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Abstrakt

Zvyšující se složitost moderních modelů strojového učení z nich udělala ne-
průhledné černé skříňky, což komplikuje jejich nasazení v kritických oborech
jako například zdravotnictví. Tato práce zkoumá obor vysvětlitelné umělé in-
teligence z pohledu lékařského snímkování a detailně popisuje několik vhodně
zvolených nejmodernějších vysvětlovacích metod. Tyto vysvětlovací metody
jsou následně vyhodnoceny na modelech Resnet50 a Vision transformer na-
trénovaných na úloze detekce onemocnění covid-19 na základě rentgenových
snímků hrudníku.

Klíčová slova Vysvětlitelnost, interpretabilita, vysvětlitelná umělá inteli-
gence, XAI, lékařské snímkování
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Abstract

The increasing complexity of the state-of-the-art machine learning models has
caused them to become opaque black boxes. This hinders their deployment
in critical domains such as healthcare. This thesis studies the field of explain-
able artifical intelligence in the context of medical imaging. It selects and
detailedly describes various state-of-the-art explanation methods. The expla-
nation methods are used to explain and evaluated on ResNet50 and Vision
transformer models trained for the task of covid-19 pneumonia detection from
chest X-ray scans.

Keywords Explainability, Interpretability, Explainable Artificial Intelligence,
XAI, medical imaging
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Introduction

The field of artificial intelligence has witnessed a dramatic rise of machine
learning models that arise from neural network architectures. Thanks to the
increasing computational power and dataset sizes such models are becoming
more complex. On one hand, the increasing complexity of deep neural net-
works drives their performance forward which motivates their deployment in
practice to the point that they are becoming ubiquitous in our everyday lives.
On the other hand the models are becoming more black box which hinders
their deployment in critical domains such as healthcare.

This has lead to a recent rapid rise of interest in the field of explainable AI
that aims to produce methods that uncover the reasoning of complex models.
Such explanations are valuable for doctors who can validate whether or not
the model has learned reasonable features and is safe to be used as a guide
in performing diagnoses. They are also valuable for the machine learning
practitioners for debugging and evaluating their models.

While various explanation methods were introduced in the recent years an
insufficient attention was paid to how the explanations should be evaluated in
terms of their faithfulness to the model being explained. The lack of available
ground truth makes such evaluation difficult which has lead the researchers to
often rely on nonquantitative visual inspection which is an inadequate form
of evaluation.

This thesis aim to research and describe the state-of-the-art explanation
methods that are suitable in the context of medical imaging. The second part
of the research is dedicated to quantitative evaluation of the explanation’s
faithfulness to the model being explained.

In the theoretical part 1, section 1.1 briefly introduces the concepts from
machine learning and neural networks that are relevant for the further descrip-
tion of the individual explanation methods. Section 1.2 provides a detailed
description of 9 selected state-of-the-art explanation methods. Section 1.3
describes various methods for evaluating the explanation’s faithfulness.
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Introduction

In the experimental part 2, various convolutional neural networks and a vi-
sion transformer are trained on the task of covid-19 pneumonia detection from
chest X-ray images. The corresponding models are subsequently explained by
all the described explanation methods and the explanation’s faithfulness is
evaluated through various experiments in section 2.4.
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Chapter 1
Theoretical Part

1.1 Machine learning
Machine learning classifier is a function f : Rn 7→ R|C|, where Rn is n-
dimensional input space and R|C| is output space, where C = {c1, c1, . . . , cm}
denote the set of classes. The predicted class is generally given as the argument
of the maxima in the output vector. Alternatively a classifier can directly
return the predicted class: f : Rn 7→ C. A special case of classification is
binary classification, where C = {0, 1}.

1.1.1 Perceptron
An example of a binary classifier is a simple perceptron illustrated in figure
1.1.

x2

x1

1

...

xn

ξw2

w1

w0

...
wn

φ

weights

inner potential activation function

output

Figure 1.1: Architecture of a simple (single-layer) perceptron classifier
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1. Theoretical Part

Where ξ denotes the inner potential given as the weighted sum of inputs:

ξ = w0 +
n∑
i=1

wixi (1.1)

and φ denotes an activation function which is in case of a simple perceptron
given as the threshold function:

φ(ξ) =
{

1 ξ ≥ 1
0 ξ < 1

.

1.1.2 Multi-layer perceptron
The multi-layer perceptron, also called the feedforward neural network consists
of simple perceptrons organized in layers and interconnected in a way that the
outputs of one layer of perceptrons are used as inputs into the next layer [1].
An example architecture of a multi-layer perceptron with one hidden layer and
two output neurons (perceptrons) for binary classification is given in figure 1.2.

...
... ...

x1

x2

x3

xn

g
(1)
1

g
(1)
l

Y 0

Y 1

input
layer

hidden
layer

ouput
layer

Figure 1.2: Example of a multi-layer perceptron (feedforward neural network)
architecture with a single hidden layer

The activation functions used in the multi-layer perceptron are generally
not the same as for the simple perceptron. A popular choice is the Rectified
linear unit activation function (ReLU) defined as:

ReLU(ξ) = max(0, ξ). (1.2)
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1.1. Machine learning

In order for the model to directly output the probabilities of the given
classes, the softmax function is often added after the last layer. Softmax
function for class i is given as:

softmax(Y 1, Y 2, . . . , Y |C|)i = eY
i∑|C|

c=1 e
Y c

, (1.3)

where Y 1, Y 2, . . . , Y |C| denote the outputs of the neurons in the last layer.
Some of the explanation methods described in section 1.2 use the pre-

-softmax outputs to compute the explanations. To avoid ambiguity the fol-
lowing notation is used throughout the thesis: f denotes the post-softmax
output (probabilities) of a classifier, f c denotes the post-softmax output for
a class of interest c, Y denotes the pre-softmax output of a classifier and Y c

denote the pre-softmax output for a class of interest c.

1.1.3 Supervised training
As illustrated in figure 1.1 each perceptron (neuron) has associated weights wi
for each input feature xi. In supervised learning, these weights are trained
(approximated) using a set of annotated pairs of inputs and target outputs
(x, y) called the training dataset.

The training is performed by an optimization algorithm such as stochastic
gradient descent (SGD) [1] or Adam [2] which aims to minimize a certain loss
function over the whole training dataset.

A typical loss function used for training a classifier is the categorical cross-
entropy loss defined as:

L(y, f(x)) =
|C|∑
c=1

1c=y logf
c(x), (1.4)

where f c(x) denotes the probability of class c predicted by the model f and
(x, y) is an input-output pair from the training data.

The training of neural networks is described in more detail in the Deep
Learning book by Goodfellow, Bengio and Courville [1].

1.1.4 Convolutional neural networks
Convolutional neural networks (CNNs) are specialized neural network archi-
tectures used for processing data that has a grid-like topology, such as ECG
signals, X-ray scan images or MRI scans. Convolutional neural networks lever-
age sparse connectivity and parameter sharing which makes them much more
efficient on such data compared to the classic feedforward neural networks.

A typical convolutional layer consists of three steps: convolution, appli-
cation of nonlinearity (activation function) and pooling. Convolution and
pooling are described in the following subsections. In some literature (and

5



1. Theoretical Part

implementations), the convolution, nonlinearity application and pooling are
considered as individual layers, however their meaning is the same [1].

It has been observed by many researchers that creating a deep network
that consists of such constructed convolutional layers allows the network to
learn high-level features which are then used as an input for a fully connected
layer that performs the final classification [3].

1.1.4.1 Convolution

In convolutional neural networks, the convolution operation corresponds to
application of a convolutional kernel (filter) over the whole input. The kernel
is applied by obtaining its dot product with the input at each spatial location
as is illustrated in figure 1.3. By making the kernel smaller than the input
a corresponding neuron does not require the outputs of all neurons in the
previous layer but only of those necessary to compute the dot product. This
property is called sparse connectivity. Moreover, the kernels’ weights (pa-
rameters) are shared among the neurons which is again in contrast with the
feedforward neural network, where each neuron has its own set of parameters
[1].

Figure 1.3: Illustration of the convolution operation, where a 3 × 3 filter
(kernel) is applied on a two dimensional input. The result of convolving over
the whole input is reffered to as feature map.

1.1.4.2 Pooling

Pooling operation aim to down-sample its input by aggregating input values
at certain spatial locations. The most common aggregation choice is taking

6



1.1. Machine learning

the maximum value among the considered spatial locations as illustrated in
figure 1.4.

Figure 1.4: Illustration of the max-pooling operation.

The pooling operation makes the internal representation to some extent
invariant to translations. This means that the presence of a given feature is
more imporant than its exact location in the image. While this property has
been criticized by some researchers, the use of pooling has been proven to be
valuable in practice [4].

1.1.4.3 Architectures

This subsection briefly introduces the two CNN architectures that are trained
in the experimental part of this thesis.

ResNet50 [5] Prior CNN architectures such as VGG [6] increased their
accuracy mainly by adding more layers. The authors of ResNet observed
that at some point adding more layers to the model degrades it’s performance
rather than increase it due to the vanishing gradient problem. The authors
tackle this problem by introducing skip connections, which makes the output
of a certain layer flow not only to the directy subsequent layer but also to some
more distant layer. The ResNet50 architecture is illustrated in figure 1.5.

Figure 1.5: Illustration of the ResNet50 architecture.

DenseNet121 [7] The DenseNet architecture takes the skip connection
concept even further. In Densenet121 multiple convolutional layers are grouped
into 4 dense blocks, where the inputs of these dense blocks are given as out-

7



1. Theoretical Part

puts of all prior dense blocks in the network. The DenseNet121 architecture
is illustrated in figure 1.6.

Figure 1.6: Illustration of the DenseNet121 architecture.

1.1.5 Vision transformer
Transformer is a neural network architecture proposed in [8] which quickly
became the state-of-the-art for natural language processing tasks. Its main
contribution is the utilization of the concept of self-attention and attention in
general.

Let X ∈ Rn×d denote a matrix where each feature of an input x ∈ Rn was
embedded into a d dimensional space. Let WQ ∈ Rd×dq ,WK ∈ Rd×dk and
W V ∈ Rd×dv such that dq = dk denote the querries, keys and values weight
matrices. The self-attention is given as:

softmax

(
QK

⊺√
dq

)
V , (1.5)

where K = XWK , Q = XWQ and V = XW V are referred to as the key,
querry and value matricies.

The interpretation of the self-attention is that it captures how salient the
embedded features are with each other. This makes the self-attention inter-
esting not only in the context of improving performance of a model but also
to uncover the feature interactions the model has learned through the weight
matricies WQ,WK and W V .

8



1.2. Explanation methods

In the context of images the equation 1.5 is impractical given that the QK⊺

matrix is of size n× n, where number of features n is equal to the number of
pixels in an image. Dosovitskiy et al. propose a solution to this by not using
the individual pixels as features but rather splitting the input image into fixed
size patches and using them as features instead.

The proposed model is called the Vision transformer and its overview is
given in figure 1.7. The important part to note is that the class embedding
is added to the patch embeddings. This means that the self-attention is com-
puted not only between the feature embeddings but also between the class
embedding and feature embeddings. As a result the self-attention could be
intuitively utilized to produce an explanation that is implicitly true to the
model.

Figure 1.7: Overview of the Vision transformer model.

For more detail, please referr to the original Visual transformer paper [9].

1.2 Explanation methods
This sections describes majority of the research done in this thesis. Subsection
1.2.1 describes the taxonomy of explanation methods. Subsection 1.2.2 discuss
various solutions to a common dilemma in the field of explainable AI which
is how to simulate missing features for models that require complete inputs.

Further subsections present detailed descriptions of the state-of-the-art
explanation methods for the task of diagnostic imaging. The selection was
derived through an extensive research of the up to date XAI publications.
Subection 1.2.3.1 describes the LIME method that explains a certain pre-
diction of an arbitrary model by trainng a locally faithful surrogate model.
Subsection 1.2.4.1 introduces various explanation methods that are based on

9



1. Theoretical Part

concepts from the coalition game theory. Subsection 1.2.5 describes various
gradient based explanation methods. Subsection 1.2.6 introduces a final cat-
egory of explanation methods that aim to explain a neural network through
restricting the flow between its layers.

1.2.1 Taxonomy
Explanation methods are primarily divided based on the scope of their expla-
nations as described in subsection 1.2.1.1 and by the variety of models they
can be used to explain as described in subsection 1.2.1.2.

Explanation methods can be further divided based on the form in which
the explanations are presented. This thesis focuses solely on the feature impor-
tance (or attribution) explanations that show what influence did each input
feature have on the model’s prediction. In the context of medical imaging the
input features correspond to individual or multiple pixels in the input image.
In images, the feature importances are therefore often referred to as pixel im-
portances (or attributions). Pixel importances organized in the same shape
as the input images are then referred to as saliency maps [10].

1.2.1.1 Explanation’s scope

Explanation methods are divided based on the scope of their explanations to
global and local.

Global explanation methods aim to explain an entire model at once.
In other words they aim to produce an explanation that would explain the
decision making of the given model on its whole input space. While such
explanations are desirable as they could provide new valuable insight in tasks
where the machine learning models surprass the human-level performance,
they are mostly unattainable in practice [10].

Local explanation methods aim to explain the decision making of
a model only for a single prediction. The idea is that focusing on a single
prediction of the model can make the explanation process feasible even for
models that are too complex to be explained globally.

1.2.1.2 Model specificity

Explanation methods are divided based on their specificity to model-agnostic
and model-specific.

Model-agnostic explanation methods can be used to explain an arbi-
trary model as they treat the model as a black box and study it only through
its inputs and corresponding outputs. The downside to their flexibility is their
higher computational complexity.

Model-specific explanation methods are designed to explain a cer-
tain class of models by utilizing the information in model’s internals (such as

10



1.2. Explanation methods

the backpropagated gradients) which makes them computationally more effi-
cient. Moreover, in the context of convolutional neural networks, the access
to the network’s feature maps can allow the explanation method to uncover
the learned higher-level features.

1.2.2 Simulating missingness in images

An important concept in the explainable AI is simulating the missingness of
given features (pixels). It is an analogy to the human reasoning through coun-
terfactual thinking, where a person assignings importance to certain events by
imagining the change of outcome in cases when the particular event did not
occur [11]. Similar intuition is used by various explanation methods as well
as explanation evaluation methods. Hiding a certain part of an input and
observing the effect it has on the model’s output should give a hint on how
important the given part of the input is to the model. However, most of
the machine learning models and specifically neural networks generally can’t
make a prediction of an incomplete input. The missingness therefore has to
be approximated by replacing the pixels that are supposed to be missing with
values that hide the information in the corresponding pixels while keeping the
input image complete.

First publications in XAI that dealt with the concept of missingness sug-
gested to simply zero out the features that are supposed to be missing. This
approach is generally successful in hiding the information in the particular
features, depending on the task domain. Subsequent publications have recog-
nized that by using this approach the inputs with zeroed out features come
from a different distribution than the original inputs on which the model
was trained. The distribution shift complicates the assessment of the hid-
den features’ importance as it is unclear how to evaluate whether the change
in model’s prediction was caused by hiding an important part of the input
or by the shift in distribution [12]. This has led to introduction of multiple
alternative methods that try to simulate missingness while minimizing the
distribution shift. The current methods used in the image domain can be
divided into two categories – baseline images and imputation methods, both
are presented in the following subsections.

1.2.2.1 Baseline image

Baseline image z ∈ Rw×h×d is an image of the same size as the input image of
interest x ∈ Rw×h×d, where each pixel zi,j,k simulates the missingness of pixel
xi,j,k in the corresponding spatial location (i, j, k). Let m ∈ {0, 1}w×h×d de-
note a binary mask, where mi,j,k = 1 indicate that pixel at (i, j, k) should
be missing from the input image and mi,j,k = 0 otherwise. The image
x′ ∈ Rw×h×d that simulates x with the corresponding pixels missing is
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then given pixel-wise as:

x′
i,j,k =

{
xi,j,k mi,j,k = 0
zi,j,k mi,j,k = 1 .

(1.6)

Popular baseline image choices are introduced below. Visualisation of the
effect of different baseline images in the chest X-ray domain is shown in fig-
ure 1.8.

Black color image: Missing pixels are simply simulated by zeroing out:

zi,j,k = 0. (1.7)

Mean color image: Whether the black pixel can be considered as non-
informative depends on the image domain. In some domains the mean color
of x can be a more suitable alternative:

zi,j = 1
wh

w∑
a

h∑
b

xa,b. (1.8)

Both black and mean color images are constant color baselines which means
they are inherently unable to “hide” pixels of the same color as the baseline.
As a result, by using constant color baseline the pixels that are of the same
color will be always deemed as unimportant [13]. The constant color base-
lines are therefore suitable only in domains, where the corresponding color is
guaranteed to be uninformative.

Random image: Arguably the most uninformative domain-invariant
value is random noise. The pixels of random image baseline are either sampled
from uniform distribution:

zi,j,k ∼ U(0, 1), (1.9)

or from normal distribution:

zi,j,k ∼ N (µx, σ2
x), (1.10)

where µx and σ2
x denote the mean and variance of pixels in x.

As can be seen in rows 2-4 in figure 1.8 all three baseline images mentioned
above seem to be hiding the information in the corresponding pixels sufficiently
well. However it is also easy to see that these methods make the modified
images x′ significantly different compared to the original image distribution.
The following methods aim to hide the pixels information while minimizing
the differences in the distributions of x and x′.

Sampled image: The baseline image is drawn from the same distribution
as the input image. The underlying distribution is generally not available but
can be approximated with the distribution Dtrain that was used for training
the model:

z ∼ Dtrain (1.11)
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1.2. Explanation methods

Figure 1.8: The effect of hiding various parts of the chest X-ray image by
different baseline images. Top: original chest X-ray image and various high-
lighted segments that are supposed to be missing. Then top to bottom: black
baseline, mean color baseline, random uniform baseline, blurred baseline.

Blurred image: The baseline image is obtained by blurring the input
image by an arbitrary blur function (such as Gaussian blur):

z = blur(x) (1.12)

The blurred image is a baseline that fits very well with the human intuition
of missingness. When computing a blurred image each pixel is given as a
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weighted average of its neighborhood pixels. This means that for homogenous
parts of the image, the input image x and baseline z will be similar and a
similar drawback as in the constant color baselines occurs. As a result the
blurred baseline is biased towards highlighting high-frequency parts of the
image [13].

1.2.2.2 Imputation

A common machine learning problem is dealing with missing data in the col-
lected datasets [14]. Due to the ubiquity of this problem, many methods that
aim to impute the missing data based on the available data have been intro-
duced over the years. While most of the XAI publications utilize baselines to
simulate missingness, an alternative approach is to delete the pixels that are
supposed to be missing and impute them by some imputation method based
on the remaining pixels. In theory, the imputation methods that utilize the
information of the remaining neighborhood pixels can produce modified inputs
that are closer to the original image distribution [15]. On the other hand, it
may be difficult to assess how much of the deleted information is imputed
back and how much is really hidden from the model. This issue could be
relevant when using some complex imputation technique, such as utilizing the
generative adversarial networks [16]. An overview of two imputation methods
that have been utilized in the XAI literature is given below and example of
their imputations in chest X-ray image is given in figure 1.9.

Noisy linear imputation: In this method, the missing pixel is imputed
by the linear combination of its neighbors. The assumption is that the neigh-
borhood image pixels are highly correlated and therefore a missing pixel can
be approximated by a weighted mean of its neighborhood pixels:

x′
i,j = wd (x′

i+1,j + x′
i−1,j + x′

i,j+1 + x′
i,j−1)

+ wi (x′
i+1,j+1 + x′

i−1,j+1 + x′
i+1,j−1 + x′

i−1,j−1)
+ η ε,

(1.13)

where wd and wi denotes weights for the direct and indirect neighbor pixels
respectively and η denote the magnitude of added noise ε ∼ N (0, 1). Rong et
al. suggest wd = 1

6 , wi = 1
12 and η = 0.1 [15]. This imputation method is used

in an explanation evaluation method described in subsection 1.3.2.2.
Telea inpaint: Telea is a more advanced inpaint technique introduced

in [17] and is described here only in highlevel. The method inpaints a given
region by gradually imputing the missing pixels on its boundary, making its
way into the center of the region. The inputation is again done by the known
pixels in the neighborhood. Lundberg et al. propose to use this technique in
their explanation method described in subsection 1.2.4 [18].
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Figure 1.9: The effect of imputing various parts of the chest X-ray image by
different imputing methods. Top: original chest X-ray image and various
highlighted segments that are deleted. Then top to bottom: noisy linear
imputation, telea inpaint.

1.2.3 Surrogate model based methods

Arguably the most straightforward method to globally explain an arbitrary
model is through an interpretable surrogate model. Surrogate model g is
trained to reproduce predictions of a model f . Surrogate models have been
originally used in deep learning to speed up the inference of a model by re-
ducing the complexity of the surrogate model. This is possible as training of
the model f is done on a limited number of training examples which often
requires the model to have more parameters than is necessary for the task to
achieve high generalization [1]. However, for training the surrogate model g
an arbitrary number of training examples are available as the model f is used
to annotate the data. The assumption is that when g is interpretable and suf-
ficiently accurate in reproducing predictions of f then g can serve as a global
explanation of f . In practice, this is rarely the case as interpretable models
such as logistic regression lack the necessary capacity to approximate complex
models such as deep neural networks on the whole input space despite the
unlimited training examples [10].
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1.2.3.1 LIME

Local Interpretable Model-agnostic Explanations (LIME) introduced by Ribeiro
et al. in [19] is a framework for providing a local explanation of an arbitrary
model through a locally faithful surrogate model. Despite being originally in-
troduced as a general framework, the majority of publications refer to LIME
as a specific version of LIME that trains a sparse linear model as the local
surrogate. The local faithfulness is achieved by weighting the training samples
for the surrogate model proportionately to their distance from the input of
interest as is illustrated in figure 1.10.

g
f

Figure 1.10: Illustration of Local Interpretable Model-agnostic Explanation
(LIME). The background represents a hypothetical decision boundary of a
model f being explained, where the green color represents subregion of the
input space where the class of interest c is predicted by f and the red color
represents subregion of the input space where a different class is predicted
by f . The green marks represent the training samples for the local surrogate
model with marker sizes indicating their weights. The violet line represents
the linear local surrogate model g.

Formally, let f : Rw×h×d 7→ R|C| denote the model being explained and
f c : Rw × h ×d 7→ R denote model that returns prediction only for the
class of interest c. For an input of interest x ∈ Rw×h×d let πx : Rn 7→
R denote the proximity measure between x and another instance from Rn.
Ribeiro et al. suggest πx as exponential kernel defined on some distance func-
tion D : Rw×h×d × Rw×h×d 7→ R:

πx(z) = exp(−D(x, z)2

ω2 ), (1.14)

where ω is the kernel width, on default set as ω = 0.75
√
d, where d denotes the

16



1.2. Explanation methods

number of features used for the surrogate model. Choice of distance functionD
is domain specific and for images L2 distance is suggested:

D(x, z) =
w∑
i=0

h∑
j=0

d∑
k=0

(xi,j,k − zi,j,k)2, (1.15)

where xi,j,k and zi,j,k denote a pixels at spatial location (i, j, k) in image x and
z respectively.

The proximity measure πx(z) is used to weight the training samples z ∈ Zx
for the surrogate model annotated by the model f . Samples z are constructed
from the input of interest x by replacing random features of x with fea-
tures drawn from normal distribution N (µ, σ2), where µ, σ2 ∈ Rw×h×d denote
means and variances of pixels at each spatial location that can be estimated
from the training examples used for the model f .

In the image domain Ribeiro et al. suggest using superpixels (groupings of
multiple pixels) as features for the linear model instead of the individual image
pixels. The input image of interest x is therefore segmented into d superpixels
via a segmentation algorithm such as Quickshift [20] used by Ribeiro et al. Let
x′ denote the segmented input x and z′ denote a segmented training sample z.
Note that superpixels are now treated as individual features, therefore when
constructing the training samples z all pixels in the corresponding segment
have to be either taken from x or drawn from the normal distributionN (µ, σ2).
The linear surrogate model gc for the model f and class of interest c is then
given as:

gc(x′) =
d∑
i=0

wix
′
i, (1.16)

where wi denotes the weight of segment x′
i and therefore the importance of all

the pixels in this segment. Locally weighted square loss with L2 regularization
L is defined as:

L(f c, gc, πx) =
∑

z,z′∈Z
πx(f c(z)− gc(z′))2 + λ‖w‖22. (1.17)

And the weight vector w ∈ Rd is then obtained through minimizing L:

w = arg min
w

L(f c, gc, πx), (1.18)

which is generally done by stochastic gradient descent or any other popular
optimizer such as Adam. The LIME method is summarized in Algorithm 1.
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Algorithm 1 LIME
Require: Model f , class of interest c, input of interest x
Require: Number of segments d, number of samples for training M
Require: Means and variances µ, σ2 of all input pixels (exact or estimated)

1: x′ ← Quickshift(x) ▷ segmentation
2: Z ← {}
3: for m ∈ {1, 2, . . . ,M} do ▷ training data sampling
4: z′ ← {}
5: for i ∈ {1, 2, . . . , d} do
6: if Bernoulli(0.5) == 1 then z′

i ← x′
i

7: else z′
i ← N (µi, σ2

i )
8: Z ← Z ∪ {z′

i}
9: w ← arg min

w
L(f c, gc, πx)

10: return w

1.2.4 Game theory based methods
Numerous popular local explanation methods are based on concepts from game
theory specifically on coalition games and Shapley values [21]. This includes
model-agnostic methods such as estimating Shapley values via adaptive sam-
pling [22], KernelSHAP which is a combination of Shapley values and LIME
[18] and model-specific methods such as DeepSHAP [18] used for explaining
deep neural networks.

1.2.4.1 Shapley values

Formally, a coalition game is defined as a tuple 〈N, v〉, where N is a finite
set of players and v : 2|N | 7→ R is a characteristic function that maps every
subset of players S ⊆ N (coalition) to a number representing the coalition’s
collective payout and satisfies v(∅) = 0 for an empty set ∅. Shapley value
ϕi(N, v) is defined as the average marginal contribution of the player i over
all permutations of the coalition:

ϕi(N, v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

(v(S ∪ {i})− v(S)). (1.19)

where |N | and |S| denote the number of elements in N and S respectively. The
averaging over all coalitions is necessary to correctly assign the contributions
to players with overlapping skillsets.

Shapley values as defined in (1.19) are the only solution to the problem of
fair distribution of the payout that satisfy the following axioms as proven in
[21] by Lloyd Shapley:
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Efficiency axiom: The sum of the Shapley values of all players is equal
to the collective payout, so the whole payout is distributed among the players:∑

i∈P
ϕi(v) = v(N) (1.20)

Symmetry axiom: If two players increase the payout of every coalition
by the same amount, then their Shapley values are equal:

∀i, j ∈ N : ∀S ⊂ N\{i, j} v(S ∪ {i}) = v(S ∪ {j})⇒ ϕi(v) = ϕj(v) (1.21)

Dummy axiom: If a player does not increase the payout of any coalition,
then the player’s Shapley value is equal to zero:

∀i ∈ N : ∀S ⊂ N v(S ∪ {i}) = v(S)⇒ ϕi(v) = 0 (1.22)

Linearity axiom: If a characteristic functions of two games are linearly
combined, then the corresponding Shapley values can be decomposed in the
same way:

∀〈N,αv + βw〉 ∀i ∈ N : ϕi(αv + βw) = αϕi(v) + βϕi(w), (1.23)

where α, β are arbitrary real numbers.
The above axioms are a major contributor to the popularity of Shapley

value based explanation methods as they are built on solid theory. Some
researchers also suggest that the established theory makes Shapley value based
explanations particularly compelling in law regulated fields such as healthcare
or banking [10, 23].

1.2.4.2 Estimating Shapley values of input features

The intuition of leveraging Shapley values for construction of a saliency map
explanation of an arbitrary model’s prediction is straightforward: the individ-
ual input features (pixels or superpixels) are considered to be the players, the
model’s prediction is the features’ payout and Shapley values then represent
the feature importance scores.

Formally, let f : Rw×h×d 7→ R|C| denote the model to be explained and
f c : Rw×h×d 7→ R denote its prediction only for the class of interest c. Let
x ∈ Rw×h×d denote the input image of interest. x represents the set of n
players, where n = whd is the number of pixels in the image. For better
clarity and without any loss of generalization let the players (pixels of x)
be denoted in the vectorized (one-dimensional) form N = {1, 2, . . . , n}. Let
E[f c] denote the expected prediction for class c of the model being explained
and the collective payout of all players is then given as f c(x) − E[f c]. The
goal is to fairly divide this collective payout among the pixels based on their
contribution to obtain a saliency map. However, the equation 1.19 can not
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be directly used to calculate pixel’s importance for the two reasons described
below.

First, the equation performs a sum over all possible subsets of players,
where the number of possible subsets grows exponentially with the number of
players. This makes the solution computationally infeasible in most domains,
especially in the medical imaging given the typical resolution of the images.
Strumbelj and Kononenko [22] proposed to approximate the equation 1.19 by
sampling the following equivalent formulation:

ϕi(N, v) = 1
|N |!

∑
ψ∈Ψ(N)

(v(Prei(ψ) ∪ {i})− v(Prei(ψ)), (1.24)

where Prei(ψ) denotes the set of all players that precede the player i in per-
mutation ψ.

Second, the characteristic function is a function of subsets of players. How-
ever, ML models generally can not make predictions based only on a subset of
input features as most of them can not handle missing data. Various baseline
choices to simulate missingness of input pixels were presented in Subsection
1.2.2. In the context of Shapley values estimation, Strumbelj and Kononenko
suggest simulating missingness by random sampling the features that are sup-
posed to be missing from the training data distribution under the assumption
of feature independence [22]. However, image pixels tend to be highly cor-
related in their respective neighborhoods [15]. Lludenberg et al. propose to
simulate missing pixels by blurring those pixels or erasing them and then in-
painting them back by an inpaint method such as Telea [17] [18]. To not
lose any generality, let z ∈ Rw×h×d represent a baseline image which pixels
simulate missingness of the corresponding pixels in x. z could for example be
an image randomly drawn from the training data or a blurred version of the
image x. Let z be also denoted by the vectorized index. For a permutation
ψ ∈ Ψ(N) of vectorized pixel indexes N , an input image x and a missing-
ness simulating image z, let x+1, x−1 ∈ Rw×h×d denote two input instances
constructed as:

x+i = (xψ−1(1), xψ−1(2), . . . , xψ−1(i), zψ−1(i+1), . . . , zψ−1(n)),
x−i = (xψ−1(1), xψ−1(2), . . . , zψ−1(i), zψ−1(i+1), . . . , zψ−1(n)).

(1.25)

Such constructed instances x+1 and x−1 simulate terms Prei(ψ) ∪ {i} and
Prei(ψ) respectively from equation 1.24. Instead of removing the pixels that
precede the pixel i in permutation ψ, they are replaced by pixels from z.
x+1 and x−1 are therefore complete images that can serve as inputs for the
model f .
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Let ϕi(f c, x) denote the Shapley value of pixel i for the model f , class c
and input x. The approximation ϕ̂i(f c, x) by Monte Carlo sampling is given
as:

ϕ̂i(f c, x) = 1
M

M∑
m=1

ψ∈Ψ(N)

(f c(x+i)− f c(x−i)), (1.26)

where M is a hyperparameter that determines the number of samples used in
the approximation.

Strumbelj and Kononenko [22] showed, that when z is sampled from the
training data D, then ϕ̂i(f c, x) is a consistent and unbiased estimator of
ϕi(f c, x) and is approximately normally distributed:

ϕ̂i(f, x) ≈ N (ϕi(f, x), σ
2
i

Mi
), (1.27)

where σ2
i denotes the variance of pixel i in the image distribution and Mi

denotes the number of samples used for calculating ϕ̂i(f, x). From (1.27) it
follows that:

ϕ̂i(f, x)− ϕi(f, x) ≈ N (0, σ
2
i

Mi
). (1.28)

This implies that the number of samples Mi needed to accurately ap-
proximate ϕi(f, x) depends solely on the pixel’s i variance σ2

i . As pixels at
different spatial positions are likely to have different variances, Strumbelj and
Kononenko suggest an adaptive sampling method to be used instead of the
pseudo-random sampling in equation 1.26. First, as the true variances σ2

i are
generally not know, they are first approximated, for example by the Knuth’s
incremental algorithm [24], and denoted as σ̂2

i . Two hyperparameters Mmin

and Mmax are then chosen, where Mmin represents the minimum number of
samples drawn for each pixel and Mmax represents the maximum number of
samples drawn for the whole image. After each pixel is sampled Mmin times,
the next pixel j to be sampled is chosen as:

j = arg max
j

(
σ2
j

mj
−

σ2
j

mj + 1
), (1.29)

where mj denotes the number of samples for the feature j drawn so far. The
sampling stops after drawing Mmax samples. This adaptive sampling strategy
minimizes the following squared loss:

n∑
i=1

(ϕ̂i(f, x)− ϕi(f, x))2. (1.30)

The Shapley values estimation method as described in [22] is summarized in
Algorithm 2.
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Algorithm 2 Shapley values estimation via adaptive sampling
Require: Model f , class of interest c, input image x
Require: Baseline image distribution D, pixels’ variance vector σ2 (exact or

estimated)
Require: Minimum number of samples for each pixel Mmin and maximum

number of samples for all the pixels Mmax

1: for i = 1 to n do ▷ Initialization
2: mi ← 0
3: ϕi ← 0 ▷ ϕ̂i(f, x)
4: while ∑n

i=1mi < Mmax do
5: if ∃i : mi < Mmin then
6: select pixel j to be sampled s.t. mj < Mmin

7: else
8: select pixel j to be sampled s.t. j = arg max

j
( σ

2
j

mj
− σ2

j

mj+1)

9: ψ ← Ψ(N)
10: z ← D
11: x+i ← (xψ−1(1), xψ−1(2), . . . , xψ−1(i), zψ−1(i+1), . . . , zψ−1(n))
12: x−i ← (xψ−1(1), xψ−1(2), . . . , zψ−1(i), zψ−1(i+1), . . . , zψ−1(n))
13: ϕi ← ϕi + (f (x+i)− f (x−i))
14: mj ← mj + 1
15: for i = 1 to n do
16: ϕi ← ϕi

mi

17: return ϕ ▷ Vector of Shapley values

1.2.4.3 Owen values

Lundberg et al. [18] propose and implement various other model-agnostic
and model-specific methods to approximate the Shapley values. One model-
-agnostic method that is particularly interesting in the context of computer
vision is based on Owen values which are a generalization of Shapley values.
In Owen values, the players are considered to be forming sub-coalitions that
are non-overlapping and indivisible and the coalitions are formed as subsets of
those sub-coalitions. The sub-coalitions can therefore be viewed as individual
players.

Formally for a coalition game 〈N, v〉 and a partition C = {C1, . . . , Cm}
such that Ck ∩ Cj = ∅ for each k 6= j and ⋃m

t=1Cl = N , the Owen value
φi(N,C, v) of Ci is defined as:

φi(N,C, v) = 1
|C|!

∑
ψ∈Ψ(C)

(v(PreCi(ψ) ∪ {Ci})− v(PreCi(ψ)). (1.31)
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Note that for C = {N} the (1.31) becomes equal to (1.24) and thus φi(N,C, v) =
= ϕi(N, v) [25]. The further derivations of using Owen values to explain an
arbitrary model are equivalent to using Shapley values.

Owen values can therefore be used to calculate importances of groupings
of pixels (superpixels) instead of individual pixels as in Shapley values. This
results in two major advantages for the tradeoff of lower resolution saliency
map. First, given the typical resolution of a medical image it is generally com-
putationally infeasible to accurately approximate importances of each pixel
individually. Grouping pixels into superpixels (Lundberg et al. use a sim-
ple grid) dramatically reduces the number of features and therefore reduces
the computational cost. Secondly, Strumbelj and Kononenko impose a fea-
ture independence assumption in their derivations, which is generally violated
in the context of images as especially neighborhood pixels tend to be highly
correlated. Grouping neighborhood pixels into superpixels helps to partially
account for such pixel correlations [18].

1.2.4.4 Other Shapley value based explanation methods

Other model-agnostic methods proposed and implemented by Lundberg in-
clude KernelSHAP, that uses the LIME framework introduced in the subsec-
tion 1.2.3.1 to estimate the Shapley values by choosing an appropriate loss
function and proximity measure. Numerous model-specific methods are also
proposed such as DeepSHAP for neural networks that utilizes a gradient based
explanation method DeepLIFT [26].

Frye et al. [27] propose Asymmetric Shapley values. The symmetry ax-
iom (1.21) implies that Shapley values uniformly distribute the feature (pixel)
importance over identically informative features. Frye et al. argue that when
redundancies exist a sparse explanation should be desired instead. They pro-
pose to relax the symmetry axiom and incorporate domain specific causal
knowledge via a causal diagram. Similar approach for incorporating causality
into the Shapley values is presented in [28].

Subsection 1.2.5.1 describes a gradient based explanation method called
Integrated gradients that approximates Aumann-Shapley values which are an
extension of Shapley values for non-atomic games (coalition games with infi-
nite number of players) [29, 30].
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1.2.5 Gradient based methods
Majority of the model-specific methods for explaining convolutional neural
networks via saliency maps utilize the gradient of the model’s output with
respect to the input or feature maps at a given layer [10].

Consider a simple example of a linear score model for class c:

Y c(I) = w⊺
cx+ bc, (1.32)

where x is the input image in a flattened (one-dimensional) form, wc is the
weight vector and bc is the bias. As the output is simply a linear combination
of the input pixels, the pixels’ importances are given by the weight vector,
which can be trivially obtained as the gradient of output Y c with respect to
the input image x.

In contrast, convolutional neural networks are highly non-linear functions
of the input, therefore the same logic doesn’t directly apply. The output of a
CNN can however be approximated with a linear function in the neighborhood
of x by computing the first (or higher) order Taylor expansion:

Y c(I) ≈ w⊺x+ b, (1.33)

where w is the gradient of class score with respect to the input pixels:

w = ∂Y c

∂x

∣∣∣∣
x0=x

, (1.34)

which can be computed via a single backward pass through the network [31].
This baseline gradient based explanation method is often referred to in liter-
ature as vanilla gradient. For the final explanation the vanilla gradient is
often combined with the input image:

x� ∂Y c

∂x

∣∣∣∣
x0=x

, (1.35)

where � denote the element-wise product.
Subsections below introduce a variety of state-of-the-art gradient based

explanation methods. Subsection 1.2.5.1 describes Integrated gradients that
addresses some of the limitations of previously introduced gradient based
methods by building axiomatic explanations similar to Shapley value based
methods. A further advancement by incorporating bias-gradients – FullGrad
is presented in subsection 1.2.5.2. Subsections 1.2.5.3 and 1.2.5.4 introduce a
family of CAM methods that don’t propagate pixels’ attributions all the way
to the input but only to the activation maps in the last convolutional layer.
Subsection 1.2.5.5 then propose to combine the CAM explanations with some
other gradient based method that propagates the attributions all the way to
the input to obtain a high resolution saliency map.
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1.2.5.1 Integrated gradients

Integrated Gradients (IG) is a gradient based local feature attribution expla-
nation method designed to satisfy two axioms – Sensitivity and Implementa-
tion invariance [29]. These axioms are deemed as fundamental by the authors
Sundararajan et al., however, they show that prior gradient based explanation
methods such as the Vanilla gradient, Layer-wise relevance propagation [32]
or DeepLIFT [26] violate at least one of the two axioms.

Integrated gradients utilize a baseline image that simulate missingness of
particular pixels in the image to calculate the pixel attributions. Various
baseline choices are discussed in Subsection 1.2.2. The authors of IG suggest
using a black image as the baseline.

The desired axioms for any explanation via attribution method are defined
by Sundararajan et al. [29] as:

Sensitivity axiom: “An attribution method satisfies Sensitivity if for
every input and baseline that differ in one feature but have different predictions
then the differing feature should be given a non-zero attribution.” Moreover,
the authors include the Dummy axiom as a complement to the Sensitivity
axiom: “If the function implemented by the deep network does not depend
(mathematically) on some variable, then the attribution to that variable is
always zero.” This is equivalent to the Dummy axiom (1.21) from Shapley
values.

Implementation invariance axiom: “Two networks are functionally
equivalent if their outputs are equal for all inputs, despite having very dif-
ferent implementations. Attribution methods should satisfy Implementation
invariance, i.e., the attributions are always identical for two functionally equiv-
alent networks.”

One of the reasons why these axioms are violated by simpler gradient
based methods is the ReLU activation function that is widely adopted in
deep learning [1]. ReLU(x) = max(0, x) serves as a threshold function which
can cause some features of the input to have zero gradient despite having
non-zero importance [26, 29].

Formally, let f : Rw×h×d 7→ R|C| denote the model being explained and
f c : Rw × h ×d 7→ R denote model f that returns prediction only for the class
of interest c. Further, let x ∈ Rw×h×d denote the input image of interest,
z ∈ Rh×w×d denote the baseline image and let the pixels in both x, z be
indexed by {1, 2, . . . , n}, where n = whd as if they were vectorized (one-
dimensional). Integrated gradients are a special case of Path methods that
aggregate gradients along an arbitrary monotonic path between two points in
the same space [33]. Let γ = (γ1, γ2, . . . , γn) : [0, 1] 7→ Rw×h×d be a smooth
function specifying a path in Rw×h×d from the baseline z to the input x.
Path integrated gradients along the ith pixel for an input x and model f c is
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defined as:

PGλi (x) =
∫ 1

α=0

∂f c(γ(α))
∂γi(α)

∂γi(α)
∂α

dα. (1.36)

Integrated gradients define path γ between z and x as a straight line:

γ(α) = z + α (x− z) for α ∈ [0, 1]. (1.37)

The attribution IGi(x) of ith pixel in the input x for the model f c is then
computed by the integrated gradients as:

IGi(x) = (xi − zi)
∫ 1

α=0

∂f c(z + α (x− z))
∂xi

dα, (1.38)

which is in practice approximated via a Riemann sum with m steps:

ÎGi(x) = (xi − zi)
m∑
k=1

∂f c(z + k
m (x− z))
∂xi

1
m

. (1.39)

The integration gradients in fact correspond to Aumann-Shapley values
which are an extension of Shapley values, described in Subsection 1.2.4.1, for
non-atomic games which are coalition games with infinite number of play-
ers [30]. This implies that apart of the sensitivity, dummy and implementa-
tion invariance axioms, the integrated gradients also satisfy the two following
axioms:

Completeness axiom: If f c is differentiable almost everywhere then:

n∑
i=1

IGi(x) = f c(xi)− f c(zi), (1.40)

which is equivalent to the Efficiency axiom (1.20) in Shapley values.
Linearity axiom: Let f be a neural network, that is composed as a linear

combination of two other neural networks f = αf1 +βf2, where α, β ∈ R. The
attributions IGfi (x) for the model f are then given as IGfi (x) = αIGf1

i (x) +
βIGf2

i (x). This is equivalent to the Linearity axiom (1.23) in Shapley values.
Given the satisfied axioms, the integrated gradients method can be viewed

as an efficient, model-specific method to approximate the Shapley values. The
method is summarized in Algorithm 3
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Algorithm 3 Integrated gradients
Require: Model f , class of interest c, input of interest x, baseline x′

Require: Number of approximation steps m for each pixel
1: ÎG← {}
2: for i ∈ {1, 2, . . . , n} do ▷ for each pixel
3: IGi ← 0
4: for k ∈ {1, 2, . . . ,m} do
5: ÎGi ← ÎGi + ∂fc(x′+ k

m
(x−x′))

∂xi

6: ÎG← ÎG ∪ { (xi−x′
i) ÎGi

m }
7: return ÎG

1.2.5.2 FullGrad

FullGrad is an explanation method introduced by Srinivas in [34] that com-
bines the input (vanilla) gradient with bias gradients of each activation map in
a convolutional neural network. Similarly as Integrated gradients, the method
is motivated by an axiom that is deemed as desariable by the author and vi-
olated by the prior gradient based explanation methods.

Weak dependence on inputs axiom: Consider a piecewise-linear model f :

f(x) =


w⊺

1x+ b1 x ∈ U1

. . .

w⊺
nx+ bn x ∈ Un

where Ui are open connected sets. Then all inputs x from the same set Ui
should be assigned the same pixels’ importances as it depends only on the
parameters wi and bi. Srinivas shows that prior gradient based methods such
as the Integrated gradients do not satisfy this axiom which causes them to
produce counterintuitive explanations. The author argues that this is due
to the exclusion of the bias term, which causes a compounding effect as the
neural networks have bias a term for every neuron.

Let Y c : Rw×h×d 7→ R denote the logit (pre-softmax) output of a convo-
lutional neural network f : Rw×h×d 7→ R|C| for the class of interest c. Further,
let l be the number of convolutional layers in f and letA1

i , A
2
i , . . . , A

di
i ∈ Rwi×hi

denote the activation maps (output) of convolutional layer i where wi, hi, di
denote the corresponding dimensions. The FullGrad attributions FGf (x) ∈
Rw×h×d for each pixel in the input of interest x are then given as:

FGf (x) = ∂Y c

∂x
� x+

l∑
i=1

di∑
k=1

ψ(∂Y
c

∂Aki
� b), (1.41)
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where ψ is an upscaling function that is necessary as the activation maps
Aki ∈ Rwi×hi×di are generally of lower resolution than input image x ∈ Rw×h×d.
The FullGrad method is summarized in Algorithm 5.

Algorithm 4 FullGrad
Require: Model f , class of interest c, input of interest x
Require: Upscaling function ψ

1: input-grad← ∂Y c

∂x � x ▷ vanilla gradient � input
2: bias-grad← 0
3: for i ∈ {1, 2, . . . , l} do ▷ for each convolutional layer in f
4: Ai ← fi(x) ▷ activation maps as output of f ’s layer i
5: for k ∈ {1, 2, . . . , di} do ▷ for each activation map
6: bias-grad← bias-grad+ ψ( ∂Y c

∂Ak
i

� b)

7: FGf ← input-grad+ bias-grad
8: return FGf

1.2.5.3 Grad-CAM

Gradient-weighted class activation mapping (Grad-CAM) is an explanation
method introduced by Selvaraju et al. [35] designed specifically for convo-
lutional neural networks, where the gradient of model’s output is not back-
propagated all the way back to the input image, but to the (usually) last
convolutional layer.

Many researchers in the past have shown that convolutional units in the
later layers of CNNs implicitly learn to localize objects in the images despite
only being trained for whole-image classification [36]. This phenomenon has
been initially leveraged to build object detection models without the require-
ment of detailedly annotated images with bounding boxes [37, 38] and more
recently used in the context of explainable AI.

Grad-CAM method is an improved version of CAM (class activation map-
ping) method introduced in [36]. CAM is based on the activation maps in the
last convolutional layer that indicate where the particular convolutional filter
has detected the corresponding learned abstract feature of an input image.
By identifying which activation maps were important for predicting a class
of interest a saliency map can be produced as an upscaled aggregation of the
relevant activation maps.

Formally, let A1, A2, . . . , Al ∈ RwA×hA denote the l activation maps in the
last convolutional layer of the model f : Rh×w×d 7→ R|C| being explained and
let Akij denote the spatial location (i, j) in the kth activation map. In CAM
all the layers following the last convolutional layer (generally fully connected
layers) are replaced by the global average pooling (GAP) layer and the logit
(pre-softmax) classification score Y c : Rh×w×d 7→ R for class c is given as
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a linear combination of the global average pooled activation maps Ak:

Y c =
∑
k

wck
1
Z

∑
i

∑
j︸ ︷︷ ︸

GAP

Akij , (1.42)

where wck denote the corresponding weights that are estimated by training
a linear classifier for each class c on the same targets as the original model
being explained and Z is the number of pixels in the activation map Ak. The
resulting explanation in form of a class activation map M c for class c is defined
in each spatial location (i, j) as:

M c
ij =

∑
k

wckA
k
ij . (1.43)

Since Y c =
∑
i

∑
jM

c
ij , the M c

ij directly correlates with the importance of the
activation at the spatial location (i, j) for the class of interest c. The visual
overview of CAM is given in figure 1.11.

Figure 1.11: Visual overview of the CAM method. Top: example input
image with the modified CNN architecture, where the layers following the last
convolutional layer are replaced by the global average pooling layer. Bottom:
example activation maps and their linear combination resulting in the class
activation map for the class of interest (Australian terrier).

Grad-CAM method addresses the main apparent limitation of CAM – the
need of training an additional linear classifier in order to produce explanations
by utilizing gradient of the class score with respect to the activation maps.
Let F k denote the global average pooled activation map Ak:

F k = 1
Z

∑
i

∑
j

Akij . (1.44)
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This allows to rewrite the equation 1.42 as:

Y c =
∑
k

wckF
k. (1.45)

Taking the gradient of Y c with respect to F k gives:

∂Y c

∂F k
=

∂Y c

∂Ak
ij

∂Fk

∂Ak
ij

, (1.46)

where ∂Y k

∂Fk = wck from (1.45) and ∂Fk

∂Ak
ij

= 1
Z from (1.44). Substituting both

into (1.46) gives:
wck = Z

∂Y c

∂Akij
. (1.47)

Summing both sides of (1.47) over all spatial locations (i, j) gives:

∑
i

∑
j

wck =
∑
i

∑
j

Z
∂Y c

∂Akij
. (1.48)

As Z and wck do not depend on (i, j) and Z is the number of pixels in the
activation map (Z =

∑
i

∑
j 1) the above equation can be rewritten as:

Zwck = Z
∑
i

∑
j

∂Y c

∂Akij
, (1.49)

from which:

wck =
∑
i

∑
j

∂Y c

∂Akij
. (1.50)

This result show that the weights wck can be computed via the gradients of
class scores with respect to the activation maps in the last convolutional layer
and it is not necessary to train a linear classifier to obtain class activation
maps [35].

In the Grad-CAM method the computed weights are further normalized:

wck = 1
Z

∑
i

∑
j

∂Y c

∂Akij
, (1.51)

and the linear combination of the activation maps are followed by ReLU
function so that only features that have a positive influence on predicting the
class of interest c are highlighted in the resulting class activation map:

M c = ReLU(
∑
k

wckA
k). (1.52)
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Algorithm 5 GradCAM
Require: Model f , class of interest c, input of interest x

1: wc ← {}
2: for k ∈ {1, 2, . . . , l} do
3: wck ← 0
4: for i ∈ {1, 2, . . . , wA} do
5: for j ∈ {1, 2, . . . , hA} do
6: wck ← wck + ∂Y c

∂Ak
ij

7: wc ← wc ∪ 1
Zw

c
k ▷ Z = wAhA

8: M c ← {0, 0, . . . , 0}
9: for k ∈ {1, 2, . . . , l} do

10: M c ←M c + wckA
k

11: M c ← ReLU(M c)
12: return M c

1.2.5.4 Grad-CAM++

Grad-CAM++ is a generalization of the Grad-CAM method introduced by
Chattopadhyay et al. in [39]. Its authors argue that Grad-CAM often fails to
properly highlight the entire object or all the objects in an image with multiple
occurrences of the same class.

Equation 1.51 shows that Grad-CAM computes the weight wck of acti-
vation map Ak for class c as an unweighted average of all pixel gradients.
Treating each pixel equally when computing the importance of an activation
map can suppress activation maps with comparatively lesser spatial footprint
as is demonstrated in figure 1.12. In this hypothetical example with activa-
tion maps A1, A2, A3 Grad-CAM is shown to assign lower weights to activation
maps A2, A3 due to their smaller spatial footprint, despite their pixels being
of the same importance as the pixels in A1.

Grad-CAM++ solves this problem by introducing pixel-wise weights αkcij
for activation map k, class of interest c and spatial location (i, j). The weights
wck are then given as:

wck =
∑
i

∑
j

αkcij ReLU( ∂Y
c

∂Akij
). (1.53)

Substituting the weights wck in (1.42) with (1.53) and removing the equal
weightage constant 1

Z gives the class score Y c as:

Y c =
∑
k

{
∑
a

∑
b

αkcab ReLU( ∂Y
c

∂Akab
)}[
∑
i

∑
j

Akij ], (1.54)

where (a, b) and (i, j) are the iterators over the same activation map Ak used
for more clarity. In the further derivation of αkcij the ReLU function is omitted
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Figure 1.12: A hypothetical example of Grad-CAM’s shortcoming that led to
the introduction of Grad-CAM++ method. The shade of gray in the grids
demonstrates the computed attributions of the corresponding pixels. Top
right: Grad-CAM’s saliency map fails to properly highlight all the important
pixels. Bottom right: Grad-CAM++ correctly assigns the same importance
to pixels from all the activation maps.

without the loss of generality as it only serves as a threshold. Taking partial
derivative of both sides of (1.54) with respect to Akij gives:

∂Y c

∂Akij
=
∑
a

∑
b

αkcab
∂Y c

∂Akab
+
∑
a

∑
b

Akab{αkcij
∂2Y c

(∂Akij)2 }. (1.55)

Taking a further partial derivative with respect to Akij gives:

∂2Y c

(∂Akij)2 = 2αkcij
∂2Y c

(∂Akij)2 +
∑
a

∑
b

Akab{αkcij
∂3Y c

(∂Akij)3 }. (1.56)

Rearranging the equation gives the solution to calculate the pixel-wise weights
αkcij :

αkcij =
∂2Y c

(∂Ak
ij)2

2 ∂2Y c

(∂Ak
ij)2 +

∑
a

∑
bA

k
ab{

∂3Y c

(∂Ak
ij)3 }

. (1.57)

The Grad-CAM++ activation map weights wck are then given as:

wck =
∑
i

∑
j

[
∂2Y c

(∂Ak
ij)2

2 ∂2Y c

(∂Ak
ij)2 +

∑
a

∑
bA

k
ab{

∂3Y c

(∂Ak
ij)3 }

]ReLU( ∂Y
c

∂Akij
). (1.58)
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And the final class activation map for class c is again given by the linear
combination of all activation maps followed by ReLU function [39]:

M c = ReLU(
∑
k

wckA
k). (1.59)

1.2.5.5 Guided Grad-CAM/Grad-CAM++

Both Grad-CAM and Grad-CAM++ methods introduced in the previous sub-
sections compute attributions of spatial positions in activation maps of the last
convolutional layer. The convolution and pooling layers gradually shrink the
input representation in the CNN. This causes the saliency maps M c computed
by Grad-CAM or Grad-CAM++ to be of substantially lower resolution than
the input and therefore the M c has to be upscaled for visualisation of the
explanation. The upscaled saliency map inherently lacks the ability to high-
light fine-grained details that might be desirable in some contexts. To solve
this, Selvaraju et al. [35] propose to combine the upscaled saliency map M c

with saliency map from another method that computes the attribution on a
pixel level. Baseline proposition was to combine Grad-CAM/Grad-CAM++
explanation with the vanilla gradient and the input image:

Guided-M c = x� ∂Y c

∂x
� upscale(M c), (1.60)

where � denote the element-wise product and upscale denotes an upscal-
ing function to the corresponding dimensions. Alternatively a more complex
method such as the Integrated gradients can be used to “guide” the Grad-
CAM explanation.

1.2.6 Information bottleneck method

Information Bottlenecks for Attributions (IBA) [40] is a model-specific local
explanation method for convolutional neural networks that aim to identify
important spatial locations at a selected convolutional layer by injecting noise
to it’s input to mask out uninformative regions. Noise injection is a popular
regularization technique used in deep learning to improve generalization and
robustness where the noise is applied either to the input or to arbitrary layers’
parameters during training [1]. Schulz et al. propose to leverage this technique
for computing a saliency map by injecting noise into a layer in a trained CNN.

Let f : Rw×h×d 7→ R|C| denote a convolutional neural network model,
X ∈ Rw×h×d be random variable associated with the input and Y ∈ R|C|

be random variable associated to the output. In the standard setting the
model f uses all information from X to predict Y . Information bottleneck
introduces a new variable Z that limits the information from X that can be
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used for Y . The goal is for the Z to maximize its mutual information with Y
while minimizing its mutual information with X:

max I(Y ;Z)− βI(X ;Z), (1.61)

where I(· ; ·) denotes the mutual information and β is a parameter that controls
the amount of information that is allowed to flow through the network.

Let fl : Rw×h×d 7→ Rwl×hl×dl denote the output of lth convolutional layer
in f after which the information bottleneck is to be injected. Schulz et al.
suggest inserting the bottleneck roughly into the middle of the CNN model.
Let A = fl(x) denote the output activation maps. The information bottleneck
is inserted by adding noise to A. The model f is already trained and it is
desirable that A preserves the same mean and variance even after the noise
is added to it. Therefore the information bottleneck is applied as a linear
interpolation between signal A and noise ϵ:

Z = λA+ (1− λ)ϵ, (1.62)

where ϵ ∼ N (µA, σ2
A), where µA, σ2

A denote the estimated means and variances
of A, and λ ∈ Rwl×hl×dl controls how much noise is injected to A, where
λi,j,k ∈ [0, 1] at each spatial position (i, j, k). The mutual information I(A;Z)
is given as:

I(A ;Z) = EA[DKL[P (Z|A)||P (Z)]], (1.63)

where P (Z|A) and P (Z) denote the respective probability distributions and
DKL(·||·) denotes the Kullback-Leibler divergence. Computing P (Z) requires
evaluation of an intractable integral, therefore it is approximated instead.
The authors suggest substituting P (Z) by variational approximation Q(Z) =
= N (µA, σ2

A) which assumes all dimensions of Z to be independent and nor-
mally distributed. The approximation of I(A ;Z) denoted as LI (information
loss function) is then given as:

LI = EA[DKL[P (Z|A)||Q(Z)]]. (1.64)

The authors show in appendix D of [40] that L1 ≥ I(A ;Z) and the approxima-
tion in (1.64) actually overestimates (1.63). As the goal of IBA is to minimize
LI while keeping the classification score high, the following optimization prob-
lem is defined:

L = LCE + βLI , (1.65)

where LCE denotes the categorical cross-entropy loss and β is a hyperparam-
eter that controls the relative importance between the two loss components.
The optimized parameters are the λ ∈ Rwl×hl×dl that control how much noise
is injected to activation maps R at each spatial position. For each spatial
position (i, j, k) it is required that λi,j,k ∈ [0, 1]. To avoid any clipping of λi,j,k
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during optimization a reparametrization is performed: λi,j,k = S(αi,j,k), where
S(x) = 1

1+e−x denotes the sigmoid function and α denotes the new parameters
to be optimized trough L. α is initialized such that S(αi,j,k) is close to 1 and
the information bottleneck has initially close to no effect. To increase robust-
ness and smoothness of the saliency map, λ is also blurred by convolution
with a fixed Gaussian kernel with hyperparameter σs (standard deviation of
the Gaussian kernel): λi,j,k = blurσs(S(αi,j,k)). The parameters α are fitted
by averaging 10 runs of Adam optimizer with 10 iterations and learning rate
of 1. The attribution IBAi,j of spatial position (i, j) at activation maps R
is then given by evaluating DKL[P (Z|A)||Q(Z)] per dimension and summing
over the channel axis:

IBAi,j =
dl∑
k=1

DKL[P (Zi,j,k|Ai,j,k)||Q(Zi,j,k)]. (1.66)

Lastly, IBA ∈ Rwl,hl is upscaled to Rw,h. The information bottlenecks for
attribution method is summarized in Algorithm 6

Algorithm 6 Information bottlenecks for attribution
Require: Model f , class of interest c, input of interest x
Require: Layer index l, estimated means and variances µR, σ2

R of layer’s l
output activation maps

Require: Loss importance coefficient β, standard deviation σs of Gaussian
kernel for bluring and upscaling function upscale(·)

1: α← {0, 0, . . . , 0}
2: for i ∈ {1, 2, . . . , 10} do ▷ α estimation
3: αi ← arg min

αi

LCE + βLI ▷ by Adam optimizer

4: α← α+ αi
1
10 ▷ averaging over individual αi

5: IBA← {}
6: a = fl(x)
7: for i ∈ {1, 2, . . . , wl} do
8: for j ∈ {1, 2, . . . , hl} do
9: IBAi,j ← {0, 0, . . . 0}

10: for k ∈ {1, 2, . . . , dl} do
11: λi,j,k = blurσs(S(αi,j,k))
12: zi,j,k ← λi,j,k ai,j,k + (1− λi,j,k) ϵi,j,k ▷ ϵ ∼ N (µA, σ2

A)
13: IBAi,j ← IBAi,j +DKL[p(zi,j,k|ai,j,k)||q(zi,j,k)]
14: IBA← IBA ∪ IBAi,j
15: return upscale(IBA)
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1.3 Faithfulness evaluation of explanation methods
Arguably the most pressing issue in the context of explainable AI is how
to evaluate the faithfulness of the explanation methods to the model being
explained. Faithfulness is here defined as the ability of the explanation method
to provide explanations that accurately capture model’s true decision making.
In the context of saliency maps, high faithfulness would imply that the pixels
highlighted as important were truly the important ones to the model.

The difficulty of faithfulness evaluation stems from the fact that there is no
ground truth available. This is in contrast with evaluating machine learning
models, where a subset of available data is usually held out and used only for
testing.

Some explanation methods, such as SHAP and IG presented in sections
1.2.4.1 and 1.2.5.1 respectively try to bypass the need of faithfulness evaluation
by constructing explanations that satisfy various desirable axioms such as
sensitivity or completeness. As described in the corresponding sections, the
exact solutions to these methods are computationally infeasible in practice
and approximations are computed instead. It is unclear whether the axioms
are satisfied even by the approximated solution. The faithfulness evaluation is
therefore necessary even for the axiomatic explanations especially when they
are to be compared with some non-axiomatic explanations.

1.3.1 An argument against visual evaluation
One of the first and most cited frameworks for evaluation of explanations was
introduced by Doshi-Velez et al. in [41]. They propose three levels in which
the explanation methods can be evaluated:

Application-grounded evaluation: Doshi-Velez et al. argue that the
best way to evaluate explanations is with the domain experts and on the task
for which the model being explained was trained. In the context of this thesis,
this would include presenting the explanations to the doctors while they’re
performing diagnoses and letting them decide which explanation they deem
as the most fitting.

Human-grounded evaluation: In situations when the experiments with
domain experts on the real task are too challenging, Doshi-Velez et al. propose
to conduct simpler experiments that can be performed by lay humans, instead
of the domain experts. In the context of medical imaging it is not clear how
the diagnosis task could be simplified to the lay human level.

Functionally-grounded evaluation: Doshi-Velez et al. argue that the
functionally grounded evaluation represents the lowest level of explanations
evaluation and should only be performed when human experiments are out of
reach.

While application-grounded evaluations with domain experts certainly pro-
vide value, it is important to make a distinction on what they really evaluate.
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Through visual inspection the doctors are able to see whether the presented
explanation is consistent with their knowledge, however they can not evaluate
whether the explanation is also faithful to the underlying model. The doctor
can not decide whether an unreasonably looking explanation indicates an er-
ror in the reasoning of the underlying model or an error in the explanation
method [42].

Moreover, the deep learning field and AI in general strive to surpass the
human-level performance on specific tasks. In visual human-level evaluation
the person performing the inspection will implicitly compare the explanation
to their own knowledge in the given task. It is difficult to justify the assump-
tion that the model should use the same features in its decision making as the
person performing the visual inspection.

To make a clear distinction, the property of how aligned the explanation
is with the person’s prior knowledge is referred to as plausibility [43]. Any
human-based visual evaluation of explanations is therefore evaluating plau-
sibility. The provided arguments imply that it makes very little sense to
evaluate plausibility before the faithfulness of the explanations is assessed. In
contrast with the Doshi-Velez et al. framework, this puts the functionally-
grounded evaluation of faithfulness above the human-based evaluations of
plausibility.

Despite the presented arguments, the nonquantitative visual inspection is
still the most common and often the only evaluation method used in the XAI
publications. Nunes et al. show in their review of 190 studies published prior
to 2017 that introduced a XAI related method or tool that only 21% contained
“any form of evaluation, apart from toy examples” [44]. Similar study was
published by Nauta et al. who showed that more recent papers from 2016–
2020 contained some kind of quantitative evaluation in 58% of cases, whereas
33% of the papers still relied exclusively on anecdotal evidence [43]. This
shows a clearly increasing incentive to quantitatively evaluate faithfulness of
explanation methods.

1.3.2 Ablation test
The probably most common quantitative method to evaluate and compare
faithfulness of saliency map explanation methods discussed by XAI researchers
[13, 10, 45] is the ablation (perturbation) test. The intuition of this test is
simple: pixels in the input images are gradually being hidden starting from
those with the highest pixel importance as computed by the explanation meth-
ods and the changes of the model’s outputs for the images with hidden pixels
are observed. In theory, higher the true pixel’s importance the bigger change
in model’s output should be observed. The results are often benchmarked
against random explanations.

The ablation test is sensitive to how the the important pixels are hid-
den in the input image. Various choices and their impacts are described in
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section 1.2.2.

1.3.2.1 Remove and retrain

The subsection 1.2.2 also discuss that by approximating missingness of certain
pixels in the input images, the distribution of such images is different compared
to the distribution on which the model being explained was trained. This
complicates the evaluation of the ablation test as it may be unclear whether
the change in the model’s output was caused by hiding important part of the
image or by the shift of the input image distribution.

Hooker et al. propose a solution in form of the remove and retrain (ROAR)
framework [12]. Instead of observing changes in the model’s outputs for the
modified input images, they propose to retrain the same architecture on the
corresponding modified inputs and observe the change in classification accu-
racy of the whole network on the modified inputs. The ROAR framework
therefore requires for each explanation method and each ratio of hidden most
important features to train the architecture of the model being explained on
a newly constructed set of training images with hidden subsets of pixels.

Apart from the obvious limitations of having to perform a large number
of retraining steps, Strumfels et al. in [13] point out another possible issue
with this framework. Ultimately, the evaluation is performed on the retrained
models rather than on the original model being explained. There are no guar-
antees that the retrained model will learn the same features as the original
model except the ones it can’t learn because they are hidden in the inputs.
Even when the explanation method highlight the truly most important pixels
for the original model, the retrained model could learn a similar relationship
from the remaining pixels. Strumfels et al. further point out that “this prob-
lem fits into a larger discussion about whether or not your attribution method
should be “true to the model” or “true to the data””[13].

1.3.2.2 Remove and debias

Remove and debias (ROAD) introduced by Rong et al. [15] is an ablation
based framework that addresses the distribution shift problem without the
necessity of retraining the original model.

They introduce a concept of Class information leakage which corresponds
to the amount of discriminative information that is “leaked” through the bi-
nary mask which is used to mask out certain pixels in the image. The effect of
Class information leakage is empirically demonstrated by training a classifier
only on the binary masks that are generated as a certain ratio of the most im-
portant pixels identified through the integrated gradients method. For their
task (CIFAR-10 classification), the model trained only on the binary masks
was able to reach almost the same accuracy as the original model trained on
the full images. In other words, they showed that during the ablation test
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where the pixels are hidden using some simple baseline image, the location
of the hidden pixels is providing additional information to the model and the
change in model’s output is therefore inaccurate approximation of the hidden
pixel’s importance to the model.

They further introduce a concept of Minimally revealing imputation con-
dition which states that the pixels in the image should be hidden in a way
that minimizes the Class information leakage. To satisfy this condition Rong
et al. introduced a Noisy linear imputation method, introduced in subsec-
tion 1.2.2.2.

1.3.3 Model parameter randomization test
Model parameter randomization test is an explanation method evaluation
technique introduced by Adebayo et al. that tries to evaluate how depen-
dent is the explanation method on the explained model’s parameters [46]. A
common observation from nonquantitative visual evaluations of explanations
is that some methods produce saliency maps that resemble an output of an
edge detector. Edge detectors are designed to highlight high-frequency infor-
mation in an image and therefore look only on the image itself [10]. This
has lead researchers to wonder how much do the explanation methods relly
on the input of interest instead of on the model being explained. Implicitly,
this can not be evaluated through a nonquantitative visual examination of the
explanations.

Adebayo et al. propose an evaluation technique that studies the depen-
dency of an explanation method on the learned parameters of the model being
explained. They propose to perform a cascading randomization of the model’s
parameters, where the model’s learned parameters are gradually randomly re-
initialized up to a certain layer, starting from the output layer all the way to
the input layer. At each step, the partially randomized model’s predictions
for a given dataset are explained by the evaluated explanation method which
yields a set of saliency maps for each input image. The corresponding saliency
maps are compared by some similarity measure such as Spearman rank corre-
lation. Higher similarity of such constructed saliency maps then imply lower
dependency of the explanation method on the model’s learned parameters.
Adebayo et al. acknowledge that the architecture of the network itself has to
some extent an effect on the derived represtantations and even for randomly
initialized networks, those representations tend to be non-trivial. However,
the insensibility of explanation method to model’s learned parameters is still
undesirable in most situations.
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Chapter 2
Experimental Part

2.1 Implementation technologies
The experiments are written in Python language (version 3.7) [47], which
is an object-oriented, high-level programming language. Python is a very
popular language among the AI practitioners and it therefore provides a wide
range of AI related packages and libraries. This is especially true in the field
of explainable AI as majority of the reviewed papers that provided any kind
of implementation or experiments used Python.

Jupyter notebooks [48] is a web-based interactive environment for run-
ning Python code and is also very popular in the AI community. It is mainly
suitable for exploratory experiments where the code consist mainly from li-
brary or package calls and require many visualisations, which is the case of
most experiments done in this thesis. Most of the attached code is there-
fore in the jupyter notebook format. However, it is not necessary to install
any dependencies locally as all the notebooks were run in the Google Co-
lab1 platform. Google Colab is a cloud computing environment based on the
Jupyter Notebooks that allows for experimental notebooks to be seamlessly
shared among the practitioners.

NumPy [49] is a Python library used for handling data in forms of multi-
dimensional numeric arrays. It provides a high-level interface as well as high
efficiency due to its core part implementations being written in C/C++.

Matplotlib [50] is a standard plotting library for visualising data in both
native Python data structures and NumPy arrays. Some more complex visu-
alisations were done using Seaborn [51] which is a higher-level visualisation
library build upon Matplotlib and Pandas [52].

PyTorch [53] is a machine learning framework that is (alongside Tensor-
Flow) one of the two most popular Python libraries for designing and training
deep neural networks. It provides tensor computing with strong acceleration

1https://colab.research.google.com
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via GPUs and wide variety of neural network layers, optimizers, architectures
and pre-trained models. The PyTorch implementation of the Vision trans-
former was obtained on GitHub2. Due to some CUDA memory management
issues PyTorch was used in a downgraded 1.9 version.

OpenCV [54] is a computer vision library that provide optimized tools
for image processing.

SciPy [55] is a scientific computation library built upon NumPy to provide
complex operations on multi-dimensional arrays.

2.1.1 Explanation methods implementations
For many explanation methods the original implementations by their respec-
tive authors are available and PyTorch compatible, this includes LIME3,
SHAP4, FullGrad5 and IBA6 explanation methods. When available and Py-
Torch compatible, the original implementations are preferably used. For CAM
based methods, including GradCAM and GradCAM++, the PyTorch com-
patible implementations are provided by Gildenblat and contributors7. For
Integrated gradients, the Captum implementation was used.

Captum [56] is an explainable AI library built on PyTorch. It provides
unified interfaces and implementations of various explanation methods de-
scribed in this thesis – LIME, SHAP, IG, GradCAM and also various other
explanation methods such as DeepLIFT.

Surprisingly all the mentioned implementations also worked for explaining
the vision transformer model. For attention visualisation the implementation8

of paper [57] was used.

2.1.2 Hardware
All computations were run in the Google Cloud cloud computing environment
with the highest subscription tier. GPU was utilized in all circumstances in
which it could provided a noticeable acceleration (such as model training and
inference). While Google Colab does not guarantee any specific computational
resources, the following hardware specs were usually provided:

• 8 cores Intel Xeon 2.00 GHz CPU

• Nvidia Tesla V100 GPU with 16 GB memory

• 54 GB of RAM

2https://github.com/rwightman/pytorch-image-models
3https://github.com/marcotcr/lime
4https://github.com/slundberg/shap
5https://github.com/idiap/fullgrad-saliency
6https://github.com/BioroboticsLab/IBA
7https://github.com/jacobgil/pytorch-grad-cam
8https://github.com/hila-chefer/Transformer-Explainability
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2.2. Dataset

2.2 Dataset

The selected dataset for this thesis is the COVIDx dataset which contains
chest X-ray images (CXR) for the task of covid-19 pneumonia detection. The
COVIDx dataset was constructed for the COVID-Net project [58] and to the
best of our knowledge it is the largest publicly available dataset in the given
domain. It aggregates data from multiple sources which makes the dataset
diverse as it contains 16 352 chest X-ray images (mixture posterior-anterior
and anterior-posterior views) of 15 346 patients from more than 51 different
countries [59]. Examples are given in figure 2.1

Figure 2.1: Examples of chest X-ray images from the COVIDx dataset

The COVIDx dataset is divided into the training and testing sets by the
authors themselves, where the training dataset contains 15 952 images (13
794 negative and 2 158 positive cases) and the testing dataset contains 400
images (200 negative and 200 positive cases). The target classes in the training
dataset are therefore unbalanced as is common in the medical datasets.

2.2.1 Preprocessing

The CXR images in the COVIDx dataset vary significantly in their size from
the smallest 156 × 157 pixels image to the largest 3480 × 4248 pixels image.
All CXR images were therefore resized (either downsampled or upsampled) to
224×224 pixels, which is the default input image size of the considered model
architectures. As is common in the deep learning preprocessing pipelines, the
images were then normalized to [0, 1] pixel values.

Due to the nature of the X-ray acquirement process the resulting X-ray
images tend to have low contrast which is undesirable for training of a CNN
model. To enhance the images’ contrast, the Contrast limited adaptive his-
togram equalization (CLAHE) is applied [60]. CLAHE is a popular contrast
enhancing method often used in the domain of X-ray images. It divides the
image into non-overlaping regions, performs histogram equalization for each
region individually, clips the number of pixels with the same intensity to mit-
igate noise amplification and perform bilinear interpolation for the pixels near
the region borders to obtain a coherent image.
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The example results of this simple preprocessing pipeline are shown in
figure 2.2. Note that in the following sections, the input images are visualised
without the CLAHE applied.

Figure 2.2: Examples of preprocessed chest X-ray images from the COVIDx
dataset

2.3 Models
The following three pre-trained CNN models with two different architectures
introduced in subsection 1.1.4.3 were fine-tuned on the COVIDx dataset:

ResNet50 model pre-trained on the ImageNet dataset [61] obtained from
the PyTorch library.

DenseNet121 model pre-trained on the ImageNet dataset obtained from
the PyTorch library.

CheXNet [62] which is a DenseNet121 first trained on the ImageNet
and then fine-tuned on ChestX-ray14 dataset [63] which is a large dataset
of over 100 thousand CXR images labeled with 14 different lung diseases.
The CheXNet weights for the DenseNet121 architecture were obtained from
GitHub 9. To avoid overfitting the models were regularized dropout and early-
stopping.

As described in the previous section, the COVIDx dataset is divided into
training and testing sets. For the best model selection, the training dataset
was further divided into training and validation sets in roughly 80/20 random
split. The overall dataset was therefore split to 13 000 training images, 2952
validation images and 400 testing images.

As a loss function, the cross entropy loss was chosen. Given that the
target classes are unbalanced, with prevailing negative class, the cross entropy
loss was proportionately weighted to balance the classes. Adam with initial
learning rate of 0.0001 was used as the optimization algorithm. This is a fairly
standard setting for fine-tuning the given architectures.

All models were fine-tuned for 20 epochs which took between 2 and 3
hours of computational time on GPU for each model. The results are shown
in Table 2.1.

9https://github.com/zoogzog/chexnet
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CNN model No class balancing With class balancing
Train accuracy Val accuracy Train accuracy Val accuracy

ResNet50 99.98% 97.69% 99.98% 97.80%
DenseNet121 99.00% 96.27% 97.91% 95.56%
CheXNet 99.99% 97.22% 99.98% 97.09%

Table 2.1: Fine-tuned models’ accuracies on the training and validation
datasets. Best results highlighted in bold.

The fine-tuned ResNet50 with class balancing achieved the highest valida-
tion accuracy of 97.80%. This model was further evaluated on the testing set,
where it achieved 95.0% accuracy.

Further experiments with more preprocessing techniques, optimizers and
regularization choices might yield a model with higher accuracy, however for
the purpose of evaluating explanations, the achieved accuracy of the model is
sufficient.

2.4 Evaluation of explanations
The following subsections aim to evaluate the faithfulness of explanation meth-
ods on the best performing ResNet50 model discussed in the previous section,
with the exception of section 2.4.4 that tries to evaluate the explanation meth-
ods in general through visualised self-attentions of the Vision transformer.

The explanations of the ResNet50 model were generated for selected 100
positive and 100 negative images from the test set, for which the model pre-
dicts the correct class with the highest confidence (highest relative differences
between the class outputs). This is done to avoid explaining wrong or uncon-
fident predictions of the model.

The explanations were generated using the implementations discussed in
subsection 2.1.1 with the following settings:

LIME: Black imaged was used as the baseline, superpixels were generated
by the default Quickshift segmentation algorithm, the local surrogate was
trained using 16 000 samples and only the positive feature importances for
the predicted class were considered.

SHAP: Partition explainer that uses the Owen values was used as sug-
gested by Lundberg et al. [18] when explaining computer vision models. Telea
inpaint was used to impute the hidden pixels and the Owen values were es-
timated using 1600 iterations. The negative feature importances for the pre-
dicted class were again discarded.

IG: The final Integrated gradients saliency map was given as an average
of 5 IG explanations with the following baselines: black baseline, mean color
baseline, blurred baseline (Gaussian blur with kernel size of 25 × 25 pixels
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Explanation method Mean computational time [s]
LIME 94.84
SHAP 51.36
Integrated Gradients 10.50
FullGrad 4.18
GradCAM 0.08
GradCAM++ 0.09
Guided GradCAM 10.58
Guided GradCAM++ 10.59
IBA 0.79

Table 2.2: Mean computational time for producing a single explanation of the
ResNet50 by the particular explanation methods. The means were calculated
over 200 test set images.

and standard deviation σ = 10), random baseline (averaged over 10 random
baselines drawn from the uniform distribution), sampled baseline (averaged
over 10 images sampled from the test data).

FullGrad: No specific setting was set nor is required for this method.
GradCAM and GradCAM++: The target layer up to which the gra-

dients are backpropagated was chosen as the last convolutional layer in the
model as suggested by the GradCAM’s authors in [35].

Guided GradCAM and Guided GradCAM++: The Integrated gra-
dient explanations were used to guide the GradCAM and GradCAM++. The
guided GradCAM was therefore obtained as a pixel wise multiplication of the
GradCAM saliency map and integrated gradients saliency map (analogously
for the guided GradCAM++). This should yield better explanations than
guiding GradCAM by vanilla gradients as was originally suggested in [35].

IBA: The information bottleneck is introduced roughly into the middle of
the network (last convolutional layer in the second block) as suggested by the
authors [40].

As is discussed in the following subsection 2.4.1 using only one base-
line/imputation method to simulate missingness in the LIME and SHAP
methods might not lead to optimal explanations. Table 2.2 shows that due
to their model-agnostic nature LIME and SHAP have a significantly higher
computational complexity compared to the other methods, which would be
further magnified by averaging over multiple baseline/imputation methods.

Figures 2.4 and 2.5 show examples of explanations for various negative and
positive test images. To avoid ambiguity the colormaps used for visualising
the saliency maps are shown in figure 2.3.

In 2.4a the explanations for the given image show that three of the meth-
ods – LIME, SHAP and IBA highlight pixels corresponding to the right lung
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Figure 2.3: Colormaps used for visualising the saliency map explanations.
Colors on the left indicate low pixel importance, colors on the right indicate
high feature importance. Top: used when the saliency map is visualised over
the image of interest. Bottom: used when the goal is to clearly compare
different explanations without the need of visualising them over the image of
interest.

of the patient, whereas the other methods highlight mainly the pixels on pa-
tient’s left shoulder. If a visual evaluation was to be performed, the LIME,
SHAP and IBA explanation methods would probably be preferred to other
methods as their explanations are in this case more aligned with the intuition
i.e. are more plausible. Looking at the other explanations in 2.4b and 2.4c
the methods look fairly aligned at highlighting almost everything in the image
except the lungs themselves which is in pure contradiction with the intuition.
However, the visual inspection can not asses whether the explanation meth-
ods are highlighting the wrong pixels as important or whether the model has
really learned such unintuitive features. Figures in 2.5 show that explanations
of CXR images of positive patients highlight mainly the lungs area which is
more inline with the intuition. This phenomenon was observed throughout the
whole test set – explanations of negative images tend to highlight the corners
of the images, whereas explanations of positive images ten to highlight more
of the lungs area.

2.4.1 Baseline’s influence on Integrated gradients
Section 1.2.2.1 put forward theoretical arguments for the importance of base-
line image choice in both explanation and evaluation methods. This section
tries to demonstrate it on the integrated gradients explanation method pre-
sented in section 1.2.5.1.

Recall, that integrated gradients compute the attributions by accumulating
gradients on linear interpolation between the baseline image z and input image
x and then multiply the accumulated gradients with difference of baseline and
input values:

IGi(x) = (xi − zi)
∫ 1

α=0

∂f c(z + α (x− z))
∂xi

dα . (2.1)

The authors of integrated gradients put very little emphasis on the choice of
baseline image and suggest to simply use the black color baseline [29]. The
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(a)

(b)

(c)

Figure 2.4: Explanations of ResNet50 model’s prediction for three input im-
ages with negative class
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(a)

(b)

(c)

Figure 2.5: Explanations of ResNet50 model’s prediction for three input im-
ages with positive class
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equation above implies that for the input pixels of the same color as baseline
(xi−zi) = 0 the attribution IGi(x) will always be zero. By using an arbitrary
baseline image an assumption is made that pixels for which xi = zi should
have zero importance. Such assumption is difficult to justify in our domain.

As discussed in [64], one way of minimizing the effect of zeroing out pixel
importances for which xi = zi is to average attributions over multiple baselines
drawn from some distribution (or set) D. D can be chosen as uniform or
normal10 distribution (random noise baselines), training data set (sampled
baselines), set of multiple constant color baselines or a combination.

Figure 2.6 shows example explanations of 4 test data images generated by
integrated gradients with black color baseline, mean color baseline, random
baseline (drawn from uniform distribution and averaged over 10 iterations),
sampled baseline (drawn from the test set and averaged over 10 iterations)
and blurred baseline (Gaussian blurred with kernel size of 25× 25 pixels and
standard deviation σ = 10).

Figure 2.6: Examples of Integrated gradients explanations with different base-
lines.

10When D is chosen as N (0, σ2I) and the gradients are sampled only at the endpoint
α = 0, then the integrated gradients become almost equivalent to SmoothGrad explanation
method introduced in [65].
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Visual inspection of the displayed examples show notable differences be-
tween explanations that use different baselines. For example, the black color
baseline explanations highlight more pixels on the patients body as important
compared to the other methods, whereas the blurred baseline highlight more
pixels on the edges. These observations are inline with the expectations. The
other baseline explanations does not exhibit any noticable patterns.

To quantitatively measure the differences between different baseline expla-
nations two metrics were used – Spearman rank correlation and overlap ratio
of the 25% pixels with the highest importance in the explanations. Mean re-
sults over the whole test set are given as heatmaps in figure 2.7. Both rank
correlations and overlap ratios are surprisingly low (note that mean overlap
ratio of two random explanations would be 0.25). The most similar are ex-
planations with mean and blurred baselines, which is expected as the mean
baseline is essentially an extreme case of blurring.

Figure 2.7: Comparison of Integrated gradients explanations with different
baselines. Right: rank correlation heatmap. Left: overlap ratio of 25% most
important pixels. Note that random saliency maps would have an overlap of
0.25.

In conclusion, the goal of this section was not to select a baseline choice
that is superior to others. It was rather to highlight that baseline’s impact
on an explanation method can be substantial and more attention should be
drawn towards its selection both in research and in practice.
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2.4.2 Ablation test (remove and debias)

This section evaluates the explanations of the ResNet50 model through abla-
tion test using the remove and debias framework introduced in section 1.3.2.2.
In this experiment, the input image pixels are gradually being hidden starting
from the most important ones as computed by the given explanation method.
Hidding more relevant pixels in the image should result in bigger change in
the model’s prediction. The change in the model’s prediction is measured as
the relative change in the output of true class’s logit after hidding a given
ratio of pixels. The explanation methods are benchmarked against a random
explanation to compare the effect of pixels being hidden in a random order.

Graphs in figure 2.8 show the results of this test. The graph on top vi-
sualises the relative change in the target’s class logit output as a function of
the ratio of top pixels ablated (hidden). Ablation ratios were evaluated in the
range of [0, 0.95] with 0.05 steps, where 0 corresponds to no pixels hidden and
1 would correspond to all pixels being hidden. The individual points corre-
spond to individual evaluations. Random explanation is visualised as the gray
dotted curve. In this test, lower curve imply better explanation method.

It is clear that all the considered explanation methods performed sub-
stantially better than the random explanation. To better visualise how each
explanation method performed compared to the random explanation bench-
mark, the bottom graph shows the sum of differences between the evaluations
for the random explanation and the corresponding explanation method. The
summation is done up to 0.5 ablation ratio as past that the images become
too degraded as more than half of the information is hidden.

The best performing explanation methods in this evaluation were Guided
GradCAM and Guided GradCAM++ followed by SHAP.

2.4.3 Model parameter randomization test

This section evaluates the “sanity check” for explanation methods proposed
by Adebayo et al. in [46] and described in section 1.3.3. The goal is to
evaluate if the explanation method rely on the model’s learned parameters by
performing cascading randomization of the model’s parameters and comparing
the the similarity of explanations computed on these models.

The following ResNet50 models were used in this evaluation: the original
fine-tuned ResNet50 model, models randomized up to (including) fully con-
nected classification layer and each ResNet50’s convolution block and lastly a
completely randomized ResNet50 model. To speed up the evaluation, LIME
and SHAP hyperparameters (number of samples and number of estimation
steps) were lowered compared to the previous sections. An example of the
cascading randomization’s impact on the explanation methods is visualised in
figure 2.9.
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Figure 2.8: Ablation test (remove and debias) results. Top: relative change in
the target’s class logit output as a function of the ratio of top pixels ablated
(lower is better). Gray dotted curve correspond to a random explanation.
Bottom: Sum of differences of a corresponding method from the random
benchmark (higher is better).
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Figure 2.9: Example of the model’s parameters randomization effect on the
explanation saliency maps. Darker shade of red means higher importance.
Top: image being explained (negative class). Columns: randomization of
the Resnet50’s parameters up to the given layer. Rows: Different explanation
methods.
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For the quantitative evaluation of explanation’s saliency maps similarity
the following two similarity metrics were used:

Spearman’s rank correlation: For two saliency maps Mi,Mj ∈ Rw×h

let R(Mi), R(Mj) ∈ Rw×h denote their ranked versions, where the pixel impor-
tance values are replaced by their respective ranks in the saliency map. The
Spearman’s rank correlation rS ∈ [−1, 1] between saliency maps Mi,Mj is
then given as the Pearson correlation coefficient between their ranked version:

rS = ρR(Mi),R(Mj) = cov(R(Mi), R(Mj))
σR(Mi)σR(Mj)

, (2.2)

where cov(R(Mi), R(Mj)) denotes the covariance and σR(Mi), σR(Mj) denote
the corresponding standard deviations [66].

Top (1 − x) pixels’ overlap ratio: This metric measures how much of
the top (1−x) ratio of pixels overlap for two saliency map. Let qx denote the
x quantile of saliency map M and let Bqx(M) ∈ {0, 1}w×h denote a binary
mask given at each spatial position (i, j) as:

(Bqx(M))i,j =
{

1 (M)i,j ≥ qx
0 (M)i,j < qx

.

Simply put, the binary mask Bqx(M) is non-zero at positions, where the cor-
responding feature importance in M is among the highest. The overlap ratio
of two saliency maps Mi,Mj is then given as:

overlapqx(Mi,Mj) = |Bqx(Mi) ∩Bqx(Mj)|
|Bqx(Mi)|

, (2.3)

where |Bqx(Mi) ∩ Bqx(Mj)| and |Bqx(Mi)| denote the number of non-zero
elements in the corresponding binary masks. This metric is used as it may be
often more desirable to compare saliency maps with respect to only the most
important regions.

The results of this evaluation test are given in figures 2.10 (rank corre-
lation), 2.11 (overlap ratio of top 25% pixels) and 2.12 (overlap ratio of top
10% pixels). At each evaluation step, the randomized model was explained
by each explanation method and the explanations were compared to the ex-
planations of the original model. As this test involves randomization of the
model’s parameters, the evaluations were performed twice. Both means and
min/max bounds are visualised on the graphs. The benchmark (gray dotted
line) was chosen as 0 for the rank correlation as more the explanation method
relies on the learned model’s parameters, the less it’s explanations of a ran-
domized model should correlate with the explanations of the original model.
Similarly for the overlap ratios, the benchmarks are chosen as 0.25 for the
overlap ratio of top 25% pixels as uncorrelated explanations would on average
overlap by 0.25. Analogously for the overlap ratio of 10% pixels the bench
mark was chosen as 0.1. Closer an explanation is to the benchmarks, the more
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it depends on the learned parameters of the model and the better it passes
this evaluation test. The bottom graphs show the sum of differences from the
benchmarks for each explanation method.

The results show that the FullGrad and GradCAM++ methods performed
significantly worse in this test compared to the other methods. Interestingly
the best performing method was the Guided GradCAM. The wide disparity
between the results of GradCAM and GradCAM++ methods is unintuitive
as GradCAM++ was introduced as a generalization of GradCAM. This may
be caused by the fact that in GradCAM++ additional parameters αkc have
to be approximated to compute the saliency map. The approximation of
the additional parameters could be implemented in a way that makes it less
dependent on the model’s parameters and for example more dependent on the
initialization.

The graphs on figures 2.11 and 2.12 show that when looking at the overlap
ratio metric even the FullGrad and GradCAM++ explanations eventually
get close to the benchmarks once a more significant part of the model is
randomized.
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Figure 2.10: Cascading randomization of parameters evaluation (rank corre-
lation). Top: rank correlation between original explanation and explanations
of models randomized up to (including) layer on y axis. Gray dotted line
represents the target rank correlation. Bottom: sum of differences from the
target rank correlation (lower is better).
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Figure 2.11: Cascading randomization of parameters evaluation. Top: Over-
lap ratio between 25% most important features from the original explanation
and 25% most important features from explanations of models randomized up
to (including) layer on y axis. Bottom: sum of differences from the target
overlap ratio (lower is better).
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Figure 2.12: Cascading randomization of parameters evaluation. Top: Over-
lap ratio between 10% most important features from the original explanation
and 10% most important features from explanations of models randomized up
to (including) layer on y axis. Bottom: sum of differences from the target
overlap ratio (lower is better).
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2.4.4 Evaluation through attention
This section aims to evaluate the explanation methods by explaining a vi-
sual transformer and comparing the explanations to the visualised attentions
obtained through the method described in [57].

The base version of the vision transformer pre-trained on the ImageNet
was fine-tuned using the same settings as desribed in section 2.3 for training
the CNN models. The resulting vision transformer achieved 90% accuracy
on the test set. Similarly as in the previous evaluation, only the correctly
classified test set images were explained.

The vision transformer model was explained by all the explanation meth-
ods described in this thesis with mostly the same settings as described in sec-
tion 2.4. The only changes were done for the GradCAM and GradCAM++
methods as they require a target layer up to which the gradients are backprop-
agated. The authors of the used implementation specifically suggest using the
first layer of the vision transformer’s last block as the target layer for both
GradCAM and GradCAM++. However, when using the suggested settings
the GradCAM and GradCAM++ explanations often failed to recognize any
important pixels and returned an empty saliency map. This issue was fixed
by pushing the target layer closer towards the input layer.

Examples of the vision transformer explanations and visualised attentions
are given in figure 2.13. Note that the visualised attentions tend to highlight
only a small part of the CXR images.

The similarity of visualised attentions with the explanation methods on
the test data are visualised in figures 2.14 and 2.15. Given that the visualised
attentions tend to highlight only a small part of the images, the overlap ratio
of top 10% pixels might provide more accurate comparison than the rank
correlation. However, both rank correlation and overlap ratio metrics imply
overall low similarity between the visualised attentions and the explanation
methods.

The visualisation of transformer’s attention has been considered as an im-
plicitly faithful way of explaining transformers in various publications [8, 9].
While the intuition behind this is correct a recent survey by Khan et al. [67]
highlights the fact that “the attention originating in each layer, gets inter-
mixed in the subsequent layers in a complex manner, making it difficult to
visualize the relative contribution of input tokens towards final predictions”.
Whether the use of the current attention visualisation methods explain the
transformer in a faithful way seems to be an ongoing debate with some re-
searchers arguing for [68] and others against [69].
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2.4. Evaluation of explanations

Figure 2.13: Representative examples of visualised self-attention and expla-
nations for the given input images
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2. Experimental Part

Figure 2.14: Rank correlation of the visualised attentions and the correspond-
ing explanations of the correctly classified test set images.

Figure 2.15: Overlap ratio of top 10% pixels of the visualised attentions and
the corresponding explanations on the correctly classified test set images.
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2.5. Discussion

2.5 Discussion
This section aimed to quantitatively evaluate the explanation methods pre-
sented in the theoretical part of this thesis.

Table 2.2 show significantly higher computational complexity of LIME
and SHAP methods due to their model-agnostic nature, especially compared
to the GradCAM methods. This may discourage the use of model-agnostic
explanation methods in some use-cases but not in such critical domains as
medical imaging.

Visual inspection of explanations of the ResNet50 model, that achieved
95% accuracy on the test set showed, that according to the explanations the
model looks at unintuitive features (pixels in the corners of the images) when
when the negative class is predicted and more intuitive features (pixels in the
lungs area) when the positive class is predicted.

The ablation test in section 2.4.2 showed that all of the considered ex-
planation methods were significantly better at highlighting important pixels
of the image compared to the random explanation benchmark. Section 2.4.3
showed the FullGrad and GradCAM++ to be less dependend on the model’s
learned parameters compared to the other explanation methods.

For the evaluation test done on the ResNet50 model, Guided GradCAM
performed the best overall. Besides the Guided GradCAM, the next best per-
forming methods were the model-agnostic LIME and SHAP which proves their
value despite their high computational complexity. A key takeaway is that
guiding the GradCAM and GradCAM++ explanations by the integrated gra-
dients explanations yielded improvements in all the considered tests. On the
other hand, while the GradCAM++ was designed to be an improved general-
ization of the GradCAM method, it performed worse or same as GradCAM.

While the evaluations on the ResNet50 provided some valuable informa-
tion, they allowed for the explanation methods to be mostly just compared to
each other and shown to perform significantly better than random explana-
tions. This stems from the fact that the definitive assessment of explanation’s
faithfulness without having the ground truth is difficult.

To try tackle the problem of missing ground truth a vision transformer
model was trained in section 2.4.4. The visualisation of the transformer’s at-
tention blocks has been considered as an implicitly faithful way of explaining
the transformer model. The quantitative evaluation showed that the expla-
nations provided by the considered explanation methods were substantially
different from the visualised attentions. While this result could provide an
argument against the discussed explanation methods, there is an ongoing ar-
gument whether the current techniques of visualising the attribution blocks
are able to correctly assess the relative contribution of input tokens towards
the prediction.
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Conclusion

This thesis focused on the field of explainable artificial intelligence in the
context of medical imaging. The research focused on identifying the suitable
state-of-the-art explanation methods and methods to evaluate the faithfulness
of their explanations. Special attention was also paid to the concept of simu-
lating missingness in the inputs which is important for both explanation and
evaluation methods.

The theoretical part gives a detailed description of the selected explana-
tion methods: LIME, SHAP, Integrated gradients, Full-Gradients, GradCAM,
GradCAM++, Guided GradCAM, Guided GradCAM++ and Information
bottleneck attributions.

In the experimental part the ResNet50 architecture was trained on the
COVIDx dataset for the task of covid-19 pneumonia detection from chest
X-ray images and achieved 95% accuracy on the test dataset. The model
was subsequently explained by all the described explanation methods. Visual
inspection of the explanations showed, that the explanation methods highlight
unintuitive pixels when the predicted class is negative and more intuitive pixels
when the predicted class is positive. This is an insight to which a machine
learning practitioner should pay attention before deploying such model in the
critical environment of diagnostic imaging.

The explanations of the ResNet50 model were further quantitatively eval-
uated in terms of their faithfulness to the model through ablation and model
randomization tests. The overall best performing explanation methods in
these tests were the Guided GradCAM, SHAP and LIME. The evaluation tests
also showed, that guiding the GradCAM and GradCAM++ by the integrated
gradients method improved the explanations in all the measured metrics. On
the other hand, the GradCAM++ did not yield any improvement over the
simpler GradCAM method.

As an attempt to evaluate the explanation methods with respect to the
ground truth explanations, a Vision transformer was trained and explained
on the COVIDx dataset. The explanations were compared to the visualised
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Conclusion

attention blocks of the transformer which should intuitively correspond to
the ground truth explanations. Most of the considered explanation methods
showed very low similarity with the visualised attentions. However, there
is still an ongoing debate whether the current methods for visualising the
attention blocks are truly faithful to the model.

The recent work in the field of explainable AI is shown to be promising.
However, more focus should be drawn towards better quantitative faithfulness
evaluation methods rather than on new explanation methods evaluated solely
through a visual inspection. In the end, an insufficiently evaluated explanation
method may be counterproductive in providing a false sense of understanding
of the model which could have devastating consequences in critical fields such
as the medical imaging.
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Appendix A
Acronyms

AI Artificial intelligence

ANN Artifical neural network

CAM Class activation mappings

CLAHE Contrast limited adaptive histogram equalization

CNN Convolutional neural network

CXR Chest X-ray

IBA Information bottlenecks attribution

IG Integrated gradients

LIME Local interpretable model-agnostic explanations

ROAD Remove and debias

ROAR Remove and retrain

SHAP Shapley additive explanations

VGG Visual geometry group

ViT Vision transformer

XAI Explainable artifical intelligence

75





Appendix B
Contents of CD

readme.txt.........................the file with CD contents description
src ............................................... experiment notebooks

train..................training and evaluation of the CNNs and ViT
explain............................explaining the ResNet50 and ViT
eval...................................evaluation of the explanations

thesis...............................................the thesis directory
thesis.zip..........................LATEX source codes of the thesis
thesis.pdf........................the Diploma thesis in PDF format
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