learned. This is useful for our purposes

39

4. Experiments

because we want to improve the detector so the ’sureness’ information can be
used for setting of an additional threshold for classifying. For example, pairs
can only be the detections with pairs confidence score above 0.9 (equal to a
prediction score below 0.1).

4.3 Augmentations

To reduce overfitting as well as inflate our dataset size we use a variety of
augmentations from the imgaug library. Augmentations are transforms of the
sample images so that one sample can be used multiple times increasing the
effective sample count. The transforms can range from changing the colors
or shifting the image to adding various noises or artifacts to the image. It is
important to note that in the case of our problem, some augmentations may
actually be detrimental to the learning. This is due to the fact that in many of
our image samples the interesting object (pedestrian or pedestrians) is small
and for example, adding artifacts or shifting the image may entirely or partly
remove the pedestrian or parts of the occluded pedestrian from the sample.
The augmented sample of a pair would then become a sample of a single (or of
an undefined class) but would still be labeled as a pair, confusing the learning
process.

For this reason, we only use the augmentations that do not completely
remove or occlude parts of the image. During training 50% of the images in
a batch have an equal probability (1

3) of being transformed with one of the
following augmentations.

• Adding a value in the range 〈−50, 50〉 to all pixels in the image.

• Changing the contrast of the image with a strength value in the range
〈0.75, 1.75〉, where a value lower than 1 decreases the contrast and a
value greater than 1 increases the contrast.

• Changing the color temperature of the image to a value ranging from
2500 (warmer, more red and yellow) to 8000 (colder, more blue). Note
that only 20% of the one third of the 50% (so in total 0.5× 1

3 × 0.2 = 1
30

or around 3%) of the images in a batch will be transformed in this way.

4.4 Hyperparameters

In this section, we experiment with different hyperparameters. First and fore-
most, we try to find the best model. Because of this, once we found out that
some hyperparameter or dataset configuration was the best we usually stopped
testing others of the same type and focused on changing different aspects. So
as we gradually progressed towards better accuracy it is possible that some
aspect that would actually yield better results in a different configuration has

40

4.4. Hyperparameters

been forgotten and has not been tried in the end, because the number of possi-
ble configurations and combinations of datasets is just too high and we mainly
wanted to make the best model possible. Note that this approach is true for
all our datasets experiments as well.

4.4.1 Testing various hyperparameters on the old dataset
with separate validation data sources

We started our experiments with various hyperparameters on the old dataset
with separate validation data sources described in the subsection 3.3.1.

Table 4.3: accuracy measurements with various hyperparameters on the sep-
arate validation dataset

change (compared to baseline) best accuracy
baseline (100 batch size and adamW(lr=1e-3)) 0.628
new aug (new augmentations) 0.607
new aug with 100 batch size 0.611
new aug with 64 batch size 0.618
new aug with 64 batch size and adamW(lr=1e-4) 0.622
baseline with 64 batch size and adamW(lr=1e-3) 0.604
baseline with 64 batch size and adamW(lr=1e-4) 0.622

First, we should explain the changes in hyperparameters. Previously we
used a set of augmentations described in the section 4.3, the new augmenta-
tions are the following. The color jitter which changes the brightness, satu-
ration, and contrast of the image. The coarse dropout which randomly drops
small rectangular regions from the image. The fancy PCA which performs
principal component analysis and alters the intensities of the RGB channels.
The gauss noise which adds gaussian noise to the image and finally the ran-
dom shadow augmentation which adds shadows to generalize better in various
lightning conditions. We also experimented with different learning rates on
the AdamW optimizer and with smaller and bigger batch sizes.

As we can see from the table 4.3, none of the changed hyperparameters
reliably improves the accuracy. Our measurements show that the accuracy is
worse than baseline with all the tried changes. That can be deceiving as the
baseline accuracy score is the best out of several validation runs, whereas the
scores of the models with changed hyperparameters were only evaluated two
times, which means that the better score might be caused by fluctuations in
learning. Still, as we did not see any improvements to the baseline accuracy,
we used the baseline hyperparameter values.

After experimenting with this dataset, we later discovered that it did not
fit our purposes of the final model performing on the select cameras as best

41

4. Experiments

as it can as the model trained with this dataset would only perform better
when applied to an unseen camera source (different, unseen shopping centre).
This is why this dataset and its results are never used, experimented on, or
discussed later.

4.4.2 Testing various hyperparameters on the current
cleaned dataset with margin 0.10 with picked
detections

As accuracy does not explain the model entirely we provide other metrics:
precision, recall, and the F1 score as can be seen in the table 4.4. The model
with the best achieved accuracy is the model, where the batch size is 100 and
the learning rate is 1e−3. The model that achieved the best precision differs
from the one with the best accuracy only by using the new augmentations
during training. The model with the best recall differs from the one with the
best accuracy by changing the batch size to 64. Note that all the models
oscillated greatly and their scores were very similar for most of the training,
the best achieved scores are mostly outliers often achieved during the first 100
epochs (out of 2000 epochs). Furthermore, the recall and precision scores are
mostly negatively correlated, meaning that the lower precision means higher
recall and vice versa. This means that the F1 score metric is more accurate
and more telling.

The highest F1 score is achieved with the same model as the one with the
highest accuracy. So the best configuration found so far is 100 batch size,
a learning rate of 1e−3 and no attention in backbone or new augmentations
used. The significance of this finding is not that important as the change
in the F1 score is not large enough (so it could be caused by randomness
and fluctuations in training). The smoothed progression of the F1 score of
models with different hyperparameters across epochs can be seen in the figure
4.6. In the back of the figure and less visibly, the real values and their heavy
oscillations can be seen.

4.5 Final tracking evaluation

Our ultimate goal is to improve the performance of the existing tracking al-
gorithm with added information about occlusion. We measure the impact of
our model described in the sections above by applying it to tracking in the
counting task. In the counting task, the detector detects and tracks pedestri-
ans, each pedestrian that goes inside some predefined zone from one direction
is counted. The counting task was really useful during the pandemic when the

1which AdamW learning rate is used
2new augmentations used (same as in the previous experiment in subsection 4.4.1)
3backbone with added attention feature used

42

4.5. Final tracking evaluation

Table 4.4: accuracy, precision, recall and F1 score measurements with various
hyperparameters on the current clean dataset

hyperparameters validation results ID
batch
size

learn
rate 1

new
aug 2

atten-
tion
bb 3

best
accu-
racy

best
preci-
sion

best
re-
call

best
F1-
score

100 1e−3 True False 0.789 0.771 0.781 0.725 0
100 1e−4 True False 0.826 0.732 0.854 0.722 1
64 1e−4 True False 0.823 0.763 0.797 0.713 2
64 1e−4 False False 0.818 0.716 0.821 0.721 3
64 1e−3 False False 0.820 0.742 0.884 0.728 4
100 1e−3 False False 0.841 0.766 0.876 0.737 5
256 1e−3 False False 0.816 0.756 0.871 0.716 6
256 1e−3 False True 0.839 0.763 0.849 0.734 7
100 1e−4 False True 0.820 0.736 0.836 0.717 8

Figure 4.6: heavily smoothed (with smoothing factor of 0.999) TensorBoard
visualisation of the three runs (with different hyperparameters) with the high-
est maximum F1-score

(a) grey run ID = 5, blue run ID = 7, green run ID = 4

epochs

F1
sc

or
e

43

4. Experiments

number of people inside a shopping centre should not reach above a certain
threshold.

The improvement works in the following way, first, the tracking detects
a supposed pedestrian. This detection (the crop around the pedestrian) is
then the input to our occlusion model (the focus of this work) which predicts
the probability of the detection being an occluded pair instead of a single
pedestrian. If the probability is above some threshold (this is done to mini-
mize false positives and maximize precision) then the detection is counted two
times, which reduces the error in the counting task.

We evaluated the model and the counting error was 111 out of 2251 pas-
sages (ground truth). The baseline without using our occlusion/pairs classifier
had a counting error of 117. This means that using our classifier led to a de-
crease of 0.26% (calculated as 117−111

2251 × 100) in the counting error. Those
results are not good enough to be applied in iC systems.ai cameras yet, but
they are promising for first results. Note that the decrease in the counting
error can be partially caused by false negatives and false positives negating
each other. Also note that in the future, we plan to improve our heuristic
which determines whether a detection is a pair or not by working with the
tracks in time. This adds valuable information about the previous frames,
which are often the deciding factor even for human recognition.

44

Conclusion

The goal of this thesis was to first research existing work and methods related
to the problem of occlusion detection, then to obtain suitable datasets and use
them to train a pairs occlusion classifier. The final goal is to use this classifier
to improve the performance of the existing iC Systems.ai tracking system in
the task of counting pedestrians.

As our datasets are unclean, imbalanced, and not sufficiently big, we first
discuss how those problems affect the performance of the model on the val-
idation dataset and then offer solutions to those problems such as dataset
cleaning and heuristics during the dataset creation process. After reaching
a satisfying score in various evaluation metrics on the validation dataset, we
evaluate how our pairs classifier improves the tracking system in the count-
ing task. The resulting counting error is reduced from an error of 117 to an
error of 111 out of 2251 pedestrian passages. This is a reduction of the count-
ing error by 0.26% which is a promising result but not yet applicable for iC
Systems.ai. Note, that the improvement is also likely in part caused by the
negation of false positives and false negatives, which is a known problem with
the evaluation of the counting task.

In the future, we plan to expand our training dataset which may improve
the model a lot, because currently, the training dataset is still not big enough.
We also plan to improve our heuristic determining if a detection is a pair or not
with the addition of information about the previous detection. For example
when a pair was present in the recent past then the single detection is more
likely to be a pair in the present.

45

Bibliography

[1] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman, “Learning to
detect partially overlapping instances”, in 2013 IEEE Conference on
Computer Vision and Pattern Recognition, 2013, pp. 3230–3237. doi:
10.1109/CVPR.2013.415.

[2] P. Kilambi, E. Ribnick, A. J. Joshi, O. Masoud, and N. Papanikolopou-
los, “Estimating pedestrian counts in groups”, Computer Vision and
Image Understanding, vol. 110, no. 1, pp. 43–59, 2008, issn: 1077-3142.
doi: https://doi.org/10.1016/j.cviu.2007.02.003. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1077314207000392.

[3] W. Ge, R. T. Collins, and R. B. Ruback, “Vision-based analysis of small
groups in pedestrian crowds”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 5, pp. 1003–1016, 2012. doi: 10.
1109/TPAMI.2011.176.

[4] M. C. Liem and D. M. Gavrila, “Joint multi-person detection and track-
ing from overlapping cameras”, Computer Vision and Image Under-
standing, vol. 128, pp. 36–50, 2014, issn: 1077-3142. doi: https://doi.
org/10.1016/j.cviu.2014.06.003. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1077314214001301.

[5] M. Seise, S. Mckenna, I. Ricketts, and C. Wigderowitz, “Segmenting
multiple objects with overlapping appearance and uncertainty”, Jan.
2006, pp. 839–848. doi: 10.5244/C.20.86.

[6] M.-C. Chen, “A video surveillance system designed to detect mul-
tiple falls”, Advances in Mechanical Engineering, vol. 8, no. 4,
p. 1 687 814 016 642 914, 2016. doi: 10.1177/1687814016642914. eprint:
https://doi.org/10.1177/1687814016642914. [Online]. Available:
https://doi.org/10.1177/1687814016642914.

47

https://doi.org/10.1109/CVPR.2013.415
https://doi.org/https://doi.org/10.1016/j.cviu.2007.02.003
https://www.sciencedirect.com/science/article/pii/S1077314207000392
https://www.sciencedirect.com/science/article/pii/S1077314207000392
https://doi.org/10.1109/TPAMI.2011.176
https://doi.org/10.1109/TPAMI.2011.176
https://doi.org/https://doi.org/10.1016/j.cviu.2014.06.003
https://doi.org/https://doi.org/10.1016/j.cviu.2014.06.003
https://www.sciencedirect.com/science/article/pii/S1077314214001301
https://www.sciencedirect.com/science/article/pii/S1077314214001301
https://doi.org/10.5244/C.20.86
https://doi.org/10.1177/1687814016642914
https://doi.org/10.1177/1687814016642914
https://doi.org/10.1177/1687814016642914

Bibliography

[7] C. Stauffer and W. Grimson, “Adaptive background mixture models
for real-time tracking”, in Proceedings. 1999 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Cat. No
PR00149), vol. 2, 1999, 246–252 Vol. 2. doi: 10.1109/CVPR.1999.
784637.

[8] B. Ristic, “Detecting anomalies from a multitarget tracking output”,
IEEE Transactions on Aerospace and Electronic Systems, vol. 50,
pp. 798–803, 2014.

[9] B. Romera-Paredes and P. H. S. Torr, “Recurrent instance segmenta-
tion”, in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds., Cham: Springer International Publishing, 2016,
pp. 312–329, isbn: 978-3-319-46466-4.

[10] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman, “Interactive
object counting”, in Computer Vision – ECCV 2014, D. Fleet, T. Pa-
jdla, B. Schiele, and T. Tuytelaars, Eds., Cham: Springer International
Publishing, 2014, pp. 504–518, isbn: 978-3-319-10578-9.

[11] R. Guerrero-Gómez-Olmedo, B. Torre-Jiménez, R. López-Sastre, S.
Maldonado-Bascón, and D. Oñoro-Rubio, “Extremely overlapping ve-
hicle counting”, in Pattern Recognition and Image Analysis, R. Paredes,
J. S. Cardoso, and X. M. Pardo, Eds., Cham: Springer International
Publishing, 2015, pp. 423–431, isbn: 978-3-319-19390-8.

[12] D. Kang, Z. Ma, and A. B. Chan, “Beyond counting: Comparisons of
density maps for crowd analysis tasks - counting, detection, and track-
ing”, CoRR, vol. abs/1705.10118, 2017. arXiv: 1705.10118. [Online].
Available: http://arxiv.org/abs/1705.10118.

[13] M. Schiegg, P. Hanslovsky, C. Haubold, U. Koethe, L. Hufnagel, and
F. A. Hamprecht, “Graphical model for joint segmentation and tracking
of multiple dividing cells”, Bioinformatics, vol. 31, no. 6, pp. 948–956,
Nov. 2014, issn: 1367-4803. doi: 10.1093/bioinformatics/btu764.
eprint: https://academic.oup.com/bioinformatics/article-pdf/
31/6/948/17127270/btu764.pdf. [Online]. Available: https://doi.
org/10.1093/bioinformatics/btu764.

[14] I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and M.
Schmidt, “Where are the blobs: Counting by localization with point
supervision”, in Proceedings of the European Conference on Computer
Vision (ECCV), Sep. 2018.

[15] Z. Ma, L. Yu, and A. B. Chan, “Small instance detection by integer
programming on object density maps”, in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3689–
3697. doi: 10.1109/CVPR.2015.7298992.

48

https://doi.org/10.1109/CVPR.1999.784637
https://doi.org/10.1109/CVPR.1999.784637
https://arxiv.org/abs/1705.10118
http://arxiv.org/abs/1705.10118
https://doi.org/10.1093/bioinformatics/btu764
https://academic.oup.com/bioinformatics/article-pdf/31/6/948/17127270/btu764.pdf
https://academic.oup.com/bioinformatics/article-pdf/31/6/948/17127270/btu764.pdf
https://doi.org/10.1093/bioinformatics/btu764
https://doi.org/10.1093/bioinformatics/btu764
https://doi.org/10.1109/CVPR.2015.7298992

Bibliography

[16] L. Wang, L. Xu, and M.-H. Yang, “Pedestrian detection in crowded
scenes via scale and occlusion analysis”, in 2016 IEEE International
Conference on Image Processing (ICIP), 2016, pp. 1210–1214. doi: 10.
1109/ICIP.2016.7532550.

[17] S. Albawi, T. Abed Mohammed, and S. ALZAWI, “Understand-
ing of a convolutional neural network”, Aug. 2017. doi: 10 . 1109 /
ICEngTechnol.2017.8308186.

[18] M. Xiang, “Convolutions: Transposed and deconvolution”, 2020. [On-
line]. Available: https://medium.com/@marsxiang/convolutions-
transposed-and-deconvolution-6430c358a5b6.

[19] S. Ruder, “An overview of multi-task learning in deep neural networks”,
CoRR, vol. abs/1706.05098, 2017. arXiv: 1706.05098. [Online]. Avail-
able: http://arxiv.org/abs/1706.05098.

49

https://doi.org/10.1109/ICIP.2016.7532550
https://doi.org/10.1109/ICIP.2016.7532550
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://medium.com/@marsxiang/convolutions-transposed-and-deconvolution-6430c358a5b6
https://medium.com/@marsxiang/convolutions-transposed-and-deconvolution-6430c358a5b6
https://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098

Appendix A
List of used abbreviations

CNN Convolutional neural network

NLP Natural language processing

RNN Recurrent neural network

FCN Fully convolutional network

LSTM Long short-term memory network

ROI Region of interest

ReLU Rectified Linear Unit

51

Appendix B
Contents of the enclosed USB

Note, that as the codes are owned by iC Systems per the agreement with
CTU FIT, they are not present on the enclosed USB but rather shared
directly with the opponent of this thesis via GitLab for a limited time. Also
note that the code in most of the files accessible in the GitLab repository
is not written entirely by myself but rather expanded upon the work of my
colleagues at iC Systems.ai. The files where most of my contribution is
present are: pairs pipeline.py, pedestrian stroller gender pairs.py, Adaboost-
OutputDatasetBboxRegression pairs.py, clr reg gt generator NEW.py,
eval pairs.py, merge+create datasets script NEW.py and
pairs heuristic OUTPUT is frames+dataset.py. Most of those files are
located in the path hydra/pipelines/necessary files in the GitLab repository.

thesis.pdf......................text of the thesis in the form of a PDF

53

	Introduction
	Goals
	Related work
	A novel method for detecting and counting overlapping tracks in SSNTD by image processing techniques
	Conclusion in relation to our work

	Learning to detect partially overlapping instances
	Conclusion in relation to our work
	Related works
	Conclusion to the related works

	Conclusion

	Methods
	CNN
	Layers
	Other features

	Hydra architecture – multi-task learning
	Motivation
	Multi-task learning methods
	Multi-task learning advantages
	Our hydra architecture

	Datasets
	Problem definition
	Heuristics for dataset creation
	Picked detections heuristics
	Heuristic to create datasets from annotations

	Datasets
	Datasets created from annotated picked detections
	Validation and train datasets created from separate camera sources
	Validation and Train datasets created from the same camera sources

	Unbalanced data

	Experiments
	Datasets experiments
	Accuracy comparison across different margins between singles and pairs measured on the dataset created from the same camera sources
	First results on a dataset with unbalanced validation sampling

	Ignoring bad samples
	Augmentations
	Hyperparameters
	Testing various hyperparameters on the old dataset with separate validation data sources
	Testing various hyperparameters on the current cleaned dataset with margin 0.10 with picked detections

	Final tracking evaluation

	Conclusion
	Bibliography
	List of used abbreviations
	Contents of the enclosed USB

