
Instructions

Solana is a blockchain (or more precisely a global state machine) that excels in speed and scalability 
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and lacks some standard development tooling.  

 

Commands: 

- Analyse the Solana blockchain and its ecosystem. 

- Analyse Trdelnik, the Solana Rust client. 

- Propose a new functionality for Trdelnik (after discussion with the supervisor). 

- Implement given functionality. 

- Test correctness of your implementation.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 10 December 2021 in Prague.

Assignment of master’s thesis

Title: Developer tooling for Solana

Student: Bc. Lukáš Kozák

Supervisor: Ing. Josef Gattermayer, Ph.D.

Study program: Informatics

Branch / specialization: Computer Systems and Networks

Department: Department of Computer Systems

Validity: until the end of summer semester 2022/2023





Master’s thesis

Developer tooling for Solana

Bc. Lukáš Kozák

Department of Computer Systems
Supervisor: Ing. Josef Gattermayer, Ph.D.

April 26, 2022





Acknowledgements

I would like to thank Ackee Blockchain for providing guidance early with
the Rust and Solana development, especially Tibor Tribus, the Solana Tech
Lead of Ackee Blockchain, and Vladimír Marcin, a Solana auditor in Ackee
Blockchain. I would also like to express my gratitude to my supervisor,
Ing. Josef Gattermayer, Ph.D., who is also the CEO of Ackee Blockchain, for
leading my thesis and giving me a chance to work on an open-source project
with a practical impact.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on April 26, 2022 . . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
© 2022 Lukáš Kozák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kozák, Lukáš. Developer tooling for Solana. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.



Abstrakt

Tato práce představuje čtenáři Solana blockchain. Slouží jako vstupní bod
pro nové Solana vývojáře nebo blockchainové nadšence chtějící se dozvědět o
Solaně, jelikož práce detailně vysvětluje veškeré klíčové koncepty a její unikátní
programovací model. Práce také ukazuje některé z nejdůležitějších projektů
Solana ekosystému, které jsou dnes dostupné. Zbytek práce je zaměřen na
vývojářské nástroje a Trdelnik, nový Rust testovací framework v raném vývoji
pro Solana programy. Součástí práce je navržení nové funkcionality pro Trdelnik,
samotná implementace, otestování a diskuze budoucí práce na projektu.

Klíčová slova Blockchain, Solana, Trdelnik, Explorer, Solana programy,
Chytré kontrakty, Rust programovací jazyk, Vývojářské nástroje pro Solanu
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Abstract

This thesis introduces the reader to the Solana blockchain. It serves as an entry
point for new Solana developers or blockchain enthusiasts wishing to learn
about Solana. The thesis thoroughly explains all core concepts and its unique
programming model. It also showcases some of Solana’s most crucial ecosystem
projects today. The rest of the thesis is focused on the developer tooling and
Trdelnik, the new Rust Testing Framework for Solana programs. As a part
of the thesis, new functionality for Trdelnik is proposed, implemented, tested,
and future work on the project is discussed.

Keywords Blockchain, Solana, Trdelnik, Explorer, Solana programs, Smart
contracts, Rust programming language, Developer tooling for Solana
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Introduction

Scalability
One of the most discussed scientific topics in the cryptocurrency and base layer
blockchain area during the last few years has been something called blockchain
or scalability trilemma [1]. It is a term coined in 2017 by Vitalik Buterin, the
co-founder of Ethereum1, and describes three main features of blockchains –
decentralization, scalability and security – of which one must be sacrificed in
order to make room for the other two.

Decentralization means the network is not operated by a single entity but
by a group of nodes that can join in a permissionless manner. Scalability
indicates the network can support an ever-growing increase in transaction
demand without major changes or a slowdown. And the last of the three
features, security, conveys it takes enormous resources to censor, double-spent,
or in any other way attack the network. Thus, security in the blockchain is a
kind of similar concept to computational infeasibility known from cryptography.

Several so-called “Ethereum killers” have appeared since the definition
of the term in 2017, claiming to have solved the said scalability trilemma
successfully. Notable mentions are Avalanche2, Cardano3, or Solana4. All
with their specific approaches to tackle the problem – be it sharding, novel
consensus mechanisms, or optimizing and re-engineering the way blockchain
network nodes can communicate and execute transactions.

Whether they keep up to their promises and the scalability trilemma is
really solved is yet left to be seen. Even though the mentioned blockchains
have already been publicly launched and are in use today, they are still in
heavy development, and often new challenges arise unexpectedly.

1https://ethereum.org
2https://avax.network
3https://cardano.org
4https://solana.com
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Introduction

Goal of this Thesis
This thesis will be primarily focused on the new Solana blockchain with
comparisons with Ethereum. It is a semi-analytical and semi-implementation
work. Therefore it does not solely focus on the implementation part but tries to
understand the underlying technology. This is especially important as there is
little to no officially-provided correct information, and currently, it is not easy
to understand Solana from the ground up without digging into the source code
or personally asking the developers how some of the specifics work. Therefore
this thesis should be a good starting point to start learning about Solana.

Now for the implementation part – since Solana is a relatively new blockchain,
it lacks most of the standard development tooling known from Ethereum, which
is still the go-to standard. In fact, most other blockchains copy its execution
model and EVM (Ethereum Virtual Machine) as the execution environment.
Therefore the tooling can be shared and reused.

The practical part of the thesis consists of implementing a new feature for
Trdelnik5, which is a new open-source testing framework for Solana programs
based on Anchor6, which is yet a new development framework that helps to
simplify the process of building new and secure Solana on-chain programs.
Because writing raw Solana programs is a tedious and error-prone process,
Anchor, together with Trdelnik, aim to fill most of the gaps in the current
development ecosystem of Solana and bring better developer experience to
everyone.

Thesis Structure
The Chapter 1, “Analysis”, introduces the reader to the Solana blockchain. Its
core concepts and programming model are thoroughly explained. A sample of
the ecosystem projects is showcased so that a reader can get an idea of how
the blockchain is used in practice. Then Trdelnik, the Rust Testing Framework
for Solana programs, is analyzed.

The Chapter 2, “Function Proposal for Trdelnik”, proposes a new feature,
researches it and examines the functional and non-functional requirements.
Use cases for the said feature are presented in this chapter as well.

The Chapter 3, “Implementation”, and Chapter 4, “Testing”, deal with the
implementation and testing phase of the said functionality.

Finally, “Conclusion” evaluates the whole thesis and addresses the future
work on Trdelnik and the newly implemented feature.

5https://github.com/Ackee-Blockchain/trdelnik
6https://github.com/project-serum/anchor
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Chapter 1
Analysis

The chapter provides an in-depth look into the Solana blockchain and its
ecosystem. After that, Trdelnik, the Rust Testing Framework for Solana
programs, is introduced and analyzed.

1.1 Solana

First, blockchain technology is introduced, and key terminology is explained.
Then the Solana blockchain is introduced, and its core concepts are thoroughly
explained. The unique programming model is shown, and at the end of the
chapter, the current ecosystem of Solana is evaluated.

1.1.1 Terminology

Blockchain

Solana is, simply put, another blockchain like Bitcoin [2] or Ethereum [3].
A blockchain can be thought of as a series of blocks or an append-only data
structure that resembles an ordered back-linked linked list, which uses hashes as
pointers to previous blocks (Figure 1.1). This structure is comprised of blocks,
which form a chain, hence the term blockchain. It can be easily concluded that
on its own, it is a very simple data structure.

Figure 1.1: General Scheme of Blockchain [4]

3



1. Analysis

Block

Block is a data structure that contains a header, which is comprised of three
items – hash of the header of the previous block, metadata, and a Merkle
root [5]. Metadata depends on the protocol. The Merkle root is a root of the
well-known Merkle tree that can be used to verify later that transactions in a
block have not been tampered with. After the header comes the core part of
the block, transactions.

Transaction

Transaction is a protocol-defined message that is stored as a part of a block,
which is then stored as a part of a blockchain. The content usually consists of
some kind of value transfer or on-chain program execution. Transactions are
cryptographically signed by their authors, proving their authenticity, and in
the case of a value transfer, ownership of the funds or tokens often represents
some value in the real world.

Protocol

Protocol is a common set of rules network nodes need to adhere to. It defines
things like communication between P2P (Peer-to-Peer) nodes, transaction
format for everyone intending to use the network, any special features, and
everything else for the network to operate correctly and for the users to know
how to transact over the network. An important feature of a good protocol for
a decentralized blockchain network is to set up incentives properly. The need
for its native coin arises.

Coin

Coin incentivizes participation in the network. It is usually paid with every new
block to miners or validators for their help in securing the network. Without
proper incentives, any decentralized blockchain network falls apart.

Nodes

Node is a term from the graph theory or distributed systems, is a single
participant in a network. Nodes communicate with each other according to the
protocol and in a P2P manner forming the whole blockchain network. There
might be more kinds of nodes that are not equal, e.g., validator nodes securing
the network or pure RPC (Remote Procedure Call) nodes used only to query
the network and post new transactions. They can overlap in features.

4



1.1. Solana

Consensus

In an effort to agree on a certain state of a blockchain, network nodes need
to come to a consensus. We assume there are malicious nodes in the network.
Therefore the system must be able to withstand attacks to a certain extent,
not just simple failures of nodes. BFT (Byzantine Fault Tolerant) is thus a
desired property of such distributed system.

There are currently essentially only three viable consensus families that
can be used in practice. The first is the classic PBFT-like (Practical BFT)
algorithm family [6]. The second is a so-called Nakamoto consensus, which
couples a Sybil protection mechanism of Proof-of-Work with the longest-chain
rule, a novel consensus invented by Satoshi Nakamoto for Bitcoin in 2008 [2].
The third and newest family of consensus protocols known today is called Snow,
but it is more known under its implementation name – Avalanche Consensus
[7], introduced in 2018 and used for the Avalanche cryptocurrency.

Sybil Resistance

In order to prevent a single entity from taking over the network, there must
be a mechanism put in place so that no one can just spawn more nodes that
can mine or vote, depending on the network, subverting the reputation system
of the network. These dishonest nodes would be able to out-vote honest nodes
and start censoring transactions or even approving invalid transactions, or
changing the whole protocol.

The two most common Sybil resistance mechanisms today are PoW (Proof-
of-Work) and PoS (Proof-of-Stake). The former employs a model where miners
in the network are given a chance to mine a block that is proportional to their
hashing power in the network and is used in Bitcoin [8]. The latter is a new
type of model for voting-based networks where a validator is given the power
of their vote proportionally to staked coins.

Security

Consensuses and Sybil resistance mechanisms are often confused as the same,
which is not true and is worth pointing out. One works when coupled with the
other. Let’s see how this works in both PoW-based and PoS-based networks.

Consider what makes Bitcoin, which is a PoW-based network, theoretically
secure – it is the fact that only the longest chain is respected, also commonly
known as the longest chain rule. This is the reason why the consensus is
actually called, as mentioned before, the Nakamoto consensus.

For a PoS-based network, the Sybil resistance mechanism is usually coupled
with a variant of a PBFT-like algorithm or the novel Avalanche consensus.

5



1. Analysis

Smart Contracts

Many blockchains allow the deployment of so-called Smart Contracts or, in
other words, on-chain programs. Smart contracts were introduced in Ethereum.

A smart contract is a piece of code deployed to the blockchain with a
cryptographically signed transaction. Users are then able to interact with it
by sending transactions that invoke a specific function defined in the smart
contract, and the business logic is executed as stated in the deployed code [9].

Data relevant to the state of the smart contract are also stored on the
blockchain. Hence we can look at smart contracts as programs on a decentral-
ized computer that accesses files in its file system and changes them according
to the predefined rules. If such a contract is made immutable, we can trust
the smart contract will not do anything else than it was supposed to.

It is worth noting that apart from storing the blockchain itself, each node
creates a state as a result of transaction execution. The final state is the result
of all processed transactions and can always be deterministically recreated
from the blockchain history.

Code is compiled for a predefined ISA (Instruction Set Architecture) and
executed in a VM (Virtual Machine) which understands it. The mentioned
VM is a special runtime environment similar to well-known VMs such as JVM
(Java Virtual Machine) or CLR (Common Language Runtime) from Microsoft’s
.NET ecosystem. The most commonly known VM for smart contracts, which
is used by Ethereum, is EVM (Ethereum Virtual Machine) and includes its
very own instruction set specialized for the needs of smart contracts.

Only transactions involving smart contract execution need to be processed
by the VM. The common execution path is to prepare the relevant smart
contract data and smart contract byte code, launch the VM with said data
and code and observe possible failures. If the execution results in success, take
the changes to the smart contract data made in the VM and change the state
outside the VM, otherwise discard the changes and continue with another
transaction.

1.1.2 Solana Introduction

Solana is a single-chain blockchain using a slightly changed PBFT consensus
called Tower BFT with Proof-of-Stake as a Sybil protection mechanism. Leaders
are known in advance, their rotation is the function of the blockchain data,
and they are known one full epoch before.

Epoch is a series of 432,000 slots, where the slot is a term for the time
period the block is in the making by the leader.

The blocks are actually streamed as something called entries, so the creation
of the block by the leader and verification of the block by others can happen
in parallel.

6



1.1. Solana

Solana officially launched its mainnet, still labeled as beta, in March 2020.
The native coin that incentivizes validator nodes and protects the network
from spam by paying transaction fees with it is named SOL.

Solana’s main value proposition is solving the blockchain trilemma, i.e.,
delivering scalability, decentralization, and security without sacrificing any of
the three mentioned features.

Solana was founded by Anatoly Yakovenko in 2017 when the Solana
Whitepaper [10] was published. Describing a novel clock mechanism for
distributed systems called PoH (Proof-of-History) as a technique for keeping
time between computers that do not trust each other. With this mechanism,
they were able to demonstrate [11] on a testnet with a gigabit network and
150 nodes processing 500,000 TPS (Transactions per Second). Compared with
Bitcoin’s maximum throughput of 7 TPS and Ethereum’s maximum capacity
of 15 TPS [12].

Since this proof of concept, Solana has been developed into a fully functional
blockchain smart contract platform and strives towards adoption. It is worth
noting that often laboratory experiments are vastly different from the real
world and it remains to be seen if Solana will be able to scale for universal
adoption outside of speculations. Nevertheless, new contenders like Solana
help drive the research and development forward and anyone is free to build
on top of what has been invented already and improve it.

Ethereum Killer

Solana is a smart contract platform. The community defines direct competitors
of Ethereum in this sense as Ethereum killers. Solana has been considered to
be a new potential Ethereum killer.

Compared to Ethereum, smart contracts on Solana are called simply
Programs. They can be executed in parallel. Parallelization is one of the key
differences from other platforms. While Ethereum can be thought of as a
single-threaded distributed computing platform, Solana can be considered a
multi-threaded one.

Solana makes itself clear to focus on improving scalability from the engi-
neering perspective. It is rethinking and reengineering core parts that were
first seen in Ethereum and making them parallel and optimized, including the
usage of Nvidia CUDA to speed up certain parts of the code and inventing
its own specialized horizontally scalable database system for state storage and
many other things that are supposed to make it possible to reach maximum
TPS practically only bounded by the network throughput, memory throughput
and the number of CUDA cores in modern Nvidia GPUs. Therefore over time,
it should scale with better hardware available on the market and internet
connectivity in the world.

7



1. Analysis

Rust Development

Solana’s ecosystem revolves around the Rust programming language and its
ecosystem. The main and only implementation of the node software is written
in it. Also, Solana programs are almost exclusively written in Rust. Even
though there is no technical barrier preventing from using C or C++, Rust is
the most supported language for developing on Solana, and all the libraries
and supporting code that can be found are written in it, leaving practically no
other choice.

1.1.3 Core Concepts

There are eight main core concepts introduced in Solana that are supposed to
make it as fast as developers claim. This section will try to cover all of them in
maximum detail. Unfortunately, you cannot always find a proper explanation
of some of the details, and some of these are not yet or not fully implemented,
so the source code does not answer the questions that arise while studying
them.

Proof-of-History (PoH) – Virtual Clocks

Agreement on time in distributed systems has always been problematic. First,
a high-level overview of this concept is described and followed by a more
in-depth description.

Solana leverages the so-called Proof-of-History (PoH) mechanism to syn-
chronize local virtual clocks on all nodes [10]. PoH makes sure the timestamp
in any message can be trusted, and any timeouts in the consensus protocol
can be avoided as everyone knows the time and knows if they should start a
new round consensus round or not. PoH allows minimizing the block time as
there’s no waiting overhead. In other words, with synchronized clocks, we can
replace communication with local computation.

To prevent validators from skipping the validator that comes before them,
PoH is used to force all validators to spend a minimum amount of time before
they could even submit their block. Thus if validator B follows validator A, B
cannot try to skip A by chaining off its previous block because B has to run
the Proof of History algorithm at least as long as A does, so A will get a fair
chance of submitting their block.

8



1.1. Solana

Verifiable Delay Function (VDF)

PoH is based on a Verifiable Delay Function (VDF). More concretely, Solana
uses a recursive pre-image resistant SHA256 VDF, where the output of one
SHA256 iteration is used as an input of the next iteration recursively.

In order to create a block, the producer needs to compute the VDF with
all new messages to be included in the block:

Message1 →Hash1

Hash1 + Message2 →Hash2

· · ·
Hashn−1 + Messagen →Hashn

Observations:

1. From PoH we have a proof for the Lower Bound on Time of Time of
Messagei (i.e. Messagei must have taken place after Hashi−1).

2. From PoH we have a proof for the Upper Bound on Time of Time of
Messagei (i.e. Messagei must have taken place after Hashi+1).

3. Points 1 and 2 imply the exact ordering of messages, which then implies
that VDF not only provides us virtual clocks, but everyone can trust the
order of events.

Phases of PoH:

1. Evaluation phase (leader): computation on only one CPU core as it
is a strictly sequential computation by definition. This takes:

Total number of hashes
Hashes per second for 1 core

2. Verification phase (voters): the block can be checked in parallel
using GPU with thousands of cores as it can be easily sliced and the
intermediate hashes are known, this takes:

Total number of hashes
Hashes per second for 1 core * Number of cores available

It can be concluded that PoH is therefore hard to produce but easy to
verify. These are two important factors that are critical for the use of PoH, as
it is not easy to fake the PoH, but once it is finished, any validator can verify
the results very quickly.

9



1. Analysis

Tower BFT (TBFT) – PoH-based PBFT

As a consensus algorithm, Solana uses the Tower BFT (TBFT), which is a
custom implementation of a well-known Practical Byzantine Fault Tolerance
(PBFT) algorithm published in 1999 by Miguel Castro and Barbara Liskov [6].

PBFT consensus rounds are broken into three main phases (pre-prepare,
prepare and commit), see Figure 1.2. The exact description is out of the scope
of this work.

Figure 1.2: Normal operation of PBFT [6]

PBFT is focused on satisfying safety (results are valid and identical at all
non-faulty nodes) and liveness (nodes that don’t fail always produce a result)
properties. The safety guarantee is possible due to the deterministic nature of
the process (executed on every node). Liveness guarantee is possible due to
the View-change process. The network will not be stopped unless there are
too many byzantine nodes. View-change allows nodes to switch leaders when
it seems to be malicious or faulty.

View-change

View-changes are carried out when it appears that the leader has failed, so
another node tries to take over his place by starting an election process. It
gets triggered by timeouts that prevent nodes from waiting indefinitely for
requests to execute.

In addition, timeout is postponed each time that the protocol detects that
nodes are reaching an agreement on the current block.

10
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TBFT vs. PBFT

TBFT is a derivation of PBFT, which differs in one fundamental thing. PoH
provides a global source of time before consensus and can be therefore used to
enforce the exponentially-increasing timeouts introduced in the original PBFT
algorithm. No messages are needed as it is enforced by the PoH itself.

The way it is done follows. Voting on a new block is restricted to a fixed
period of time counted in hashes, this unit of time is called a slot. As of this
moment and with the current network settings, if we translate the number
of PoH hashes into time, it is around 400ms for one slot. Thus every 400ms,
the new potential rollback point occurs, but every subsequent new block that
is voted on doubles the amount of time that the network would have to stall
before unrolling the original vote.

Consider that each validator has voted 32 times in the last few ~12 seconds
(32 · 0.4). The vote 12 seconds ago now has a timeout of 232 slots, which
translated into years with a constant time of a slot of 400ms, is roughly
54 years (232 · 0.4/86400/365). A transaction with 32 confirmations is also
considered finalized.

Turbine – Block Propagation Protocol

Turbine is a name for a smart block propagation protocol that reduces the time
needed for block propagation and the overall message complexity reducing the
communication overhead of a node.

Turbine is a multi-layer propagation protocol. First, nodes in the network
are divided into small partitions called neighborhoods. Nodes within a particu-
lar neighborhood are responsible for sharing data received with other nodes in
the same neighborhood and propagating the data to a small number of nodes
in other neighborhoods (Figure 1.3 and 1.4). The data unit shared is called a
shred, and one block is constituted of many shreds.

The partitioning of nodes into neighborhoods and how exactly are shreds
shared within and out of their neighborhoods are implementation details.

Since we are in an adversarial environment, any node can decide not to
rebroadcast the received shreds or broadcast incorrect data. These are two
problems solved with a series of countermeasures:

• Forward Error Code (FEC), more concretely Erasure Code, helps by
broadcasting a block with more shreds than initially needed to reconstruct
the entire block without errors, even if some shreds are lost along the
way. With N = 6 data shreds and additional K = 3 shreds, we can lose
up to 1/3 of the shreds and still be able to fully reconstruct the whole
block.

• Propagation is prioritized accordingly to their stake. Validators with
the most stake are put closer to the current leader. A stake-weighted
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selection algorithm is used to create such a tree where the risk of faulty
or malicious nodes is minimized.

Neighborhood 3 Neighborhood 4 Neighborhood 5 Neighborhood 6

Neighborhood 0

Neighborhood 1 Neighborhood 2

Figure 1.3: Shred propagation diagram [13]

Neighborhood Above

Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

Neighborhood Below

Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

Figure 1.4: Shred propagation between two neighborhoods [13]

Gulf Stream – Transaction Forwarding Protocol

Gulf Stream is Solana’s mempool-less solution to forward and store transactions
before processing them.

In traditional blockchains, each node reserves a part of its memory for a
memory pool. This memory pool, more commonly referred to as mempool, is
used to store transactions being currently broadcasted over the network but
have not been processed and added to the blockchain as a part of a new block
yet.

12
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This implies a huge communication overhead where any transaction needs
to reach all other nodes in the network. Even though not necessarily everyone
needs to be aware of all transactions in the mempool, they are most important
for miner and validator nodes (depending on the type of a network), which
need to include them in new blocks.

If there are more transactions in the mempool than can fit in a block,
the backlog of transactions is created. This can generally lead to increased
transaction fees for users, who need to push their transaction ahead of other
transactions, as it is economically viable for the nodes securing the network
to prefer the transaction with higher fees. This is currently not possible on
Solana, but on the other hand, the network is so fast with its ~400ms block rate
that the aim is to process all remaining transactions almost instantaneously
anyway. As an example, see Figure 1.5.

Figure 1.5: Ethereum mempool in bytes [14]

With the aim of Solana to process potentially transactions in hundreds of
thousands, the common gossip protocols used in other blockchains to propagate
transactions to all nodes are infeasible.

The Solution

The solution that Solana thought of is avoiding having a single shared mempool
and instead of pushing transactions to the edge of the network to the expected
leader. The leader receives the transaction as quickly as possible and can
process it immediately.

This solution has a catch, though. The expected leader must be known
ahead. Leaders are known in advance, and their rotation is the function of the
blockchain data, and known one full epoch before. An epoch is a number of
slots that one leader’s schedule is valid for. It is set to 432,000 slots, and with
~400ms block rate, it takes about two days.
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Sealevel – Parallel Smart Contract Runtime

Other blockchains are single-threaded global state machines. The only thing
they might do in parallel is signature verification. Solana introduced Sealevel, a
parallelized transaction processing engine designed to scale horizontally across
GPUs and SSDs.

Sealevel can theoretically process as many transactions as many cores
are available to the system. According to the source code, Sealevel is not
parallelized on the GPU level yet.

This is a major improvement, which makes Solana a multi-threaded global
state machine, a thing not seen until Solana. Other blockchains, including the
leading Ethereum, can be considered single-threaded global state machines, as,
at one time, only one smart contract invocation can be processed.

The reason why it is possible with Solana is that each and every Solana
transaction describes all the states required to read and write to. Sealevel can
then choose non-overlapping instructions to execute in parallel and not just
that. Transactions that only read certain states can be executed in parallel as
well. This is a high-level description of how it works:

1. Sort millions of pending transactions.

2. Schedule all the non-overlapping transactions in parallel.

SIMD approach with GPUs

There is a big potential for GPU parallelization and leveraging its SIMD
capability. For example, in Nvidia CUDA, modern cards have thousands of
CUDA cores and tens of Streaming Multiprocessors.

When a CPU invokes a kernel grid, the blocks of threads are distributed
among streaming multiprocessors and executed using specific ALU execution
units, usually called CUDA cores and other SFUs (special function unit).

The executed code is the same for all cores. Imagine a situation where there
is a single smart contract invocation but with numerous different inputs. This
is the exact workload that can be efficiently executed on GPU architectures,
such as Nvidia CUDA.

Since Sealevel is not yet optimized for GPU offloading, GPUs are today
used only to accelerate PoH verification and signature verification and only if
it is available to the system and the algorithm decides it is worth the overhead
of launching the kernel grid.

BPF – Berkeley Packet Filter

There is one important thing that was not covered in Sealevel yet. What
actually executes the code, and how it is done. The standard way is to use
some sort of a Virtual Machine (VM) and compile the code for it from any
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supported language. This code gets deployed to the blockchain, and when a
user sends a transaction invoking this contract, this code gets loaded into the
VM and executed.

Ethereum does this with its own Ethereum Virtual Machine (EVM). Some
other blockchains make use of Web Assembly (WASM). Solana iterated over all
possible solutions and chose an unexpected VM called Berkeley Packet Filter
(BPF).

Sealevel hands off transactions to be executed on hardware natively using
an industry-proven bytecode called the Berkeley Packet Filter (BPF), which is
designed for high-performance packet filters. It can be used for non-networking
purposes. BPF and the extended BPF (eBPF) are basically in-kernel VMs
available in most UNIX-like operating systems, and they are very performant
because their primary use was for packet matching, which needs to be as fast
as possible. It also has had tens of years of development behind it.

The original version of BPF is now called classic BPF (cBPF), and this one
could not be used for anything other than packet matching. Linux kernel now
includes only extended BPF (eBPF), which is a virtual machine with 64-bit
registers. The eBPF is now normally called just BPF.

It is worth mentioning that new modern firewalls are being built on top of
the extended BPF. Execution of BPF is currently parallelized only on the CPU
level. What is really used is a modified version of BPF called rBPF, which is
launched in the userspace instead of the kernel. This was important as the
kernel version of the BPF would not be able to facilitate certain operations.

Pipelining – Transaction Processing Optimizations

It is not enough to be able to form a consensus and share a block with the rest
of the network quickly. A node must validate and execute all those transactions
in received blocks before another block comes.

For this reason, the Solana team developed something they call a Transac-
tion Processing Unit (TPU) [15]. The TPU works as a processor and makes
heavy use of pipelining – a common CPU optimization that helps to keep the
chip more utilized via staging an instruction execution into stages. It is a
general way to keep all the hardware parts busy instead of being idle. This
concept of pipelining was borrowed, and that is how the TPU was born.

The pipeline stages of TPU are following (Figure 1.6):

1. Data fetch in kernel space via network card (I/O)

2. Signature verification using GPU (very computation heavy if not of-
floaded)

3. Change of the state using CPU (banking)

4. Write to the disk in kernel space and send out via network card (I/O)
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Figure 1.6: Transaction processing unit [15]

In fact, there are two TPUs in the Solana node software. The second one
is called TVU, where the V stands for validator or validation. The one called
TPU is used for creating new blocks, and the TVU one is used for validating.
They might slightly differ. However, the concept and functionality are very
similar.

Cloudbreak – Horizontally-scalable Database

With fast computation, the obvious thing that becomes the new bottleneck is
the memory. For example, the industry-standard local database for storing
blockchain and state, LevelDB, does not support parallel reads and writes.
For Bitcoin or Ethereum, that is fine, not for a massively parallel system like
Solana.

We could say, why not store everything in RAM? It is too large, and even
for enterprise machines and large servers, this becomes impossible over time.
Therefore Solana had to invent its own database system that supports parallel
reads and writes and scales easily with more disks.

This new database system is called Cloudbreak and makes use of memory-
mapped files. The data is therefore stored in files that can be accessed
independently. A memory-mapped file is a file that is mapped to the process’
virtual memory address space and can be accessed directly without further
system calls. The speed is still limited by the disk I/O, but we get less overhead,
and the kernel can keep a part of it in its page cache (also known as file cache).

Reads in Cloudbreak are randomly distributed among available disks, as
the data is stored uniformly. Writes in Cloudbreak use the Copy-on-Write
semantics and are appended to a random disk. Hence we get the speed of
sequential writing. This is all possible because of a clever system of bookkeeping.
Old data entries are also garbage collected for future use.
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The design of Cloudbreak makes it ideal for hardware setups, such as RAID 0
with fast NVMe SSDs. The Cloudbreak database has been benchmarked by the
Solana team (Table 1.1). The results show that even with 10 million accounts
(unit of data storage on Solana that will be described in the Programming
model), which is a size that will not fit in the RAM (i.e., cannot be cached by
page cache in the kernel), Cloudbreak still achieves reads and writes close to 1
million with a single SSD [16].

Table 1.1: Cloudbreak benchmark [16]

Archivers – Distributed Ledger Storage

Since the Solana blockchain can grow at enormous speed, considering the full
capacity of 1 Gbps (with no overhead) for 365 days, it is roughly 4 petabytes of
data that each node would need to store to have a complete history. There is
a concept of distributed ledger storage that would store this data for everyone
else in a decentralized fashion.

The idea is to offload the data from validators to these specialized network
nodes. The data is broken into many small pieces and replicated so that the
full state can always be reconstructed. These special nodes are also contested
on the protocol level to make sure they store the data they are supposed to
store, and the loss of data is prevented.

This concept is yet to be implemented. A potential implementation might
be using a new decentralized protocol for permanent storage Arweave7 or
Filecoin8.

7https://www.arweave.org/
8https://filecoin.io/
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1.1.4 Programming Model

This section explains the programming model of Solana. There are a few
fundamental topics that any programmer, who wishes to use Solana, needs to
know and study beforehand.

communication with the network

Any user, when they decide to interact with the network, needs to interact with
any of the network’s nodes over either a JSON-RPC or a WebSocket endpoint.
The available methods are all listed publicly in the Solana documentation9.

The methods range from queries, such as specific account information,
the network state (an example shown in Listings 1.1 and 1.2) to sending
transactions.

curl http://localhost:8899 -X POST -H "Content-Type: application/json" -d '
{"jsonrpc":"2.0","id":1, "method":"getBlockHeight"}

'

Listing 1.1: Request of the getBlockHeight method

[{ "jsonrpc": "2.0", "result": 1233, "id": 1 }

Listing 1.2: Response of the getBlockHeight method

What really matters is the ability to send transactions. Sending a transac-
tion is the only way we can change the data on the Solana blockchain. Any
write operation is done through the means of transactions.

Users are not required to use the RPCs directly. There are multiple libraries
that provide convenient interfaces for languages, such as Javascript, Rust, and
Python.

Overview

The following steps can be thought of as an overview of what happens when
an app or any user interacts with the Solana network by sending a transaction.
The terms, such as instruction, account, or program, will be explained shortly,
and a more in-depth explanation will follow.

1. An app or a user sends a transaction with one or more instructions to a
Solana node that accepts RPC requests.

9https://docs.solana.com/developing/clients/jsonrpc-api
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2. The transactions get validated and forwarded according to the determin-
istic leader schedule to the next leader.

3. The transaction is validated and processed by the leader and included in
a new block, which is then streamed to all other validators, who validate
and process the transaction as well, coming to the same final state.

4. During processing, the instructions in transactions are passed to programs
deployed by developers beforehand. This is the job of the Sealevel
runtime. The relevant accounts get modified by code in those programs.
All happens isolated in the VM. Instructions are executed sequentially
and atomically, meaning either all instructions finish successfully or
all changes introduced by any instruction within the transaction are
discarded.

Transaction Key Elements

Some of the transaction key elements should be explained first:

Signature
Each digital signature is in the ed25519 binary format consuming 64 bytes.

Account
A key-addressable record on Solana ledger.

Compact array
An array-like data structure that begins with a specially encoded array
length in the first 16 bits, followed by the array items.

Blockhash
A unique hash that identifies a block produced as a part of the Proof-of-
History algorithm.

Program id
The address of an account containing a program.

Instruction
A structure specifying a program id for execution, relevant accounts, and
opaque instruction data that can be interpreted by the program.
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Transaction Anatomy

A Solana transaction (Figure 1.7) is comprised of two major parts in the
following order:

1. A compact array of signatures.

2. A message, which contains a compact array of account addresses, followed
by a recent blockhash and ending with a compact array of instructions.

Figure 1.7: Transaction anatomy

Signatures

For signatures in the compact array of signatures, the Solana runtime verifies
the following:

• The number of signatures must match the first 8 bits of the message
header.

• The signature is verified against the public key at the same index in the
message’s account addresses array.
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Message

The layout of a message is shown in the following table:

Field Description
Header Message metadata
Accounts Compact array of account addresses

Recent blockhash Blockhash of recently produced block
Instructions Compact array of instructions

Table 1.2: Message layout

1. Header

a) # of required signatures in the transaction (8 bits).

b) # of read-only accounts requiring signatures (8 bits).

c) # of read-only accounts not-requiring signatures (8 bits).

2. Accounts

a) Addresses that require signatures with read-write access.

b) Addresses that require signatures with read-only access.

c) Addresses that do not require signatures with read-write access.

d) Addresses that do not require signatures with read-only access.

3. Recent blockhash

• Transaction lifetime: transaction is deemed invalid if the blockhash
is older than 32 blocks.

• Transaction replay: identical txs get rejected, you can change the
blockhash and repeat the exact same action. Works in a similar
way as nonce in Ethereum.

4. Instructions with the following instruction anatomy (Figure 1.8):

a) Program id index (index to Accounts).

b) Compact-array of account address indices (indices to Accounts).

c) Compact-array of opaque 8-bit data (what operations to perform
and any additional data).
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Figure 1.8: Instruction anatomy

Account Anatomy

Similar to UNIX’s philosophy where everything is a file", on Solana, the
statement everything is an account" holds true. In other words, an account is
a memory buffer, an equivalent of a file in any file system. Its main purpose is
to store states between instructions and transactions.

To look up an account, an address is used, often referred to as a public key
or pubkey. Solana’s account system can be therefore considered a key-value
database system.

The key may be one of the following:

• An ed25519 public key.

• A program-derived account address (32byte value forced off the ed25519
curve).

• A hash of an ed25519 public key with a 32-character string.

The structure of an account is shown in the following table:

Field Description
Lamports Lamports in the account

Data data held in this account
Owner the program that owns this account. If exe-

cutable, the program that loads this account.
Executable this account’s data contains a loaded program

(and is now read-only)
Rent Epoch the epoch at which this account will next owe

rent

Table 1.3: Account layout
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1. Lamports

• Balance of the account in Lamports.

• 1 lamport = 10−9 SOL.

2. Data

• Vector of bytes.

• Maximum size of 10 MB (10 KB for PDAs).

3. Owner

• The owner is a program id or a loader in case of an executable
account.

• If the owner matches the program id, the program is granted write
access. Otherwise, it is only permitted to read its data and credit
the account

• All new accounts are owned by the System program that allows
transfers of Lamports, allocating data, and assigning ownership to
a different program id.

• An account is always owned by a program or a loader.

4. Executable

• Turning a non-executable account into an executable one is a one-
way only operation.

• The account becomes read-only.

• The owner of such an account is a loader that will load the code
from the data field of the account and start executing it if invoked.

5. Rent Epoch

• Keeping accounts alive on Solana incurs a fee called rent.

• An account is considered rent-exempt if it holds at least two years
worth of rent.

• Rent Epoch is the epoch number when the runtime will check again
whether an account should pay rent or is rent-exempt.
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Account Types

There are three basic types of accounts on Solana. Note that this is not any
sort of official classification.

• Data account storing data, also user wallets with an empty data field.

– System owned accounts.
– Program owned PDA (Program Derived Address) accounts.

• Program accounts storing user-deployed executable bytecode.

• Native accounts indicating native programs or special runtime accounts

– System – lamports transfers, data allocation and ownership assign-
ment.

– BPF Loader – uploading and launching executable programs.
– BPF Upgradeable Loader – uploading and launching of upgradeable

executable programs.
– Stake – program for staking SOL as a part of Proof-of-Stake mech-

anism.
– Vote – program for voting as a part of the Tower BFT consensus.
– Native Loader – owner of native programs and their loader.
– SysVar – special runtime accounts with blockchain-related informa-

tion

Runtime Policy

Runtime policy or Sealevel runtime account rules are a set of rules enforced by
the Sealevel runtime to protect the security of the system and make Solana a
safe and predictable environment for its users. The following list of rules is
taken from the official documentation [17]:

• Only the owner of the account may change owner.

– And only if the account is writable.
– And only if the account is not executable.
– And only if the data is zero-initialized or empty.

• An account not assigned to the program cannot have its balance decrease.

• The balance of read-only and executable accounts may not change.

• Only the system program can change the size of the data and only if the
system program owns the account.
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• Only the owner may change account data.

– And if the account is writable.

– And if the account is not executable.

• Executable switch is a one-way (false->true) operation, and only the
account owner may set it.

• No one can make modifications to the rent_epoch associated with this
account.

Compute Budget

To prevent abuse of the Solana nodes’ resources that could potentially lead to
network failures or denial of service, each transaction is given a compute budget.
When the program consumes its entire compute budget or exceeds certain
bounds, the runtime halts the currently running instructions and returns an
error.

Cross Program Invocation (CPI)

Cross Program Invocation (CPI) is a facility allowing us to call other programs
from within an instruction. The caller is halted until the execution returns
back from the callee. An important term connected with CPIs is a Program
Derived Address (PDA).

Program Derived Address (PDA)

Programs can issue instructions that contain signed accounts that were not
signed in the original transaction by using Program Derived Addresses (PDA).
These accounts are called PDA accounts. Program derived addresses allow
programmatically generated signatures to be used when calling between pro-
grams.

PDA is an address deterministically derived from the program id and
supplied keywords (Figure 1.9). The resulting address is checked against the
Ed25519 curve and bumped off it with so-called bump seeds if needed. Hence,
there is no private key.

When a program tries to invoke a CPI with such address, the runtime
takes the supplied keywords and bump seeds, uses the caller’s program id,
and repeats the process. If the resulting PDA matches, then the account is
considered to be signed.

25



1. Analysis

Figure 1.9: PDA generation

1.1.5 Ecosystem

Wallets

The Solana ecosystem consists of various user-facing products like wallets and
tools, allowing anyone to create their own token or a Non-Fungible Token
(NFT) easily and use the network without much hassle.

There are various web wallets, Android and iOS app wallets for smartphones,
browser extensions, and also official CLI tools. They differ in capabilities and
out-of-the-box support for various Solana projects or being developer-oriented.

The major ecosystem wallet providers include:

• Phantom (iOS/Android apps and all major browser extensions)

• Solflare (Web wallet, iOS/Android apps, and chrome-only extension)

• Sollet (Developer-oriented web wallet and chrome-only extension)

The only supported hardware wallets to safely interact and store keys to
access cryptocurrencies and other assets now are products by the company
Ledger:

• Ledger Nano S

• Ledger Nano X

Decentralized Finance (DeFi)

There are many financial products available, bringing the traditional banking
but in a decentralized coat – known as Decentralized Finance (DeFi).

Decentralized exchanges (DEX) and swapping services offer a way to trade
SOL or any available token into any other token easily:

• Project Serum

• Bonfida DEX
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• Raydium Swaps

• Orca Swaps

• Jupiter Aggregator

• Mango Markets

Decentralized bridges offer a way to bridge your tokens from blockchains
such as Bitcoin or Ethereum to Solana, allowing them to be used in the Solana’s
DeFi products:

• Wormhole Bridge

• DeBridge Finance

Liquid staking of SOL and synthetic assets:

• Marinade Finance

• Synthetic

• Sypool

NFT Marketplaces and Metaverse

There are multiple NFT marketplaces to trade NFTs, which are in theory
supposed to represent a certificate of ownership of something, these days
usually of some kind of an auto-generated picture.

The trend of NFTs is tightly coupled with an old-new concept of Metaverse,
an artificial world where people could meet as virtual avatars and show off
their collectible NFTs.

NFTs might find a useful use case in the future for representing real-world
items, such as concert tickets, but it remains to be seen if they offer in practice
any real advantage or if the technology stays being used mostly only for
speculations.

Some of the projects include:

• Metaplex Protocol

• OpenSea Marketplace

• Solanart Marketplace
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Web3 and Games

First games built on Solana are starting to appear, using the blockchain as a
back end – this type of development paradigm is referred to as Web3.

In general, any application using the blockchain as a data and business
logic layer can be considered Web3.

When a user visits such a website, they are usually able to connect their
wallet with the website and interact with it by sending transactions that could,
e.g., post a message on a Web3 social media platform or post an order o a
decentralized exchange.

1.2 Trdelnik

Trdelnik is a new Rust-based testing framework for Solana programs written in
the Anchor framework. This section explains the motivation behind creating
Trdelnik and the essential features provided by Trdelnik to make the developer
experience smoother and safer from a security standpoint. First, some essential
concepts are covered.

1.2.1 Present State

Regular Solana on-chain programs, referred to often as Raw Solana programs,
are developed in the plain Rust programming language, following only the
formal ABI prescribed by the BPF Loader, specifying things like what the
entry point looks like and some special types provided by a library.

A programmer of a Raw Solana program needs to handle all of the following:

1. Deserialize the instruction data.

2. Decision what operation of the program to do based on the instruction
data.

3. Deserialize and perform security checks on input accounts. This is
important because a user could create accounts with arbitrary data and
pass those accounts in place of the valid accounts. The maliciously
fabricated input can cause unexpected results and unintended behavior.

4. Perform the required business logic.

5. Serialize the changed data required to handle the state for future program
invocations and save it.
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The typical structure of a Raw Solana program is shown below:

.
src

lib.rs -> module registration
entrypoint.rs -> required entrypoint defined by the BPF Loader
instruction.rs -> program API and instruction data deserialization
processor.rs -> program business logic
state.rs -> program structs and (de)serialization of accounts
error.rs -> program-specific errors

.gitignore
Cargo.lock
Cargo.toml
Xargo.toml

The development of Raw Solana programs is a tedious and error-prone
experience. And in a world where one single mistake can cost millions of dollars
of damage, and the environment is full of adversaries scanning through every
new contract with some monetary value deployed on the Solana blockchain to
exploit them, this becomes a huge problem.

Anchor Framework

Anchor framework aims to help with the described problem. Anchor offers
a set of convenient libraries (crates in the Rust terminology) and tools to
help developers with creating their Solana programs in a fast, secure and
manageable way.

The most important attributes of the Anchor framework include:

• An embedded Domain-Specific Language (eDSL) exploiting the advanced
Rust macro system, making the development easier by adding simple
macro attributes to specific parts of the code or using special types.

• An Interface Description Language (IDL) defining a public interface of
the Solana program, saying how to properly form a Solana instruction to
perform a specific operation of the invoked Solana program and also the
description of the relevant accounts used to store data for the program.

• Javascript/Typescript library handling the code generation based on the
program’s IDL.

• A CLI workspace management tool to help with building, testing, and
deploying Solana programs.
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Anchor eDSL

The Listing 1.3 shows, how the account structures are defined using the
Anchor’s eDSL, e.g. Rust macros like #[derive(Accounts)] , #[account]
and special types like Account, Signer or Program driven by Rust generics
and lifetimes.

#[derive(Accounts)]
pub struct Initialize<'info> {

#[account(
init,
payer = user,
space = 8 + 2

)]
pub state: Account<'info, State>,
#[account(mut)]
pub user: Signer<'info>,
pub system_program: Program<'info, System>,

}
#[derive(Accounts)]
pub struct UpdateState<'info> {

#[account(mut)]
pub state: Account<'info, State>,

}
#[account]
pub struct State {

pub locked: bool,
pub res: bool,

}

Listing 1.3: Definition of accounts using Anchor’s eDSL

The Listing 1.4 demonstrates business logic of a simple turnstile program,
which can be initialized with the initialize operation. After inserting a
coin, the turnstile state changes to unlocked with the coin operation, and
when the turnstile is pushed via push operation, the turnstile gets locked
again. Notice the Anchor-provided macro #[program] and also that nowhere
within the code you can see explicit deserialization or serialization and no input
account checking. This is all done internally because the macro expansion of
#[program] is performed on the module, leaving less room for mistakes and
potential loopholes in Solana programs.

Compared to the "Raw Solana way," a programmer using the Anchor
framework only describes the business logic, the data needed to perform the
business logic, and everything else, including the deserialization of instruction

30



1.2. Trdelnik

data, deserialization and serialization of accounts, security checks on the
accounts, etc., is handled for them automatically via expansion of the Rust
macros (essentially an eDSL) and the semantic meaning of various special
types provided by the Anchor framework.

#[program]
pub mod turnstile {

use super::*;
pub fn initialize(ctx: Context<Initialize>) -> Result<()> {

let state = &mut ctx.accounts.state;
state.locked = true;
state.res = false;
Ok(())

}
#[allow(unused_variables)]
pub fn coin(ctx: Context<UpdateState>, dummy_arg: String) -> Result<()> {

let state = &mut ctx.accounts.state;
state.locked = false;
Ok(())

}
pub fn push(ctx: Context<UpdateState>) -> Result<()> {

let state = &mut ctx.accounts.state;
if state.locked {

state.res = false;
} else {

state.locked = true;
state.res = true;

}
Ok(())

}
}

Listing 1.4: Definition of business logic using Anchor’s eDSL

Anchor’s IDL

When a program is compiled to the BPF bytecode and ready for deployment,
an IDL is generated. This IDL (example in Listing 1.5) can be further used to
generate code for tests or front-end applications interacting with the Solana
blockchain using JavaScript on the client side.
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{
"version": "0.1.0",
"name": "turnstile",
"instructions": [

{
"name": "initialize",
"accounts": [

{
"name": "state",
"isMut": true,
"isSigner": true

},
{

"name": "user",
"isMut": true,
"isSigner": true

},
{

"name": "systemProgram",
"isMut": false,
"isSigner": false

}
],
"args": []

},
// ... rest of the IDL
]

}

Listing 1.5: An example of Anchor’s IDL

1.2.2 Identified Problem

Anchor is able to generate Javascript/Typescript client program code from the
IDL. The problem is it takes enormous effort to even send a single instruction
calling one of the instructions.

The process of testing Solana programs is following:

1. Create a Solana program using Rust and Anchor Framework.

2. Compile into bytecode and generate an IDL.

3. Launch a local cluster and deploy the compiled program to it.

4. Write boilerplate code to prepare sending a transaction (Listing 1.6).
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5. Use the generated IDL to generate an RPC client to be used within the
boilerplate (Listing 1.6).

6. Execute the RPC with correct arguments.

const anchor = require('@project-serum/anchor');
const fs = require('fs')
// Configure the local cluster.
anchor.setProvider(anchor.Provider.local());
const getPublicKey = (name) =>

new anchor.web3.PublicKey(...);
const getPrivateKey = (name) =>

Uint8Array.from(...);
const getKeypair = (name) =>

new anchor.web3.Keypair(...);
async function coin() {

// Read the generated IDL.
const idl = JSON.parse(require('fs').readFileSync(

'./target/idl/turnstile.json', 'utf8'));
// Address of the deployed program.
const programId = getPublicKey("program");
// Generate the program client from IDL.
const program = new anchor.Program(idl, programId);
// Get keypair of the state as it is the input to the coin instr
const state = getKeypair("state");
// Finally we execute the rpc
const tx = await program.rpc.coin({

accounts: {
state: state.publicKey,

},
signers: [],

});
}
coin();

Listing 1.6: Client code in coin.js

This is a significant overhead for a developer. In order to send a single
transaction executing one single instruction, you need to write about 30 lines
of code in Javascript, as the other languages are not supported by the Anchor
Framework.
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In addition, the sequence of steps below is required for us to be able to call
this script:

$ solana-keygen [OPTIONS] # keys generation into a ./keys dir
$ anchor build # builds an Anchor program and creates its IDL
$ solana-test-validator -C ./config.yml # starts a local chain
$ solana airdrop -C ./config.yml 1 ./keys/id.json # airdrop SOL to an account,

# so it can pay for deployment
$ solana program deploy -C ./config.yml --program-id ./keys/program.json
./target/deploy/turnstile.so # deploys a compiled program
$ ANCHOR_WALLET=./keys/id.json node coin.js # calls the script

Listing 1.7: Sequence of steps needed for coin.js execution

1.2.3 Value Proposition

Trdelnik, the Rust Testing Framework for Solana, aims to solve the problem by
doing all of those things automatically. It consists of a CLI tool and a library
with API to test Solana programs written in Anchor offering also various
convenience features.

One of the major problems in the blockchain world is security and reliability
are more and more prioritized. Trdelnik is written in Rust and helps to test
code directly in Rust, which is also the language of the Solana programs,
instead of using Javascript. A safe language like Rust should help minimize
issues that would be left undiscovered using any other language for testing.

1.2.4 Features in Development

Trdelnik is still very early in development but already open-sourced and
available on GitHub10 for a download. It can be compiled from the source
code, which, thanks to the Rust’s Build and Package Management Tool Cargo,
is quite a convenient process. The name Trdelnik is inspired by a tool called
Brownie from the Ethereum ecosystem.

Furthermore, Trdelnik desires to be a set of convenient tools for developers,
offering more features that help developers code Solana programs.

Trdelnik’s developer tools currently in development include:

Trdelnik Client (first version delivered)
Build and deploy an Anchor program to a local cluster, simplify the
process of writing tests and run the test suite against the deployed
program. This is the main motivation behind Trdelnik, as explained
earlier.

10https://github.com/Ackee-Blockchain/trdelnik
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Trdelnik Explorer (function proposed by this thesis)
Transaction and blockchain inspector, which helps to examine changes on
a local cluster. Trdelnik Explorer is introduced in Chapter 2, “Function
Proposal for Trdelnik”.

Trdelnik Fuzz (currently being researched)
First built-in fuzzy tester of Solana programs. It automatically generates
random data as input, so that developers do not need to write them
themselves.

Trdelnik Console (currently being researched)
Built-in console to give developers a command prompt for quick program
interaction allowing developers to call individual transactions or perform
deployment interactively. See Listing 1.8 for an example.

$ trdelnik console
>>> program = Turnstile.deploy(...)
>>> program.initState()
>>> program.coin({accounts: {state: accounts[0]}})
>>> ...

Listing 1.8: Example from Trdelnik Console

Trdelnik Client

Trdelnik Client, as the main driving force behind Trdelnik and the only so-far
delivered part of Trdelnik before this thesis.

Compare the following workflow with the previous way of testing Solana
programs shown in Subsection 1.2.2, “Identified Problem”:

1. Create a Solana program using Rust and Anchor Framework.

2. Run trdelnik build to create a program_client crate containing an
auto-generated code for easy invocation of program instructions.

3. Write tests using the said crate and using #[trdelnik_test] macro
(see an example in Listing 1.9).

4. Run trdelnik test to automatically launch a local cluster, deploy the
program and run your test suite against it.

As can be seen, only the very first step stays the same. The rest of the
process is conveniently streamlined and handled by Trdelnik. Developers can
therefore focus only on the program itself and writing tests in the same language
as their programs are written in without the previously needed Javascript
boilerplate.
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#[trdelnik_test]
async fn test_happy_path() {

// create a test fixture
let mut fixture = Fixture {

client: Client::new(system_keypair(0)),
program: program_keypair(1),
state: keypair(42),

};
// deploy a tested program
fixture.deploy().await?;

// init instruction call
turnstile_instruction::initialize(

&fixture.client,
fixture.state.pubkey(),
fixture.client.payer().pubkey(),
System::id(),
Some(fixture.state.clone()),

)
.await?;
// coint instruction call
turnstile_instruction::coin(

&fixture.client,
"dummy_string".to_owned(),
fixture.state.pubkey(),
None,

)
.await?;
// push instruction call
turnstile_instruction::push(&fixture.client, fixture.state.pubkey(), None).await?;

// check the test result
let state = fixture.get_state().await?;

// after pushing the turnstile should be locked
assert!(state.locked);
// the last push was successfull
assert!(state.res);

}

Listing 1.9: Testing with Trdelnik Client
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Chapter 2
Function Proposal for Trdelnik

This chapter introduces a proposal for a new function, Trdelnik Explorer, to
be implemented as the second major feature of Trdelnik, the Rust Testing
Framework for Solana, presented in the previous chapter.

2.1 The General Idea Behind Explorer

Trdelnik Client, as explained earlier, solves the problem of testing Solana
programs. However, what remains complicated is observing the changes on
a blockchain for the purpose of developers and security auditing companies.
The program testing was just one part of the mosaic.

Some of the current obstacles when testing includes issues observing:

• Changes to accounts between transactions.

• How the programs were deployed and the implications.

• Identifying possible risk.

• Inspecting details of individual transactions.

Even though there are some consumer-facing explorers available on the
market already, there is still a need for a convenient tool that can get all the
important information from the blockchain, analyze it, and show it to the user
in a way and a form suited for developers and security researchers. Consumers
and developers generally differ in their needs, and the focus until now has been
mostly on consumers.

This thesis proposes a new function called Trdelnik Explorer, which aims to
solve this issue by providing its own library as a part of Trdelnik to analyze the
ledger changes using a convenient API. Some of the parts of the library could
be directly integrated with the Trdelnik CLI tool and used by the end-user.
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2.2 Explorer Requirements

2.2.1 Functional Requirements

FR-01 – User Input Format

A user is able to insert any valid addresses for accounts:

• An Ed25519 public key.

• A program-derived account address (32byte value forced off the ed25519
curve).

• A hash of an ed25519 public key with a 32-character string.

When inspecting programs, any program id, which is an Ed25519 Public
Key, is also processed.

For transactions, any valid transaction id is processed. That is always the
first signature of a transaction.

In case of an invalid input or an account, program id, or transaction id
posing no information, the user is always informed about this fact.

FR-02 – User Output Format

A user can choose from multiple output formats.
This list of output formats is comprised of:

• CLI format as the standard human-readable way to read the results.

• JSON format as both human-readable, but mainly machine-readable
data format that can be further processed.

• JSONPretty format as the prettified variant of the JSON format modified
by adding spaces and newlines to make this an easy-to-read pretty-printed
JSON.

FR-03 – Account Inspection

The explorer is able to fully inspect accounts given their address. That means
all information about any account can be easily observed, and changes before
and after a transaction are analyzed.

FR-04 – Program Inspection

The explorer is able to fully inspect programs given their program id. Further-
more, the explorer is able to identify the way the program was deployed and
show further information based on this analysis.
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This is especially important for distinguishing between non-upgradeable
and upgradeable programs, which pose additional risk to end-users because of
a single point of failure and required trust.

FR-05 – Transaction Inspection

The explorer is also able to fully inspect all transactions given their transaction
id. This is by far the most complicated and most insightful inspection.

The complexity of Solana transactions sometimes requires multiple different
views of a transaction from a different perspective. Therefore, the explorer
provides two ways of inspecting transactions:

• Raw View to show the transaction in its raw form without any possibly
misleading processing or interpretation of data.

• Interpreted View to show a processed transaction that tries to provide as
much interpreted information about the transaction, invoked programs,
the actual instructions, and logs.

FR-06 – Account Differences

The explorer shall be able to show differences before and after a transaction
happens to observe the effects of a program instruction invocation or be able
to show differences between any two accounts.

FR-08 – Instruction Parser

As there is no standardized way to publish your program API, the explorer
during the transaction inspection described in FR-05 should still try to deseri-
alize and parse as many program instructions as possible using heuristics or
other methods.

FR-09 – Custom Program Instruction Parser

The explorer shall present a way to add any program to the instruction parser,
for example, for purposes of auditing undisclosed and yet unreleased programs.

FR-10 – Account Deserialization

If the account structure and serialization format is known, the explorer should
be able to deserialize the account data.

FR-11 – Cluster Support

The explorer works with all available Solana clusters, and users can change
the targeted cluster easily. The most common clusters include:
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• Beta Mainnet – the official Solana cluster that is not meant to be reverted
in the future.

• Devnet – an official Solana cluster to help developers test their programs
on a mainnet-like network, sometimes with new features that are yet to
be introduced to the mainnet.

• Testnet – an official Solana cluster for testing new Solana versions and
features.

• Localnet – any local Solana cluster launched, usually used for testing
before going to Devnet.

FR-12 – Granular Visibility

The explorer allows setting certain granularity to the output presented to the
user. The purpose of this requirement is to hide not needed information and
allow the user to focus only on what currently matters.

2.2.2 Non-functional Requirements

NFR-01 – Programming Language

The explorer shall be programmed in the Rust programming language so that
it can be easily integrated with the Trdelnik CLI or used by other tools in the
Solana ecosystem, which is focused on the Rust ecosystem.

NFR-02 – Platform

Any desktop computer with an architecture supported by the Rust compiler
and LLVM backend.

NFR-03 – Usage

The explorer is meant to be used within the Trdelnik CLI or standalone as a
library.

NFR-04 – Demands

The explorer shall be very lightweight, always running locally and without the
need for a database.

NFR-05 – Extensibility

It should be relatively easy to extend the explorer with more features in the
future.
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NFR-06 – Logging

Invalid inputs, non-existing accounts, programs or transactions, failures during
node communication, or any other problems are reported to the user.

2.3 Use Cases
Use cases are summarized in Figure 2.1 as a use case diagram.

Use Cases

User

UC-01:  
Search the Blockchain

UC-02:
Display Differences

UC-03: 
Security Inspection

<< extends >>

<< extends >>

<< extends >>

Figure 2.1: Use case diagram

2.3.1 UC-01 – Search the Blockchain

The use case enables the user to search for and show parts of the Solana
blockchain, such as accounts, programs, and transactions.

2.3.2 UC-02 – Display Differences

The use case enables the user to compare changes to the Solana ledger and
how transactions affect the state.

2.3.3 UC-03 – Security Inspection

The use case enables the user to inspect details of the program instruction
invocations, state changes, and adding unknown instructions in the case of
undisclosed programs being audited and alerted about risks.
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Chapter 3
Implementation

This chapter covers the architecture and implementation of the Explorer
functionality for Trdelnik, the Rust Testing Framework for Solana, and its
integration with the Trdelnik CLI tool. Trdelnik Explorer is meant to be used
as both a library and directly from the Trdelnik CLI.

3.1 Technology Used

Rust Programming Language
Rust is a new modern programming language designed for both perfor-
mance and safety at the same time. Its design allows programmers not
to worry about manual memory management, yet there is no Garbage
Collection. Thanks to the design of the language, the mistakes and
common undefined behavior known from languages, such as C or C++
are caught during compilation time. Rust’s zero-cost abstractions re-
sult in comparable performance to code written in C or C++ and are
slowly becoming their contender even in the field of High-Performance
Computing.

Rust has recently become very popular in cryptocurrency projects for the
said safety and performance. In Solana, the whole codebase, all on-chain
programs, and most tooling are written in Rust. Therefore it makes
sense to continue in the same manner, as others are able to easily use
your work in their projects. Also, for integration with Trdelnik, it is a
necessity to code the Explorer in Rust, so it is an obvious choice here.

As not many are familiar with Rust, to not get lost in its terminology, let
some of the key terms of a typical Rust project be repeated. Simply put,
the compilation unit in Rust is called a crate. A library is typically called
a library crate, and an executable is called a binary crate. Each crate
consists of modules, which can be considered namespaces to a certain
extent and help divide the crate into many logical parts. Crates can be
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a part of a larger Rust project that we call a Workspace. The whole
project management and the building are handled by the tool named
Cargo.

Tokio Runtime
Tokio is an asynchronous runtime for the Rust programming language
ideal for writing network applications.

Solana Blockchain
Solana blockchain is used whenever the tool is used, mainly by connect-
ing to one of the RPC listening nodes and talking to them via their
JSON-RPC protocol or WebSocket endpoint. Implementing the explorer
requires extensive knowledge of Solana internals, programming model,
and some of its core concepts. Without a Solana cluster (network), the
tool has no use.

Solana Client
A convenient wrapper around the JSON-RPC protocol and the WebSocket
protocol used by Solana nodes. Developers are thus not required to write
their own clients using HTTP libraries to communicate with nodes when
using Rust to write their tools.

Solana SDK
An important dependency of Solana Client contains most of the im-
portant type definitions, constants, and convenient functions.

3.2 Explorer Crate
The explorer crate is comprised of multiple modules, each serving as a logical
part of the explorer. The crate also tries to make use of the Rust generics to
simplify the code, readability and future refactoring, and easy extensibility:

Config module
Module serving for the purpose of creating a configuration (a snippet
shown in Listing 3.1) that can be used later within the Explorer API.
Two main configuration options include:

• Creation and setting up of an Async RPC client to talk to the
predefined Solana cluster via an RPC node. By default using the
developer’s preferred cluster set in the configuration file of the official
Solana Tool Suite11.

• Logger settings, by default set to the ERROR level.

11https://docs.solana.com/cli/install-solana-cli-tools
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...
pub struct ExplorerConfig {

json_rpc_url: String,
rpc_client: RpcClient,

}
pub fn setup_logging(level: LogLevel) {

match level {
LogLevel::ERROR => solana_logger::setup_with_default("error"),
LogLevel::WARN => solana_logger::setup_with_default("warn"),
LogLevel::INFO => solana_logger::setup_with_default("info"),
LogLevel::DEBUG => solana_logger::setup_with_default("debug"),
LogLevel::TRACE => solana_logger::setup_with_default("trace"),

}
}
...

Listing 3.1: Config module snippet

Error module
Module serving as a place for error definitions and the common return
type definition of fallible functions (a snippet shown in Listing 3.2).
Transformation of errors returned from the libraries to the common error
type used throughout the whole explorer crate is handled by this module.
The errors can be caught by a user of the explorer’s crate or shown to
the user of the Trdelnik CLI in case of a failure.

pub type Result<T> = std::result::Result<T, ExplorerError>;
#[derive(Debug, Error)]
pub enum ExplorerError {

#[error( "{0}")]
SolanaClient(#[from] ClientError),
#[error( "{0}")]
SerdeJson(#[from] SerdeError),
#[error( "{0}")]
Fmt(#[from] FmtError),
#[error( "{0}")]
Instruction(#[from] InstructionError),
#[error( "{0}")]
Custom(String),

}

Listing 3.2: Error module snippet
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Display module
Module using generics to allow pretty printing. As can be seen in
Listing 3.3, there are three variants of the DisplayFormat enum allowing
to get a string output of any explorer item T implementing fmt::Display
and Serialize traits.

#[derive(Clone, Copy)]
pub enum DisplayFormat {

Cli,
JSONPretty,
JSON,

}
impl DisplayFormat {

pub fn formatted_string<T>(&self, item: &T) -> Result<String>
where

T: fmt::Display + Serialize,
{

match self {
DisplayFormat::Cli => Ok(format!("{}", item)),
DisplayFormat::JSONPretty => Ok(serde_json::to_string_pretty(&item)?),
DisplayFormat::JSON => Ok(serde_json::to_string(&item)?),

}
}

}

Listing 3.3: Display module snippet

Output module
Module with the main public API of the explorer library, consisting of
many public functions that can be used as needed for specific use cases.
Some of them are explicitly used in the Trdelnik CLI tool integration.

The snippet shown in Listing 3.4 manifests the public API of this
module and one full function signature and function definition of the
print_transaction as an example.

It can be observed it takes a signature that uniquely identifies a transac-
tion. Then it takes the next parameter defining what to show, another
parameter that defines the display format, and finally, the explorer
configuration specifying the Solana cluster to talk to.
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...
pub async fn print_transaction(

signature: &Signature,
visibility: &TransactionFieldVisibility,
format: DisplayFormat,
config: &ExplorerConfig,

) -> Result<()> {
let transaction_string = get_transaction_string(signature, visibility,

format, config).await?;
println!("{}", transaction_string);
Ok(())

}
pub async fn print_raw_transaction(...) -> Result<()> {...}
pub async fn print_account(...) -> Result<()> {...}
pub async fn print_program(...) -> Result<()> {...}
pub async fn get_transaction_string(...) -> Result<String> {...}
pub async fn get_raw_transaction_string(...) -> Result<String> {...}
pub async fn get_account_string(...) -> Result<String> {...}
pub async fn get_program_string(...) -> Result<String> {...}
pub fn classify_account(...) -> String {...}
pub fn calculate_change(...) -> String {...}
pub fn pretty_lamports_to_sol(...) -> String {...}
pub fn change_in_sol(...) -> String {...}
pub fn status_to_string(...) -> String {...}

Listing 3.4: Output module snippet

Account, Program and Transaction modules
Modules with important data structures regarding Account, Program,
and Transaction representations, granular visibility, and interpretation
of data. The most complicated one is the Transaction module, as the
transaction is the most complex structure in Solana and things like
instruction deserialization are not trivial (without it, it is just raw binary
data). The transaction module makes use of the parser module for this
reason.

Parser module and its submodules
Module dedicated to parsing of program instructions invoked in transac-
tions, an important part of the Transaction deserialization and interpre-
tation.

This is especially a tricky part, as there is no standard way to publish
your program API in Solana, and without proper interpretation, we just
see some raw data, not knowing what it actually does.
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The chosen approach to tackle this problem is to remember the most used
programs in Solana as a lookup table (Listing 3.6), which is a hashmap
built during compilation time that helps identify program instructions
when processing transactions. Recognized program instructions are then
decoded and interpreted according to their known attributes. If the
program cannot be recognized, we only show the information about
which accounts are used within the instruction and the raw instruction
data.

Deserialization and interpreting logic of the known programs is imple-
mented as submodules of the Parser module.

pub enum DisplayInstruction {
Parsed(DisplayParsedInstruction),
PartiallyParsed(DisplayPartiallyParsedInstruction),

}
impl DisplayInstruction {

fn parse(instruction: &CompiledInstruction, account_keys: &[Pubkey]) -> Self {
let program_id = &account_keys[instruction.program_id_index as usize];
if let Ok(parsed_instruction) = parse(program_id, instruction, account_keys) {

DisplayInstruction::Parsed(parsed_instruction)
} else {

DisplayInstruction::PartiallyParsed(partially_parse(
program_id,
instruction,
account_keys,

))
}

}
}

Listing 3.5: Instruction parser logic

There are some first initiatives, started mainly by the Anchor Framework,
to upload a program’s IDL to deterministic addresses on blockchain,
which could help us to automatize the whole process, and all such
programs could be automatically recognized, decoded, and interpreted in
the future. The explorer can be easily extended to support this feature
in the future. Listing 3.5 shows the processing logic of an instruction
parser.
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static PARSABLE_PROGRAM_IDS: phf::Map<&'static str, ParsableProgram> = phf_map!
{

// System
"11111111111111111111111111111111" => ParsableProgram::System,
// BPF Loader Deprecated
"BPFLoader1111111111111111111111111111111111" =>
ParsableProgram::BPFLoaderDeprecated,
// BPF Loader
"BPFLoader2111111111111111111111111111111111" =>
ParsableProgram::BPFLoader,
// BPF Loader Upgradeable
"BPFLoaderUpgradeab1e11111111111111111111111" =>
ParsableProgram::BPFLoaderUpgradeable,
// Stake
"Stake11111111111111111111111111111111111111" => ParsableProgram::Stake,
// Vote
"Vote111111111111111111111111111111111111111" => ParsableProgram::Vote,
// SPL Memo v1
"Memo1UhkJRfHyvLMcVucJwxXeuD728EqVDDwQDxFMNo" => ParsableProgram::SPLMemoV1,
// SPL Memo (current)
"MemoSq4gqABAXKb96qnH8TysNcWxMyWCqXgDLGmfcHr" => ParsableProgram::SPLMemo,
// SPL Token
"TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA" => ParsableProgram::SPLToken,
// SPL Associated Token Account
"ATokenGPvbdGVxr1b2hvZbsiqW5xWH25efTNsLJA8knL" =>
ParsableProgram::SPLAssociatedTokenAccount

};

Listing 3.6: Lookup table of parsable programs

3.3 Trdelnik Integration
The explorer can be used standalone as a library. However, it is desirable to
have some of the features available even as a part of the Trdelnik CLI tool.

The Trdelnik CLI tool has been, therefore, properly extended in its
trdelnik-cli crate to support the most frequent use cases from the command
line. Concrete examples can be seen in Appendix A, “CLI Examples”.
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Chapter 4
Testing

4.1 Testing in Rust
Rust natively supports both unit and integration testing. In Rust, tests are
just special user-written functions that verify the correctness of the non-test
code.

The only difference is that in order to get skipped during normal compilation,
they must be marked accordingly. An example of a unit test of a simple module
consisting of one function is shown in Listing 4.1.

pub fn add(a: i32, b: i32) -> i32 {
a + b

}

#[cfg(test)]
mod tests {

use super::*;
// additional use statements

#[test]
fn test_add() {

assert_eq!(add(1, 2), 3);
}

// additional tests
// #[test]
// ...

}

Listing 4.1: Rust unit test example
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4.2 Unit Testing
Parser is an important part of the explorer and handles deserialization and
interpretation of parsable program instructions as explained in Chapter 3.

To verify the correctness of the implementation of the parser, every sub-
module of the parser module has been properly covered by unit tests to make
sure that all kinds of instruction types are recognized properly.

Table 4.1 shows the test coverage of all parser submodules. It can be
observed that the coveraged has reached 97.72% and Listing 4.2 demonstrates
the testing in practice.

The only missing unit test is a unit test of a new marginal instruction of
the stake program, which has not been yet properly documented. The test can
be added when there is more information available to construct a proper unit
test.

$ cargo test -p trdelnik-explorer
Finished test [unoptimized + debuginfo] target(s) in 0.57s
Running unittests src/lib.rs (target/debug/deps/trdelnik_explorer-

839c9fa65fe2aebe)
running 43 tests
... (skipped for the purpose of this thesis) ...
test parse::vote::test::test_parse_vote_switch_ix ... ok
test parse::vote::test::test_parse_vote_withdraw_ix ... ok
test parse::vote::test::test_parse_vote_update_validator_identity_ix ... ok

test result: ok. 43 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.01s

Listing 4.2: Unit testing in practice

Submodule # of IXs Tested # of IXs Test Coverage
associated_token_account 1 1 100%

bpf_loader 2 2 100%
bpf_upgradeable_loader 7 7 100%

memo 1 1 100%
stake 12 13 92.3%
system 12 12 100%
token 1 1 100%
vote 8 8 100%

Overall 43 44 97.72%

Table 4.1: Parser submodules coverage
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4.3. Integration Testing

4.3 Integration Testing
Given the nature of public blockchains and possible state changes for items
being tested, which can change at any moment, it is not trivial to automatize
testing.

One way to do it would be to simulate the whole blockchain locally with
certain testing transactions.

Intending to avoid that and because of major coding overhead and intangible
value of these tests as just described, it has been concluded that except for
the Parser unit testing, the explorer would had undergone mostly manual and
semi-manual testing to validate the overall correctness of the output.

4.4 Functional and User Testing
The explorer has been tested against the Solana beta mainnet for all types of
blockchain items, i.e., accounts, programs, transactions, and for all kinds of
output to evaluate correctness.

• Account testing:

– System owned data accounts (with no data, ≤ 64B, > 64B)
– Program owned PDA accounts (with no data, ≤ 64B, > 64B)
– Program accounts (owned by BPF Loader deprecated, BPF Loader

and BPF Upgradeable Loader)
– Native accounts (native programs and special runtime accounts)

• Testing of programs deployed using:

– BPF Loader deprecated
– BPF Loader
– BPF Upgradeable Loader

• Transaction testing:

– Transactions with program instructions matching known parsable
programs according to Listing 3.6.

– A random sample of transactions from the network.

The explorer has also undergone internal user testing and has been improved
according to the remarks of Ackee Blockchain who helped to supervise this
thesis.
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Conclusion

The goal of the thesis was to introduce the Solana blockchain and Trdelnik, the
Rust Testing Framework for Solana programs. Furthermore, new functionality
for Trdelnik was proposed and implemented.

The reader is first introduced to some of the key blockchain terms, followed
by an introduction to Solana, where the original motivation and proposition
of Solana are described. The analysis chapter then explains all core technical
concepts Solana is based on and how it differs from other blockchains, mainly
Ethereum. For new Solana programmers, the unique programming model
is essential, as it is very different from other blockchains, and for example,
programmers with experience in developing on Ethereum cannot simply switch
to Solana without changing the way they think about smart contracts. As the
core reason why Solana even exists and what is currently possible, some of the
most important Solana ecosystem projects are presented.

The reader is also introduced to Trdelnik, the Rust Testing Framework for
Solana programs. It should be obvious that the current state of development
on Solana is an error-prone, tedious, and lengthy process, which is what
frameworks such as Anchor, together with Trdelnik, try to change. Trdelnik
focuses on the testing part of the process, as a single mistake in this adversary
space can easily cost millions of dollars in losses. The features currently being
worked on Trdelnik are introduced.

The new functionality for Trdelnik is proposed. This feature is called
Trdelnik Explorer, or simply put explorer, and aims to be a swiss knife for
inspecting the blockchain changes between transactions. It offers convenient
ways for security inspection of transactions and the effects they have on the
data stored in accounts, which is roughly an equivalent of files from file systems,
but on Solana. Most importantly, functional and non-functional requirements
and use cases are presented.

Finally, the proposed explorer feature is implemented. The description
includes the technology used and reasoning. All modules in the explorer crate
are examined with some code snippets to provide a better explanation. The
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explorer is implemented as a library, but since Trdelnik has its own CLI tool,
some of its most frequent functions are integrated with it.

Future Work
Trdelnik Explorer and overall the whole Trdelnik Framework are still early in
development, and there is a lot to be researched and developed. Especially for
the Trdelnik Fuzz and Trdelnik Console features that are yet to be started
being developed.

Even though the development is not finished, with the solid ground created
by the first two major features, Trdelnik Client and Trdelnik Explorer, proposed
and implemented in this thesis, it has a good starting point and future potential
to become one of the go-to standard tools of any Solana developer. As an
open-source tool with a public repository on GitHub12, any contributors are
welcome to join the project and help with development.

12https://github.com/Ackee-Blockchain/trdelnik
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Appendix A
CLI Examples

Figure A.1: Trdelnik Explorer help message

59



A. CLI Examples

Figure A.2: Account subcommand help message

Figure A.3: Program subcommand help message
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Figure A.4: Transaction subcommand help message

Figure A.5: Account subcommand example with empty data

Figure A.6: Account subcommand example with data
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A. CLI Examples

Figure A.7: Account subcommand example with JSONPretty output

Figure A.8: Program subcommand example

Figure A.9: Overview part of the transaction subcommand
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Figure A.10: Accounts part of the transaction subcommand

Figure A.11: Instruction part of the transaction subcommand

Figure A.12: Logging part of the transaction subcommand
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A. CLI Examples

Figure A.13: Transaction subcommand with --raw switch
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Appendix B
Acronyms

CLI Command-Line Interface

CLR Common Language Runtime

DeFi Decentralized Finance

DEX Decentralized Exchange

eDSL Embedded Domain Specific Language

EVM Ethereum Virtual Machine

IDL Interface Description Language

JSON JavaScript Object Notation

JVM Java Virtual Machine

NFT Non-Fungible Token

P2P Peer-to-Peer

PoS Proof-of-Stake

PoW Proof-of-Work

RPC Remote Procedure Call

SDK Software Development Kit

SOL Solana Coin

TPS Transactions per Second

VM Virtual Machine
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Appendix C
Contents of Enclosed SD Card

README.txt .................. the file with SD Card contents description
src .................................... the directory with source codes

trdelnik ........... the directory with the whole Trdelnik workspace
Cargo.toml.....................Trdelnik workspace definition file
crates ..................... the directory with all Trdelnik crates

cli.......................................Trdelnik CLI crate
client..................................Trdelnik Client crate
explorer.............................Trdelnik Explorer crate
test......................................Trdelnik Test crate

HOWTO.md................................Installation instructions
text..........................................the thesis text directory

latex.............the directory with LATEX source codes of the thesis
thesis.pdf...........................the thesis text in PDF format
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