
Instructions

New EU regulations require all future drones to broadcast their position and identification data to

provide safety & security for the general public on the ground. The broadcasting technology is based on

Wi-Fi and Bluetooth, thus all mobile phones can receive it. This thesis aims to implement a multiplatform

application (Android and iOS) for the general public that will be able to scan those broadcasts and

display them in a user-friendly way. Such an app is currently not available in the app stores.

- Research existing solutions for Direct Remote ID of drones and study its latest standards.

- Design and implement a standalone Flutter library that will scan Drone Remote ID broadcasts on both

Android and iOS.

- Design and implement sample application using this library and try your best to release it into the App

stores.

- Test the application with the general public and collect their feedback.

- Evaluate the resulting application and suggest its future improvements.

Electronically approved by Ing. Michal Valenta, Ph.D. on 8 February 2022 in Prague.

Assignment of master’s thesis

Title: Mobile application for scanning identification of nearby drones in accordance

with new EU regulations

Student: Bc. Matej Glejtek

Supervisor: Ing. Lukáš Brchl

Study program: Informatics

Branch / specialization: Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Master’s thesis

Mobile application for scanning
identification of nearby drones in
accordance with new EU regulations

Bc. Matej Glejtek

Department of Software Engineering
Supervisor: Ing. Lukáš Brchl

May 4, 2022

Acknowledgements

In the first place, I would like to thank my thesis supervisor Lukáš Brchl for
his overseeing of the process and his support. Next, I want to appreciate
the approach of the employees of the company Dronetag, especially Marián
Hlaváč, who helped with the Flutter development. Last, but not least, I would
like to thank all the volunteers that took part in the testing.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on May 4, 2022 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Matej Glejtek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Glejtek, Matej. Mobile application for scanning identification of nearby drones
in accordance with new EU regulations. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Cieľom tejto práce je navrhnúť a naimplementovať mobilnú aplikáciu na ske-
novanie bezpilotných lietadiel v okolí. Na základe nových regulácii sa piloti
musia registrovať a drony musia vysielať svoju polohu a identifikáciu pomocou
bezdrátových technologií. Aplikácia bude zbierať a zobrazovať tieto dáta pre
užívateľov oboch hlavných mobilných platforiem. Riešenie pomôže sprehľad-
niť prevádzku dronov. Verejnosť získa možnosť identifikovať zodpovedné osoby
v prípade, že bude ohrozená bezpečnosť alebo súkromie.

Klíčová slova drony, bezpilotné lietadlá, mobilné aplikácie, vzdialená iden-
tifikácia, bezdrátové technológie, multi-platform, open-source

vii

Abstract

The thesis aims to design and implement a mobile application that will de-
tect wireless broadcasts from unmanned aerial vehicles. According to new
regulations, pilots need to register, and their drones are required to transmit
the position and identification in a way that data can be acquired by mobile
phones. The solution will gather data from the surroundings, giving users
complete information about aerial traffic in their vicinity. The application
will help to make drone operations safer because the general public may use
it to identify operators and make them accountable for their actions in case
the security or privacy is threatened.

Keywords drones, unmanned vehicles, mobile application, remote identifi-
cation, wireless communication, multi-platform, open-source

ix

Contents

1 Introduction 1

2 Research 3
2.1 Drone Identification Regulations 3
2.2 Regulation Implementation . 5
2.3 Remote Identification (ID) and Semantic Model 5

2.3.1 Semantic Model . 6
2.3.2 Message Types . 7
2.3.3 Operator Registration Number 7

2.4 Remote ID Technology and Standards 8
2.4.1 Bluetooth . 9
2.4.2 Wi-Fi . 10

2.5 Compatible Smartphones . 11
2.6 Curently Existing Applications 11

3 Design 13
3.1 Architecture . 13
3.2 Used Technology and Development Tools 15

3.2.1 Dart Language . 15
3.2.2 Flutter Library and Architecture 16
3.2.3 State Management . 17
3.2.4 Responsivness and Adaptivness 18
3.2.5 Permissions . 19
3.2.6 Writing Native Code . 19
3.2.7 Compilation . 20
3.2.8 Android Platform . 21
3.2.9 iOS Platform . 21

3.3 Example Application . 22
3.3.1 User Goals . 23

xi

3.3.2 Use Cases . 23
3.3.3 Task List . 23
3.3.4 Wireframes . 24

4 Implementation 27
4.1 Flutter Library Implementation 27

4.1.1 Data Model . 27
4.1.2 Platform Interface . 28
4.1.3 Flutter Library Implementation 29
4.1.4 Native Plugins Implementation 31
4.1.5 Android Native Code 31
4.1.6 iOS Native Code . 36

4.2 Example Application Implementation 38
4.2.1 Project structure . 38
4.2.2 State Management . 38
4.2.3 Using Own Library . 40
4.2.4 Implementing Graphical Interface 41
4.2.5 Exporting Messages in a CSV Format 46
4.2.6 Application Tutorial . 47
4.2.7 Styling . 48
4.2.8 Map Styling . 48
4.2.9 Releasing the Application 48

5 Testing 51
5.1 User Testing . 52

5.1.1 Test Scenarios . 52
5.1.2 Testing Evaluation . 52

5.2 Heuristic Analysis . 53
5.3 Code Analysis . 55
5.4 Identified Issues . 55
5.5 Future Improvements . 56

6 Conclusion 59

Bibliography 61

A Contents of enclosed CD 71

xii

List of Figures

2.1 Remote ID Concept . 6
2.2 Table of Technical Standards Used for Remote ID 8

3.1 System Architecture Layout . 14
3.2 Schema of Native Code Invocation 20
3.3 Wireframes . 25

4.1 Main Page . 42
4.2 About Page . 42
4.3 Application Running on iPhone 8 43
4.4 Simplified Widget Tree . 44
4.5 Application in a Landscape Mode 45
4.6 Showcase with a Description of Aircraft List 47

xiii

List of Tables

5.1 Graphical User Interface (GUI) Problems Summary 56

xv

Chapter 1
Introduction

Nowadays, the usage of unmanned aircraft is slowly becoming more common.
Many people use drones just for leisure, but we can also see a significant rise in
commercial usage. Even in the Czech Republic, companies are incorporating
drones into their operation. For example, the company Kytary.cz is testing
drone deliveries. According to Filip Černý, company manager, drones can
cut their delivery cost to half [1]. The analysis predicts a further rise in the
drone sector. Drone growth will occur across many segments of the enterprise
industry: agriculture, construction and mining, insurance, media, and law
enforcement [2]. This means that the amount of airspace traffic will increase,
and there will also be a number of questions regarding safety and privacy.

The rising number of Unmanned Aircraft Systems (UAS) entering the
airspace and increased complexity of operations of Unmanned Aircraft Sys-
tems (UAS) beyond visual line of sight, initially at a very low level, poses
safety, security, privacy, and environmental risks [3].

Everyone understands why cars need license plates: drivers have to be ac-
countable, and enforcement of the legislation must be possible. Like for cars,
unmanned aircraft systems operations may create risks to other people’s safety
and result in damages and casualties. Therefore, drone operators must comply
with safety regulations and be accountable for the damages they may cause.
However, unlike cars, drones’ ubiquity and the lack of transparency of their
operation, as drone pilots and drones themselves may be difficult to identify,
create several other risks. These risks relate to infringement of citizens’ funda-
mental rights to privacy and data protection, to security risks associated with
criminal and terrorist activities, or simply irresponsible behavior. They con-
cern mainly operations conducted under 120m altitude with consumer drones
that can be easily purchased on the Internet and are particularly prone to be
used in all kinds of malicious or careless operations [4]. To ensure operator
accountability, enable the enforcement of both safety and privacy legislation
and contribute to addressing security risks, European Union (EU) and the
United States of America (USA) impose the registration of drone operators.

1

1. Introduction

The drone industry movement motivated policymakers to develop regula-
tions that require pilots to be registered, and most importantly, drones will
be required to broadcast information about themselves. The general public
could then quickly identify the aircraft and its owner, as we can do with other
vehicles, such as cars with their license plates. This thesis aims to create
a universal tool for identifying aircraft in real-time. Such a tool has to collect
data from many different aircraft types from any manufacturer, as long as the
vehicle complies with the joint legislative framework. With the proposed solu-
tion, we will address the general public, for whom we will create a standalone
mobile application. We also plan to make the solution open-source, so other
developers can use it in their own projects and thus contribute to making the
airspace safer and more transparent.

In the process, we will research the current solutions for Remote ID, inves-
tigate regulations and observe how they are being implemented. The solution
will use wireless communication using radio waves, so understanding the tech-
nology and used protocols and standards is necessary. After the research part,
we will focus on choosing the appropriate tools for implementing the solution
and layout of the software system’s architecture. The assignment determines
that the Flutter library will be developed, as well as the mobile application
on top of it. The software analysis stage consists of modeling the use cases,
describing the application domain, and proposing the solution’s architecture.
After determining the software architecture and dependencies, we will move to
implementation. During development, we will focus on creating a clean struc-
ture and applying software development practices and patterns best suited for
the Flutter mobile platform.

We also intend to test the application with the target audience and collect
relevant feedback. In the evaluation stage, we will assess the usability of
the created application, as well as propose possible future development and
extensions.

2

Chapter 2
Research

The research part of the thesis aims to familiarize ourselves with the concept
of Remote ID, review wireless communication standards that use radio waves,
learn about the protocols currently in place, and lastly, analyze existing solu-
tions for Remote ID of unmanned aircraft. We will draw from this during the
design and implementation stages.

2.1 Drone Identification Regulations
Current leaders in developing drone legislation and regulations are the USA
and the EU. In both political entities, there are already approved regulations
that administer the operations of Unmanned Autonomous Vehicle (UAV).
Currently, we are in a period where the regulations are not enforced. In
the EU, European Commission has adopted a Commission Delegated Reg-
ulation 2019/945 of 12 March 2019 on unmanned aircraft systems and on
third-country operators of unmanned aircraft systems and Commission Imple-
menting Regulation 2019/947 of 24 May 2019 on the rules and procedures for
the operation of unmanned aircraft. In the USA, the Federal Aviation Admin-
istration (FAA), which is an agency within the Department of Transportation,
published a Federal Aviation Regulation, Rule 89. Regulations provide a gen-
eral framework for the operation of UAV without specifying technical details.
We will mainly focus on European regulations.

The article that concerns are the most is article 6 of regulation 2019/945:
”Each Unmanned Aircraft (UA) intended to be operated in the ”specific”
category and at a height below 120 meters shall be equipped with a Remote
ID system” [5]. Moreover, it requires a ”periodic transmission of data in real-
time during the whole duration of the flight, in a way that it can be received by
existing mobile devices”. To find out what is meant by the ”specific” category,
we have to take a look at regulation 2019/947, and specifically, articles 4 and
5. The ”specific” category is defined as any UAV operation that does not fulfill

3

2. Research

the requirements for the ”open” category. To fall into the ”open” category,
an operation must meet the following: the unmanned aircraft has a maximum
take-off mass of less than 25 kg, the remote pilot ensures that the UA is kept at
a safe distance from people and that it is not flown over assemblies of people,
the remote pilot keeps the unmanned aircraft in Visual line-of-sight (VLOS)
during flight, the unmanned aircraft is maintained within 120 meters from
the closest point of the surface of the earth, the unmanned aircraft does not
carry dangerous goods and does not drop any material [6]. If any part of the
specification for the ”open” category is not met, the UAS operator shall be
required to obtain an operational authorization from the competent authority
in the Member State where it is registered and thus belongs to the ”specific”
category and must also obey rules of Remote ID.

Regulations only state what is required, not how to accomplish the require-
ments. To meet the mentioned European Commission Delegated Regulation
2019/945 and the Commission Implementing Regulation 2019/947, Aerospace
and Defence Industries Association of Europe - Standardization (ASD-STAN)
has developed the prEN 4709-002 Direct Remote Identification (DRI) specifi-
cation. ASD-STAN is an association that establishes, develops, and maintains
standards on behalf of the European aerospace industry [7]. It is an Associ-
ated Body with European Committee for Standardization for Aerospace Stan-
dards. The final version of the standard has been published on their website
[8]. It specifies Wi-Fi and Bluetooth broadcast methods for Remote ID that
are compliant with the American ASTM F3411 v1.1 specification. ASTM
F3411-19 is an American standard that accommodates rules of the FAA. Cre-
ators of the European standard state that ”During the development of the
ASD-STAN DRI standard, the emphasis was laid on creating a solution that
would be compatible with the ASTM F3411–19 [4]. Both of the mentioned
standards have been defined to specify how UA or UAS can publish their ID,
location, altitude, and other, either via direct Bluetooth or Wi-Fi broadcast
or via an internet connection to a Remote ID server. There are certain differ-
ences in the European and American approaches, for example, which standard
is optional and which is mandatory. Wi-Fi Beacon broadcasts are mandatory
in Europe, but in the USA they are optional. Moreover, the EU regulation
defines optional and recommended fields that bring some additional benefits
in the EU environment.

There are ongoing discussions in International Organization for Standard-
ization (ISO) organization to harmonize DRI globally [9]. We will mainly
focus on the European regulation, but the data semantics are generally the
same, so the created solution will be helpful on both continents.

In the USA, operators of UAS have thirty months since January 2021 to
comply with the regulation, and manufacturers have 18 months after the pub-
lication date to comply [10]. In Europe, the timelines for the rules requiring
manufacturers and drone operators to comply have fluctuated. Originally, the
regulation 2019/945 states that it comes into effect just 20 days after publi-

4

2.2. Regulation Implementation

cation. However, the most recent information that we were able to find says
that UAS that would otherwise be in the ”specific” category are allowed to
be used in the ”open” category for a transitional period ending on 1 January
2023 [11].

2.2 Regulation Implementation
The practical implementation of DRI on the UAS can be foreseen in two
manners. For most of the drones already sold to customers or that are on
the market right now, firmware update from UA manufacturers to fulfill the
DRI requirements is expected. The UAS that will not receive this kind of
support from manufacturers or those that do not have the appropriate Wi-
Fi or Bluetooth hardware onboard still have a chance to retrofit by using
add-on devices from 3rd party companies. An example of such a 3rd party
company is the Dronetag [12]. Their device, called Dronetag Mini, ensures
both Network Remote Identification (NRI) and DRI. It is designed as an add-
on that can be mounted to any drone. Mini ensures that the drone is visible to
all air traffic participants. Mini receives the drone’s coordinates from Global
Navigation Satellite System (GNSS), such as American Global Positioning
System (GPS) or European Galileo. Then it sends the coordinates, along with
the drone identification, in real-time to the central system through a mobile
network or to everyone around via Bluetooth [13].

2.3 Remote ID and Semantic Model
The Remote ID function provides a means for an observer in the vicinity to
retrieve this identification information without having physical access to the
UA, using regular mobile devices with specific software downloaded from usual
application online stores. The aim of Remote ID is to enable organized man-
agement of drone operations to ensure safe airspace. Today, if a pilot heads
with his drone into a controlled perimeter around an airport, for example, it
is not possible to contact him and warn him of the potential risk of collision
with other aircraft - and this is one of the problems that Remote ID solves.

The rule essentially requires a “digital license plate” for UAV to be oper-
ated in the United States and the EU, one that both people on the ground and
other airspace users can receive [10]. DRI means a system that ensures the
local broadcast of information about a UA in operation. More specifically, we
will address the drone’s capability to be identified during the whole duration
of the flight, in real-time and with no specific connectivity or ground infras-
tructure link, by existing mobile devices when within the broadcasting range.
Such functionality, based on an open and documented transmission protocol,
contributes to addressing security threats and supporting drone operators’
obligations concerning citizens’ fundamental rights to privacy and protection

5

2. Research

of personal data. It can be used by law enforcement people, critical infrastruc-
ture managers, and the public to get instantaneous information on the drone
flying around, providing various information such as UA serial number, UA
navigation data, operational status, UAS Operator registration number and
position as defined in the Commission Delegated Regulation 2019/945. Since
the EU regulation 2019/945 requires DRI information to be broadcasted using
an “open and documented protocol,” this standard does not define technolog-
ical measures to protect the confidentiality of the data broadcasted [4]. To
operate drones in the open or specific category, a registration process is in
place to register the owner of a UAS as Operator [4]. After registering as an
Operator in one EU member state, the UAS operator will receive an Operator
Registration Number, which needs to be uploaded as Operator ID information
to the UA. The operator needs to register once, not for every vehicle he pilots.

Figure 2.1: Remote ID Concept

2.3.1 Semantic Model
The structure of the data and the semantic model is based on a standard cre-
ated by ASD-STAN, which precisely describes the message contents and vari-
ous types of messages used for DRI. Some data fields are identified as manda-
tory to ensure compliance with the EU regulation, and other fields have been
defined for enhanced operational benefits and interoperability with different
standards. ”The data fields defined in the data dictionary are assembled into
messages following a defined structure, with a message header identifying the

6

2.3. Remote ID and Semantic Model

message type and a block message containing the message payload. The con-
tent of each message payload, the syntax, and encoding rules of the data fields
are specified” [4].

2.3.2 Message Types

The system broadcasts these types of messages:

• Basic ID Message - contains ID information for UA, ID type and type
of UA

• Location Message - contains position, direction, speed, timestamp

• Self ID Message - allows operators to define their own messages, for
example for mission purpose

• System ID Message - information about pilot location, aircraft grouping
and other

• Operator ID Message - contains the Operator ID, which is the UAS
Operator Registration Number

• Message Pack - several messages grouped into one

2.3.3 Operator Registration Number

The UAS operator ID is issued by the National authorities in each particu-
lar EU member state and is composed of two parts. The first part, known
as a public part, is a sequence of 16 alphanumeric characters. The second part
contains randomly generated secure characters and is known as a private part.
The public part starts with three characters that define where the operator
is registered (e.g., CZE for Czechia) and ends with one checksum character.
Authorities who have access to the database of UAS Operator IDs can check
if the public part is valid by accessing the private part and calculating the
checksum.

The main purpose of the UAS Operator ID is to upload it to the DRI sys-
tem. However, only the public part is stored in the drone and is broadcasted.
The private part is not stored and is only used for DRI system validation. The
operator should not tell their private part to anyone as they may misuse their
identity. The example UAS Operator ID is “FIN87astrdge12k8” as public
part and “xyz” as the private one. If the UAS Operator ID is not configured
in the drone, it must broadcast the “NULL” string [9].

7

2. Research

2.4 Remote ID Technology and Standards
In this section, we will describe technologies used for the Remote ID of drones
through wireless communication. We will describe two leading technologies,
Bluetooth and Wi-Fi, and the different versions both of these have. Before we
even dive into the differences between Wi-Fi and Bluetooth, it’s important to
note that both of these technologies share a common foundation in the wireless
electronics family through their use of radio waves. Radio waves are one of
many types of waves in the electromagnetic spectrum, which includes other
family members like x-rays, gamma rays, infrared rays, and more. These waves
can all defy even the toughest physical barriers, transmitting data, video,
audio, and more through the vacuum of space at the speed of light. Generally,
the Wi-Fi solutions have a greater range due to the higher transmission power
compared to the Bluetooth ones.

On this electromagnetic spectrum, one can measure and classify radio
waves that are used in Wi-Fi, Bluetooth, and other applications in one of two
ways: by frequency - this is the count of how many electromagnetic waves
pass through a given point every second and is measured in Hertz, and by
wavelength - this is the distance that we can measure between two of the
highest points in a radio wave, which can range anywhere from 100 meters to
1 centimeter depending on the radio wave we are observing.

Within the radio wave family, there are distinct bands separated by both
frequency and wavelength, providing specific channels for devices to use [14].
The standards we will study operate on one or more channels. From the figure
2.2, it is apparent that the receiving capabilities are lower for iOS phones,
as just Bluetooth 4 support is claimed.

Figure 2.2: Table of Technical Standards Used for Remote ID

8

2.4. Remote ID Technology and Standards

2.4.1 Bluetooth

Bluetooth is a short-range wireless technology standard that is used for ex-
changing data between fixed and mobile devices over short distances using
Ultra High Frequency (UHF) radio waves (300 MHz - 3 GHz) in the Indus-
trial, Scientific and Medical (ISM) bands, from 2.402 to 2.48 GHz. Bluetooth
was developed by the company Ericsson in the 1990s. It is mainly used as an
alternative to wire connections, to exchange files between nearby portable de-
vices, and connect cell phones and music players with wireless headphones.
Bluetooth divides data into packets and transmits each packet on one of 79
designated Bluetooth channels. Each channel has a bandwidth of 1 MHz.

Bluetooth is managed by the Bluetooth Special Interest Group, which
has more than 35,000 member companies in the areas of telecommunication,
computing, networking, and consumer electronics [15]. This group manages
releases of new standards in cooperation with its members.

Bluetooth 4

This standard is sometimes referred to as Bluetooth Legacy or Bluetooth
Low Energy due to reduced power consumption. However, Bluetooth Low
Energy is just a part of Bluetooth 4 specification. In fact, the Low Energy
project started at Nokia under the name Wibree but would be incorporated
into the next generation of Bluetooth [16].

In general, version 4 was slower. It topped out around 1 Mbps, but it
was a lot more power-efficient, allowing for battery-operated accessories, such
as fitness sensors and healthcare devices. They could work for years on a single
coin cell battery.

Bluetooth 4 also extended the operating range to 100m and lowered the
typical latency quite a bit [16]. Bluetooth 4 Legacy advertisements have up
to 31 bytes, from which 25 bytes can be used for Remote ID data. Bluetooth
Low Energy uses 2 MHz spacing, which accommodates 40 channels. Legacy
advertising operates on channels 37, 38, and 39.

Bluetooth 5

Next came version 5.0 in 2016. It significantly improved the maximum
range. That came at the cost of data speed, but at closer ranges, version
5.0 could double the rates of its predecessor, as it can transfer data with
speed up to 2 Mbps [16]. Advertising extensions in Bluetooth 5 provide the
capability to offload advertising data from the three traditional advertising
channels to the full set of data channels for more frequency diversity [17].
The Extended Advertising technology of Bluetooth 5 allows transmitting up
to 255-byte advertisements by transmitting the additional data on the non-
advertising channels.

9

2. Research

On the primary channel, we have a primary beacon packet. The pointer
in the primary packets informs the receiver which secondary channel to read
the second packet from. The pointer in the primary packet shall be broadcast
on all three advertisement channels, with the secondary packet transmitted in
the remaining channels.

According to the standard by ASD-STAN, when the extended advertising
technology is used, the Remote ID data messages shall be grouped together
and sent as a single Message Pack. A maximum of 9 messages shall be included
in a single message pack.

2.4.2 Wi-Fi
Wi-Fi is a family of wireless network protocols, which are commonly used for
local area networking of devices and Internet access, allowing nearby digital
devices to exchange data by radio waves. These are the most widely used
computer networks in the world. A common misconception is that the term
Wi-Fi is short for “wireless fidelity”. Nonetheless, Wi-Fi is a trademarked
phrase that refers to Institute of Electrical and Electronics Engineers (IEEE)
802.11x standards. Wi-Fi originated in Hawaii in 1971, where a wireless UHF
packet network called ALOHAnet was used to connect the islands. Later
protocols developed in 1991 by AT&T called WaveLAN became the precursor
to the IEEE 802.11 standards. The Wi-Fi Alliance was formed in 1999 and
currently owns the Wi-Fi registered trademark. It specifically defines Wi-Fi
as any wireless local area network products that are based on the Institute of
IEEE 802.11 standards” [18].

Wi-Fi Beacon

The beacon frame is one of the management frames in IEEE 802.11 based
networks. Beacons are relatively short, regular transmissions from Access
Point (AP) with the purpose of informing user devices about available Wi-Fi
services and nearby access points. It contains all the information about the
network. Beacon frames are transmitted periodically. They serve to announce
a wireless network’s presence and synchronize the members of the service
set. A Beacon frame comprises of IEEE 802.11 Media Access Control (MAC)
header, body, and a frame check sequence. The body includes parameters
such as time between two Beacon transmissions, timestamp, or Service Set
Identifier (SSID).

10

2.5. Compatible Smartphones

Wi-Fi Neighbour Aware Network (NaN)

Neighbour Awareness Networking is a technical specification of the Wi-Fi
Alliance. It is a standard well suited for the peer-to-peer exchange of data
between groups of devices. Messages shall be encoded within the Service Dis-
covery Frame based on the NaN specification. On the receiver, it does not
require connecting to any specific wireless network since it utilizes the mech-
anism that simply listens for Wi-Fi broadcasts and makes the data available
for display. It allows devices to find each other and communicate over Wi-Fi
without an access point. Two hypothetical phones with NaN could find each
other and connect without any additional software or configuration, allowing
them to share data at high speeds. NaN doesn’t require the use of GPS, cel-
lular data, or the internet to link up. There’s also a low-power connection
mode that allows for sharing small bits of data like sensor readings [19].

2.5 Compatible Smartphones
One would assume that the smartphone manufacturers will provide us with
the exact specification of their products, including which wireless technology
is supported. Unfortunately, this is not the case with the support of the
Bluetooth 5 and Wi-Fi NaN technologies. In most cases, we must find it out
by an experiment and see whether the device can recognize data broadcasted
with these technologies. The list of devices for which we already did the
experiment with a list of supported technologies can be found on GitHub [20].

Even in the official document by ASD-STAN, it is stated that ”Please also
note that there are differences in the antenna/signal strength receive capabili-
ties between different phone models. Although two different models are listed
as capable of receiving a certain broadcast type, they are not necessarily able
to receive the signals equally well at equal distances” [4].

2.6 Curently Existing Applications
There are several applications on the application stores that enable users to
plan their flights and see restricted areas, but they are meant mainly for users
with their own drone fleet or have limited functionality.

Another type of application found in the stores is one designed for a spe-
cific product by one company and is not usable for the general public, for
example, Unifly. They have an application for their own device, not for every
broadcasting agent, as we plan to have.

The final group of applications we were able to find provided information
about UAV legislative and tell users whether they are allowed to fly in their

11

2. Research

vicinity, but they are purely informative and do not provide any real-time
data. The summary of existing applications follows.

• Droneradar - polish Android application, creators claim it complies with
regulation 2019/945. It is just in the Polish language, but from the
description on Google Play [21], we concluded it only tells the users
where they can fly. No scanning is implemented.

• Dedrone Drone Scanner - the company Dedrone offers solutions for
airspace security. They provide hardware and software components for
high-risk areas, such as airports or prisons. Their solution is not meant
for the general public.

• Unifly - just for the iOS, offers Remote ID and drone tracking but works
with just one device - the BLIP tracker [22].

• Airmap - contains zones and airspace rules, but mainly for the USA.
It cannot scan for advertisements and can connect to supported DJI
drones.

• AirHub - pre-flight planning and post-flight analysis, worldwide airspace
rules and areas, detection of DJI drones.

To conclude, there is a lack of applications for the general public for direct
identification of unmanned aircraft. As the law is currently not enforced, it
is possible that more applications will pop up after the full implementation of
the law. This gives us a unique window of opportunity to be the first one to
deliver such an application to stores.

12

Chapter 3
Design

The purpose of this chapter is to propose and describe a solution that will
be implemented during the realization. The proposed solution consists of two
main parts. One is the Flutter library, and the other is an example mobile ap-
plication that will showcase the usage of the library. The goal is to implement
the solution for both leading mobile platforms - Android and iOS. Flutter
library will serve as a backend for receiving and parsing incoming data. The
library has a common part written in a Dart language, which communicates
with the native code part, which is different for iOS and Android and writ-
ten in Swift and Kotlin, respectively. The native components will implement
a common interface. Data collected in the form of Bluetooth or Wi-Fi adver-
tisements will flow through the layers in the form of asynchronous messages.
The example application will gather data from the library and present them to
a user on a map. This chapter will describe each part of the solution in detail
and explain what technological tools were used. We will take a look at relevant
features of Dart language and explain the concept of reactive programming.
It is also crucial to understand how the development of mobile applications
in Flutter works, so we will study the framework features in-depth. Finally,
we will design the example application, model use cases, and scenarios and
propose the future look of the GUI.

3.1 Architecture
From the architecture point of view, the overall solution consists of three main
layers - the client application layer, the Flutter library layer, and a layer of
native platform code. Layers communicate just with the one directly above or
under. The upper layer uses the interfaces offered by lower layers in the form of
asynchronous method invocation. On the other hand, the data flows from the
bottom layer to the presentation layer in the form of asynchronous messages, to
which the upper layer subscribes. Data are structured into high-level messages,

13

3. Design

defined just once for the whole system, and injected into every layer by the
Pigeon library. The library ensures the correct format and that data types
are compatible, as different programming languages may be used on every
layer. Pigeon library also contains a mechanism for declaration of platform
Application Programming Interface (API), that will the Flutter library invoke
on the native platform. This approach simplifies the implementation as we
do not need to have model classes in every language. The main parts of the
system are shown in the following figure 3.1, as well as data flow. The next
section will look at technologies used on every layer in detail.

Figure 3.1: System Architecture Layout

14

3.2. Used Technology and Development Tools

3.2 Used Technology and Development Tools
The leading technology tools used to implement the assignment are the Dart
programming language and the Flutter Software Development Kit (SDK). It
was chosen because of the multi-platform approach and relative ease of use.
In the following paragraphs, we will introduce the framework for creating the
mobile application as well as native iOS and Android software components
that will manage the Bluetooth and Wi-Fi connectivity. We will also high-
light essential concepts used in Flutter mobile development, such as state
management.

3.2.1 Dart Language
Dart is a programming language designed for client development, such as for
the web and mobile apps, but it also can be used to build server and desktop
applications [23]. It was developed by Google and first published in 2013.
Dart is an object-oriented, class-based, garbage-collected language with C-
style syntax. Other interesting features include null-safety, which aims to
protect the programmer from null exceptions at runtime through static code
analysis [24]. Dart can compile to either native code or JavaScript. This means
that with Dart, we have just one codebase compiled to the target platform, for
example, Apple’s Swift Project. ”Dart also forms the foundation of Flutter.
Dart provides the language and runtimes that power Flutter apps, but Dart
also supports many core developer tasks like formatting, analyzing, and testing
code” [23].

Asynchronous and Reactive Programming

Asynchronous Programming is a principle that allows a portion of pro-
grams to run while waiting for some other activities to occur in the application
thread. It will enable portions of code to run independently from the main
workflow [25]. Reactive programming is programming with asynchronous data
streams. A data stream is an object that emits multiple pieces of data over
time. By subscribing to a stream, we can listen to all of the changes that hap-
pen. As long as we are subscribed to it, we’ll get notified every time there’s
a new piece of data that’s been added to the streams. We will utilize this
approach when developing the solution. The source of data will be the native
plugins receiving advertisements, and data will flow asynchronously towards
the client application.

In Dart, there are a series of ways to write asynchronous code. To mark
a method as asynchronous, we can use the async keyword. There are two
classes for handling waiting for the result of the asynchronous operation -
Future and Stream. A Future can provide only a single result over time —
either an error or data that it delivers asynchronously. Streams, on the other

15

3. Design

hand, can provide zero or more values or error results over time. They can
push multiple pieces of data at different periods of time [26].

3.2.2 Flutter Library and Architecture
Flutter is an open-source User Interface (UI) software development kit created
by Google. It is used to develop cross-platform applications for Android,
iOS, Linux, macOS, and others, and the web, all from a single codebase [27]
using a single language. Applications could be distributed through native
application shops. First described in 2015, Flutter was released in May 2017.
To cite the creators, ”Flutter aims to provide a framework and tooling for
creating user experiences without compromising any device or form factor.
The Dart-powered Flutter engine supports fast development with stateful hot
reload, and fast performance in production with native compilation, whether
it is running on mobile, desktop, web, or embedded devices” [28].

Flutter follows several principles, one of which is the UI as code princi-
ple. This means that no visual editor is needed. Developers build a widget
tree in a programming language. Implementation of standard functionalities
is available in the form of packages, which can be found on pub.dev portal
[29]. Packages are helpful for repeating tasks for which other developers cre-
ated already verified solutions.

The SDK is made out of several components.

• Dart platform - the Dart language itself.

• Flutter engine - written primarily in C++, provides low-level render-
ing support and it interfaces with platform-specific SDKs such as those
provided by Android and iOS [30].

• Foundation library - provides basic classes and functions, such as APIs to
communicate with the engine [30].

• Design-specific widgets.

• Flutter Development Tools.

An integral part of the Flutter project is the pubspec.yaml file, used for
dependency management and importing packages, fonts, images, and other
assets. Code gets compiled into native apps. A developer has complete con-
trol of every pixel on the screen. Internally, Flutter does not use platform
primitives - it does not compile into iOS/Android UI components.

16

3.2. Used Technology and Development Tools

Widgets

For building the UI with the Flutter SDK, we can use a vast collection
of widgets. Widgets are building blocks of the application. They are basi-
cally pieces of code that describe what their view should look like, given their
current configuration and state. A complex widget is composed of already
existing smaller widgets. When a widget’s state changes, the widget rebuilds
its description, which the framework differentiates against the previous de-
scription in order to determine the minimal changes needed in the underlying
render tree to transition from one state to the next [31]. There are many
various types of widgets like layouts, containers, input and output widgets,
and many more. All widgets can be found in the catalog [32].

We can also create our own widgets by subclassing StatessWidget or State-
fulWidget, depending on whether the widget manages any state. A widget’s
main job is to implement a build() function, which describes the widget in
terms of other, lower-level widgets [31].

Stateless widgets receive arguments from their parent widget, which they
store in final member variables. When a widget is asked to build itself, it uses
these stored values to derive new arguments for the widgets it creates.

But this is not sufficient, as applications typically carry some state. Flutter
uses StatefulWidgets to capture this idea. StatefulWidgets are special widgets
that know how to generate State objects, which are then used to hold state.
Widgets are temporary objects used to construct a presentation of the appli-
cation in its current state. State objects, on the other hand, are persistent
between calls to build(), allowing them to remember information [31].

There are also separate widgets tailored to mobile platforms. For Android,
we have the Material widgets library, and for iOS, the Cupertino widget li-
brary.

3.2.3 State Management
State, as the key concept in the Flutter SDK, means the data that affect the
UI. Application is rebuilt according to the change of state of widgets. The
build() method of a widget is called by the Flutter engine when its own state
changes. This also means that all the child widgets of this widget will have
to be instantiated again. Child widgets need data. Managing data in a top
widget leads to a chain of arguments and, importantly, unnecessary rebuilds.
For the application-wide states that affect several widgets, we will use the
Bloc package [33] and subsequently the Bussiness Logic Components (BLoC)
pattern [34], which separates the state from the widgets.

17

3. Design

Bloc Package Approach

BLoC is a state management system for Flutter recommended by Google
developers [35]. The idea is to have a global central store, one or several
classes containing the data and thus the application’s state, separated from
the UI. The storage will never have any reference to the widgets on the UI
screen. The UI screen will only observe changes coming from the BLoC class
[35]. A state management library called Bloc was created and maintained by
Felix Angelo [33]. It helps developers implement the BLoC design pattern in
the Flutter application [36].

We need to use the MultiBlocProvider widget as the topmost application
widget and register our created data storage classes. The root then provides
one instance of data class, and the widget that wants the data can listen to
the changes in data. MultiBlocProvider is a Flutter widget that creates and
provides a BLoC to all of its children. This is known as a dependency injection
widget so that a single instance of BLoC can be supplied to multiple widgets
within a subtree. In other words, the entire subtree will benefit from a single
event of a BLoC injected into it. Hence the subtree will be dependent on the
BLoC we’re providing [36].

3.2.4 Responsivness and Adaptivness

Responsiveness is the ability to handle different screen sizes and portrait and
landscape mode changes. On the other hand, GUI is adaptive when it can
adjust itself according to different Operating System (OS). For adaptivity, we
can use widgets designed specifically to match the styles of target platforms:
Cupertino for iOS or Material for Android.

For responsiveness, we will need to know which orientation and screen size
are currently used. For example, we will lay out our aircraft detail into two
columns for landscape and one column for the portrait. For this purpose,
we will use Flutter MediaQuery class. From the MediaQuery we can get
information about the current device size, as well as user preferences so that
we can design your layout accordingly.

MediaQuery provides a higher-level view of the current app’s screen size
and can also give more detailed information about the device and its layout
preferences. It can simply be accessed by calling MediaQuery.of in the build
method of every widget [37]. This class will also help with adjusting the UI to
different screen sizes, as we can get the exact width and height of the screen or
even the size of the system status bar. We will define the sizes of components
mainly using fractions of the total dimensions available.

18

3.2. Used Technology and Development Tools

3.2.5 Permissions

Not every Android phone supports newer technologies like Bluetooth 5 or Wi-
Fi NaN. Therefore the application needs to verify which standard is supported
on a device. This task will be carried out by the user and logged into our server
to keep a database of smartphones and their supported standards for future
use.

Furthermore, if the standard is available, the application needs permission
from the user to access it. For this task, another library called Permissions
Handler will be used. In most operating systems, permissions aren’t just
granted to apps at install time. Rather, developers have to ask the user
for them while the app runs. This plugin provides a cross-platform API to
request permissions and check their status [38]. During the first start of the
application, the application will ask the user to enable protected features
using this library. Namely, the application inevitably needs to use Wi-Fi and
Bluetooth. Without them, it would be useless. Also very important, but not
crucial, is the location permission, as the application can be used even without
knowing the user’s location. Lastly, if a user wants to export data to Comma
Separated Values (CSV), we also need to ask for permission to access storage.

3.2.6 Writing Native Code

Flutter alone does not support many things like geolocation, payments, and
video calling. If we want to use these kinds of advanced features in the Flutter
project, we have to write our own plugin in the native code of Android and
iOS. We need to use platform-specific functionality available through existing
native packages to implement these tasks. This means that we will have
a separate codebase for every platform. The platform-specific code will make
up the Flutter Plugin. Flutter plugin is the wrapper of the native code [39].

Flutter allows us to call platform-specific APIs available in Java or Kotlin
code on Android and in Objective-C or Swift code on iOS [40]. We will
need to write the scanning using Wi-Fi or Bluetooth with native code. From
Flutter, we have to send messages to a host on iOS or Android parts of the
application over a platform channel. The host listens on the platform channel
and receives the message. It then uses any platform-specific APIs using the
native programming language and sends back a response to the Flutter portion
of the application.

Platform Communication and the Pigeon Library

One of the most critical parts of the proposed software system is the com-
munication between the Flutter application and native Android or iOS code.
For this purpose, there exists a concept of method and platform channels.

19

3. Design

Figure 3.2: Schema of Native Code Invocation

Messages and responses are passed using these channels asynchronously to
ensure the UI remains responsive.

On the client application side, MethodChannel enables sending messages
that correspond to method calls. On the platform side, MethodChannel on
Android and FlutterMethodChannel on iOS enable receiving method calls and
sending back a result. Calling and receiving messages depends on the host and
client declaring the same arguments and data types in order for messages to
work. The Pigeon package can be used as an alternative to MethodChannel to
generate code that sends messages in a structured and typesafe manner [41].

Using Pigeon eliminates the need to match strings between host and client
for the names and datatypes of messages. The generated code is readable
and guarantees there will be no conflicts between multiple clients of different
versions. Supported languages are Objective-C, Java, Kotlin, and Swift [41].

On the other hand, the Pigeon library also has certain limitations. For
example, declared methods can only use primitive datatypes or data types
declared in a schema. Another significant limitation is that Pigeon does not
support polymorphism. This will negatively affect architecture as we will need
to handle each message type individually and cannot use common channels for
them. This fact was observed during the initial phases of development. We
could not find much information about the issue, but we found bug reports
on forums confirming the problem. It may be solved by developers soon.

3.2.7 Compilation
Flutter apps don’t directly compile to native Android and iOS apps. In-
stead, they run on the Flutter rendering engine (written in C++) and Flutter

20

3.2. Used Technology and Development Tools

Framework (written in Dart, just like Flutter applications), both of which get
bundled up with every application. Then the SDK generates a package that’s
ready to go on each platform. We get the application, a new engine to run the
Flutter code on, and enough native code to get the Flutter platform running
on Android and iOS [27]. Cross-platform development does not mean Flutter
applications will feel out of place on Android or iOS devices, as the resulting
UI can be tailored for each platform.

3.2.8 Android Platform
The Android SDK contains Android Platform APIs and libraries that are
used to implement various functionality, including wireless communication.
The available API is documented on the Google Developers webpage [42]. If
this would not be sufficient, we can also use 3rd party libraries.

Bluetooth 4 & 5

On the Android platform, we will utilize the library called android.bluetooth.
Using the Bluetooth API, an application can perform the scan for other Blue-
tooth devices with the ability to read the advertisement data [43]. We do not
need to establish a paired connection. We just need to read the advertise-
ments. To achieve this, we can use the BluetoothAdapter class, which handles
scanning and outputs result in the form of an instance of Bluetooth device,
which holds all the data we need.

Wi-Fi

There are separate packages for the Wi-Fi Beacon and Wi-Fi NaN on the
Android platform. The primary way to access Wi-Fi connectivity is to use
the services of WifiManager API. We can use it to get a list of Wi-Fi access
points that are visible from the device and also read the Beacon advertise-
ments [44]. For the Wi-Fi Aware standard, which is just another name for
Wi-Fi NaN, Android offers a library called Wi-FiAware [45]. Wi-FiAware ca-
pabilities are available just for devices running Android 8.0 or higher. Accord-
ing to Google Developers, Wi-Fi Aware network connections support higher
throughput rates across longer distances than Bluetooth connections. The
API has a mechanism for finding other nearby devices, which we can use.

3.2.9 iOS Platform
Generally speaking, the iOS platform lacks certain functionality and the ability
to use Android’s third-party packages. Citing the guidelines for releasing
software to the AppStore, ”Apps may only use public APIs” [46]. This means
we can only use APIs that are known to Apple and documented on their

21

3. Design

documentation site. Of course, this fact currently limits the technology we
can use. Details will follow in the following sections. This situation may
change in the future. In the meantime, we have to make do just with the
Bluetooth 4.

Bluetooth 4

For implementing reading Bluetooth 4 advertisements, we will use the
CoreBluetooth framework, which Apple provides. According to official docu-
mentation, [47], the CoreBluetooth framework supplies the classes needed for
iOS and macOS applications to communicate with devices that are equipped
with Bluetooth low energy wireless technology. Bluetooth low energy is based
on the Bluetooth 4.0 specification, which, among other things, defines a set
of protocols for communicating between low energy devices. Therefore, this
package cannot be used for Bluetooth 5.

Wi-Fi

According to our research, there is currently no official framework sup-
ported by Apple that would enable scanning Wi-Fi networks. There is the
CoreWLAN framework available. In the documentation [48], authors state
that the
CoreWLAN framework provides API for querying wireless interfaces and
choosing networks. Unfortunately, this framework is not available for the
iOS operating system, just for macOS. Apple simply does not provide any
simple way to scan the networks on mobile phones, presumably for security
reasons. There are alternative frameworks that offer the needed functionality,
but using them will cause Apple to disallow our application from the App
Store.

3.3 Example Application

The application will be built using the Flutter SDK and its widgets library.
Like the Flutter SDK determines, the application will have a tree-like widget
structure, with the application itself as the central widget and all the other
widgets incorporated into it. Low-fidelity wireframes were created in the initial
stages to test the proposed UI concepts. The application UI will consist of the
main page with a map showing user location, aircraft, and zones in proximity
and one settings page with customizations of the application’s behavior and
additional information. Understanding users’ needs and expectations help
with creating more usable applications. In this section, we will model user
interaction with the application. First, by defining the goals that can be

22

3.3. Example Application

achieved by using the software, then we will model the use cases. Lastly, we
will write down all the tasks that can be performed in the application.

3.3.1 User Goals
• See UAVs around the user.

• See details of a specific UAV.

• See restricted zones around the user.

• Display a legislation regulating drone operations.

• Show details of selected zone.

• Export gathered data in a CSV format.

3.3.2 Use Cases
The application will have the following use cases from the user’s point of view:

• User expects to see a map with his own location and the location of
aircraft near him. The user also supposes that the map will be cus-
tomizable, and the user can center either on specific aircraft or on itself.
Relevant data about detected aircraft will be presented to the user.

• In a detail of specific aircraft, the user would want to see the exact
location, height, direction, and pilot identification number. In a full-
detail view, the user expects all the possible information that can be
gathered, like exact timestamp, location history, operator position, or
operation description.

• Users expect to see zones marked on a map, with map location the shape
outlined on the correct location. The zone should be clearly visible, and
different types of zones may be highlighted with color.

• There should be an easy way to export or shared gathered data.

• Users expect an easy way to browse current legislation and rules regu-
lating drone operation.

3.3.3 Task List
During the work with our application, users will be able to perform the fol-
lowing tasks.

• Show application tutorial.

• Start and stop scans.

23

3. Design

• Choose which technology will carry out the scan. It could be Bluetooth,
Wi-Fi, or both.

• Display a map of aircraft near me.

• Change map settings.

• Display a user’s location on a map.

• Center map on the location of the user.

• Center map on the aircraft.

• Follow a trajectory of a flight of the selected aircraft.

• Display restricted zones on a map.

• Show list of nearby aircraft.

• Sort list of nearby aircraft according to distance from user or time.

• Show aircraft details.

• Show zone details.

• Export messages from one or all aircraft to CSV.

• Hide details and return to map.

• See which standard is supported on a certain device.

3.3.4 Wireframes
Our graphical interface is inspired by the known and well-established layout
of almost all the applications providing maps and navigation, for example,
Google Maps Application [49]. The reason for this choice is that we will match
users’ mental models, and the usability should be higher because users will
not have to learn to use the application extensively.

The main page contains the map with a search bar at the top and a toolbar
with map settings on the side. An active marker will pop up on the map when
an aircraft is detected. On click on this marker, aircraft detail will slide up
from the bottom of the screen, which can be maximized to see all the available
data. When no aircraft is selected, the panel will contain a list of detected
devices and zones. Icons with map settings, such as centering and moving
through the map, are placed in a traditional position on the bottom right side
of the screen, coupled with a button to start or stop scans.

We have created low-fidelity wireframes for a quick outline of the appli-
cation structure. A wireframe is a schematic, a blueprint, useful to help
programmers and designers think and communicate about the structure of

24

3.3. Example Application

the software [50]. Since it is only a matter of determining the position of
components, there is no need to take aesthetic details into account [51]. With
the help of a wireframe model, we can establish the functional and logical
structure of the GUI without concentrating on details. In the later stages,
this basic structure won’t change. In the following figure 3.3, we can see the
map page with minimized slider, maximized slider with detail, or a list with
device cards.

Figure 3.3: Wireframes

25

Chapter 4
Implementation

Following chapter reports on the process of implementing the requirements
specified in the previous chapter. We will describe a whole implementation
procedure, highlighting the interesting and essential parts and explaining used
concepts. The realization stage of the application consists of creating the Flut-
ter library, serving as the interface for underlying native code, where most of
the heavy lifting occurs. Native code will use APIs introduced in a design
chapter. The library usage is then showcased in the example application, de-
veloped with the help of Flutter SDK. We will sum up which widgets were used
and how the widget tree functions. Implementation of important functionality
will be elaborated in detail and shown in code snippets.

4.1 Flutter Library Implementation
The library is the most critical part of the solution, as it will carry out the
key task of gathering the data from nearby aircraft. As described in the
design chapter, the library is structured into three parts - Flutter code and
native iOS and Android code, with a common data model. In the following
subsection, we will describe the implementation of all the library parts.

4.1.1 Data Model
The data model of the application consists of different types of messages. Con-
tents and semantics are given by standards explained in the research chapter.
As stated in the design chapter, the Pigeon library is used to simplify the
communication between the Flutter and native code. As the first step in im-
plementation, we need to specify what data will be transferred between the
agents. For this purpose, we created a file schema.dart. In this file, we declare
all the possible messages and their fields.

27

4. Implementation

For example, we have the BasicID Message.
class BasicIdMessage {

l a t e f inal int receivedTimestamp ;
l a t e f inal Str ing macAddress ;
l a t e f inal MessageSource source ;
// s i g n a l s t r eng th
l a t e f inal int r s s i ;
/// The primary i d e n t i f i e r o f UAS
l a t e f inal Str ing uasId ;
/// I d e n t i f i c a t i o n type
l a t e f inal IdType idType ;
/// Type of the a i r c r a f t
l a t e UaType uaType ;

}

Listing 4.1: BasicID Message declaration.

4.1.2 Platform Interface

The Pigeon library also provides a mechanism for invoking host platform code.
In schema.dart, we also declare API, which will be implemented separately for
each platform and later will be invoked from Flutter. The API is shown on
the following code snippet. The schema is declared in a Dart language. The
Pigeon engine takes the schema as input. We will run the Pigeon generate
utility on this file to generate code in the programming language of each
platform. It generates Dart, Objective-C, and Kotlin code, which will be used
in the Flutter library, iOS platform module, and Android platform module,
respectively.
@HostApi ()
abstract class Api {

@async
void startScanBluetooth () ;
@async
void startScanWif i () ;
@async
void stopScanBluetooth () ;
@async
void stopScanWifi () ;
@async
void setAutorestartBluetooth (bool enable) ;
@async
bool isScanningBluetooth () ;
@async
bool i sScanningWif i () ;
@async
int bluetoothState () ;

}

Listing 4.2: Host Platform interface declaration.

28

4.1. Flutter Library Implementation

Furthermore, we will declare a second interface with methods for parsing
the incoming data into messages. The interface will also be implemented by
native code but will be called just internally inside the platform module.
@HostApi ()
abstract class MessageApi {

int determineMessageType (Uint8List payload , int o f f s e t) ;
BasicIdMessage fromBufferBasic (

Uint8List payload , int o f f s e t , Str ing macAddress) ;
LocationMessage fromBufferLocation (

Uint8List payload , int o f f s e t , Str ing macAddress) ;
OperatorIdMessage fromBufferOperatorId (

Uint8List payload , int o f f s e t , Str ing macAddress) ;
// . . .

}

Listing 4.3: Platform interface for data parsing.

4.1.3 Flutter Library Implementation
An essential task of the library is to start the scans, gather data and then
provide them to subscribed listeners. Incoming messages are structured into
message packs. The message pack consists of different messages from the same
MAC address, thus one device. For invocation of platform methods, we will
call methods of our Pigeon interface. The data will flow from the platform to
the Flutter library in the form of EventChannels.

The common part of a Flutter plugin consists of main class, FlutterOpen-
DroneId and one model class, MessagePack. The MessagePack is a collection
of messages from one source, it contains one message of one type, but not all
message types need to be present.

Next, we will look at the FlutterOpenDroneId class. Here, we instantiate
our Pigeon API. The Pigeon library will ensure that the correct implementa-
tion will be injected, and we can invoke methods to manage to scan. Then, we
create EventChannels for every message type. It would be nicer if we had just
one stream and messages had a common ancestor class. Still, as we explained
in previous chapters, the Pigeon does not allow polymorphism, so we need
separate channels for every message type.

In the startScan method, we initialize our subscriptions to event channels,
and register listeners to data passed to the channel. When a new message
arrives, we add it to the message pack associated with the device’s MAC
address and store the updated package. So, to sum up, we have one message
pack for one device, and each message pack contains the last message of every
type. The EventChannels carry binary data, but we do not need to worry
about it because the Pigeon generated decode methods for every message type
that we can use to convert the data into message classes.

29

4. Implementation

We need to pass the received data further. For this task, we create
a stream into which we will insert received messages grouped into message
packs. ”A stream is a sequence of asynchronous events. It is like an asyn-
chronous Iterable—where, instead of getting the next event when the pro-
grammer asks for it, the stream tells the programmer that there is an event
when it is ready” [52]. Every time a new message arrives, we update the de-
vice’s message pack and send it to the stream. The library does not store the
whole history of gained messages, it just passes it to a stream. Consumers get
access to the stream by calling allMessages getter and setting up their own
listeners.

class FlutterOpenDroneId {
static l a t e pigeon . Api _api = pigeon . Api () ;
static const _locationMessagesEventChannel =

const EventChannel (’ f lutter_locat ion_messages ’) ;
// . . . event streams for other messages f o l l o w
static StreamSubscription ? _locat ionMessagesSubscr ipt ion ;
// . . . s u b s c r i p t i o n s for other messages f o l l o w

static Map<String , MessagePack> _storedPacks = {};
static f inal _packController =

StreamControl ler<MessagePack >. broadcast () ;

static Stream<MessagePack> get a l lMessages
=> _packController . stream ;

/// S ta r t s scanning for nearby t r a f f i c
static Future<void> startScan (usedTechnologies) async {

_locat ionMessagesSubscr ipt ion =
_locationMessagesEventChannel
. receiveBroadcastStream () . l i s t e n ((data) {

f inal message = pigeon . LocationMessage . decode (data) ;
i f (message == null) return ;
_updatePacksWithLocation (message) ;

}) ;
//
i f (usedTechnologies == UsedTechnologies . Bluetooth | |) {

await _api . startScanBluetooth () ;
}
i f (usedTechnologies == UsedTechnologies . Wifi) {

await _api . startScanWif i () ;
}

}

static Future<void> stopScan () async {
await _api . stopScanBluetooth () ;
await _api . stopScanWifi () ;
_locat ionMessagesSubscr ipt ion ? . cance l () ;

}

Listing 4.4: Main class of our Flutter library (1st part).

30

4.1. Flutter Library Implementation

static void _updatePacksWithLocation (
pigeon . LocationMessage message) {

f inal mac = message . macAddress as Str ing ;
f inal storedPack =

_storedPacks [message . macAddress] ??
MessagePack (macAddress : mac) ;

_storedPacks [mac] = storedPack . updateWithLocation (message) ;
_packController . add(_storedPacks [message . macAddress] !) ;

}
}

Listing 4.5: Main class of our Flutter library (2nd part).

4.1.4 Native Plugins Implementation

The structure of the native code is very similar on both platforms. We have
the main plugin file, which implements our HostAPI. Then, for each standard,
we have scanner classes. Instances of these classes then parse the data using
parsers, like the OdidMessageHandler.kt on Android, implementing our Mes-
sageAPI. The data model is injected into both plugins from Pigeon, so we
include the generated files in our code and can use them. We will take a look
at implementation details in the following sections.

4.1.5 Android Native Code

The Android plugin is written in a Kotlin language. The main class is the
FlutterOpendroneidPlugin class. It implements FlutterPlugin , ActivityAware,
and our own Pigeon.Api. FlutterPlugin is the Interface to be implemented
by all Flutter plugins. Our plugin also needs to react to Activity lifecycle
events, e.g., onCreate(). Any such plugin should implement ActivityAware
interface [53]. Important tasks are executed during attaching to the engine:
we need to establish a connection to event channels, to which we will write
data. For every channel, we create a StreamHandler, which we then pass
to scanner classes. Scanner classes will use the handlers to pass the mes-
sages to our main library class. As events are passed in the form of binary
data, we serialize our messages using the toMap method, generated by Pigeon.
Lastly, for Wi-Fi scans, we decided to use android.net.wifi.WifiManager and
android.net.wifi.aware.WifiAwareManager. As stated in the documentation,
these objects should only be obtained from an application context [54], not
instantiated. Therefore, we request the managers from context and pass them
to scanners.

The following code examples contain simplified extracts of implementation
to illustrate used concepts. Repeating and non-essential parts were omitted
to preserve readability.

31

4. Implementation

class FlutterOpendroneidPlugin
: FlutterPlugin , ActivityAware , Pigeon . Api {

private val locationStreamHandler = StreamHandler ()
// dec l a ra t i on s of stream handler for every message type f o l l o w
private var scanner : BluetoothScanner =

BluetoothScanner (locationStreamHandler , /∗ . . . ∗/)
private l a t e i n i t var wi f iScanner : WifiScanner
private l a t e i n i t var wifiNaNScanner : WifiNaNScanner

over r ide fun onAttachedToEngine (
f lu t te rP lug inBind ing : FlutterPlug in . FlutterPluginBinding

) {
Pigeon . Api . setup (f lu t te rP lug inBind ing . binaryMessenger , this)
StreamHandler . bindMultipleHandlers (

f lu t te rP lug inBind ing . binaryMessenger ,
mapOf(

” f lutter_locat ion_messages ” to locationStreamHandler
// . . .

)
)
context = f lut te rP lug inBind ing . appl icat ionContext
val wifiManager : WifiManager? =

context . getSystemService (Context .WIFI_SERVICE)
val wifiAwareManager : WifiAwareManager? =

context . getSystemService (Context .WIFI_AWARE_SERVICE)
wi f iScanner =

WifiScanner (
locationStreamHandler ,

/∗ . . . ∗/ , wifiManager)
wifiNaNScanner =

WifiNaNScanner (
locationStreamHandler ,
/∗ . . . ∗/ , wifiAwareManager)

}

@RequiresApi (Build .VERSION_CODES.O)
over r ide fun startScanBluetooth (r e s u l t : Pigeon . Result<Void>) {

scanner . scan ()
r e s u l t . succe s s (null)

}
}

Listing 4.6: Android plugin main class.

Actual scanning is encapsulated in the scanner classes - BluetoothScanner
for Bluetooth 4 & 5 and WifiNanScanner and WifiBeaconScanner for Wi-Fi
technologies.

Wi-Fi scanners are split because there are separate packages for the Wi-Fi
Beacon and Wi-Fi NaN on the Android platform. First, we will examine the
WifiScanner class, reading Wi-Fi Beacons. We can use the Beacon frames to
identify aircraft as if it was a network we are trying to connect to. At the
start of scanning, we register the receiver object, which will handle receiving

32

4.1. Flutter Library Implementation

beacon packets. This object has a method that is called every time a new
advertisement is received. Then we need to parse the data using OdidMes-
sageHandler and send them to the correct message stream, according to the
message type. For each scan entry, we conveniently get an instance of Scan-
Result. Apart from advertisement data, this class holds information about the
device broadcasting it that will be useful for us, namely the MAC address and
Received Signal Strength Indication (RSSI).

fun scan () {
context . r e g i s t e r R e c e i v e r (broadcastReceiver , I n t e n t F i l t e r (

WifiManager .SCAN_RESULTS_AVAILABLE_ACTION))
val r e t = wifiManager ! ! . s tartScan ()

}
private val broadcastReceiver = object : BroadcastReceiver () {

over r ide fun onReceive (contxt : Context ? , in tent : Intent ?) {
for (scanResult in w i f i L i s t) {

handleResult (scanResult)
}

}
fun handleResult (scanResult : ScanResult) {

for (element in scanResult . informationElements) {
i f (element != null && element . id == 221) {

val buf : ByteBuffer = element . bytes
processRemoteId (scanResult , buf)

}
}

}
fun processRemoteIdscanResult : ScanResult , buf : ByteBuffer) {

val arr = ByteArray (buf . remaining ())
i f (isRemoteIdMessage ())
{

val byteBuffer = ByteBuffer . wrap(arr , 1 , 25)
byteBuffer . order (ByteOrder .LITTLE_ENDIAN)
val type

= Pigeon . MessageType
. va lues () [messageHandler .

determineMessageType (arr , 1)]
i f (type == Pigeon . MessageType . BasicId)
{

val message : Pigeon . BasicIdMessage ?
= messageHandler . fromBufferBasic (
arr , 6 , scanResult . BSSID)

message ? . source = Pigeon . MessageSource . WifiBeacon ;
message ? . r s s i = scanResult . l e v e l . toLong () ;
basicMessagesHandler . send (message ? . toMap () as Any)

}
else i f (type == Pigeon . MessageType . Location)
// . . .

}
}

Listing 4.7: Implementation of reading Wi-Fi Beacons.

33

4. Implementation

In the case of WiFiNaNScanner, we have a very similar concept of setting
a listener, parsing data, and sending them to streams, just with one exception,
which is that we first need to check whether the given device even supports
NaN technology. The class uses WifiAwareManager. Firstly, we request a ses-
sion creation and register the receiver to see whether the attempt was success-
ful. If yes, we can be sure that the technology is supported and start actual
scanning. We save the created session and subscribe to ServiceDiscovered
event.

Contrary to the beacons, results from these scans do not include MAC
address or RSSI. In the documentation, creators write that ”aware discovery
does not provide the MAC address of the peer” [55]. This can be a big compli-
cation because we group the message packs according to the MAC address. If
the device uses NaN and some other standard, we will not be able to recognize
that pack comes from the same device.

fun scan () {
private val myReceiver : BroadcastReceiver =

object : BroadcastReceiver () {
over r ide fun onReceive (context : Context ? , in tent : Intent ?) {

i f (wifiAwareManager ! ! . i sAv a i l ab l e) {
startScan ()

}
}
// check support on dev ice
i f (! context . getPackageManager () . hasSystemFeature (

PackageManager .FEATURE_WIFI_AWARE)) {
return ;

}
context . r e g i s t e r R e c e i v e r (myReceiver , I n t e n t F i l t e r (

WifiAwareManager .ACTION_WIFI_AWARE_STATE_CHANGED))
}
private val attachCal lback : AttachCallback =

object : AttachCallback () {
over r ide fun onAttached (s e s s i o n : WifiAwareSession) {

wif iAwareSess ion = s e s s i o n
wif iAwareSess ion ! ! .

subscr ibe (conf ig , ob ject DiscoverySess ionCal lback () {
over r ide fun onServiceDiscovered (

peerHandle : PeerHandle ? ,
s e r v i c e S p e c i f i c I n f o : ByteArray ? ,
matchFilter : MutableList<ByteArray >?){

receiveDataNaN (s e r v i c e S p e c i f i c I n f o ,
peerHandle . hashCode () , timeNano ,
transportType)

}
})

}
}

Listing 4.8: Implementation of reading Wi-Fi NaN advertisements (1st part).

34

4.1. Flutter Library Implementation

fun receiveDataNaN (
data : ByteArray ? , peerHash : Int , timeNano : Long ,
transportType : Str ing ?

) {
val byteBuffer = ByteBuffer . wrap(data , 4 , 25)
val type = Pigeon . MessageType .

va lues () [messageHandler . determineMessageType (data , 4)]
// r e s t i s the same as in prev ious code sn ippe t
})

Listing 4.9: Implementation of reading Wi-Fi NaN advertisements (2nd part).

Lastly, we will take a look at the BluetoothScanner class, handling both
Bluetooth 4 & 5 advertisements.
fun scan () {

var scanSett ings = ScanSett ings . Bui lder ()
. setScanMode (ScanSett ings .SCAN_MODE_LOW_LATENCY)
. bui ld ()

i f (Build .VERSION.SDK_INT >= Build .VERSION_CODES.O &&
bluetoothAdapter . isLeCodedPhySupported &&
bluetoothAdapter . isLeExtendedAdvertis ingSupported

) {
scanSett ings = ScanSett ings . Bui lder ()

. setScanMode (ScanSett ings .SCAN_MODE_LOW_LATENCY)

. setLegacy (fa lse)

. setPhy (ScanSett ings .PHY_LE_ALL_SUPPORTED)

. bui ld ()
}
bluetoothAdapter . bluetoothLeScanner . startScan (s canF i l t e r s ,

scanSett ings , scanCallback)
}

private val scanCallback : ScanCallback = object : ScanCallback (){
over r ide fun onScanResult (callbackType : Int ,

r e s u l t : ScanResult) {
val scanRecord : ScanRecord = r e s u l t . scanRecord ? : return
val bytes = scanRecord . bytes ? : return
val type = Pigeon . MessageType .

va lues () [messageHandler . determineMessageType (bytes , 6)]
i f (type == Pigeon . MessageType . BasicId)
{

val message : Pigeon . BasicIdMessage ? = messageHandler
. fromBufferBasic (bytes , 6 , r e s u l t . dev ice . address)

message ? . source
= Pigeon . MessageSource . BluetoothLegacy ;

message ? . r s s i = r e s u l t . r s s i . toLong () ;
basicMessagesHandler . send (message ? . toMap () as Any)

}
else i f (. . .) // other message types f o l l o w

}
}

Listing 4.10: BluetoothScanner class methods.

35

4. Implementation

Class uses BluetoothAdapter from the android.bluetooth package. The
adapter has knowledge about which standard is available and provides the
startScan method, which takes a callback as an argument. So again, we regis-
ter our receiver and parse data using our parser. The situation is very similar
to the WifiScanner, we also get instances of ScanResult when our scanCallback
is called.

4.1.6 iOS Native Code

For the iOS plugin, we used the Swift language together with Objective-C.
Our model classes generated by Pigeon are in Objective-C, but this is not
a challenge since we can use them also in Swift. For writing our code, we will
use just Swift. We also need the main plugin class. In this case, it is the class
SwiftFlutterOpendroneidPlugin. Similarly to the Android platform, we need
to implement the FlutterPlugin interface and the HostAPI. In the main class,
we need to set up the plugin by connecting to EventChannels and initializing
the scanners. These tasks are completed within the register method.
public class SwiftFlutterOpendroneidPlugin

: NSObject , FlutterPlugin , DTGApi{
private var bluetoothScanner : BluetoothScanner ? = n i l
private l e t locationMessagesStreamHandler = StreamHandler ()
// . .
public static func r e g i s t e r (

with r e g i s t r a r : F lut te rP lug inReg i s t rar) {
l e t messenger : FlutterBinaryMessenger =r e g i s t r a r . messenger ()
l e t ins tance :

SwiftFlutterOpendroneidPlugin & DTGApi & NSObjectProtocol
= SwiftFlutterOpendroneidPlugin . i n i t ()

DTGApiSetup(messenger , ins tance) ;
// Event channels fo r every message type
FlutterEventChannel (name : ” f lutter_locat ion_messages ” ,

binaryMessenger : r e g i s t r a r . messenger ())
. setStreamHandler (ins tance . locationMessagesStreamHandler)

// . . .
in s tance . bluetoothScanner = BluetoothScanner (

locationMessageHandler :
ins tance . locationMessagesStreamHandler ,

)
}

}

Listing 4.11: Part of Implementation of Swift Plugin.

As found out during the analysis stage, the only technology we are able
to implement is the Bluetooth 4. This task is realized in a class Bluetooth-
Scanner. We take advantage of CoreBluetooth’s CBCentralManager objects.
Such objects manage discovered or connected remote peripheral devices, in-
cluding scanning for, discovering, and connecting to advertising peripherals.
Peripherals are represented by CBPeripheral objects[47].

36

4.1. Flutter Library Implementation

When initializing the scanner, we instantiate the CBCentralManager. It
requires a so-called delegate, which is an object that will receive events from
the CBCentralManager. In this case, the delegate is our BluetoothScan-
ner. Such a delegate has to implement CBCentralManagerDelegate protocol.
A protocol is just a term that Apple uses instead of an interface. A method
that is crucial to implement and will be called on our delegate on a new device
discovered is the centralManager(CBCentralManager, didDiscover: CBPe-
ripheral, advertisementData: [String : Any], rssi: NSNumber) method, which
conveniently passes the peripheral object, advertisement data, and signal
strength indication.

class BluetoothScanner : NSObject , CBCentralManagerDelegate {
var centralManager : CBCentralManager
func scan () {

centralManager . scanForPer iphera ls (wi thServ ices : n i l ,
opt ions : [

CBCentralManagerScanOptionAllowDuplicatesKey : true ,
]

)
}
func centralManager (_ cent ra l : CBCentralManager ,

didDiscover pe r iphe ra l : CBPeripheral ,
advertisementData : [Str ing : Any] , r
s s i RSSI : NSNumber) {

guard l e t data = getOdidPayload (advertisementData) else {
// This advert isement i s not an ODID ad data
return

}

do {
var e r r : F lutterError ?
l e t typeOrdinal = UInt (exact ly : dataParser .

determineMessageTypePayload (data , o f f s e t : 6 ,
e r ro r : &er r) !)

l e t type = DTGMessageType(rawValue : typeOrdinal !)
i f (type == DTGMessageType . bas i c Id)
{

l e t message : DTGBasicIdMessage? =
dataParser . fromBufferBasicPayload (data ,

o f f s e t : 6 ,
macAddress : pe r iphe ra l . i d e n t i f i e r . uuidString ,
e r ro r : &er r)

message ! . r s s i = RSSI . intValue as NSNumber
basicMessageHandler . send (message ! . toMap () as Any)

}
else i f (type == DTGMessageType . l o ca t i on)
. . //
}

}

Listing 4.12: Implementation of BluetoothScanner in Swift(1st part).

37

4. Implementation

func centralManagerDidUpdateState (_ cent ra l : CBCentralManager) {
stateHandler . send (c en t ra l . s t a t e . rawValue)
updateScanState ()

i f (c en t ra l . s t a t e == . poweredOn && autoRestart) {
scan ()

}
}

}

Listing 4.13: Implementation of BluetoothScanner in Swift (2nd part).

4.2 Example Application Implementation
The final part of the project is the example receiver implementation for Open-
DroneID Bluetooth, Wi-Fi NaN and Wi-Fi Beacon signals for Android and
iOS phones. The application is compliant with the Bluetooth, Wi-Fi NaN,
and Wi-Fi Beacon parts of the ASTM F3411 Remote ID standard and the
ASD-STAN prEN 4709-002 DRI standard, described in the research chapter.

The application continuously scans for Bluetooth advertising, Wi-Fi Bea-
con frames and Wi-Fi NaN signals. Suppose any is found matching the spec-
ifiers for remote ID signals. In that case, it adds that device to a list and
displays the drone’s location on a map. Moreover, the detailed view of an
aircraft will show the exact content of the remote ID data.

4.2.1 Project structure
To maintain a clean codebase, source code is separated into classes grouped
in several directories. At the root of the project, we have the main.dart file
and app.dart with root application widget. The main file instantiates the root
application widget and thus starts the application. The following list describes
the project structure.

• Widgets - definitions of UI components, further structured according to
widgets concern - map, toolbar, sliders widgets.

• BLoC - state-management classes that use Bloc package.

• Utils - helper functions for CSV logging or reading JavaScript Object
Notation (JSON) files

• Constants - immutable parameters, such as application styling

4.2.2 State Management
For each concern in the app, we will create one cubit. Firstly, the OpenDroneI-
DCubit will manage the connection to the library and listen to streams pro-
viding message packs. Secondly, we will have cubits handling the data inside

38

4.2. Example Application Implementation

the application - AircraftCubit, ZonesCubit, StandardsCubit, SelectedItemCu-
bit and cubits managing states of the widgets - MapCubit, SlidersCubit. Each
cubit has its state object. If the state changes, the cubit emits a message to
widgets that want to watch for changes in the state, and those widgets then
rebuild themselves.
Text (

context . watch<AircraftCubit >(). s t a t e . packs . length . toStr ing ()
+ ”␣Drones␣Around”) ,

) ,

Listing 4.14: Setting listener to number of detected drones.

We have one instance of each cubit available in the whole application wid-
get tree. We instantiate and register the cubits in the main file. If we want to
invoke method on a cubit, we use context.read<CubitName>().doSomething.
It is important to use read here instead of the watch because we do not want
to rebuild the caller widget when we are invoking a method on a cubit.
class PlayButton extends State lessWidget {

const PlayButton ({
Key? key ,

}) : super (key : key) ;

@override
Widget bui ld (BuildContext context) {

f inal scanningActive =
context . watch<OpendroneIdCubit >(). i sScanningBluetooth | |

context . watch<OpendroneIdCubit >(). i sScanningWif i ;
return InkWell (

onTap : () {
scanningActive

? context . read<OpendroneIdCubit >(). stop ()
: context . read<OpendroneIdCubit >(). s t a r t () ;

} ,
ch i l d : . . .

) ,
) ;

}
}

Listing 4.15: Reading the cubit from build context and invoking method.

Another useful way to listen to changes in the cubit state is to use the
BlocBuilder. It is used when we want to draw a Widget based on what is the
current state, and the widget depends on one cubit. In the build method, we
wrap the widget with BlocBuilder and specify which cubit we will use. Then,
in the builder method, we get an instance of the state as a parameter and
can create UI components accordingly. This way, we can use just a stateless
widget, and still, the UI will be rebuilt when the state changes. In the following
code snippet, we can see an example of BlocBuilder usage. Note that, for
instance, the button fill color or icon is assigned according to the state.

39

4. Implementation

class ScanningStateIcons extends State lessWidget {
const ScanningStateIcons ({

Key? key ,
}) : super (key : key) ;

@override
Widget bui ld (BuildContext context) {

f inal theme = Theme . o f (context) ;
return BlocBuilder<OpendroneIdCubit , ScanningState >(

bu i lde r : (context , s t a t e) {
return Row(

ch i ld ren : [
RawMaterialButton (

onPressed : () {
i f (s ta t e . usedTechnologies ==

UsedTechnologies . Bluetooth){
context . read<OpendroneIdCubit >(). setBtUsed (fa lse) ;

} else {
context . read<OpendroneIdCubit >(). setBtUsed (true) ;

}
} ,
e l eva t i on : 2 . 0 ,
padding : const EdgeInsets . a l l (8) ,
c on s t r a in t s : const BoxConstraints (minWidth : 0) ,
f i l l C o l o r : s t a t e . i sScanningBluetooth

? theme . colorScheme . primary
: theme . colorScheme . background ,

ch i l d : Icon (
s ta t e . usedTechnologies == UsedTechnologies . Bluetooth

? Icons . bluetooth
: Icons . bluetooth_disabled ,

co l o r : Colors . black ,
s i z e : 25 ,

) ,
shape : const Circ leBorder () ,

) ,
] ,

) ;
} ,

) ;
}

}

Listing 4.16: BlocBuilder example.

4.2.3 Using Own Library
At the startup of the scanning for nearby devices, we need to set up a listener
to the message packs stream provided by the library. Every time we receive the
data from the library, scanCallback is invoked. The following snippet shows
the OpenDroneIdCubit and its state and setting up the listener when the start
method is called. The cubit also has methods to start and stop scans, so if we

40

4.2. Example Application Implementation

create a button to start scans, we do not have to pass a callback as a parameter.
We can get the cubit from the build context, as shown in listing 4.12.

class ScanningState {
bool i sScanningWif i ;
bool isScanningBluetooth ;
UsedTechnologies usedTechnologies ;

ScanningState ({
requ i red this . i sScanningWif i ,
r equ i red this . i sScanningBluetooth ,
requ i red this . usedTechnologies ,

}) ;
}

class OpendroneIdCubit extends Cubit<ScanningState> {
StreamSubscription ? l i s t e n e r ;
Aircra f tCubit a i r c ra f tCub i t ;
OpendroneIdCubit (

{ requ i red this . mapCubit ,
requ i red this . s e l e c tedAi rc ra f tCub i t ,
requ i red this . a i r c ra f tCub i t })
: super (ScanningState (

isScanningBluetooth : false ,
i sScanningWif i : false ,
usedTechnologies : UsedTechnologies . Both ,

)) ;

void scanCallback (MessagePack pack) {
a i r c ra f tCub i t . addPack (pack) ;

}

Future<void> s t a r t () async {
l i s t e n e r = FlutterOpenDroneId . a l lMessages . l i s t e n (scanCallback) ;
await FlutterOpenDroneId . startScan (s ta t e . usedTechnologies) ;
updateScanningStateBluetooth () ;
updateScanningStateWifi () ;

}

Listing 4.17: Setting listener and starting scan.

4.2.4 Implementing Graphical Interface
When implementing GUI applications using the Flutter SDK, developers should
obey specific rules and best practices. Apart from effective state management,
it is also essential to split widgets into smaller ones and delegate building parts
of the widget to build methods. Properties should not need to be propagated
to children’s widgets more than one or two layers deep. If this happens, or
more widgets use the same data, we will create a cubit.

41

4. Implementation

Figure 4.1: Main Page Figure 4.2: About Page

The GUI will follow the guidelines on Material Design. Material is an
adaptable system of guidelines, components, and tools that support the best
practices of UI design [56]. We will utilize the Flutter Material library, which
contains Flutter widgets implementing Material Design [57]. As a first step,
we need to implement the basic structure and layout of the application. For
this purpose, we can use the Scaffold widget. Then, our design will consist
of one main screen and a secondary settings screen. Widgets that cover the
whole screen are called pages. Our main page will include the map underlay,
a map toolbar with search and map settings, and a panel with a list of detected
devices or detail with information about the particular device. Screenshots of
application GUI are displayed on figures 4.1 and 4.2

All the information about detected aircraft will be presented on a separate
widget, which will slide up from the bottom of the screen. If the user selects
one device from the map, all the information will be shown on this widget.
Otherwise, this widget will contain a scrollable list of all the devices. To
achieve the sliding-up behavior, we can once again use a library widget called
SlidingUpPanel. Based on the Material Design bottom sheet component, this
widget works on both Android & iOS [58]. Users will also be able to hide the
panel, so the map covers the maximum space available. The slider works in
two modes. It either shows a complete list of detected aircraft or zones, with
a possibility to filter results. Secondly, after specific aircraft is selected from
the map, the slider will contain detailed message contents.

42

4.2. Example Application Implementation

Figure 4.3 shows an application running on iPhone 8 with a significantly
smaller screen. Positions and sizes of widgets are defined relatively to screen
size, so the ratio of sizes of components remains the same on all screen sizes.
We used the MediaQuery.of(context).size to find out the screen size of a de-
vice running the application. For example, the minimum height of the slider
is defined as one-fourth of the screen height.

Some features are not available on iOS, therefore widgets containing them
are now shown. For instance, the Wi-Fi status icon on the main toolbar
is present just on Android. To find out which system we are running and
other information about the environment, we used the Platform [59] class,
specifically the Platform.isAndroid property.

Figure 4.3: Application Running on iPhone 8

Finally, there will be the ”About” page, with information about used stan-
dards, permissions, and other settings. Users can see what standards are
supported on their devices with a short explanation on this page. We also
placed buttons that open system settings, enabling users to turn on certain
permissions quickly. Lastly, there is an option to automatically remove mes-
sage packs from the device, from which the last pack was received a certain
optional time ago.

The following figure 4.4 shows the internal structure of the graphical in-
terface and business components. The widget tree was not modeled to every
detail, some parts from the bottom layers were omitted to keep the diagram
readable. Apart from the widget tree, we can see the business components
and their relations with widgets.

43

4. Implementation

A green arrow from the cubit to the widget means, that widget watches
cubits states and rebuilds accordingly. The blue arrow symbolizes method
calls on cubits.

Figure 4.4: Simplified Widget Tree

Map

For the map underlay, we first have used the Flutter Map package [60], with
map data provided by OpenStreetView maps. This decision turned out to be
not ideal during the implementation, as these maps had fewer customization
options and lacked the efficiency needed to run smoothly. So we have decided
to use Google Maps Flutter package [61]. The package is widely used and thus
supposedly well maintained, and the significant advantage is that users are
accustomed to using the maps. It also allows using comprehensive styling and
customizations. To represent detected aircraft, we will use Marker, generated
from our list inside Aircraft Cubit, to show the trajectory, we will use Polyline
and finally, for zones, we will use Polygon or circle, according to zone shape.
The zone shape will be filled with different colors for different zone types.
These components will respond to taps, highlighting the aircraft or zone and
showing its details.

We want to be able to change the map programmatically. For example,
when a user taps the button that centers the map on his location. We can
achieve this by storing the instance of GoogleMapController inside the MapCu-

44

4.2. Example Application Implementation

bit. We encapsulate map states and methods for controlling the map inside
this cubit, which will be available for every widget in the build context. Meth-
ods to manipulate the map will simply use the interface of the controller. The
MapCubit will contain all methods for setting map style, zoom and placing
pins to the map.
Future<void>? centerToUser () {

c o n t r o l l e r ? . getZoomLevel () . then ((currentZoomLevel) {
moveCamera(

gmap . CameraUpdate . newCameraPosition (
gmap . CameraPosition (

targe t : s t a t e . userLocation ,
zoom : currentZoomLevel ,

) ,
) ,

) ;
}) ;

}
Future<void>? centerToLoc (gmap . LatLng loc) {

c o n t r o l l e r ? . getZoomLevel () . then ((currentZoomLevel) {
moveCamera(gmap . CameraUpdate . newCameraPosition (

gmap . CameraPosition (targe t : loc , zoom : currentZoomLevel)))
}) ;

}

Listing 4.18: Centering map to location.

In a landscape mode, the layout of the main page changes. Since we have
less vertical space, the slider can only be hidden or maximized. The button
to start scans moves to the left side of the screen because on the right, the
map toolbar takes all the available vertical space. Concerned widgets use the
MediaQuery.of(context).orientation to find out how the phone is orientated in
their build methods. Figure 4.5 shows the application in landscape mode.

Figure 4.5: Application in a Landscape Mode

For the map search, we will use API provided by Google Maps. Imple-

45

4. Implementation

mentation of the search was inspired by the article on the Flutter Campus
learning site [62]. The API gives us tools to create an easy-to-use search with
suggestions. After the user inputs the text, we call the method to retrieve lo-
cation data and add a pin to our map. Users will benefit from the possibility
of searching for locations if they do not want the application to access their
location or want to see the traffic in a specific area.

4.2.5 Exporting Messages in a CSV Format

When implementing this functionality, we need to fulfill two tasks - create
a CSV file and then save it. For creating a CSV file, we will use package
called csv 5.0.1 [63]. We will use the package to convert a list of rows where
every row is a list of values to CSV string, which we can then save to a file.

The original idea was to export the file directly to device storage, such
as the Downloads directory. The user would pick the desired export location
with a file picker. Unfortunately, we were just able to find ways to save
files to temporary directories or application documents directory, but not to
common storage space. Application documents directory is a directory for the
application to store files that only it can access, therefore not useful for us.
The system clears the directory when the application is deleted [64]. There
exists a package file_picker [65] with the saveFile method that allows users to
pick the save path, but the method is not available for iOS nor for Android.

Consequently, we have decided to use a Flutter plugin share_plus [66] to
share content from the application via the platform’s share dialog. This way,
the user can choose what application to share the CSV file with. As a com-
promise, we also implemented saving the file directly to the downloads folder,
but this approach works just on Android. After the file is saved, we inform
the user with a simple info dialog.
// a i rcra f t_pane l . dart − invocat ion
context . read<AircraftCubit >().

exportPackToCSV(messagePackList . l a s t . macAddress , true)
. then ((value) => showInfoDialog (

context , ”Saved␣ s u c c e s s f u l y ␣ to␣” + value)) ;

// saving f i l e to downloads
Directory generalDownloadDir

= Directory (’ / s torage /emulated /0/Download ’) ;
f inal pathOfTheFileToWrite =

generalDownloadDir . path + ”/csv_export$name . csv ” ;
F i l e f i l e = F i l e (pathOfTheFileToWrite) ;
f i l e = await f i l e . wr iteAsStr ing (csv) ;

// opening nat i ve sharing menu
Share . s ha r e F i l e s ([pathOfTheFileToWrite] , text : ’Your␣Data ’) ;

Listing 4.19: Creating and saving a CSV file.

46

4.2. Example Application Implementation

4.2.6 Application Tutorial
For almost all the applications published to the application stores, the tuto-
rial is one of the essential things the developers should worry about. If the
application feels overwhelming and complicated to the users, they probably
will not want to use it. We need to explain the workflow of the application
simply and effectively. For this purpose, we chose the Showcase package [67].
The basic idea is to guide users through our widgets by highlighting them and
presenting text explaining the widget concept and usage. This way, we go
step by step through the whole application. The showcase will be shown after
the first startup but can also be replayed later.

In the figure 4.6, we can see an example of a showcase of the aircraft list.

Figure 4.6: Showcase with a Description of Aircraft List

47

4. Implementation

To add a widget to showcase, we need to wrap it with the Showcase, provide
the key and the text that will be presented to the user. We store keys and
texts in a ShowcaseCubit. We also need to wrap our pages with ShowCaseView
widget, that has a method startShowcase. We will pass a list of our keys to
this method and start the showcase.
Showcase (

key : context . read<ShowcaseCubit >(). droneDetailLockKey ,
d e s c r i p t i on : context . read<ShowcaseCubit >().

droneDetai lLockDescr ipt ion ,
t i t l e : ” A i r c ra f t ␣ Deta i l ” ,
ch i l d : Container (. . . .) ,
)

Listing 4.20: Wrapping a container with a Showcase.

4.2.7 Styling
Flutter provides the concept of Themes for styling the application. Theme
is a class that defines the styling for the application, setting colors, fonts, and
all the other decorations either for the whole application or for specific widgets,
like text inputs. The theme is then assigned to the MaterialApp widget and can
be retrieved from the BuildContext by calling Theme.of(context) in the place
where we want to access the theme object. After loading the theme, stylings
for the widgets are applied automatically. The Dronetag application inspires
a particular theme we used for this application. Same fonts and primary and
secondary colors were applied.

4.2.8 Map Styling
Google Maps Flutter package allows us to define a style for the map, and we
can, for example, change the colors of map features, like buildings or roads.
Once again, we used the style from the Dronetag application, which is stored in
a JSON file. This file is then loaded using utility class GoogleMapsStyleReader
and applied after the startup or when a user changes the type of the map. Of
course, style is not applied to the satellite map.

4.2.9 Releasing the Application
To publish the application to the store, we need to create a release build,
which means a minimum size build with optimizations. Furthermore, we will
provide an application icon and code signature and complete an application
bundle used for distribution. When releasing for the Android platform, we
will follow the steps from the article from Flutter documentation [68]. For the
iOS platform, we can also draw from the article [69].

For icons, we can simplify the process with the package LauncherIcons
[70]. It is a command-line tool that simplifies the task of updating the icon.

48

4.2. Example Application Implementation

We just add an icon to our assets directory, and the tool with flutter pub
run flutter_launcher_icons:main. We used an icon downloaded from Freepik
portal [71], that is free for commercial purposes. To help with creating an
application bundle for Android and Google Play, we will use the bundletool
[72]. It is a command-line tool used to build an Android App Bundle, and
convert a bundle into the various Android Application Package (APK)s that
are deployed to devices. The APK can be then installed onto a phone so we
can test it with users before uploading it to a store.

49

Chapter 5
Testing

The solution needs to be tested on various levels. In the first place, we have to
test the library, mainly receiving the data using all the supported standards.
To simulate ongoing traffic, we can use the transmitter code for Raspberry Pi,
created by a Soren Fris [73]. The program supports transmitting static drone
ID data via Wi-Fi Beacon or Bluetooth. It sends just static data since the
primary purpose is to demonstrate how to set up the transmission.

The transmitter has its limitations, given that neither Raspberry nor the
transmitter program does support the Wifi NaN standard. During the process
of implementation, we acquired an ESP32-C3-DevKitM-1 [74], which is a sys-
tem on a chip that integrates the Wi-Fi (2.4 GHz band) and Bluetooth fea-
tures. Using this kit, we can try Wi-Fi NaN and Bluetooth 5 transmission.
Finally, we had an opportunity to test the application with Dronetag Mini
devices. These devices are mounted on a drone and broadcast drone info with
Bluetooth. They already fulfill all the new regulation necessities, so it was
a great way to try our application with a piece of equipment that will be used
in the real world.

An important part of the process is using suitable smartphones because,
as explained in the research chapter, they may support a different combina-
tion of technologies. We cannot use simulators running on desktop computers
because such simulators do not have access to computer peripherals. During
the implementation, we used the iPhone XR supporting just the Bluetooth
Legacy to test running the application in the iOS environment. For the An-
droid platform, we had the Huawei Mate 9 with support of Bluetooth 4 and
WiFi Beacon, and finally, the Samsung A52S, which supports all the standards
we need.

Secondly, we want to access the usability of the example application. This
is done best when testing with actual users. We organized a test session with
volunteers representing various groups of future users. We gave them a few
tasks to complete and also let them explore the application. After that, we
collected their feedback and suggestions. From these results and heuristical

51

5. Testing

analysis of the GUI, we concluded several issues and assigned them a priority
for future development. We also used code analysis to detect technical defi-
ciencies in the code, as well as performance assessment tools to track down
inefficiencies in the widget tree.

5.1 User Testing
In total, we had six testers. We could split them into three groups. The
first group was made up of 2 employees of the Dronetag company. We may
consider them expert users because they are already familiar with the drone
problematics and concepts of Remote ID. Will will mark this group as Group
A. Secondly, we have a group of bachelor’s students in information technology,
the Group B. They are not as competent in UAV industry, but they study
informatics and develop software themselves. The final Group C consists of
members of the general public with no background in software development
or UAV industry.

5.1.1 Test Scenarios

The scenario for testing is straightforward. In the beginning, we present the
application tutorial to the test subjects. After browsing through the tutorial
showcase, we gave them a few tasks to complete.

First, we want users to identificate the aircraft that is the closest to them.
In the second task, we give the user a specific location to find and see the
traffic there, check whether certain aircraft infiltrates forbidden zones, and
identify the operator of such aircraft. We then encourage them to export
gathered data from one aircraft to the application of their preference.

5.1.2 Testing Evaluation

In general, we may say that the application received positive feedback. There
was no problem comprehending the fundamental ideas used when designing
the UI. Users liked the simplicity of the layout and placement of the widgets
and styling. On the other hand, several minor problems confused users, mainly
from Group C. Group A also introduced several possible improvements to ap-
plication functionality. The following paragraphs will go through the obstacles
testers encountered when completing the test scenario.

Right from the start, 3 of 6 testers reported difficulties with the tutorial.
They did not immediately know how to skip the showcase or transfer to the
next item in a showcase, even though the instructions were written in the first
showcase text. The instructions were not clearly visible or highlighted. In
addition, the showcase is probably too long, and users are not able to recall
all the information presented to them at the start. This was proved true in

52

5.2. Heuristic Analysis

2 cases when testers, after seeing the tutorial, did not recall which button
is used to start scans, which is shown at the beginning of the tutorial.

The next problematic spot is the handling of a panel that slides up. Users
can use the panel in collapsed or maximized form or hide it with a button.
Collapsing or maximizing the panel is done by sliding the panel up or down.
Testers tended to slide down the panel even if it was collapsed, as they expected
it would hide it. The direction in which they can manipulate the slider was
not shown.

Experienced users also came up with improvement ideas that could be done
to the map. In the current state, the drone’s direction is not shown on the
map. Filter that enabled users to see just drones or just zones is not applied
to the items on the map, just to the list. One tester also suggested that the
aircraft should be sorted according to distance from the user automatically and
by default. If we have more drones around that are constantly broadcasting,
sorting by time can be problematic as the order is changed frequently, and
users may perceive the frequent re-sorting as chaotic.

Lastly, testers pointed out that after data were shared, for example, with
an email application, there was no confirmation whether the action was suc-
cessful.

5.2 Heuristic Analysis
To analyze created UI, we will perform an analysis according to Jakob Nielsen’s
ten general principles for interaction design. They are called ”heuristics” be-
cause they are broad rules of thumb and not specific usability guidelines [75].

• Visibility of system status
The design should always keep users informed about what is going on
through appropriate feedback.
Scanning state and active technology are visible to the user on icons.
After exporting data, users get feedback about how the saving is finished.
After the user decides to share data, there is no further notification about
how the operation ended. For example, when an email is sent, there is no
confirmation that it was sent successfully.

• Match between system and the real world
The design should speak the users’ language and follow real-world con-
ventions and concepts familiar to the user.
We have used Google Map for map underlay. The maps from Google are
commonly used in many applications. Therefore, we conclude that its
concepts are familiar to users. Sliding-up panel is also commonly used
in applications with maps.

53

5. Testing

• User control and freedom
Users often perform actions by mistake. They need a clearly marked
”emergency exit” to leave the unwanted action.
There are back buttons in two places: from the aircraft detail back to
the list or from the settings page to the map page. There are not any
more actions that could be done by mistake.

• Consistency and standards
Follow platform and industry conventions.
Apart from using a standard map, the whole application also followed
technical standards by ASD-STAN, which are meant for an entire UAV
industry. Platform conventions were fulfilled by using Material design
components.

• Error prevention
The best designs carefully prevent problems from occurring in the first
place.
The only destructive action in the application is deleting received mes-
sage packs. This action is done with a button click, without confirmation
from the user.

• Recognition rather than recall
Minimize the user’s memory load by making elements, actions, and
options visible.
All important actions are visible from the main page. The only hidden
functionality is the automatic deletion of packs after a certain time.

• Flexibility and efficiency of use
Allow users to tailor frequent actions.
The application does not have an alternative way of completing tasks
since it is small in size. Also. the form factor of a mobile phone does
not allow for shortcuts.

• Aesthetic and minimalist design
Interfaces should not contain information that is irrelevant or rarely
needed.
Important information about aircraft is presented on a card in the list.
Arguably, some data fields may not be comprehensible to some users,
such as zone ID number. These should be hidden from cards in a list
and shown just on the detail panel.

54

5.3. Code Analysis

• Help users recognize, diagnose, and recover from errors

Error messages should precisely indicate the problem and constructively
suggest a solution.

We identified one error state that users can experience - when a map
or location search is used without a connection to the internet. Now,
the user is not notified about missing internet connection, map tiles are
cached, but the search does not work.

• Help and documentation

Provide documentation to help users understand how to complete their
tasks.

The tutorial showcase takes the users through the whole workflow of the
application.

5.3 Code Analysis

Flutter provides some valuable tools to analyze created applications. We will
use mainly the tools integrated into the Android Studio Integrated Develop-
ment Environment (IDE). Firstly, we will run the static code analysis with
the option Inspect code. The tool will notify us about unused declarations and
variables that could be constants and many more improvements.

Next, we will use the Flutter Android Studio plugin, which enables us to
show performance data. The tool will show us which widgets are rebuilt and
when, so we can identify unnecessary rebuilds. We have found out that the
map widget is rebuilt frequently after getting every new message. This can
cause performance concerns. The issue should be addressed by splitting the
widget into smaller widgets and ensuring that the map features such as Poly-
gons and Markers are not repainted when they do not need to.

5.4 Identified Issues

After completing code analysis user tests and heuristical analysis of the ap-
plication, we identified a list of issues that needs to be solved. We assigned
a priority to every issue and outlined possible resolutions. The table 5.1 sums
up the issues.

55

5. Testing

Issue Description Solution Priority
1 Showcase: unclear control Add ”skip”, ”next” buttons, 8

counter of showcase elements
2 Showcase: too long Remove unnecessary 4

showcases
3 Slider: unclear how to hide Implement hiding slider with 5

slide gesture
4 Filtering of map elements Connect list filters 5

to map widget
5 Completion of share Add text informing user about 3

action is not confirmed outcome of share action
6 Deletion of data Add confirmation 5

is not confirmed dialog
7 Sorting according to time Add delay 4

causes list to redraw frequently between receiving message
and sorting the data

8 Unnecessary Remove some fields 2
information on list card from card

9 User is not notified, Add timeout, 5
when internet is down after which, user is notified

9 Unnecessary widget, Split the map 7
rebuilds widget into smaller pieces

10 No MAC address, Group messages 9
in NaN scan results according to other

parameter

Table 5.1: GUI Problems Summary

5.5 Future Improvements

Regarding future improvements, there are two main ways to improve the so-
lution. The first one is to improve the backend library. We expect that newer
standards will be used more widely in the future. Specifically, we will wait
for Apple to enable developers to access Wi-Fi and Bluetooth 5 scanning API.
That would allow us to implement a solution equivalent to the Android one.
In the current state, iPhone users can scan just using Bluetooth 4.0. Another
issue that needs to be solved is that Wi-Fi NaN scanning does not provide the
MAC address, so we cannot join it with messages from the same source but
different technology.

Secondly, the example application could also be enhanced, as we have
seen during the user testing. Significantly, the application tutorial should
be improved, as it was confusing for some users. Buttons to manipulate the

56

5.5. Future Improvements

showcase and counter that would show the position in a showcase are needed.
There is also work to be done regarding the overall performance and efficiency.

The most significant setback regarding coding style and project structure
is that we have a standalone stream for each message type, which we need to
manage. Handling messages with polymorphism would be much more pleas-
ant.

57

Chapter 6
Conclusion

In this thesis, we have successfully created a standalone library and example
application for both leading mobile platforms. The solution is compatible
with current regulations and standards of UAV industry. The system consists
of a library implementing the scanning using wireless technologies and an
example application presenting the data in a user-friendly way. During the
development, we encountered certain problems on both levels that contributed
to the solution’s final state.

When designing the library, we found out that there was a lack of support
for the technologies we wanted to utilize. The functionality, such as Wi-
Fi scanning, needs to be written in platform-specific code. Therefore, we
had different APIs on both platforms. Unfortunately, Apple does not allow
3rd party packages, and there is a lack of available APIs approved by Apple
that would enable us to implement Wi-Fi or Bluetooth 5 scanning. This fact
significantly altered the plan to create two equal applications, as on iOS, we
were limited just to Bluetooth 4. In its current state, the application works
best on Android phones.

The overall goal to publish the example application to the application
stores was not completed, as the application is not yet in a production state.
During testing, we gathered feedback from users, and several issues surfaced.
These need to be addressed before releasing the application. We mainly used
simulated drone transmissions to verify the communication. The application
was released for further internal testing with Dronetag Mini devices, one of
the first devices on the market. We were already able to test the solution
in a real-world environment with these devices. It is a significant advantage
because there are no other such devices available, and also, manufacturers still
do not provide drones with Remote ID functionality.

The application development will continue in the future. We have identi-
fied usability problems that need to be addressed to improve user experience.
Future Development also depends on whether Apple will enable certain func-
tionality. There is also an opportunity to enroll in an Apple MFi development

59

6. Conclusion

program. Members are allowed to use otherwise inaccessible features. The
program provides access to Apple proprietary technologies and components
[76].To become a member, we must first submit the product plan and get
approved.

In the EU, the regulations will be fully enforced next year. As we have
seen in the existing applications section, there is no comparable solution to
ours already available. Even though solutions for tracking drones exist, there
is no versatile application on the market for scanning Remote ID from all UAV
types. Thus, we still have enough time to overcome all the problems and ship
the application to stores.

60

Bibliography

[1] Bělohlávková, V. Zásilky budou létat vzduchem. Doručování drony
však komplikuje legislativa. [online], [cit. 2022-03-07]. Available from:
https://www.idnes.cz/ekonomika/domaci/dron-zasilky-ukulele-
praha-kytary.A220210_081042_ekonomika_vebe

[2] Bussiness Insider. Drone market outlook in 2022: industry growth
trends, market stats and forecast. [online], [cit. 2022-03-06]. Avail-
able from: https://www.businessinsider.com/drone-industry-
analysis-market-trends-growth-forecastsj

[3] Official Journal of the European Union. Commission Implementing Reg-
ulation (EU) 2021/664 of 22 April 2021 on a regulatory framework for the
U-space (Text with EEA relevance) C/2021/2671. [online], [cit. 2022-03-
06]. Available from: http://data.europa.eu/eli/reg_impl/2021/664/
oj

[4] ASD-STAN. Introduction to the European UAS Digital Remote
technical standard. [online], [cit. 2022-03-12]. Available from:
https://asd-stan.org/wp-content/uploads/ASD-STAN_DRI_
Introduction_to_the_European_digital_RID_UAS_Standard.pdf

[5] Official Journal of the European Union. COMMISSION DELEGATED
REGULATION (EU) 2019/945. [online], [cit. 2022-04-25]. Available from:
https://eur-lex.europa.eu/eli/reg_del/2019/945/2020-08-09

[6] Official Journal of the European Union. COMMISSION IMPLEMENT-
ING REGULATION (EU) 2019/947. [online], [cit. 2022-04-25]. Avail-
able from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX%3A32019R0947

[7] ASD-STAN. About ASD-STAN. [online], [cit. 2022-04-25]. Available
from: https://asd-stan.org/about-asd-stan/

61

https://www.idnes.cz/ekonomika/domaci/dron-zasilky-ukulele-praha-kytary.A220210_081042_ekonomika_vebe
https://www.idnes.cz/ekonomika/domaci/dron-zasilky-ukulele-praha-kytary.A220210_081042_ekonomika_vebe
https://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecastsj
https://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecastsj
http://data.europa.eu/eli/reg_impl/2021/664/oj
http://data.europa.eu/eli/reg_impl/2021/664/oj
https://asd-stan.org/wp-content/uploads/ASD-STAN_DRI_Introduction_to_the_European_digital_RID_UAS_Standard.pdf
https://asd-stan.org/wp-content/uploads/ASD-STAN_DRI_Introduction_to_the_European_digital_RID_UAS_Standard.pdf
https://eur-lex.europa.eu/eli/reg_del/2019/945/2020-08-09
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0947
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0947
https://asd-stan.org/about-asd-stan/

Bibliography

[8] ASD-STAN. ASD-STAN prEN 4709-002 P1. [online], [cit. 2022-
04-24]. Available from: http://asd-stan.org/downloads/asd-stan-
pren-4709-002-p1/

[9] Dronetag s.r.o. Remote ID Explained. [online], [cit. 2022-03-21]. Avail-
able from: https://help.dronetag.cz/knowledge-base/remote-id-
explained/

[10] Poss, J and Zoldi, D.M.K. 3, 2, 1—Done! Remote ID Rule
is Final. [online], [cit. 2022-03-06]. Available from: https:
//insideunmannedsystems.com/3-2-1-done-remote-id-rule-is-
final/

[11] Official Journal of the European Union. COMMISSION IMPLEMENT-
ING REGULATION (EU) 2022/425. [online], [cit. 2022-04-25]. Available
from: https://eur-lex.europa.eu/eli/reg_impl/2022/425/

[12] Dronetag s.r.o. Remote identification device attachable to any drone.
[online], [cit. 2022-03-21]. Available from: https://dronetag.cz/en/
products/mini/

[13] Dronetag s.r.o. All-in-One Solution for Safe Drone Flights. [online], [cit.
2022-03-21]. Available from: https://dronetag.cz/en/product/

[14] Sattel, S. WiFi vs. Bluetooth: Wireless Electronics Basics. [online],
[cit. 2022-03-07]. Available from: https://www.autodesk.com/products/
eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/

[15] Bluetooth Special Interest Group. Vision and Mission. [online], [cit. 2022-
04-17]. Available from: https://www.bluetooth.com/about-us/vision/

[16] GSM Arena. Flashback: a brief history of Bluetooth. [online], [cit.
2022-04-17]. Available from: https://www.gsmarena.com/flashback_a_
brief_history_of_bluetooth-news-49119.php

[17] Øvrebekk, T. Bluetooth 5 Advertising Extensions. [online], [cit. 2022-
05-02]. Available from: https://blog.nordicsemi.com/getconnected/
bluetooth-5-advertising-extensions

[18] Wi-Fi Alliance. Who We Are - History. [online], [cit. 2022-04-17]. Avail-
able from: https://www.wi-fi.org/who-we-are/history

[19] Whitwam, R. Android O feature spotlight: Neighborhood Aware Net-
working (NAN) mode for WiFi. [online], [cit. 2022-03-21]. Available from:
https://www.androidpolice.com/2017/03/21/android-o-feature-
spotlight-neighborhood-aware-networking-nan-mode-wifi/

62

http://asd-stan.org/downloads/asd-stan-pren-4709-002-p1/
http://asd-stan.org/downloads/asd-stan-pren-4709-002-p1/
https://help.dronetag.cz/knowledge-base/remote-id-explained/
https://help.dronetag.cz/knowledge-base/remote-id-explained/
https://insideunmannedsystems.com/3-2-1-done-remote-id-rule-is-final/
https://insideunmannedsystems.com/3-2-1-done-remote-id-rule-is-final/
https://insideunmannedsystems.com/3-2-1-done-remote-id-rule-is-final/
https://eur-lex.europa.eu/eli/reg_impl/2022/425/
https://dronetag.cz/en/products/mini/
https://dronetag.cz/en/products/mini/
https://dronetag.cz/en/product/
https://www.autodesk.com/products/eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/
https://www.autodesk.com/products/eagle/blog/wifi-vs-bluetooth-wireless-electronics-basics/
https://www.bluetooth.com/about-us/vision/
https://www.gsmarena.com/flashback_a_brief_history_of_bluetooth-news-49119.php
https://www.gsmarena.com/flashback_a_brief_history_of_bluetooth-news-49119.php
https://blog.nordicsemi.com/getconnected/bluetooth-5-advertising-extensions
https://blog.nordicsemi.com/getconnected/bluetooth-5-advertising-extensions
https://www.wi-fi.org/who-we-are/history
https://www.androidpolice.com/2017/03/21/android-o-feature-spotlight-neighborhood-aware-networking-nan-mode-wifi/
https://www.androidpolice.com/2017/03/21/android-o-feature-spotlight-neighborhood-aware-networking-nan-mode-wifi/

Bibliography

[20] Friis, S. Supported Smartphones. [online], [cit. 2022-03-15]. Avail-
able from: https://github.com/opendroneid/receiver-android/
blob/master/supported-smartphones.md

[21] dlapilota.pl Sp. z o.o. Droneradar. [online], [cit. 2022-04-30]. Avail-
able from: https://play.google.com/store/apps/details?id=
eu.droneradar.droneradar

[22] Unifly nv. Unifly launches e-Identification and tracking for drones. [on-
line], [cit. 2022-04-30]. Available from: https://www.unifly.aero/news/
unifly-launches-e-identification-and-tracking-for-drones

[23] Lougheed, P. Dart overview. [online], [cit. 2022-03-07]. Available from:
https://dart.dev/overview

[24] Lougheed, P. A tour of the Dart language. [online], [cit. 2022-03-
07]. Available from: https://dart.dev/guides/language/language-
tour#important-concepts

[25] Oboh, A. Async Programming in Flutter With Streams. [online], [cit.
2022-04-18]. Available from: https://betterprogramming.pub/async-
programming-in-flutter-with-streams-c949f74c9cf9

[26] Jovanoski, J. Reactive Programming in Flutter. [online], [cit. 2022-
04-18]. Available from: https://betterprogramming.pub/reactive-
programming-in-flutter-9fd7b0a4835/

[27] Amadeo, R. Google starts a push for cross-platform app de-
velopment with Flutter SDK. [online], [cit. 2022-03-06]. Available
from: https://arstechnica.com/gadgets/2018/02/google-starts-
a-push-for-cross-platform-app-development-with-flutter-sdk/

[28] Flutter team. Flutter: the first UI platform designed for am-
bient computing. [online], [cit. 2022-03-06]. Available from:
https://developers.googleblog.com/2019/12/flutter-ui-
ambient-computing.html

[29] Flutter Team. The official package repository for Dart and Flutter apps.
[online], [cit. 2022-03-23]. Available from: https://pub.dev

[30] Flutter Team. Flutter architectural overview. [online], [cit. 2022-
03-11]. Available from: https://docs.flutter.dev/resources/
architectural-overview

[31] Flutter Team. Introduction to widgets. [online], [cit. 2022-03-11].
Available from: https://docs.flutter.dev/development/ui/widgets-
intro

63

https://github.com/opendroneid/receiver-android/blob/master/supported-smartphones.md
https://github.com/opendroneid/receiver-android/blob/master/supported-smartphones.md
https://play.google.com/store/apps/details?id=eu.droneradar.droneradar
https://play.google.com/store/apps/details?id=eu.droneradar.droneradar
https://www.unifly.aero/news/unifly-launches-e-identification-and-tracking-for-drones
https://www.unifly.aero/news/unifly-launches-e-identification-and-tracking-for-drones
https://dart.dev/overview
https://dart.dev/guides/language/language-tour#important-concepts
https://dart.dev/guides/language/language-tour#important-concepts
https://betterprogramming.pub/async-programming-in-flutter-with-streams-c949f74c9cf9
https://betterprogramming.pub/async-programming-in-flutter-with-streams-c949f74c9cf9
https://betterprogramming.pub/reactive-programming-in-flutter-9fd7b0a4835/
https://betterprogramming.pub/reactive-programming-in-flutter-9fd7b0a4835/
https://arstechnica.com/gadgets/2018/02/google-starts-a-push-for-cross-platform-app-development-with-flutter-sdk/
https://arstechnica.com/gadgets/2018/02/google-starts-a-push-for-cross-platform-app-development-with-flutter-sdk/
https://developers.googleblog.com/2019/12/flutter-ui-ambient-computing.html
https://developers.googleblog.com/2019/12/flutter-ui-ambient-computing.html
https://pub.dev
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/development/ui/widgets-intro
https://docs.flutter.dev/development/ui/widgets-intro

Bibliography

[32] Flutter Team. Widget catalog. [online], [cit. 2022-03-11]. Available from:
https://docs.flutter.dev/development/ui/widgets

[33] Bloc Community. Flutter_bloc 8.0.1. [online], [cit. 2022-04-15]. Available
from: https://pub.dev/packages/flutter_bloc

[34] Kayfitz, B. Getting Started with Flutter BLoC Pattern. [online],
[cit. 2022-04-18]. Available from: https://www.raywenderlich.com/
4074597-getting-started-with-the-bloc-pattern

[35] Suri, S. Architect your Flutter project using BLOC pattern. [on-
line], [cit. 2022-04-18]. Available from: https://medium.com/codechai/
architecting-your-flutter-project-bd04e144a8f1

[36] Purwandaru, A. N. Getting Started with Flutter Bloc Pattern. [on-
line], [cit. 2022-04-18]. Available from: https://www.mitrais.com/news-
updates/getting-started-with-flutter-bloc-pattern/

[37] Geeks for Geeks. Flutter – Managing the MediaQuery Object. [online],
[cit. 2022-04-14]. Available from: https://www.geeksforgeeks.org/
flutter-managing-the-mediaquery-object/

[38] Baseflow. Permission Handler 9.2.0. [online], [cit. 2022-03-09]. Available
from: https://pub.dev/packages/permission_handler

[39] Rawat, A. Creating a Flutter Plugin. [online], [cit. 2022-03-08].
Available from: https://medium.com/flutter-community/creating-
a-flutter-plugin-dialog-box-78adbff15fe

[40] Sharma, A. How to develop a platform channel in Flutter between Dart
and Native Code. [online], [cit. 2022-03-19]. Available from: https:
//medium.com/47billion/creating-a-bridge-in-flutter-between-
dart-and-native-code-in-java-or-objectivec-5f80fd0cd713

[41] Pub.dev. Writing custom platform-specific code. [cit. 2022-03-07].
Available from: https://docs.flutter.dev/development/platform-
integration/platform-channels?tab=type-mappings-swift-tab

[42] Google Developers. Google Developers Guide. [online], [cit. 2022-03-09].
Available from: https://developer.android.com/guide

[43] Google Developers. Bluetooth overview. [online], [cit. 2022-03-
08]. Available from: https://developer.android.com/guide/topics/
connectivity/bluetooth

[44] Google Developers. Wi-Fi scanning overview. [online], [cit. 2022-03-
09]. Available from: https://developer.android.com/guide/topics/
connectivity/wifi-scan

64

https://docs.flutter.dev/development/ui/widgets
https://pub.dev/packages/flutter_bloc
https://www.raywenderlich.com/4074597-getting-started-with-the-bloc-pattern
https://www.raywenderlich.com/4074597-getting-started-with-the-bloc-pattern
https://medium.com/codechai/architecting-your-flutter-project-bd04e144a8f1
https://medium.com/codechai/architecting-your-flutter-project-bd04e144a8f1
https://www.mitrais.com/news-updates/getting-started-with-flutter-bloc-pattern/
https://www.mitrais.com/news-updates/getting-started-with-flutter-bloc-pattern/
https://www.geeksforgeeks.org/flutter-managing-the-mediaquery-object/
https://www.geeksforgeeks.org/flutter-managing-the-mediaquery-object/
https://pub.dev/packages/permission_handler
https://medium.com/flutter-community/creating-a-flutter-plugin-dialog-box-78adbff15fe
https://medium.com/flutter-community/creating-a-flutter-plugin-dialog-box-78adbff15fe
https://medium.com/47billion/creating-a-bridge-in-flutter-between-dart-and-native-code-in-java-or-objectivec-5f80fd0cd713
https://medium.com/47billion/creating-a-bridge-in-flutter-between-dart-and-native-code-in-java-or-objectivec-5f80fd0cd713
https://medium.com/47billion/creating-a-bridge-in-flutter-between-dart-and-native-code-in-java-or-objectivec-5f80fd0cd713
https://docs.flutter.dev/development/platform-integration/platform-channels?tab=type-mappings-swift-tab
https://docs.flutter.dev/development/platform-integration/platform-channels?tab=type-mappings-swift-tab
https://developer.android.com/guide
https://developer.android.com/guide/topics/connectivity/bluetooth
https://developer.android.com/guide/topics/connectivity/bluetooth
https://developer.android.com/guide/topics/connectivity/wifi-scan
https://developer.android.com/guide/topics/connectivity/wifi-scan

Bibliography

[45] Google Developers. Wi-Fi Aware Overview. [online], [cit. 2022-03-
09]. Available from: https://developer.android.com/guide/topics/
connectivity/wifi-aware

[46] Apple, Inc. App Store Review Guidelines. [online], [cit. 2022-03-08].
Available from: https://developer.apple.com/app-store/review/
guidelines/

[47] Apple, Inc. About Core Bluetooth. [online], [cit. 2022-
03-08]. Available from: https://developer.apple.com/
library/archive/documentation/NetworkingInternetWeb/
Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/
Introduction.html#//apple_ref/doc/uid/TP40013257

[48] Apple, Inc. Core WLAN. [online], [cit. 2022-03-09]. Available from:
https://developer.apple.com/documentation/corewlan

[49] Google LLC. Mapy Google. [online], [cit. 2022-03-09]. Avail-
able from: https://play.google.com/store/apps/details?id=
com.google.android.apps.maps&hl=cs&gl=US

[50] Guilizzoni, P. What Are Wireframes? [online], [cit. 2022-04-19].
Available from: https://balsamiq.com/learn/articles/what-are-
wireframes/

[51] Xia, V. A Beginner’s Guide — What Is Wireframe in Soft-
ware Development? [online], [cit. 2022-04-19]. Available from:
https://medium.com/@Vincentxia77/a-beginners-guide-what-
is-wireframe-in-software-development-60a5ab02212b

[52] Lougheed, P. Asynchronous programming: Streams. [online], [cit. 2022-
04-18]. Available from: https://www.wi-fi.org/who-we-are/history

[53] Flutter Team. Interface Flutter Plugin. [online], [cit. 2022-03-
09]. Available from: https://api.flutter.dev/javadoc/io/flutter/
embedding/engine/plugins/FlutterPlugin.html

[54] Android Developers. WifiManager. [online], [cit. 2022-04-18]. Avail-
able from: https://developer.android.com/reference/android/net/
wifi/WifiManager

[55] Android Developers. Wifi Aware Session. [online], [cit. 2022-03-21]. Avail-
able from: https://developer.android.com/reference/android/net/
wifi/aware/WifiAwareSession

[56] Material Design. Flutter. [online], [cit. 2022-03-12]. Available from:
https://material.io/develop/flutter

65

https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html#//apple_ref/doc/uid/TP40013257
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html#//apple_ref/doc/uid/TP40013257
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html#//apple_ref/doc/uid/TP40013257
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html#//apple_ref/doc/uid/TP40013257
https://developer.apple.com/documentation/corewlan
https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=cs&gl=US
https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=cs&gl=US
https://balsamiq.com/learn/articles/what-are-wireframes/
https://balsamiq.com/learn/articles/what-are-wireframes/
https://medium.com/@Vincentxia77/a-beginners-guide-what-is-wireframe-in-software-development-60a5ab02212b
https://medium.com/@Vincentxia77/a-beginners-guide-what-is-wireframe-in-software-development-60a5ab02212b
https://www.wi-fi.org/who-we-are/history
https://api.flutter.dev/javadoc/io/flutter/embedding/engine/plugins/FlutterPlugin.html
https://api.flutter.dev/javadoc/io/flutter/embedding/engine/plugins/FlutterPlugin.html
https://developer.android.com/reference/android/net/wifi/WifiManager
https://developer.android.com/reference/android/net/wifi/WifiManager
https://developer.android.com/reference/android/net/wifi/aware/WifiAwareSession
https://developer.android.com/reference/android/net/wifi/aware/WifiAwareSession
https://material.io/develop/flutter

Bibliography

[57] Aksli, M. Material library. [online], [cit. 2022-03-12]. Available
from: https://api.flutter.dev/flutter/material/material-
library.html

[58] Flutter Team. sliding_up_panel 2.0.0+1. [online], [cit. 2022-03-13]. Avail-
able from: https://pub.dev/packages/sliding_up_panel

[59] Moore, K. Platform class. [online], [cit. 2022-04-27]. Available from:
https://api.flutter.dev/flutter/dart-io/Platform-class.html

[60] Flutter Team. flutter_map 0.14.0. [online], [cit. 2022-03-13]. Available
from: https://pub.dev/packages/flutter_map

[61] Flutter.dev. google_maps_flutter 2.1.3. [online], [cit. 2022-03-09]. Avail-
able from: https://pub.dev/packages/google_maps_flutter

[62] Flutter Campus. How to Make Google Map Autocomplete Place
Search Box in Flutter App. [online], [cit. 2022-03-22]. Avail-
able from: https://www.fluttercampus.com/guide/254/google-map-
autocomplete-place-search-flutter/

[63] Pub.dev. csv 5.0.1. [online], [cit. 2022-03-19]. Available from: https://
pub.dev/packages/csv

[64] The Flutter Community. Read and write files. [online], [cit. 2022-03-19].
Available from: https://docs.flutter.dev/cookbook/persistence/
reading-writing-files#2-create-a-reference-to-the-file-
location

[65] The Flutter Community. file_picker 4.5.1. [online], [cit. 2022-03-19].
Available from: https://pub.dev/packages/file_picker

[66] The Flutter Community. share_plus 4.0.4. [online], [cit. 2022-03-19].
Available from: https://pub.dev/packages/share_plus

[67] Simform. showcaseview 1.1.5. [online], [cit. 2022-04-13]. Available from:
https://pub.dev/packages/showcaseview/example

[68] Papadopoulos, M. Build and release an Android app. [online], [cit.
2022-04-15]. Available from: https://docs.flutter.dev/deployment/
android

[69] Papadopoulos, M. Build and release an iOS app. [online], [cit. 2022-04-
15]. Available from: https://docs.flutter.dev/deployment/ios

[70] The Flutter Community. flutter_launcher_icons 0.9.2. [online], [cit.
2022-04-15]. Available from: https://pub.dev/packages/flutter_
launcher_icons

66

https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://pub.dev/packages/sliding_up_panel
https://api.flutter.dev/flutter/dart-io/Platform-class.html
https://pub.dev/packages/flutter_map
https://pub.dev/packages/google_maps_flutter
https://www.fluttercampus.com/guide/254/google-map-autocomplete-place-search-flutter/
https://www.fluttercampus.com/guide/254/google-map-autocomplete-place-search-flutter/
https://pub.dev/packages/csv
https://pub.dev/packages/csv
https://docs.flutter.dev/cookbook/persistence/reading-writing-files#2-create-a-reference-to-the-file-location
https://docs.flutter.dev/cookbook/persistence/reading-writing-files#2-create-a-reference-to-the-file-location
https://docs.flutter.dev/cookbook/persistence/reading-writing-files#2-create-a-reference-to-the-file-location
https://pub.dev/packages/file_picker
https://pub.dev/packages/share_plus
https://pub.dev/packages/showcaseview/example
https://docs.flutter.dev/deployment/android
https://docs.flutter.dev/deployment/android
https://docs.flutter.dev/deployment/ios
https://pub.dev/packages/flutter_launcher_icons
https://pub.dev/packages/flutter_launcher_icons

Bibliography

[71] Freepik. Drone Icon. [online], [cit. 2022-04-25]. Available from: https:
//www.flaticon.com/free-icon/drone_4212583?term=drone&page=
1&position=7&page=1&position=7&related_id=4212583&origin=tag

[72] Android Developers. bundletool. [online], [cit. 2022-04-19]. Avail-
able from: https://developer.android.com/studio/command-line/
bundletool

[73] Friis, S. Open Drone ID transmitter example for Linux. [online],
[cit. 2022-04-23]. Available from: https://github.com/opendroneid/
transmitter-linux

[74] Espressif Systems. ESP32-C3-DevKitM-1. [online], [cit. 2022-04-23].
Available from: https://docs.espressif.com/projects/esp-idf/
en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-
1.html

[75] Nielsen, J. 10 Usability Heuristics for User Interface Design. [online], [cit.
2022-04-27]. Available from: https://www.nngroup.com/articles/ten-
usability-heuristics/

[76] Apple, Inc. How the Program Works. [online], [cit. 2022-04-30]. Available
from: https://mfi.apple.com/en/how-it-works.html

67

https://www.flaticon.com/free-icon/drone_4212583?term=drone&page=1&position=7&page=1&position=7&related_id=4212583&origin=tag
https://www.flaticon.com/free-icon/drone_4212583?term=drone&page=1&position=7&page=1&position=7&related_id=4212583&origin=tag
https://www.flaticon.com/free-icon/drone_4212583?term=drone&page=1&position=7&page=1&position=7&related_id=4212583&origin=tag
https://developer.android.com/studio/command-line/bundletool
https://developer.android.com/studio/command-line/bundletool
https://github.com/opendroneid/transmitter-linux
https://github.com/opendroneid/transmitter-linux
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://mfi.apple.com/en/how-it-works.html

Acronyms

AP Access Point. 10

API Application Programming Interface. 14, 16, 19, 21, 22, 27–29, 46, 47,
56, 57

APK Android Application Package. 50

ASD-STAN Aerospace and Defence Industries Association of Europe - Stan-
dardization. 4, 6, 10, 11, 54

BLoC Bussiness Logic Components. 17, 18

CSV Comma Separated Values. 19, 23, 24, 39, 47

DRI Direct Remote Identification. 4–7, 39

EU European Union. 1, 3–7, 58

FAA Federal Aviation Administration. 3, 4

GNSS Global Navigation Satellite System. 5

GPS Global Positioning System. 5, 11

GUI Graphical User Interface. xvii, 13, 18, 24, 42, 43, 51, 56

ID Identification. 4–7, 9, 10, 39, 51, 54, 58

IDE Integrated Development Environment. 55

IEEE Institute of Electrical and Electronics Engineers. 10

69

Acronyms

ISM Industrial, Scientific and Medical. 8

ISO International Organization for Standardization. 4

JSON JavaScript Object Notation. 39, 48

MAC Media Access Control. 10, 29, 33, 34

NaN Neighbour Aware Network. xi, 11, 18, 21, 32, 34, 39, 51

NRI Network Remote Identification. 5

OS Operating System. 18

RSSI Received Signal Strength Indication. 33, 34

SDK Software Development Kit. 15–17, 20–22, 27, 42

SSID Service Set Identifier. 10

UA Unmanned Aircraft. 3–7

UAS Unmanned Aircraft Systems. 1, 4–7

UAV Unmanned Autonomous Vehicle. 3, 5, 11, 22, 52, 54, 57, 58

UHF Ultra High Frequency. 8, 10

UI User Interface. 16–18, 20, 39, 40, 52, 53

USA United States of America. 1, 3, 4, 12

VLOS Visual line-of-sight. 4

70

Appendix A
Contents of enclosed CD

readme.txt the file with contents description and installation guide
build.....................................the directory with executables
src...the directory of source codes

app the directory with the application source codes
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
MP_Glejtek_Matej_2022.pdf..........the thesis text in PDF format

71

	Introduction
	Research
	Drone Identification Regulations
	Regulation Implementation
	Remote id and Semantic Model
	Semantic Model
	Message Types
	Operator Registration Number

	Remote id Technology and Standards
	Bluetooth
	Wi-Fi

	Compatible Smartphones
	Curently Existing Applications

	Design
	Architecture
	Used Technology and Development Tools
	Dart Language
	Flutter Library and Architecture
	State Management
	Responsivness and Adaptivness
	Permissions
	Writing Native Code
	Compilation
	Android Platform
	iOS Platform

	Example Application
	User Goals
	Use Cases
	Task List
	Wireframes

	Implementation
	Flutter Library Implementation
	Data Model
	Platform Interface
	Flutter Library Implementation
	Native Plugins Implementation
	Android Native Code
	iOS Native Code

	Example Application Implementation
	Project structure
	State Management
	Using Own Library
	Implementing Graphical Interface
	Exporting Messages in a CSV Format
	Application Tutorial
	Styling
	Map Styling
	Releasing the Application

	Testing
	User Testing
	Test Scenarios
	Testing Evaluation

	Heuristic Analysis
	Code Analysis
	Identified Issues
	Future Improvements

	Conclusion
	Bibliography
	Contents of enclosed CD

