
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Recommendation system for Data Dictionary application.

Bc. Valeriy Lyalin

Ing. Michal Peroutka

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2022/2023

Instructions

The aim of the work is to develop a recommendation tool for the Data Dictionary

application. This tool should recommend based on historical data of user interactions

and based on object(item) similarities.

Instructions for elaboration:

1. Get acquainted with Data Dictionary(DD) use cases.

2. Familiarise yourself with the dataset of the DD application, which will be provided by

one unnamed data warehouse (after applying data anonymization).

3. Search for recommendation algorithms.

4. Design and implement a recommendation system.

5. Test and evaluate your implemented solution.

Electronically approved by Ing. Karel Klouda, Ph.D. on 20 October 2021 in Prague.

Master’s thesis

Recommendation system for Data
Dictionary application

Bc. Valeriy Lyalin

Department of Applied Mathematics
Supervisor: Ing. Michal Peroutka

April 30, 2022

Acknowledgements

I would like to thank everybody who directly or indirectly contributed to the
master thesis. My special thanks go to Ing. Michal Peroutka, the supervisor
of the thesis, who mentally and physically supported me during the whole
process of working on the thesis, and who shared his rich experience and
always was there when I needed. Also, I want to thank my parents and Julia
for their mental support during the whole study process.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on April 30, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Valeriy Lyalin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Lyalin, Valeriy. Recommendation system for Data Dictionary application.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Práce si klade za ćıl analyzovat a navrhnout prototyp doporučováćıho systému
pro aplikaci Data Dictionary. Práce se skládá ze tř́ı část́ı. Prvńı část zač́ıná
nast́ıněńım problématiky datového slovńıku a př́ıpadami užit́ı aplikace. Poté
poskytuje přehled doporučováćıch systémů. Druhá část obsahuje návrh, im-
plementaci, laděńı a vyhodnoceńı r̊uzných doporučovaćıch technik, jako je
content-based recommendation, collaborative filtering a session-based recom-
mendation. Finálńı část analyzuje dosažené výsledky a zaměřuje se na výběr
modelu pro aplikaci.

Kĺıčová slova doporučováćı systémy, content-based recommendation, colla-
borative filtering, session-based recommendation

Abstract

The thesis aims to analyze and build a prototype of a recommendation sys-
tem for a Data Dictionary application. This work consists of three parts. The
first part starts with outlining Data Dictionary and uses cases of the applica-
tion. Then it provides an overview of recommendation systems. The second
part contains the design, implementation, tuning, and evaluation of different

vii

recommendation techniques, such as content-based recommendation, collab-
orative filtering, and session-based recommendation. The last part analyzes
achieved results and focuses on a model selection for the application.

Keywords recommendation systems, content-based recommendation, col-
laborative filtering, session-based recommendation

viii

Contents

1 Introduction 1

2 Introduction to data dictionary 3
2.1 Sources of information in a data dictionary 3
2.2 Typical attributes in a data dictionary 4
2.3 Functions of a data dictionary 4

3 Defining goals for a recommendation system 5
3.1 What is a recommendation system? 5
3.2 Functions of a recommendation system in a data dictionary . . 5
3.3 Goals for building a recommendation system 6

4 Content-based filtering 7
4.1 Generating item embeddings 7

4.1.1 TF-IDF model . 7
4.1.2 Word2vec model . 8
4.1.3 BERT model . 9

4.2 Building user profiles . 10
4.3 Next item prediction using a content-based model 12
4.4 Cons and pros of a content-based recommendation system . . . 12

5 Collaborative filtering 13
5.1 User-based collaborative filtering 13
5.2 Item-based collaborative filtering 14
5.3 Rating generation . 14
5.4 Matrix factorization for collaborative filtering 15
5.5 Cons and pros of collaborative filtering 16

6 Session-based recommender systems 17
6.1 Session properties and components 17

ix

6.1.1 User and user properties 17
6.1.2 Item and item properties 18
6.1.3 Action and action properties 18
6.1.4 Interaction and interaction properties 18
6.1.5 Session and session properties 18

6.1.5.1 Session length 19
6.1.5.2 Session action types 19
6.1.5.3 Internal order 19
6.1.5.4 User information 20

6.2 Session-based recommendation problem 20
6.3 K nearest neighbors approaches for SBRS 21

6.3.1 Item KNN for session-based recommendation 21
6.3.2 Session KNN for session-based recommendation 21
6.3.3 Cons and pros of K nearest approaches for SBRS 21

6.4 Recurrent neural network approaches for SBRS 22
6.5 Transformer4Rec approach for SBRS 24

6.5.1 Data preprocessing . 24
6.5.2 Model training and evaluation 24
6.5.3 Transformers4Rec meta-architecture 26
6.5.4 Transformer4Rec performance 27

7 Evaluation of recommender systems 29
7.1 Offline evaluation . 29

7.1.1 Predictive accuracy metrics 30
7.1.1.1 Mean Absolute Error (MAE) 30
7.1.1.2 Mean Squared Error (MSE) 30
7.1.1.3 Root Mean Squared Error (RMSE) 31

7.1.2 Classification accuracy metrics 31
7.1.2.1 General classification metrics 31
7.1.2.2 Classification metrics for a recommender system 32
7.1.2.3 ROC and AUC for a recommender system . . 32

7.1.3 Ranking accuracy metrics 32
7.1.4 Relevance calculation for a recommendation task 33

7.1.4.1 Normalized Discounted Cumulative Gain . . . 34
7.1.4.2 Mean Reciprocal Rank 34
7.1.4.3 Average Precision 34

7.1.5 Other methods . 35
7.1.5.1 Catalog coverage 35
7.1.5.2 Novelty . 35
7.1.5.3 Diversity . 35
7.1.5.4 Hit Ratio . 36

7.2 Online evaluation . 36
7.2.1 Click-through rate . 36
7.2.2 Temporal diversity . 37

x

7.2.3 Adoption and conversion rates 37
7.2.4 Sales and Revenue . 37
7.2.5 Sales distribution . 37
7.2.6 User behaviour and engagement 38
7.2.7 A/B testing . 38

8 Analysis and design 39
8.0.1 Dataset description . 39

8.0.1.1 Dataset statistics 40
8.0.2 The metadata structure of given dataset 42
8.0.3 Defining goals for a recommender system 42
8.0.4 Defining evaluation metrics 43
8.0.5 Data preprocessing . 43

8.0.5.1 Item dataset preprocessing 44
8.0.5.2 Interaction dataset preprocessing 44
8.0.5.3 The dataset split 45

8.0.6 Baseline models . 45
8.0.6.1 Baseline model 1 45
8.0.6.2 Baseline model 2 46

8.0.7 Content based model . 48
8.0.7.1 Building item profiles 48
8.0.7.2 Building user profiles 48
8.0.7.3 Prediction . 49
8.0.7.4 Evaluation . 49

8.0.8 Collaborative filtering based model 50
8.0.8.1 Ratings generations 51
8.0.8.2 Finding the optimal latent size 51
8.0.8.3 Evaluation . 52

8.0.9 Session based model . 52
8.0.9.1 Session formation 53
8.0.9.2 Session length optimization 54
8.0.9.3 Architecture overview 54
8.0.9.4 Prediction process 55
8.0.9.5 Evaluation results 55

8.0.10 Model comparison . 56

9 Conclusion 59

Biblioraphy 61

A Acronyms 67

B Contents of enclosed Micro SD 69

xi

List of Figures

2.1 An example of a simple Data Dictionary application 3

4.1 Continuous bag-of-words model architecture. Source: [8] 9
4.2 Continuous skip-gram model architecture. Source: [9] 10
4.3 The Transformer - model architecture. Source: [15] 11

6.1 Architecture of the GRU4Rec neural network. Source: [19] 23
6.2 Illustration of the session-parallel mini-batch scheme of GRU4Rec.

Source: [19] . 23
6.3 Transformers4Rec pipeline overview. Source: [21] 25
6.4 Transformer4Rec neural meta-architecture. Source: [21] 27

7.1 An example of ROC curves. Source: [36] 33

8.1 Number of interactions per user ID 40
8.2 Number of interactions per item ID 41
8.3 An overview of the monthly usage of the application 41
8.4 The evaluation results of the Baseline model 1 46
8.5 The evaluation results of the Baseline model 2 47
8.6 The evaluation results of the content-based model 50
8.7 The performance of CF model for different d 52
8.8 The evaluation results of the CF model 53
8.9 The performance of SB model for different session lengths 55
8.10 The evaluation results of the sesion-based model 56
8.11 The evaluation results of the second baseline model on the test set 57

xiii

List of Tables

7.1 Classification of the possible result of a recommendation of an item
to a user . 31

8.1 The columns of the interaction dataset 42
8.2 The columns of the items dataset 43
8.3 The columns of the items dataset after the preprocessing 44
8.4 The columns of the interaction dataset after the preprocessing . . 45
8.5 The evaluation results of implemented models 57

xv

Chapter 1
Introduction

Before the rise of e-commerce, goods were sold solely in shops. Store’s inven-
tory was limited by its physical space, and products that did not sell well were
unprofitable. Due to the fixed physical space of the shops, merchants were
motivated to sell only the most popular mainstream products.

The development of internet marketplaces in the 1990s revolutionized the
whole retail business. New digital spaces provided storage for an unlimited
number of inventories. Some enterprising merchants decided not to lose this
lucrative opportunity and gradually expanded the range of suggested products,
which started to include more and more niche items. As a result, some less
known pieces gained so much popularity that they unavoidable changed the
merchants’ vision on the possible ways how to make skyrocketing profits.

Inventory extension and a growing amount of niche products in reality,
however, does not necessarily imply a profit increase. In 2000, two psycholo-
gists conducted a study [1] to prove that. They constructed two supermarket
booths. Each of them was offering jams. The first one had 24 different types,
whereas the second one was offering only 6. Two researching assistants worked
as store employees and invited passing-by people to come in and try their jams.
After a few days of “selling”, they concluded the following: while the booth
with more samples brought in more customers, the booth with fewer sam-
ples had higher conversation rates. Meaning, that people were more likely
to purchase in the booth with a lower amount of jams than in one with a
wider variety of tastes. The phenomenon is known as the “choice overload”:
when a person is given too many options to choose from, he is less inclined to
purchase.

The e-commerce was not the only area exposed to the choice overload.
When there is too much information on one’s “plate”, it becomes harder for a
person to differentiate between suggested things and to make a final choice. A
concept of information overload is encountered everywhere: in social networks,
entertainment systems, businesses, etc. One of the possible ways of tackling
this information saturation issue is by using a recommender system, which

1

1. Introduction

reduces the search space and identifies the most relevant items for all users.
Recommendation systems are not new. They evolved as an independent

research area in the mid-1970s in the Duke University. The systems started to
gain attention among businesses. In 1998 Amazon.com, Inc. was the first
big company to launch an item-based collaborative filtering, that allowed
large-scale recommendations for millions of customers and millions of cata-
log products. Since then, recommendation systems based on Collaborative
Filtering have become widely popular and have been implemented by numer-
ous e-commerce and online systems.

As of 2022, most e-commerce platforms have already included recommen-
dation systems in their businesses. However, there are still areas where the
problem of information overload is acute and recommender systems have just
started to be adopted there. An example of such areas can be corporate sys-
tems designed for the internal needs of companies. As companies grow, so
does the amount of their company data. Systems that were originally created
and tested for a small amount of data become more and more difficult to use
over time. An example of such a system is the data dictionary application,
which is used in one metadata warehouse of a company in the finance sector.
The application is primarily utilized for designing, managing, and document-
ing systems and databases used in a variety of companies’ projects. The users
of the system, such as data analytics or data engineers, might have issues
with finding a table with a certain name since it can exist in multiple systems
simultaneously. In that case, a recommender system may assist with finding
the most relevant table for the particular user. This master thesis aims to
build a recommendation system for the data dictionary application to help
users to find the most relevant information in a more efficient way.

2

Chapter 2
Introduction to data dictionary

Term Data Dictionary, according to IBM Dictionary Of Computing [2], means
a centralized repository of information about data such as meaning, relation-
ships to other data, origin, usage, and format. A data dictionary does not
store the data but rather metadata (data about data). An example of a sim-
ple Data Dictionary is shown in figure 2.1.

2.1 Sources of information in a data dictionary

Data in a relational database is structured. The structure of data is defined in
a schema. A database schema represents the logical configuration of all or part
of a relational database [3]. This schema includes information about stored
tables, columns, views, indexes, constraints, procedures, functions, and more.

Figure 2.1: An example of a simple Data Dictionary application

3

2. Introduction to data dictionary

The data itself can be treated as a simple data dictionary, but often it is one
of many sources of an enterprise data dictionary application. Other sources
are models from data modeling tools, metadata repositories, data catalogs,
etc.

2.2 Typical attributes in a data dictionary

Typical attributes of a data dictionary that are imported from a database
schema are item names, nullability, data types, default values, length, pre-
cisions, views and procedure definitions, incoming and outgoing references,
child-parent relationships (e.g. a relation between a column and a table that
it belongs to). Apart from that data, a database can be queried for data pro-
filing information, such as minimum, maximum, median values in columns,
number of nullable values, row count, uniqueness, and more.

Data models from modeling tools enhance the information by adding de-
scriptions, definitions, annotations, and more. Besides the documenting in-
formation, it may provide mapping information. This kind of information is
crucial for understanding sources of information and capturing usages of the
data, such as data reports and other systems.

2.3 Functions of a data dictionary

A data dictionary plays a crucial role in a process of designing, managing,
and documenting a database. Thanks to search it may allow to quickly and
effectively access desired data. It enables analysts to understand overall sys-
tem design and data flow. The application assists in reducing inconsistencies
across systems. It helps in defining conventions that are used across the whole
project and enforces users to follow them.

4

Chapter 3
Defining goals for a

recommendation system

3.1 What is a recommendation system?

A recommender system or a recommendation system is a subclass of informa-
tion filtering systems that seeks to predict the “rating” or “preference” that
a user would give to an item [4]. In other words, recommender systems are
active information filtering systems that personalize the information shown to
a user depending on his/her interests, the item’s relevancy, and other factors.
The recommendation is mainly done by building and training a model based
on a comparison of characteristics between users (user-based recommenda-
tion), items (item-based recommendations), and users’ domain (collaborative
filtering). Different algorithms are used to implement the recommendation
system. Some of them will be covered and implemented in this thesis.

3.2 Functions of a recommendation system in a
data dictionary

Enterprise data dictionaries contain tons of information. Orientation and
data discovery in this area is complicated. Tools like Elasticsearch [5] might
partially solve the issues. The engine allows developers to store, search and
analyze huge volumes of data in milliseconds. It can produce quick search
results because it searches an index rather than querying the text directly.
Given a query, it computes a relevance score for each item. Then the ones
with the highest score are returned to a user. Developers may modify the
score function by assigning weights to each attribute of stored data. Though,
there is a problem with the approach. It handles duplicates poorly. Suppose
a user searched for a table called Party. He/she types the keywords. Based on
the keyword, the system outputs, for instance, thousands of results with the

5

3. Defining goals for a recommendation system

top ten results of tables named Party. One of the solutions would be adding
additional filters to queries, such as a department name. But what if the user
does not know the name of the department? He/she will have to look at each
of the ten results. Going through ten results is bearable, but what if a data
dictionary contains thousands of tables called Party? Thankfully, there is
another solution to the problem. The data dictionary system can personalize
results for users by collecting information about user activities and eventually
adding a recommender system.

Despite the enormous amount of items in an enterprise data dictionary,
users have repeated patterns in the item interaction history. For instance, data
analytics have a subset of information that interests only them. A portion of
the items may be accessed solely by a single person. Another set of items
may be visited more frequently and by multiple individuals. Based on the
knowledge, a recommendation system can forecast the next visited items.

3.3 Goals for building a recommendation system

The aim of the thesis is to build a recommendation system. As described
in the previous section, the recommendation engine will be used in an enter-
prise data dictionary to improve search and potentially improve navigation by
recommending the most relevant items to the user even without searching.

The item recommendation problem in an enterprise data dictionary is com-
plex due to the large number of items. For that reason, users do not expect
high recalls from the recommender system. However, narrowing the search re-
sults based on relevance score from a search engine will decrease the number
of items and more than likely will improve the recall.

6

Chapter 4
Content-based filtering

A content-based (CB) recommendation is a technique that predicts the follow-
ing interactions based on user profiles. The process of building a recommender
model with CB consists of three parts: building item vectors, developing user
profiles based on item vectors, and eventually making predictions based on a
similarity between a user profile and an item vector. Items with the highest
similarity scores are recommended to a user.

4.1 Generating item embeddings

The first step in building the recommender system is to create item embed-
dings. Items usually have not only number features but also text attributes,
such as name, description, category name, etc. To feed these features to a
machine learning model, we need to create embeddings. Embeddings are es-
sentially a set of numbers. More specifically, it is a low-dimensional space in
which we translate high-dimensional vectors, ideally, with preserving seman-
tics. Techniques for translating item features into embeddings are described
in the following sections.

4.1.1 TF-IDF model

One way of creating item vectors is called TF-IDF, which stands for term
frequency and inverse document frequency. It is calculated as a product of
term frequency tf and inverse document frequency idf (4.1).

tfidf(t, d, D) = tf(t, d) ∗ idf(t, D)

tf(t, d) = ft,d∑
t′∈d ft′,d

idf(t, D) = log
N

|{d ∈ D : t ∈ d}|

(4.1)

7

4. Content-based filtering

Term frequency tf measures how often a word t occurs in a document d.
A term that frequently appears in a document is likely to be crucial to its
meaning. Document frequency df measures how often a word occurs in an
entire set of documents D. If a word is frequent in a provided document d
and common in all of the given documents, it will get a low score. Examples
of these words are “the”, “a”, “is”, etc. These words do not carry information
about a context.

TF-IDF is a decent baseline technique for embedding generation. How-
ever, it has several limitations. It does not take into consideration similarities
between words, word positioning, and semantics. The method assumes that
word frequency provides independent evidence of similarity. Last but not
least, word counting may be slow for extensive vocabularies.

4.1.2 Word2vec model

Word2vec is not a singular algorithm. Rather, it is a family of model architec-
tures and optimizations that can be used to learn word embeddings from large
datasets. Embeddings learned through word2vec have proven to be success-
ful on a variety of downstream natural language processing tasks [6]. There
are two approaches for constructing word embeddings with word2vec: the
continuous bag-of-words model and the continuous skip-gram model.

Continuous bag-of-words model of word2vec predicts the middle word
based on surrounding context words (defined in the equation 4.2).

P (wt|wt−C , wt−C+1, ..., wt−1, wt+1, ..., wt+C) (4.2)

Consider the following sentence: today is a great day for a walk. Given the
neighborhood words {a, great, for, a} the method will try to predict the target
word day. As described in study [7], the approach uses the one-hot encoding
of the input words and measures the output error compared to the one-hot
encoding of the target word. It converts input one-hot encodings of words
into a lower-dimensional feature vector and reconstructs the original one-hot
representation from the vector. The architecture is shown in figure 4.1. In
addition, the output layer does not have an activation function but only soft-
max. More precisely, it uses hierarchical soft-max, which is computationally
cheaper compared to a regular one. Then the method includes word subsam-
pling to reduce the training set.

Continuous skip-gram model predicts words within a certain range
before and after the current word in the same sentence (defined in the equation
4.3).

P (wt−C , wt−C+1, ..., wt−1, wt+1, ..., wt+C |wt) (4.3)

The continuous skip-gram model is the opposite of the continuous bag-of-
words model. It takes a word one-hot representation as input and outputs

8

4.1. Generating item embeddings

Figure 4.1: Continuous bag-of-words model architecture. Source: [8]

C vectors, each representing the probabilities of words. The architecture is
shown in figure 4.2.

The word2vec method had shown good performance, according to the pa-
per [10], compared to competitors. Howbeit, it has some cons. The approach
processes only words it has seen during the training process. The next prob-
lem is that embeddings generated with word2vec are content-independent. For
instance, the word bank in the following sentences will have the same embed-
ding: “We went to the river bank”, and “I need to go to the bank to pay the
bill”. The third problem is that word2vec does not take into account the word
position. All of the previously mentioned problems are solved by a method
called Bidirectional Encoder Representations from Transformers.

4.1.3 BERT model

Bidirectional Encoder Representations from Transformers (BERT) is a ma-
chine learning technique for natural language processing (NLP) pre-training
developed by Google [11]. Since its introduction in 2018, BERT obtained
state-of-the-art results in numerous benchmarks and is still a must-have base-
line [12].

BERT is essentially a stack of Transformer encoder layers made up of sev-
eral self-attention heads. Each head computes key K, value V , and query
Q vectors for each input token in a sequence to produce a weighted repre-

9

4. Content-based filtering

Figure 4.2: Continuous skip-gram model architecture. Source: [9]

sentation. All heads in the same layer have their outputs combined and run
through a fully connected layer. Each layer is wrapped with a skip connection
and then normalized. Transformer architecture is shown in figure 4.3.

BERT has several advantages over the previously mentioned methods for
creating word embeddings. Studies have shown that the model has syntactic
knowledge [13]. Syntactic awareness monitors the relationships between words
in order to understand the meaning. BERT also has some knowledge of seman-
tic roles [14], which involves the meaning found in the actual text. Another
advantage is that BERT is available and pre-trained in over 100 languages.
That can be useful for projects that are not English-based.

4.2 Building user profiles

The next phase of building a content-based recommendation system after
generating item embeddings is building user profiles. Given a set of items
I, ratings R and item embeddings V we can calculate user profiles P (4.4).

10

4.2. Building user profiles

Figure 4.3: The Transformer - model architecture. Source: [15]

11

4. Content-based filtering

Pj =
∑
i∈I

rij ∗ vi (4.4)

When we have multiple features F , each having its embedding, we can
sum up all the embeddings, or we can assign weights W to attributes and
then sum up (4.5).

Pj =
∑
i∈I

∑
f∈F

rij ∗ wf ∗ vif (4.5)

To speed up computation, we can use matrix multiplication on GPU.

4.3 Next item prediction using a content-based
model

The last step in building a content-based recommendation model is choosing
a similarity function. The function is used when making predictions. For any
given user profile, it calculates the similarity between each item and the user
vector. Then top-k items are recommended to a user.

One of the most popular ways of measuring similarity between two vectors
A and B is cosine similarity (4.6).

sim(A, B) = cos(Θ) = A ∗ B

|A| ∗ |B|
(4.6)

There are other ways of measuring vectors’ similarities, such as Euclidian,
Manhattan, Minkowski distances, Jaccard Similarity, and others.

4.4 Cons and pros of a content-based
recommendation system

Content-based recommendation system has the benefit of recommending new
items that haven’t been visited yet. Another advantage of the model is that
it can satisfy the unique tastes of a user. It is not biased towards the most
popular items. Despite the outlined benefits, it also has some problems. It
can only recommend objects similar to those that the user has interacted with
(e.g. visited). The model cannot detect changes in user tastes over time. The
last issue, however, can be somewhat solved by adding aging to the rating
generation process.

12

Chapter 5
Collaborative filtering

Collaborative filtering is the process of filtering for information or patterns
using techniques involving collaboration among multiple agents, viewpoints,
data sources, etc [16]. While content-based recommendation focuses on recom-
mending items that are the most similar to the ones that a user has interacted
with, collaborative filtering tries to find similarities in historical data of user
interactions. It assumes that users that had similar tastes in the past will
have similar tastes in the future. There are different types of collaborative
filtering, but all of them work with rating matrices to produce the model.

5.1 User-based collaborative filtering

User-based collaborative filtering makes predictions based on similarities be-
tween users. Based on a similarity function sim(u,v) it finds a set Nk =
{v1, v2, ..., vk} of k users that is the most similar to a given user u. Then using
ratings of the most similar users it calculates ratings estimations (5.1).

r̂u,i =

∑
v∈Nk
rv,i ̸=?

sim(u, v) ∗ rv,i

∑
v∈Nk
rv,i ̸=?

sim(u, v) if ∃v ∈ Nk : rv,i ̸=?

0 otherwise

(5.1)

To measure similarities between users sim(u, v) we can use cosine similarity
C(u, v) (5.2), Jaccard Similarity J(u, v) (5.3), Pearson correlation coefficient
P (u, v) (5.4), and others.

C(u, v) =
ru,∗ ∗ rT

v,∗
∥ru,∗∥2 ∗ ∥rv,∗∥2

=

∑
i∈I

ru,i ̸=?
rv,i ̸=?

ru,i ∗ rv,i

√∑
i∈I

ru,i ̸=?
r2

u,i

√∑
i∈I

rv,i ̸=?
r2

v,i

(5.2)

13

5. Collaborative filtering

J(u, v) =
ru,∗ ∗ rT

v,∗

∥ru,∗∥2
2 ∗ ∥rv,∗∥2

2 − ru,∗ ∗ rT
v,∗

=

∑
i∈I

ru,i ̸=?
rv,i ̸=?

ru,i ∗ rv,i

∑
i∈I

ru,i ̸=?

r2
u,i + ∑

i∈I
rv,i ̸=?

r2
v,i −

∑
i∈I

ru,i ̸=?
rv,i ̸=?

ru,i ∗ rv,i

(5.3)

P (u, v) =

∑
i∈I

ru,i ̸=?
rv,i ̸=?

(ru,i − ru,∗) ∗ (rv,i − rv,∗)

√ ∑
i∈I

ru,i ̸=?

(ru,i − ru,∗)2 ∗
√ ∑

i∈I
rv,i ̸=?

(rv,i − rv,∗)2 (5.4)

5.2 Item-based collaborative filtering

Item-based collaborative filtering processes the rating matrix in a way comple-
mentary to the User-based method. In the approach, the sim function calcu-
lates item similarity rather than assessing similarity between users. However,
formulas used for calculating similarities are the same. After computing a
set of k the most similar items for every item in the rating matrix, we can
estimate missing ratings as similarity-weighed average (5.5).

r̂u,i =

∑
j∈I

i∈Nk
ru,j ̸=?

sim(i, j) ∗ ru,j

∑
j∈I

i∈Nk
ru,j ̸=?

sim(i, j) if ∃j ∈ I : i ∈ Nk(j) ∧ ru,j ̸=?

0 otherwise

(5.5)

5.3 Rating generation

There are two sources of ratings: explicit and implicit. Explicit ratings are
essentially ratings given to items by users. To obtain explicit feedback from
users the system must ask the user to rate an object. The collection process
can be implemented in the form of likes and dislikes, stars, or even writing
comments as text. The last one gives a great opportunity to learn user opinion,
but it is not easy to obtain and hard to evaluate.

Explicit feedbacks are usually biased toward popular items. People tend
to give higher ratings to more prevalent items. Another issue with explicit
ratings is that people rate differently. For instance, in a movie streaming

14

5.4. Matrix factorization for collaborative filtering

service with ratings of one to five, two persons may rate the same film as four,
but the first person gives ratings of four to films that he does not like, and
for the second individual, the rating of four is the highest one. These issues
should be solved during preprocessing.

Implicit ratings are generated from user interactions. These days most of
the systems are collecting viewing, and searching data, adding to bookmarks,
time spent on reading or watching a particular item, and others. Each inter-
action type is weighted based on its importance and then summed up. For
instance, when a user buys an item, it will get higher ratings compared to a
case when the user only clicked on the object.

Most modern systems collect both implicit and explicit ratings. If a sys-
tem collects only explicit ratings, the rating matrix will probably be sparse.
Applications may also collect only implicit ratings, but to maximize prediction
quality, we need as much data as possible.

5.4 Matrix factorization for collaborative filtering

The core of item-based and user-based methods of collaborative filtering is
to find a set of nearest neighbors using the similarity function. Calculating
similarities requires a lot of computational power. Another problem is that
the result estimation matrix of the rating matrix is sparse because users (or
items) in a set of nearest neighbors will only have a few ratings. One way of
partially solving these problems is to use a matrix factorization technique.

Matrix factorization means the decomposition of an original matrix into
two or more matrices with specific non-trivial properties. The main idea
behind the method is the following: given a rating matrix R ∈ Rm,n find
matrices P ∈ Rm,k and Q ∈ Rn,k so that known ratings are approximated
by R̂ = P ∗ QT , where k is given as a hyperparameter. These matrices are
obtained by solving the optimalization task 5.6, where ru,i is known rating of
uth user and ith item, pu is uth row of P , qi is the ith row of Q and λ is a
hyperparameter.

argminU,V

∑
∀(u,i)∈(U×I)

ru,i ̸=?

(ru,i − pT
u qi)2 + λ(

∑
i

qT
i qi +

∑
u

qT
u qu) (5.6)

The bottom line of the method is that when we have already found the
matrices P and Q, then we can multiply R̂ = PQT . Known entities in the
matrix R will be similar to ones in R̂, and unknown elements in R will be
estimated by known. As a result, the R̂ matrix will have all the entities
known.

Matrix factorization for collaborative filtering was made famous by Simon
Funk, who used the technique to place third in the 2006 Netflix competition.

15

5. Collaborative filtering

The method is sometimes called FunkSVD because it can be understood as an
approximation of the approximation given by Singular Value Decomposition
(SVD). Using Eckart-Young Theorem, it can be shown that the result matrix
of Simon Funk’s method corresponds to the matrices from SVD using only k
biggest singular values.

5.5 Cons and pros of collaborative filtering

On the one hand, collaborative filtering does not require items information.
This may be considered as an advantage because we do not need to process
complex item structures, such as music, videos, or images. On the other hand,
the method works only with a rating matrix, and we cannot simply add an item
or user information, such as item category or user’s age and country. Another
significant problem with collaborative filtering is that it cannot recommend
items that no one hasn’t interacted with yet. The last issue with collaborative
filtering is that it tends to suggest more popular objects, meaning users with
unique tastes will probably be disappointed.

16

Chapter 6
Session-based recommender

systems

Recommendations systems based on collaborative filtering or content-based
are generally tended to operate with historical user-item interactions to learn
a user’s long-term preferences. The fundamental premise of both of these
systems is that all previous interactions are equally important in determining
the user’s current choice. However, in reality, this may not be the case. For
instance, recently viewed or purchased items may be more appropriate than
others. Furthermore, user preferences toward certain items tend to be dynamic
rather than static. As a result of these issues, a new class of recommenda-
tion algorithms has been developed: known as session-based recommendation
algorithms (SBRS). These algorithms rely strongly on the user’s most recent
interactions rather than the user’s prior preferences.

6.1 Session properties and components

A session-based recommendation system works with user-item interactions
user and item data. These entities are the core components of sessions, which
is an essential element of every session-based recommendation model. In the
section, the author of the thesis outlines the session properties and its key
components.

6.1.1 User and user properties

In an SBRS, a user u is the subject who performs actions on objects, such
as clicks or purchases, and receives the recommended results. Users U =
{u1, ..., un} are associated with a unique identification and a set of attributes
that describes them. As identification is considered user id or cookie id in the
case of an anonymous person. In entertainment systems, user attributes may
include gender, age, and location. For example, a boy may watch more action

17

6. Session-based recommender systems

movies, while a girl may watch more love-story movies. In business domains,
user information may include department numbers. One department may use
only a part of a system and have a few intersections with another department.
However, user information may not always be available because it may not be
recorded due to privacy protection, or the system may allow anonymous users
to use it.

6.1.2 Item and item properties

In a session-based recommender system, an item pi is a recommendation entity,
such as a product or service. Items P = {p1, ..., pm} are associated with an
identification number and with a set of attributes that describes them, such
as name, price, category, description, etc.

6.1.3 Action and action properties

In SBRM, an action ai is an operation performed by a user. Action has a
unique identification based on an action type. Examples of action types are
the following: click, search, like/dislike, add to a cart, buy an item, etc.

6.1.4 Interaction and interaction properties

Interaction in an SBRS is a tuple o = ⟨u, p, a, t⟩ of a user u, an item p, an
action type a and a timestamp t. Based on the item recency, the model may
prefer newer items and not recommend older objects that only appeared in
a certain period. For instance, in an online grocery store, products such as
ice cream have time periodicity. People buy more ice cream during the hot
seasons and almost do not buy it during cold seasons.

6.1.5 Session and session properties

A session is a non-empty determinate list of interactions s = {o1, ..., ok}
created over a period of continuous-time and associated with a certain user
through userId or a cookie. Note that a session is not a set, but a list, mean-
ing that it may have duplicates. For instance, a person may listen to a song
multiple times. A session, like its components, is commonly associated with
attributes, such as session duration, time, day of the occurrence, and others.
A session is a core element of any session-based recommendation system. The
process of session generation is complex and depends on a specific domain.
In the next subsections, the author describes common session properties that
may have a great impact on an SBRS.

18

6.1. Session properties and components

6.1.5.1 Session length

The length of a session is determined by the total number of interactions it
contains. Sessions can be divided into three groups based on their length:
long sessions, medium sessions, and short sessions. Note that the particular
definitions for long, medium and short sessions may vary depending on the
data set.

Long sessions contain a relatively large number of interactions. In some
domains, a session might be considered to be long when it has more than ten or
fifteen interactions. Generally, long sessions give more contextual information
for more accurate recommendations. Nevertheless, a long session is more likely
to contain random interactions that are unrelated to the rest of the session.
As a result, there is more noise in the data, which reduces the performance of
recommendations. Furthermore, long sessions generally contain more complex
dependencies, such as long-range dependencies between two interactions that
are far apart in the session.

Medium-long sessions contain an average number of interactions, e.g. from
five to ten. Medium size sessions are the most common ones in the e-commerce
industry [17]. Compared to long and short sessions, the medium session is
more likely to have fewer unnecessary interactions while still containing mini-
mal contextual information. For instance, in an e-shop selling electronics with
an average session length of bought items of three, a person who buys a cell
phone and a charger for the phone are likely to buy a case for the phone.

A session is considered to be short when it has significantly fewer inter-
actions than average. In e-commerce, it may be sessions of less than four
interactions. When working with this number of sessions, we should not ex-
pect high results from a recommendation system.

6.1.5.2 Session action types

A session can be a single-type-action session or a multi-type-action session.
A single-type-action session includes only one action type, e.g. click, search,
purchasing, etc. Therefore, one only form of action comes from the same set
of activities, which may be easier to learn, but potentially miss some patterns
that may increase the overall performance of the model.

A multi-type-action session contains more than one action type. In e-
commerce domains, users may first click on multiple items to compare them
and then buy an item or search for an item and purchase it straight away.
Therefore, there are complex dependencies inside a session: one action type
may lead to the same action type or a different one.

6.1.5.3 Internal order

There are three different types of interaction ordering within a session: un-
ordered, strict ordered, and flexible ordered. The ordering type depends on a

19

6. Session-based recommender systems

dataset or on a domain.
An unordered session is made up of interactions that are not in any partic-

ular order. For instance, in an online grocery store, adding items to a basket
is rather unordered. When a session is unordered, the dependencies among
its interactions are based on their co-occurrence rather than their sequences.
Furthermore, compared with sequential dependencies, co-occurrence-based de-
pendencies are generally weaker, which makes them more difficult to learn.

A session is ordered when it contains multiple interactions with a strict
order. This ordering type is present in online educational platforms. For
example, a fingerstyle guitar course requires an understanding of guitar basics.
An advanced fingerstyle course demands knowledge of fingerstyle basics and
so on. Ordered sessions are easier to learn. Nevertheless, it is still challenging
because in a long session dependencies become weaker.

A session’s interaction ordering is flexible when it has some ordered parts
while others are unordered. Flexible ordering takes into account sequentially
dependent interactions and assigns less weight to random actions that are
not related. For example, when a session consists of adding to a basket a
cell phone, a cover, and a charger to the cell phone and a cartridge, the
recommender system should be able to figure out that the cartridge is probably
out of the order.

6.1.5.4 User information

When a user is allowed to use a service anonymously, almost all of the sessions
will not have connections, meaning they will seemingly belong to different
users, even if it is not the case. When sessions are anonymous, it is nearly
impossible to collect prior knowledge of user interactions. Therefore only
contextual information from a current session may be used for generating
recommendations.

In a system that requires authorization, many (or most) of the users will
have more than one session. This prior information may improve the perfor-
mance. However, the recommender system will have an additional challenge
of capturing changes in the user’s taste.

6.2 Session-based recommendation problem

Given a session s = [o1, o2, ..., oi, oi+1, ..., ok] in the session set S and a set of
unique items P = {p1, p2,, pn}, we build a model M so that y = M(s),
where y = {y1, y2, ..., yn} is a ranking set of item’s scores over all the next
items that can occur in that session. Moreover, for ∀j ∈ {1, 2, ..., n} yj is a
score of item pj . Since a recommendation system needs to give more than
one recommendation for a user, therefore top-k items with the largest scores
{p1, p2, ..., pk} are recommended, where k ≪ n and (∀i, j ∈ N)(i < j)(j ≤
m)|(yi < yj).

20

6.3. K nearest neighbors approaches for SBRS

6.3 K nearest neighbors approaches for SBRS

SBRS techniques based on K Nearest Neighbours (KNN) are simple yet proven
to be effective [18]. In the approaches, interaction is generally reduced to an
item ID. KNN-based techniques for SBRSs might be separated into item-KNN
and session-KNN, depending on whether the similarity is determined between
items or sessions.

6.3.1 Item KNN for session-based recommendation

Given a current session s = {p1, p2, ..., pk} from a session set S = {s1, ..., sm},
item-based KNN takes the last item in the session pk and using a similarity
function sim : V × V → R finds k most similar items, where Vi = {o1, ..., om}
and (∀j ∈ 1, ..., m)(oj ∈ {0, 1}) is a binary vector of an item pi across all
sessions S. The value of oi of an item pz if calculated based on equation 6.1.

oi =
{

1 if pz ∈ si

0 otherwise
(6.1)

The list of similarity functions that can be applied here is the same as it
was described in item-based collaborative filtering.

6.3.2 Session KNN for session-based recommendation

Given a current session si the session-based KNN firstly finds k a set of the
most similar sessions Ns and then calculates the score for each candidate item
p using the equation 6.2.

score(p) =
∑

snb∈N(s)
sim(s, snb) ∗ 1snb

(p) (6.2)

In the equation 6.2, sim is a similarity function between two sessions and
1snb

(p) is a funciton that returns 1 when the session snnb
contains the item p

and 0 otherwise.
Unlike item-KNN, which only analyzes the current item in the session con-

text, session-KNN evaluates the whole session context and therefore captures
more information for more accurate suggestions.

6.3.3 Cons and pros of K nearest approaches for SBRS

The session-based approach of K nearest neighbors, as mentioned earlier, is
proven to be effective. However, the model is not suitable for large-scale
applications with millions of sessions due to computation complexity. To make
a prediction, the method requires calculating the similarity between a session
and all of the other sessions. With the rapidly growing number of sessions,

21

6. Session-based recommender systems

the calculation becomes too slow even for asynchronous calculations of top-k
recommendations.

6.4 Recurrent neural network approaches for
SBRS

Recurrent Neural Networks (RNN) are one of the most popular approaches
for a session-based recommendation task. The main idea of RNN consists
of two parts: context generation and prediction. Firstly, an RNN model
feeds each ordered session through recurrent layers. Secondly, it takes the
last hidden state modeling the context representation as the input to predict
the next interaction. In the section, the author of the thesis outlines some
implementations that use the concept.

One of the relatively popular approaches that used RNN to tackle session-
based recommendation problems is called GRU4Rec [19]. As the name implies,
the technique uses Gated Recurrent Units (GRU) to predict the probability
of the subsequent events, such as clicks given a session beginning. Figure 6.1
shows the architecture of the network, in which the embedding, the feedfor-
ward, and additional GRU layers are optional.

The network accepts a single item as input in the form of a one-hot en-
coded vector that represents the entire item space. As an output, the model
yields a similar-shaped vector of a rating distribution for the next item. Dur-
ing the process, the GRU layer keeps track of a hidden state that encodes the
previously occurring items in the same session. When the session ends, the
hidden state of the GRUs has to be reset. Note that due to the architectural
design, the sequence must be fed in the correct order. In terms of the activa-
tion functions in the last layer, the authors of GRU4Rec [19] found that the
tanh and sigmoid functions work best for the GRU and the ranking layer.
Training is accomplished with stochastic gradient descent using established
optimizations like Adam [20].

All of the mentioned above is not new compared to the vanilla RNN. The
GRU4Rec approach uses innovatively session-parallel mini-batches to speed
up the training phase and ranking-based loss function. Each time a session at
a certain position in the batch ends, the corresponding hidden state is reset.
Then the next batch update will place a new session at that position. The
process is illustrated in figure 6.2.

The approach uses as a loss function generalized version of Bayesian Per-
sonalized Rating, which is defined in equation 6.3.

Ls(r̂s,i, sN) = − 1
|SN |

·
∑

j∈SN

log(σ(r̂s,i − r̂s,j)) (6.3)

In the loss function 6.3, r̂i is the predicted rating for the actual item i and
SN is a set of negative samples. Functions, such as sigmoid and logarithm are

22

6.4. Recurrent neural network approaches for SBRS

Figure 6.1: Architecture of the GRU4Rec neural network. Source: [19]

Figure 6.2: Illustration of the session-parallel mini-batch scheme of GRU4Rec.
Source: [19]

23

6. Session-based recommender systems

applied to represent the proportion between the ranking of the negative and
the positive example. The goal of the optimizer is set to maximize the loss
function, in other words, to maximize the difference between the predicted
rating for the actual item and the non-actual one.

6.5 Transformer4Rec approach for SBRS

The Transformer architecture was first presented in 2017 as an effective al-
ternative to the RNN-based sequential encoder-decoder network [15]. The
self-attention compared to RNN favors parallel processing and scales well for
long sequences. At first, Transformers have been used mainly in Natural Lan-
guage Processing (NLP) tasks. However, it has also proven to beat RNNs in
sequential recommendation tasks, even when user sessions are shorter than
NLP sequences [21].

One of the latest and influential approaches that uses Transformers in
the field of session-based recommendation systems is Transformers4Rec. The
method was developed by the NVIDIA research team and presented at RecSys
2021 conference [21].

The Transformer4Rec library was designed for large-scale applications.
The library contains modules that form the whole pipeline for a session-based
recommendation task. It includes its data preprocessing library NVTabular
[22] which provides GPU-accelerated preprocessing of terabyte-sized RecSys
datasets. Then it has training and evaluation modules. The Transformer4Rec
supports PyTorch and TensorFlow frameworks. The pipeline overview is il-
lustrated in figure 6.3.

6.5.1 Data preprocessing

Data preprocessing is generally a bottleneck in the session-based recommen-
dation pipeline. It is the focus of the GPU-accelerated NVTabular library
that is co-developed with Transformer4Rec. The data preprocessing library
offers common and advanced feature engineering techniques. In addition, it
includes specialized operations for the sequential and session-based recommen-
dation, such as feature categorizing, grouping time-sorted interactions by user
or session, and truncating sequences to the first or last N interactions. The
preprocessed data are saved to Parquet format. The Transformer4Rec also
requires a JSON-like metadata file that includes columns names, minimum
and maximum values, as well as data types.

6.5.2 Model training and evaluation

Transformer4Rec is based on HuggingFace (HF) Transformers library. HF
Transformers is an open-source library [23] that provides standardized efficient

24

6.5. Transformer4Rec approach for SBRS

Fi
gu

re
6.

3:
Tr

an
sfo

rm
er

s4
R

ec
pi

pe
lin

e
ov

er
vi

ew
.

So
ur

ce
:

[2
1]

25

6. Session-based recommender systems

implementations of recent state-of-the-art Transformer architectures that have
been already pretrained for different NLP tasks.

In the standardized HF Transformers API, a train and evaluation pipeline
is managed by the Trainer class. The class among other methods provides
train(), predict() and evaluate(). The Transformers4Rec library inherits from
the class and overrides only the predict() and evaluate() methods to adjust
them to the recommendation problem, keeping its original train() method, as
it is identical for NLP and sequential recommendation.

In the training, Transformer4Rec uses loss function in form of cross-entropy,
which is defined in the equation 6.4, where I is a set of items, N ∈ {0, 1, ..., |I|},
S ∈ Rn a probability distribution with ∑

si∈S si = 1∧∀si ∈ S : si ̸= 0 and L is
a sum of one-hot encoded item IDs that are recommended. The cross-entropy
loss function is designed in a way that it most of all penalizes confident results
that are not correct. For instance, when the item should be in the recom-
mended set, but the model predicted the probability of 1%, the resulting loss
value of the particular prediction will be 2 (in case of log10). While for the
probability of 30%, the loss function will be approximately 0.53.

D(S, L) = −
∑
i∈N

Li · log(Si) (6.4)

The evaluation of session-based recommendations in Transformer4Rec is
performed using traditional Top-N ranking metrics such as NDCG@N, Re-
call@N, Precision@N, and MAP@N. Greater detail about the metrics in the
following chapter.

The prediction method outputs the probability distribution of items with
dimensions according to the input schema loaded to the model. To be more
precise, the dimensions are configured according to the given minimum and
maximum item ID in the JSON-like schema.

6.5.3 Transformers4Rec meta-architecture

The Transformer4Rec meta-architecture consists of four modules. The illus-
tration of the meta-architecture is shown in figure 6.4.

The first features processing module takes the input and eventually creates
the interaction embedding. The process of producing embeddings consists of
feature normalization and aggregation. In the Transfomer4Rec paper, au-
thors do not describe normalization techniques, but generally the following
techniques are used: min-max normalization(6.5), z-score normalization(6.6),
where x is a vector, µ is a mean value and σ is a standard deviation of the
vector. The aggregation is done by simply concatenating features. However,
more complex methods are also available [21].

The Sequence Masking module masks the sequence of interaction embed-
dings according to the training strategy (e.g., Causal LM [24]) and feeds it to
the Sequence Processing module.

26

6.5. Transformer4Rec approach for SBRS

Figure 6.4: Transformer4Rec neural meta-architecture. Source: [21]

The Sequence Processing module includes stacked Transformer blocks. A
number of blocks and architecture types (e.g. GPT-2, Transformer-XL, XL-
Net, Electra) are configurable. It generates a vector for each sequence location,
which is then projected to produce a sequence embedding.

The last prediction head module might be set up to do different tasks,
including item prediction (for item suggestion) and sequence-level predictions
(classification or regression).

x′ = x − min(x)
max(x) − min(x) (6.5)

x′ = x − µ

σ
(6.6)

6.5.4 Transformer4Rec performance

Transformers had proven to outperform recurrent neural networks in natu-
ral language processing tasks. In a session-based recommendations task, the
session lengths are shorter compared to NLP. For testing purposes, the au-
thors had chosen four datasets: two from e-commerce [25, 26] and two from
news portals [27, 28], with an average length of 5.49, 3.83 interactions for
e-commerce, and 2.84, 2.69 for news. Many users in the news domain surf
anonymously, with only their most recent interactions available. In the e-
commerce platform, aside from the cold-start problem, users are also targeted

27

6. Session-based recommender systems

for a certain item, and the current session delivers more useful information
than past interactions from the user context.

The authors compared different approaches using NDCG@20 and HR@20
(more about the metrics in the following chapter). For comparison, authors
had chosen algorithms based on Session-based k-Nearest Neighbor as baseline
algorithms, such as V-SkNN [29], STAN [30], VSTAN [31]. The GRU4Rec
[19] was taken as a baseline of RNN session-based recommendation. Lastly,
different architectures of Transformer architectures were taken, such as BERT
[32], ELECTRA [33], XLNet [34], and others.

Results show that session k-NN algorithms (V-SkNN, STAN, and VSTAN)
are indeed strong baselines for a session-based recommendation, with higher
HR@20 than some of the Transformer architectures. However, GRU4Rec is
the best baseline for both e-commerce datasets and news datasets in terms
of NDCG@20. Transformer architectures outperform the best baseline ap-
proaches by +14.15% NDCG@20 and +9.75% NDCG@20 e-commerce datasets
than on the news datasets. The authors believe that it is due to the longer
session length in the e-commerce datasets. No particular Transformer archi-
tecture performs best across all datasets. More about the results can be found
in the Transfomer4Rec [21].

28

Chapter 7
Evaluation of recommender

systems

Regardless of the model design, it is necessary to assess how the chosen model
performs. The motivation for the model assessment is simple. In general,
the model assessment is used to answer the following questions. Do the rec-
ommendations ”work”? Do they increase sales? Which algorithm should be
preferred for the application? Which parameter setting is better? This chap-
ter describes methods to answer these questions.

7.1 Offline evaluation

Offline evaluations test the effectiveness of recommender system algorithms
on a certain dataset. The goals of the offline evaluation are model selection
and model assessment. During the model selection phase, the performance of
different models is measured to pick the best one. After a model has been
chosen in the model assessment phase, the error is then estimated on new
unseen dataset.

If enough data is provided, the dataset undergoes splitting into three sep-
arate parts: train, test, and validation. Generally, 50% of the data is used for
training, and 25% of the data is used for validation and testing. The trained
set is used only for model training. The validation dataset is used to evaluate
the model’s performance and for the selection of hyperparameters. Moreover,
the validation dataset is also used for model comparison. When a model has
been selected, the test set is used to make a final estimation of the model
performance.

When a dataset does not have enough data to divide it into three parts,
one way of performing model selection and estimating the test error is k-fold
cross-validation. When using the method, the dataset is divided into k parts
(folds). Then ith split of a dataset is taken as a test, and other parts are used

29

7. Evaluation of recommender systems

for training. The process repeats for i = 1, 2, ..., k. The final estimate of the
test error is calculated as an average of the train errors. The number of folds
is generally varying from five to ten. In some cases, it may even equal the
sample size, which is called leave-one-out cross-validation.

Even though a model might be evaluated on a separate test set, the re-
sults of the offline evaluation should not be held as absolute truth, since the
improvement of a model-based only on offline evaluation does not necessarily
imply that it would perform better online. However, offline assessment should
be used as a first step in deciding whether to examine a candidate model as a
prospective replacement if it outperforms a present one based on multiple of-
fline metrics. The following sections describe the metrics for offline evaluation
of a recommender system.

7.1.1 Predictive accuracy metrics

Predictive accuracy metrics assess how close ratings estimated by a recom-
mender system are to genuine users’ ratings. These measures are used for
non-binary ratings.

7.1.1.1 Mean Absolute Error (MAE)

Mean absolute error is the average difference between the predicted rating by
a recommender system and the actual rating given by the user. Since the
predicted value may be larger or smaller than the value given by a user, an
absolute value of the difference is taken. The measure is defined in equation
7.1, where Yi ∈ RN is a vector of users’ ratings and Ŷi ∈ RN are ratings
generated by a recommendation system. Note that the function is not highly
sensitive to outliers.

MAE = 1
N

N∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (7.1)

7.1.1.2 Mean Squared Error (MSE)

Mean squared error (MSE) is similar to MAE. The difference is, however,
instead of taking absolute error to cancel the negative sign, we square it. The
formula for calculation of MSE is defined in equation 7.2. Note that MSE is
more sensible to outliers compared to MAE.

MSE = 1
N

N∑
i=1

(
Yi − Ŷi

)2
(7.2)

30

7.1. Offline evaluation

Used Not used
Recommended True Positive (TP) False Positive (FP)
Not recommended False Negative (FN) True Negative (TN)

Table 7.1: Classification of the possible result of a recommendation of an item
to a user

7.1.1.3 Root Mean Squared Error (RMSE)

MSE metric results may be hard to interpret because it scales up the errors.
The issue is solved by taking the square root of MSE. The method is called
root mean squared error (RMSE) and is defined in equation 7.3. RMSE dis-
proportionately penalizes large errors, since the residuals are squared. This
means that the metric is more affected by outliers than MAE. Nevertheless,
RMSE has benefits over MAE. In the paper [35], the authors showed that given
enough data, RSME allows for a reconstruction of the error set, whereas MAE
can only accurately recreate 0.8 of the data set. Moreover, RSME does not use
absolute values, making it more mathematically convenient when calculating
gradient, distance, or other metrics.

MSE =

√√√√ 1
N

N∑
i=1

(
Yi − Ŷi

)2
(7.3)

7.1.2 Classification accuracy metrics

Classification metrics are used when the recommender system does not predict
the users’ preferences of items, such as book or movie ratings, but instead tries
to recommend the next items that users may interact with.

When a performance of a recommendation system built for the next item(s)
prediction is been evaluated, the following four outcomes are possible: True
Positive (TP), False Positive (FP), False Negative (FN), and True Negative
(TN), as it is shown in table 7.1.

7.1.2.1 General classification metrics

After computing the classification matrics, the following metrics are generally
used: precision, recall, and f1-score. Precision (defined in equation 7.4) is the
ratio between the True Positives and all the Positives. The precision measures
the relevance of predictions. Recall (defined in equation 7.5) is the measure of
a model correctly identifying True Positives. It gives an insight into a number
of selected relevant items. F1-score (defined in equation 7.6) combines both
precision and recall.

Precision = |TP |
|TP | + |FP |

(7.4)

31

7. Evaluation of recommender systems

Recall = |TP |
|TP | + |FN |

(7.5)

F1-score = 2 ∗ Precision ∗ Recall

Precision + Recall
(7.6)

7.1.2.2 Classification metrics for a recommender system

All of the mentioned above metrics apply generally to a classification task.
The recommendation task though a bit different in the way that the number
of predicted and used items is generally limited to a certain number, e.g. ten
or twenty-five. The number is mainly limited by the number of items that fit
on the page. For that reason, instead of using regular precision and recall,
we use precision@k and recall@k, where @k is k the most relevant items.

7.1.2.3 ROC and AUC for a recommender system

When the number of recommended items is not given, one way of calculating
the optimal threshold of numbers of items is by using a receiver operating
characteristic (ROC) curve. ROC curve measures the difference between True
Positive Rate (TPR) and False Positive Rate (FPR) based on a threshold
value, which in our case is the number of recommended items. Formulas for
calculating TPR and FPR are defined in equations 7.7 and 7.8 respectively.
An example of a ROC curve is shown in figure 7.1.

TPR = TP

TP + FN
(7.7)

FPR = FP

FP + TN
(7.8)

Recommendation systems are generally used in more than one place of a
website. Therefore, the number of recommended items may vary. In that case,
picking the best model may be complicated due to the different performance
of the models based on the number of items. One model may better perform
on a small number of recommendations but worse on a larger number. To
compare these models, we can use the Area Under Curve (AUC). The area is
calculated based on a ROC curve. The value of the AUC varies from 0 to 1,
where 1 means the model can perfectly separate the dataset. In the case of a
recommendation system, it will measure the performance of separating used
and not used items for a different number of suggested items.

7.1.3 Ranking accuracy metrics

Classification metrics do not take into consideration the order of items. That
may not be an issue when the number of recommendations is small, such as

32

7.1. Offline evaluation

Figure 7.1: An example of ROC curves. Source: [36]

three or five. However, when a recommendation list contains more than ten
items, a user may miss suggestions at the end of the list.

7.1.4 Relevance calculation for a recommendation task

To measure the model’s ordering performance, we need to calculate the rel-
evance of a predicted item. The relevance of an item may be defined as an
importance of a predicted item to a user at a certain time. Measuring the
exact relevance of an item is probably not possible since the user may not
even know of the existence more relevant item. However, we can at least
approximate the relevance based on historical data.

The ordering metrics originally come from learning to rank tasks, where an
information retrieval system has a set of documents D = {d1, d2, ..., dN } and
based on a query q the system tries to order documents so that the most rele-
vant ones are at the beginning of the list and the least relevant are at the end
of the list. The ordering is based on the score of a relevance function, which
gives each document a score based on a query. For instance, given a set doc-
uments {“Attention is All you Need”, “Cat”, “Dog”} and a query “attention”
it will give the highest relevance score to ”Attention is All you Need”, since it
contains the word ”Attention”.

Since in a recommendation task, the query is not given, but rather an ID of
a user, one way of calculating the relevance is based on a binary classification
of relevant and irrelevant items. An item that is recommended and used will
have a relevance score of 1, and an item that was recommended and was not
used will have a score of 0.

33

7. Evaluation of recommender systems

7.1.4.1 Normalized Discounted Cumulative Gain

The Normalized Discounted Cumulative Gain (NDCG) is a relation between
a Discounted Cumulative Gain (DCG) of a prediction and Ideal Discounted
Cumulative Gain (IDGC). Given the task of recommending top-k items, DCG
can be calculated as it is shown in equation 7.9, where reli means the relevance
of i-th item. Then calculation of IDCG is defined in equation 7.10, where I(k)
represents the ideal list of items up to position k. Finally, the NDCG is
calculated as it is shown in equation 7.11.

DCGk =
k∑

i=1

reli
log2(i + 1) (7.9)

IDCGk =
|I(k)|∑
i=1

reli
log2(i + 1) (7.10)

NDCGk = DCGk

IDCGk
(7.11)

7.1.4.2 Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) focuses on the position of the first relevant
item in the recommended list. Calculation of reciprocal rank (RR) is shown
in the equation, where iu is the position of the first relevant recommendation
in the recommended list for a user u. Then MRR is calculated as an average
RR for all users, as it is shown in equation 7.13.

The metric, as shown in equations, focuses only on the ordering of the
first item and does not take into consideration for the ordering of other items,
which makes it less informative compared to NDCG.

RR = 1
iu

(7.12)

MRR = 1
|U |

∑
u∈U

1
iu

(7.13)

7.1.4.3 Average Precision

When precision (Precision) gives an insight into the overall classification per-
formance of the model and does not take into consideration ranking, average
precision (AP) does. The formula for calculating AP is shown in equation
7.14.

AP = 1
k

k∑
i=1

reli
i

(7.14)

34

7.1. Offline evaluation

7.1.5 Other methods

The recommendation task is complex and cannot be accurately evaluated
based only on previously mentioned metrics. The metrics do not assess as-
pects such as catalog coverage, novelty, diversity, temporal evaluation, and
others. Yet, these metrics might be ambiguous and require domain knowledge
to interpret them. For instance, one domain may imply high novelty and an
another domain that have low novelty may not necessarily mean poor quality
of a recommendation system.

7.1.5.1 Catalog coverage

Catalog coverage is the ratio of uniquely recommended products to the total
number of products. The formula for calculation is defined in equation 7.15,
where U is a set of all users and Ru is a set of suggested items for user u.

Catalog Coverage = |
⋃

u∈U Ru|
|I|

(7.15)

7.1.5.2 Novelty

The novelty is determined by the uniqueness and innovativeness of the recom-
mendations. Novelty has various definitions in the literature. Baeza-Yates and
Ribiero-Neto [37] define it as it is shown in equation 7.16, where Ru = Ku ∪Su

is a set of recommended items for a user u and Ku, Su are set of known and
unknown items for the user u. The measure also might be calculated as an
average novelty of each recommended item i as defined in equation 7.17 or
7.18, where Ui is the set of users that was recommended item i, U is a set of
all users, and IR is a set of all recommended items.

Novelty = 1
|U |

∑
u∈U

|Ku|
|Ru|

(7.16)

Novelty = − 1
|IR|

∑
i∈IR

log2
|Ui|
|U |

(7.17)

Novelty = 1
|IR|

∑
i∈IR

(1 − |Ui|
|U |

) (7.18)

7.1.5.3 Diversity

Diversity measures how narrow or wide the range of recommended products is.
The recommender system that suggests only the music of one artist might be
considered as narrow. One way of calculating diversity is using the similarity
function of two items. The formula for calculation is defined in equation 7.19,
where U is a set of users and Ru is a recommendation set for a user u.

35

7. Evaluation of recommender systems

Diversity = 1
|U |

∑
u∈U

∑
i,j∈Ru,i ̸=j

sim(i, j) (7.19)

7.1.5.4 Hit Ratio

Hit ratio is a common metric for measuring the prediction performance of a
recommendation system. Given a set of recommendations R̂u for a user u ∈ U
and a set of the used items Ru, the “hit” occurs when the sets have not empty
intersect. Averaged hit measure across all users is called hit ratio, as defined
in equations 7.20 and 7.21.

h(R̂u) =

1 if
∣∣∣R̂u

⋂
Ru

∣∣∣ > 0
0 otherwise

(7.20)

Hit ratio = 1
|U |

∑
u∈U

h(R̂u) (7.21)

7.2 Online evaluation

Online evaluation is different from offline evaluation. The goal of online eval-
uation is to measure the observed satisfaction of the user in real-time rather
than the supposed interaction with a recommended list. Defining the exact
satisfaction measurement is probably not possible. However, online testing is
at least trying to approximate it by using a variety of measures.

7.2.1 Click-through rate

Click-through rate (CTR) measures the number of clicks garnered by the
recommendations. The formula for calculating CTR is shown in equation
7.22.

CTR = number of accepted recommendations
number of recommendations (7.22)

The recommendation is accepted when the target action has occurred, such
as click, comment, purchase, etc. The underlying assumption is that if more
people click on the recommended items, the suggestions are more relevant to
them. That may not be the case when the user sees only recommendations or
when recommended items take up most of the space on the website. In that
case, the user does not have a choice and clicks only on recommended items,
resulting in high CTR.

36

7.2. Online evaluation

7.2.2 Temporal diversity

Temporal diversity assesses the ability of a recommendation system to change
over time. A model that always generates the same item suggestions may not
be welcomed by a user. In many domains, users expect a recommendation
system to produce new recommendations. To measure the temporal changing
performance, the recommender system needs to generate multiple recommen-
dation lists over different time periods. One way of calculating the metric is
defined in equation 7.23, where Rt,u is a list of N recommended items to a
user u at time t and k is a number of time intervals.

Temporal diversity =
∑
u∈U

∣∣∣{⋃k
t=0 Rt,u}

∣∣∣
k · N

(7.23)

7.2.3 Adoption and conversion rates

While the CTR can detect user attentiveness or interest, it cannot tell if
users genuinely liked the recommended item they clicked. Therefore, different
adoption metrics should be utilized to further assess the recommendations’
efficiency.

Adoption mechanisms are domain-specific. It should be developed by a
domain expert. The adoption mechanisms may include dwell time (time a user
spends on an article or result after initially clicking it), scrolling time, user
activity on an item, such as commenting, adding feedback. Generally, systems
combine the mentioned mechanisms. For instance, in a news portal, these
metrics may include dwelling time and scrolling. Relying only on dwelling
time will lead to incorrect relevance measures, since a user may open a tab,
and then switch to another tab and not come back.

7.2.4 Sales and Revenue

Another way of online evaluation may include the growth (or shrinking) of
sales and revenue. However, the indicator is highly correlated with other
factors that affect sales and revenue, and it is challenging to differentiate
between them. Moreover, if the recommended items are rarely used by users,
then improvements in the performance of the recommendation model will not
affect sales or revenue.

7.2.5 Sales distribution

The recommender system may affect the distribution of items that have un-
dergone a certain action, such as a click or purchase in both ways: positively
and negatively. A study [38] revealed that the introduction of a recommender
system for premium cigars led to a significant shift in consumers’ purchas-
ing behavior. The individualized recommendations, in particular, resulted in

37

7. Evaluation of recommender systems

increased purchases in the long tail, and the sales spectrum was no longer
dominated by a few best-sellers. However, as shown in study [39], recommen-
dation systems, in particular collaborative filtering, may ultimately help to
boost sales of already popular items.

7.2.6 User behaviour and engagement

Introducing a recommender system may affect user behavior and engagement,
in particular it may increase user retention, which is often directly connected
with business value [40].

In the news domain, for instance, study [41] observed longer sessions when
a recommender was in place. In particular, authors reported that the visit
lengths were 2.5 times higher when recommendations were shown on the page.

In the music streaming domain, in study [42], authors compared different
recommendation strategies and found that a recommendation strategy that
combined user behaviors and content data led to a 50% increase in activity
level in terms of playlist additions.

7.2.7 A/B testing

A/B testing (also known as split testing or bucket testing) in machine learning
is a method of comparing models against each other to determine which one
performs better. During the testing, traffic is generally split equally to measure
the performance of the individual models. The measuring is mostly conducted
using CTR rate with adoption mechanisms.

To gather reasonable results, A/B testing should be conducted over a
period of time on a sufficiently large number of users. The testing cannot be
carried out only during one day since statistical noise may be too high.

Another issue with the testing is distributing the traffic evenly. The traffic
cannot be split based on location or a certain period since it may lead to
biased results. During the testing, the distribution should be random and all
of the splits need to be tested at the same time.

38

Chapter 8
Analysis and design

This chapter is devoted to the implementation and evaluation of different
recommender systems. It consists of three parts. The first part starts with
dataset description and preprocessing, then defines evaluation metrics for the
dataset. The second part describes various implementations and their per-
formance. The last part compares the implementations and selects the most
suitable model for the Data Dictionary domain.

8.0.1 Dataset description

The dataset contains about two years of user behavioral data and the set of
all items, including items without any interaction. The dataset came from
a data dictionary application used by a client in the financial sector. Users
of the applications are employees of the financial institution. The users can
be categorized into three groups: data producers, data developers, and data
consumers. Producers include IT engineers, architects, and developers, who
design, implement and optimize systems. Data developers are a group of
different analytics, such as data, BI, IT analytics, data scientists, etc. The
last group of data consumers includes specialists or managers who consume
analytical outputs and insights. The system is generally used by the first two
groups and only occasionally by the group of data consumers.

The set of items includes the model, table, and view data. The user
behavior dataset contains column interaction information, but the column
data is not provided. However, based on user behavior data, it is possible to
find the tables and models which the columns belong to.

The provided interaction set consists of two action types: clicked and
searched items. It also contains a timestamp that indicates time when the
action happened. Furthermore, based on parentness information, it is possible
to generate more action types, such as indirect clicks. More about that in the
preprocessing section.

39

8. Analysis and design

Figure 8.1: Number of interactions per user ID

8.0.1.1 Dataset statistics

The number of unique users who used the application is 933, with an average
number of interactions of 253.5 and median 42. Users have their unique ID
assigned that had not changed through the period. Based on the mean number
of interactions, the dataset contains 232 active users (users that had more than
the average number of interactions). The number of interactions per user ID
is shown in figure 8.1.

The dataset of items contains 172974 entities. The number of visited items
is 25579, which is about 14.8% of the total number. More than 95% of the
items have description information, which may be useful in finding similarities
between objects. The average number of interactions per item is 9.86, and
median is 3. The number of items that have more than the average number of
interactions is 4304, which is more than 16.8% of the total number of visited
items. Number of interaction per item ID is shown in figure 8.2.

The total number of interactions is 233427. More than 11% of that number
are search interactions that were recorded when a user typed a keyword in a
search engine, selected an item, and clicked on it. Others are interactions that
were recorded when a user clicked on an item. An overview of the monthly
usage of the application is shown in the figure 8.3.

40

Figure 8.2: Number of interactions per item ID

Figure 8.3: An overview of the monthly usage of the application

41

8. Analysis and design

Attr Name Attr Type Is Nullable Example
Action Type Id Int NO 1
Object Type Id Int NO 2
Model Code String NO CRM
Object Code String YES Customer
Sub Object Code String YES Customer Id
Accessed Date Datetime NO 2022-01-25 10:19:27
User Id Int NO 42

Table 8.1: The columns of the interaction dataset

8.0.2 The metadata structure of given dataset

The interaction dataset consists of seven columns: Action Type Id, Object Type Id,
Model Code, Object Code, Sub Object Code, and Acessed Date. Action Type Id,
User Id is the type of the interaction, such as searched or clicked. Ob-
ject Type Id is a value from a range of four, where values from one to four
refer to the model, table, view, and column correspondingly. Model Code is
a code of the item’s model. Note that the item may be a model itself, i.e.
a user accessed the model item. Object Code is a code of the table or view.
Sub Object Code is a code of a column. It was filled when a user accessed a col-
umn. Acessed Date is time when the interaction has occurred. Lastly, User Id
is an ID of a user who created the interaction. Other metadata information
about the set is shown in table 8.1.

The item dataset consists of four columns: Object Type Id, Model Code,
Object Code, Comment. The first three columns are the same as in the in-
teraction dataset, but Object Type Id contains only values corresponding to
the model, table, and view, meaning the column information in the dataset
is missing. The only column that differs the dataset from the interaction
dataset is Comment. The column shortly describes the meaning of the item.
It is common to comment on all of the existing items in the system since the
items may not always have a clear meaning. For instance, the abbreviation
CRM may refer to Customer Relationship Management or Client Relationship
Management. More information about the item dataset is shown in table 8.2.

8.0.3 Defining goals for a recommender system

As was mentioned in chapter 3, the developers of the data dictionary applica-
tion are intended to integrate a recommendation system. The recommendation
system will used to predict next visited item, which may be are a model, a
table, or a view. Note that columns are not in the list. The number of rec-
ommended items may vary from three up to twenty-five, where twenty-five is
the number of items that generally fit on a display.

42

Attribute Name Attribute Type Is Nullable Example
Object Type Id Int NO 2
Model Code String NO CRM
Object Code String YES Customer

Comment String YES

The main
table for
storing
customer
information

Table 8.2: The columns of the items dataset

Since the user interaction dataset includes up to nineteen months of histor-
ical activity for each user, the recommender system should capture long-term
patterns in the user’s taste. On the other hand, a user’s interests may change
over time, and the recommendation system also should be able to adapt to it.

8.0.4 Defining evaluation metrics

The evaluation strategies will include only offline evaluation since online eval-
uation demands conducting it over a long period, such as months. During the
offline evaluation, the author of the thesis focuses on classification, ranking,
and other metrics that are specific to the recommendation task.

The classification metrics will focus on recall rather than precision because,
for the task, the number of not recommended but used items (false negatives)
matters more than the number of recommended but not used (false positives).
The ROC metric will be used to find an optimal number of recommended items
and AUC for comparing the models.

The ranking performance of the models will be evaluated using NDCG.
The ability of a recommender system to correctly rank the suggested results
becomes more critical when the number of recommended items increases since
a user may not even notice the relevant items at the end of a suggested list.

The metrics that are specific to the item recommendation task will include
novelty and catalog to give an insight into the personalization performance and
overall item coverage. In addition, the performance of a recommender system
will be also measured by the hit ratio, because the measure is commonly used
in recommender system evaluation.

8.0.5 Data preprocessing

Before designing and building the models, each model needs to be prepro-
cessed. Different models will require special preprocessing. Still, the given
dataset might be preprocessed generally to remove unwanted rows that were
occasionally added to the dataset, to separate items and interaction datasets,

43

8. Analysis and design

Attr Name Attr Type Is Nullable Example
Item Id Int NO 17
Object Type Id Int NO 2

Name String NO CRM
Customer

Comment String YES

The main
table for
storing
customer
information

Table 8.3: The columns of the items dataset after the preprocessing

to remove tags from text attributes, etc. The following process will include
item and interactions preprocessing.

8.0.5.1 Item dataset preprocessing

Since the interaction set has some missing item information, the item set was
enhanced by the missing data from the interaction dataset. Then the model
code and the object code were joined to form the object name. Afterwards
Item Id was generated based on a row number. Finally, from the Comment
column the HTML tags were removed. The metadata structure of the item
dataset after the preprocessing is shown in table 8.3.

8.0.5.2 Interaction dataset preprocessing

Since the interaction dataset contains a model, object, and subobject code, it
is possible to generate additional transaction types, which may be useful in
collaborative filtering or a content-based model. Based on parentness informa-
tion, the author created two additional interaction types: indirect second-level
and third-level access. The interactions with second-level access are generated
based on interactions that contained a column, a table, or a view. For column
interactions, additional interaction with its parent (a view or a table) is cre-
ated. When interaction occurred with a view or a table, it will generate an
auxiliary interaction with its model. The interactions with third-level access
are generated only for column interactions. When a column is accessed, the
auxiliary third-level access interaction with its model is created.

After the auxiliary interaction types were generated, Item Id was created
based on joined values of Model Code and Object Code and an item dataset.
Lastly, the column Sub Object Code was dropped since it will not be used in
recommender systems and Interaction Id was added. The metadata structure
after the preprocessing is shown in table 8.4.

44

Attr Name Attr Type Is Nullable Example
Interaction Id Int NO 12
User Id Int NO 42
Item Id Int NO 17
Action Type Id Int NO 1
Accessed Date Datetime NO 2022-01-25 10:19:27

Table 8.4: The columns of the interaction dataset after the preprocessing

8.0.5.3 The dataset split

Once the preprocessing was finished, the train, validation, and test datasets
were created based on the interaction dataset with searched and clicked items
(artificially created interactions will only be used while training). For the
split, the author had chosen Leave Only Last Item strategy. As the name
suggests, it extracts the last part of user transactions to the test set and the
second last part to the validation set. Since the number of predicted items
will be up to twenty-five, the size of the parts will be equal to that number.

The used split strategy has a downside of potential feature leaking since the
interactions are not strictly split by time. For instance, the model may learn
the popularity of an item before it becomes popular. However, the strategy
maximizes the number of interactions that can be used for training.

The created validation and test sets have 9625 interactions, and the train-
ing dataset has 450502 interactions. It may seem that about 2% of the total
number of interactions were taken for test and validation datasets each. How-
ever, the validation and test datasets include about 41.2% of the total number
of unique users each. In other words, the training dataset contains historical
transactions of 933 users. Whereas the test and the validation dataset contain
the last twenty-five transactions of 385 users.

8.0.6 Baseline models

In this section, the author describes the implementations and evaluation re-
sults of two baseline models. The baseline models serve as a benchmark against
other more complex approaches that will be described later.

8.0.6.1 Baseline model 1

The first baseline model is based on item usage frequency across all the users.
The model always returns the same set of recommended items for all users.
The algorithm is shown in listing 8.1. In the listing k is a number of predic-
tions, df interactions is a pandas [43] dataframe of all interactions, Counter
[44] is a class that for each element counts its frequency. In addition, this class

45

8. Analysis and design

0 5 10 15 20 25
N

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

Ca
ta
lo
g
Co

ve
ra
ge

0 5 10 15 20 25
N

−0.04

−0.02

0.00

0.02

0.04

No
ve

lty

0 5 10 15 20 25
N

0.024

0.026

0.028

0.030

0.032

0.034

0.036

Re
ca
ll

0 5 10 15 20 25
N

0.0

0.1

0.2

0.3

0.4

0.5

Hi
t R

at
io

0 5 10 15 20 25
N

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

ND
CG

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
FPR

0.024

0.026

0.028

0.030

0.032

0.034

0.036

TP
R

Figure 8.4: The evaluation results of the Baseline model 1

has method most common() that returns items sorted by their frequency from
the highest to the lowest.

Code Listing 8.1: The prediction function of the Baseline model 1
1 from collections import Counter
2
3 def get_predictions (df_interactions , k):
4 most_common = Counter (df_interactions [’Item_Id ’]). most_common ()
5 return most_common [:k]

The evaluation results tested on the validation set are shown in figure
8.4. The average recall is about 3.2%, and the NDCG score is nearly 3.1%.
These results can be considered decent. However, novelty results and temporal
changes over time in the method are close to zero.

8.0.6.2 Baseline model 2

The second baseline model is similar to the first one. The only difference is
that it gives more personalized recommendations. The prediction function,

46

0 5 10 15 20 25
N

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ca
ta
lo
g
Co

ve
ra
ge

0 5 10 15 20 25
N

0.987

0.988

0.989

0.990

0.991

No
ve

lty

0 5 10 15 20 25
N

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
ca
ll

0 5 10 15 20 25
N

0.2

0.4

0.6

0.8

Hi
t R

at
io

0 5 10 15 20 25
N

0.06

0.07

0.08

0.09

0.10

0.11

ND
CG

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
FPR

0.06

0.08

0.10

0.12

0.14

0.16

0.18

TP
R

Figure 8.5: The evaluation results of the Baseline model 2

which is defined in listing 8.2, instead of returning top-k the most frequent
items across all users, returns k the most frequent user items.

Code Listing 8.2: The prediction function of the Baseline model 2
1 from collections import Counter
2
3 def get_predictions (user_id , df_interactions , k):
4 df_user = df_interactions [df_interactions [’User_Id ’]== user_id]
5 user_item_ids = df_user [’Item_Id ’]
6 most_common = Counter (user_item_ids). most_common ()
7 return most_common [:k]

The performance of the second model on the validation set is shown in
figure 8.5. The model has a strong performance of an average of about 15%.
The average value of NDCG across all k is about 9.6%. The baseline model
has a hit ratio of more than 94% at k = 25 on the validation set. Since the
recommendations are generated for each user based on the most frequent user
items, the model has a strong novelty score too. The only issue with the
model is that it will not be able to keep up with changes in user preferences
in real-time.

47

8. Analysis and design

The author also measured the results of the same algorithm but without
additionally generated user interactions (the process of the generation was
described in the preprocessing section). The average recall went down by
about 1% and other metrics were almost the same.

8.0.7 Content based model

Since the item dataset was provided, it is possible to build a content-based
recommendation system. The clear benefit of the CB model is that generated
results of the approach are not biased towards the most popular items and it
is able to satisfy unique user interests. On the other hand, as it will be shown
in the evaluation section, biased results do not necessarily signify poor quality
of a recommender system.

8.0.7.1 Building item profiles

Item profiles were generated using a trained model from the Sentence-BERT
framework [45]. The framework contains state-of-art models for generat-
ing sentence, text, and image embeddings. In particular, the paraphrase-
multilingual-mpnet-base-v2 and all-mpnet-base-v2 were used, both of them
have one of the best performances. The first model was trained on sentences
in more than 50+ languages, including English and Czech. The second model
was trained solely on English sentences and has a bit stronger performance
compared to the first one on English sentences.

The reason why multi-lingual was chosen is that the Comment column
has descriptions in English and Czech. The multi-lingual model in theory
should have better performance for the given dataset (disclaimer: it will not)
because embeddings of similar sentences in different languages should have
high similarity. For instance, given the sentence “That is a happy person”
and the following sentences “To je št’astný člověk”, “That is a very happy
person”, and “Today is a sunny day”, the output embeddings will have cosine
similarities of 88.9%, 98.2%, and 45.1% correspondingly. Whereas the second
model will output cosine similarities of 6%, 96.7%, and 31.5% correspondingly.

The output dimensions of the generated embeddings are 768 dimensional
dense vector. The maximum possible number of words in the input is 384,
longer sentences are truncated automatically. However, it is not an issue with
the provided dataset since the maximum number for the words Name and
Comment columns is 191.

8.0.7.2 Building user profiles

The first step in building users’ profiles is rating generation. The process
of rating generation is defined in listing 8.3. After ratings and item vectors
embeddings are generated, user profiles are calculated. The process of the
calculation is defined in listing 8.4, where embeddings by id is a dictionary of

48

item embeddings grouped by item id, user ratings is a dictionary of item id
and rating pairs. In the listing the author used dot function from CuPy [46]
library, which is GPU-accelerated analog of NumPy [47]. Thanks to that
library, the user profile calculation took only 3 seconds on Tesla P100-PCIE-
16GB GPU.

Code Listing 8.3: The process of rating generation
1 def calc_user_ratings (df_user_iteractions):
2 ratings = {}
3 for idx , row in df_user_interactions . itterrows ():
4 if row[’Item_Id ’] in ratings :
5 ratings [row[’Item_Id ’]] += 1/ row[’Access_Level_Type_Id ’]
6 else:
7 ratings [row[’Item_Id ’]] = 1/ row[’Access_Level_Type_Id ’]
8
9 # min -max normalization

10 min_v = get_min_rating_value (ratings)
11 max_v = get_max_rating_value (ratings)
12 res = dict ((k, ((v-min_v)/diff)) for k,v in ratings .items ())
13 return res

Code Listing 8.4: The user profiles generation
1 import cupy as cp
2 from cupy import array as arr
3
4 def calc_user_embedding (user_ratings , embeddings_by_id):
5 ratings_vec = arr ([rating for rating in user_ratings . values ()])
6 embeddings_vec = arr ([embeddings_by_id [item_id] \
7 for item_id in user_ratings .keys ()])
8 res = cp.dot(ratings_vec , embeddings_vec)
9 return res

8.0.7.3 Prediction

The item prediction was implemented using cosine-similarity. To speed up
the process, instead of calculating the similarity between each item and a user
vector, CuPy dot product was used. After a similarity vector was calculated,
the vector was sorted using CuPy agrsort() function. Thanks to that, the
average time of getting top-k predictions was about 7.5 seconds for 385 users
using the same GPU, as it was described earlier.

8.0.7.4 Evaluation

The model shows better performance on a validation set compared to the first
baseline model. However, it has a weaker performance compared to the second
baseline. The evaluation results are shown in figure 8.6. The average recall
and NDCG across all k from 1 to 25 are about 4.8% and 4.4% correspondingly.

49

8. Analysis and design

0 5 10 15 20 25
N

0.002

0.004

0.006

0.008

0.010

Ca
ta
lo
g
Co

ve
ra
ge

0 5 10 15 20 25
N

0.987

0.988

0.989

0.990

No
ve

lty

0 5 10 15 20 25
N

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

Re
ca
ll

0 5 10 15 20 25
N

0.1

0.2

0.3

0.4

0.5

Hi
t R

at
io

0 5 10 15 20 25
N

0.040

0.045

0.050

0.055

0.060

ND
CG

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
FPR

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

TP
R

Figure 8.6: The evaluation results of the content-based model

As it was mentioned above, two approaches were tested for item embed-
ding generation. Even though the Comment column has values in Czech and
English, the multi-lingual approach had a slightly weaker performance. In
particular, it had about 18% decrease in the NDCG and 9.5% decrease in
recall.

Even though the model has weaker performance than the second baseline,
it should better adapt to changes in user interests. Nonetheless, this is only a
hypothesis, which may be proven or disconfirmed during online testing.

8.0.8 Collaborative filtering based model

Despite having a set of visited and searched items, it is still possible to build
a collaborative filtering model based on matrix factorization. The process of
building starts with implicit rating generation. Then the author used Ten-
sorflow [48] for creating the user and item latent spaces. For training adam
[20] optimizer was used with the standard learning rate of 0.001. RMSE was
chosen as a loss function. Additionally, early stopping was added to prevent
overfitting.

50

8.0.8.1 Ratings generations

In the CF approach three methods for rating generation were used. The first
one is the same as it was described in the CB model. The second method al-
tered the coefficients for different action types. The second method is shown in
listing 8.5, where keys of 1, 2, 3, 4 in coeff map correspond to searched, clicked,
indirectly clicked, twice indirectly clicked accordingly. In the last method, the
author additionally added aging. The interaction aging was calculated as a
difference between the latest date and the interaction date in months. De-
spite making the ratings more dynamic and time relevant, the second method
showed slightly better results than the first and last one. The aging did not
improve the results, because in the domain of the data dictionary the change
in users’ interests is probably not rapid. Hence, the model that returns more
popular items lands up with better performance.

Code Listing 8.5: The process of rating generation
1 def calc_user_ratings (df_user_iteractions):
2 ratings = {}
3 coeff_map = {1:1 ,2:3 ,3:10 ,4:100}
4
5 for idx , row in df_user_interactions . itterrows ():
6 if row[’Item_Id ’] in ratings :
7 ratings [row[’Item_Id ’]] += 1/ coeff_map [row[’

Access_Level_Type_Id ’]]
8 else:
9 ratings [row[’Item_Id ’]] = 1/ coeff_map [row[’

Access_Level_Type_Id ’]]
10
11 # min -max normalization
12 min_v = get_min_rating_value (ratings)
13 max_v = get_max_rating_value (ratings)
14 res = dict ((k, ((v-min_v)/diff)) for k,v in ratings .items ())
15 return res

8.0.8.2 Finding the optimal latent size

The matrix factorization has a hyperparameter d ∈ N that determines the
size of the user Uemb ⊂ Rn,d and item Iemb ⊂ Rm,d embedding matrices, where
|U | = n and |I| = m. These matrices are multiplicated, that creates the
approximation of a rating matrix R̂ ⊂ Rn,m.

To find an optimal value of d, the model was trained with different values
of d in a range from 20 to 2000. After each training the model was evaluated
for N ∈ {1, 2, ..., 25}. For each metric the author calculated an average of its
values across different N . The results are shown in figure 8.7. The best scores
of recall, NDCG, and the hit ratio were for d = 250. After the value, the total
performance went down.

51

8. Analysis and design

0 250 500 750 1000 1250 1500 1750 2000
d

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

M
ea

n
Ca

ta
lo
g
Co

ve
ra
ge

0 250 500 750 1000 1250 1500 1750 2000
d

0.965

0.970

0.975

0.980

0.985

0.990

M
ea

n
No

ve
lty

0 250 500 750 1000 1250 1500 1750 2000
d

0.045

0.050

0.055

0.060

0.065

0.070

M
ea

n
Re

ca
ll

0 250 500 750 1000 1250 1500 1750 2000
d

0.40

0.42

0.44

0.46

0.48

M
ea

n
Hi
t R

at
io

0 250 500 750 1000 1250 1500 1750 2000
d

0.035

0.040

0.045

0.050

0.055

0.060

M
ea

n
ND

CG

Figure 8.7: The performance of CF model for different d

8.0.8.3 Evaluation

The evaluation of the CF model with d = 250 on a validation set is shown in
figure 8.8. The overall evaluated model performance is better compared to the
CB model. In particular, the average values of recall, NDCG, and hit ratio
are increased by 140%, 169%, and 168% accordingly. However, the second
baseline model is still ahead, especially in terms of recall.

8.0.9 Session based model

Another way of looking at the recommendation problem is the session-based
recommendation approach that had became widespread in the last few years.
In this section, the author of the thesis, in the context of a session-based
recommender system for the data dictionary application, outlines different
methods for session formation, building models using the Transformer4Rec
library, and the evaluation of the models.

52

0 5 10 15 20 25
N

0.002

0.004

0.006

0.008

Ca
ta
lo
g
Co

ve
ra
ge

0 5 10 15 20 25
N

0.984

0.985

0.986

0.987

0.988

0.989

No
ve

lty

0 5 10 15 20 25
N

0.060

0.065

0.070

0.075

0.080

0.085

Re
ca
ll

0 5 10 15 20 25
N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hi
t R

at
io

0 5 10 15 20 25
N

0.055

0.060

0.065

0.070

0.075

ND
CG

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
FPR

0.060

0.065

0.070

0.075

0.080

0.085

TP
R

Figure 8.8: The evaluation results of the CF model

8.0.9.1 Session formation

The first step in building the session-based recommender system is session cre-
ation. In e-commerce domains that allow anonymous interactions (purchases,
clicks, etc.), the process of session formation is straightforward. When the
user opens a page, e.g. in a private window, he gets assigned to a unique
identification. Then all of the user interactions might be associated with the
ID. After he/she closes the page, the system is no longer able to track the
user.

Since in the data dictionary application all of the users are associated with
a unique User Id and the whole history of the user’s interactions is stored,
there is a variety of options for creating sessions. In the thesis, three different
approaches were used.

The first approach was to split user interactions based on a user ID and
a day of creation. In addition, if the number of interactions exceeds the
maximum number, a new session was created. The Transformer4Rec library
requires to define a maximum number of interactions. By default, sessions
longer than that number are truncated. Instead of truncating, new sessions

53

8. Analysis and design

were generated.
Sessions that were formed based on a user ID and a day of creation are

short, with a median length of 4 interactions. To increase the number of
interactions in sessions, in the second approach, sessions were generated based
on a user ID and a month of creation. In the approach, the median session
length had increased to 17 interactions per session. These numbers had not
changed even when the maximum session length had been altered to different
values.

The last approach was to equally split the interactions set into an array
of sessions based solely on a user ID with a variable limited maximum session
length. The method is more flexible since it allows to configure the number
of interactions in sessions. When the approach is used, the median session
length is primarily dependent on the limit with the maximum median number
of approximately 90 interactions per session.

Since the third approach allows for a richer configuration of the session
length, the third approach was chosen to find an optimal maximum input
session length.

8.0.9.2 Session length optimization

The evaluation of different session lengths revealed that the model performs
better on longer sessions. However, that does not mean that the model cannot
make a prediction in short sessions. In fact, it was configured and trained
to make predictions based on two and more interactions. The author tried
different session lengths from 30 to 200. The larger number was not tested
since the model performance started to weaken after the length of 120. The
results are shown in figure 8.9. The best performance was achieved when the
session length was equal to 120.

8.0.9.3 Architecture overview

As it was mentioned above, the Transformer4Rec library allows using different
transformer architectures, such as XLNet [34], GPT-2 [49], or RNN architec-
tures like LSTM [50] or GRU [51]. In the thesis, the author focused on XLNet
transformer architecture. The architecture has more than 10 hyperparame-
ters. The main focus was on the following hyperparameters: dimensionality
of the encoder layers and the pooler layer, number of hidden layers in the
Transformer encoder, number of attention heads for each attention layer in
the Transformer encoder, and the maximum session length. Other hyperpa-
rameters had not been changed and default values were used.

The optimization was conducted manually. Each parameter was optimized
separately. After that, several candidates were picked based on knowledge of
the meaning of the hyperparameters and evaluation results. These candidates
were trained and evaluated. Finally, the best one was selected.

54

30 50 70 90 120 150 200
Max Session Length

0.6

0.7

0.8

0.9

No
ve

lty

30 50 70 90 120 150 200
Max Session Length

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Re
ca
ll

30 50 70 90 120 150 200
Max Session Length

0.15

0.20

0.25

0.30

0.35

Hi
t R

at
io

30 50 70 90 120 150 200
Max Session Length

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ND
CG

Figure 8.9: The performance of SB model for different session lengths

The optimization of the mentioned parameters revealed that more com-
plex models require more training epochs. Otherwise, the models recommend
the same items to all users. However, each model had a limit when the perfor-
mance started to degrade after increasing the number of epochs. The optimal
number of epochs for the simplest models was five. More complex models re-
quired approximately ten epochs. The most complex models had an optimal
value of around fifteen epochs.

The best results were achieved with the model that had two hidden layers,
two attention heads for each attention layer, and the dimensionality of the
encoder layers and the pooler layer of sixty-four.

8.0.9.4 Prediction process

Since one user may have multiple sessions in a dataset, the system always
fetches the user’s last session. After that, it feeds the session to the trained
model and gets predictions for each item. The k items with the highest prob-
abilities are taken and shown to the users as recommended. The output list
that is displayed to the user is sorted by the probability value from the highest
to the lowest.

8.0.9.5 Evaluation results

During the preprocessing that was described above, the searched and clicked
behaviors were split into the train, validation, and test datasets. Sessions were
formed using the training dataset. While evaluating, the predicted items that

55

8. Analysis and design

0 5 10 15 20 25
N

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

Ca
ta
lo
g
Co

ve
ra
ge

0 5 10 15 20 25
N

0.45

0.50

0.55

0.60

0.65

0.70

No
ve

lty

0 5 10 15 20 25
N

0.025

0.030

0.035

0.040

0.045

0.050

Re
ca
ll

0 5 10 15 20 25
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hi
t R

at
io

0 5 10 15 20 25
N

0.025

0.030

0.035

0.040

0.045

ND
CG

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
FPR

0.025

0.030

0.035

0.040

0.045

0.050

TP
R

Figure 8.10: The evaluation results of the sesion-based model

were generated based on the last session in the training dataset were compared
to the ones in the validation set.

The evaluation of the session-based model on the validation set is shown
in figure 8.10. The session-based model has poorer performance compared to
the CF model. It has about 39%, 30.6%, 41.81%, 38, 5% less performance of
recall, hit-ratio, novelty, and NDCG accordingly compared to the CF model.

8.0.10 Model comparison

In this chapter, five models were implemented and evaluated: two baseline
models, a content-based model, a collaborative filtering model based on matrix
factorization, and a session-based model. The evaluation results of the models
are shown in table 8.5. The results shown in the table were calculated in the
following way: firstly values of different metrics for k ∈ {1, 2, ..., 25} were
calculated, where k is the number of recommended items, and then for each
metric an average of the values across different k was taken, which then was
filled to the table 8.5. Additionally, the AUC value was calculated for the
different number of recommended items.

56

Baseline 1 Baseline 2 CB CF SB
Cat. Cover. 0.00008 0.00847 0.01184 0.00542 0.00017
Novelty 0 0.99059 0.99397 0.98682 0.57385
Recall 0.03205 0.15099 0.04893 0.06753 0.04126
Hit Ratio 0.29776 0.66068 0.29049 0.48581 0.33714
NDCG 0.03182 0.09574 0.03544 0.06035 0.03695
AUC 4.3e-6 1.8e-5 6.2e-6 9.1e-6 5.5e-6

Table 8.5: The evaluation results of implemented models

0 5 10 15 20 25
N

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ca
ta
lo
g
Co

ve
ra
ge

0 5 10 15 20 25
N

0.987

0.988

0.989

0.990

0.991

No
ve

lty

0 5 10 15 20 25
N

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
ca
ll

0 5 10 15 20 25
N

0.2

0.4

0.6

0.8

Hi
t R

at
io

0 5 10 15 20 25
N

0.06

0.07

0.08

0.09

0.10

0.11

ND
CG

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
FPR

0.06

0.08

0.10

0.12

0.14

0.16

0.18

TP
R

Figure 8.11: The evaluation results of the second baseline model on the test
set

The highest scores of recall, NDCG, hit ratio, and AUC evaluated on the
validation set has the second baseline model, which gives the recommendations
for each user based on the user‘s top-k most interacted items. The model
also has a high score in catalog coverage and novelty. Other models are far
behind, especially in terms of recall. The model showed approximately similar
performance on the test set, which is shown in figure 8.11.

57

Chapter 9
Conclusion

The work aimed to develop a recommendation tool for the Data Dictionary
application. To achieve that goal, firstly the author of the thesis got familiar
with the Data Dictionary application, its use cases and defined the goals of
a recommendation system for the application. Then author researched tradi-
tional recommendation approaches, such as content-based and collaborative
filtering, and also modern session-based approaches. Afterwards, the author
defined evaluation metrics of a recommendation system for the data dictio-
nary application. The following metrics were chosen: recall@k, NDCG@k, hit
ratio @k, novelty@k, and catalog coverage @k, where k ∈ {1, 2, ..., 25}. In par-
ticular, models were compared using an average value of the metrics since the
application will use a different number of recommended items in the range of
one up to twenty-five.

Originally the specification for the recommender system was that it should
recommend items based on item similarities. To fulfill that requirement, the
author of the thesis implemented the content-based (CB) model. In addition,
the author implemented two baseline models: one of which (B1) suggests the
most popular items and another (B2) returns items that the user interacted
with the most, the collaborative filtering (CF) model based on matrix factor-
ization, and the session-based (SB) model based on Transformers.

The offline evaluation of these models showed that the content-based model
might not be the best choice for the dataset (and domain). Since the users
of the data dictionary application do not expect the model to always give
new suggestions, the baseline model that gives recommendations based on
users’ most visited and searched items might be the right choice. Despite
the simplicity of the approach, the model showed the strongest performance
compared to other implemented models in offline testing. In particular, the
model had the highest recall, NCDG, and hit ratio and one of the highest
values of catalog coverage and novelty. The collaborative filtering-based model
had the second best value of the recall, NDCG, and hit-ratio. The CB and
SB approaches performed a bit weaker on the validation set.

59

9. Conclusion

Every model has its own advantages and disadvantages. The B2 model in
the offline testing showed the strongest ranking and classification performance.
It is computationally inexpensive and straightforward in terms of implementa-
tion. However, the model may be the slowest in adjusting to changes in users’
interests compared to other models. If there is no need to quickly adjust to
changes in users’ interests, the author’s suggestion is to use the baseline model.
Otherwise, the other models, such as the CF, CB, or SB, should be used.

Whichever model from the proposed ones is selected, the author of the
thesis believes that the model will improve the application and make locating
relevant data simpler.

60

Biblioraphy

1. IYENGAR, Sheena S.; LEPPER, Mark R. When Choice is Demotivating:
Can One Desire Too Much of a Good Thing? Journal of personality
and social psychology. 2001, vol. 79, pp. 995–1006. Available from doi:
10.1037/0022-3514.79.6.995.

2. IBM. IBM Dictionary of Computing. 1st ed. McGraw-Hill, Inc.Professional
Book Group 11 West 19th Street New York, NYUnited States, [n.d.]. isbn
978-0-07-031488-7.

3. Lucidchart. What is a database schema [online] [visited on 2022-03-10].
Available from: https : / / www . lucidchart . com / pages / database -
diagram/database-schema.

4. DHARMENDRA SINGH RAJPUT, Ramjeevan Singh Thakur; BASHA,
S. Muzamil. Sentiment Analysis and Knowledge Discovery in Contempo-
rary Business. 1st ed. IGI Global, [n.d.]. isbn 9781522549994.

5. Elasticsearch. Free and Open Search: The Creators of Elastic, ELK url
Kibana — Elastic [online] [visited on 2022-03-10]. Available from: https:
//www.search.elastic.co/.

6. TensorFlow Core. word2vec — TensorFlow Core [online] [visited on 2022-
03-10]. Available from: https://www.tensorflow.org/tutorials/
text/word2vec.

7. RONG, Xin. word2vec Parameter Learning Explained. arXiv, 2014. Avail-
able from doi: 10.48550/ARXIV.1411.2738.

8. RONG, Xin. arXiv. word2vec Parameter Learning Explained [online]
[visited on 2022-03-22]. Available from: https://analyticsindiamag.
com/guide-to-word2vec-using-skip-gram-model.

9. Analyticsindiamag.com. Guide To Word2vec Using Skip Gram Model
[online] [visited on 2022-03-22]. Available from: https://analyticsindiamag.
com/guide-to-word2vec-using-skip-gram-model.

61

https://doi.org/10.1037/0022-3514.79.6.995
https://www.lucidchart.com/pages/database-diagram/database-schema
https://www.lucidchart.com/pages/database-diagram/database-schema
https://www.search.elastic.co/
https://www.search.elastic.co/
https://www.tensorflow.org/tutorials/text/word2vec
https://www.tensorflow.org/tutorials/text/word2vec
https://doi.org/10.48550/ARXIV.1411.2738
https://analyticsindiamag.com/guide-to-word2vec-using-skip-gram-model
https://analyticsindiamag.com/guide-to-word2vec-using-skip-gram-model
https://analyticsindiamag.com/guide-to-word2vec-using-skip-gram-model
https://analyticsindiamag.com/guide-to-word2vec-using-skip-gram-model

Biblioraphy

10. MIKOLOV, Tomas; CHEN, Kai; CORRADO, Greg; DEAN, Jeffrey. Ef-
ficient Estimation of Word Representations in Vector Space. arXiv, 2013.
Available from doi: 10.48550/ARXIV.1301.3781.

11. Wikipedia. BERT (language model) [online] [visited on 2022-03-13]. Avail-
able from: https : / / en . wikipedia . org / wiki / BERT _ (language _
model).

12. MIT Press. A Primer in BERTology: What We Know About How BERT
Workf — Transactions of the Association for Computational Linguistics
[online] [visited on 2022-03-13]. Available from: https://direct.mit.
edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-
in-BERTology-What-We-Know-About-How-BERT.

13. KIM, Taeuk; CHOI, Jihun; EDMISTON, Daniel; LEE, Sang-goo. ARE
PRE-TRAINED LANGUAGE MODELS AWARE OF PHRASES? SIM-
PLE BUT STRONG BASELINES FOR GRAMMAR INDUCTION [on-
line] [visited on 2022-03-13]. Available from: https://arxiv.org/pdf/
2002.00737.

14. ETTINGER, Allyson. MIT. What BERT Is Not: Lessons from a New
Suite of Psycholinguistic Diagnostics for Language Models [online] [vis-
ited on 2022-03-13]. Available from: https://direct.mit.edu/tacl/
article-pdf/doi/10.1162/tacl_a_00298/1923116/tacl_a_00298.
pdf.

15. VASWAN, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT,
Jakob. Conference paper at 31st Conference on Neural Information Pro-
cessing Systems (NIPS 2017). Attention Is All You Need [online] [visited
on 2022-03-20]. Available from: https://arxiv.org/pdf/1412.6980.
pdf.

16. TERVEEN, Loren; HILL, Will. MIT. Beyond Recommender Systems:
Helping People Help Each Other [online] [visited on 2022-03-13]. Avail-
able from: http://files.grouplens.org/papers/rec-sys-overview.
pdf.

17. WANG, Shoujin; HU, Liang; WANG, Yan; SHENG1, Quan Z.; ORGUN1,
Mehmet; CAO, Longbing. University of Shanghai for Science and Tech-
nology. Modeling Multi-Purpose Sessions for Next-Item Recommenda-
tions via Mixture-Channel Purpose Routing Networks [online] [visited on
2022-03-19]. Available from: https://www.ijcai.org/proceedings/
2019/0523.pdf.

18. LUDEWIG, Malte; JANNACH, Dietmar. TU Dortmund and AAU Kla-
genfurt. Evaluation of Session-based Recommendation Algorithms [on-
line] [visited on 2022-03-19]. Available from: https://arxiv.org/pdf/
1803.09587.pdf.

62

https://doi.org/10.48550/ARXIV.1301.3781
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/BERT_(language_model)
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-in-BERTology-What-We-Know-About-How-BERT
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-in-BERTology-What-We-Know-About-How-BERT
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-in-BERTology-What-We-Know-About-How-BERT
https://arxiv.org/pdf/2002.00737
https://arxiv.org/pdf/2002.00737
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00298/1923116/tacl_a_00298.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00298/1923116/tacl_a_00298.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00298/1923116/tacl_a_00298.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://files.grouplens.org/papers/rec-sys-overview.pdf
http://files.grouplens.org/papers/rec-sys-overview.pdf
https://www.ijcai.org/proceedings/2019/0523.pdf
https://www.ijcai.org/proceedings/2019/0523.pdf
https://arxiv.org/pdf/1803.09587.pdf
https://arxiv.org/pdf/1803.09587.pdf

Biblioraphy

19. HIDASI, Balázs; BALTRUNAS, Linas; KARATZOGLOU, Alexandros;
TIKK, Domonkos. Conference paper at ICLR 2016. Evaluation of Session-
based Recommendation Algorithms [online] [visited on 2022-03-20]. Avail-
able from: https://arxiv.org/pdf/1803.09587.pdf.

20. KINGMA, Diederik P.; BA, Jimmy Lei. Conference paper at ICLR 2015.
ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION [online]
[visited on 2022-03-20]. Available from: https://arxiv.org/pdf/1412.
6980.pdf.

21. SOUZA PEREIRA MOREIRA, Gabriel de; RABHI, Sara; LEE, Jeong
Min; AK, Ronay; OLDRIDGE, Even. Conference paper at RecSys 2021.
Transformers4Rec: Bridging the Gap between NLP and Sequential /
Session-Based Recommendation [online] [visited on 2022-03-20]. Avail-
able from: https://research.facebook.com/file/1068762590546101/
Transformers4Rec-Bridging-the-Gap-between-NLP-and-Sequential-
Session-Based-Recommendation-1.pdf.

22. GitHub. NVIDIA-Merlin/NVTabular [online] [visited on 2022-03-21]. Avail-
able from: https://github.com/NVIDIA-Merlin/NVTabular.

23. HuggingFace. HuggingFace Transformers [online] [visited on 2022-03-22].
Available from: https://huggingface.co/docs/transformers/index.

24. FEDER, Amir; OVED, Nadav; SHALIT, Uri; REICHART, Roi. CausaLM:
Causal Model Explanation Through Counterfactual Language Models.
Computational Linguistics. 2021, pp. 1–54. Available from doi: 10.1162/
coli_a_00404.

25. Kaggle. eCommerce behavior data from multi category store [online]
[visited on 2022-03-22]. Available from: https : / / www . kaggle . com /
datasets/mkechinov/ecommerce-behavior-data-from-multi-category-
store.

26. Kaggle. RecSys Challenge 2015 [online] [visited on 2022-03-22]. Available
from: https://www.kaggle.com/datasets/chadgostopp/recsys-
challenge-2015.

27. SmartMedia. The Adressa dataset for news recommendation [online] [vis-
ited on 2022-03-22]. Available from: https://reclab.idi.ntnu.no/
dataset.

28. Kaggle. News Portal User Interactions by Globo.com [online] [visited on
2022-03-22]. Available from: https : / / www . kaggle . com / datasets /
gspmoreira/news-portal-user-interactions-by-globocom.

29. LUDEWIG, Malte; JANNACH, Dietmar. Evaluation of session-based
recommendation algorithms. User Modeling and User-Adapted Interac-
tion. 2018, vol. 28, no. 4-5, pp. 331–390. Available from doi: 10.1007/
s11257-018-9209-6.

63

https://arxiv.org/pdf/1803.09587.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://research.facebook.com/file/1068762590546101/Transformers4Rec-Bridging-the-Gap-between-NLP-and-Sequential-Session-Based-Recommendation-1.pdf
https://research.facebook.com/file/1068762590546101/Transformers4Rec-Bridging-the-Gap-between-NLP-and-Sequential-Session-Based-Recommendation-1.pdf
https://research.facebook.com/file/1068762590546101/Transformers4Rec-Bridging-the-Gap-between-NLP-and-Sequential-Session-Based-Recommendation-1.pdf
https://github.com/NVIDIA-Merlin/NVTabular
https://huggingface.co/docs/transformers/index
https://doi.org/10.1162/coli_a_00404
https://doi.org/10.1162/coli_a_00404
https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://reclab.idi.ntnu.no/dataset
https://reclab.idi.ntnu.no/dataset
https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom
https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1007/s11257-018-9209-6

Biblioraphy

30. GARG, Diksha; GUPTA, Priyanka; MALHOTRA, Pankaj; VIG, Lovekesh;
SHROFF, Gautam. Sequence and Time Aware Neighborhood for Session-
Based Recommendations: STAN. In: Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. Paris, France: Association for Computing Machinery,
2019, pp. 1069–1072. SIGIR’19. isbn 9781450361729. Available from doi:
10.1145/3331184.3331322.

31. LUDEWIG, Malte; MAURO, Noemi; LATIFI, Sara; JANNACH, Di-
etmar. Empirical analysis of session-based recommendation algorithms.
User Modeling and User-Adapted Interaction. 2020, vol. 31, no. 1, pp. 149–
181. Available from doi: 10.1007/s11257-020-09277-1.

32. DEVLIN, Jacob; CHANG, Ming-Wei; LEE, Kenton; TOUTANOVA, Kristina.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. arXiv, 2018. Available from doi: 10.48550/ARXIV.1810.
04805.

33. CLARK, Kevin; LUONG, Minh-Thang; LE, Quoc V.; MANNING, Christo-
pher D. ELECTRA: Pre-training Text Encoders as Discriminators Rather
Than Generators. arXiv, 2020. Available from doi: 10.48550/ARXIV.
2003.10555.

34. YANG, Zhilin; DAI, Zihang; YANG, Yiming; CARBONELL, Jaime;
SALAKHUTDINOV, Ruslan; LE, Quoc V. XLNet: Generalized Autore-
gressive Pretraining for Language Understanding. arXiv, 2019. Available
from doi: 10.48550/ARXIV.1906.08237.

35. CHAI, T.; DRAXLER, R. R. Root mean square error (RMSE) or mean
absolute error (MAE)? – Arguments against avoiding RMSE in the lit-
erature. In: 2014. Available from doi: 10.5194/gmd-7-1247-2014.

36. ORIGINLAB. OriginLab Corporation. ROC curve [online] [visited on
2022-03-27]. Available from: https://www.originlab.com/doc/Tutorials/
ROC-Curve.

37. BAEZA-YATES, Ricardo; RIBEIRO-NETO, Berthier. Modern Infor-
mation Retrieval. 1999. Available also from: https://www.pearson.
com/uk/educators/higher-education-educators/program/Baeza-
Yates-Modern-Information-Retrieval/PGM407074.html.

38. ZANKER, Markus; BRICMAN, Marcel; GORDEA, Sergiu; JANNACH,
Dietmar; JESSENITSCHNIG, Markus. Proceedings of 7th International
Conference on Electronic Commerce and Web Technologies. Persuasive
online-selling in quality taste domains [online] [visited on 2022-03-22].
Available from: https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.153.7856&rep=rep1&type=pdf.

64

https://doi.org/10.1145/3331184.3331322
https://doi.org/10.1007/s11257-020-09277-1
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.48550/ARXIV.1906.08237
https://doi.org/10.5194/gmd-7-1247-2014
https://www.originlab.com/doc/Tutorials/ROC-Curve
https://www.originlab.com/doc/Tutorials/ROC-Curve
https://www.pearson.com/uk/educators/higher-education-educators/program/Baeza-Yates-Modern-Information-Retrieval/PGM407074.html
https://www.pearson.com/uk/educators/higher-education-educators/program/Baeza-Yates-Modern-Information-Retrieval/PGM407074.html
https://www.pearson.com/uk/educators/higher-education-educators/program/Baeza-Yates-Modern-Information-Retrieval/PGM407074.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.7856&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.7856&rep=rep1&type=pdf

Biblioraphy

39. LEE, Dokyun; HOSANAGAR, Kartik. How Do Recommender Systems
Affect Sales Diversity? A Cross-Category Investigation via Randomized
Field Experiment. Inf. Syst. Res. 2019, vol. 30, pp. 239–259.

40. JANNACH, Dietmar; HEGELICH, Kolja. A Case Study on the Effec-
tiveness of Recommendations in the Mobile Internet. In: Proceedings of
the Third ACM Conference on Recommender Systems. New York, New
York, USA: Association for Computing Machinery, 2009, pp. 205–208.
RecSys ’09. isbn 9781605584355. Available from doi: 10.1145/1639714.
1639749.

41. GARCIN, Florent; FALTINGS, Boi; DONATSCH, Olivier; ALAZZAWI,
Ayar; BRUTTIN, Christophe; HUBER, Amr. Offline and Online Eval-
uation of News Recommender Systems at Swissinfo.Ch. In: Proceedings
of the 8th ACM Conference on Recommender Systems. Foster City, Sili-
con Valley, California, USA: Association for Computing Machinery, 2014,
pp. 169–176. RecSys ’14. isbn 9781450326681. Available also from: http:
//florent.garcin.ch/pubs/garcin_recsys14a.pdf.

42. DOMINGUES, Marcos A.; GOUYON, Fabien; JORGE, Aĺıpio Mário;
LEAL, José Paulo; VINAGRE, João; LEMOS, Lúıs. Combining Usage
and Content in an Online Music Recommendation System for Music in
the Long-Tail. In: 2012, vol. 2. Available from doi: 10.1007/s13735-
012-0025-1.

43. TEAM, The pandas development. pandas-dev/pandas: Pandas. Zenodo,
2020. Latest. Available from doi: 10.5281/zenodo.3509134.

44. TEAM, The Python development. collections - Container datatypes -
Python 3.10.4 documentation [online]. [N.d.]. Latest [visited on 2022-03-
27]. Available from: https://docs.python.org/3/library/collections.
html.

45. REIMERS, Nils; GUREVYCH, Iryna. Sentence-BERT: Sentence Em-
beddings using Siamese BERT-Networks. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, 2019. Available also from: http:
//arxiv.org/abs/1908.10084.

46. TEAM, The CuPy development. CuPy: NumPy SciPy for GPU [online].
[N.d.]. Latest [visited on 2022-03-27]. Available from: https://cupy.
dev/.

47. TEAM, The NumPy development. NumPy: The fundamental package
for scientific computing with Python [online]. [N.d.]. Latest [visited on
2022-03-27]. Available from: https://numpy.org/.

65

https://doi.org/10.1145/1639714.1639749
https://doi.org/10.1145/1639714.1639749
http://florent.garcin.ch/pubs/garcin_recsys14a.pdf
http://florent.garcin.ch/pubs/garcin_recsys14a.pdf
https://doi.org/10.1007/s13735-012-0025-1
https://doi.org/10.1007/s13735-012-0025-1
https://doi.org/10.5281/zenodo.3509134
https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/collections.html
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://cupy.dev/
https://cupy.dev/
https://numpy.org/

Biblioraphy

48. MARTÍN ABADI; ASHISH AGARWAL; PAUL BARHAM; EUGENE
BREVDO; ZHIFENG CHEN; CRAIG CITRO; GREG S. CORRADO;
ANDY DAVIS; JEFFREY DEAN; MATTHIEU DEVIN; SANJAY GHE-
MAWAT; IAN GOODFELLOW; ANDREW HARP; GEOFFREY IRV-
ING; MICHAEL ISARD; JIA, Yangqing; RAFAL JOZEFOWICZ; LUKASZ
KAISER; MANJUNATH KUDLUR; JOSH LEVENBERG; DANDELION
MANÉ; RAJAT MONGA; SHERRY MOORE; DEREK MURRAY; CHRIS
OLAH; MIKE SCHUSTER; JONATHON SHLENS; BENOIT STEINER;
ILYA SUTSKEVER; KUNAL TALWAR; PAUL TUCKER; VINCENT
VANHOUCKE; VIJAY VASUDEVAN; FERNANDA VIÉGAS; ORIOL
VINYALS; PETE WARDEN; MARTIN WATTENBERG; MARTIN WICKE;
YUAN YU; XIAOQIANG ZHENG. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. Available also from: https:
//www.tensorflow.org/. Software available from tensorflow.org.

49. RADFORD, Alec; WU, Jeff; CHILD, Rewon; LUAN, David; AMODEI,
Dario; SUTSKEVER, Ilya. Language Models are Unsupervised Multitask
Learners. In: 2019.

66

https://www.tensorflow.org/
https://www.tensorflow.org/

Appendix A
Acronyms

AP Average Precision

API Application Programming Interface

AUC Area Under Curve

BERT Bidirectional Encoder Representations from Transformers

BI Business Intelligence

CB Content-Based (recommendation approach)

CBRS Content-Based Recommendation System

CF Collaborative Filtering

CTR Click-Through Rate

DCG Discounted Cumulative Gain

FN False Negatives

FP False Positives

FPR False Positive Rate

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HR Hit Ratio

HTML HyperText Markup Language

IDCG Ideal Discounted Cumulative Gain

IT Information Technology

67

A. Acronyms

JSON JavaScript Object Notation

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MRR Mean Reciprocal Rank

MSE Mean Squared Error

NDCG Normalized Discounted Cumulative Gain

NLP Natural Language Processing

RMSE Root Mean Squared Error

RNN Recurrent Neural Networks

ROC Receiver Operating Characteristic

RR Reciprocal Rank

SB Session-Based (recommendation approach)

SBRS Session-based recommendation algorithms

SBRS K-Nearest Neighbours

SVD Singular Value Decomposition

TF-IDF Term Frequency–Inverse Document Frequency

TN True Negatives

TP True Positives

TPR True Positive Rate

68

Appendix B
Contents of enclosed Micro SD

readme.txt..................the file with Micro SD contents description
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

69

	Introduction
	Introduction to data dictionary
	Sources of information in a data dictionary
	Typical attributes in a data dictionary
	Functions of a data dictionary

	Defining goals for a recommendation system
	What is a recommendation system?
	Functions of a recommendation system in a data dictionary
	Goals for building a recommendation system

	Content-based filtering
	Generating item embeddings
	TF-IDF model
	Word2vec model
	BERT model

	Building user profiles
	Next item prediction using a content-based model
	Cons and pros of a content-based recommendation system

	Collaborative filtering
	User-based collaborative filtering
	Item-based collaborative filtering
	Rating generation
	Matrix factorization for collaborative filtering
	Cons and pros of collaborative filtering

	Session-based recommender systems
	Session properties and components
	User and user properties
	Item and item properties
	Action and action properties
	Interaction and interaction properties
	Session and session properties
	Session length
	Session action types
	Internal order
	User information

	Session-based recommendation problem
	K nearest neighbors approaches for SBRS
	Item KNN for session-based recommendation
	Session KNN for session-based recommendation
	Cons and pros of K nearest approaches for SBRS

	Recurrent neural network approaches for SBRS
	Transformer4Rec approach for SBRS
	Data preprocessing
	Model training and evaluation
	Transformers4Rec meta-architecture
	Transformer4Rec performance

	Evaluation of recommender systems
	Offline evaluation
	Predictive accuracy metrics
	Mean Absolute Error (MAE)
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)

	Classification accuracy metrics
	General classification metrics
	Classification metrics for a recommender system
	ROC and AUC for a recommender system

	Ranking accuracy metrics
	Relevance calculation for a recommendation task
	Normalized Discounted Cumulative Gain
	Mean Reciprocal Rank
	Average Precision

	Other methods
	Catalog coverage
	Novelty
	Diversity
	Hit Ratio

	Online evaluation
	Click-through rate
	Temporal diversity
	Adoption and conversion rates
	Sales and Revenue
	Sales distribution
	User behaviour and engagement
	A/B testing

	Analysis and design
	Dataset description
	Dataset statistics
	The metadata structure of given dataset
	Defining goals for a recommender system
	Defining evaluation metrics
	Data preprocessing
	Item dataset preprocessing
	Interaction dataset preprocessing
	The dataset split

	Baseline models
	Baseline model 1
	Baseline model 2

	Content based model
	Building item profiles
	Building user profiles
	Prediction
	Evaluation

	Collaborative filtering based model
	Ratings generations
	Finding the optimal latent size
	Evaluation

	Session based model
	Session formation
	Session length optimization
	Architecture overview
	Prediction process
	Evaluation results

	Model comparison

	Conclusion
	Biblioraphy
	Acronyms
	Contents of enclosed Micro SD

