
Instructions

Deep neural networks used for reinforcement learning are achieving significant performance in 

various tasks. The aim of this thesis is to focus on playing the Super Mario Bros game using state-of-

the-art Deep Reinforcement Learning methods. 

 

Detailed description: 

- Select an appropriate tool that enables the learning framework to interact with the game's 

environment. It means that the agent can get all necessary information about the current state of the 

Super Mario Bros game in a suitable format. 

- Research the recent deep reinforcement learning methods and select at least two of them that 

should be suitable for a given task. 

- Implement the learning framework and selected methods. 

- Measure, compare and discuss the performance of the learning process. Observe trained agents' 

performance on different game levels, which he has not been trained on. Try to fine-tune the methods 

and their hyperparameters to get the best results.
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Abstract

Within this master’s thesis, a fine-tuned reinforcement learning model ca-
pable of preparing an intelligent agent able to play the Super Mario Bros.
game has been created. Its architecture is based on conducted research on
current state-of-the-art reinforcement learning techniques where the most rel-
evant models for this type of task have been compared between each other.
In order to compare the models, research and description of tools that allow
the model to interact with the game had been done. Based on the comparison
results, the most suitable approach was selected. Experiments with applying
various modifications to the selected model have been done in order to find the
most suitable modifications for the Super Mario Bros. game. The fine-tuned
model has been used to train an intelligent agent, whose performances were
tested on the level he was trained on and also on two levels that he had never
seen before. The agent’s performances were really good and showed nice be-
havioral patterns, mainly on the level he was trained on, as his performance
on the unseen levels was understandably worse.

Keywords Deep Reinforcement Learning, Deep Q-learning, Asynchronous
Advantage Actor-Critic, Twin Delayed Deep Deterministic policy gradient al-
gorithm, AI agent, OpenAI Gym, Super Mario Bros.
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Abstrakt

V rámci této diplomové práce byl připraven odladěný model posilovaného
učení, který je schopný natrénování inteligentního agenta způsobilého hrát
hru Super Mario Bros.. Jeho architektura je založena na provedeném prů-
zkumu aktuálních state-of-the-art technik posilovaného učení, kde mezi sebou
byly porovnány modely, které jsou pro tento typ úlohy nejvíce relevantní.
Pro možnost porovnání modelů byl proveden průzkum a popis nástrojů, které
umožňují interakci modelů s hrou. Na základě výsledků porovnání modelů byla
vybrána nejvhodnější metoda. Následně byly provedeny experimenty s apliko-
váním rozmanitých modifikací na vybraný model za účelem najít nejvhodnější
úpravy pro hru Super Mario Bros.. Odladěný model byl následně použit k
natrénování inteligentního agenta, jehož výkony byly otestovány na úrovni,
na které byl natrénován a také na dalších dvou úrovních, které nikdy nevi-
děl. Výkony agenta byly velmi dobré a ukázaly pěkné vzorce chování hlavně
na úrovních, na kterých byl natrénován, ačkoliv jeho výkon na neznámých
úrovních byl pochopitelně horší.

Klíčová slova Hluboké posilované učení, Deep Q-learning, Asynchronous
Advantage Actor-Critic, Twin Delayed Deep Deterministic policy gradient al-
gorithm, AI agent, OpenAI Gym, Super Mario Bros.
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Chapter 1
Introduction

Artificial Intelligence is one of the biggest buzzwords in the digital world and
it is also one of the most progressively studied and developed areas of com-
puter science. Reinforcement learning (RL) is a process of teaching a computer
agent to simulate human-like behavior and be able to respond to its environ-
ment and overcome various obstacles and tasks. Reinforcement learning tasks
have in common the fact that at the start, the agent knows nothing about
the environment and has to learn the values of each action for each possi-
ble state by repeatably playing the game and utilizing the numerical reward
values obtained for each performed action. Reinforcement learning gained
more popularity in recent years thanks to the developments in available com-
putational power as most of the RL tasks are really complex and, therefore,
computationally expensive.

This thesis focuses on studying and describing the state-of-the-art tech-
niques used for training an intelligent agent and then observing their efficiency
in the Super Mario Bros. game. The Super Mario Bros. was chosen because
it represents a complex RL task for which no direct model has been devel-
oped yet (at least to our knowledge). Most of the state-of-the-art models were
trained on Atari-based games, where the majority of these games have a static,
closed environment, where few obstacles are changing their position, but the
agent has limited possibilities when it comes to movement and is not able to
move from the closed environment. Compared to this, the Super Mario Bros.
game is way more complex as not only the obstacles in the environment are
moving, but the background of the environment itself shifts with each move
of the agent towards the end. The environment also contains hidden obstacles
that become only visible upon interaction with the agent which can act as a
surprise factor for the neural network as it can be hard to predict.

We have found the complexity of this task interesting and decided to test
how current state-of-the-art approaches can handle this complex task. We
expect that since none of the models were prepared for the Super Mario Bros.
game that we will also be able to come up with modifications that will be
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1.1. Goals

more beneficial for teaching the agent to play this game.

1.1 Goals
The main goal of this thesis is to compare the performance of current state-
of-the-art RL models on the Super Mario Bros. game and then prepare a
modified version of one of the models, which will be fine-tuned for the game
and further improve the agent performances.

The first goal of this thesis is to perform research and describe the current
state-of-the-art RL approaches which could be suitable for training agent to
play the Super Mario Bros. game. The next goal is to find an appropriate tool
that will enable the interaction of the models with the environment while also
providing some reward signals that the model can use for improving the agent’s
decision-making. The tool should also enable showing the visual outputs for
human evaluation of the trained agent. A follow-up objective is to implement
at least two selected RL methods from the researched ones and to prepare a
custom modified model, which will be fine-tuned for the Super Mario Bros.
game. The final goal of this thesis is to compare and discuss the performance
of the learning process of the implemented models and perform a series of test
runs of the trained agent’s performances on the trained game level and also
on different game levels, which he has not been trained on.

2



Chapter 2
Existing approaches

One of our goals is to prepare an agent that can react to the game states and
predict the best action to perform for the current game state. This chapter
focuses on studying common reinforcement learning approaches used for con-
trolling and training the agent directly from high-dimensional sensory inputs.
These inputs are obtained from the selected tool which are discussed in Chap-
ter 3. We discuss common pre-processing practices for these inputs and their
benefits along with the advanced techniques which improve the training of the
model. At last, we focus on the most used deep learning approaches in this
field and discuss their pros and cons.

2.1 Basic approaches
We are dealing with a task where the so-called agent interacts with the envi-
ronment with an aim to always choose the best action to take for the current
state he is in. The reinforcement learning approach is a perfect candidate for
dealing with this kind of task.

In reinforcement learning, the agent first starts with no knowledge about
the environment and then learns by trial and error by playing the game over
and over again. After each action the agent takes, he receives a reward that
reflects if the action led to positive or negative improvement. Based on the
result, he updates his internal action table, which helps him to prioritize more
beneficial actions in the future. For more details, see e.g. [23].

In the subsections below, we explain basic techniques and approaches used
for tasks of this kind, but first, we introduce fundamental parts of the system.

We work with an environment that is represented by the game itself. In
our thesis, we have worked with Super Mario Bros.1 game. The agent in our
environment is the character that we can control, so in this case, it’s Mario.
The environment has a defined set of actions that the agent can perform.

1www.mariowiki.com/Super_Mario_Bros..

3
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2.1. Basic approaches

These vary from basic movements to jumps and combinations of these actions.
Actions can be often limited to only a subset of actions which leads to a lower
amount of possibilities for the agent but can be beneficial in terms of dimension
reduction and learning speed.

Another key term is the reward function and current game state. The
reward function plays a crucial role in the training process as it is able to
provide the agent with a reward for any game state the agent can be in. The
reward can be based on various factors. For example, the distance of the
agent’s position from the start of the level, the number of coins collected, etc.

The most crucial part of the reinforcement learning approach is the agent’s
memory and constructs on which he bases his decisions of action selection.
These constructs are usually represented by some high-dimensional tables that
update their value over time by using an appropriate update policy. We discuss
the most common approaches in the sections below.

2.1.1 Q-learning
One of the common concepts in reinforcement learning is Q-learning which is
based on so-called Q-values. [13] Each Q-value is meant to represent the ben-
eficial value of selecting given action in a given state. Q-values are gradually
updated with each step of the agent with the aim to help the agent determine
the optimal action for the given state of the game. We discuss the updates of
the Q-values below, but first, we need to introduce the term Q-table.

The Q-table represents the agent’s experience, sometimes we also refer to
it as the agent’s memory. Q-table’s dimensions are the number of actions by
the number of possible states in the game. In each cell, the table contains the
Q-value, which represents how good is the selection of the given action for the
current state. At the start, the values are all initialized to the same value,
usually zero, representing that the agent knows nothing about the state-action
game space. In each step, the agent looks into the table, checks all the actions
for his current position, and chooses the one with the biggest Q-value. If there
are more of them with the same value, he chooses one of them randomly.

The agent can also select a random action once in a while to prevent
getting stuck in local optima and more explore the state-action space. A sim-
ple strategy for tackling the exploration-exploitation trade-off is the Epsilon
Greedy Exploration Strategy. In this strategy, we use the hyper-parameter
value noted as ϵ, which is called the exploration rate. At each step, the agent
generates a random number from interval [0, 1). If the generated value is
greater than the value of ϵ then the agent performs a so-called greedy action,
which means that he chooses the next action randomly without considering
the Q-values. It is a common practice to start with a high value of ϵ and then
gradually decrease it with the number of epochs so the agent tends to less rely
on randomness in the latter training stages.

4



2.1. Basic approaches

During the training phase, the agent learns each state-action pair’s ex-
pected reward by trial-and-error and updates the relevant Q-values with new
ones. The updates are based on the update policy. For Q-learning, the stan-
dard policy used for the updates is based on the Bellman equation which is
explained in Section 2.1.2.

2.1.2 Bellman equation
The core principle of Bellman’s equation is in breaking down the complex
problem into simpler, recursive friendly subproblems and finding their optimal
solution. Because of this, it is omnipresent in the majority of the solutions for
RL problems.

Bellman equation is a well-known construct that is used in other contexts
as well. [23] It is mostly known for its application in dynamic programming,
where it is used as a necessary condition for optimality. The Bellman equation
is also beneficial for most ML problems because its form is natural for iterative
processing.

When working with Q-values we have a need for an update policy, which
is based on the reward function and is able to work with the current agent’s
state while also considering future actions and converges to an optimal value.
Bellman’s equation satisfies all these requirements.

Bellman’s equation takes the form:

Q(st, at) = (1− α)Q(st, at) + α · (Rt + γ ·max
a

Q(st+1, a)), (1)

where Q(s, a) is the Q-value for the given state s when action a is chosen as
the next step, st denotes the state of observation at given time step t, at is
the action, that the agent can perform in the given state at time step t, Rt

is the reward gained for taking action a at time step t and state s, α is the
learning rate and γ is the discount factor.

[25]
In summary, we can say that the Bellman’s equation decomposes the value

function into two parts:

a) the immediate reward

b) the discounted future reward

The equation simplifies the computation such that we can find the optimal
solution to a complex problem by breaking it down into simpler, recursive sub-
problems. In each step, the agent chooses an action from the Q-table, which
has the maximal value according to the formula above.

The learning rate hyper-parameter α ∈ [0, 1] controls speed of the learning
process. With small values of α, the model chooses an action with the biggest
Q-value while ignoring the values obtained from the reward function. With
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2.2. Deep Q-learning

bigger values of α, the reward function impacts the update of the Q-value
more significantly. The low values are used when executing and observing the
trained agent’s performance, where we don’t want the agent to learn anymore,
just perform based on learned Q-values. In the training phase, we use this to
control the amount of impact the reward function has on each Q-value update.

The discount factor γ ∈ [0, 1] plays an important role in the learning
process. If γ = 0, then the agent is only interested in the immediate reward
and ignores the long-term return. This is often useful for later stages of
the game, where it’s more beneficial to prioritize immediate return over the
long-term reward, because the game is more likely to end soon (the time is
running out, the agent is near the finish line, etc.), so it’s a common practice
to gradually decrease the value of the γ hyper-parameter. [24]

2.2 Deep Q-learning
Our selected environment to work with, the Super Mario Bros. game, con-
cludes of a very high variety of possible combinations of states and actions
that can be taken in these states. Constructing a table like it’s done in a
normal Q-learning approach would require a table of such a big size, that
the complexity of our trial-and-error approach would become very high. In
scenarios like these, the so-called deep reinforcement learning approach can
be applied. [17] Deep Q-learning can be also found in literature denoted as
DQN. In this section, we will describe the details of the DQN approach.

The “deep” portion of reinforcement learning refers to the fact that we im-
plement the reinforcement learning principles with the help of multiple layers
of neural networks. These are supposed to replicate the structure of a human
brain. The idea is to construct neural networks in such a way that it enables
the agent to make more human-like decisions. Therefore, we will prepare a
neural network that will be estimating different Q-values for each action. The
difference between traditional Q-learning and deep Q-learning can be seen in
Figure 2.1. We can see that the deep learning approach only requires the
agent’s current state as the input and uses function approximation to predict
Q-values of every available action for the provided state as the output. There-
fore, the input shape of the neural network is based on the shape of the state
observation image after pre-processing and the output shape is equal to the
number of all possible actions.

In other words, instead of using the tabular method for Q-value estimation,
we can now estimate them using the function approximation, which not only
gets rid of the necessity to store all state-value pairs in a table, but it gives
agent the option to determine the Q-values of actions for the states it has
never seen before or has only partial knowledge about, by using the values of
similar or neighbor states.

The loss function ℓ for training then takes a very similar form as the policy

6



2.2. Deep Q-learning

for updating the Q-table, like it’s described in [6]

ℓ = (Rt + γ ·max
a

Q(st+1, a)−Q(st, at))2, (2)

where Q(st, at) denotes the Q-value of performing the action a in state s at
time step t.

Figure 2.1: Comparison of basic Q-learning and Deep Q-learning principles.
Picture from https://miro.medium.com/max/3600/1*T4iXI6_jbaqVnsQwli-
fog.png.

Generally said, the DQN updates the network’s weights in each step by
computing the target (based on the Bellman’s equation) and current val-
ues (based on the current predictions of the network) and feeding them to
the the loss function. The the network’s weights are then updated by back-
propagating the computed loss value.

The introduction of the neural network with multiple layers allows us to
predict Q-values more effectively, even for large environments with many pos-
sible actions for each state. It also enables us to use additional mechanisms,
which would normally not be suitable for a simple Q-table approach, and
these mechanisms allow us to achieve better performances. Mechanisms and
approaches commonly used when working with deep reinforcement learning
are described in the following subsections.

2.2.1 Pre-processing of the environment
Since we are dealing with neural networks, it’s good not to omit some kind
of general optimization to decrease the complexity of the model as much as
possible. One of the most common ways to do it is by pre-processing the

7
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2.2. Deep Q-learning

input that we feed to the neural network, which means reducing, modifying, or
optimizing the state representation. When working with neural networks, you
always want to study the input data and try to get rid of unnecessary features,
lower the dimension of the input all in order to speed up the training of the
neural network and the prediction evaluation process while losing as little
information, by performing the pre-processing, as possible. In this section, we
will describe commonly used pre-processing approaches which are used to deal
with similar tasks and which we also decided to include in our system. [17, 18]
More details about our implementation of the pre-processing techniques are
described in Chapter 4.

For the Super Mario Bros. game, we have decided to use an implemen-
tation of the OpenAI’s Gym environment on the Nintendo Entertainment
System (NES) using the nes-py emulator (read more about it in Chapter 3).
It provides us with all necessary state-related data. The state of the environ-
ment is represented as a two-dimensional RGB2 pixel array with dimensions
240 by 256.

As part of our pre-processing, we have resized the RGB image into 84 by 84
and then we have converted it into grayscale representation. By converting the
original image into grayscale, we have reduced the input image’s channel size
from three to only one, or in order words, decreased the dimension complexity
of the input. We have done this based on our research, where we have found
out that the majority of projects focusing on pre-processing similar game envi-
ronments found that changing the dimensions to 84 by 84 decreases the input
size while preserving all the essential information. For example, in the pa-
per “Comparison of Deep Reinforcement Learning Approaches for Intelligent
Game Playing” [10] they have used these modifications for pre-processing of
Atari games. After resizing the input array, it is a good practice to normalize
the pixel values into (0, 1) interval.

Since performing almost any action takes the agent some time, it is also
helpful to skip a few frames with each action. For example, when the agent
wants to perform the jump action, it takes some time for the Mario char-
acter to actually perform the jump and land in the game. To tackle these
scenarios, k frames (usually k = 4 is used) are skipped, and a total reward
value is computed as a sum of all k skipped frames reward values for the given
action. This technique makes the agent choose action on every k-th frame
instead of on every frame, which saves a lot of computational time because
running the emulator for multiple steps with the same action requires much
less computational power than having the neural network to select an action
for each consecutive frame. This technique allows the agent to play roughly
k times more games without significantly increasing the run time. A similar
idea is then also applied to avoid sending a copy of the same frame multiple

2RGB is an additive color model in which the red, green, and blue colors are added
together in various ways to reproduce a broad array of colors.
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2.2. Deep Q-learning

times into the neural network. As Volodymyr Mnih described in [16], where
he introduced the DQN model, the pre-processing steps are applied to the m
most recent frames, and they are then stacked to produce the input to the
Q-function. The m value is commonly set to m = 4, but he notes that the
algorithm is robust to different values of m (for example, 3 or 5).

You can see the results of our pre-processing in Figure 2.2. By performing
the pre-processing steps described above, we were able to reduce the number
of computations required from the network during the training phase, and it
also helped to speed up the training process.

Figure 2.2: Super Mario Bros. game screen after pre-processing (downsampled
to 84x84 grayscale).

2.2.2 Two separate networks technique
Using one neural network for both computing the predicted Q-value and also
using it as the target value in the loss function often leads to unpleasant insta-
bilities. In fact, the learning algorithm often becomes unstable and diverges.

Let us first explain why updating the Q-value may suddenly lead to an
unstable algorithm in DQN when it’s fine to use it in a basic Q-learning
approach. With Q-learning, you are updating exactly one state-action value
at each time step, whereas with DQN you are updating many. The problem
here is that this can cause a situation, where the updated action can affect
the action values for the very next state which the agent will be in instead
of guaranteeing state stability like it is the case in Q-learning. This scenario,
unfortunately, happens all the time with DQN when using standard deep
neural network architectures. This effect is called catastrophic forgetting3

3More information on catastrophic forgetting problem can be found here: https://
towardsdatascience.com/guiding-forgetful-machines-72d1b8949138.
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and may cause endless loops in the learning mechanism.
In order to prevent all this from happening, a second neural network is

introduced. Therefore, we are working with two neural networks that both
have the same architecture, and we call them local and target networks. The
local network’s weights are updated in each step of our training process. Be-
cause of that, the local network is sometimes referred to as the online network.
The target network is a periodical copy of the local network. Target network
allows the learning mechanism to perform a defined number of training steps
with current Q-values for each action before actually saving the newly com-
puted values and then starting to use them in the update process. This gives
the network an option to consider more actions that have taken place recently
instead of updating in each iteration. This is all done in order to find better
values before it starts using them to take actions. By this, we are escaping
the unpleasant forgetting dilemma which has been mentioned above.

We, therefore, have two separate Q-networks. We use Q(s, a; θ) notation
for the local network and Q(s, a; θ−) for the target network. At the i-th
iteration, the current θi parameters are updated with the aim to minimize
the mean-squared Bellman error with respect to saved θ− parameters, by
optimizing the following loss function,

Li(θi) = E[(R + γ ·max
a′

Q(s′, a′; θ−
i )−Q(s, a; θi))2] (3)

as further described in [18]. Here, the notation of s and s′ is used, but it de-
notes the same thing as st and st+1 that were used in previous formulas. This
alternative notation is sometimes used to make complex formulas more read-
able. Furthermore, for computing the target Y DQN

t (value used for computing
the loss function’s value) we would get the following formula,

Y DQN
t = Rt+1 + γ ·max

a
Q(st+1, a; θ−

t ). (4)

So, in a few words, the two networks technique introduces the target net-
work, and it is a copy of the local network. After a defined number of steps of
the learning phase during which only the local network is updated, we copy
all the weight values of the local network to the target network. The num-
ber of steps after we copy the weights is a hyper-parameter of our system.
The most commonly used number of steps after which the weight values are
copied is around a few thousand, but its always good to experiment with the
parameter’s actual value to get a value that suits the current problem the
most.

2.2.3 Experience replay
Imagine playing the Super Mario Bros. game (or generally any game based on
a similar gameplay style). After you press the jump command, the playable
character (Mario in our case) performs a jump. While mid-air, you can still
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turn to the sides and alter the direction of your jump a little, but mostly your
available actions while mid-air will become very limited. This all means that
we mostly know the real benefit of our selected initial action only after the
jump is finished and Mario lands on a solid surface again. So between the
start of the jump and landing, many actions may occur, but all of them will
have similar reward value for our agent. These situations make learning from
each executed action less effective.

The experience replay is a mechanism based on storing and replaying game
states. The game states are commonly stored as a tuple of 4 values - state,
action, reward, and next state. To perform experience replay we store the
agent’s experiences et = (St, At, Rt, St+1) at each time-step t in a data set
Dk = {e1, . . . , ek}. During the learning phase, we apply Q-learning updates
on samples of experience (S, A, R, S

′) ∼ U(D), drawn uniformly at random
from the pool of stored samples.

That means that after the first k actions, the local network’s weights are
updated with a sample batch of experiences from the memorized last k ex-
periences. Therefore k is another hyper-parameter we need to introduce into
our model, and its value needs to be fine-tuned. The introduction of this
technique does not require us to change the loss function formula since the
only difference is only which S, A, R, S

′ , A
′ values we feed into it.

This trick helps to speed up the Deep Q-Learning’s learning process be-
cause having the right model parameter update frequency is important. If
you update model weights too often (e.g., after every step), the algorithm will
learn very slowly because, in most cases, not much has changed (see the exam-
ple at the start of this section) between neighbor situations. The same goes
for the other scenario. When you choose the size of the experience batch too
large, then this mechanism can miss selecting values, which can be beneficial
because it will have to choose randomly from a large batch. Therefore the
chance of selecting a less optimal update can occur with a higher probability.
Another advantage of this technique is caused by the fact that Q-learning up-
dates are incremental and do not converge quickly, so multiple passes with the
same data are beneficial, especially when there is low variance in immediate
outcomes given the same state, action pair. More details and analysis of this
technique can be found in [16].

2.3 Q-learning modifications
We did research on Q-learning modifications in order to find the one which
would be the most relevant for our problem. We have found various works
all inspired by the Q-learning algorithm principle. Q-learning inspiration led
to creation of similar algorithms, such as Delayed Q-learning [22], Phased
Q-learning [11], and Fitted Q-iteration [5], etc. These modifications have in
common their purpose. They have been created to speed up the convergence
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rates of the original algorithm. But one of the modifications stood out from
the other. It is called Double Q-learning, and it was created by Hado van
Hasselt as a solution to the Q-learning’s overestimation problem. In this
section, this problem is further described along with the basic idea behind
Double Q-learning, and its deep neural network adaptation.

2.3.1 Double Q-learning
Even though Q-learning is one of the most popular reinforcement learning
algorithms, it can perform poorly in some stochastic environments. Hado
van Hasselt focuses on this problem in his paper Double Q-Learning [8] and
points out that Q-learning’s performance is negatively influenced by the large
overestimation of action values caused by the maximization approach in the
Q-value update formula. Because of this, the algorithm is known to sometimes
learn unrealistically high action values, which leads to poor performances of
the standard Q-learning technique.

To briefly demonstrate the problem of the algorithm, let us present you
with a simple example inspired from [20]. Consider a Markov decision process
having four states: A, B, C, and D. Two of these states, C and D, are terminal.
State A is the starting state, where the agent has the possibility of taking two
actions, either Right or Left. The Right action gives him zero reward points
(we will denote the reward value as R), and the agent then lands in terminal
state C. The Left action moves the agent to state B also with zero reward
value. State B offers the agent several actions, and all of them move the agent
to terminal state D. However, the reward R of each action from B to D has
a random value from a normal distribution N (−0.5, 1). The visualization of
the described scenario is shown in Figure 2.3.

Figure 2.3: Example describing the overestimation which occurs in Q-learning.
Image taken from [20].

The expected value of R is in our example given to be E(R) = −0.5.
This means that over a large number of experiments, the average value of R
is less than zero. Based on this assumption, it is clear that performing the
Left action from state A is always a bad idea. However, because some of the
values of R are positive, Q-learning will incorrectly consider performing the
Left action from state A as it maximizes the reward. In reality, this is a bad
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decision because even if it works for some episodes, it is guaranteed to bring
a negative reward in the long run.

As an outcome of previous observations, it’s evident that the main cause
of the value overestimation can be solved by focusing on the maximization
operator. The problem with the operator is that in both standard Q-learning
and DQN update formulas, as shown in (1) and (2), the same values are used to
select and evaluate the action. This makes the algorithm more likely to select
overestimated value in each step, resulting in overoptimistic value estimates
as was proved in [9]. To resolve this issue, Hado van Hasselt has proposed the
Double Q-Learning method in his paper [8]. The main idea was to decouple
the selection from the evaluation. In his work, he introduced the terms Single
Estimator and Double Estimator and mathematically described and proved
that the Single Estimator used in the standard Q-learning is biased when
estimating the optimal value. He then proposed an alternative approach, the
use of the Double Estimator, which uses two estimators instead of one. Based
on its principles, he introduces the Double Q-learning algorithm, which is able
to handle the overestimation issue.

His proposed algorithm, the Double Q-learning, stores two Q functions
instead of one and can be seen in Algorithm 1. Each Q function is updated
with a value from the other Q function for the next state. It is important to
note that both Q functions learn from separate sets of experiences. To select
an action for the agent to perform, one can use any of the value functions.
The Q functions are updated on the same problem, but with a different set
of experience samples, and because of that, it can be considered an unbiased
estimate for the value of this action. Because of storing two Q functions, the
algorithm is not less data-efficient than standard Q-learning.

Algorithm 1: Double Q-Learning
Initialize QA,QB, s
repeat

Choose a, based on QA(s, ·) and QB(s, ·), observe r, s′

Choose (e.g. random) either UPDATE(A) or UPDATE(B)
if UPDATE(A) then

Define a∗ = argmaxa QA(s′, a)
QA(s, a)← QA(s, a) + α(s, a) · (r + γQB(s′, a∗)−QA(s, a))

end
else if UPDATE(B) then

Define b∗ = argmaxa QB(s′, a)
QB(s, a)← QB(s, a) + α(s, a) · (r + γQA(s′, b∗)−QB(s, a))

end
s← s′

until end
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Hasselt has also analyzed and compared Double Q-learning to the standard
Q-learning approach and confirmed that his algorithm does not suffer from
the overestimation bias as the Q-learning does and also noted that Double Q-
learning sometimes underestimates the action values, which is more pleasant
than overestimating them.

2.3.2 Double Deep Q-learning
Double Deep Q-learning (also referred to as Double DQN or DDQN) is the
outcome of applying the main idea behind the Double Q-learning algorithm
to the deep neural network version of the Q-learning problem. As Hado van
Hasselt describes in [9], the overoptimization problem also occurs when it
comes to the DQN approach. In his earlier work, [8] he proposed the Double
Q-learning algorithm for solving the issue, and he tried to apply the same
concepts to the neural network approach.

As a natural way of implementing his Double estimator principle (see Sec-
tion 2.3.1) seemed to be to take advantage of the already commonly applied
concept of two separate networks (we talk about it in Section 2.2.2). The
target network in the DQN architecture provides a natural candidate for the
second value function without the need to introduce additional networks. He,
therefore, proposes to evaluate the greedy policy according to the local net-
work but use the target network to estimate its value. The resulting algorithm
is called Double DQN. Its update is the same as for DQN, but it differs when
it comes to the computation of the target value Y DQN

t . The formula for
computing target value Y DQN

t

Y DQN
t ≡ Rt+1 + γ ·max

a
Q(st+1, a; θ−

t ) (5)

is replaced with

Y DoubleDQN
t ≡ Rt+1 + γ ·Q · (st+1, argmax

a
Q(st+1, a; θt), θ−

t ). (6)

It’s good to compare the original Double Q-learning solution with Double
DQN. In the first one, two value functions learn by randomly assigning the
experiences to update one of the two value functions. This means that we are
working with two sets of weights, θ, and θ′. In each update step, one group
of weights determines the greedy policy, and the other determines its value.
But in Double DQN, the weights of the second (local) network θ′

t are replaced
with the weights of the target network θ−

t for the evaluation of the policy
(prediction of the next action for the agent). A more detailed description of
the differences can be found in [9].

Hado van Hasselt in detail measured and compared the performance of
Double DQN and standard DQN implementations on many different Atari
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games4. Since many of the games he tested on had not only different environ-
ments but also required different play styles from the agent, we can consider
his observations game independent and, therefore, a sufficient measuring tech-
nique. After observing the test outcomes, he pointed out how the learning
curves of DQN consistently end up much higher than the actual discounted
value of the best-learned policy.

In conclusion, it is clear that the Double DQN algorithm improves over
DQN both in terms of value accuracy and in terms of policy quality. According
to Hasselt’s research, reducing overestimation can significantly benefit the
overall stability of the learning process. [9]

2.4 Asynchronous Advantage Actor-Critic
Even though Q-learning is the most popular and used approach when tackling
the reinforcement learning problems, there are also other approaches, where
some of them are worth mentioning, because they could bring better per-
formances for our system and agent respectively. For example the Temporal
Difference Learning, Advantage Actor-Critic, Asynchronous Advantage Actor-
Critic, Deep Deterministic Policy Gradient, and many more. Brief description
of the techniques mentioned above can be found in Deepanshu Mehta’s paper
State-of-the-Art Reinforcement Learning Algorithms [4]. One of them is the
Asynchronous Advantage Actor-Critic model, often denoted as A3C, which
was first proposed in 2016 by Volodymyr Mnih in [15]. A3C is considered to
be the main competitor for the state-of-the-art reinforcement learning model
after the Q-learning approach. In the subsections below, we will discuss the
principles of the A3C approach and also how we can tackle the overestimation
issue which it suffers from.

2.4.1 A3C vs. DQN
In this section we will first discuss the similarities and differences of the A3C
approach when compared to the Q-learning, to which we have dedicated most
of our focus in the previous sections, and then we will describe the core prin-
ciples and ideas behind A3C in more detail.

The main principles and building blocks of the DQN and A3C are the same.
Both have the same requirements for the environment functionality and both
benefit from pre-processing of the environment in the same way. Also, both
use Q-Learning as an off-policy control method to find the optimal policy.
While implementing DQN we can implement the local and target networks
and apply the concept of experience replay (see Sections 2.2.2 and 2.2.3), but
when it comes to A3C we can’t apply these techniques directly. But the com-

4Some of their famous games that he used in his research can be found here: https:
//en.wikipedia.org/wiki/List_of_Atari_SA_video_games.
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bined key idea of introducing separate networks and learning from multiple
experiences is included in A3C, where the experiences are collected and pro-
cessed asynchronously by multiple independent workers in parallel on their
own copies of the environment.

For both approaches, the training phase depends heavily on the system’s
choice of the hyperparameters (as it generally does in most RL tasks). These
hyperparameters are similar for both of them. For A3C they are the number
of experiences to use for each training, the frequency of training step, learning
rate value, number of workers and value of the discount factor (used in updates
of the Q-values) and many others. The training phase with the set parameters
then has the same flow for both approaches. So in conclusion on what’s similar
between the two approaches we can say that their core concepts are the same
and for now it looks like they are almost identical, so lets discuss the difference,
which A3C brings to tackle the reinforcement learning problem.

The main difference is that DQN learns an action value function and de-
fines the policy from that value function, while A3C learns both the policy
and value function. The name A3C concludes of the terms Actor and Critic,
which represent the main components of this approach. Actor represents the
policy and Critic represents the value function. Both of them are implemented
as fully connected linear layers on top of the network. When Actor and Critic
are computing their outputs to compute policy and value for the network’s
weights update, they process the input game state through the shared neural
network architecture and then process the output each through their individ-
ual fully connected layer. So, in short, we can say that both Actor and Critic
are separate fully connected linear layers on top of the shared DQN architec-
ture. In the learning phase, the Critic is used to update the Actor, or in other
words, the value function is used to update the policy.

The principle, which we have just described is by itself called the Advan-
tage Actor-Critic, A2C in short. The difference between A2C and A3C is that
in A3C, the actor-critic concept is enhanced by the introduction of multiple
workers, each represented by the same deep neural network architecture. Each
worker explores its own independent copy of the environment with its own pa-
rameters for the neural network. They each learn experiences and update the
so-called global network (see Figure 2.4).

Workers in A3C act concurrently and optimize the deep neural network
through asynchronous gradient descent. After computing the gradients, they
send the updates to the global network after every tmax actions (steps) or
when a terminal state is reached. Whenever the global network is updated,
it propagates new weights to the workers to guarantee they share a common
policy. Two cost functions are associated with the two DQN outputs (from
Actor and Critic) of each worker. As described in [1], for the policy function
it is

fπ(θ) = log π(at|st; θ)(Rt − V (st; θt)) + βH(π(st; θ)), (7)
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Figure 2.4: Visualization of an A3C model principle. Taken from [10]

where θt are the values of the parameters θ at time t, Rt =
∑k−1

i=0 γirt+i +
γkV (st+k; θt) is the estimated discounted reward in the time interval from
t to t + k and k is upper-bounded by tmax, while H(π(st; θ)) is an entropy
term, used to favor exploration during the training process. V (st; θ) is the
value function with parameters θ, where the notation V π(st) is defined as
V π(st) = E[Rt|st] which is the expected return for following the policy π in
state st. The factor β controls the strength of the entropy regularization term.
The cost function for the estimated value function is:

fv(θ) = (Rt − V (st; θ))2. (8)

Training is then performed by collecting the gradients ∇θ from both of
the cost functions. The computed gradients can be either shared or sepa-
rated between worker threads but Mnih in his work [15] notes that the shared
implementation is known to be more robust.

2.4.2 Dealing with overestimation in A3C
When it comes to RL approaches tackling similar tasks, some issues are shared
for most of them. Since A3C and DQN both use similar architectures and
update policies, it is no surprise that they also share some weak points. As
we have discussed in Section 2.3, one of the more severe issues of the DQN
approach is the overestimation bias of learned Q-values. Even though A3C
may seem resistant to overestimation thanks to the fact that multiple workers
are solving the issue almost independently, the overestimation is still present
with the A3C approach, as Scott Fujimoto proves in his work [7]. In this
section, we will talk about the overestimation bias in the actor-critic concept
and what adjustments need to be made to minimize it as much as possible.
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A3C uses gradient descent for updating the policy and even though the
overestimation is very low within each update, it is still present and can be
a cause of concern in some tasks. This seemingly minor overestimation may
gradually, over many steps (updates), develop into a more significant bias.
Also, inaccurate value estimates in most cases lead to poor policy updates.
Fujimoto in his research notes in [7] claims that he evaluated several ap-
proaches (most of them inspired by the techniques which are effective against
overestimation in the DQN approach) for dealing with the reduction of the
overestimation but found them ineffective in an actor-critic setting. Apart
from other, he was also aware of the Double DQN algorithm created by Van
Hasselt in [9], but specifically mentions that even though this technique helped
to overcome overestimation in DQN, it is unfortunately ineffective in A3C and
that is mainly because of the slow-changing policy. The current and target
value estimates remain too similar to avoid overestimation bias. Further in
his work, he describes how he was able to find a solution for the issue thanks
to a much simpler Double Q-learning algorithm (see Section 2.3.1) instead of
using its network-based alternative.

As Fujimoto noted in [7], the Double Q-learning can be adapted to an
actor-critic format by using a pair of independently trained critics in each
worker instead of using only one critic per worker. Inspired by the Double
Q-learning algorithm, he proposed a modified version of it which he named
Clipped Double Q-learning. Based on its principles he then proposed Twin
Delayed Deep Deterministic policy gradient algorithm with which he was able
to minimize the overestimation issue of the A3C model.

Now we will explain Fujimoto’s Clipped Double Q-learning algorithm with
a focus on the core idea behind it. If we denote a pair of actors as (πϕ1 , πϕ2)
and pair of critics as (Qθ1 , Qθ2), where πϕ1 is optimized with respect to Qθ1

and πϕ2 with respect to Qθ2 , we then get the formulas for its respective update
estimates as

y1 = R + γQ
θ

′
2
(s′, πϕ1(s′))

y2 = R + γQ
θ

′
1
(s′, πϕ2(s′)).

(9)

We can see that πϕ1 optimizes with respect to Qθ1 . If we would use an inde-
pendent estimate in the target update of Qθ1 we would successfully avoid the
bias introduced by the policy update thus it would help us with minimizing
the overall overestimations. Sadly, the critics cannot be considered entirely
independent due to the fact that in the formula we use the opposite critic
in the learning targets. Because of that the value of Qθ2(s, πϕ1(s)) will be
greater than Qθ1(s, πϕ1(s)) for some states s. This is problematic because
Qθ1(s, πϕ1(s)) generally overestimates the true value. To address this prob-
lem, Fujimoto proposed to simply upper-bound the less biased value estimate
Qθ2 by the biased estimate Qθ1 . If we then take the minimum between the
two estimates, we get the update estimate formula for the Clipped Double
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Q-learning algorithm:

y1 = R + γ min
i=1,2

Q
θ

′
i
(s′, πϕ1(s′)). (10)

With Clipped Double Q-learning, the value target cannot introduce any ad-
ditional overestimation when compared to the standard Q-learning solution.
This proposed update formula may cause a completely opposite effect on the
estimated values as it may induce an underestimation bias. But in fact, having
the underestimation bias is far more preferable to the overestimation one be-
cause, unlike overestimated actions, the value of underestimated actions will
not be explicitly propagated through the policy update.

The adjustment explained above, together with the application of the tar-
get network, delayed policy update (the core benefits of the two separate
networks technique explained in Section 2.2.2), and the target policy smooth-
ing regularization (inspired by Sutton and Barton’s [23]) led to the creation of
the Twin Delayed Deep Deterministic policy gradient algorithm, called TD3
in short. TD3 consists of one actor and a pair of critics. In every step, the pair
of critics is updated with respect to the minimum target value of the actions
which are selected by the neural network using the target policy:

y = R + γ min
i=1,2

Q
θ

′
i
(s′, πϕ′(s′) + ϵ), (11)

where ϵ ∼ clip(N (0, σ),−c, c) is the added noise that is clipped with the
purpose to keep the target value close to the original action and c represents
hyperparameter of the model. Every d iterations (in the proposal paper [7]
originally set to d = 2), the policy is updated with respect to Qθ1 following
the deterministic policy gradient algorithm introduced by Silver in [21]. Full
pseudocode of the TD3 can be seen in Algorithm 2.
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Algorithm 2: Twin Delayed Deep Deterministic policy gradient
Initialize critic networks Qθ1 , Qθ2 , and actor network πϕ

with random parameters θ1, θ2, ϕ
Initialize target networks θ′

1 ← θ1, θ′
2 ← θ2, ϕ′ ← ϕ

Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πϕ(s) + ϵ,
ϵ ∼ N (0, σ) and observer reward R and new state s′

Store experience tuple (s, a, R, s′) in B

Sample mini-batch of N experiences (s, a, R, s′) from B
ã← πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
y ← R + γ mini=1,2 Qθ′

i
(s′, ã)

Update critics θi ← argminθi
N−1 ∑

(y −Qθi
(s, a))2

if t mod d then
Update ϕ by the deterministic policy gradient:
∇ϕJ(ϕ) = N−1 ∑

∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)
Update target networks:
θ′

i ← τθi + (1− τ)θ′
i

ϕ′ ← τϕ + (1− τ)ϕ′

end
end
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Chapter 3
Tools for environment

interaction

One of the goals of this thesis was to select an appropriate tool that enables the
learning framework to interact with the game’s environment. Optimally, we
wanted to find a tool that would require only a little, ideally no adjustments
from us, so we could focus solely on the RL part of the task and not the
interface implementation.

In this chapter are described the considered tools, the requirements we set
when searching for the ideal tool, which would enable us to interact with the
game environment, and which one we decided to use in the end. We then de-
scribe how it works and what information it can provide for our agent to work
with, and we also explain in detail the format of the provided information.

Before describing the available tools, we first describe Super Mario Bros.
core game mechanisms, movements, and basic goals of the game in Section 3.1,
because that’s what was studied first in order to understand exactly what we
need. After we had been introduced to the game principles, we knew that we
needed to find a tool that would allow us to run the game, easily input action
commands to control Mario (the agent) and at the same time be able to receive
output which would be in a suitable format and can reflect the current state of
the environment. Starting from Section 3.2, we have described some available
tools which we found and the one which proved to be the most suitable for
our game.

3.1 Super Mario Bros.
Super Mario Bros. is a very old platform video game from 1985. It was
created by Nintendo5 and is still, by some, recognized as one of the greatest
video games of all time.

5https://www.nintendo.com.
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In the game, the player controls the main character called Mario, and trav-
els with him through different variations of environments, also called levels of
the game. The goal of each level is to get Mario to the end of the environment
with at least one health point (HP) remaining. Mario has three HP at the very
start of the game, and whenever he loses one, the current environment (level)
is restarted, and he needs to go through it again from the start. The whole
game ends when Mario runs out of lives.

Apart from Mario, there are a few types of obstacles in the environment
as well. One group of obstacles is the static ones. Those can be some barriers
of various heights which can be jumped over or some pits of various widths,
which also need to be jumped over. Barriers themselves are harmless and
require only a proper jump to overcome, but if Mario falls into a pit, then he
loses one life point. Then there are also moving obstacles, the foes. These
can take various forms and can perform various actions like jumping, firing
projectiles, and other. The important thing to note is that if Mario touches
an enemy or its projectile then he loses one life point. Mario also has a way,
how he can destroy the enemies. A very common technique that works on
almost all enemies is landing on top of them, which destroys them.

Mario has a defined set of actions that he can perform. The standard
controls are moving to either right or left, jumping, ducking, and dashing. Of
course, various tricks and very efficient game-plays can be performed by com-
bining (performing) multiple standard actions simultaneously. For example,
executing jump and move right actions together is a standard move required
to jump over obstacles.

3.2 DeepMind Lab
One of the tools considered was DeepMind Lab. It is an interesting open-
source project made with the aim to prepare a flexible and powerful tool for
training agents in various environments in order to push the boundaries of
Artificial Intelligence (AI). The project’s goal was to develop a system, where
agents can learn to solve any complex problem without needing to be taught
how.

The documentation of the tool mentions the possibility of performing var-
ious RL tasks with it like navigating in mazes, traversing dangerous passages
while avoiding falling off cliffs, or quickly learning and remembering random
procedurally generated environments. It also notes that it is made to learn
agents automatically from the raw inputs and reward signals from the environ-
ment while also allowing high customization, which is exactly what we were
looking for. In DeepMind Lab’s GitHub repository6 various environment im-
plementations can be found with different agent configurations for performing
a rich spectrum of tasks.

6https://github.com/deepmind/lab.
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Sadly none of the available environments was similar to the one we were
looking for. That was mainly due to the fact that this tool is made for three-
dimensional environments and our game environment is two-dimensional. This
would really complicate things because adjusting the tool and creating our own
environment for the game would completely transform the complexity of our
task. More details about the tool can be seen in its paper [2].

3.3 Psychlab
Since the DeepMind Lab seemed like a very useful tool, we decided to dig
more deeply into it and tried to find if there exists a modification that would
be more suitable for two-dimensional environments. We found that many
projects and adjustments were built on top of it, but the only one which we
thought was worth mentioning was the Psychlab.

Psychlab is an open-source platform built on top of DeepMind Lab with
the intention to better understand the behaviors of artificial agents. Because of
that, it allows to directly apply methods from fields like cognitive psychology
to study the behaviors of artificial agents in a controlled environment. In
order to do that, they used the DeepMind Lab to model an environment that
consists of an agent sitting in front of a virtual computer monitor and responds
to the onscreen tasks.

Even though this project was done with the aim to study the psycho-
logical behavior of the agents, we found it interesting (and potentially useful)
that their environment transformed the three-dimensional DeepMind Lab into
some sort of two-dimensional one. Unsurprisingly, not even for this project is
an environment of Super Mario Bros. implemented, and in order to use this
tool, we would need to modify Psychlab’s environment and implement the
game itself with all the input and output mechanisms into the virtual com-
puter monitor. More details about the Psychlab tool can be found in their
paper [14].

Since our main focus is set on studying and implementing RL principles,
implementing such an environment would consume a lot of our time on some-
thing which is irrelevant to the goals of this thesis. Luckily, a much more
suitable tool has been found, which proved to be ideal for our task, and it is
described in the next section.

3.4 Gym
The Gym is an open-source project made directly for RL tasks created by
OpenAI organization7. Gym is a toolkit and library for developing and com-
paring reinforcement learning algorithms. It is a collection of environments

7https://openai.com.
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(RL tasks) that can be used to test desired RL algorithms. It makes no re-
quirements on the form of the agent and is compatible with all python libraries
which are commonly used in Machine Learning (ML) tasks. Gym is very easy
to install and provides an API8 which serves as a shared interface for all its
environments, making it very easy to get familiar with using different envi-
ronments within the Gym ecosystem. More details about the OpenAI’s Gym
project can be found in [3].

To show how easy it is to use, an example is provided in Code 1 which
runs an instance of the CartPole game9. Notice that to run an environment

import gym
env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):

env.render()
# take a random action
env.step(env.action_space.sample())

env.close()

Code 1: Gym - CartPole example from https://gym.openai.com/docs.

only a few simple commands are needed. One to create the environment, one
to reset it to its initial values, one to close the environment at the end, and
two commands which are often used in a loop to perform an action and render
it to the user. These shared commands can be used for any environment and
make using Gym environments very user-friendly. Note that the step function
always allows the agent to perform an action from a defined set of actions, and
it returns information about the environment upon performing given action.
This information of course differs for each environment, and the same goes for
the action set.

The installation of the Gym library can be done via PIP10 and the instal-
lation steps along with some examples of how to use the library can be found
in their GitHub repository11.

So, in conclusion, the Gym library is a very strong tool that enables us to
use its interface and solely focus on the implementation of the RL algorithms,
agent’s behavior, etc. It also works and is mostly used for two-dimension en-
vironments, which was the reason why we didn’t go with DeepMind’s Lab (see
Section 3.2). Gym provides a few environments already in its repository, but
it also offers the option for others to implement any other environment they

8API stands for Application Programming Interface.
9CartPole is a game in which you try to balance the pole as long as possible.

10PIP is a package manager for Python packages.
11https://github.com/openai/gym.
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want under the same license (more about it in Section 3.4.3) by using its
shared interface.

3.4.1 Gym Retro
The only thing, which was left for us to do was to find a Gym environment
implementation of the Super Mario Bros. game. We found out that there is a
GitHub repository12 that is also from OpenAI and is called Gym Retro which
lets users turn classic video games into Gym environments. It uses various
emulators that make the visualizations of the games possible on almost any
device. More details about Gym Retro can be found in [19].

Even though that it contains around a thousand game environments, there
is no Super Mario Bros. environment present, but after further searching,
we found another GitHub repository, which uses the OpenAI’s repositories
and implements environments for Super Mario Bros. and even Super Mario
Bros. 2. Since this tool is exactly what we were looking for, we have described
it more deeply in the next section.

3.4.2 gym-super-mario-bros
GitHub repository gym-super-mario-bros13 is an implementation of an Ope-
nAI’s Gym environment for Super Mario Bros. and Super Mario Bros. 2
created by Christian Kauten. The environment’s GUI14 runs on The Nin-
tendo Entertainment System (NES) using the nes-py emulator15.

Environment implementation can be easily installed using PIP. Since it is
an implementation of OpenAI’s Gym environment, it follows Gym’s shared
interface and, therefore, the game can be controlled with the same commands
as other environments implemented under it (see code snippet and shared
commands description in Section 3.4).

In addition to the shared commands, when initializing the environment,
the user can choose from three sets of actions, which the agent will have avail-
able during the game. This gives us the option to control the size of the
action space if needed. The defined action sets are named RIGHT_ONLY,
SIMPLE_MOVEMENT, and COMPLEX_MOVEMENT. Details of the ac-
tions list can be found in the actions.py file in the GitHub repository, but
in short, we can say that the RIGHT_ONLY consists of only five actions,
where four of them represent pressing the right button alone or in combina-
tion with another button. SIMPLE_MOVEMENT consists of basic control
actions for the game, which are usually presented to the user in the game

12https://github.com/openai/retro.
13https://github.com/Kautenja/gym-super-mario-bros.
14GUI stands for Graphical User Interface.
15https://github.com/Kautenja/nes-py.
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Table 3.1: Contains of the info dictionary returned by the step function

Key Type Description
coins int The number of collected coins
flag_get bool True if Mario reached a flag or an ax
life int The number of lives left, i.e., {3, 2, 1}
score int The cumulative in-game score
stage int The current stage, i.e., {1, ..., 4}
status str Mario’s status, i.e., {’small’, ’tall’, ’fireball’}
time int The time left on the clock
world int The current world, i.e., {1, ..., 8}
x_pos int Mario’s x position in the stage (from the left)
y_pos int Mario’s y position in the stage (from the bottom)

tutorial. COMPLEX_MOVEMENT contains the same actions as the SIM-
PLE_MOVEMENT action set, but in addition to them, it also contains many
other actions which are combinations of multiple buttons pressed at the same
time. Also, it is good to mention that each action set includes the NOOP
action, which doesn’t make the agent do anything. It is just an empty action
that can be useful for checking the agent’s state.

Step function

The step function is the most important function for controlling the agent. It
takes one argument, which is the action to perform from the action list with
which the environment was initialized. After sending the action command
to the game, the step function outputs four variables which are called state,
reward, done, and info.

State is a two-dimensional array that holds all the pixel values of our game
screen, which the agent sees. Done is a Boolean16 variable which indicates the
state of the game. True value signalizes that the environment reached its
terminal state, which is either when the agent wins the current level or when
he runs out of lives (loses the game). Info is a dictionary that contains the
information described in the Table 3.1. Reward is an integer value computed
from the game’s current state. In the next paragraph, we will explain how
the reward value is computed in the gym-super-mario-bros library, but it is
important to mention that the reward function is a crucial part of the RL
algorithm, and therefore it is good to consider changing it if the performance
of the trained agent is not up to expectations.

The reward function which is implemented in the library assumes that the
objective of the game is to move as far right as possible, as fast as possible,

16Boolean is a data type, where its variables have one of two possible values (usually
denoted True and False), which represent the two truth values of logic in algebra.
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without dying, which makes sense because to win the current level you always
have to get to the most right point, where the finish flag is. To model this,
three separate variables compose the reward: v, c, and d. Their summed
value is then clipped into the range (−15, 15). The formula for the reward
value therefore takes the form:

R = clip(v + c + d,−15, 15). (12)

Variable v represents the difference in the agent’s x-position values between
consecutive states which reflects the current speed of the agent. From the v
value we can also get the information about the direction in which the agent
is moving. If v > 0 then the agent is moving right, v < 0 means that he is
moving left and v = 0 means he is not moving.

Variable c serves as a penalty factor in the reward function to prevent the
agent from standing still. It represents the number of passed game clock ticks
between the frames and is either equal to zero or to a negative number. We
can understand the value of c = 0 as that there has been no clock tick between
the frames and if c < 0 then there has been a clock tick.

Variable d is a death penalty that penalizes the agent for dying in the
current state. This penalty encourages the agent to avoid death. The penalty
value for being alive is equal to 0, and for being dead the value of d equals
to −15.

Custom environment modifications

In section 3.4, we have talked about the shared interface and methods which
OpenAI’s Gym offers. But we didn’t mention that you can also modify the
behavior of these methods. We have mentioned that you need to implement
the behavior of these methods when creating a new environment representa-
tion within the Gym’s library, but it is also useful for our situation, where we
have the environment already implemented, but we want to modify it just a
little bit to make it easier for us to work with it.

In Section 2.2.1, we have talked about pre-processing. One of its steps is
to reduce the size of the input which we feed to our neural network. Thanks to
Gym’s library, we can use the functionality of so-called wrappers to modify the
behavior of some pre-defined methods for the Mario environment. In order
to do that we have to implement a so-called wrapper class which inherits
one of the gym.Wrapper, gym.ObservationWrapper, gym.RewardWrapper or
gym.ActionWrapper classes. Implementing such wrapper enables you to re-
define different methods which are shared within the Gym’s environment.

For us, the most useful was to implement wrapper classes that inherit the
gym.ObservationWrapper class which allowed us to modify the observations
(the game states) which are returned after performing any action. We have
implemented multiple classes which inherit this wrapper to apply the pre-
processing steps for each state observation returned.
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We have also implemented a wrapper class that inherits the gym.Wrapper
which allowed us to modify the step function, which we needed to modify in
order to apply the frame skipping principle in our pre-processing (see Sec-
tion 2.2.1 for details). In Code 2 you can see the implementation of the
frame skipping technique. For a more detailed description about the wrap-

"""
Reimplements the step() function
We perform the action 'skip'-times and collect
total gained reward over skipped frames

"""
class SkipFramesInEnv(gym.Wrapper):

def __init__(self, env = None, skip = 4):
super().__init__(env)
self._skip = skip

def step(self, action):
total_reward = 0.0
done = False
for _ in range(self._skip):

state, reward, done, info = self.env.step(action)
total_reward += reward
if done:

break

return state, total_reward, done, info

Code 2: Gym wrapper class for re-defining the step function using the func-
tionality of Gym’s wrappers.

pers see [12].

Simple gameplay example

To test and demonstrate the environment’s functionality, we have prepared a
working example of controlling the Mario character programmatically. Our
implementation can be seen in Code 3. The code initializes the environment,
loads the SIMPLE_MOVEMENT action list, and performs the simple right
action for a while, and then it waits two seconds before it closes the visual
output window for the user.
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from nes_py.wrappers import JoypadSpace
import gym_super_mario_bros
from gym_super_mario_bros.actions import SIMPLE_MOVEMENT
import time

# load word 1 stage 1 v0 (standard ROM)
env = gym_super_mario_bros.make('SuperMarioBros-1-1-v0')
env = JoypadSpace(env, SIMPLE_MOVEMENT)
env.reset()
env.render()

for step in range(1000):
if done:

env.reset()

state, reward, done, info = env.step(1) # the RIGHT action
env.render()

# wait two seconds before closing the window
time.sleep(2)
env.close()

Code 3: Game play example using gym-super-mario-bros library.

3.4.3 Legal use
OpenAI’s Gym is licensed under the MIT license17. Permission is hereby
granted, free of charge, to any person obtaining a copy of its software and
associated documentation files to deal with it without limitation to the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of it. So, for our educational purpose, we can use it without any restrictions
and the only condition to use their library is that in the license file we will
include their copyright notice18.

Repository gym-super-mario-bros is based on the Gym’s code, so its license
contains the same copyright notice which we mentioned above, and we will
also have to include it. Apart from that, it restricts the use of this library and
code only for educational purposes. Since that is our case, even here we won’t
have any problems with using the library.

17More details about the license can be read at https://opensource.org/licenses/MIT.
18https://github.com/openai/gym/blob/master/LICENSE.md.
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Chapter 4
Architecture of selected models

This chapter introduces the baseline architectures of the selected approaches
along with their modified, more advanced versions. By baseline architecture
we mean the architecture which was introduced along with the first mention
and description of the given approach. We then describe how we have imple-
mented them and also various modifications and techniques of them. These
techniques are based on our research in Chapter 2.

The first part of this chapter is dedicated to the implementation and varia-
tions of DQN (see Section 2.2 for details about the technique), and the second
part is devoted to A3C implementation (see Section 2.4) and TD3, which is
based on its principles.

It’s good to note that in this chapter the focus is on the description of the
architectures and implementation details of the selected models. In Chapter 5,
we are then further focusing on the comparison of these models performances,
and describe our own experiments with fine-tuning of the selected model and
their effects on the agent’s performances along with the modifications which
led to the best results.

4.1 Implementation of pre-processing steps
For every implemented agent (model), we needed to prepare the input data in
a suitable way. This meant applying the pre-processing steps which we have
described in its specific Section 2.2.1.

We have fully utilized the use of the Gym’s wrapper functionality (read
more about it in Section 3.4.2) and decided to prepare a separate class for
every pre-processing step and modification, which we wanted to apply to the
environment observation state provided by the gym-super-mario-bros repos-
itory (described in Section 3.4.2). Implementing each individual step as a
separate class also helped us to divide individual logical blocks and also made
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it possible, if needed, to apply just some of them and, therefore, always have
the option to modify the input data in flexible ways.

When it comes to the form of the input state representation, the so-called
observation, it was originally provided as a two-dimensional array of raw pixel
values. In order to make the modifications easier, we have decided first to cre-
ate a class that converts every two-dimensional observation array into PyTorch
tensor19. This way, we were able to use methods from the torch transforms20

module which made it very easy to manipulate with the image itself. Using
the transforms module, we have then implemented pre-processing steps, which
were modifying the form of the observation image data. The implemented
classes, therefore, work with the tensors. They are TransformToGrayEnv for
converting the observations into grayscale, RescaleTo84x84Env for resizing
of the image into provided shape, or by default into the 84 by 84 shape and
the NormalizePixelsInEnvObservations which normalizes the pixel values
into (0, 1) interval.

We also needed to implement two techniques which are both based on
skipping frames and enabling fewer computations required from the neural
network. The first one modifies the step function of the environment, and its
implementation can be found in the SkipFramesInEnv class. It changes the
behavior of the step function so that when the environment’s character (Mario)
receives an action to perform, it performs the action in a loop given number
of times (this number is by default set to four based on the original idea
proposed by Mnih in [16]) and collects the sum of rewards from each action
performed. It returns the observation state where the agent ends together
with the computed sum of rewards.

After applying all the modifications mentioned above, we had observation
of shape 84 by 84. To avoid processing copies of the same frame multiple
times, we have used the built-in LazyFrames class from the OpenAI’s Gym
library. It stacks m consecutive frames (m is by default set to m = 4) on
top of each other, resolving in data of size 4 by 84 by 84. LazyFrames works
with frames after all the pre-processing modifications have been applied to
them. Inconveniently, it outputs the data in the LazyFrames object format,
which is not ideal. After some reading through its documentation, we found
out that the class exposes __array__, which means that the object can be
converted into a NumPy array21 without any problem. So, at the end of
our pre-processing, the LazyFrames object is always converted into a NumPy
array. This means that even though we are modifying each observation of
the environment, the outputs are still in the same data type as they originally

19Tensor is a multi-dimensional matrix containing elements of a single data type.
20Transforms module contains functions for performing common image transforma-

tions. Their list and details can be found at https://pytorch.org/vision/stable/
transforms.html.

21NumPy array is a grid of values, all of the same type. More at https://numpy.org/
doc/stable/reference/generated/numpy.array.html.
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were. Then, later in our code, whenever the data is fed into the neural network
model, we just simply convert it again into PyTorch tensor.

Since we ended up defining a lot of classes, we have decided to put them
all into one python file, which we named preprocessing_methods.py. For
each model, we can then just import the pre-processing methods we want
to apply and use them rather than copying the same code over and over
again. We have also implemented function create_mario_env, which takes
the environment instance as an argument and optionally also the action set,
which is the game environment supposed to be loaded with. The function
applies all the implemented pre-processing steps and returns the modified
environment. This makes the code easier to read if we want to use all the
methods because we can just import and call one function and don’t need to
worry about anything else.

4.2 Q-learning based models
For the Q-learning algorithm, we have decided to implement and observe three
versions of it. In this section are described the specifics of these implementa-
tions and how they differ.

First is the description of a plain DQN implementation, which will serve
as a baseline that will allow us to observe the effects of the modifications on
the agent’s performance. Then we will describe a model for which we have
applied all the additional pre-processing steps and advanced techniques which
we found during our research and that are all described in the Section 2.2,
specifically in its subsections. At last, we will describe the Double DQN model
and how the implementation differs from the previous models that don’t deal
with the overestimation problem.

4.2.1 DQN
The idea of introducing neural networks and, therefore, creating the Deep
Q-learning model was proposed by Volodymyr Mnih in [16], and the main
reason was to create a new way how to approach the reinforcement learning
tasks. The concept of Q-learning was already known, but it didn’t scale well
enough with most of the RL tasks, where the environment was often huge with
a big set of available actions, which caused the original Q-learning (tabular
approach) to consume huge amounts of memory while also relying on enor-
mous computational power when computing the Q value from such a huge
table. And that problem was solved by the introduction of neural networks,
which enable much faster computations and better scalability. Mnih named
his model Deep Q-network, DQN in short. Since this was the first mention of
the deep learning approach itself, we have decided to use it as an initial model
for our research. In the following paragraphs, we describe its details that have
been implemented.
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Mnih studied the model’s performance on Atari games and he found it
useful to apply some common pre-processing steps to each game environment.
We have talked about these common techniques in Section 2.2.1 and about
how we implemented them in Section 4.1. Mnih in his work converted the
environment states into grayscale, resized them into 84 by 84 and also applied
both frame skipping mechanisms. This means that he used almost all the
same pre-processing steps, which are commonly used for this type of RL task
and were described in Section 2.2.1. The only pre-processing step he did not
apply was the normalization of the pixel values after grayscale conversion and
resizing, so we have also not used it when creating this version of the DQN
model.

When it comes to the neural network’s architecture, Mnih used a network
that expects the input of shape 84 by 84 by 4 which is also the shape of our
data after applying the pre-processing steps. The neural network then consists
of three convolutional layers and two fully connected layers. The first hidden
layer convolves 32 filters with a kernel of size 8 by 8 with a stride equal to 4
with the input image and then applies a rectifier function22 (ReLu). The first
layer is followed by the second hidden layer, which convolves 64 filters with a
kernel of size 4 by 4 with stride 2, which then also applies the ReLu function.
The third hidden convolutional layer convolves 64 filters of 3 by 3 kernels with
stride equal to 1, followed again by a ReLu function. Then is the final hidden
layer, which is a fully connected layer type and consists of 512 rectifier units.
The output layer is then a fully-connected linear layer with a single output
for each valid action available in the selected action set. Simple visualization
of the network architecture, which we have just described and Mnih used in
his first DQN introduction, is shown in Figure 4.1. Notice that the only place
where our implementation of the network differs is in the output shape, where
his architecture predicted Q-values for 18 actions, but in our environment
where we have fewer actions available, our architecture outputs 5, 7, or 12
Q-values, depending on the action set used.

Once the network has been implemented, the agent who will be playing the
game needed to be implemented as well. When initializing the instance of the
agent, he loads and prepares all necessary internal variables. The variables we
provide him with include the learning parameters which consist of the starting
exploration rate, the exploration rate decay, the minimal value of exploration
rate, the discount factor, and the learning rate.

The exploration rate related parameters are used when the agent is decid-
ing whether to perform a greedy action or to choose an action based on the
prediction of the network. After each update of the network’s weights, the
exploration value is set to be equal to either the minimal exploration rate or

22Rectifier function, also known as Rectified Linear Unit (ReLu), is an activation func-
tion commonly used inside neurons in the neural networks. Its formula and details
can be found in https://machinelearningmastery.com/rectified-linear-activation-
function-for-deep-learning-neural-networks/.
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Figure 4.1: Visualization of DQN’s network architecture originally pro-
posed in [16] by Volodymyr Mnih. In our implementation, the number
of actions differs so we modified the output shape. Source: https://
courses.engr.illinois.edu/cs546/sp2018/Slides/Apr05_Minh.pdf.

the current exploration value multiplied by exploration decay, whichever is
greater.

The discount factor is often denoted as γ in the mathematical formulas
which we introduced in Chapter 2, and it is used during the update of the
deep neural network’s weight. We have set the discount factor to γ = 0.99.

When the agent initializes its variables it also initializes its neural network.
The network has the form which is described above. Our implementation uses
the Adam optimizer23 with the provided learning rate. The network uses
Huber loss24 (called SmoothL1Loss loss in the torch environment) as the loss
function when performing the backward propagation. We have set the value
of the learning rate to the value of α = 0.00025, which was also used by Mnih
in his research. We have set the values of learning rate and discount factor the
same for all our modifications so we can observe the sole effect of the applied
techniques when we compare this baseline model to its modifications.

The core functionalities which the agent needs to have are commonly called
(in similar RL tasks) act and update. Act method takes a pre-processed ob-
servation state of the environment as an argument. The agent then generates
a random number from the interval [0, 1) and if the number is lower than the
current exploration rate value, then he performs a greedy (random) action.
Otherwise, he provides the neural network with the observation state and
performs the action for which the network predicted the highest Q-value.

After performing the action returned from the act method, the update
method is called. It takes the previous observation state and the returned

23Optimizer based on the Adam algorithm. More at https://pytorch.org/docs/stable/
generated/torch.optim.Adam.html.

24Huber loss is a loss function that is not so sensitive to outliers in data. It is a combi-
nation of the mean squared error and the absolute value loss functions.
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values after performing the action. These include the new state, done flag
(signalizing if the game ended), and reward value. Based on these arguments,
the agent computes current and target values which are then provided to the
loss function. Then the gradients are computed and the weights are optimized
using the selected optimizer. The update process, along with the formulas, is
explained in detail in Chapter 2.

Apart from these two methods we also implemented additional methods
that allow the agent to save computed values into variables and methods for
saving them permanently into computer memory if needed.

The implementation of the DQN model we have just described can be
found in the DQN folder with all its relevant files, where the source code can
be found in the DQN.ipynb Jupyter notebook25.

4.2.2 Enhanced DQN
Our second model we decided to name Enhanced DQN because, in core, it
is similar to the implementation of the original DQN model described in the
previous Section 4.2.1, but it is enhanced by the advanced techniques which
we discovered during our research and described in Chapter 2.

The original DQN doesn’t use normalization of the pixel values in its pre-
processing steps so we have included the pixel normalization for this model.
This allowed us to use function create_mario_env, which we implemented,
and it conveniently applies all the pre-processing steps at once.

After pre-processing was solved, we needed to implement two other things.
The two network technique, which introduces another deep neural network and
the experience replay mechanism.

The two network mechanisms requires the agent to hold two separate net-
work instances called local and target networks which both have the same
architecture. In code, the agent uses the local network within his act method
for predicting the Q-values of the actions to use for a given state, but the most
crucial place in the two network principle’s implementation is during the up-
date of the network’s weights. Whenever weights of the network are updated,
we use the target network for computing the target value for the loss function,
and we use the local network for computing the current value. After the loss
function processes the computed target and local values, the weights of the
local network are updated. We keep a step counter, and with each update
of the local network weights, we increment it by one. Every one thousand
steps, we update the target network’s weights with the current values of the
weights of the local network. The number of steps after which we update the
target network’s weights is another training parameter of our agent. We have
decided to use the value of one thousand because it provides enough steps for

25Web-based interactive computational environment, which is often used in ML for cre-
ating python-based runnable source code notebooks.
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the technique to take effect. It is also not so high, so we can see the impact
even with the limited computational resources which we had at our disposal.

The experience replay mechanism introduces a buffer of experiences for
the agent to work with. Experience is the outcome after an agent performs
an action. We refer to the buffer size as batch size, and it’s commonly set to
the value of 32 for similar tasks. Each action the agent decides to perform
is put into the buffer, and the agent does not update the network’s weights
until the buffer is full. The buffer works in FIFO26 mode, so after the buffer is
full, whenever a new experience is added to the buffer, the oldest experience
present in the buffer is forgotten. After the agent performs enough actions
to fill the buffer, he will start performing the weights updates. For every
update, the agent uses bootstrapping statistical technique27 to get a batch of
experiences from the buffer. The agent uses this whole batch of experiences
to update the local network’s weights. To better illustrate the mechanism
described above, we have put the core lines of the agent’s experience replay
mechanism implementation into Code 4.

The implementation of the agent is in EnhancedDQN.ipynb Jupyter note-
book, which is situated in the EnhancedDQN folder where also all computed
data files from the model’s training are present. We have also decided to im-
plement it in a way where you can easily choose whether you want to use the
two networks enhancement or not by simply providing a Boolean value when
initializing the code execution.

4.2.3 Double DQN
The double DQN model is a slight modification of the original DQN model,
which is able to deal with the overestimation problem, which the original
model often suffers from. We have described this in detail in Section 2.4.2.

When it comes to its implementation, we have decided to use the same
code as for the Enhanced DQN version which is described above. The only
difference is in the agent’s update method when computing the loss value and,
based on it, the gradients for updating the weights of the network. The loss
function (which computes the loss value) takes two values. The current value
and the target value. The target value is based on the Bellman’s equation (see
Section 2.1.2), and in our previously implemented model, the Enhanced DQN,
this formula uses the target network when determining the Q-value of the
next action (as can be seen in Code 4), but in order to apply the Double DQN
principle in our implementation, we have switched usage of the target network
and instead used the local network for computing the target value for the loss
function.

26FIFO stands for First In, First Out inventories of data.
27Bootstrapping chooses random samples from the collection. This means that the sam-

ples can be selected more than once.
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def experience_replay(self):
# copy local net's weights every 1000 steps
if self.step % 1000 == 0:

self.copy_model()

if self._batch_size > self.experience_cnt_in_memory:
return

# get random batch of experiences
ACTION,REWARD,STATE,NEXT_STATE,DONE = batch_experiences()

self.optimizer.zero_grad()
# apply the Q-update based on the whole batch
target = REWARD + torch.mul(

(gamma *
target_net(NEXT_STATE).max(1).values.unsqueeze(1)),

1 - DONE)

# local net approximation of the Q-value
current = self.local_net(STATE).gather(1, ACTION.long())

loss = self.l1(current, target)
loss.backward() # compute gradients
self.optimizer.step() # backpropagate the error

# update exploration rate after weight update
self.exploration_rate *= self.exploration_decay
self.exploration_rate = max(self.exploration_rate,

self.exploration_min)

Code 4: Simplified code example of the experience replay mechanism imple-
mentation.

Again, the implementation of the model along with the parameters of the
trained network can be found in its dedicated folder called DDQN and the
model implementation in DDQN.ipynb Jupyter notebook.

4.3 Actor-Critic based models
In our later sections of Chapter 2 we talked about two models based on the
actor-critic approach. In this section are described the specifics of A3C and
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TD3 (which are both based on the actor-critic approach) implementations and
how they differ.

Generally said, the main difference between A3C and DQN implementa-
tion and their runtimes is that A3C is created for running multiple workers in
parallel. Each worker runs on a separate thread, allowing simultaneous compu-
tations and potentially a bigger chance of learning the correct behavior for the
agent while keeping a similar execution time as the DQN. This also indicates
that the code of A3C implementation differs significantly when compared to
the DQN implementations. In contrast to the multi-threaded A3C model, we
will also describe the TD3 approach (see Section 2.4.2), which was introduced
as one thread algorithm but consists of multiple neural networks trained in
each step, resulting in enormously bigger computational requirements when
compared to A3C and DQN.

4.3.1 A3C
The first mention of A3C implementation was by Volodymyr Mnih in [15]. We
used his work as our reference point and decided to create the same neural
network architecture and modify it to be suitable for our task and the shape
of the pre-processed data.

The main idea behind A3C was the introduction of the actor-critic concept,
which aims to improve the learning phase. Its principles are described in
Section 2.4, but in short, we can say that it introduces another neural network
called critic with the same architecture as the actor network (network for next
action prediction). Critic serves as a judge and mentor for the actor network,
which is trained with each step, similar to how the neural network is trained
in the DQN implementation. The critic network is trained alongside the actor
during each of the actor network’s update.

The actor-critic principle was already introduced along with the Advantage
Actor-Critic approach (A2C), but A3C introduced another important thing
which is the idea of workers. Each worker consists of an independent copy of
the same neural network architectures of actor and critic networks. Since each
worker trains independently in its own environment instance, it allows them
to perform their computations in parallel. Workers then share their trained
network weights with each other by updating the global shared model.

As mentioned above, both actor and critic networks share the same neural
network architecture. We had decided to use the same architecture which
was used when A3C was introduced for the first time in [15]. The network
was only modified so it accepts the input of shape 84 by 84 by 4 (shape of
our observation states after pre-processing). The network then consists of
4 hidden convolutional layers, where each convolves 32 filters with a kernel of
size 3 by 3, with stride set to the value of 2 and padding set to one. After each
convolutional layer, a rectifier function (ReLu) is applied. The convolutional
layers are followed by a hidden Long Short-Term Memory (LSTM) recurrent
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layer with a hidden state of size 512. This hidden state is then processed by a
fully connected linear layer that consists of 512 rectifier units. It is important
to note that actor and critic share the convolutional and LSTM layers, but
each has its own linear layer on top of them, thus training their own weights
in the last layer. The actor network’s output shape is based on the number of
actions available to the agent, while the critic always outputs only one value
which is used for computing the actor’s loss value (criticizing the actor).

Since A3C is an asynchronous algorithm, a function that performs the
behavior of one individual worker was created after defining the neural net-
works architectures. Because of the limitations of python multiprocessing in
Jupyter notebooks28 we had to put the worker’s code into a separate python
script file which we called trainAgent.py. For each worker, one thread is as-
signed to execute the code inside the mentioned script. Apart from the train-
ing worker process, we have also implemented code, which loads the shared
model’s weights, and plays the game using them while rendering the image
state to the user, but this piece of code is not relevant during the training
phase. It was used just for testing.

Each worker creates its own instance of the game environment and its
local copy of the actor and critic neural networks and starts its independent
training epochs. In each epoch, each worker plays one run of the game. It
first loads the weights of the shared model into its local model and then
performs individual steps based on the outputs of the actor’s network. The
worker collects actor and critics networks outputs and the rewards he gained
during the whole epoch, and at its end, he computes the loss functions value
considering all these gathered data and, based on it, updates the weights of
the global shared model.

There was also a need for a script that manages that all asynchronously
running workers are intact, creates and holds the shared global networks, and
also sets up all necessary training parameters for each worker. Its implemen-
tation can be found in Jupyter notebook A3C.ipynb in the A3C folder along
with the final trained networks parameters. The collection of all the data
from our training process was assigned to only one of the workers to keep
consistency in the data and prevent individual workers from overwriting data
to each other. We were able to assign the saving process to only one worker
also thanks to the fact that each worker updates the global model after each
epoch.

When it comes to the training parameters, we had used the same values
which were used when the model was proposed. Apart from the parameters
for the number of epochs and the maximal number of steps per epoch, we
had to set up the learning rate (which we set to 0.0001), γ, τ parameters,
and also the entropy coefficient. Parameters γ and τ are used to compute the
Generalized Advantage Estimator (GAE), which is used when computing the

28See https://stackoverflow.com/q/47313732/9675818 for details.
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loss value of the actor network, and we have set them to γ = 0.9 and τ = 1.
The entropy coefficient greatly limits the effect of the accumulated entropy
loss, which is computed in each step of a given epoch, as it is multiplied by it
when we use it in the computation of the overall loss of the architecture for
its update. We have set the entropy coefficient value to 0.01.

4.3.2 TD3
Twin Delayed Deep Deterministic policy gradient algorithm (TD3) takes ad-
vantage of the actor-critic principle, which was introduced with the A3C ap-
proach, and solves the overestimation issue which A3C suffers from in most
tasks. Even though it shares the same core principle, TD3 is not designed for
direct parallel implementation (at least in its original version). This allowed
us to follow similar design patterns with which the DQN-based algorithms (see
Section 4.2) were implemented, so the approach and style of the implementa-
tions are quite similar and differ only in the neural network architecture and
implementation of the agent’s update method logic. All other pieces of code
(initialization of the environment, saving and loading of trained models or
other collected data) are the same, or with just slight necessary modifications.

When it comes to neural networks, the TD3 agent keeps and trains multiple
instances simultaneously. He holds actor network, actor target network, critic
network, and critic target network. Actors network consists of three fully
connected linear layers, the first two consisting of 256 rectifier units, and
the last layer’s neurons use the hyperbolic tangent as its activation function.
We are aware that using only these layers may not be the most suitable for
our problem, but our goal was to compare the agent’s performance using
the originally proposed implementations of the selected approaches, and that
is why we decided to stick with only linear layers as that is how Fujimoto
prepared the model when he first introduced it in [7]. The critic network
uses the same architecture, but it is more complicated. A critic network is
made of two individual neural networks, which each represent one critic (see
Section 2.4.2, where we describe why TD3 uses two critics instead of one), and
each of these critics has the same network architecture which we described
above (three fully connected linear layers network). The only difference is
that the last linear layer’s neurons don’t have any activation function. The
critic network then provides an option to process the input by only one critic
network, or by both separately and return results from both networks. The
critic network also differs from the actor network in the input shape as it
expects concatenated observation state with the probabilities for the action to
select (the output from the actor), while the actor network only excepts the
observation state on the input. Critic’s implementation is shown in Code 5.

When it comes to the act method of the agent, there are only slight mod-
ifications in TD3 when compared to the DQN implementation, as it mostly
consists of feeding the actor network with the current state of the agent, re-
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class Critic(nn.Module):
def __init__(self, input_shape, action_cnt):

super().__init__()
# critic 1 architecture
self.lin1 = nn.Sequential(

nn.Linear(input_shape[1] + action_cnt, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 1)

)

# critic 2 architecture
self.lin2 = nn.Sequential(

nn.Linear(input_shape[1] + action_cnt, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 1)

)

def forward(self, next_state, next_action):
next_state_action = torch.cat([next_state,

next_action], 2)
out_1 = self.lin1(next_state_action)
out_2 = self.lin2(next_state_action)
return out_1, out_2

def forward_first_critic(self, next_state, next_action):
next_state_action = torch.cat([next_state,

next_action], 2)
return self.lin1(next_state_action)

Code 5: Implementation of the Critic neural network in TD3.

turning an array with Q-values for each action followed by the agent’s choice
of the action with the biggest value. Apart from the network computation, a
noise sampled from normal distribution N ∼ (0, σ) is added to the returned
values, where the value of noise variance is set to σ = 0.1. Then, the returned
values are clipped into the selected range. In our implementation, it was based
on the action state space maximal values.

The update method required the most significant focus, as TD3 consists
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of a lot of mechanisms, all happening right after the agent performs an action.
TD3 works with the experience replay technique (see Section 2.2.3), so during
each update, a batch of experiences is sampled. This batch is then processed
by the actor target network. The predicted next actions for the sampled next
states are then processed by both critics of the critic target network, and
the lower value from them is selected and used for computation of the target
Q-value, where the γ discount factor parameter is used (we have set it to 0.9
as we did for DQN models). The target Q-value is then used to compute the
loss value for the critic network.

After every defined number of iterations (usually set to a low number, we
have set it to two), the actor network weights are updated based on the output
of only the first critic from the critic network. After updating the actor, the
target network’s weights are synced with the local networks, where the weights
of the local networks are combined with the old weight values of the target
networks using the τ regularization parameter. In our implementation, τ is
set to τ = 0.005, and for a better understanding of its usage, we have attached
Code 6, where this update is performed.

for param, target_param in zip(
self.critic.parameters(),
self.critic_target_net.parameters()):

target_param.data.copy_(
self.tau * param.data

+ (1 - self.tau) * target_param.data)

for param, target_param in zip(
self.actor.parameters(),
self.actor_target_net.parameters()):
target_param.data.copy_(

self.tau * param.data
+ (1 - self.tau) * target_param.data)

Code 6: TD3 - Update of the weights of target networks using the τ parameter
to combine weights of the local network and old target network.

Implementation of TD3 agent is located in the TD3 folder in Jupyter
Notebook sharing the same name.
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Chapter 5
Experiments

After successful implementation of all models which we thought could be ef-
ficient for training an intelligent agent for the Super Mario Bros. game, we
have performed a series of tests in which selected metrics were collected with
the aim to compare the models and decide which is the most suitable for our
task. Implementation details of these models are described in Chapter 4.

In this chapter the observed details of the training process that were ap-
plied to all the implemented models are described, and then their individual
performances are compared and discussed. We also mention difficulties that
were found during testing, and we also note where is room for improvement.
In the later sections, we describe the experiments and possible modifications
of the tested approaches and discuss whether they have improved the model
or not. We then trained the agent with the fine-tuned final model and tested
his performance on the level that it was trained on and on different levels he
had not seen before.

5.1 Training conditions
This section focuses on describing the details of testing conditions which were
set for the implemented models. It also describes the metrics which were se-
lected to collect during training and later used for comparing the performance
of the selected models.

First, we needed to determine the number of epochs for which we would
train all our models. Since our resources were limited, we needed to set the
number of training epochs high enough so the learning techniques and modifi-
cations could take effect while also having reasonable execution times because
we needed to be able to execute many tests and later try different custom
modifications. With this in mind, we have at first tried to train our models
for twenty thousand epochs, but even the simplest model (DQN) took us more
than 24 hours to compute this amount of epochs. Based on this we decided
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that this amount is too much and decided to determine the number of epochs
based on the model, which requires the most computational power. Based on
the number of neural networks, the most complex model seemed to be the
TD3 model, which updates multiple (up to four) networks in each iteration.
Even though we have implemented and executed TD3 on fast GPU29, its com-
putations were so slow that we were forced to limit the number of training
epochs to only 2 thousand. We are aware that this number is low for such a
complex task and that these models can be really demanding on the number
of epochs needed for the agent to perform human-like, but even with the most
powerful resources, we managed to get our hands on, training two thousand
epochs of the TD3 model took us around twelve hours.

TD3 was not the only extremely slow model, as A3C proved to be the
slowest model to train. Even though that the A3C model is implemented to
run on multiple threads, we were running into long execution times because it
was the only model which we were not able to implement and execute to run
on GPU. This led to two thousand epochs running for more than 24 hours for
the A3C model.

Training parameters of each model and their values are described in their
respective sections in Chapter 4. Their values were used the same as they
were set when they were introduced by their respective authors. Some models,
which are based on the same approach (for example, the three implemented
DQN-based models) use the same values of the parameters. We have decided
to keep these values because our goal was first to observe the performance of
these approaches on the game itself using the parameters their creators found
to be the most useful. Since none of the authors tested their model on the
Super Mario Bros. game, we created equal testing conditions for the models.
Thanks to this, we were able to get an objective opinion on which model suits
this problem the most.

Since not all the models are based on the same principles, values that are
computed during training may differ a lot, so we needed to choose metrics that
are shared for all the models and, therefore, would be the most suitable for
comparing them. As all the models use and work with the same environment,
the most suitable metric to use proved to be the reward that is returned after
performing any action (also referred to as performing a step). As there can
be a various number of steps in each epoch (agent can die or get stuck on
the first obstacle), we have collected the total sum of rewards for each epoch
and observed this number itself along with the total sum of rewards divided
by the number of steps in the given epoch. In graphs, we refer to the later
mentioned metric as an average reward per epoch. We have also bound every
collected data point to the action set in which the training was done. This
allowed us to compare model performances for each action set. We talk about
the observed differences for each action set in Section 5.2.

29GPU stands for the graphics processing unit.
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We have also computed the average selected action’s value in each epoch
by collecting the values from the network that predicted the actions (from
which the agent always chooses which action to perform), but this metric is
not comparable for all the implemented models. The same problem occurred
when we tried to collect the computed loss function’s value in each update
step, where the problem was that some models (for example TD3) use mul-
tiple neural networks so it was not clear which one should be chosen for the
comparison. Also, most of the networks have different architectures and don’t
even use the same loss function, so comparing all models with this value proved
to be pointless.

5.2 Comparison of Action sets
In this section, we discuss the observed effects of using different action sets on
agents’ performance during the training.

In the Super Mario Bros. environment, there are three available actions
sets. RIGHT_ONLY with 5 available actions, SIMPLE_MOVEMENT with
7 actions and COMPLEX_MOVEMENT with 12 actions30. For the trained
agent, the higher number of actions represents higher complexity. Therefore,
one would naturally expect it to lead to higher computation times, but from
our observations, we noticed that the execution times of their individual train-
ing differ insignificantly. For example, for the DQN-based models, the training
time of the action set with the most actions was only 6 minutes longer than
the execution time of the action set with the lowest number of actions.

In Figure 5.1 we show the measured average reward value per epoch during
the training phase for each model separately. For each model, the graph shows
the performance of the agent for each action set. We can see that in most mod-
els (DQN, Enhanced DQN, and A3C), the collected values are similar and it
looks like the agent overall performs the same independently on the used ac-
tion set, but from the measured values of TD3 and Double DQN models, we
can see some differences. Particularly for the Double DQN model we can see
that in later epochs, the RIGHT_ONLY and COMPLEX_MOVEMENT av-
erage reward values decrease with each epoch. In contrast, the agent who used
the SIMPLE_MOVEMENT action set actually started to improve his average
gained reward. This observation led us to use the SIMPLE_MOVEMENT ac-
tion set for our model comparison and also to use it in our later experiments,
even though we agree that the observed difference was small and therefore
using any of the mentioned action sets should produce comparable results.

30Their definitions can be found at https://github.com/Kautenja/gym-super-mario-
bros/blob/master/gym_super_mario_bros/actions.py
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(a) DQN action set comparison.
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(b) Enhanced DQN action set comparison.
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(c) Double DQN action set comparison.
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(d) A3C action set comparison.
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(e) TD3 action set comparison.

Figure 5.1: Comparison of agents performance for different action sets. The
comparison is done separately for each model in its respective subfigure.
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5.3 Model comparison
After determining which action set to use, we have trained the agent for each
of the implemented models, and in this section we compare their performances
during the training.

The measured data can be found in Figures 5.2 and 5.3, where we show
the average and total reward the agent obtained in each training epoch. Each
figure contains data for all the models to make the comparison easier. When
we look at Figure 5.2, we can see that the values for DQN-based models are
similar, with simple DQN having the biggest peeks in consecutive observed
values and the Enhanced DQN model performing slightly better than the other
two DQN-based models.

From all five models, it seems that the TD3 model has the worst perfor-
mances as the graph indicates that the agent gains on average a very small
reward value for his steps when compared to other methods, and even though
with later epochs TD3 shows better values which were comparable to the other
models we can say that its performances are the poorest from the observed
models. In contrast to TD3, the A3C-based agent shows performance compa-
rable to the DQN-based models, and it even has much less peaks in its values
and the value seems to be constantly rising.

In the second comparison graph (Figure 5.3), we can observe huge differ-
ences in values between epochs. The TD3-based agent again scored the worst
values in this metric, while A3C and Enhanced DQN-based agents again were
able to perform slightly better than agents based on other models even though
we have to admit that obtained data points are messy and based on only Fig-
ure 5.3 we would not be able to determine any outcomes.
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Figure 5.2: Comparison of implemented models average reward gained in each
training epoch.

47



5.3. Model comparison

0 250 500 750 1000 1250 1500 1750
Training epoch

200

400

600

800

1000

1200

1400

To
ta

l r
ew

ar
d

DQN
Enhanced DQN
DDQN
A3C
TD3

Figure 5.3: Comparison of implemented models total reward gained in each
training epoch.

From the results discussed above, it looks like that from the DQN-based
agents, the one which is based on the Enhanced DQN implementation per-
forms slightly better. To confirm this, we decided to take a look at two other
metrics. In Figure 5.4 we compare the DQN-based models. More precisely,
we compare their average selected action’s Q-value per epoch and average loss
function value per epoch in its Subfigures 5.4a and 5.4b. The first Subfig-
ure 5.4a comparing the average Q-value of the action selected by the agent
clearly indicates that the Enhanced DQN model provides the agent with ac-
tions with overall higher Q-values. This does not necessarily mean that the
favored actions are correct for the current state of the agent, but it indicates
that the model is more sure about the action, and since all the models gained
similar rewards during the training phase (see Figure 5.2) with Enhanced DQN
obtaining slighter higher values, this confirms the assumption that Enhanced
DQN is the best performing model from the observed DQN-based models. In
the second Sub-figure 5.4b, the values are more noisy, but even here we can
observe that the Enhanced DQN performs better than other displayed models
as it has the lowest computed loss value over most of the observed training
epochs.

Apart from the shown graphs, it is important to note that only the A3C-
based agent was able to complete the game successfully during the training
phase. No other agent was able to reach the winning flag at the end of the
level during the training, and that is mainly due to the low number of training
epochs. Even though the low number of epochs is very inconvenient and it may
have caused that some models did not fully train and have not obtained the
results they normally would with a larger epoch count, as there was nothing
we could do because we just did not have the sufficient computational power
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(a) Average selected action’s Q-value
per training epoch.
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(b) Average loss function value per
training epoch.

Figure 5.4: Comparison of metrics specific for DQN-based models.

at our disposal, we have decided to consider the data which we were able to
collect as sufficient enough to compare the models.

A3C is the only model which is designed to train multiple agents simul-
taneously. This led us to perform a test that determines what the adequate
number of threads for the Super Mario Bros. game is. Our aim was to choose
the minimal number of threads needed, which would preserve the best per-
formance of the trained agent. We have trained the model with two, four,
six, and ten threads and then compared the agent’s performances during each
training. Our conclusion from the experiment was that the optimal number
of threads is six because all the workers (represented by individual threads)
were able to successfully complete the level within the observed two thousand
steps at least once. Four of them were even able to complete the level for
the first time in the first six hundred epochs, which indicates very efficient
utilization of the multiple workers principle, but since each worker was able
to clear the level no more than twice it is clear that the network still did not
learn properly and it was due to some randomness during the specific runs.
Nevertheless, the agent trained with six threads showed the best performance
during the training.

In conclusion from the collected data points, we have determined that the
TD3 model is the least efficient for our chosen game and based not only on
the data but also on the fact that A3C was the only model able to successfully
complete the given level of the game during the two thousand epochs, we have
concluded that A3C and Enhanced DQN models are the most suitable for
training an agent which is able to play the Super Mario Bros. game (from the
models which we have tested). Sadly, A3C is also the model that takes the
most time to train, as the two thousand epochs took us around 20 hours to
execute.

Since one of our goals was to try fine-tuning one of the models, we have
decided to experiment and create modifications for the Enhanced DQN model
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because, from our observations, it proved to be among the most suitable mod-
els for the game, and each training phase took the model about 2 hours to
execute. This made it possible for us to perform multiple modifications, train
the agent for each of them and then compare the collected metrics in a rea-
sonable time.

After we had executed enough experiments and decided which modifica-
tions were most beneficial for the agent, we applied the modifications to the
A3C model and then observed and discussed the effects of these changes on
it. We discuss our experiments and their results, along with results from the
test runs of final trained agents, in the following sections.

5.4 Model fine-tuning
After comparing the models we have decided to conclude a series of experi-
ments with the aim to improve the selected model, in particular the perfor-
mance of the agent who is based on it. Based on our previous observations we
have decided to fine-tune the Enhanced DQN model, which performance and
time to execute the training phase made it the ideal candidate for this part
of our research. In this section, we will describe what modifications we have
experimented with, what modification provided the best performance during
the agent’s training, and in the later paragraphs, we will discuss which of these
modifications brought positive improvement to the agent’s performance and
which did not.

Our first experiments concluded of observing the effect of various mod-
ifications to the neural network used by the agent. The original network’s
implementation concludes of 3 hidden convolutional layers followed by a lin-
ear, fully connected hidden layer, so for most of our experimental phase we
have focused on modifying and observing the effects of changing the size of
these layers (modifying the neuron count of the layers). We have also observed
the effects of removing up to two convolutional layers and also the effects of
adding up to three additional convolutional layers. We have also experimented
with different kernel sizes in the convolutional layers.

Apart from modifying the architecture of the neural networks, we have also
focused on introducing more control over the randomness during the model’s
training process. In the original implementation, the agent either performs an
action based on the neural network’s prediction, or it performs a completely
random action31. Our reason behind this idea was to limit the randomness
just a little bit, so the agent still explores new actions in the first phases of

31Performing a random action is based on the randomly generated number which has
to be lower than the current value of the exploration rate parameter which decays with
each taken step. This makes the agent explore the state space more in the initial phases of
the training process. More details about the action selection of the agent can be found in
Section 4.2.1
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the training but also guarantees that the actions are not completely random.
We did this by taking the Q-values predicted by the neural network and used
these values to construct a categorical distribution32 where the probability of
an action being selected was based on the predicted Q-value and then we chose
a random sample from this distribution. We have also tried adding noise to
the predicted Q-values from the neural network from a normal distribution to
little bit alter the predicted values and make the process of choosing the next
action less deterministic in the training phase.

While we were experimenting and observing the effects of the randomness
in the initial parts of the training, we have noticed that the exploration rate
parameter value decays to its allowed minimal value after the agent performs
just about a thousand training steps. This caused that majority of the training
phase actually did not contain almost any randomness at all, which we thought
could be harmful for the agent’s learning. In order to prevent that, we have
experimented with setting the exploration decay parameter to higher values
or setting the minimal possible exploration rate value to higher values.

Another thing that we have experimented with was changing the pre-
processing steps applied to each observed state. We have tried to skip different
steps used to pre-process the state image. For example, we have tried to skip
the conversion to gray-scale or to omit the resizing of the observation state
image and leave it in its original size.

After observing the effects of all our separate modifications and combi-
nations of them, we were able to conclude which modifications are beneficial
for the agent’s performance in the Super Mario Bros. game environment
and which are not. Introducing randomness in any form we have tried and
described above did not bring any improvement and it actually made agent
performance slightly worse. Even modifying the value of the exploration rate
related parameters did not seem to affect the agent’s overall learning perfor-
mance.

From experiments with modifications of the architecture of the neural net-
work, we have observed that modifying the size of the linear layer does not
have any significant impact, but modifying the convolutional layers has. Re-
moving and adding convolutional layers or changing parameters of individual
layers showed to affect the agent’s performance. We have found out that the
most useful modification, which we have also decided to use in our final version
of the model, was the removal of the second hidden convolutional layer and
changing the number of filters convolved in the first layer from 32 to 64 (for
details about the initial neural network architecture see Chapter 4). For this
modification, the agent has kept obtaining almost identical rewards during
the training phase and it allowed faster execution time of the training phase

32Categorical distribution (also called Bernoulli distribution) is a probability distribution
used for generating a pseudo-random variable. This variable can take value of one of the
K possible values and the probability of choosing each value is specified for each category
separately.
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(and generally having fewer neurons to train while keeping the performance
quality is always good). In some parts of the training, the agent based on the
modified model gained even more reward points.

From our experiments with modifications to the pre-processing steps, we
have found out that letting the neural network work with the original size of
the image had the most positive effect from all the modifications which we
have experimented with. This means that even though resizing and minimiz-
ing the dimensions of the game state image had a positive effect for Atari
games on which the DQN model was originally fine-tuned, for our game this
actually made the agent’s performances worse. The difference between the
fine-tuned model and the original Enhanced DQN implementation in the ob-
served average reward value per epoch can be seen in Figure 5.5.
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Figure 5.5: Comparison of the average reward gained per epoch of the En-
hanced DQN model with our fine-tuned model.

Since all our previous comparisons and experiments were realized with a
limited number of epochs due to the limited resources we had which led to the
fact that almost all the models were not able to train an agent compatible of
finishing the level, we have decided to perform one final and larger test of our
fine-tuned model with a greater number of training epochs. We have trained
an agent for ten thousand epochs, which is five times more than during our
experiments. We have then observed his performances during our evaluation
phase, which is described in Section 5.5.

Since we had much more training epochs, we were also able to set some
training parameters to higher values. We have increased the number of steps
after which the local network’s weights are copied into the target network from
one thousand to five thousand and we have also increased the experience replay
memory buffer size to 500 steps. We have also lowered the minimal value of
the exploration rate parameter in the second half of the training epochs from
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2 percent to 1 percent. In the last 1500 epochs, we gradually lowered it up to
0.3 percent.

5.5 Evaluation of the trained agent
In previous sections was introduced our fine-tuned version of the Enhanced
DQN model. We have decided to train an agent for a larger number of epochs
and observe his performances while playing the Super Mario Bros. game. We
have decided to perform this larger training and tests not only for our fine-
tuned Enhanced DQN model, but we have also applied the same modifications
to the A3C model and observed its change in performance. In this section is
described the test phase setup which was used and our observations of the
agent’s behavior for each model separately.

To test the trained agent’s performance, we have decided to display the
game’s visual output and observe the agent’s behavior. Apart from observing
his average behavior in the environment, we have also focused on the farthest
x-coordinate which he was able to reach and how often he reached this farthest
position. We have also tried observing how large game score was the agent
able to gain during these runs, but it proved to be an ineffective metric when
it comes to evaluating an agent’s performance as it is more important to get
as far as possible in the game than to collect more coins and kill enemies,
which does not win you the game.

5.5.1 Evaluation of the Modified DQN model
We have trained the agent on our fine-tuned model for ten thousand epochs
which took approximately 70 hours. This length was mostly due to the fact
that the agent was continuously able to get farther in the level, which in-
creased the time of each individual run (one successful run takes the agent
approximately 25 seconds) and the total run-time in general. Even though
that the number of epochs should still be much larger33 we wanted to observe
and describe the behavior of the trained agent, even if it won’t be perfect.

The first interesting fact that we observed is that the agent was able to
successfully complete the level many times during this bigger training. Af-
ter three thousand epochs, the agent started successfully finishing the level
approximately every 30 epochs, and this frequency slowly increased. In later
epochs of the training, we have observed that the agent was able to success-
fully finish the game in almost every second run and occasionally even in a few
games in a row. The longest consecutive successful run was five epochs long.
As the agent has not started reaching the end in every epoch during the later
stages of training, it indicates that even though his performance had become
really good, he still needed to perform some random steps in order to finish

33For example, Mnih in [15] trained his model on over a hundred thousand epochs.
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the level successfully. We again mention that the exploration rate was set to
0.3 percent chance in the later stages which indicates that the agent did not
rely on the randomness, but he most likely needed for it to happen in order
to finish the level. This observation from the training phase is a great sign,
which indicates that the model actually improves itself with our modifications
and the larger number of training epochs, as none of the DQN-based agents
was able to reach the end during the two thousand epoch training phases.

As expected, the agent’s behavior is deterministic and he always performs
the action which the network evaluates as the most beneficial for his current
state, which resulted in each run of the agent being the same. Agent’s perfor-
mance exceeded our expectations as the agent has learned to play the game
so well that he was able to swiftly jump over obstacles while dodging or even
killing some enemies and he was able to clear the whole level. It was interest-
ing to observe some trained behavior of the agent. For example, when he is
running and has a pit in front of him, he always performs a perfectly timed
jump action, or when he is running and an enemy is going against him, he has
learned to jump over him. These are the types of behavioral patterns that we
aimed to achieve.

In conclusion, our fine-tuned model, after 10 000 epochs, was able to learn
how to clear the whole level successfully and we were able to observe nice
behavioral patterns. We could still see the agent getting stuck for a few seconds
by some static obstacles before he decided to jump over them. This indicates
that even 10 000 epochs are not enough for the model to fully train the agent
to clear the level perfectly but we were still able to see that the model was
able to utilize itself for the game. Therefore our applied modifications were
suitable for the given task as we were able to successfully train the agent for
the Super Mario Bros. level.

5.5.2 Evaluation of the Modified A3C model
In our first comparison of the implemented models during training in Sec-
tion 5.3 we have picked A3C as the model which seems to be the most effective
for the low number of epochs, but since its training time was by far the slowest
we have decided to experiment and fine-tune the Enhanced DQN model whose
much lower training times gave us the option to perform multiple various ex-
periments. After introducing the fine-tuned version of the Enhanced DQN we
have decided to try applying the same modifications to the A3C model and
observe if they also improve its performance. In this section we describe the
observed training performance differences for the modified model and also the
observations from when we let the A3C-based agent play the game.

Application of the same modifications as we applied to the Enhanced DQN
were easy to implement as the neural network uses similar architecture. Un-
fortunately, we were forced to train the modified A3C model for only two
thousand epochs, the same number that we used in the initial tests, and that
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was due to the fact that one of the applied modifications was to let the model
work with the full-sized image of the states and this increased the execution
time drastically as it took almost four days to train the A3C-based agent.

The performance of the agent during the training turned out to be much
worse for the modified model than it was for the original implementation.
We have used six worker threads as it was the amount that initially brought
us the best training performances as most of the agents were able to clear
the level within the first six hundred epochs, and most of them were able to
finish it even twice. Unfortunately, this was not the case for the modified
A3C model as all the workers were able to complete the level only once during
the two thousand epochs. When we compared the average gained reward
per epoch (see Figure 5.6), we could see that the modified model performed
worse than the original one as the measured values are overall smaller for the
observed period and much worse in the later epochs.
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Figure 5.6: Comparison of the average reward gained per epoch of the A3C
model with its modified version (inspired by our fine-tuned Enhanced DQN
model).

We have then tried to observe the learned behavior of the agent in the
game, but it turned out to be a huge disappointment as the agent did not
show any sign of human-like behavior, and he basically only ran into the
first enemy he encountered. So, in conclusion, even though the A3C model
showed signs of being the most suitable model for the Super Mario Bros.
game based on the observations from the initial training phase, the model
was not able to learn the agent enough. We admit that the model could
give better results if trained for more epochs (as indicated in results for the
fine-tuned Enhanced DQN model trained for much more epochs), but we did
not have proper resources for executing such tests. Also, it is clear that our
modifications, which improved the performance of the Enhanced DQN, did
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not work at all for the A3C model as they made its training performance
worse.

5.5.3 Agent’s performance on unseen levels
In this section we describe the performances of our agent trained by the fine-
tuned Enhanced DQN model on different levels for which he was not trained.

The Super Mario Bros. game offers eight worlds, each containing four
levels. During our research we were training the agent on the first level of
the first world. Our goal was to train the agent on one level and then test
his reactions and behavior for levels that he had not seen before, but there
was one catch, as some levels have different environment texture34. After
observing the agent playing the second and third level in the first world, we
have quickly realized that the different textures of the level confuse the neural
network significantly. The agent’s actions looked completely random and he
was not able to overcome almost any obstacles. He has also shown no signs
of learned reaction patterns which we described in Section 5.5. In one level
with different textures the agent did not even perform any action. He was
just standing on the starting position until the time ran out. Because we still
wanted to measure the agent’s performances we have selected two other levels
from different worlds, whose environments have the same textures as the one
we trained our agent on, and we have decided to observe his performances in
them. The levels which we decided to use in the end were the first level of the
second world and the first level of the fourth world. It’s good to note that the
world number does not have a significant effect on the difficulty of its levels,
and it is only relevant to the story of the game, which is irrelevant for our
agent, but of course, it still may contain new elements which the agent has
never seen before like new type of enemy.

While observing the agents performances we have noticed that allowing the
agent to perform random actions (even with very low probability) enabled him
to follow the learned patterns from the network while sometimes performing a
random action which resulted in better overall behavior of the agent in states
which he has not learned how to act properly. It also often helped him in
some situations. For example, when he got stuck and needed to perform a
bigger jump than the network predicted. The agent also looked more human-
like as its repeated runs were not the same. We are aware that introducing
randomness into the agent’s actual gameplay drifts away from the idea of
his decision making being purely experience-based, but it actually resulted in
more pleasant average game plays from the agent in the levels which he has
not seen before.

We have observed the effects of randomness on the agent’s overall behavior
in 50 test epochs for different probability values of performing a random action

34For example, some levels have blue background while other have a purely black back-
ground. Also, the colors and shapes of obstacles are different for different texture styles.
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and we have concluded that letting the agent have a one percent randomness
rate is ideal because the randomness occurs very rarely and it actually re-
sulted in occasionally better plays from the agent. With no randomness at
all the agent’s performances on the unseen levels were miserable. With only
one percent randomness rate, the agent’s performances improved significantly.
Because the randomness can occur any time during the run, it also led to oc-
casional worse plays, but these scenarios were interesting because they showed
the agent’s behavior in states in which he would not be able to find himself
if it wasn’t for the random actions. The agents were able to obtain similar
results for every 50 epoch test run we have executed, which indicates that the
randomness is small enough that on average it results in almost deterministic-
like behavior. When setting the agent’s randomness rate to higher values (we
have experimented with up to 10 percent randomness rate), it caused that
his actions were too much random and each 50 epoch test had completely
different results.

On both of the levels that we have tested the agent on, he has performed
miserably. Without allowing the agent to perform any random steps he always
went in the opposite direction than the end of the level was and got stuck
there. As this behavior was really strange, we tried to find out why would
the trained neural network predict for the agent to go left. We have found
out that on the level that the agent was trained on, the level starts with a
clear blue sky in the background and ends with a winning flag which is at
the end of the level right before a castle. Other levels of the same texture
start with the castle being shown in the background (indicating that we have
come from the previous level through the castle) and it can be the reason
why the agent is acting so strange. He is most likely trying to go to the left
because he has learned that on the left side from the castle is the finish line
and he will get the largest reward for winning the game. The introduction of
randomness helped significantly, but only in rare cases. In order for the agent
to show signs of the learned behavior (jumping over enemies etc.), he needed
to perform a series of actions at the very start of these levels, which got him
just far enough that the castle was not visible anymore. Once the castle was
not visible to the agent, he started showing signs of his learned behavior. In
the first level of world two, the agent was able to get 300 pixels from the
start in his best run, which means that he was able only to overcome the first
enemy. In the second observed level (level 1 of world 4), the agent was able
to perform better once he got away from the castle. In his best run, he was
able to get up to the 1310 x-coordinate, which is approximately in the middle
of the level. His behavior was much better and it showed some of the learned
behavioral patterns that we have seen on the level he was trained on.

In conclusion, the agent’s overall performance was terrible at first, but
after determining the root of the issue and the introduction of randomness,
we were able to observe some progress on the level. The agent was able to
overcome some obstacles even though he had never played these levels. This
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is a positive sign as most of the implemented models were not able to train an
agent capable of successfully overcoming multiple obstacles even for the level
he was trained on. Without allowing the agent to perform random actions
the results were terrible and the agent was not capable of playing any of the
unseen levels. It would be interesting to train an agent on the level where the
castle is shown in the background at the start to see if it would improve his
performances on other unseen levels.
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Chapter 6
Conclusion

This master’s thesis focuses on preparing an intelligent agent for playing the
Super Mario Bros. game. One of the main goals of the analysis part of this
thesis was to research the most relevant state-of-the-art reinforcement learning
approaches which could be suitable for this game and describe them. This was
successfully achieved as the two most relevant techniques were selected and
described in detail while also their weak points were exploited and solutions
to them discussed.

The next goal was to find an appropriate tool that could be used for
the interaction of the learning framework with the environment. Multiple
tools that could be used were found, described, and from them was selected
the one that was the most convenient, easy to use, and required almost no
modifications for the game.

The main goal of this thesis was to implement selected models, train an
agent for each of them and compare the agent’s performances during the
learning process. In the end, five variations of two selected RL approaches were
implemented. For each of them, an agent was trained while their respective
rewards gained during the training were collected. Then the performances of
these models were compared, and the ones that suit the most for the Super
Mario Bros. game were chosen. These models were the Enhanced DQN and
the A3C.

After the model comparison, experiments with various modifications to
the Enhanced DQN model were done in order to fine-tune it for the game. It
was successfully determined that using a smaller neural network and letting it
work with the original sized state representation image were the modifications
that improved the agent’s performance the most during its training. The
agent was then trained for a greater number of epochs and improvements
in his behavior were described. The observed effects of these modifications
were then successfully applied to the A3C model, for which they proved to be
unsuitable and made the agent’s performances worse.

During the experiments we were having problems with executing large
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number of epochs that the models demand. This was caused not only by
the limited resources we had access to but also by the fact that each action
performed by the agent takes some time to execute35. But even these compli-
cations did not stop us from being able to successfully compare the models and
later experiment with fine-tuning the selected one. It only caused that most of
the initial agents were not trained enough to show human-like performances.

As the last goal, the in-game performance of the agent trained on the fine-
tuned model was observed in the level that he was trained on and also in two
different levels that the agents had never seen before. The agent showed great
behavioral patterns in the level he was trained on and was able to clear the
whole level with ease. In the levels, which the agent had not seen before, his
performances were really bad, but we were able to determine the cause of the
issue and find a solution for it. When the agent was allowed to perform random
actions with just one percent chance, his performances increased greatly while
keeping consistent results between multiple test runs. He was also able to get
much farther, and whenever he performed a random action he kept showing
all the learned behavioral patterns making his reactions look human-like.

35For example, the jump action takes some time until the agent lands and can effectively
perform the next action.
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Appendix A
Acronyms

RL Reinforcement Learning

DQN Deep Q-learning

NES Nintendo Entertainment System

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

TD3 Twin Delayed Deep Deterministic policy gradient algorithm

HP Health

AI Artificial Intelligence

ML Machine Learning

API Application Programming Interface

NES Nintendo Entertainment System

GUI Graphical User Interface

ReLu Rectified Linear Unit

FIFO First In, First Out

LSTM Long Short-Term Memory

GAE Generalized Advantage Estimator

GPU Graphics Processing Unit
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Appendix B
Contents of enclosed DVD

Below you can find the structure of the attached DVD, which contains all the
files related to this master’s thesis.

A3C..................................Folder with A3C model related files
MyA3C................Folder with files related to modified A3C model

DDQN........................Folder with Double DQN model related files
DQN.................................Folder with DQN model related files
EnhancedDQN.............Folder with Enhanced DQN model related files
MyModel............Folder with files related to the fine-tuned final model

Experiments.....................Folder with experiment related files
MyDQN.ipynb....................Source code for the fine-tuned model
MyDQN_target.pt.......Weights of the trained agents neural network

TD3..................................Folder with TD3 model related files
dict_utils.py...............Functions for handling pandas dictionaries
Graphs_action_set_comparison.ipynb...Action set comparison graphs
Graphs_experiments.ipynb..................Experiment related graphs
Graphs_model_comparison.ipynb.............Model comparison graphs
LICENSE...........................................Legal use information
preprocessing_methods.py.......Environment pre-processing methods
README.md.................General information about the diploma thesis
requirements.py...............Information about used python libraries
schejbal_diploma_thesis.pdf.............Master’s thesis text in PDF
schejbal-diploma-thesis.zip.......................LATEX source files
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