
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Clustering and data analysis of Jupyter notebooks on GitHub

Bc. Tomáš Detko

Ing. Jakub Žitný

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2022/2023

Instructions

Computational notebooks are increasingly popular medium for data analysis, data

science, and data engineering activity. Notebooks combine text, code, visualisations and

interactive elements and are used in both academia and industry. The most popular ones

are Jupyter notebooks and millions of them are available in open-sourced format on

GitHub. Researchers have already analysed what types of kernels are most popular, how

authors follow proper cell-ordering, or what libraries are the most popular. The

assignment of this thesis is to dig deeper, cluster notebook types and authors and topics

they cover, look for historical trends in code quality and library usage in Jupyter

notebooks, find correlations between code quality and repository activity.

Electronically approved by Ing. Karel Klouda, Ph.D. on 9 February 2022 in Prague.

Master’s thesis

Clustering and data analysis of Jupyter
notebooks on GitHub

Tomáš Detko

Department of Applied Mathematics

Supervisor: Ing. Jakub Žitný

May 3, 2022

Acknowledgements

Thanks firstly go to my supervisor Ing. Jakub Žitný for his valuable insights
and suggestion in this topic, as well as, for his kindness and willingness to
help, whenever help was needed. Next, my thanks go to my family, for their
endless amount of support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 3, 2022

Czech Technical University in Prague

Faculty of Information Technology

© 2022 Tomáš Detko. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Detko, Tomáš. Clustering and data analysis of Jupyter notebooks on GitHub.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Github je miestom kde developeri pracujú na projektoch a svoju prácu zdielajú
s ostatnými. Uložisko sa postupom času stalo miestom s najväčšou code-base
na svete. Ktokoľvek kto sa rozhodne zapojiť do vývoja, vytvoriť balíček alebo
knižnicu tak môže urobiť. Vďaka tomu vzniká nepreberné množstvo nových
projektov, ktoré posúvajú hranice v oblasti technológií. Postupne ako tech-
nológia dozrieva sa dostáva do širšieho povedomia developerov. Nástroj sa
začína integrovať do iných knižníc a iné projekty integrujú časti tohto rieše-
nia. Developeri ho vyvíjali v dobrej viere, že ho komunita bude ďalej používať
a podporovať. Postupom času, ako vznikali alternatívy, riešenie zastaralo a
developeri ho začali opúšťať. Odliv ľudí ma za následok zníženie kvality kódu
a postupný zánik projektu.

Táto práca si dáva za cieľ analyzovať informácie o repozitároch za účelom
zistenia kvality repozitára a jeho životnosti.

Klíčová slova Analýza časových rád, konvolučná neurónová sieť, rekurentná
neurónová sieť, hlboké učenie, strojové učenie, Github

vii

Abstract

Github is a place where developers work on projects and share their work
with others. Over time, the repository has become the place with the largest
code-base in the world. Anyone who decides to solve a problem, create a
package or a library can do so and can contribute. This has led to a plethora
of new projects that are pushing the boundaries of technology. Gradually, as
the technology matures, it becomes more widely known to developers. The
solution starts to be integrated into other libraries and other projects integrate
parts of the solution. Developers developed it in the good faith that the
community will continue to use and support it. Over time, as alternatives were
developed, the solution became obsolete and developers started to abandon it.
The outflow of people resulted in a decrease in code quality and the gradual
disappearance of the project.

This work aims to analyse information about repositories in order to determine
the quality of the repository and its lifespan.

Keywords Analysis of time series, convolution neural network, recurrent
neural network, deep learning, Github

viii

Contents

Introduction 1

Thesis’s Objective 3

1 Time series introduction 5
1.1 About time series . 5
1.2 Relationship between a stochastic process and a random variable 7

1.2.1 Time series analysis . 10
1.2.2 Autocorrelation and partial autocorrelation 10

1.3 Time series decomposition . 11
1.3.1 Stacionarity . 12

2 Tools exploration 13
2.1 Criteria for selection . 13
2.2 GithubAPI . 13
2.3 Github Archive . 14
2.4 GHTorrent . 14
2.5 Other alternatives . 15

3 Data acquisition 17
3.1 Tools suitable for usecase . 17
3.2 Exploratory data analysis . 18

3.2.1 Overview . 18
3.2.2 EDA in detail . 19

3.3 Dataset . 22
3.3.1 Multivariate time series 22
3.3.2 Sparse time series . 22
3.3.3 Repository life cycle . 23
3.3.4 Training data generator 24

ix

4 Time series classification 25
4.1 Time series classification algorithms 25

4.1.1 Nearest neighbour . 26
4.1.2 Nearest neighbour without modifications 26

4.1.2.1 Dynamic time warping 26
4.1.2.2 Constraints of algorithm 28
4.1.2.3 Variants of dynamic time warping 28

4.1.3 Kernel methods . 29
4.1.4 Shapelet based approach 30

4.1.4.1 Extracting shaplets 31
4.1.4.2 Learning shaplets 32

4.1.5 Tree based approach . 33
4.1.5.1 Time series forest 33
4.1.5.2 Proximity forest 33

4.1.6 Bag of words approaches 35
4.1.6.1 Discretizing raw time series 35
4.1.6.2 Discretizing Fourier coefficients 36

4.1.7 Ensemble models . 37
4.1.8 Markov transition field 38
4.1.9 Deep learning . 40

4.1.9.1 Echo state architecture 40
4.1.9.2 Inception Time 41
4.1.9.3 Architecture optimization 42
4.1.9.4 Residual connections 42

5 Implementation 45
5.1 A path of implementation . 45
5.2 Working environment . 45
5.3 Data generator . 46
5.4 Problem analysis . 46

5.4.1 Models used during training 47
5.5 Training . 48

5.5.1 Model training . 48
5.6 Loss function . 49
5.7 Results . 50

5.7.1 Long short term memory 50
5.7.2 Instability during training 50
5.7.3 Insufficient accuracy . 50
5.7.4 Convolutional neural network 52
5.7.5 Better results . 52

5.8 Model accuracy . 53

6 Conclusion 55
6.1 Outline of future work . 56

x

Bibliography 57

A Acronyms 61

xi

List of Figures

1.1 The chart shows the number of books created in history. Red
dots represent the production after the mechanical printing press
invention. 6

1.2 The chart shows the price of books in history. Red dots represent
the price after the mechanical printing press invention. 6

1.3 Components of time series. 12

3.1 Entity model shows which entities from the GHTorrent schema we
worked with. 18

3.2 Commit activity during the year. This is what a average repository
looked like. For a large part of the year, there is nothing to see
even if we aggregated the activity by month. 19

3.3 Uneven presence of repositories of different sizes. Smaller reposi-
tories clearly predominate. 21

3.4 The graph shows a general multivariate time series task. Each sub
graph represents one of observed variable. 22

3.5 Different types of aggregation intervals. Larger window suits the
models much better. 23

3.6 A repository that has gone through its entire life cycle can be used
for training models. A repository that is still active must be filtered
out from the training set. 24

4.1 If we use classical DTW, we access all cells of the matrix during
the calculation. When using sakoechiba the region is limited. [5] . 29

4.2 The perimeter of the leaf can be represented as a time series. Then
the area where the leaf passes into the stem has a specific character.
Such a part of the object is identified as a shaplet[8]. 31

xiii

4.3 The orange curve contains a common characteristic for a portion
of the data. The orange shaplet specifically describes Class 2. The
blue shaplet does not carry any specific information about neither
of the two classes.[9] . 32

4.5 Each time series is transformed into bag of words by algorithm
bag-of-patterns. The algorithm then calculates the frequencies of
each word for each time series[15]. 35

4.6 Graphical representation of Markov transition field. 39
4.7 Echo state network [19]. 40
4.8 Block of inception time network . 42
4.9 Inception block in Inception V4 network. 43

5.1 Loss function progress for LSTM 51
5.2 Accuracy function progress for LSTM 51
5.3 High level architecture of CNN. Each convolution block consists of

convolution filter, batch normalization, dropout and maxpooling . 52
5.4 Loss function progress for CNN . 53
5.5 Accuracy function progress for CNN 53

xiv

List of Tables

5.1 Classification accuracy on validation dataset. 54

xv

Introduction

When creating a new project, developers nowadays rely on many libraries and
tools that they use as a ready-made solution. With the speed and skill of
the competition with which they compete, time is of the essence. By using
such solutions, the time needed to achieve functionality is minimized. Team
members do not have to spend long days and weeks on implementation. What
they should not underestimate is the analysis of the tool they want to decide
on before they start using it.

If we decide to integrate a particular technology into our solution, it is wise to
consider several alternatives. We will make our decision based on the criteria
that are most critical for our case. Such criteria include, for example, package
security, popularity within the community and resulting support, how well the
library can be integrated into the existing code base, performance of the tool,
the added value the tool will provide to other team members, ability to scale,
future development, etc.

One of the critical factors is the intensity of development of the third party
solution. There is nothing worse than deciding on a technology, integrating it
into your product, and six months later finding out that the technology you
used has become deprecated. If neglected, the team can find itself in a very
unpleasant situation.

We started to study the issue of code quality and activity within the repository
more closely. This decision turned out to be the right one. We were able to
train a pair of models capable of predicting the lifetime and activity of the
repository from the data with relatively high accuracy.

1

Thesis’s Objective

In this work, we use deep learning methods to process information about the
repository. We further use this information to predict its lifetime. In this work,
we discuss several approaches by which we analyze the information about the
repositories. These approaches and their results are compared in Chapter 4.

The aim of the theoretical part is to introduce the reader to the topic. In
Chapter 1 we discuss the theory of time series and general introduction to it.
Chapter 4 is devoted to an extensive analysis of algorithms. It describes their
theoretical foundations. Several specific algorithms are discussed. We focus
on the processing of a time series and the following classification. We discuss
the advantages and disadvantages of each approach.

In Chapter 2 we analyze the tools that can be used to acquire and process a
large amount of data.

The goal of 3 and 5 is to design the solution. We describe in detail the process
of data acquisition, processing and cleansing. Data processing has proven to
be very critical to the good functioning of the models. In the next section, we
discuss in detail the process of training neural networks. We discuss the results
where we give emphasis on the resulting metrics and compare the advantages
and disadvantages of the models.

3

Chapter 1
Time series introduction

The chapter provides a brief overview and serves as an introduction to the
world of time series.

1.1 About time series
In today’s world a huge amount of data is generated. This data is of a very
different nature. Some represent a movie stored in the cloud, it can represent
a social network profile or a client’s account balance. A very interesting type
of data is, for example, temperature measurements in remote parts of the
planet, stock prices on the stock market, the development of a pandemic
situation, the strength of a patient’s heart signal, etc. At first glance, you
can see the similarities between them, which are characteristic of the whole
group. In the search for similarities, the measurement of the temperature of
the planet is closer to the measurement of stock prices than, for example, to
the segmentation of tumour diseases from CT scans.

The common feature is that these data form a representation of the mea-
sured process. Theoretically, we can obtain information about the state in
continuous time, in the real world we often resort to discretization. Thus, the
information from observation is somehow tied to the point in time when we
measure it.

The primary task is not to store the time series but to analyse it. During
analysis we try to understand the information that the time series contains. If
we want to go one step further, we can draw conclusions from the understood
information and base on them make decisions and systematically influence the
future in our favour.

5

1. Time series introduction

Figure 1.1: The chart shows the number of books created in history. Red dots
represent the production after the mechanical printing press invention.

Figure 1.2: The chart shows the price of books in history. Red dots represent
the price after the mechanical printing press invention.

6

1.2. Relationship between a stochastic process and a random variable

1.2 Relationship between a stochastic process and
a random variable

In order to get to a more formal definition of stochastic processes, we must
first spend some time on theory of probability and define a few terms from
this domain.

All the definitions are common for this field of statistics and can be found in
many books [1].

Def. If Ω is a given set, then a σ-algebra F in Ω is a family F of subsets of
Ω with the following properties

(i) ∅ ∈ F

(ii) F ∈ F ⇒ F C ∈ F , where F C = Ω \ F is the complement of F in Ω

(iii) A1, A2, ... ∈ F −→ A :=
∪∞

i=1 Ai ∈ F

The pair (Ω, F) is called a measurable space. A probability measure P on a
measurable space (Ω, F) is a function P : F → [0, 1] such that,

(i) P (∅) = 0, P (Ω) = 1

(ii) Ai ∈ F , P (Ai) ≥ 0

(iii) if A1, A2, ... ∈ F and {Ai}∞
i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if i 6= j) then

P (
∞∪

i=1
Ai) =

∞∑
i=1

P (Ai)

The triple (Ω, F , P) is called a probability space. The subsets F of Ω which
belong to F are called F-measurable sets. Some of possible σ-algebras

• F = {∅, Ω} is σ-algebra

• for any A ⊂ Ω is F = {∅, A, AC , Ω}σ-algebra

• F = 2Ω – here σ-algebra is produced by all of the subsets. This is the
most commmon choice for finite or countable Ω

7

1. Time series introduction

• Borel σ-algebra B – the smallest σ-algebra which contains all open sets,
all closed sets, all countable unions of closed sets, all countable intersec-
tions of such countable unions etc. This is the most common choice for
uncountable Ω ∈ Rn

Def. Random variable X on probability space (Ω, F , P) is a function which
asigns value X(ω) ∈ R to every result of experimnt ω ∈ Ω. There is important
for X to be measurable.

{X ≤ x} ∈ F , ∀x ∈ R

Def. Distribution function of the random variable X is defined as below. Dis-
tribution function uniquely determines probability distribution of the random
variable.

FX(x) = P (X ≤ x)

Def. Random variable X is continuous, if there exists non-negative function
fX such that, ∀x ∈ R

FX(x) =
∫ x

−∞
fX(t) dt

Def. Expected value of discrete random variable X, is defined as

EX =
∑

k

xkP (X = xk) =
∑
Ω

X(ω) P (ω)

Def. Expected value of continuous random variable X which density function
is f , is defined as

EX =
∫ ∞

−∞
xf(x) dx =

∫
Ω

X(ω) dP (ω)

Def. Two subsets A, B ∈ F are called independent if

P (A ∩ B) = P (A) P (B)

A collection of {Ai| i :∈ I} is independent, if

P (
∩
i∈J

Ai) =
∏
i∈J

P (Ai)

Now we can start to define stochastic process within the world of random
variables.

8

1.2. Relationship between a stochastic process and a random variable

Def. A stochastic process is a parametrized collection of random variables

{Xt}t∈T

defined on a probability space (Ω, F , P) and assuming values in Rn. The
parameter T is usually the halftime [0, ∞), it can be also an interval [a, b],
where a, b ∈ Rn for n ≥ 1. It is important to note that for each t ∈ T we have
a random variable

ω → Xt(ω) ω ∈ Ω.

On the other hand, fixing ω ∈ Ω we can consider the function

t → Xt(ω) t ∈ T

which is called a path of Xt. For the better intuition we may think of t
as time and each ω as an individual experiment. With this picture Xt(ω)
would represent the value at time t of the particular experiment ω. Because
of convenience we can rewrite Xt(ω) as X(t, ω) . By this step we created
function of two variables (t, ω) → X(t, ω) from T × Ω into Rn. This type of
thinking about stochastic processes is very important because now we clearly
see that X(t, ω) is jointly measurable in (t, ω) . Further in text we will use
simplified notation as random variable Xt and xt as it’s realization. We may
use a simplified notation for the time series as well. This means that we will
denote to Y as sequence of measurements.

9

1. Time series introduction

1.2.1 Time series analysis
To understand the information, we need to analyse the stochastic process
expressed as a time series. We work with a sequence of measurements where
each measurement is a realization of a random variable X with index t. We
can calculate all the characteristic properties of random variable on such a set
of measurements.

Mean value
µt = E[Xt] t ∈ T

Variance
σ2

t = var(Yt) t ∈ T

Autocovariance

γ(t1, t2) = cov(Yt1 , Yt2) = E[(Yt1 − µt1) (Yt2 − µt2)]

1.2.2 Autocorrelation and partial autocorrelation
We can try to understand how past events influence future events by examining
the time series. For that we need a tool to observe how the measurement in
the case Xt+n is affected by the measurement Xt.

Def. Let us assume a time series Y = {Yt|t ∈ T} with mean µt and variance
σ2

t for each t. Autocorrelation coeficient for time indices t1 and t2 is defined
as

ρt1,t2 = corr(Yt1 , Yt2) = E[(Yt1 − µt1)(Yt2 − µt2)]
σt1σt2

ρt1,t2 ∈ [−1, 1]

Def. Let us assume a time series Y = {Yt|t ∈ T}. Partial autocorellation lag
k ≥ 1 denoted as α(k) is autocorellation between Yt and Yt+k after removing
the effect of the linearly intervening variables Yt+1, . . . , Yt+k−1

α(k) = cov(Yt, Yt+k|Yt+1 . . . Yt+k−1)√
var(Yt|Yt+1 . . . Yt+k−1)var(Yt+k|Yt+1 . . . Yt+k−1)

10

1.3. Time series decomposition

1.3 Time series decomposition
When observing and analyzing a time series, it happens quite often that with
expert knowledge or experience from previous observations we know that in-
formation is a composition of several properties. The basic properties of a
time series include seasonality, trend, cyclical changes and other irregular
fluctuations.

• Seasonality – represents a regularly recurring component of the time
series. The seasonal component may represent, for example, the alter-
nation of rainy and dry seasons in subtropical areas, the influence of the
season on customer behaviour, etc.

• Cyclical changes – a component that is caused by irregularly recurring
changes. This includes events that are several times the size of the
observed area. Such events include, for example, long-term changes in
the economy, continual evolution of the weather, etc.

• Trend – in general, it is often defined as the long-term evolution of the
mean value.

• Irregular fluctuations

The components of the time series can be aggregated into one information and
represented as the time series Yt. There are two types of time series models
that are mainly used.

Additive
Yt = Tt + St + Et

Multiplicative
Yt = Tt · St · Et

where the observed variable is Yt, the trend is represented by Tt, the seasonality
is represented by St and Et represents the unexplained component. In this
component, the irregular fluctuations and the long-term cycles component are
merged.

The main difference between the type of model is the processes that we want
to describe with the specific model. In additive models, the seasonality of the
component hardly changes with increasing time. In multiplicative models, the
seasonal amplitude increases gradually with increasing time.

Thanks to such a decomposition of the observed process, we can reveal the
presence of a trend, the seasonality, additive or multiplicative character in

11

1. Time series introduction

Figure 1.3: Components of time series.

the initial analysis. Based on the decompositon we can infer the relationship
between the variables and suggest further steps of the analysis which are best
suited to the specific problem. We can further process the time series informa-
tion and extrapolate from it to make predictions for the future development
of the time series.

1.3.1 Stacionarity
Stationarity is one of the characteristic properties of time series. It describes
the distribution of random variables over different parts of the time series.

There are several types of stationarity.

• Strict stationarity – we talk about strict stationarity in the case that
the combined distibution Yt1 , . . . , Ytk

is the same as the combined dis-
tibution Yt1+τ , . . . , Ytk+τ for ∀t1, . . . , tk, τ . If this condition is satisfied
then the stationary series is strictly stationary.

• Weak stationarity – we talk about weak stationarity if the time se-
ries is invariant with respect to time shifts in moments to second order
E[Yt] = µ and cov(Yt, Yt+τ) = γ(τ).

Strict stationarity is often very restrictive. That is why weak stationarity has
been introduced.

12

Chapter 2
Tools exploration

In the following chapter we explore the tools and approaches that can be used
to retrieve information and data from repositories.

2.1 Criteria for selection
From the beginning of the work on the assignment, we focused on the analysis
of a large amount of data. It was necessary to get meta information about as
many repositories as possible. We needed as much data as possible because
we had to go through a set of experiments where we tried to train smaller
models on subsets of different parts of the dataset.

We had to get the data first. We didn’t know in advance which data contained
the information needed to predict the lifetime of the repository. That is why
it was vital that we were able to repeat this process of obtaining repository
information multiple times at a reasonable speed. If this process takes too
long it is very difficult to train the model. The quality of the model is very
closely related to the quality of the input data.

At this stage of the project, we could have proceeded in several ways to acquire
the data. Some were more direct and at first glance looked like a quick win.
Others assumed the use of 3rd party tools, which would limit the collection to
a certain extent in terms of diversity, but also speed it up in case we want to
get very concrete and specific information already from the indexed database.

2.2 GithubAPI
The first choice to get the data was to use a tool that Github provides directly.
It is very well adapted to work with the repository. Developers use it to make
working with the repository faster and easier. Thanks to the exposed API,

13

2. Tools exploration

it is possible to get any information, for example, commit history, file size,
status of tests of the last version of the product, number of stars, etc. The
API provides several thousands of functions that cover the needs of developers.

However, we did not want to use the API exactly as it was originally designed.
We needed to get information from as many repositories as possible. It was
not enough to just download the information. There was no need to set up
specific nuances for one particular repository. Rather, we wanted to access
more generic information such as commit history, files with different suffixes,
readme files, etc. It was important that we had to be able to do this quickly.

When working with the API, you could feel the focus with which the Github
team built it. It is supposed to be used for detailed management of just one
repository.

The emphasis was also on speed. The x-rate-limit variable is incremented
when the API is called. This variable limits the number of calls quite strictly.
For unauthenticated users the limit is 60 calls per hour. If the API is used by
an authenticated user, the limit is 5000 calls per hour.

The limit was a strict restriction. That is why we decided to use GithubAPI
as one of the tools and not as a standalone solution.

2.3 Github Archive

The solution works as an event listener that gets information on a periodic
basis and stores it in the database. The collection of information is taken care
of by an event listener that scans the Github global timeline every hour. It
stores this information in JSON format in a document DB. A user is able to
get a db snapshot and work with the data offline.

The data is also preprocessed and persisted to a SQL like database. The
database is accessible via BigQuery.

2.4 GHTorrent

An alternative to Github Archive. Data collection and persistence works anal-
ogously. To access MongoDB where the information is uploaded you need to
upload a personal access key to the GHTorrent repository. Then the user gets
access to MongoDB. Access to BigQuery is not conditional on anything. Since
GHtorrent has been a deprecated project for some time, the pull reguest to
upload the key was not successful. A user is able to get a db snapshot and
work with the data offline.

14

2.5. Other alternatives

Nevertheless, we decided to use this tool. Its biggest contribution is in its one
detailed relational model. The structure in which the repository information
is stored suited our needs very well.

The information database is not updated regularly. But that didn’t bother
our usecase at all.

2.5 Other alternatives
We have decided to mention a couple of other alternatives. These tools are
very efficient when it comes to retrieving information from a small number of
repositories. They were not suitable for our usecase.

• AskGit – SQL like command line tool. Very restrictive as far as the
relational model is concerned. For our usecase this solution was not
suitable.

• CHAOSS – a visualization tool that allows you to display information
about the community, repositories, etc. It contains a set of tools that
can be customized and adapted to your needs to a certain extent. It
belongs to the family of tools that deals with source code management
- data mining, analytics, visualization.

• SourceCred – a tool that creates a collaboration graph where nodes
are user, commit, issue, author, etc. and edges represent relationships
between them.

• Sourced – the solution contains several interesting instruments. For
example Hercules, which works very efficiently with the overall commit
history. Gitbase allows to work with the repository using sql query
language.

15

Chapter 3
Data acquisition

In this chapter we discuss different approaches taken during work with dataset.
We proceed to a fast iterative cycle. Thanks to this we are able to find relevant
information. Based on information from this data, we later train the models.
We discuss working with the dataset, its acquisition, processing, cleaning. In
the last part we discuss the creation of a generator that serves the models
during training.

3.1 Tools suitable for usecase
We have researched several tools that solve data acquisition process. This was
the very first step which if neglected can complicate the solution. We wrote
about these tools in 2. Each one of them had its own advantage. Most of them
focused on working with individual repositories, but this is not our case. We
decided to use GithubAPI together with GHTorrent. GithubAPI has a huge
added value. users are able to query a detailed missing information about the
repository. GHTorrent serves as a place where we can find a large amount of
structured data that would be very hard to get without it.

There are several mysql database dumps with information about repositories
on GHTorrent. The first dump is from 2013. As the project grew in popularity,
so did the intensity of data collection. Over the last period of time the project
has gotten to a less supported state. The author runs the data collection
script very sporadically. The last dump used by us was collected on 2021-03-
06. We experimented with uploading part of the data to a local station. It
was possible to upload the table of users and repositories on a local pc/low tier
pc on AWS. If we wanted to upload commit table from dump, the processing
time and space needed to store the information was unbearable. The author
of the last dump uploaded it to BigQuery. Thanks to that we could work with
the data in a reasonable way.

17

3. Data acquisition

projects

id: int

url: varchar(255)

owner_id: int

name: varchar(255)

description: varchar(255)

language: varchar(255)

created_at: timestamp

forked_from: int

deleted: tinyint

updated_at: timestamp

users

id: int

login: varchar(255)

name: varchar(255)

company: varchar(255)

email: varchar(255)

created_at: timestamp

type: varchar(255)

fake: tinyint

deleted: tinyint

long: decimal(11,8)

lat: decimal(10,8)

country_code: char(3)

state: varchar(255)

city: varchar(255)

project_language

project_id: int

language: varchar(255)

bytes: int

created_at: timestamp

commits

id: int

sha: varchar(40)

author_id: int

committer_id: int

project_id: int

created_at: timestamp

watchers

repo_id: int

user_id: int

created_at: timestamp

issues

id: int

repo_id: int

reporter_id: int

assignee_id: int

issue_id: int

pull_request: int

pull_request_id: int

created_at: timestamp

followers

user_id: int

follower_id: int

created_at: timestamp

author_id:id

committer_id:id

repo_id:id

follower_id:id

user_id:id

repo_id:id

user_id:id

project_id:id

reporter_id:id

assignee_id:id

repo_id:id

Figure 3.1: Entity model shows which entities from the GHTorrent schema
we worked with.

3.2 Exploratory data analysis

3.2.1 Overview

The first experiments were with repositories written in python. We managed
to filter such repositories very easily because the relational schema contains a
table that has the language attribute.

We selected a random sample of 10000 repositories that we wanted to examine.
Our task was to find such metadata in the repositories that could be used to
predict the lifetime of the repository.

By successive examination of the data we obtained several candidates whose
information could correlate with the activity of the repository.

18

3.2. Exploratory data analysis

3.2.2 EDA in detail
As we were examining the smaller sample set, we realized a few facts. We
were looking at a random sample of repositories that didn’t really yield any
information. Our findings led us further and further away from our goal.

About 80% of the repositories were rarely ever active. Such repositories were
projects that people cloned but never worked on, small experimental projects
that eventually led nowhere, various AI courses, etc. Any information about
such repositories was irrelevant 3.2. For the ML model, which relies on quality
data and well processed data, it was counterproductive.

Figure 3.2: Commit activity during the year. This is what a average repository
looked like. For a large part of the year, there is nothing to see even if we
aggregated the activity by month.

We had to get rid of these repositories. But the cleanup process had to be
approached carefully. When amputating data, we had to get rid of the un-
wanted part of the dataset without damaging the part that contains relevant
information for training the model. We were able to keep the relevant repos-
itories thanks to aggregating the number of unique users in the repository.
Empirically, we set the value to 5. We consider all repositories on which at
least 5 unique users collaborated. Using this modified query, we obtained a
new sample of repositories from BigQuery.

Even after these modifications, the repositories still has not reached the quality
we needed. When displaying information about randomly selected data points,
they are very diverse and inconsistent. We want to predict the lifespan of
repositories that represent some community-supported tool, some package or
library.

19

3. Data acquisition

The data still contained data points that even a well-trained model would not
be able to deal with well. It was necessary to figure out a way to filter out at
least a larger part of the repositories that are not covered by the focus of our
usecase. But such information that we could have used for filtering was not
present directly in the data yet.

Many of the attributes we wanted to investigate were only accessible via
GithubAPI (e.g. whether a repository belongs to an organization, number of
stars, etc.). The speed of data retrieval for the experiment was quite limited.
Maximum 5000 requests per hour. We managed to get a couple of additional
access tokens ”from family and friends”. Thanks to that we created a set of
functions using async.io library that can work with GithubAPI incomparably
faster than the naive solution. This has helped examined a much larger set of
candidates.

We have experimented with a number of attributes that could have been used
to filter the repositories. We always aggregated the information based on some
attribute and then displayed how the distribution looks like over the whole
dataset. It was important to normalize the values and compare the normalized
values. For example, a large repository may have a large number of users but
the average number of commits per user is small. This brought us to a scale
where we could compare all repositories. After a few experiments a candidates
emerged.

The size of the 3.3 repository turned out to be a reasonable indicator, thanks
to which we can filter other repositories. But we could not get this information
from GHTorrent. We were able to get it from GithubAPI.

We have filtered out repositories of smaller size. Thanks to this we got a list
of repositories that are good candidates for model training.

20

3.2. Exploratory data analysis

Figure 3.3: Uneven presence of repositories of different sizes. Smaller reposi-
tories clearly predominate.

21

3. Data acquisition

3.3 Dataset

3.3.1 Multivariate time series

After data processing and extensive EDA, we decided to keep information
about commit history, number of issues created and number of followers in
the dataset. We created a subset of time series from each data point describing
the activity in the repository.

3.4.

Figure 3.4: The graph shows a general multivariate time series task. Each sub
graph represents one of observed variable.

We have managed to filter out the repositories we will not be working with.
We had to prepare this set for training. For example, a time series describing
commit history looks like an inactive repository at low resolution. If we take
a look on the activity graph, there would be zero values most of the time.

3.3.2 Sparse time series

If the measured process has zero values for most of tme observations, then we
talk about sparse time series.

Models based on LSTM architecture have a hard time predicting such a sparse
time series. Occasional zero values would not be an obstacle. The problem is
if 90% of the time series information is zeros. Model will not work properly.
We have seen this in an experiment. After training on such sparse data, the
model was not able to classify the lifetime of the repository.

22

3.3. Dataset

We decided to use a larger time window and aggregate the information at 7,
14,30 and 60 days. Aggregation at the 30 day level was the most suitable.
Then we partially got rid of the zeros but the parts when the repository is
actually inactive remained unaffected by our modification.

(a) Time series commits intensity aggre-
gated by day.

(b) Time series commits intensity aggre-
gated by month.

Figure 3.5: Different types of aggregation intervals. Larger window suits the
models much better.

3.3.3 Repository life cycle
Before the work started, we were looking for a dataset that could serve us.
We have not found a similar one that we needed for our task so we had to
create one. The main requirement was to be able to classify the lifetime of
the repository based on its historical activity.

To be able to predict where a repository becomes inactive, we had to work
with repositories that have gone through a full life cycle. From early activity
to gradual decadence and subsequent inactivity.

The repository whose entire life cycle we have documented is in the image
3.6a. Similar looking datapoints will help us to train the classification model.

Looking at the pictures, it is obvious when the users stopped being active in
the repository. This information should have been included in the training
data. For repositories, we considered the end of activity to be the point in
time t where the average activity in the next 12 months did not go over 5%
of the highest activity in the repository. We will further assume time t to be
the end of repository lifetime.

23

3. Data acquisition

(a) The entire life cycle of a repository. (b) Repository which is still active.

Figure 3.6: A repository that has gone through its entire life cycle can be used
for training models. A repository that is still active must be filtered out from
the training set.

3.3.4 Training data generator
After all the editing and cleaning we had to create the data for training. Since
we want to augment the time series during the training process, we decided
to create a data generator.

Based on the information when the repository became inactive, it can generate
a time series of the corresponding length and the corresponding label.

The generator works with the original time series. It works with values
xt0 , . . . , xtn , where tk ∈ [24, . . . , n − 1] represents the number of months since
the beginning of the repository’s existence. Therefore, the minimum activity
of a repository must be at least 24 months. The upper limit is the point where
it became inactive. If the value t − tk (the distance of the current date from
the date when the repository is considered inactive) is more then 12 months,
then the repository is considered active otherwise it is inactive. We work with
multivariate data. The generator had to be adapted to this fact.

Let us assume dataset {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xk ∈ Rv×l, where
v represents number of examined time series, l represents length of time series
and yk ∈ {0, 1}.

24

Chapter 4
Time series classification

This chapter deals with a large number of approaches used in time series
analysis. It describes their theoretical foundations. Each section is devoted to
a specific algorithm. We focus on the process by which the algorithm processes
the time series and then classifies it. The chapters discuss the advantages and
disadvantages of the individual approaches.

4.1 Time series classification algorithms
Problems requiring processing and subsequent analysis of time series are en-
countered quite often in machine learning practice. Solved problems and tasks
always have a slightly different characteristic and so a large number of mod-
els and approaches have been developed to analyze and classify time series.
Among the main approaches belong, for example

• Nearest neighbour

• Kernel methods

• Shapelet-based approaches

• Tree-based approaches

• Bag-of-words approaches

• Markov transition field

• Deep learning

25

4. Time series classification

4.1.1 Nearest neighbour

The algorithm of nearest neighbours compares the samples. Based on the
comparison, it determines the final class of the observed sample. Thus, the
classification of a sample is decided by its nearest neighbours. Different metrics
are used to measure similarity. The most common is the Euclidean norm.

This approach of measuring the similarity between samples of different data
is sufficient. However, it has a set of disadvantages when comparing data of a
temporal nature and is not very suitable for such a task.

• The first disadvantage is the size of the compared pair of time series.
The Euclidean metric only works with 2 vectors of the same size. Time
series often have variable length.

• The Euclidean metric treats the values of each vector as independent
variables. This assumption is not satisfied for time series because often
the current value depends on the previous one. In other words, the
values of the time series are auto-correlated.

4.1.2 Nearest neighbour without modifications

These shortcomings can be observed, for example, in a tourist application that
records the movement of tourists. Let 2 hikers walk along the same hiking trail
and record their altitude. They are walking on similar terrain so we assume
that the time series of the recorded information will be almost the same. But
Euclidean distance cannot reveal such similarity. The model situation is, for
example, when one hiker walks a given route faster than the other. Then the
time series describe the same process but the length of the vectors is different
as well as obtained data differs. In such a case the comparison using Euclidean
distance cannot be used.

It is for the above reasons that the Dynamic time warping algorithm was
developed. It solves both of problems.

4.1.2.1 Dynamic time warping

Dynamic time warping was developed mainly for time series comparison in
speech recognition. It generates optimal global alignment between two time
series, expoiting temporal distortions between them. The algorithm computes
a cost matrix that minimizes the difference between the values of the two time
series. At the end, the algorithm reconstructs a path that represents the best
mapping between the points of the two time series.

26

4.1. Time series classification algorithms

Let X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , ym) ∈ Rm be two time series.
Then the cost matrix between these two time series is defined as

∀i, j ∈ {1, . . . , n} × {1, . . . , m}, Cij = f(xi, yj)

We use the Euclidean metric to measure the distance between the points of
the time series.

A warping path is a sequence p = (p1, . . . , pL) such that

• value condition: ∀l ∈ {1, . . . , L}, pt = (il, jl) ∈ {1, . . . , n} × {1, . . . , m}

• boundary condition: p1 = (1, 1) and pL = (n, m)

• step condition: ∀l ∈ {1, . . . , L − 1}, pt+1 − pt ∈ {(0, 1), (1, 0), (1, 1)}

Cost of warping path for both time series is

Cp(X, Y) =
L∑

l=i

Cil,jl

The dynamic path score is defined as the minimum cost among all the warping
paths

DTW (X, Y) = min
p∈P

CP (X, Y)

where P is the set of all warping paths. We can use dynamic programing to
decrease the complexity of computation. The complexity of problem decreases
to O(nm). The difference between two consecutive elements of warping path
can be computed as

DTW (X:i, Y:j) = Ci,j + min{DTW (X:i−1, Y:j−1),
DTW (X:i−1, Y:j),
DTW (X:i, Y:j−1)}

We can define accumulated cost matrix as

∀i, j ∈ {1, . . . , n} × {1, . . . , m}, Di,j = DTW (X:i, Y:j)

27

4. Time series classification

4.1.2.2 Constraints of algorithm

Like all approaches, DTW has its disadvantages.

• Computational time complexity - the DTW algorithm works with two
time series of length m,n. The computational complexity of alghoritm
is O(nm) which is very restrictive for longer time series.

• DTW is not a metric - the DTW algorithm calculates the similarity
between the points of the time series during its run. Metric is non-
negative real-valued function. One of the axioms of the metric function
is d(x, y) = 0 ⇐⇒ x = y. In the case of DTW, there may be a case
where we are work with different time series but their distance is 0.

• Triangle inequality is not valid - we use DTW algorithm to be able to
compare two time series. DTW is not a metric so we can not use data
structures such as M-tree which is suitable for fast comparison of data
points.

• DTW is not differentiable - this prevents us from optimizing the loss
function using gradient methods.

4.1.2.3 Variants of dynamic time warping

Due to the shortcomings of the DTW algorithm, improvements that try to
solve the specific problem has been made.

The first way is to replace the minimizing function with a function that is
differentiable. The authors in [2] presented a solution using soft-DTW. This
modified function can be used as an objective function which is optimized by
gradient methods.

Another way to improve DTW is to prevent too long time warping regions.
This is achieved by limiting the size of the region of points to which one
particular point is compared.

If the size of the region is limited to size 1, only the diagonal is calculated when
calculating the cost matrix. Then the algorithm can achieve time complexity
up to O(max(n, m)).

In [3] the authors proposed a solution that uses a region size strictly smaller
than max(m,n)

2 . In [4] the authors work with dynamic window size. This varies
according to the relative position of a point in the time series. The size of the
region is smallest at the beginning and end of the time series. Region size is
the largest when algorithm works with the data exacly in the middle of time
series.

28

4.1. Time series classification algorithms

Figure 4.1: If we use classical DTW, we access all cells of the matrix during
the calculation. When using sakoechiba the region is limited. [5]

.

4.1.3 Kernel methods

In the real world, we often encounter data that is not linear in nature. We
cannot explicitly create a linear model such as support vector machines that
decouple data using a hyperplane. In a non-linear space, we need to use more
sophisticated models and methods to understand the dependencies between
data.

By using the kernel we can work with non-linear data and at the same time
we can use approaches and models that assume linear data as the input.

The basic idea is to go into the space in which we can make the dot product of
transformed vectors efficiently. If we can write the mathematical operations
using the kernel function, we never have to explicitly calculate over the space
of the huge dimension [6].

Suppose we have a dataset {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi corre-
sponds to data point and yi corresponds to label. We need to define similarity
measure in X so we can separate datapoint. This is taken care of by the kernel
function

k : X × X → R
(x1, x2) 7→ k(x1, x2)

satisfying for all x1, x2 ∈ X.

k(x1, x2) = 〈Φ(x1), Φ(x2)〉

29

4. Time series classification

where Φ maps into some dot product space H called feature space. The
similarity measure k is called kernel and Φ is called kernel’s feature map.

A very important requirement for kernel methods is that we want them to be
positive definite. This leads to very interesting properties. For example, there
are positive definite kernels that can be computed efficiently even though Φ
maps vectors to a space of infinite dimension [6].

DTW is not guaranteed to be positively definitive because it is not a metric.
This problem was solved by the authors of [7]. In the paper they presented a
positive definite kernel for time series.

kγ
GA =

∑
p∈P

exp(−Cp(X, Y)
γ

)

where Cp(X, Y) is warping path cost, P is set of all possible warping paths
and γ ≥ 0 is smoothing parameter.

The computational complexity while using kernel is O(nm).

Support vector machines with this propossed kernel yeilds better results that
implementations where the limitation of positive-definitness was not satisfied.

4.1.4 Shapelet based approach
Although nearest neighbours algorithms are relatively straightforward and
simple to implement, they have their drawbacks. As we saw in 4.1.2.1, nearest
neighbor algorithms require storing and searching the entire dataset, which
negatively affects the running time of the algorithm. Another drawback is the
relatively poor explanatory power of the inferred conclusions from the data.
Shapelet based algorithms try to solve these problems.

Shaplets are specific parts of the time series that are characteristic for it.
Based on the speciffic characteristic features we are able to better classify the
time series.

In comparison with previous methods, saplets can provide a number of ad-
vantages.

• Shaplets can provide greater interpretability of classification.

• They are more robust and resistant to noisy data. In the leaf dataset
they were very capable of classification despite the insect biting the edge
of the leaf.

30

4.1. Time series classification algorithms

• They are faster then algorithms based on DTW. Time complexity of
shaplet creation is O(ln). While working with DTW we need to compare
two time series as well as to find the closest neighbour. Time complexity
in this case may reach O(kn3).

Figure 4.2: The perimeter of the leaf can be represented as a time series. Then
the area where the leaf passes into the stem has a specific character. Such a
part of the object is identified as a shaplet[8].

.

4.1.4.1 Extracting shaplets

Let X = (x1, . . . , xn) be our time series and S = (s1, . . . , sl) be a shaplet of
l values, l ≤ n. Distance between time series X and shaplet S is calculated
as minimum squared Euclidean distance d(S, X) between S and all of other
sequences of length l from X

d(S, X) = min
j∈{0,...,n−l}

l∑
i=1

(si − xi+j)2

The algorithm returns all existing shaplets in a time series of length m. The
shaplets are further evaluated based on the F-statistic. The statistics calcu-
lates the variance between different classes but also the variance within a class.
This step is important because we want to find shaplets that are discrimina-
tive for one class. If a shaplet is similar to another shaplet it is discarded from
the candidate set.

After identifying the l best shaplets, we can use them to generate new dis-
criminative features. Then the generated features can be used as input for
any classification model.

This algorithm has time complexity O(Nm2), where N is the number of time
series and n is the length of the time series. Another disadvantage is that the

31

4. Time series classification

minimum is searched using the Euclidean distance. In 4.1.2.1 we discuss the
drawbacks of the Euclidean metric which we replace with another function.

4.1.4.2 Learning shaplets

Shaplet transformation has one small drawback. Among all possible shaplets,
it searches for one that has d(X, S) minimal. Such an objective function is
not differentiable and cannot be optimized using gradient methods. Therefore,
logistic regression is used whose input is a minimizing function. In this way,
logistic regression learns to identify specialized shaplets for a particular class.

Figure 4.3: The orange curve contains a common characteristic for a portion of
the data. The orange shaplet specifically describes Class 2. The blue shaplet
does not carry any specific information about neither of the two classes.[9]

32

4.1. Time series classification algorithms

4.1.5 Tree based approach

Algorithms based on tree methods use very often ensamble approach when
classification is not done by one tree but by many smaller trees. This set of
smaller models is called a forest.

4.1.5.1 Time series forest

The time series forest algorithm classifies a time series based on information
from its subsequences [10]. The hyperparameter n represents the minimum
length of a time series subsequence.

Based on the hyperparameter, a set of subsequences is generated and they are
further processed. Each subsequence is assigned a mean, variance and slope.

In training, this triplet of attributes is calculated for each generated segment.
The triple is then used as input for the classification model.

4.1.5.2 Proximity forest

To better understand the concept of [11] proximity trees, we first need to look
at the extremely randomized trees algorithm [12]. As with training a random
forest, several independent trees are trained on the data.The only difference
between proximity trees and a random forest is the computational intensity
of the selection of the features and the threshold. In a random forest, the
information gain (Gini index, Entrophy) is computed in the node of each tree
and the data is partitioned according to the features that best partition them.

Proximity forest works with featuresas well. The difference is between com-
puting the treshold. When wokring with poroximity forest then each node
generates thresholds randomly for each feature. We try to get as close as
possible to this randomly generated threshold with our features. The feature
that divide data in best way possible, according to generated threshold, wins.
Based on this, the splitting process is much more randomized and much faster
compared to normal randomized trees.

The proximity tree algorithm works similarly as the randomized tree algo-
rithm. In a standard tree, the splitting criterion of a node is the feature and
the threshold for the given feature. In a proximity tree, it is the metric and the
set of instances. The metric is used to compare the similarity of the exemplars.
As with the extreme random forest, we will have to randomly choose.

• For the metric, the algorithm selects from 11 metrices suitable for mea-
suring the similarity of exemplars within a node.

33

4. Time series classification

• We need to select just one time series from the data. This one data
point has a classification class assigned to it. We will compare the other
time series to this time series and find out their similarity.

We generate several such pairs and the one that best divides the set of data
points is selected as the splitting criterion for our node.

Because a tree with increasing levels reduces the number of unranked data
points per node exponentially, it is very well applicable to big data.

(a) Classification accuracy as a function of
the size of the dataset [11].

(b) Training time as a function of the size
of the dataset [11].

34

4.1. Time series classification algorithms

4.1.6 Bag of words approaches
These algorithms are based on discretizing the time series into smaller pieces.
Thanks to the sliding window we can create words from small parts. We can
count the occurrence of each word and the total number of words. There are
two approaches to discretize the time series. We can either discretize the raw
time series or discretize its Fourier coefficients.

4.1.6.1 Discretizing raw time series

We need to process and discretize the time series. When discretizing the
time series, we will divide the observed values into bins using [13] Symbolic
aggregation approximation (SAX).

When estimating the number of bins we can proceed in several ways. One
of the most used is the approach where we normalize the time series values
and assign them to bins according to quantiles. For time series with a larger
number of outliers, we choose a uniform bin distribution.

This modified time series serves as input to the bag-of-patterns algorithm
[14]. The algorithm extracts words from the time series based on the sliding
window. It creates a bag of words for each time series.

Such bag-of-words representations of time series are classified using a nearest-
neighbour classifier.

Figure 4.5: Each time series is transformed into bag of words by algorithm
bag-of-patterns. The algorithm then calculates the frequencies of each word
for each time series[15].

There exists an improvement to the above approach. It is called SAXVSM.

35

4. Time series classification

• The first difference is the way the time series is handled. With a help
of a sliding window we get the subsequences of the time series. These
subsequences are further standardized and normalized.

• The second difference is the way of evaluating the similarity of the time
series. Algorithm uses adjusted version of TF-IDF which is used in many
NLP tasks. It creates a TF-IDF matrix. The matrix has in rows the
words that occur in the dataset, in columns are the classes that we have
to classify. It is important to normalize the occurrence of a word over all
of the classes in which it occurs.This step will give us the words specific
to a particular class.

4.1.6.2 Discretizing Fourier coefficients

The algorithm works similarly to the raw time series discretization. The dif-
ference is that we work with the Fourier coefficients and not directly with the
measured values of the time series. To discretize the information we use the
symbolic Fourier approximation (SFA) [16].

At the input of the algorithm we have a time series. First we get the coefficients
of this time series using the discrete Fourier transform. When selecting the
coefficients for further processing we have the following choices.

• Supervised task – if we solve the problem using supervised learning,
we select Fourier coefficients that represent lower frequencies. These
capture the trend and slower changes in the time series.

• Unsupervised task – if we solve the problem in an unsupervised way, we
always select one Fourier coefficient which is common for a larger number
of time series from the dataset. For the selected coefficient we compute
the F-statistic. We can also select the coefficients of higher series as
final candidates. The condition is that they have a larger variance. It is
assumed that a larger variance is positively correlated with the amount
of information.

It is important that the same coefficients are selected for all time series. here
we can imagine data as a matrix. The rows are formed by the individual time
series. The columns are the coefficients of the Fourier transform.

After creating the matrix, we need to discretize the coefficients of the Fourier
transform. When discretizing, we have two choices. We use a uniform bin
distribution in case our problem is supervised. In case the task is unsupervised,
we gain the number of bins by entropy minimization. Here the principle is
very similar to the creation of a decision criterion for node in a decision tree.

36

4.1. Time series classification algorithms

The adaptation will ensure that we get a time series represented by a single
word. This approach is used in the [17] algorithm BOSS.

The most frequently used algorithm for preprocessing the time series is an ex-
tended version of Bag-of-SFA. The algorithm sequentially selects subsequences
from the time series which are then discretized using SFA. We get a word from
each subsequence. Then, for each time series, a histogram of word counts is
produced. The preprocessed data is further classified using nearest neighbours
classifier.

There are implementations that improve the base version of the algorithm.
Their improvement consists of a similar idea as in the case of SAXVSM. The
result is a TF-IDF matrix whose rows are individual sequences and columns
represents classification classes.

4.1.7 Ensemble models
Using multiple models is meta in the world of machine learning. Time series
classification is no exception in this respect. In the classical world of ensamble
methods, each classifier belongs to a class of similar algorithms. For example,
a random forest consists of a large number of decision trees. In the case of the
ensamble approach, the variance in accuracy is reduced because the model is
composed of several independently trained models.

Recently created ensamble models include

• The Collective of Transformation-Based Ensembles (COTE) which com-
bines 35 classifiers of which 11 classifiers work with similarity of whole
time series, 8 classifiers with shaplet transformation, 8 work with auto-
correlation features and 8 with power spectrum.

• The Hierarchical Vote Collective of Transformation-Based Ensembles
(HIVE-COTE) is an improved version of the previous COTE. It uses
2 new classifiers of BOSS and time series forest type and a new type
of spectral classifier Random Interval Spectral Ensamble. The decision
model is based on boosting. The decision of each classifier is assigned a
weight based on its success rate in the cross validation process.

37

4. Time series classification

4.1.8 Markov transition field
The method is based on the philosophy of the first order Markov chains. It
is one of the algorithms that preprocess the time series. This preprocessed
information can be further analysed or directly used as input to the model.
The first step of the method is to create M quantiles by which the time series
will be discretized. Each value of the time series xk belongs to a certain bin
mi. The algorithm is based on the idea that we can describe a probabilistic
transition between any pair of bins (mi, mj), ∀i, j{1, . . . , M}. This creates a
transition matrix. To form a Markov transition matrix, we need to ensure
that the rows are normalized to represent a probability distribution.

Markov transition field then looks like

MTF =

P (m(x1)|m(x1)) . . . P (m(x1)|m(xn))
...

P (m(xn)|m(x1)) . . . P (m(xn)|m(xn))



where m is a function that maps values from time series into one of M bins,
P is a probability function and n represents the length of time series.

This solution has a few disadvantages

• Its main disadvantage is that the matrix can be quite large. This prob-
lem can be solved by applying average pooling to the MTF matrix. This
creates a matrix that has a smaller dimension.

• When using the MTF matrix we know the transition probabilities but
we lose the time information when the transition occurred.

The time series preprocessed by the MTF can serve as input for a convolutional
neural network that takes care of the classification.

38

4.1. Time series classification algorithms

Figure 4.6: Graphical representation of Markov transition field.

39

4. Time series classification

4.1.9 Deep learning
4.1.9.1 Echo state architecture

RNN architectures are used to work with time series. Nevertheless, they have
their limitations and weaknesses.

The first one is duration of training. The input of the cell depends on the
output of the previous recurrent cell. Therefore, such a process is very difficult
to parallelize. RNN are most of the time train on CPUs and can not efficently
utilize the many times faster GPUs.

The second problem is with vanishing gradients [18]. The creators of the
LSTM architecture tried to deal with this problem but it never goes away
completely. What almost sidelines the LSTM architecture in our solution is
the fact that we work with sparse data. With data in which the observed
variable has many zero values, the vanishing problem is amplified.

For these reasons, an concept of echo state network was created so that it
addresses and solves the problem of vanishing gradients to some extent.

Figure 4.7: Echo state network [19].

The reservoir is the main part of the whole [20] architecture. The reservoir
is formed by an undirected graph where vertices represent RNN cells and
edges are weighted connections between them. These weights are initialized
as sparse and the vast majority of them have zero value so the connections
between vertices are very sparse.

There are four types of weights used in the reservoir section

• Input weights - connects the input layer and the reservoir.

• Output weights - connect the reservoir to the output layer, which serves
as an input for the dimension reducing layer.

40

4.1. Time series classification algorithms

• Reservoir inner weights - are formed by sparse connections.

• Output weights - they connect the output back to the reservoir and serve
as a feed back.

All of the reservoir weights are randomly initialized and remain static through-
out the entire training.

The main role of the reservoir is to create a non-linear recurrent embedding.
The data processed in this way is further used as input for the dimension
reducing module. PCA is most often used.

Experiments [20] showed that when the embedding dimension of the model
is gradually reduced, the accuracy of the model decreases negligibly and the
network training speed increases. The dimension reduction process has its
lower bounded treshold. If we cross the treshold and dimensionality reduction
becomes too restrictive then the PCA layer becomes a bottleneck for the
architecture. After that, the accuracy decreases rapidly.

We can connect any type of network that is used for prediction after the
dimensionality reduction module.

4.1.9.2 Inception Time

Models with derived architerture from InceptionNet are very successfully used
in computer vision [21] tasks. The architecture itself has several versions.
Gradually, as new papers came out, the Inception architecture was modified.

The strength of the architecture lies in the variable lengths of the receptive
field. For ordinary CNNs, the kernel size of the individual layers becomes
a hyperparameter. The size of the receptive field densifies the information
density that the NN can extract from the data. Smaller kernels tend to process
local information well but miss the overall global picture. Kernels of larger
sizes gain global information but lose local information because they have
bigger receptive field [21].

For Inception architecture, the authors decided to take advantage of good
features from both worlds. The main idea of inception blocks is based on
the use of several filter sizes in parallel. Then the output is concatenated.
The next layer of the network chooses the information that is essential for
minimizing the loss function. The filters in the inception block are often 1x1,
3x3, 5x5.

41

4. Time series classification

Figure 4.8: Block of inception time network

4.1.9.3 Architecture optimization

Using the pooling layer, the network is able to change the size of the x, y
dimension of the input data. However, it cannot efficiently aggregate infor-
mation over the z-axis, which expresses the number of channels on the input
layer or the number of filters on the layers inside the network. This problem
has been solved very elegantly by using convolutive filters. In InceptionNet
these are special 1x1 convolutional filters. These preserve the x,y dimensions
of the input data with the same padding. Their main advantage is that they
effectively aggregate the data along the z-axis. The number of mathematical
operations during input processing is reduced without affecting the quality of
the information [22].

Thanks to the use of 1x1 conv filters the data was processed into more compact
blocks, which made the training of single inception blocks faster.

4.1.9.4 Residual connections

In newer versions of Inception architecture, the authors introduced the use of
residual connections [23]. The ability to capture information from the data
is conditioned proportionally by the size of the model. Therefore the larger
models are able to learn more. This is at least true in theory. Practice is a bit

42

4.1. Time series classification algorithms

Figure 4.9: Inception block in Inception V4 network.

different. Without the use of residual connections, a very complex model with
a large number of parameters will be worse in accuracy than a moderately
sized model.

In the process of back propagation, the strength of the gradient signal may
gradually weaken until it completely disappears. This is a well-known prob-
lem. In order to avoid similar problems, we have to implement residual links
in the network. This will create skip connections and the gradient signal will
travel more efficiently through neural network during back propagation [23].

43

Chapter 5
Implementation

In the following chapter we discuss the design of the solution, its implemen-
tation, and the suitability of the individual approaches. We discuss the archi-
tecture of the used models. There is a comparison between these models and
discussion about the steps that led to the successful training. A part of the
chapter is devoted to finding the right hyperparameters and the overall design
of the training procedure. At the end of the chapter we present the results
obtained.

5.1 A path of implementation
In the theoretical part we have discussed algorithms and approaches that
could solve such a problem. We have described shaplet search, DTW, kernel
methods, etc. Each of them has it‘s own strengths and weaknesses (length of
input, speed of processing, interpretation of decisions, etc.) In this work we
decided to continue with deep learning models.

5.2 Working environment
At first we concentrated on working on the local machine. Support scripts
were created to retrieve information about the repositories. The information
we needed to retrieve was only available through GithupAPI. Therefore, we
needed to create a set of scripts that would allow us to do this. The information
was related to the content of the subfiles, subfile types, etc. In this part of
the development, a local machine with a virtual environment was a suitable
solution.

Gradually we moved to the task of classifying the lifetime of the repository.
We needed to process the dataset and train the models. For this purpose, the

45

5. Implementation

local stand is no longer suitable. So we decided to use a product from Google
Research, Google Colab.

Google Colab is an environment designed for experimentation and work of data
scientists. In colaboratory notebooks, the entire machine learning pipeline can
be defined. From data acquisition through data cleaning and preparation for
training to the actual training and evaluation of models. A huge added value
is the possibility to work with the command line. A developer can customize
a notebook, install the newer version packages needed for the new model
architectures, experiment and return to a clean instance the next day.

Another reason why we chose Colab is the availability of GPUs. We wanted
to experiment with larger models that require higher GPU performance and
memory.

5.3 Data generator

As we mentioned in the 3.3.4 chapter, we have created a keras generator which
is adapted for training large models. This generator can be used to train huge
models that are loaded on multiple GPUs. Then the communication between
GPUs and the synchronization of gradients becomes the bottleneck. There
are technologies such as Horovod that try to overcome these problems.

In our solution, the generator was used for adaptive data augmentation. Dur-
ing the experiments we could choose what type of repository we consider
inactive.

5.4 Problem analysis

We took into account several key factors during the analysis and the following
preparation of the models.

First we had to estimate the size and complexity of the problem. The necessary
complexity of the models and the architecture used depend on these metrics.

This was followed by prototyping the simplest possible model. We wanted
to achieve the following. The more generic the model is, the easier it is to
modify it in case we want to use a more exotic architecture (for example
combine LSTM and CNN).

Another useful feature of such a model is the speed of iteration through dif-
ferent solutions. When training a model on the same dataset, a model that
has fewer parameters or less complicated architecture can be retrained faster.

46

5.4. Problem analysis

Another critical factor is the size of the dataset. When working with a large
dataset, an end-to-end model learning approach is the best. The model cap-
tures the structural information contained in the data and does not need
almost any humen expert knowledge to train the model. If we work with
small dataset we often cannot use deep learning. The dataset does not con-
tain enough information to train the model. Then we have to resort to more
statistical methods (ARIMA, SARIMA, etc.) and rely on our expertise.

It can happen that despite a relatively simple model, the training process takes
a long time and we cannot iterate fast enough. The problem may be with the
size of the dataset. In our case we did not have to shrink the dataset. For
example, if we worked with a very large dataset, we would have decreased its
size. It is very reasonable to choose a smaller dataset that is as representative
as possible and experiment with it.

When training, it is very important to find out whether the model we have
created is able to capture the information in the dataset. This can be condi-
tioned by the number of model parameters, the architecture used or the size
of the dataset itself. In our case, we did not know what approaches would be
the best to analyse the time series because the final dataset was quite small.
There was still a possibility that deep learning approach could fail. Then we
would have to analyzed data using other methods mentioned in 4. We built
simple deep learning models and tried to overfit the models on the adjusted
data.

Overfit on data becomes a rather good indicator that the size of the model and
its architecture can approximately capture the complexity of the information
from the dataset. We can then work with generic models and improve their
accuracy.

We decided to use smaller models for gradual improvement because we had
relatively little data that was very specific and we needed to iterate quickly.

5.4.1 Models used during training
In 4 we discussed algorithms and approaches that could solve such a task.
We described shaplet searching, DTW usage, kernel methods, etc. Each of
the approaches has something to offer. There are strengths and weaknesses
of each (input length, processing speed, decision interpretation, quality of
results, etc.).

In this work we decided to create 2 models. The first model is based on
technology. Such models are often used in time-dependent data processing.
As we will see next, LSTM based model had a problem and did not achieve
sufficient accuracy, so we decided to implement another model. The second one

47

5. Implementation

is a CNN where we initially created a simplified inception block. The network
became larger but the accuracy was not affected by this improvement. We
decided to replace the inception blocks with a simpler architecture where we
added a number of 1x1 convolutional filters.

5.5 Training
The first model to be trained was LSTM. We had the assumption that LSTM
could be a good choice since we work with time series. After several changes of
the model architecture and searching for hyperparameters, the results hardly
improved. This suggested that LSTM might not be the right choice for this
type of data.

This may be due to the nature of the data. As we discussed in chapter
3.3, the data contains a large number of zero values. This problem could be
solved using Croston’s method which is designed to predict time series with
intermittent events.

As a possible alternative, we have constructed a convolutional network. Its
huge advantage was relatively fast training compared to LSTM. It also achieved
higher accuracy using a similar number of parameters as LSTM.

Both models assume a sufficiently large dataset on which the models can learn
efficiently. In case we work with a smaller dataset, the deep learning approach
cannot be used. None of the models would be able to achieve reasonable
results. In that case we would need to choose more standard approaches 4.

5.5.1 Model training
During the training process, we had to create models capable of classifying
the time series from generic and almost non-functional models. During the
whole process we followed the basic principles of hyperparameter tuning.

We have chosen an orthogonal approach. We fixed a set of parameters, ma-
nipulated one parameter and observed how such a change affects the accuracy
of the model. The most important parameter, which was mainly related to
data preprocessing, was how many months must have passed since the last
commit for the repository to be considered inactive. It turned out that the
most accurate value is 12 months.

When working on the models we experimented with the size of the batch. We
standardized the data and compared the accuracy against the raw unadjusted
data.

We applied a batch normalization layer just after the activation functions

48

5.6. Loss function

which solves the covariance. This is a phenomenon where the activation func-
tions from the previous layer project data in a shifted distribution. As a
consequence, the next layer works with information that is not standardized
and suffers from a worse [24] gradient transition during back propagation.

We experimented with the size of the individual models, where we propor-
tionally increased the number of parameters in the layers with respect to the
base line model to see if this has an effect on the accuracy.

In the case of regularization, we had to approach each model separately. For
LSTM we decided for a very fine L2 regularization because the model had a
problem to achieve reasonable results and it has no problem with overfit. In
case of CNN, we quickly encountered a problem with overfitting and we had to
use a dropout after each convolutional layer. Especially for CNN architecture
this decision had a significant impact on the final accuracy.

A great help during training and evaluation of models is the use of confu-
sion matrix. This way we can see the correctly classified data and we can
also discover where the problem is. The accuracy of the individual models
increased when we decided to approach the task as a multivariate time series
classification. Then the information can be spread across several time series.

5.6 Loss function
We decided to use the categorical cross entropy as a loss function. Such a
function was a great fit because the target variable was transformed into one
hot vector.

lossCE = −
c∑

i=1
yi · log(ŷi)

where ŷi is the value on index i in vector ŷ, yi is the corresponding target
value on index i in vector y and output size is the number of classes.

49

5. Implementation

5.7 Results
5.7.1 Long short term memory
LSTM had a hard time getting past a certain threshold during training. We
assume that this was due to the nature of the dataset. To confirm this as-
sumption, we trained the model on information aggregated by day, week and
month. The smaller the aggregation window, the more zeros in the dataset.
Models trained on daily and weekly aggregations were significantly more in-
accurate than models trained on monthly aggregations.

While training and tunning the hyperparameters we had to solve a few prob-
lems. The accuracy of the model was not sufficient and so we decided to train
an alternative model. This decision turned out to be correct. We were able
to create a CNN model with a relatively high accuracy.

5.7.2 Instability during training
We have tried to solve this problem by gradually reducing the size of the
learning rate. The solution helped only partially. In case we used a low
learning rate, the network hardly converged. We were forced to use a gradual
decrease of the learning rate followed by a restart. Even this method did not
ensure that the network converged to a higher accuracy.

5.7.3 Insufficient accuracy
We tried to solve the problem by adding more memory cells in the recurrent
layer, extending the network, adding parallel dense layers.

• The increased number of memory cells in LSTM layers affected the over-
all result and the training process very slightly. It almost did not solve
the problem with relatively large variance during convergence of training
and validation error.

• Proportionally rescaled network only took longer to train. With almost
no effect on overall training process.

• By adding parallel dense layers, we tried to introduce absolute informa-
tion about the maximum or minimum activity in the data. Even this
improvement did not show an increase in validation accuracy.

Despite all attempts we could not train the model to achieve higher accuracy.
Regardless of the improvements we made to the network, the training process
hit the upper threshold and we could not overcome it.

50

5.7. Results

Figure 5.1: Loss function progress for LSTM
.

Figure 5.2: Accuracy function progress for LSTM
.

51

5. Implementation

5.7.4 Convolutional neural network

The convolutional neural network was created as an alternative architecture.
We suspected that LSTM does not achieve the desired results because we are
working with quite specific data.

Convolutional neural network did not access the data as sequential time-
dependent information. For the first convolution models we were inspired
by the Inception architecture. Its blocks were too big and unnecessarily too
complicated. In first designs of the network, we used inception blocks that
were smaller. In the end we decided to omit the inception blocks altogether.
When designing the model we decided to keep mainly 1x1 convolution fil-
ters. This decision turned out to be the right one, which can be seen in the
validation results.

At the beginning we worked only with information from one time series. When
we switched to multivariate task, we modified the models slightly.

Figure 5.3: High level architecture of CNN. Each convolution block consists
of convolution filter, batch normalization, dropout and maxpooling

.

5.7.5 Better results

We could see even during initial experiments that the training and validation
errors converge to better results than LSTM. This may be caused by a different
data access. CNN does not contain memory cells and did not suffer when there
were many zeros on the time series segment. The overall accuracy of the final
model is 15% higher than the accuracy of the LSTM 5.5.

The training process was much more systematic. At the beginning we tried
to get an architecture that can overfit on data. Then we tried to regularise
the model. Since we worked with convolution filters, the training time was an
order of magnitude less than with LSTM.

52

5.8. Model accuracy

Figure 5.4: Loss function progress for CNN
.

Figure 5.5: Accuracy function progress for CNN
.

5.8 Model accuracy
When creating the models we started with more generic architectures and
gradually moved towards more specialized ones. This is true for both LSTM
and CNN. Then we tried to improve the architecture, find more suitable hy-
perparameters, change the learning rate, etc. These steps are described in
chapter 5.5.

We decided to measure the final accuracy of the CNN on the test data. its
accuracy is 87%.

53

5. Implementation

Network achitecture accuracy
LSTM 0.72
CNN 0.86

Table 5.1: Classification accuracy on validation dataset.

We know from theory that the accuracy on test set should be slightly lower
than on validation set. The fact that it is higher may be due to smaller test
set where the dataset distribution is not exactly the same as the validation
one. With smaller datasets this can happen.

54

Chapter 6
Conclusion

Developers nowadays rely on many libraries and tools that they use as a ready-
made solution when creating a new project. The requirement is that these 3rd
party libraries serve as a tool during product development. Most of the time
there is not just one library which can solve the problem but few of them.
Then the team needs to choose one that best fits the team’s requirements
and criteria. In this work, we have been exploring the possibilities of using
machine learning models to estimate the lifetime of a repository.

The main objective of the theoretical part was to define the concepts from the
theory that we work with during the thesis. In the theoretical part we further
described the basic properties of time series. This information is mentioned
in 1.

In chapter 4 we created an exhaustive overview of algorithms used for work-
ing with time series. We analyzed each of them in detail. We discussed its
functioning, its weaknesses and strengths, and possible extensions. In deep
learning part, we introduced reader to models designed for processing time
series. Here, we looked in depth at two different architectures.

Chapter 2 is devoted to the analysis of tools usable for obtaining a dataset or
a part of it. Most of the tools tested during the work on the thesis were not
suitable. None of them could be used as a stand alone solution. That is why
we decided to combine them. We used the best of several worlds.

In sections 3.2 and 3.3 we also discussed the dataset acquisition and prepa-
ration. We suggested what attributes to use and how to prepare the data,
taking into account its specific character.

In the practical part 5 we dealt with described training process. We explored
deep learning approaches to solve the problem. We dealt with the analysis

55

6. Conclusion

of training and validation graphs. We look at the problems we solved during
training. We evaluate the accuracy of the models.

Based on the obtained results, we can conclude that a convolutional network
with the proposed architecture can indeed predict the lifetime of the repository
quite accurately.

6.1 Outline of future work
A further step to improve the classification accuracy is to obtain more data.
While preprocessing the dataset we had to discard many repositories. In
this regard, we would need to communicate with the GithubAPI team as the
download speed was a very limiting factor. Another alternative is to use a
library that supports such massive data collection.

An alternative way to improve classification accuracy is to create larger and
more specialized models. Larger models with a more comprehensive dataset
would probably produce better results.

Trained models are only one part of the solution. If we wanted to analyse
the repository more comprehensively, we could analyse its contents. Such an
analysis could be done for the whole files as well as for smaller parts or for
individual functions. This would mean analyzing the files and examining the
quality of the source code. Another possibility of extension is to focus on the
analysis of used libraries and packages. This would allow us to identify those
that contain potential vulnerabilities.

56

Bibliography

1. ØKSENDAL, Bernt. In: Stochastic Differential Equations: An Introduc-
tion with Applications. Cambridge, Massachusetts: Springer-Verlag, 2000,
pp. 5–17. ISBN 978-3-540-60243-9.

2. CUTURI, Marco; BLONDEL, Mathieu. Soft-DTW: a Differentiable Loss
Function for Time-Series. In: [online] [visited on 2022-04-20]. Available
from: https://arxiv.org/abs/1703.01541.

3. SAKOE, S.; CHIBA, S. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing. 1978, vol. 26, pp. 43–49. Available from DOI:
10.1109/TASSP.1978.1163055.

4. ITAKURA, Fumitada. Minimum prediction residual principle applied to
speech recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing. 1975, vol. 23, pp. 67–72. Available from DOI: 10 . 1109 /
TASSP.1975.1162641.

5. FAOUZI, Johann [online] [visited on 2022-04-19]. Available from: https:
//pyts.readthedocs.io/en/stable/auto_examples/metrics/plot_
dtw.html.

6. HOFMANN, Thomas; SCHÖLKOPF, Bernhard; J. SMOLA, Alexander.
Kernel methods in machine learning. In: [online] [visited on 2022-04-20].
Available from: https://arxiv.org/abs/math/0701907.

7. CUTURI, Marco. Fast Global Alignment Kernels. In: 2011, pp. 929–936.
8. YE, Lexiang; KEOGH, Eamonn. Time series shapelets: a new primitive

for data mining. Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2009, pp. 947–956.
Available from DOI: 10.1145/1557019.1557122.

57

https://arxiv.org/abs/1703.01541
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1975.1162641
https://doi.org/10.1109/TASSP.1975.1162641
https://pyts.readthedocs.io/en/stable/auto_examples/metrics/plot_dtw.html
https://pyts.readthedocs.io/en/stable/auto_examples/metrics/plot_dtw.html
https://pyts.readthedocs.io/en/stable/auto_examples/metrics/plot_dtw.html
https://arxiv.org/abs/math/0701907
https://doi.org/10.1145/1557019.1557122

Bibliography

9. FAOUZI, Johann [online] [visited on 2022-04-19]. Available from: https:
/ / pyts . readthedocs . io / en / stable / _images / sphx _ glr _ plot _
learning_shapelets_001.png.

10. DENG, Houtao; RUNGER, George; TUV, Eugene. A Time Series Forest
for Classification and Feature Extraction. In: [online] [visited on 2022-
04-20]. Available from: https://arxiv.org/abs/1302.2277.

11. LUCAS, Benjamin; SHIFAZ, Ahmed; PELLETIER, Charlotte; O’NEILL,
Lachlan; ZAIDI, Nayyar; GOETHALS, Bart; PETITJEAN, Francois;
I. WEBB, Geoffrey. Proximity Forest: An effective and scalable distance-
based classifier for time series. In: [online] [visited on 2022-04-20]. Avail-
able from: https://arxiv.org/abs/1808.10594.

12. GEURTS, Pierre; ERNST, Damien; WEHENKEL, Louis. Extremely ran-
domized trees. 2006, pp. 3–42. Available from DOI: 10.1007/s10994-
006-6226-1.

13. SENIN, Pavel; MALINCHIK, Sergey. SAX-VSM: Interpretable Time Se-
ries Classification Using SAX and Vector Space Mode. 2013 IEEE 13th
International Conference on Data Mining. 2013, pp. 1175–1180. Avail-
able from DOI: 10.1007/s10618-014-0377-7.

14. LIN, jessica; KHADE, Rohan; LI, Yuan. Rotation-invariant similarity in
time series using bag-of-patterns representation. Journal of Intelligent
Information Systems. 2012, vol. 39, pp. 287–315. Available from DOI:
10.1007/s10844-012-0196-5.

15. FAOUZI, Johann [online] [visited on 2022-04-19]. Available from: https:
//pyts.readthedocs.io/en/stable/auto_examples/transformation/
plot_bop.html.

16. SCHÄFER, Patrick; HÖGQVIST, Mikael. SFA: a symbolic fourier ap-
proximation and index for similarity search in high dimensional datasets.
15th International Conference on Extending Database Technology Berlin
Germany. 2012, pp. 516–527. Available from DOI: 10.1145/2247596.
2247656.

17. SCHÄFER, Patrick. The BOSS is concerned with time series classifica-
tion in the presence of noise. Data Mining and Knowledge Discovery 29.
2015, pp. 1505–1530. Available from DOI: 10.1007/s10618-014-0377-
7.

18. SUN, Chenxi; SONG, Moxian; HONG, Shenda; HONGYAN, Li. A Re-
view of Designs and Applications of Echo State Networks. In: [online]
[visited on 2022-04-19]. Available from: https://arxiv.org/abs/2012.
02974.

58

https://pyts.readthedocs.io/en/stable/_images/sphx_glr_plot_learning_shapelets_001.png
https://pyts.readthedocs.io/en/stable/_images/sphx_glr_plot_learning_shapelets_001.png
https://pyts.readthedocs.io/en/stable/_images/sphx_glr_plot_learning_shapelets_001.png
https://arxiv.org/abs/1302.2277
https://arxiv.org/abs/1808.10594
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.1007/s10844-012-0196-5
https://pyts.readthedocs.io/en/stable/auto_examples/transformation/plot_bop.html
https://pyts.readthedocs.io/en/stable/auto_examples/transformation/plot_bop.html
https://pyts.readthedocs.io/en/stable/auto_examples/transformation/plot_bop.html
https://doi.org/10.1145/2247596.2247656
https://doi.org/10.1145/2247596.2247656
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.1007/s10618-014-0377-7
https://arxiv.org/abs/2012.02974
https://arxiv.org/abs/2012.02974

Bibliography

19. DEL PRA, marco. Time Series Classification with Deep Learning. Medium
[online] [visited on 2022-04-19]. Available from: https : / / https : / /
towardsdatascience.com/time-series-classification-with-deep-
learning-d238f0147d6f.

20. MARIA BIANCHI, Filippo; SCARDAPANE, Simone; LOKSE, Sigurd;
JENNSEN, Robert. Reservoir computing approaches for representation
and classification of multivariate time series. In: [online] [visited on 2022-
04-19]. Available from: https://arxiv.org/abs/1803.07870.

21. SZEGEDY, Christian; LIU, Wei; JIA, Yangqing; SERMANET, Pierre;
REED, Scott; ANGUELOV, Dragomir; ERHAN, Dumitru; VANHOUCKE,
Vincent; RABINOVICH, Andreq. Going Deeper with Convolutions. In:
[online] [visited on 2022-04-19]. Available from: https://arxiv.org/
abs/1409.4842v1.

22. LIN, Min; CHEN, Qiang; YAN, Shuicheng. Network In Network. In:
[online] [visited on 2022-04-19]. Available from: https://arxiv.org/
abs/1312.4400.

23. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Resid-
ual Learning for Image Recognition. In: [online] [visited on 2022-04-19].
Available from: https://arxiv.org/abs/1512.03385.

24. SZEGEDY, Christian; IOFFE, Sergey. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift. In:
[online] [visited on 2022-05-01]. Available from: https://arxiv.org/
abs/1502.03167v3.

59

https://https://towardsdatascience.com/time-series-classification-with-deep-learning-d238f0147d6f
https://https://towardsdatascience.com/time-series-classification-with-deep-learning-d238f0147d6f
https://https://towardsdatascience.com/time-series-classification-with-deep-learning-d238f0147d6f
https://arxiv.org/abs/1803.07870
https://arxiv.org/abs/1409.4842v1
https://arxiv.org/abs/1409.4842v1
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.03167v3
https://arxiv.org/abs/1502.03167v3

Appendix A
Acronyms

NN Neural network

ML Machine learning

DL Deep learning

TS Time series

DTW Dynamic time warping

CNN Convolutional Neural Network

RNN Recurrent neural network

LSTM Long short term memory

GPU Graphics Processing Unit

61

A. Acronyms

readme.txt the file with USB contents description
src...the directory of source codes

model_weights.................the directory with pretrained weights
models the directory with model architectures
training_utils........the directory with scripts needed for training
testing_model_weights.ipynb..........notebook for testing models
utils_notebooks extract data from GithubAPI
dataset_preprocess.ipynb.............. steps to preprocess dataset
notebooks_from_github.ipynb................ access to GithubAPI
training_models.............................training and validating

text.. the thesis text directory
fig...the directory with figures
ref.bib....................................the bibliography resource
thesis.pdf............................the thesis text in PDF format
thesis.tex.........................the thesis text in LATEX format

62

	Introduction
	Thesis's Objective
	Time series introduction
	About time series
	Relationship between a stochastic process and a random variable
	Time series analysis
	Autocorrelation and partial autocorrelation

	Time series decomposition
	Stacionarity

	Tools exploration
	Criteria for selection
	GithubAPI
	Github Archive
	GHTorrent
	Other alternatives

	Data acquisition
	Tools suitable for usecase
	Exploratory data analysis
	Overview
	EDA in detail

	Dataset
	Multivariate time series
	Sparse time series
	Repository life cycle
	Training data generator

	Time series classification
	Time series classification algorithms
	Nearest neighbour
	Nearest neighbour without modifications
	Dynamic time warping
	Constraints of algorithm
	Variants of dynamic time warping

	Kernel methods
	Shapelet based approach
	Extracting shaplets
	Learning shaplets

	Tree based approach
	Time series forest
	Proximity forest

	Bag of words approaches
	Discretizing raw time series
	Discretizing Fourier coefficients

	Ensemble models
	Markov transition field
	Deep learning
	Echo state architecture
	Inception Time
	Architecture optimization
	Residual connections

	Implementation
	A path of implementation
	Working environment
	Data generator
	Problem analysis
	Models used during training

	Training
	Model training

	Loss function
	Results
	Long short term memory
	Instability during training
	Insufficient accuracy
	Convolutional neural network
	Better results

	Model accuracy

	Conclusion
	Outline of future work

	Bibliography
	Acronyms

