
Instructions

Design, implement and test an iOS application displaying data from a racing simulator. The application

should be able to display vehicle information, such as current speed, engine revolutions, race

information, such as the number of laps, current lap time, and advanced data such as the

accelerator/brake pedal usage development graph during a lap.

1. Analyze existing applications used for displaying data from gaming simulators.

2. Analyze and describe a data structure provided by a chosen racing simulator.

3. In accordance with the supervisor, specify the functional and non-functional requirements of the

application.

4. In accordance with the supervisor, design a graphical user interface of the application.

5. Design and implement the networking layer that will the application use to receive data from

racing simulators.

6. Implement the mobile application as specified.

7. Test the mobile application.

8. Summarize the results of the work, describe its benefits.

Electronically approved by Ing. Michal Valenta, Ph.D. on 22 June 2021 in Prague.

Assignment of master’s thesis

Title: Racing dashboard mobile application

Student: Bc. Adam Gelatka

Supervisor: Ing. Lukáš Hromadník

Study program: Informatics

Branch / specialization: Software Engineering

Department: Department of Software Engineering

Validity: until the end of winter semester 2022/2023

Master’s thesis

Mobile Application Racing Dashboard

Bc. Adam Gelatka

Department of software engineering
Supervisor: Ing. Lukáš Hromadník

May 5, 2022

Acknowledgements

I would first like to thank my thesis advisor and mentor, Ing. Lukáš Hromad-
ník, whose expertise was invaluable and always devotedly helped whenever
I ran into a trouble spot or had a question about my thesis. In addition, I
would like to thank my parents for their wise counsel and sympathetic ear.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 5, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Adam Gelatka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Gelatka, Adam. Mobile Application Racing Dashboard. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Abstract

This thesis is concerned with a mobile application that simulates a virtual
vehicle dashboard by displaying data from racing simulator games. The ap-
plication, which has been designed and implemented to run on the iOS plat-
form, allows one to display relevant data about the vehicle, such as speed,
engine revolutions, pedal usage, etc. In addition, time, position, and other
race-related information is also displayed. UDP protocol is used for communi-
cation with various racing simulators. Statistical data from every session are
recorded and presented using graphs that can be reviewed later.

Keywords racing simulator, car dashboard, mobile application, iOS, Swift,
UDP

vii

Abstrakt

Práce se zaobírá mobilní aplikací, která simuluje palubní desku automobilu
zobrazující data ze závodních simulátorů. Navržená a implementovaná apli-
kace běžící na iOS platformě umožňuje zobrazovat relevantní data ohledně
vozidla, např. rychlost, otáčky motoru, využití pedálů a další. Dále jsou vidi-
telná data o času, pozici apod. Pro komunikaci se simulátory je používán UDP
protokol, přičemž z každého závodu jsou ukládána statistická data, která jsou
následně prezentována pomocí grafů.

Klíčová slova závodní simulátor, palubní deska, mobilní aplikace, iOS, Swift,
UDP

viii

Contents

Introduction 1

1 Goals and Requirements 1
1.1 Application Requirements . 1

1.1.1 Functional Requirements 2
1.1.2 Non-functional Requirements 3
1.1.3 Use Cases . 3

2 Analysis 5
2.1 Racing Simulators . 5

2.1.1 Market Share . 6
2.2 Existing Alternatives . 6

2.2.1 RealDash . 7
2.2.2 Race Dash for Sim Games 8
2.2.3 DashPanel . 10
2.2.4 Comparison . 11

2.3 Data Output . 12
2.3.1 UDP . 13

2.4 Target Platform . 14
2.4.1 iPhone . 14
2.4.2 iPad . 15

2.5 Data Packet Structure . 15

3 Used Technologies 21
3.1 GUI Creation Methods in iOS 21
3.2 Swift . 22
3.3 Xcode IDE . 22
3.4 Cocoapods . 23
3.5 Swift Package Manager . 23

ix

3.6 Frameworks . 23
3.6.1 UIKit . 24
3.6.2 SnapKit . 24
3.6.3 Swinject . 24
3.6.4 Combine . 24
3.6.5 SwiftNIO . 25
3.6.6 CoreData . 25
3.6.7 Charts . 25
3.6.8 XCTest . 26
3.6.9 SwiftLint . 26

4 Design 27
4.1 Architecture . 27

4.1.1 MVVM . 27
4.1.2 MVVM in iOS . 28
4.1.3 Flow Coordinators . 28

4.2 Mobile First Design . 29
4.3 Separation of Concerns . 29
4.4 Dependency Injection . 29
4.5 Localization . 30
4.6 Graphical User Interface . 30

4.6.1 Main Menu Screen . 30
4.6.2 Graphs Screen . 31
4.6.3 Connection Screen . 32
4.6.4 Dashboard Screen . 34
4.6.5 Application Icon . 35

4.7 Race Statistics Database . 36
4.8 Common Data Packet . 37
4.9 Networking Layer . 38

5 Implementation 41
5.0.1 Networking Service . 41
5.0.2 Channel Handler . 42
5.0.3 Data Decoder . 43

5.1 Application Logic . 44
5.1.1 Connection Process . 44
5.1.2 Data Recording . 45

5.2 Architecture . 46
5.3 User Interface . 47

5.3.1 Vertical Selector . 47
5.3.2 Gradient Button . 48
5.3.3 Panel Card . 48
5.3.4 Progress Indicator . 48
5.3.5 Bar Gauge . 48

x

5.3.6 RPM Gauge . 49
5.3.7 Other Elements . 49
5.3.8 Documentation . 49

6 Testing 51
6.1 Performance Testing . 51

6.1.1 Testing Environment . 51
6.1.2 Testing Results . 51

6.2 Unit Testing . 52
6.3 GUI Testing . 53
6.4 Usability Testing . 53

6.4.1 Testing Procedure . 54
6.4.2 Results . 55

6.5 Practical Testing . 56

Conclusion 57

Bibliography 59

A Acronyms 63

B Contents of Enclosed CD 65

C Racing Dashboard Screenshots 67

xi

List of Figures

1.1 Use case diagram . 4

2.1 RealDash menu screen . 8
2.2 RealDash dashboard screen . 8
2.3 Race Dash menu screen . 9
2.4 Race Dash dashboard screen . 10
2.5 DashPanel menu screen . 11
2.6 DashPanel dashboard screen . 11
2.7 Encapsulation of UDP . 13
2.8 UDP header . 14

4.1 Model-View-ViewModel diagram 28
4.2 Model-View-ViewModel in iOS diagram 28
4.3 High-fidelity prototype of main menu 32
4.4 High-fidelity prototype of graphs screen 33
4.5 High-fidelity prototype of the connection screen 34
4.6 High-fidelity prototype of modern dashboard 36
4.7 Application icon . 36
4.8 Conceptual diagram of race records database 37

6.1 Practical testing in Forza Horizon 5 56

C.1 Main menu screen screenshot . 67
C.2 Graph screen screenshot . 68
C.3 Connection screen screenshot . 68
C.4 Connection screen guided screenshot 69
C.5 Dashboard screen screenshot . 69

xiii

List of Tables

2.1 Racing games examples . 5
2.2 Racing games market research report by Market Research Future . 6
2.3 Racing games market research report by Statista 6
2.4 Comparison of existing applications 12
2.5 Communication protocols of racing games 12

6.1 Networking performance testing . 52
6.2 Usability testing users . 54

xv

List of Source Code Listings

1 First part of the FH5 data structure 16
2 Second part of the FH5 data structure 17
3 Third part of the FH5 data structure 18
4 Common data structure . 39
5 Networking service protocol . 42
6 Networking service stop function 42
7 Networking service start function 43
8 Networking service handler . 44
9 Networking service decoder . 45
10 Coordinator protocol . 47
11 Unit tests example . 53

xvii

Introduction

Racing simulators have become a popular genre in the video game industry.
The essence of racing simulators is to provide an almost real driving experi-
ence. Simulators are generally designed to simulate real-world activities with
an eye for accuracy. Racing simulators are no exception, based on variables
such as tire grip, fuel consumption, chassis yaw, gravity, friction, etc. Players
are not only individuals seeking enjoyment, but also professional racing drivers
perfecting their skills without the need for a real car and race track. A simple
simulator setup could consist of only a computer or console, a monitor, and
a gamepad. To further improve the experience, additional external devices
can be used, for example, a steering wheel, pedals, gear shifter, handbrake,
and even external dashboards.

This master thesis follows the concept of an external dashboard by design-
ing and implementing a mobile application that serves as a virtual dashboard
for various racing simulators, such as Assetto Corsa and arcade-styled Forza
Horizon 5. In-game HUDs can negatively impact drivers’ visibility by taking
part in the screen. The motivation behind the Racing Dashboard application
is to decrease the interference between the field of view and the HUD by plac-
ing the dashboard wherever needed as an external component.
Almost all racing simulators support a data-out feature, which tends to be
often based on UDP networking protocol. For the Racing Dashboard applica-
tion, a communication layer is designed based on the documentation analysis
of data-out features of various racing simulators. In addition to the commu-
nication component, a full-fledged application with a modern user interface is
designed, implemented, and fine-tuned to offer a seamless experience. Among
other modern technologies, a reactive programming paradigm is used to en-
sure a sustainable data flow throughout the entire application. The Racing
Dashboard records the data for each session and presents them in graphs as
a statistical resource that can be reviewed by the user.

At the beginning of the thesis, it is necessary to analyze all the tech-
nologies that will be used to implement the mobile application for the iOS

1

Introduction

platform, namely for iPhone and iPad devices. The design chapter deals
with the application architecture, design patterns, and the GUI design pro-
cess itself. The implementation section describes the implementation process
that adapts the knowledge gathered from previous sections. The finished ap-
plication is tested, including a practical test on a racing simulator, and, in
conclusion, the thesis is evaluated.

2

Chapter 1
Goals and Requirements

The main objective of this thesis is to design and implement a mobile applica-
tion that acts as a virtual racing dashboard. The purpose of the dashboard is
to display relevant information about the vehicle and the race itself. The ap-
plication is intended for the iOS platform, specifically for iPhone and iPad
devices.

The initial step is to thoroughly analyze existing dashboard applications
and record their limitations, pros, and cons. The design, implementation,
and testing process is well documented and evaluated. The result is a fully
functional networking component that is versatile, well-performing, and covers
the communication between a variety of racing simulators.

GUI design will emerge within the next goal to achieve a modern and
lightweight interface. It is fundamental to make all application components
well organized, intuitive, and non-disruptive.

An application written using the Swift programming language encapsulates
the project and adapts the GUI design. Performance testing is necessary due
to the potentially high data flow from the simulators. The persistence of data
records will be ensured by using the CoreData framework. Finally, the finished
application will be tested on a racing simulator.

1.1 Application Requirements
The application satisfies two sets of requirements. Some are based entirely
on the assignment of the thesis, such as displaying speed and saving data to
be presented as graphs. Other requirements originated from the analysis of
existing dashboard applications and even from personal experience with racing
simulators. The application will try to comply with Apple’s Human Interface
Guidelines [1]. Lastly, the app is designed similarly to a production-grade
iOS application. Functional and non-functional requirements are stated in
the subsequent sections.

1

1. Goals and Requirements

1.1.1 Functional Requirements

Functional requirements are features or functions that developers must imple-
ment to allow users to perform given tasks. They generally describe the in-
tended behavior of the application. Functional requirement analysis is a fun-
damental step in the software design process and has an immense impact on
the finished product. In agreement with the supervisor, the following func-
tional requirements were stated:

• FR1: The application displays vehicle-related data:

– Vehicle’s speed

– Engine’s revolutions per minute (RPM)

– Accelerator, clutch, and brake pedal usage

– Tire temperature

– Fuel tank level

• FR2: Application displays race-related data:

– Lap count

– Current position

– Total time

– Best lap time

• FR3: Recording data and saving statistics: The application sup-
ports data collection and generation of statistics presented in graphs.
Variables such as pedal usage, final position, best lap, and total time
are considered to be eligible sources. All records will be persistently
saved.

• FR4: Multiple dashboard designs: Multiple and easily switchable
dashboard designs are featured. In the current state, the user does not
have to make any further customization of the dashboard. The goal is
to create one fully functional dashboard for the release in the hope of
adding more in the future.

• FR5: Connection guide: A connection wizard guides the user through
the connection process. The steps given are exclusive to every simula-
tor, and the wizard must help the user to setup the connection. Partial
automatization of the entire process is essential.

2

1.1. Application Requirements

1.1.2 Non-functional Requirements
Non-functional requirements describe the general capabilities and character-
istics of the application.

• NFR1: Application for iOS platform: The application is designed
and built for the Apple iOS platform, specifically the for iPhone and iPad
devices. The iOS 15 is the supported version with no further backward
compatibility. The application does not support the MacOS or Apple
Watch platform.

• NFR2: Network data transfer: The application supports network-
ing using the UDP protocol used for communication between the ap-
plication and the racing simulator of choice. Data are passed through
a local network to which the device connects using Wi-Fi and acts as
a UDP server.

• NFR3: Data persistence: The recorded data used as race statistics
are persistently saved in the device’s local storage. Currently, no cloud
solution is supported.

• NFR4: Intuitive GUI: Modern and intuitive GUI is mandatory, not
only for the dashboard itself, but also for other supporting screens such
as the main menu or the statistics overview. GUI is loosely adapting
the Apple’s Human Interface Guidelines [1]. Responsivity of the GUI is
mandatory due to the support of different screen sizes.

1.1.3 Use Cases
Use cases define how users will perform tasks in the application. Each use
case is represented as a scenario that outlines the behavior of the application.

• UC1: Launching the dashboard:

– The user opens the application.
– The user selects a racing simulator.
– The user selects a dashboard type.
– The user starts the connection process.
– Once connected, the user sees the connection details.
– The user continues to the dashboard.

• UC2: Opening the connection guide:

– The user opens the application.
– The user selects a racing simulator.

3

1. Goals and Requirements

– The user starts the connection process.
– While connecting, the user sees the connection guide.
– The user is able to swipe through the steps of the guide gallery.

• UC3: Reviewing race statistics:

– The user opens the application.
– The user taps the graphs button.
– The user selects a given record using the navigation buttons.
– The user selects a value to be displayed.
– The user interacts with the graph.

Figure 1.1: Use case diagram

4

Chapter 2
Analysis

2.1 Racing Simulators

The topic of this thesis revolves around racing simulators, which are essentially
video games developed mainly for computers and video game consoles. There
are even some racing simulators designed for mobile platforms, but these will
not be taken into account within the scope of this project. All simulators
have one thing in common, the desire for realism. Their goal is to simulate
real-world behavior based on different variables such as friction, tire grip, fuel
level, weight, aerodynamics, etc. Advanced simulators allow users to modify
settings such as gear ratio, suspension behavior, ride height, and many more.
Today, modern racing games require a decent amount of processing power,
mainly due to the advanced graphics. The most famous simulators are Assetto
Corsa, Project CARS, F1 Career Challenge, and more. The arcade-styled side
of the genre is, for example, the Forza Horizon series or The Crew. Arcade
styled games are not entirely focused on realism, featuring elements such as
events or quests. An aggregation of both styles is called simcade, and a well-
known installment is the Forza Motorsport series or Gran Turismo.

Table 2.1: Racing games examples

Racing game Type Year released
Assetto Corsa simulator 2014
Forza Horizon 5 arcade 2021
Project CARS simulator 2015
Forza Motorsport 7 simcade 2017
F1 2021 simulator 2021
Dirt Rally simulator 2015

5

2. Analysis

2.1.1 Market Share
As stated in the Introduction, racing games form a significant share of the video
game industry. The prospects for this genre are very positive. As can be seen
in Table 2.2, Market Research Future [2] predicts a compound annual growth
rate of 11.6% by 2030. The market share for the year 2019 is reported to be
$1,364 million. The other statistical source shown in table 2.3, Statista [3],
projects a growth of 10.31% between the years 2022-2026. On the other hand,
Statista reports a significantly higher market share for 2022, projected to be
$3,227 million. It is evident that both research reports are quite distinct; how-
ever, the expected trend is a common denominator for both. It is projected
to see a growth rate of around 10% within the next 10 years. An overview of
both reports can be seen in Tables 2.2 and 2.3.

Table 2.2: Racing games market research report by Market Research Future[2]

Report attribute/metric Details
Market size $1,364m
CAGR 11.6%
Base year 2019
Forecast period 2020-2030

Table 2.3: Racing games market research report by Statista[3]

Report attribute/metric Details
Market Size $3,207m
CAGR 10.31%
Base year 2022
Forecast period 2022-2026
Projected market volume 2026 $4,749m

2.2 Existing Alternatives
The mobile application market is saturated with virtual dashboard applica-
tions. The following analysis was performed on applications for the iOS plat-
form available on the Apple App Store. Various aspects were considered, such
as the quality of the GUI, the number of supported games, dashboards, rating,
supported iOS versions, and many more. The most famous applications are
the following:

• Real Dash

• Race Dash for Sim Games

6

2.2. Existing Alternatives

• DashPanel

• Sim Racing Telemetry

• RS Dash

• pCars Dash

The in-depth analysis of the first 3 applications is documented in the fol-
lowing section, including personal insights and a comparison table as a part
of the conclusion.

2.2.1 RealDash
RealDash is one of the most famous applications for virtual dashboard teleme-
try. The GUI tends to be modern; however, it might be confusing at some
point. Among the supported games is Assetto Corsa, BeamNG Drive, Dirt
Rally, Forza Horizon 4, Forza Motorsport 7, and many more. In total, the ap-
plication currently supports up to 10 different racing simulators [4]. Further-
more, RealDash even enables data input from real cars. The list of supported
ECU models may differ between the iOS, Android, and Windows 10 versions
of the application. The iOS application supports ECUs such as Autronic SM4,
EasyEcu 3+, Ecumaster EMU series, Speeduino, Megasquirt, and many more
[4]. This addition allows to display data from a real vehicle that is equipped
with an OBD2 port. However, a compatible OBD2 Wi-Fi adapter device is
required.

RealDash offers multiple free and paid dashboard designs. The applica-
tion comes with some free basic dashboards that feature a rather poor design.
However, paid dashboards are visually more elaborate and appear to be mod-
ern. Dashboards are highly customizable in different ways, such as changing
the displayed gauges, positions, colors, and many more. The GUI of the ap-
plication seems to be not optimized in some places for newer iPhones with
a notch. There is also a menu that is based on a 3D car model. The user can
interact with the model to modify settings such as tire width, engine size, gear
ratios, and many more. This approach might be confusing to some users, due
to the fact that the application is mixing flat modern design with 3D objects.
RealDash also offers a paid version of the application that removes several
limits, ads, and unlocks functionalities such as data logging. The application
supports iPhone and iPad devices. The development of RealDash continues
to this day. RealDash screenshots are shown in figures 2.1 and 2.2.

• Developer: Napko Oy

• Rating on App Store: 5.0/5 (2 ratings)

• Supported iOS: iOS 8.0 or later

7

2. Analysis

• Free/Paid: Both

• Additional dashboards: Paid

Figure 2.1: RealDash menu screen

Figure 2.2: RealDash dashboard screen

2.2.2 Race Dash for Sim Games
Race Dash for Sim Games is a another representative of racing dashboard ap-
plications. It supports racing games such as Forza Horizon 4/5, F1 2021,
Assetto Corsa, PCars2, and more. In total, 11 games are supported [5].

8

2.2. Existing Alternatives

The application tends to have a simple and flat design. The menu is not
very intuitive, although at some point it is easy to use. Race Dash offers some
dashboards for free, although others are unlocked by paying a permanent un-
lock, or a subscription. Dashboards offer slight customization that allows to
change properties such as background color. Furthermore, the settings menu
allows one to change parameters such as measurement units, UDP port, and
many more preferences. In addition to the support of iPhone and iPad de-
vices, Race Dash also offers an Apple Watch application, which can display
a small dashboard with the most basic values. Race Dash does not support
data recording. GUI seems to be unoptimized for newer iPhones with a notch.
The development continues to this day. Screenshots of Race Dash are shown
in figures 2.3 and 2.4.

• Developer: David Mills

• Rating on App Store: 4.1/5 (7 ratings)

• Supported iOS: iOS 9.0 or later

• Free/Paid: Both

• Additional dashboards: Paid

Figure 2.3: Race Dash menu screen

9

2. Analysis

Figure 2.4: Race Dash dashboard screen

2.2.3 DashPanel
DashPanel is the last example of the listed application alternatives. Due to
the loading screen, it is clear, that the application is developed using Unity and
does not blend very well with the iOS environment. DashPanel supports racing
games such as Assetto Corsa, Forza Horizon 4, F1 2021, PCars2, and more.
In total, the application supports up to 9 games. The design of the main menu
is very outdated, although it is easy to use. Within the settings, the user can
change measurement units, UDP parameters, and other properties. DashPanel
features fully customizable dashboards that can be created and modified using
a built-in editor. Predefined dashboards are also available with the addition of
community content. All featured dashboards come free with the application;
however, the application requires transactions for each racing game in order
to unlock full data displaying capability; moreover, the application does not
support data logging. The interface is outdated, unintuitive, and unoptimized
for newer iPhones with a notch. DashPanel runs on iPhone and iPad devices.
The development continues to this day. Screenshots of the Dash Panel are
shown in figures 2.5 and 2.6.

• Developer: Bernhard Deininger

• Rating on App Store: 3.7/5 (3 ratings)

• Supported iOS: iOS 9.0 or later

• Free/Paid: Both

• Additional dashboards: Paid

10

2.2. Existing Alternatives

Figure 2.5: DashPanel menu screen

Figure 2.6: DashPanel dashboard screen

2.2.4 Comparison

The results of the analysis are summarized in the comparison table listed below
2.4. The table shows the number of supported games and a personal opinion
about the GUI on a given scale: Weak, Neutral, Good, where Weak represents
the weakest GUI designs and conversely Good represents the best GUI designs.
In addition, an App Store rating and a purchase plan are included.

As can be seen in Table 2.4, almost all applications suffer from a rather
poor user interface. Most of them support up to 10 games or even more.
RealDash additionally supports data from real car ECUs and can be utilized

11

2. Analysis

Table 2.4: Comparison of existing applications

Application name Games GUI Plan Rating
Real Dash 14 Neutral Free/Paid 5/5
Race Dash 11 Neutral Free/Paid 4.1/5
DashPanel 9 Weak Free/Paid 3.7/5
Sim Racing Telemetry 10 Good Trial/Paid -
RS Dash 17 Weak Paid 5/5
pCars Dash 1 Weak Paid 5/5

within real races. However, all listed applications include paid content and, in
some cases, at least one purchase is required to use the application. The paid
content can be divided into three categories - paid dashboards, paid data
unlocks, and paid premium accounts. Most dashboard applications support
both iPhone and iPad devices, some of them even support the Apple Watch.

2.3 Data Output
Almost all racing simulators offer a data output feature, usually using shared
memory or by sending data over the network. To decide which protocols
the application should support, it is necessary to analyze the protocols im-
plemented by racing simulators. The analysis took into account the following
games: Asseto Corsa, Forza Horizon 5, Project CARS, Forza Motorsport 7,
F1 2021, and Dirt Rally. The documentation of each listed game served as
a data source for the analysis. The results are recorded in Table 2.5.

Table 2.5: Communication protocols of racing games

Racing game Communication protocol
Assetto Corsa UDP
Forza Horizon 5 UDP
Project CARS UDP
Forza Motorsport 7 UDP
F1 2021 UDP
Dirt Rally UDP

The results of the analysis point to the clear fact that the most widely
used protocol for data transmission in racing simulators is UDP. Some of
the games support shared memory output at the same time. The shared
memory output method is based on a shared data file that is continuously
updated by the game. However, shared memory is not usable in the case of
this project, due to the wireless connection between the iOS device and the
racing game. It is evident that the racing dashboard application will utilize

12

2.3. Data Output

the UDP networking layer due to its frequent occurrence in the data output
features of racing simulators.

2.3.1 UDP
User Datagram Protocol, in short, UDP, is a simple datagram-oriented trans-
port layer protocol. Each operation creates a single UDP datagram that is
being sent as an IP datagram. Unlike TCP/IP, in UDP reliability and dupli-
cate protection are not guaranteed [6]. UDP should be avoided when reliable
order and error-checked transmission is required. UDP can also be described
as a scaled-down economy model of TCP; therefore, it is sometimes referred
to as a thin protocol.

”Like a thin person on a park bench, a thin protocol doesn’t take
up a lot of room”[7]

Figure 2.7: Encapsulation of UDP [6]

Figure 2.7 shows an encapsulated UDP datagram as an IP datagram. Ul-
timately, it is just a UDP datagram with the addition of an IP header. UDP
datagram consists of the data itself and a UDP header. The structure of
the UDP header can be seen in Figure 2.8. Port numbers are there to iden-
tify the sending and receiving process [8]. TCP and UDP port numbers are
independent of the demultiplexing process. Next, the UDP length defines
the length in bytes of the UDP header and the data itself. The minimum
value of the length is 8 bytes. However, the length of the UDP datagram
is redundant and can be calculated as the total length of the IP datagram
subtracted by the length of the IP header [6].

Both TCP and UDP feature checksums are used to verify the integrity
of the data by detecting potential errors that may occur. The IP header
does have a checksum as well; however, it is derived from the header only.
On the other hand, the UDP checksum takes into account both the header

13

2. Analysis

and the data [6]. The network framework used in this project automatically
handles the UDP checksum a reacts appropriately; therefore, no further de-
scription is needed.

Figure 2.8: UDP header [6]

2.4 Target Platform
The target platform, as specified in the thesis assignment, is the iOS mobile
operating system developed by Apple Inc. solely for its devices. The iOS
is running on iPhone and iPad devices, although for iPads, iOS is branded
as iPadOS. Both listed devices will be supported by the racing dashboard
application.

As mentioned in the Introduction, the Racing Dashboard application will
exclusively support the latest iOS version 15. This seemingly strict decision
was made on the basis of the adoption data from Apple Inc. Apple claims that
72% of the iPhone devices introduced in the last four years (now is the year
2022) have iOS 15 installed. Furthermore, 63% of all iPhone devices run iOS
15. In the case of iPads, 57% of those introduced in the last four years have
iOS 15 installed, and for all iPad devices, the number is 49% [9].

2.4.1 iPhone
The Apple iPhone is a line of smartphones with the first generation announced
on January 9, 2007. It started as a combination of three products, a mobile
phone, an iPod and an internet communication device [10]. The iPhone has
developed substantially since its announcement and there is currently a 15th
generation on the market [11]. The newest iOS version 15 supports 24 different
iPhone models [12]. The biggest difference between the devices in terms of
this project is the screen size, which the GUI has to adapt to. The device
with the smallest screen across all the supported iPhones is the iPhone SE

14

2.5. Data Packet Structure

(1st generation) with a 4-inch screen with a resolution of 1136 × 640 pixels
[13]. On the contrary, the largest screen used in the iPhone 13 Pro Max is 6.7
inches diagonally with a resolution of 2778 × 1284 pixels [14].

2.4.2 iPad

The iPad is a tablet computer developed by Apple Inc. Originally, the iPad
was supposed to ship before the iPhone. This did not happen, and the iPad
was announced later on January 27, 2010. The first generation featured Wi-
Fi and 3G (cellular) models [15]. Apple currently offers 4 different models of
iPads, namely iPad Pro, iPad Air, iPad and iPad mini. The iPadOS 15 runs
on 21 different iPad models [16]. The smallest screen within supported models
is featured in the fourth generation of the iPad Mini with 7.9 inches diagonally
and resolution of 2048 × 1536 pixels [17]. On the contrary, the largest iPad
Pro has a 12.9-inch screen with resolution of 2732 × 2048 pixels [18].

2.5 Data Packet Structure
One of the key steps of this thesis is to analyze and describe a data struc-
ture provided by a chosen racing simulator. In terms of the racing simulator
selection, Forza Horizon 5 was chosen, which is one of the newest simcade
racing games. It is important to mention that the analyzed packet structure
is the same for Forza Horizon 4 and nearly the same for Forza Motorsport 7.
The wider usability of this specific data structure is the main reason why it
was chosen. The description of the structure can be found on the Forza Mo-
torsport forum [19]. Forza’s data output feature is based on sending packets
of the same format multiple times per second; to be more precise, the out-
put rate is up to 60 packets per second, depending on the network quality.
The total memory size of each packet is 311 bytes and consists of 85 different
values. In the following sections, the structure itself is described in-depth and
divided into 3 listings. The first part of the data structure can be seen in
Listing 1. All important variables are described in the following sections and
commented on in the actual code shown in the listings.

The first part of the packet contains a race status indicator with a times-
tamp. Maximum engine rpm and idle rpm values together limit the rpm
spectrum of the engine. The current engine rpm value lies in the mentioned
range and indicates the actual revolutions per minute of the engine. The rest
of the data in the first part of the packet is mostly used as input to motion
racing rigs, and will not be utilized by the Racing Dashboard application.
Although they will not be used, a summary may come in handy. Acceleration
and velocity are present in all three axes, as well as angular velocity. The yaw,
pitch, and roll of the vehicle, the suspension travel of each wheel, the slippage
of the tires, and the speed of the wheels are also available. All data could be

15

2. Analysis

1 struct ForzaHorizon5DataPacket {
2 let IsRaceOn: Int32 // 0 - Off, else - On
3 let TimestampMS: UInt32 // Timestamp
4 let EngineMaxRpm: Float32 // Max RPM of the engine
5 let EngineIdleRpm: Float32 // RPMs of the iddling engine
6 let CurrentEngineRpm: Float32 // Actual engine rpm
7 let AccelerationX: Float32 = 0
8 let AccelerationY: Float32 = 0
9 let AccelerationZ: Float32 = 0

10 let VelocityX: Float32 = 0
11 let VelocityY: Float32 = 0
12 let VelocityZ: Float32 = 0
13 let AngularVelocityX: Float32 = 0
14 let AngularVelocityY: Float32 = 0
15 let AngularVelocityZ: Float32 = 0
16 let Yaw: Float32 = 0
17 let Pitch: Float32 = 0
18 let Roll: Float32 = 0
19 let NormalizedSuspensionTravelFrontLeft: Float32 = 0
20 let NormalizedSuspensionTravelFrontRight: Float32 = 0
21 let NormalizedSuspensionTravelRearLeft: Float32 = 0
22 let NormalizedSuspensionTravelRearRight: Float32 = 0
23 let TireSlipRatioFrontLeft: Float32 // 0 - grip,
24 // ratio > 1 loss of grip
25 let TireSlipRatioFrontRight: Float32 = 0
26 let TireSlipRatioRearLeft: Float32 = 0
27 let TireSlipRatioRearRight: Float32 = 0
28 let WheelRotationSpeedFrontLeft: Float32 // radians/sec.
29 let WheelRotationSpeedFrontRight: Float32 = 0
30 let WheelRotationSpeedRearLeft: Float32 = 0
31 let WheelRotationSpeedRearRight: Float32 = 0
32 // ... More data
33 }

Listing 1: First part of the FH5 data structure

used by force feedback accessories to exhibit events such as car roll, slippage,
or collisions.

The second part of the Forza Horizon 5 data structure encapsulates rum-
ble and puddle detection for each wheel independently. These properties have
the prefix WheelInPuddle and WheelInRumble. In the case of WheelInPud-
dle, the value ranges from 0 to 1, where 1 is the deepest puddle and 0 is
the shallowest. On the other hand, WhellInRumble is simpler and can only

16

2.5. Data Packet Structure

1 struct ForzaHorizon5DataPacket {
2 let WheelOnRumbleStripFrontLeft: Float32 = 0
3 let WheelOnRumbleStripFrontRight: Float32 = 0
4 let WheelOnRumbleStripRearLeft: Float32 = 0
5 let WheelOnRumbleStripRearRight: Float32 = 0
6 let WheelInPuddleDepthFrontLeft: Float32 = 0
7 let WheelInPuddleDepthFrontRight: Float32 = 0
8 let WheelInPuddleDepthRearLeft: Float32 = 0
9 let WheelInPuddleDepthRearRight: Float32 = 0

10 let SurfaceRumbleFrontLeft: Float32 = 0
11 let SurfaceRumbleFrontRight: Float32 = 0
12 let SurfaceRumbleRearLeft: Float32 = 0
13 let SurfaceRumbleRearRight: Float32 = 0
14 let TireSlipAngleFrontLeft: Float32 = 0
15 let TireSlipAngleFrontRight: Float32 = 0
16 let TireSlipAngleRearLeft: Float32 = 0
17 let TireSlipAngleRearRight: Float32 = 0
18 let TireCombinedSlipFrontLeft: Float32 = 0
19 let TireCombinedSlipFrontRight: Float32 = 0
20 let TireCombinedSlipRearLeft: Float32 = 0
21 let TireCombinedSlipRearRight: Float32 = 0
22 let SuspensionTravelMetersFrontLeft: Float32 = 0
23 let SuspensionTravelMetersFrontRight: Float32 = 0
24 let SuspensionTravelMetersRearLeft: Float32 = 0
25 let SuspensionTravelMetersRearRight: Float32 = 0
26 let CarOrdinal: Int32 = 0
27 let CarClass: Int32 = 0
28 let CarPerformanceIndex: Int32 = 0
29 let DrivetrainType: Int32 = 0
30 let NumCylinders: Int32 = 0
31 // ... More data
32 }

Listing 2: Second part of the FH5 data structure

be 1 or 0, where 1 indicates that the wheel is on a rumble strip and 0 means
that the wheel is on solid ground. The values prefixed by SurfaceRumble
are non-dimensional and used for force feedback. Tire slip angles and com-
bined tire slip values are not well documented. The suspension travel is mea-
sured in meters for each wheel. All the variables mentioned above are often
common to other racing simulators. In contrast, CarOrdinal, CarClass, and
CarPerformanceIndex are specific for Forza Horizon 5, where CarOrdinal is
the unique ID of the car, CarClass rates exclusivity, ranging from 0 (worst)

17

2. Analysis

to 7 (best) and CarPerformanceIndex starts with the value 100 and ends with
999. The higher the value, the faster the car will run. DrivetrainType can be
0 (front-wheel drive), 1 (rear-wheel drive), and 2 (all-wheel drive). The last
value in the described section is NumCylinders, that is, simply the number of
engine pistons. The structure of the second section of the data packet can be
seen in Listing 2.

1 struct ForzaHorizon5DataPacket {
2 let PositionX: Float32 = 0
3 let PositionY: Float32 = 0
4 let PositionZ: Float32 = 0
5 let Speed: Float32 = 0
6 let Power: Float32 = 0
7 let Torque: Float32 = 0
8 let TireTempFrontLeft: Float32 = 0
9 let TireTempFrontRight: Float32 = 0

10 let TireTempRearLeft: Float32 = 0
11 let TireTempRearRight: Float32 = 0
12 let Boost: Float32 = 0
13 let Fuel: Float32 = 0
14 let DistanceTraveled: Float32 = 0
15 let BestLap: Float32 = 0
16 let LastLap: Float32 = 0
17 let CurrentLap: Float32 = 0
18 let CurrentRaceTime: Float32 = 0
19 let LapNumber: UInt16 = 0
20 let RacePosition: UInt8 = 0
21 let Accel: UInt8 = 0
22 let Brake: UInt8 = 0
23 let Clutch: UInt8 = 0
24 let HandBrake: UInt8 = 0
25 let Gear: UInt8 = 0
26 let Steer: Int8 = 0
27 let NomalizedDrivingLine: Int8 = 0
28 let NormalizedAIBrakeDifference: Int8 = 0

Listing 3: Third part of the FH5 data structure

The third and at the same time the last Forza Horizon 5 data packet part
contains information about the vehicle’s position on the map, defined by its
coordinates in the x, y, and z axes. The following mentioned values play a sig-
nificant role in dashboard applications, and most of them will be used within
the Racing Dashboard application. Among these values is the vehicle’s speed
in meters per second, followed by torque and speed, where both define the en-

18

2.5. Data Packet Structure

gine’s current output. In addition, the temperature of each tire, the pressure
of the boost system, and the fuel level are included. Among the values that
are often monitored is the usage of the brake, gas, and clutch pedals, as well
as the gear-in-use indicator. For the race itself, data for the best lap time,
last lap time, current time, race position, and current lap are also included in
the packet. The third part of the described packet can be seen in Listing 3.

19

Chapter 3
Used Technologies

Based on the project requirements, technologies and frameworks suitable for
this particular application were chosen. Although the platform was deter-
mined by the assignment, the programming language was not. There are
several options to choose from; however, Swift has been chosen because it is
the primary language for iOS development. Several third-party frameworks
were selected, such as the UI constraints library SnapKit or Charts, which
is used to create various graphs. Apple’s Xcode is used as the main IDE
for the entire development process. The networking layer of the application
is powered by the SwiftNIO library. All technologies used are described in
detail in the following sections.

3.1 GUI Creation Methods in iOS
In terms of iOS development, the GUI can be created using multiple meth-
ods within the Xcode IDE. Each method offers different tools to work with.
The methods are as follows:

• Storyboards: Storyboard is a visual tool for creating multiple views,
transitions between them, and arranging the elements within. As
the name implies, the Xcode Storyboard acts as a board for building
the GUI. The design process is intuitive and fast, although it has some
disadvantages. The first problem is version control and inevitable merge
conflicts, due to the machine-generated representation of the storyboard,
which is nearly unreadable by a human. Furthermore, large storyboards
are difficult to navigate and maintain [20].

• NIBs/XIBs: NIB/XIB files describe the user interface and are gener-
ated using the Interface Builder. XIBs are files used in the development
process, whereas NIBs are generated upon build. NIBs/XIBs are the pre-
decessors of storyboards and share the same version control issues [20].

21

3. Used Technologies

• Programmatic GUI: GUI created using a programmatic approach is
defined solely by code. This lower-level method has virtually no restric-
tions in terms of possibilities. There are no version control issues, such as
complicated merge conflicts. The biggest disadvantage is a slower GUI
development process, making this approach less suitable for prototyping.

• SwiftUI: The newest addition to the iOS GUI creation methods is Ap-
ple’s SwiftUI, which defines the user interface declaratively and offers
rapid application building. SwiftUI features well-known elements, such
as lists, stacks, buttons, and more. Although the syntax and usage are
quite different from the programmatic approach, internally, SwiftUI is
still using frameworks such as UIKit. The biggest advantage of SwiftUI
is fast prototyping and creating GUIs with fewer lines of code. Al-
though the framework was introduced in 2019, fast-paced development
made SwiftUI a capable tool for creating GUI [21].

Based on the requirements of this project, the programmatic approach
was chosen. NIBs/XIBs were omitted because they are considered outdated.
Storyboards do not offer high customization and are not preferred from a sub-
jective point of view. SwiftUI could be used; however, it still offers weaker
customization than the programmatic approach. To satisfy the requirements
of the application, high customization is fundamental.

3.2 Swift
Swift is an open source, multi-paradigm, compiled and high-performance sys-
tem programming language that is used primarily for the development of appli-
cations for the iOS, macOS, watchOS, and tvOS platforms. It was intended as
a successor to well-established Objective-C. As a result of being compiled us-
ing the LLVM compiler, Swift allows running Objective-C, C, and C++ codes
within one program. Despite the usage of LLVM, Swift is not a C-derived
language. Swift is categorized as an object-oriented, strongly typed program-
ming language with the support of imperative, declarative, and functional
programming. Swift does not utilize a garbage collector for memory manage-
ment; instead, it uses automatic reference counting (ARC). Thus, the user is
partially involved in memory management, and memory leaks can occur in
some cases. Swift is the only programming language used in this project.

3.3 Xcode IDE
Xcode is Apple’s IDE used to develop software for the iOS, macOS, iPadOS,
watchOS, and tvOS platforms. Xcode supports the creation, testing, and
submission of applications. It comes free with the macOS operating system
and is exclusively for macOS; therefore, it cannot be used with Windows or

22

3.4. Cocoapods

Linux. It supports a variety of languages, including Swift, Objective-C, C,
C++, Java, Python, and more. For debugging purposes, Xcode offers an iOS
simulator that can replicate real iOS devices, in addition to other platforms.
Furthermore, Xcode features a wide range of functionality, including a built-in
Interface Builder that can be used for GUI design without the need for code.
The Interface Builder will not be used in this project, due to versioning issues
and overall poorer scalability [22].

3.4 Cocoapods
CocoaPods is a dependency manager for Swift and Objective-C Cocoa projects.
It contains almost 89 thousand libraries [23] and provides a standard format
for managing dependencies. CocoaPods focuses on a source-based distribution
of libraries with an automatic way of integration into Xcode, maintaining ver-
sions and dependencies between libraries. The manager runs on the command
line and is easy to install. After the initialization of CocoaPods, a Podfile is
created, which contains the list of libraries that are being used. Libraries can
be added or removed by alternating the Podfile. The software resolves any
additions or changes to the dependency list. CocoaPods was chosen for this
project because of its straightforward usage and reliability. Additionally, all
third-party libraries used within this application are installed and managed
via CocoaPods, with the exception of SwiftNIO, that is managed by Swift
Package Manager. [23].

3.5 Swift Package Manager
The Swift Package Manager is a dependency manager that is used to distribute
code. As an integrated part of the Swift build system, it manages the processes
of downloading, compiling, and linking dependencies [24]. Xcode 11 and up
integrates the package manager with support for iOS, macOS, watchOS, and
tvOS application packages. [25]. Dependencies are modules that are required
by the code in the package, whereas a package consists of Swift source files
and a manifest file. The Swift Package Manager reduces coordination costs
by automating the process of downloading and building all dependencies for
a given project. It is an Apple’s official alternative to other package managers
such as CocoaPods or Carthage.

3.6 Frameworks
Various frameworks were chosen directly for this project; some of them are
Apple’s native frameworks, and others are third-party frameworks. With-
out the frameworks, this project would be much more difficult to complete.

23

3. Used Technologies

The essential frameworks used within the racing dashboard application are
described in the following subsections.

3.6.1 UIKit
Apple’s UIKit framework allows one to build and manage a graphical user
interface based on events for iOS and tvOS applications. UIKit provides
a window and view architecture, which is the core of GUI development. Ad-
ditionally, the event handling infrastructure allows for capturing input events
such as Multi-Touch. The framework offers animation support, document
support, drawing, search support, and resource management, among others
[26].

3.6.2 SnapKit
SnapKit is a third-party framework that offers a domain-specific language
that is used to make the Auto Layout much easier to use. Both the iOS
and macOS platforms are supported. In other words, SnapKit allows one
to create GUI constraints with minimal effort, such as positioning, sizing,
setting margins, and more. Expressive chaining of the language provides great
readability. The framework is type-safe; therefore, it reduces errors caused by
programmers. SnapKit can be installed through dependency managers such
as CocoaPods, Carthage, and Swift Package Manager [27].

3.6.3 Swinject
Swinject is a lightweight dependency injection framework designed for Swift.
It is powered by a generic type system and first-class functions to resolve de-
pendencies [28]. Swinject’s workflow is based on a Container type that is used
to register dependencies. Once a dependency is registered, it can be resolved
and, therefore, retrieved from the container. Furthermore, the framework
features assemblers, assemblies, storyboard support, and can be expanded to
provide an auto-register feature. Swinject can be installed through depen-
dency managers such as CocoaPods, Carthage, and Swift Package Manager.

3.6.4 Combine
Combine is Apple’s reactive framework similar to ReactiveSwift or RxSwift. It
is used to handle asynchronous events over time or, in other words, to process
values over time. The Combine framework provides a declarative Swift API
based on publishers and subscribers. Publishers can deliver a sequence of
values over time. On the other end of the communication, a subscriber stands.
Subscribers act on the elements as they receive them. Multiple publishers can
be combined using different operators, resulting in a new publisher. Some of
the publisher operators are map, filter, collect, zip, and many others. One way

24

3.6. Frameworks

to think about reactive programming is to imagine a stream of data. Data are
generated on one side, flowing through the stream up to the other side, where
a subscriber awaits any changes and reacts accordingly [29].

3.6.5 SwiftNIO
Considerable attention was paid when deciding which networking framework
to use. In total, three frameworks were taken into account, namely Co-
coaAsyncSocket, Apple Network, and SwiftNIO. CocoaAsyncSocket is a fa-
mous third-party networking library for Swift, which supports both TCP and
UDP protocols. In 2018, Apple introduced at WWDC its own version named
Apple Network[30], which is a native networking framework that aims to re-
place other third-party frameworks, such as CocoaAsyncSocket. The Network
framework supports protocols such as TLS, TCP, or UDP. Being a native
framework developed by Apple is a considerable advantage over other frame-
works. The last framework considered is SwiftNIO [31], which is a server-side,
asynchronous, event-driven, and non-blocking Swift framework used to build
network applications. SwiftNIO features a straightforward setup that makes
it easy to integrate into a project. The combination of a high-performance
underlying layer and a simple setup makes SwiftNIO the best candidate for
this project. The framework is presented to be maintainable and suitable for
rapid development. SwiftNIO shares similarities with Netty [32], with the dif-
ference of being written for Swift. The framework implements the following
low-level protocols: HTTP/1, HTTP/2, WebSocket, TLS, and SSH. The sup-
ported high-level protocols are as follows: HTTP, gRPC, APNS, PostgreSQL,
and Redis [31]. Besides other features, SwiftNIO’s UDP capabilities, such as
the UDP server, are suitable for this project.

3.6.6 CoreData
CoreData is Apple’s approach to a object graph management and persistence
framework for macOS and iOS SDKs [33]. It allows developers to create high-
performance data-driven applications. CoreData can store and retrieve data;
however, it is not a relational database like MySQL; instead, CoreData is more
of a collection of objects that are in relationship. Additionally, the framework
takes care of the life cycle of objects in the graph [34]. CoreData is generally
used to persistently save data from an application, cache temporary data, and
add undo functionality [35]. The framework features a Data Model Editor that
lets the developer define data types, relationships, and generate respective
class definitions that can be used further within the project.

3.6.7 Charts
Charts is a third-party library that provides various types of graphs that can
be used to display different types of data. The library originated as a port of

25

3. Used Technologies

the well-known Android library MPAndroidChart [36]. Charts enable the de-
veloper to create fully-functional charts using a few lines of code. The core
features of the library are eight types of charts with various additions such as
axis scaling, dragging, panning, a combination of charts, fully customizable
axes, legends, and many more. Charts can be installed using managers such
as CocoaPods, Carthage, or Swift Package Manager [37].

3.6.8 XCTest
XCTest is Apple’s framework for creating various types of tests, such as unit
tests, performance tests, and UI tests. The tests are seamlessly integrated with
the testing workflow of Xcode. The framework features various asserts that are
used to check whether certain conditions are satisfied or not. The common as-
serts are XCTAssertEqual, XCTAssertNil, XCTAssertTrue, XCTAssertFalse
and many others [38].

3.6.9 SwiftLint
SwiftLint is a tool for enforcing style and conventions for Swift. Like all other
linter tools, SwiftLint enforces a certain code style, in this case, a set of com-
mon rules generally accepted by the Swift community [39]. Using SwiftLint
helps to maintain code quality.

26

Chapter 4
Design

4.1 Architecture
The application architecture has a direct impact on the development pro-
cess itself. Incorrectly chosen architecture will negatively affect the qual-
ity of the implementation and any further expansion of the application. In
terms of iOS development, two common architectures are used: MVC and
MVVM. Apple’s recommendation is to use MVC, which stands for Model-
View-Controller. MVC splits the program logic into three elements: data,
logic, and view. Although the pattern is well-known and well-established, it
often leads to a complication called a massive view controller. In the case of
iOS development, the massive view controller issue occurs frequently and can
be solved for the most part by using the Model-View-ViewModel architecture,
MVVM shortly.

4.1.1 MVVM
Model-View-ViewModel, or shortly MVVM, is a structural and architectural
pattern used for the separation of the application’s logic into three layers.
MVVM offers great maintainability, extensibility, and testability. The men-
tioned layers of MVVM are as follows:

• Model encapsulates data, manages the business logic of the application,
and the state of the application. Commonly represented by structs or
classes.

• View presents visual elements on the screen, such as buttons, labels,
pictures, videos, etc. In addition, the view handles user input.

• View model handles the transformation of model data into displayable
values. Serves as a link between the model and view. The view model

27

4. Design

does not have a reference to the view. The view model usually updates
the view using data binding.

Figure 4.1 shows a diagram of the MVVM architecture, which consists of
three main layers and the relations between them. Dashed arrows represent
non-reference binding and, conversely, full arrows represent references.

Figure 4.1: Model-View-ViewModel diagram [40]

4.1.2 MVVM in iOS
Adaptation of the MVVM pattern in iOS must incorporate view controllers,
which are a crucial building block of iOS applications. The modified diagram
of the MVVM that is being used in iOS is shown in Figure 4.2.

Figure 4.2: Model-View-ViewModel in iOS diagram [40]

4.1.3 Flow Coordinators
Managing the transitions between screens in large-scale projects can become
overwhelming very quickly. Without coordinators, view controllers are re-
sponsible for navigation and; therefore, less reusable. A coordinator is a plain
object that takes the navigation responsibility from the view controller and
handles it by itself. This makes the view controller more manageable and
reusable. Navigation logic is not scattered around, but grouped into one log-
ical layer. Every coordinator can feature multiple child coordinators creating
an n-ary tree structure. This approach allows the coordination process to be

28

4.2. Mobile First Design

split into multiple subprocesses, expanding the abstraction even further, thus
making it more manageable. The view controller sends messages to its re-
spective coordinator, who handles them accordingly. The coordinator decides
whether the message leads to events, such as loading a new view controller or
dismissing one. Furthermore, the view controllers are not aware of other view
controllers. They only communicate with the responsible coordinator [41].

4.2 Mobile First Design
Mobile-first design is a method of designing the user interface by focusing on
mobile devices first, prioritizing the smallest screen and working its way up to
larger screens, such as tablets or computers. This approach is often used for
website development. The strategy is based on the fact that smaller screens
will fit fewer content, and the UX designer has to prioritize key aspects of
the product. This forces the designer to pinpoint the most important UX
components. Once a small-screen mobile design is completed, larger screens
can be derived with the addition of some other detailed elements [42]. In terms
of iOS development, the mobile-first design approach is not as mandatory as
in web development, where screen sizes differ much more. However, the size
difference between the Apple Watch, iPhone, and iPad devices is significant
enough to utilize the mobile-first design approach. The application developed
within this project will support iPhone and iPad devices; therefore, the mobile-
first design can be applied.

4.3 Separation of Concerns
Separation of concerns (SoC) is a fundamental principle in software engineer-
ing. The concept is based on the separation of the program into multiple
distinct sections where all sections have a specific purpose. Each section ad-
dresses a single concern without having any knowledge of the rest of the sec-
tions. The program is essentially a combination of all sections. The SoC
enables good testability as a result of its high modularity. Each section can
be tested independently.

4.4 Dependency Injection
Dependency injection (DI) is a fundamental and easy-to-adopt design pat-
tern that implements Inversion of Control. Application of the pattern makes
the code loosely coupled; therefore, easier to manage and test. In the case
of not using dependency injection, an object creates its dependencies by it-
self. This approach makes the object responsible for dependency management
and creates coupling. Dependency injection pattern moves the dependency
creation process outside the object, and all dependencies are injected into

29

4. Design

it. In other words, dependency injection means giving an object its instance
variables [43].

4.5 Localization
Localization is the process of adapting an application to various languages and
regional specificities. Localized applications report a higher success rate in re-
spective markets than applications that do not support the given market [44].
Values such as strings, dates, regional numeric formats, units of measurement,
and time are typical candidates for localization. The selected localization is
usually derived from the region and also from the language of the given coun-
try. Each application should support localization, even if it initially supports
only one language [44].

4.6 Graphical User Interface
The design of the graphical user interface is a key step during the application
development process. As discovered in the analysis section of this thesis,
most existing racing dashboard applications suffer from an unsatisfactory GUI.
The application created within this project takes advantage of this deficiency
and focuses on a modern and intuitive user interface. Each designed screen is
described in detail in the following sections. During the design of the interface,
the low-fidelity wireframe phase was omitted. Instead, high-fidelity prototypes
were immediately created. This decision may seem unconventional; however,
it is based on several arguments. As mentioned above, the visual part of
the application is crucial. To satisfy this requirement, the design process
must be tightly coupled with the respective functionality of the UI elements.
During the design, the high-fidelity prototype offered an immediate preview of
the application. In this way, the design or even functionality could be slightly
adapted to create a balance between intuitive controls and graphical design.
Although the UIKit framework 3.6.1 offers many iOS elements and features,
most of the content used within the application was highly customized. In
the following sections, all designed screens are described in detail, including
the respective high-fidelity prototypes. The featured wireframes are only for
iPhone devices. Due to the mobile-first approach, the design and layout for
iPads remain nearly the same with a few exceptions. For this reason, it was
not necessary to also create wireframes for the iPad.

4.6.1 Main Menu Screen
The main screen of the application is the main menu. The screen is primarily
used to start the connection process with a selected combination of a simulator
and a dashboard style. Furthermore, the screen offers an overview of the last

30

4.6. Graphical User Interface

race statistics and a start button. A high-fidelity prototype of the main menu
screen is shown in Figure 4.3. The key elements of the screen are the following:

• Application name and version labels: In the upper left corner
are two labels. The bold label indicates the application name, and
the smaller label displays the version of the release.

• Simulator/game selector: The simulator selector is located on the left
side of the screen. It is a custom built selection element for browsing
and selecting simulators using a swipe gesture. The selection is accom-
panied by a haptic feedback, and the direction of swiping is indicated
by moving chevrons.

• Dashboard style selector: Dashboard style selector shares nearly all
properties with the simulator with the difference of selecting dashboard
styles instead of simulators.

• Last record statistics: The right portion of the screen is dedicated
to statistical data from the last race. The section displays the following
information: race date, simulator name, best lap, total time, top speed,
and final position. Values in titles are accompanied by respective icons.
Finally, there is an orange graph button next to the simulator name that
moves to the graph screen when activated.

• Start button: Located within the statistics section on the bottom
right side, the start button segues to a connection screen with a given
simulator and dashboard style when activated.

4.6.2 Graphs Screen
The graph screen offers a statistical overview of the races recorded. The
right portion of the screen is almost identical to the main menu’s one, ex-
cept the start button, which is replaced by two buttons used for switching
records. Furthermore, every record offers additional data displayed using
a graph. The data include the usage of the accelerator, brake, and gear during
the race. A high-fidelity prototype of the graph screen is shown in Figure 4.4.
The key elements of the screen are the following:

• Last record statistics: The right part of the screen dedicated to sta-
tistical values is nearly the same as the one mentioned in the main menu
screen. The key difference are the buttons on the bottom. The next and
previous buttons are introduced instead of the start button. Both but-
tons serve as controls for record switching. The button is disabled when
no further record is available. The disabled state is indicated by a color
change.

31

4. Design

Figure 4.3: High-fidelity prototype of main menu

• Data type label: The data type label located above the graph displays
the name of the selected data type that is being displayed in the graph.

• Back button: In the top left corner, a back button is located. The but-
ton navigates back to the main menu when activated.

• Graph: Majority of the left part of the screen is taken up by the graph
that displays different values in relation to race time. The values shown
can represent either the accelerator pedal, the brake pedal, or the gear
usage. Every data type is drawn with a different color. The graph offers
scaling on the x-axis by pinching. The y-axis displays the given values,
and the x-axis represents the race time. The scale of the y-axis is in
case of the accelerator and brake pedals between 0 and 100, whereas
the range for the gear is dynamic and depends on the received values.
The graph is created using the Charts library 3.6.7.

• Data selector: The data type selector is attached to the bottom bound-
ary of the graph. Its purpose is to select the data displayed by the graph.
The gas pedal option is implicitly selected.

4.6.3 Connection Screen
The screen used for the connection process is divided into two sections just
like the main menu or the graph screen, even sharing the same division ratio,
thus making the GUI more homogeneous. The screen guides the user through

32

4.6. Graphical User Interface

Figure 4.4: High-fidelity prototype of graphs screen

the connection process, showing the status and IP address with the port when
successfully connected. Furthermore, a simple swipe gallery shows the step by
step connection process for the chosen simulator. Once connected, the user is
allowed to launch the dashboard. A high-fidelity prototype of the connection
screen is shown in Figure 4.5. The key elements of the screen are the following:

• Swipe gallery: Every simulator has a specific way to configure the
data output feature. To avoid any difficulties with the setup, a swipe
gallery with the respective instructions is shown, enabling the user to
scroll through the guide. An adjacent slide indicator shows which slide
is currently being displayed. One slide consists of an instruction label
accompanied by an in-game setup screenshot.

• Connection label: The connection label located in the right section is
a static header.

• Connection status: The connection status indicator consists of an an-
imated icon and a label that displays the connection state. Once the de-
vice is connected, the icon becomes a checkmark, and the message is
updated accordingly.

• IP address panel: The IP address panel displays the IP address of
the UDP server accompanied by an icon with a description label.

• Port panel: The port panel displays the port of the UDP server ac-
companied by an icon with a description label.

33

4. Design

• Continue button: Once connected, the continue button is enabled and
navigates to a dashboard when activated.

• Close button: In the top right corner, a close button is located, which
is used to abort the connection process by returning to the main menu.

Figure 4.5: High-fidelity prototype of the connection screen

4.6.4 Dashboard Screen
The dashboard included within the release of the application is based on
a modern flat design. It displays fundamental data about the race and vehi-
cle. A modern color scheme is used to increase the contrast of each element
leading to better clarity.

• Position indicator: The top left corner is occupied by a position in-
dicator that informs the player about the position of the driver within
the race.

• Lap indicator: The element at the top right corner is styled the same
as the position indicator, except it displays the current lap number.

• Clutch, brake and gas pedal usage: Vertical gauges located on
the left side of the screen are used to display the usage of clutch, brake,
and gas pedals. Each vertical gauge allows visualization of any value
ranging from 0 to 100. In addition, every gauge has an adjacent de-
scription label, gray background, and a configurable colored progress
bar.

34

4.6. Graphical User Interface

• RPM gauge: Engine RPMs of the vehicle are shown using a 270 degree
circular gauge. The color of the strip gradually changes from blue to red.
Red indicates high rpm; on the contrary, blue indicates low rpm.

• Speed indicator: The speed indicator is a label that shows the current
speed of the vehicle, including a measurement unit label.

• Gear indicator: The gear indicator is styled the same way as the speed
label, except that it displays the gear in use. In addition, the background
of the label is colored red when the RPMs of the engine reach a specific
value, acting as a shift light.

• Tire temperature: The simplified car layout shows the temperature
of each tire independently. The temperature is displayed in red color
with the opacity gradually changing in relation to the temperature of
the given tire.

• Fuel level: The fuel level gauge shares some similarities with the pedal
gauge, except that the gauge is horizontal with a fuel icon and letters
indicating empty or full endpoints.

• Best lap time: The best lap time label is formatted as mm:ss:ms.
It displays the race time of the best lap so far. A description label is
included.

• Total time: The total time is styled as a horizontally mirrored best lap
indicator. It displays the total race time in the same format, mm:ss:ms.

4.6.5 Application Icon
The application icon is an integral part of an application due to its represen-
tative aspect. The design process was strongly affected by Apple’s guidelines
[1], reflecting terms such as simplicity, single focus point, simple background,
and more. The idea behind the designed icon is to represent a simple circular
gauge that is commonly used in cars. The gauge shows a static value indi-
cated by the needle and the circular strip. Tick marks are included for a more
authentic appearance. Furthermore, a graph sketch is included at the bottom
of the icon to indicate the application’s support of racing statistics. The final
icon design can be seen in Figure 4.7.

35

4. Design

Figure 4.6: High-fidelity prototype of modern dashboard

Figure 4.7: Application icon

4.7 Race Statistics Database

As stated in the assignment, data sets are recorded for every session regard-
less of whether a race is in progress or not. Once the dashboard is loaded,
the data recording begins fully automatically. To persistently save any kind
of data, a database is needed; therefore, a database structure design process is
mandatory. The chapter concerned with the used technologies covered Core-
Data as the chosen persistence framework. As far as the designing process
goes, the conceptual entity relation diagram must be designed first. It serves
as a blueprint for the database construction process. The diagram is shown
in Figure 4.8.

The race record entity is created as the result of a race session. Each
record contains data such as finishing position, time of the best lap, top ve-
hicle’s speed, total time of the race or session in case of absence of a race,
name of the race track, racing simulator name, and date of the record. In

36

4.8. Common Data Packet

Figure 4.8: Conceptual diagram of race records database

addition, the usage of three attributes, namely the use of gas, brake, and gear
is recorded. These values are represented by respective entities related to
the record entity. It is evident from the diagram 4.8, that every record is able
to optionally store multiple entries for each type of data set. Implementation
with CoreData is covered in the upcoming chapter.

4.8 Common Data Packet
Part of the analysis process was to describe a data packet from an arbitrary
racing simulator. The chosen data packet was from Forza Horizon 5 and is
described in section 2.5. Data packets from other racing simulators differ in
structure and data provided. A good architectural approach is to implement
a data structure to which all other packets can be converted. This solution
helps to avoid any problems when using different packets. During the design
of the common data structure, the data intersection of the Forza Horzion 5
and Assetto Corsa packets was used to determine the common values for both
simulators. Other simulators are assumed to have the same common values
in case they are included in the future.

The common data structure can be seen in Listing 4, and it is easy to notice
that the structure is similar to the Forza Horizon 5 data packet. The applica-
tion will support all listed values in the data structure, although this does not
necessarily mean that all dashboard designs will utilize all the data. The data
itself are not only copied from the original packet to the common data struc-
ture but are also transformed and normalized for the application’s use. For ex-

37

4. Design

ample, the accelerator pedal value in Forza Horizon 5 ranges from 0 to 255,
which can be represented by a single byte. On the other hand, the common
data packet represents the value of the accelerator pedal as a fractional num-
ber ranging between 0 and 1. Furthermore, the common data packet stores
measurement values in a metric system, and conversion to the desired mea-
surement system occurs within the logical section of the application, where
the data preparation for rendering happens.

4.9 Networking Layer
The networking functionality is the basis for the entire application; therefore,
the design step is crucial. As a result of the analysis, the UDP protocol was
determined to be commonly used in racing simulators to pass data. The com-
munication flow consists of a server on one side and optionally multiple clients
on the other. In terms of this project, the Racing Dashboard application
acts as a UDP server and, conversely, the racing simulator acts as a client.
The server needs to be hosted using the IP address of the device running
the application and a port. The port can be set to any port number that is
not used by another application. The host address is the same as the assigned
IP address of the device in the local network.

Once the UDP server is hosted, the IP address and port are used in
the given racing simulator data output settings. After providing the simu-
lator with the IP address and port, it starts to act as a client by sending
data to the server. The networking layer receives all the input data and pro-
vides them for transformation and rendering. SwiftNIO framework features
the ability to create a custom UDP server that can be used by the Racing
Dashboard application.

38

4.9. Networking Layer

1 struct UIDataPacket {
2 let isRaceOn: Int32?
3 let timestampMS: UInt32?
4 let engineMaxRpm: Float32?
5 // Current engine rpm (revs per minute)
6 let currentEngineRpm: Float32?
7 // Vehicle speed in m/s
8 let speed: Float32?
9 let power: Float32?

10 let torque: Float32?
11 // Tire temperature in degrees celsius
12 let tireTempFrontLeft: Float32?
13 let tireTempFrontRight: Float32?
14 let tireTempRearLeft: Float32?
15 let tireTempRearRight: Float32?
16 let boost: Float32?
17 // Fuel level ranging from 0 to 1
18 let fuel: Float32?
19 // Time of the best lap
20 let bestLap: Float32?
21 let lastLap: Float32?
22 // Time of the current lap
23 let currentLap: Float32?
24 // Time in seconds with milisec fraction: 10.287 - 10s, 287ms
25 let currentRaceTime: Float32?
26 // Current lap, starting from 1
27 let lapNumber: UInt16?
28 // Position in the given race
29 let racePosition: UInt8?
30 // Accel pedal intesity ranging from 0 to 1
31 let accel: Float32?
32 // Braking intesity ranging from 0 to 1
33 let brake: Float32?
34 // Clutch intesity ranging from 0 to 1
35 let clutch: Float32?
36 let handBrake: UInt8?
37 // 0 - Reverse, 1,2,3.. Gears
38 let gear: UInt8?
39 let circuitName: String?
40 }

Listing 4: Common data structure

39

Chapter 5
Implementation

The implementation chapter focuses on the implementation of the Racing
Dashboard application. Several parts of the implementation are due to their
importance described in more detail than others. The chapter begins with
the most important part of the application, the networking layer. The net-
working layer section covers the networking service itself, including channel
handlers and decoders. The networking layer encapsulates the service and
several important parts of the core application logic are described, such as
the connection process or data recording functionality. Furthermore, the im-
plementation of the chosen architecture is outlined, as well as the implemen-
tation of various GUI elements.

Listing snippets are a convenient way to ensure that the implementation
is understandable and easy to comprehend. In order to avoid unnecessarily
long code figures, only the fundamental parts of the implementation code are
featured and adequately commented on.

5.0.1 Networking Service
The first step is to define the NetworkServicing protocol to which the con-
crete implementation will conform. The protocol is shown in Listing 5. This
protocol-based approach ensures good testability and is commonly used with
the dependency injection technique. The NetworkServicing protocol con-
sists of a Combine stream that publishes the incoming raw data represented as
a ByteBuffer with no failure option. Aside from that, startListening(...)
and stopListening() methods are used to control the state of the UDP
server. It is worth mentioning that the method used for starting the server
can throw an error and must be handled appropriately.

The concrete implementation of the NetworkServicing protocol is called
NetworkService. This class implements bodies of both mentioned func-
tions for the server controls. Furthermore, the implementation introduces
a Channel property used as the main object for communication. As can be

41

5. Implementation

1 protocol NetworkingServicing {
2 // Stream of raw (bytes) data from the network
3 var rawData: PassthroughSubject<ByteBuffer, Never> { get }
4 // Stop listening to incomming data
5 func stopListening()
6 // Start listening to incomming data
7 func startListening(host: String?, port: Int) throws
8 }

Listing 5: Networking service protocol

seen in Listing 6, the stopListening() function has a straightforward imple-
mentation that only closes the communication channel. The slightly more ad-
vanced startListening(...) function implementation is shown in Listing 7.
It takes a host IP address and a port as parameters. The code is separated
by comments into three parts. First, a MultiThreadedEventLoopGroup() is
created. This group contains EventLoop instances each bound to a thread.
The EventLoop is used to process I/O tasks in an endless loop for a channel.

In the second part of the code, the group is bootstrapped to
a DatagramChannel with a custom handler passed in the initializer. The op-
tion SO_REUSEADDR ensures that the port is reused even if it is currently busy
(in TIME_WAIT state). It is set to the level of SOL_SOCKET with value of 1.
Finally, in the last step, the bootstrap is bound to a host, using an IP address
and a port. This operation can fail and return a nil, hence the try? keyword.
Any thrown errors must be handled.

1 func stopListening() {
2 _ = channel?.close()
3 }

Listing 6: Networking service stop function

5.0.2 Channel Handler

The implementation of the channel handler is named ChannelInboundHandler
and the most important part of the code is shown in Listing 8. It is, in
fact, an object with a channelRead(...) method. This method receives in-
bound data as the function parameter. The data itself can be extracted using
unwrapInboundDataIn(...) producing an addressed envelope that contains
the raw data under its data attribute. The passTroughSubject is used to
send data to the subscribers. It is important to note that the data in the cur-

42

1 func startListening(host: String, port: Int) throws {
2 // ... Check host and port, handle errors
3 // 1.
4 let group = MultiThreadedEventLoopGroup(
5 numberOfThreads: System.coreCount)
6 // 2.
7 let bootstrap = DatagramBootstrap(group: group)
8 .channelOption(
9 ChannelOptions.socket(

10 SocketOptionLevel(SOL_SOCKET),
11 SO_REUSEADDR),
12 value: 1)
13 .channelInitializer { channel in
14 channel.pipeline
15 .addHandler(
16 EchoHandler(self.rawData))
17 }
18 // 3.
19 channel = try? bootstrap.bind(host: host, port: port).wait()
20 // ... Handle thrown errors
21 }

Listing 7: Networking service start function

rent state are represented as an array of bytes and require further operations,
such as decoding, to work with it as with a normal object.

5.0.3 Data Decoder

In order the use the inbound data within the application for various operations
and ultimately to be rendered by GUI, an encoding process must be integrated.
Each supported racing simulator features a specific data format; therefore,
a respective decoder must be implemented for each simulator separately. Each
decoder must conform to a DataDecoder protocol, that defines a method used
for decoding and is shown in Listing 9. The method takes a ByteBuffer as
a parameter and returns a common data structure.

To explain the implementation of the decoder, the Forza Horizon 5 de-
coder class will serve as an example. The implementation itself is based on
the extraction of specific bytes from the input data. Once the bytes are ex-
tracted using getBytes(...) method, they can be decoded into an object, in
the case of Forza Horizon 5, to ForzaHorizon5DataPacket. It is crucial that
the number of bytes extracted matches the size of the object to which it is
parsing. Since the GUI uses a common data structure, a conversion method is

43

5. Implementation

1 private final class EchoHandler: ChannelInboundHandler {
2

3 typealias InboundIn = AddressedEnvelope<ByteBuffer>
4

5 let passThroughSubject: PassthroughSubject<ByteBuffer, Never>
6

7 public func channelRead(context: ChannelHandlerContext, data: NIOAny) {
8 let addressedEnvelope = self.unwrapInboundIn(data)
9 let envelopeData = addressedEnvelope.data

10

11 // Send the packet to the passtrough subject
12 passThroughSubject.send(envelopeData)
13 // ...
14 }
15 }

Listing 8: Networking service handler

part of every simulator-specific data packet, called toUIDataPacket(). This
method simply uses data from the simulator-specific packet, transforms it to
normalized values, and creates a common data structure encapsulation called
UIDataPacket.

5.1 Application Logic
The logic behind the application is quite extensive and it is not necessary to
explain it in its entirety. Parts of the implementation that are considered to
be important or interesting are pinpointed and explained in this section.

5.1.1 Connection Process

The logic used to establish the connection between the application and a given
racing simulator is embedded into the functionality of the connection screen.
The process handles scenarios such as the repeated connection, error handling,
and more.

The logic itself is encapsulated within the ConnectionViewModel. It fea-
tures important methods for managing the connection, startConnection()
and stopConnection(). Hosting a UDP server requires a port and an IP ad-
dress. The fully custom networking helper class offers a getWiFiAddress()
method, that checks the network interface of the device and provides its IPv4
address. In contrast, it returns nil if the address is not detected, which
usually means that a WiFi connection is not established.

44

5.1. Application Logic

1 protocol DataDecoder {
2 func decode(from data: ByteBuffer) -> UIDataPacket
3 }
4

5 final class ForzaHorizon5Decoder: DataDecoder {
6

7 func decode(from data: ByteBuffer) -> UIDataPacket {
8 var buff = ByteBuffer()
9 // Racing simulator specific

10 if let data = data.getBytes(at: 0, length: 232) {
11 buff.writeBytes(data)
12 }
13 if let data = data.getBytes(at: 244, length: 79) {
14 buff.writeBytes(data)
15 }
16 return buff.withVeryUnsafeBytes {
17 $0.load(
18 as: ForzaHorizon5DataPacket.self)
19 }.toUIDataPacket()
20 }
21 }

Listing 9: Networking service decoder

The method mentioned above for starting the connection instantiates
a scheduled timer that invokes the network service connect function in a given
time interval. The invoker tries to configure a connection continuously un-
til it is successful. Once connected, the invoker stops. The connection itself
uses methods from the networking service. While the connection invoker is
running, the user receives a connection status, which can optionally consist
of error messages. After finishing a race session and closing the dashboard,
stopConnection() is automatically called. The function stops the listening
service and invalidates the scheduled timer if it is still running. The reconnect
interval is set to 1.5 seconds.

5.1.2 Data Recording

Each session of using the racing dashboard application produces a data record.
The data source stream produced by the networking layer sends data over time
represented as a common data structure object. This stream is mainly used
to render the values on the screen, although the data recording functionality
subscribes to it as well. Each time a data packet is received, all necessary
values are updated within the local RaceStatisticsRecord object. In ad-

45

5. Implementation

dition, the object features helper methods such as updateTopSpeed(...),
addToGasDataSet(...), and more. The record object is updated using these
methods for each new received data packet. However, there is one issue that
must be addressed. The data stream can produce up to 60 packets per sec-
ond. With this rate of updates, the records would reach an unnecessarily large
size. To avoid this issue, Combine’s throttle(...) operator was used. Its
functionality is based on publishing only one element in the specified time
interval. The chosen element from the interval can be either the most recent
or the first, depending on the settings. An interval of 500 ms proved to be
effective for data recording.

As mentioned before, during the session, the data are stored in a local
variable. This approach would not be persistent, and the data would vanish
after the application was closed. Therefore, after ending the session, method
saveRecord() is called automatically. Once called, CoreData executes Core-
Data’s save method on the current context located within the persistent con-
tainer. This simple operation keeps the record persistent.

To retrieve the stored data, a fetch request is created using the
RaceStatisticsRecord.fetchRequest(). After setting parameters such as
the the fetch limit or the sorting descriptor, the request can be executed
using context.fetch(request). This method may fail and return a nil.
Otherwise, it returns an array of data, in this case an array of records that
are ready to be used. This fetch functionality is used within the graph screen
that uses the data to render graphs and shows statistics, and also within
the overview section of main menu.

5.2 Architecture
The application is based on the MVVM-C architecture, which stands for
Model-View-VieModel-Coordinator. The chosen architecture is described in
Chapter 4. Applying the MVVM means separating the project into 3 main
building blocks. All view elements, including fundamental view controllers,
belong to the view section. All business logic and data belong to the model,
and in between stands the view model, which prepares data from the model
to be displayed by the view.

Once the application starts, the main app coordinator is instantiated.
The coordinator’s responsibility is to manage navigation between screens. In
the beginning, the coordinator instantiates the main menu screen with all
its dependencies, such as the view model, and presents it to the user. Any
input from the user that affects the navigation flow is directly forwarded to
the coordinator, who decides how to handle it. It is important to note that
the views are not coupled with each other and do not participate in the navi-
gation flow directly; instead, they let the coordinator decide how to proceed.
Each coordinator implementation must conform to the Coordinator protocol,

46

5.3. User Interface

that is shown in Listig 10. The protocol prescribes a start method, a naviga-
tion controller, and an array of child coordinators that are commonly used in
applications with a deeper navigation hierarchy.

Once a coordinator starts, it begins to manage the navigation flow. The Rac-
ing Dashboard application has only one coordinator, the AppCoordinator. In
this case, one coordinator is sufficient, due to the trivial flow of the screens.
Data from one screen to another are passed through the coordinator, and
there is no backward data passing functionality; hence no closure callbacks or
delegates are necessary.

1 protocol Coordinator {
2 // Array of child coordinators
3 var childCoordinators: [Coordinator] { get set }
4 // Navigation controller that is being used by the coordinator
5 var navigationController: UINavigationController? { get set }
6 // Starts the coordinator
7 func start(in window: UIWindow)
8 }

Listing 10: Coordinator protocol

5.3 User Interface
The application’s user interface is created with a programmatic approach, us-
ing Apple’s native UIKit framework with the addition of SnapKit for defining
layout constraints. Contraints can also be created using the native AutoLay-
out; however, SnapKit offers a shorter and easier syntax. The GUI layout is
designed to be responsive; therefore, it fits various screen sizes, such as iPhone
or iPad devices. It was decided not to implement light variant of the GUI due
to the tendency to disturb the user while using the application during a race.

In addition to basic GUI elements, custom elements have been designed
solely for the purpose of the Racing Dashboard application, such as a vertical
selector, gradient button, panel card, progress indicator, bar gauge, and more.
The implementation of these specific elements is described in the following
sections.

5.3.1 Vertical Selector
The main menu of the application features a vertical selector that is used to
select a combination of a dashboard type and a racing game. The design of
the element is shown in Chapter 4. The VerticalSelector is customizable
and easily reusable. The selector accepts an array of items that are of type
SelectorItem, where each item features a title, subtitle, background image,

47

5. Implementation

and a gradient. The logic behind the selector listens to the user input, pre-
cisely to a pan gesture on the vertical axis. Once the selector item is dragged
from a defined boundary, the next item is displayed using an animation. If
the pan gesture ends before reaching the threshold, the currently displayed
item returns to its original position. Transitions between elements are accom-
panied by a haptic response using the UIFeedbackGenerator.

5.3.2 Gradient Button
Throughout the application, customized buttons are used with an animated
background. It is implemented as a subclass of UIKit’s UIButton. In addi-
tion to the native button, it adds a custom animated gradient background.
The animation is based on changing the location of the gradient for each color.
Furthermore, the highlighted and enabled states are implemented using a sim-
ple opacity adjustment.

5.3.3 Panel Card
PanelCard is yet another custom element that is being used by the main menu
and the graphs screen. Each panel displays a title, a subtitle, and an icon.
The PanelCard is customizable, reusable, and automatically adapts to almost
any size. Implementation is done via subclassing UIKit’s UIView. There
is an additional feature of icon rotation when the user taps the panel card.
The purpose of the animation is only to entertain the user.

5.3.4 Progress Indicator
The progress indicator is a more advanced element in terms of implementation.
It features two states with an animated transition between them. The first
state reflects a work in progress. It is basically a fraction of the circle created
using the UIKit’s UIBezierPath, which rotates around the center of the arc
to indicate a work-in-progress state. The CABasicAnimation takes care of
the animation logic. Once the state changes to the other option that usually
stands for success, the graphics change to a checkmark symbol. Both lines of
the symbol are animated using CABasicAnimation.

5.3.5 Bar Gauge
Within the modern dashboard, a custom bar gauge is used. The bar gauge is
one of the simpler elements; however, it is an integral part of the dashboard.
It can be set to a vertical or horizontal layout. The gauge bar is essentially
a custom loading bar that can display any value in the range between 0 and
1. This element is used mainly to display the position of the pedal or the level
of gas. Implementation is done via subclassing UIView and changing size of
a colored layer in relation to the current value to be displayed.

48

5.3. User Interface

5.3.6 RPM Gauge
A significant part of the modern dashboard is occupied by a circular gauge,
a custom progress indicator, which is similar to the already established bar
gauge. There are two key differences between the circular gauge and the
bar gauge. The circular gauge is created by a 270 degree fraction of a cir-
cle. In addition, it features a gradient that changes constantly in relation to
the displayed value. Each layer in the gauge is created using a CAShapeLayer
and UIBezierPath. The animation of progress is achieved using a mask layer
rather than resizing the layer itself.

5.3.7 Other Elements
The application features many other custom elements, that will not be de-
scribed in more detail. Custom elements are used so often due to more
advanced GUI design, and the chosen programmatic approach of GUI cre-
ation supports custom elements even more. It is appropriate to amend that
the application uses the theme pattern to provide consistent colors and font
elements.

5.3.8 Documentation
Within the scope of this project, no extensive documentation was created.
This decision is based on the fact that the result is not a library or applica-
tion that will be utilized by other developers. Nevertheless, Xcode supports
code documentation using specific markdown comments, which are cleverly
displayed within the Quick Help and also as the description shown in the sym-
bol completion. This feature was used to document the code. Furthermore,
there is an option to generate the documentation based on the comments.

49

Chapter 6
Testing

Testing is an important part of the application development process. In this
Chapter, testing is divided into four sections, namely, performance testing,
unit testing, GUI testing, and practical testing. This multi-step testing process
ensures the quality of the application. In addition, the practical testing section
includes a video attachment that shows the in-game use of the application.

6.1 Performance Testing
An important aspect of the Racing Dashboard application is the networking
functionality and, especially, the performance. Part of the networking design
process aimed at a well-performing solution; therefore, the SwiftNIO library
was chosen. Fast communication via the UDP protocol is crucial to ensure
the highest possible data flow that provides a seamless rendering experience.

6.1.1 Testing Environment
The performance testing process took place on an Xbox One X, which came
out as a more powerful Xbox One version in 2017 [45]. The racing game
used during the testing was Forza Horizon 5. The Xbox device was connected
to the router through cable and Wi-Fi. Both connection methods showed
the same results. The device that ran the Racing Dashboard application was
an Apple iPhone 12 Pro connected to a router via Wi-Fi. The connection
between Xbox and iPhone was mediated by a Zyxel VMG3312-T20A router
that offers a Wi-Fi standard 802.11 b/g/n with speed of up to 300 Mbps.

6.1.2 Testing Results
The UDP networking service receives data at a rate determined by the rac-
ing simulator. For example, Forza Horizon 5 can send up to 60 packets per
second. The service receives all packets from the network and throttles the

51

6. Testing

data flow by a given value. The key parameter is defined in milliseconds
and specifies how frequently the networking service data are passed further to
the application. Testing was performed to determine the appropriate interval.
The results are shown in Table 6.1. The table covers each tested interval,
usability, the number of received packets per second, and a note. Usability
was divided into Good, Usable, and Unusable segments, where Good represents
the best usability, and conversely, Unusable represents the worst. This scale
is subjective. An optional note captures additional observations.

Table 6.1: Networking performance testing

Interval Usability Packets Note
500 ms Unusable 1-2/s Very unresponsive
200 ms Unusable 3-5/s Unresponsive
100 ms Usable 5-7/s -
50 ms Good 10-13/s -
No restriction Unusable 18-22/s Render issues

After reviewing the results of the tests, intervals greater than 100 ms were
easily detected by the human eye in a negative manner. Without any flow
restrictions, the GUI struggled with rendering glitches. The interval of 100 ms
was usable, although the interval of 50 ms was noticeably smoother without
any rendering glitches; as a result, the interval of 50 ms was chosen to be
the most suitable.

6.2 Unit Testing
Unit testing is a testing approach in which individual units or modules are
tested separately. Unit testing is the first level of the testing hierarchy, fol-
lowed by integration testing, system testing, and acceptance testing. A single
unit may be a method, function, procedure, or something else. Unit testing
is carried out during the development phase and ensures that each unit of
the software works as intended [46].

The Racing Dashboard application features unit tests for different mod-
ules, such as helpers, formatters, or decoders. XCTest framework was used for
unit testing. Xcode reports test coverage to be 24,6% for the Racing Dash-
board application. Examples of the unit tests implemented can be seen in
Listing 11. The testTimeFormatter() test ensures a correct formatting from
seconds in floating format to a time string represented in mm:ss:ms format.
Furthermore, the testHEXUIColor() tests custom extension for UIColor, that
are used for creating colors from hexadecimal and RGB formats. The default
implementation of the UIColor does not support constructors for hexadecimal
representation of color, and does not accept RGB in the common range of one
byte per color. Therefore, custom extensions were introduced and unit tested.

52

6.3. GUI Testing

Both tests shown in Listing 11 use a XCTAssertEqual() asserts, that tests if
two expressions have the same value.

1 // Formatter tests
2 class FormatterTests: XCTestCase {
3 // Test time formatter
4 func testTimeFormatter() {
5 let time = 128.285
6 let formatted = Formatter.secondsToTimeString(time)
7 XCTAssertEqual(formatted, "02:08:28")
8 }
9 // ...

10 }
11 // UIColor extension tests
12 class UIColorExtensionTests: XCTestCase {
13 // Test conversion helper (hex, rgb)
14 func testHEXUIColor() {
15 let hexColor = UIColor(hex: 0xfcba03)
16 let rgbColor = UIColor(red: 252, green: 186, blue: 3)
17 XCTAssertEqual(hexColor, rgbColor)
18 }
19 // ...
20 }

Listing 11: Unit tests example

6.3 GUI Testing
The primary goal of GUI testing is to validate the features and performance
of the application according to the requirements. GUI testing checks the func-
tionality of the application by analyzing the interface that is visible to the user,
including elements such as screens, menus, labels, buttons, and many more
[47].

For the Racing Dashboard application, a manual testing approach was
used. This testing method is based on manual use of the application. Each
functional requirement was manually tested and modified according to the re-
sults.

6.4 Usability Testing
Usability testing is based on evaluating the application by testing it with the
representative users. The Racing Dashboard application was tested with five

53

6. Testing

users covering all the use cases within the tested scenarios. Xbox One X with
Forza Horizon 5 game installed was used in order to fully test the connection
process. Table 6.2 shows a list of testers, consisting of a codename, age and
a level of experience with racing simulators. The level is described as Novice,
Proficient, and Expert, where Novice has the least experience and conversely
Expert is experienced the most.

Table 6.2: Usability testing users

Tester codename Age Racing simulator experience
Tester A 27 Expert
Tester B 24 Novice
Tester C 24 Proficient
Tester D 21 Expert
Tester E 28 Novice

6.4.1 Testing Procedure
The testing procedure covered 3 different scenarios, where each scenario was
designed to represent one or multiple use cases of the application. With this
approach, each use case was tested by the users. Used testing scenarios are
the following:

• TS1: Selecting game and dashboard type: The user is instructed
to select Assetto Corsa as the game type and oldschool dashboard as
the dashboard design. After selecting these parameters, the user pro-
ceeds to the connection screen. Once the user reached the connection
screen, he is instructed to return back to he main menu.

• TS2: Connecting to a racing simulator The user is instructed to
select Forza Horizon 5 as the game and modern dashboard as the dash-
board design. Next, the user starts the connection process and es-
tablishes the connection between the application and Forza Horizon 5.
The user is assumed to use the connection guide functionality. After set-
ting up the connection, the user is instructed to launch the dashboard.
Finally, the user returns to the main menu.

• TS3: Reviewing race statistics: The user is instructed to open
the screen with race statistics. Next, the user is supposed to select the
oldest record. Once selected, the user is instructed to display values for
gas, brake a gear usage. After reviewing the values, the user returns to
the main menu.

After finishing the testing procedure, every tester was asked the following
questions:

54

6.4. Usability Testing

• Q1: Did you encounter any problems during the execution of the sce-
nario?

• Q2: Did you find the process to be clear and straightforward?

• Q3: Is there anything you would improve?

6.4.2 Results
A summary of the testing results is covered in this section. Most of the testers
have completed the scenarios successfully with only some minor issues.

The first scenario (TS1) was successfully executed by each tester. Most
testers did not encounter any problems and considered the process straight-
forward and clear. Tester B would improve the vertical selector by utilizing
the chevrons to act as navigation buttons in addition to the gesture naviga-
tion. It was observed, that Tester E tried to tap the selector item, although
the vertical selector does not respond to tap gestures.

The second tested scenario (TS2) was the most extensive. Each user suc-
cessfully selected the instructed racing game and dashboard design. Once
reaching the connection screen, the majority of the testers started interacting
with the connection guide. Tester C did not take advantage of the guide.
Each tester filled the given parameters into Forza Horizon 5 settings menu
and successfully established a connection. After proceeding to the dashboard,
2 out of 5 testers were struggling with leaving the dashboard screen. It was
unclear, that a double-tap gesture serves as a return action. All the testers
were satisfied with the connection guide and considered it to be very clear.
Tester B was observed to be struggling with navigation within the Forza Hori-
zon 5 menu, although the tester declared, that the menu of Forza Horizon 5
seems confusing. All testers, except Tester D, would improve the return op-
tion from the dashboard, for example by introducing an overlay guide that
would appear by the first launch of the application. On the other hand, Tester
D claimed, that a double-tap gesture was the first thing that occurred to him
and did not find it confusing.

The last tested scenario (TS3) was considered straightforward by all the
testers. Each user found the graphs button very quickly due to the color
contrast. Navigation between the records was executed by every tester with no
issues. Each tester listed the displayed values as instructed with no hesitation.
Tester A and Tester C did not interact with the graph, for example by swiping
or zooming in. The remaining testers automatically started to interact with
the graph without being instructed to do so.

After reviewing the testing results, a few changes are suggested. The issue
addressed by every tester was the unclear return action from the dashboard
itself. This could be solved by introducing an overlay guide that appears on
the first launch of the dashboard. Furthermore, the chevrons of the vertical
selector could be utilized to serve as a second selection method.

55

6. Testing

6.5 Practical Testing
The Racing Dashboard application has been tested in practice on a real racing
simulator rig. The game used for the tests was Forza Horizon 5. The test-
ing was based on the use of the application in a race. As a result, a video
footage was recorded that contains a screen capture of the game and the Rac-
ing Dashboard application. The racing simulator rig features the following
components:

• Racing seat CZC.Gaming Centaur

• Thrustmaster TMX PRO steering wheel

• Thrustmaster T3PA pedals

• Custom 3D printed handbrake

• Xbox One X

• Samsung TV UE55NU7093, 55”

From a subjective point of view, the application felt responsive and was
able to completely substitute the in-game HUD. A screenshot of the footage
can be seen in Figure 6.1. In addition, the complete footage can be found as
an attachment to the enclosed CD.

Figure 6.1: Practical testing in Forza Horizon 5

56

Conclusion

In this work, various racing simulators were analyzed, including their respec-
tive communication methods for data output. Existing alternatives to the Rac-
ing Dashboard application were listed and thoroughly analyzed. Based on the
communication methods of the chosen racing simulators, a networking layer
was created to provide a well-performing communication process. On the ba-
sis of the analysis, an iOS application was designed, including self-designed
GUI wireframes.

The result is a full-fledged mobile application that is used to display various
data from racing simulators. It features an intuitive GUI and uses the UDP
protocol as a foundation for communication. The application supports both
iPhone and iPad devices running iOS 15. The process of establishing a con-
nection is simple and intuitive. Race data recording is a vital feature that
allows the user to review each race and use it as a basis for self-improvement.

This project aimed to create a fully functional mobile application that
could be used in racing simulator rigs. When designing the architecture of
the application, attention was paid to making the application easily extensible
in the future.

Further development of the application could consist of extending the sup-
ported games and adding various predefined dashboards, as well as a fully cus-
tomizable versions of dashboards, including features such as modifiable shift
lights, configurable layouts, various themes, and many more. The application
could be further extended to support the OBD2 adapters, which would extend
the scope of the application to real cars. With some additional work, the ap-
plication could be published on the App Store and used to improve the racing
experience of racing simulators and even real vehicles.

57

Bibliography

1. Apple Inc. Human Interface Guidelines [online] [visited on 2022-01-10].
Available from: https : / / developer . apple . com / design / human -
interface-guidelines/.

2. Market research future: Racing Games Market Research Report [online]
[visited on 2022-01-15]. Available from: https://www.marketresearch-
future.com/reports/racing-games-market-9560.

3. Statista: Racing Games [online] [visited on 2022-01-15]. Available from:
https : / / www . statista . com / outlook / dmo / app / games / racing -
games/worldwide.

4. RealDash: Supported ECUs and Games [online] [visited on 2022-01-12].
Available from: http://realdash.net/support.php.

5. RaceDash: Games [online] [visited on 2022-01-12]. Available from: https:
//www.racedash.app/games/.

6. FALL, K.R.; STEVENS, W.R. TCP/IP Illustrated. Addison-Wesley, 2011.
Addison-Wesley professional computing series, no. sv. 1. ISBN 97803213-
36316. Available also from: https://books.google.cz/books?id=X-
l9NX3iemAC.

7. LAMMLE, T. TCP / IP. Wiley, 2017. ISBN 9781119472704. Available
also from: https://books.google.cz/books?id=oDw7DwAAQBAJ.

8. User Datagram Protocol [RFC 768]. RFC Editor, 1980. Request for Com-
ments, no. 768. Available from DOI: 10.17487/RFC0768.

9. Apple inc. iOS and iPadOS usage [online] [visited on 2022-03-20]. Avail-
able from: https://developer.apple.com/support/app-store/.

10. Apple, inc. Apple Reinvents the Phone with iPhone [online] [visited on
2022-04-02]. Available from: https://www.apple.com/newsroom/2007/
01/09Apple-Reinvents-the-Phone-with-iPhone/.

59

https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/
https://www.marketresearch-future.com/reports/racing-games-market-9560
https://www.marketresearch-future.com/reports/racing-games-market-9560
https://www.statista.com/outlook/dmo/app/games/racing-games/worldwide
https://www.statista.com/outlook/dmo/app/games/racing-games/worldwide
http://realdash.net/support.php
https://www.racedash.app/games/
https://www.racedash.app/games/
https://books.google.cz/books?id=X-l9NX3iemAC
https://books.google.cz/books?id=X-l9NX3iemAC
https://books.google.cz/books?id=oDw7DwAAQBAJ
https://doi.org/10.17487/RFC0768
https://developer.apple.com/support/app-store/
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/

Bibliography

11. Apple inc. Identify your iPhone model [online] [visited on 2022-03-19].
Available from: https://support.apple.com/en-us/HT201296.

12. Apple inc. iPhone models compatible with iOS 15 [online] [visited on 2022-
03-19]. Available from: https://support.apple.com/guide/iphone/
supported-models-iphe3fa5df43/ios.

13. Apple inc. iPhone SE - Technical Specifications [online] [visited on 2022-
04-01]. Available from: https : / / support . apple . com / kb / sp738 ?
locale=en_US.

14. Apple inc. iPhone 13 Pro Max [online] [visited on 2022-03-18]. Available
from: https://www.apple.com/iphone-13-pro/specs/.

15. Appleinsider: A brief history of the iPad, Apple’s once and future tablet
[online] [visited on 2022-03-03]. Available from: https://appleinsider.
com/articles/18/04/03/a-brief-history-of-the-ipad-apples-
once-and-future-tablet.

16. Apple inc. iPad models compatible with iOS 15 [online] [visited on 2022-
03-20]. Available from: https://support.apple.com/cs-cz/guide/
ipad/ipad213a25b2/ipados.

17. Apple inc. iPad mini 4 - Technical Specifications [online] [visited on
2022-03-18]. Available from: https://support.apple.com/kb/SP725?
viewlocale=en_EN&locale=zh_CN.

18. Apple inc. iPad Pro, 12.9-inch (5th generation) - Technical Specifica-
tions [online] [visited on 2022-03-18]. Available from: https://support.
apple.com/kb/SP844?locale=en_EN.

19. Forza motorsport forums: Forza Motorsport 7 Data Out feature [online]
[visited on 2022-02-07]. Available from: https://forums.forzamotor-
sport.net/.

20. Toptal developers: iOS User Interfaces: Storyboards vs. NIBs vs. Custom
Code [online] [visited on 2022-02-16]. Available from: https : / / www .
toptal.com/ios/ios-user-interfaces-storyboards-vs-nibs-vs-
custom-code.

21. Cocoacasts: SwiftUI Fundamentals [online] [visited on 2022-02-17]. Avail-
able from: https://cocoacasts.com/swiftui-fundamentals-what-
is-swiftui.

22. Apple inc. Xcode [online] [visited on 2022-02-09]. Available from: https:
//developer.apple.com/documentation/xcode.

23. Cocoapods: What is CocoaPods [online] [visited on 2021-12-05]. Available
from: https://cocoapods.org/.

24. Swift.org: Package Manager [online] [visited on 2022-02-07]. Available
from: https://www.swift.org/package-manager/.

60

https://support.apple.com/en-us/HT201296
https://support.apple.com/guide/iphone/supported-models-iphe3fa5df43/ios
https://support.apple.com/guide/iphone/supported-models-iphe3fa5df43/ios
https://support.apple.com/kb/sp738?locale=en_US
https://support.apple.com/kb/sp738?locale=en_US
https://www.apple.com/iphone-13-pro/specs/
https://appleinsider.com/articles/18/04/03/a-brief-history-of-the-ipad-apples-once-and-future-tablet
https://appleinsider.com/articles/18/04/03/a-brief-history-of-the-ipad-apples-once-and-future-tablet
https://appleinsider.com/articles/18/04/03/a-brief-history-of-the-ipad-apples-once-and-future-tablet
https://support.apple.com/cs-cz/guide/ipad/ipad213a25b2/ipados
https://support.apple.com/cs-cz/guide/ipad/ipad213a25b2/ipados
https://support.apple.com/kb/SP725?viewlocale=en_EN&locale=zh_CN
https://support.apple.com/kb/SP725?viewlocale=en_EN&locale=zh_CN
https://support.apple.com/kb/SP844?locale=en_EN
https://support.apple.com/kb/SP844?locale=en_EN
https://forums.forzamotor-sport.net/
https://forums.forzamotor-sport.net/
https://www.toptal.com/ios/ios-user-interfaces-storyboards-vs-nibs-vs-custom-code
https://www.toptal.com/ios/ios-user-interfaces-storyboards-vs-nibs-vs-custom-code
https://www.toptal.com/ios/ios-user-interfaces-storyboards-vs-nibs-vs-custom-code
https://cocoacasts.com/swiftui-fundamentals-what-is-swiftui
https://cocoacasts.com/swiftui-fundamentals-what-is-swiftui
https://developer.apple.com/documentation/xcode
https://developer.apple.com/documentation/xcode
https://cocoapods.org/
https://www.swift.org/package-manager/

Bibliography

25. Apple: Swift Package Manager Project [online] [visited on 2022-03-26].
Available from: https://github.com/apple/swift-package-manager.

26. Apple Inc. UIKit [online] [visited on 2022-01-15]. Available from: https:
//developer.apple.com/documentation/uikit.

27. SnapKit: SnapKit [online] [visited on 2022-03-20]. Available from: https:
//github.com/SnapKit/SnapKit.

28. Swinject: Swinject [online] [visited on 2022-04-05]. Available from: https:
//github.com/Swinject/Swinject.

29. Apple Inc. Combine [online] [visited on 2022-01-20]. Available from: https:
//developer.apple.com/documentation/combine.

30. Apple Inc. Introducing Network.framework: A modern alternative to Sock-
ets [online] [visited on 2022-03-15]. Available from: https://developer.
apple.com/videos/play/wwdc2018/715/.

31. Apple: SwiftNIO [online] [visited on 2022-02-01]. Available from: https:
//github.com/apple/swift-nio.

32. Netty project: Documentation [online] [visited on 2020-04-06]. Available
from: https://netty.io/wiki/index.html.

33. DOUGLAS, Aaron; MORA, Saul; MOREY, Matthew; REA, Pietro;
TEAM, raywenderlich.com. Core Data by Tutorials Third Edition: IOS
10 and Swift 3 Edition. 3rd. Razeware LLC, 2016. ISBN 1942878265.

34. Cocoacasts: Core Data Fundamentals [online] [visited on 2022-01-03].
Available from: https://cocoacasts.com/what-is-core-data.

35. Apple Inc. Core Data [online] [visited on 2022-02-01]. Available from:
https://developer.apple.com/documentation/coredata.

36. PhilJay: MPAndroidChart [online] [visited on 2022-01-14]. Available from:
https://github.com/PhilJay/MPAndroidChart.

37. Danielgindi: Charts [online] [visited on 2022-07-03]. Available from: https:
//github.com/danielgindi/Charts.

38. Apple inc. XCTest [online] [visited on 2022-02-04]. Available from: https:
//developer.apple.com/documentation/xctest.

39. Realm: SwiftLint [online] [visited on 2022-04-05]. Available from: https:
//github.com/realm/SwiftLint.

40. GELATKA, Adam. Mobilní scanner dokumentů [online]. Praha, 2020
[visited on 2020-02-13]. Available from: https : / / dspace . cvut . cz /
bitstream / handle / 10467 / 88172 / F8 - BP - 2020 - Gelatka - Adam -
thesis.pdf. Bakalářská práce. České vysoké učení technické v Praze,
Fakulta informačních technologií. Supervised by Ing. Dominik VESELÝ.

41. Khanlou: The Coordinator [online] [visited on 2022-02-05]. Available
from: https://khanlou.com/2015/01/the-coordinator/.

61

https://github.com/apple/swift-package-manager
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://github.com/SnapKit/SnapKit
https://github.com/SnapKit/SnapKit
https://github.com/Swinject/Swinject
https://github.com/Swinject/Swinject
https://developer.apple.com/documentation/combine
https://developer.apple.com/documentation/combine
https://developer.apple.com/videos/play/wwdc2018/715/
https://developer.apple.com/videos/play/wwdc2018/715/
https://github.com/apple/swift-nio
https://github.com/apple/swift-nio
https://netty.io/wiki/index.html
https://cocoacasts.com/what-is-core-data
https://developer.apple.com/documentation/coredata
https://github.com/PhilJay/MPAndroidChart
https://github.com/danielgindi/Charts
https://github.com/danielgindi/Charts
https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://dspace.cvut.cz/bitstream/handle/10467/88172/F8-BP-2020-Gelatka-Adam-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/88172/F8-BP-2020-Gelatka-Adam-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/88172/F8-BP-2020-Gelatka-Adam-thesis.pdf
https://khanlou.com/2015/01/the-coordinator/

Bibliography

42. Adobe XD Ideas: Mobile First Design Strategy: The When, Why and How
[online] [visited on 2022-01-21]. Available from: https://xd.adobe.com/
ideas/process/ui-design/what-is-mobile-first-design/.

43. James Shore: Dependency Injection Demystified [online] [visited on 2022-
03-16]. Available from: http://www.jamesshore.com/v2/blog/2006/
dependency-injection-demystified.

44. Apple Inc. Localization [online] [visited on 2022-02-01]. Available from:
https://developer.apple.com/documentation/xcode/localization.

45. Windows central: Xbox One X tech specs [online] [visited on 2020-04-06].
Available from: https://www.windowscentral.com/xbox- one- x-
specs.

46. Guru99. Unit Testing Tutorial: What is, Types, Tools and Test EX-
AMPLE [online] [visited on 2022-04-07]. Available from: https://www.
guru99.com/unit-testing-guide.html.

47. Guru99: GUI Testing Tutorial: User Interface (UI) TestCases with Ex-
amples [online] [visited on 2022-04-04]. Available from: https://www.
guru99.com/gui-testing.html.

62

https://xd.adobe.com/ideas/process/ui-design/what-is-mobile-first-design/
https://xd.adobe.com/ideas/process/ui-design/what-is-mobile-first-design/
http://www.jamesshore.com/v2/blog/2006/dependency-injection-demystified
http://www.jamesshore.com/v2/blog/2006/dependency-injection-demystified
https://developer.apple.com/documentation/xcode/localization
https://www.windowscentral.com/xbox-one-x-specs
https://www.windowscentral.com/xbox-one-x-specs
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/gui-testing.html
https://www.guru99.com/gui-testing.html

Appendix A
Acronyms

DI Dependency injection
ECU Engine control unit
FH5 Forza Horizon 5
GUI Graphical user interface

HUD Head-up display
IDE Integrated development environment

RPM Revolutions per minute
SoC Separation of concerns

UDP User datagram protocol
UI User interface

UX User experience
MVVM Model-view-viewmodel

63

Appendix B
Contents of Enclosed CD

readme.txt.........................the file with CD contents description
diag...the directory of diagrams
src...the directory of source codes

impl..implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

footage......................................the video footage directory
fh5Race.mp4...................Forza Horizon 5 testing video footage

65

Appendix C
Racing Dashboard Screenshots

A set of screenshots from the Racing Dashboard application taken on iPhone
12 Pro running iOS 15.4.1.

Figure C.1: Main menu screen screenshot

67

C. Racing Dashboard Screenshots

Figure C.2: Graph screen screenshot

Figure C.3: Connection screen screenshot

68

Figure C.4: Connection screen guided screenshot

Figure C.5: Dashboard screen screenshot

69

	Introduction
	Goals and Requirements
	Application Requirements
	Functional Requirements
	Non-functional Requirements
	Use Cases

	Analysis
	Racing Simulators
	Market Share

	Existing Alternatives
	RealDash
	Race Dash for Sim Games
	DashPanel
	Comparison

	Data Output
	UDP

	Target Platform
	iPhone
	iPad

	Data Packet Structure

	Used Technologies
	GUI Creation Methods in iOS
	Swift
	Xcode IDE
	Cocoapods
	Swift Package Manager
	Frameworks
	UIKit
	SnapKit
	Swinject
	Combine
	SwiftNIO
	CoreData
	Charts
	XCTest
	SwiftLint

	Design
	Architecture
	MVVM
	MVVM in iOS
	Flow Coordinators

	Mobile First Design
	Separation of Concerns
	Dependency Injection
	Localization
	Graphical User Interface
	Main Menu Screen
	Graphs Screen
	Connection Screen
	Dashboard Screen
	Application Icon

	Race Statistics Database
	Common Data Packet
	Networking Layer

	Implementation
	Networking Service
	Channel Handler
	Data Decoder

	Application Logic
	Connection Process
	Data Recording

	Architecture
	User Interface
	Vertical Selector
	Gradient Button
	Panel Card
	Progress Indicator
	Bar Gauge
	RPM Gauge
	Other Elements
	Documentation

	Testing
	Performance Testing
	Testing Environment
	Testing Results

	Unit Testing
	GUI Testing
	Usability Testing
	Testing Procedure
	Results

	Practical Testing

	Conclusion
	Bibliography
	Acronyms
	Contents of Enclosed CD
	Racing Dashboard Screenshots

