

Master’s thesis

Generation of Plutus Smart Contracts
from DasContract models

Bc. Martin Drozd́ık

Faculty of Information Technology
Supervisor: Ing. Marek Skotnica

April 19, 2022

Acknowledgements

Thank you to my supervisor, Ing. Marek Skotnica, for providing guidance
and feedback throughout this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on April 19, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Martin Drozd́ık. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Drozd́ık, Martin. Generation of Plutus Smart Contracts from DasContract
models. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2022.

Abstract

This thesis explores the Cardano blockchain, its native functional language
Plutus, and the possibilities to generate Cardano smart contracts from the
semi-visual smart contract modeling language DasContract.

The Cardano smart contract generator has the potential to generate decen-
tralized, autonomous, and secure electronic contracts. Users may stop caring
about boilerplate code or complex insights of the Plutus language and start
developing robust, less error-prone, and less ambiguous smart contracts. Such
contracts may remove the need for central authorities and positively impact
our juridical system and society.

In this thesis, a proof-of-concept implementation of the Plutus smart con-
tract generator has been analyzed, designed, implemented, and tested. A case
study of a funds locking contract has been created to demonstrate the capabil-
ities of the Plutus contract generator. The generators’ source code is publicly
available to aid further research. This thesis summarized implemented fea-
tures of the Plutus generator, highlighted problematic areas, and proposed
additional features to be studied.

Keywords Proof of concept Plutus generator, DasContract generator, Car-
dano, Plutus programming language, Plutus contracts, blockchain, smart con-
tracts

vii

Abstrakt

Tato práce zkoumá Cardano blockchain, jeho programovaćı jazyk Plutus a
možnosti generováńı chytrých kontrakt̊u na Cardano blockchainu z částečně
vizuálńıho modelovaćıho jazyka DasContract.

Generátor chytrých smluv, běž́ıćı na blockchainu Cardano, má potenciál
tvořit decentralizované, autonomńı, bezpečné a elektronické kontrakty. Uživatelé
se již nebudou muset zabývat nezaj́ımavým kódem a složitostmi jazyka Plu-
tus. Stač́ı se zaměřit na tvorbu robustńıch, nechybových a zřetelně funguj́ıćıch
chytrých kontrakt̊u. Chytré kontrakty dělaj́ı z centrálńıch autorit zbytečné
prostředńıky a pozitivně ovlivňuj́ı právńı systémy i naši společnost jako tako-
vou.

V této práci je implementován prototyp generátor̊u chytrých kontrakt̊u
v jazyce Plutus. Prototyp prošel analýzou, návrhem, implementaćı a otes-
továńım. Zároveň byl navržen a vytvořen konkrétńı př́ıklad chytrého kon-
traktu, schopného na nějaký čas zmrazit finančńı prostředky, jako demonstrace
schopnost́ı Plutus generátoru. Zdrojový kód generátoru je veřejně dostupný
jako open source pro podporu daľśıho výzkumu. Tato práce nakonec shrnula,
co Plutus generátor umı́, na jaké problémy se narazilo, a poskytuje návrhy na
daľśı funkčnosti pro studii a výzkum.

Kĺıčová slova Prototyp Plutus generátoru, DasContract generátor, Car-
dano, programovaćı jazyk Plutus, Plutus smlouvy, blockchain, chytré kon-
trakty

viii

Contents

Introduction 1
Motivation . 1
Problem statements . 2
Objectives . 2
Structure and methodology . 2

1 Review of the Cardano blockchain 5
1.1 Relevant blockchain cryptography 5
1.2 Blockchain technology . 6
1.3 UTXO . 7
1.4 EUTXO . 8
1.5 Haskell . 9
1.6 Cardano . 9

1.6.1 The consensus algorithm 10
1.6.2 Native tokens . 10
1.6.3 Plutus . 11

1.7 Summary . 11

2 Review of the DasContract format 13
2.1 User definition . 15
2.2 Data model definition . 16
2.3 Process definition . 17
2.4 Evaluation tools . 19
2.5 Summary . 21

3 Proof-of-concept Plutus generator 23
3.1 Plutus Contract data model . 23

3.1.1 Users . 25
3.1.2 Data model . 25
3.1.3 Processes . 28

ix

3.1.4 PlutusContract summary 29
3.2 Plutus Code models . 30

3.2.1 Types . 31
3.2.2 Functions . 33
3.2.3 Typeclass instances . 34

3.3 Plutus contract generator . 35
3.3.1 Pragma generator . 37
3.3.2 Module generator . 37
3.3.3 Imports generator . 37
3.3.4 Data model generator 37
3.3.5 On-chain generator . 40
3.3.6 Off-chain generator . 42

3.4 Testing . 45
3.5 NuGets . 45
3.6 Summary . 47

4 Case study 49
4.1 Users . 49
4.2 Data model . 49
4.3 Process . 50
4.4 Testing . 51
4.5 Results and summary . 54

5 Plutus Generator state and future development 55
5.1 Implemented features . 55
5.2 Missing features . 56
5.3 Future research and development 56

5.3.1 Bindings . 56
5.3.2 Testing . 57

5.3.2.1 Unit testing 57
5.3.3 Emulator generator . 57
5.3.4 Parallelism . 58
5.3.5 PlutusContract module 59
5.3.6 Contracts’ efficiency . 59
5.3.7 Yoroi Wallet Connector 59

5.4 Summary . 59

Conclusion 61

Bibliography 63

A Acronyms 67

B Contents of enclosed CD 69

x

List of Figures

1.1 A possible structure of a blockchain network 6
1.2 A simplified example of Unspent Transaction Output (UTXO) . . 7
1.3 A simplified example of Extended Unspent Transaction Output

(EUTXO) . 8

2.1 High-level abstraction of how DasContract should work [1] 14
2.2 High-level abstraction of how DasContract user models work . . . 15
2.3 The BPMN subset used in the DasContract format 20

3.1 Hight abstraction of the conversion and generation process 24
3.2 A Unified Modeling Language (UML) class diagram of PlutusCon-

tract and its immediate members 25
3.3 A UML class diagram of PlutusContract users 26
3.4 A UML class diagram of PlutusContract data models 27
3.5 A UML class diagram of PlutusContract processes 28
3.6 A UML class diagram of PlutusContract process elements 29
3.7 A UML class diagram of Plutus code data models 31
3.8 A UML class diagram of Plutus user-defined types 34
3.9 A UML class diagram of the Plutus generator 36
3.10 A UML class diagram of the Transactional (Tx) type visitor 41
3.11 A UML class diagram of the transition generators 43
3.12 A UML class diagram of the endpoints generator 46

4.1 A snippet of a DasContract editor with the case-study contract –
users . 50

4.2 A snippet of a DasContract editor with the case-study contract –
data model . 51

4.3 Business Process Model and Notation (BPMN) of the case-study
contract . 52

xi

List of Tables

2.1 Table of contract maturities [1] . 13

xiii

List of Listings

2.1 Example of a DasContract data model Extensible Markup Lan-
guage (XML) definition . 17

3.1 Example of a Plutus type model 32
3.2 Plutus list type model . 32
3.3 Haskell example of an algebraic data type and a record data type 33
3.4 Haskell example of a records’ Eq instance 35
3.5 Haskell example of a records’ Default instance 35
3.6 A snippet of the pragma generator code 37
3.7 A snippet of the module generator code 38
3.8 A snippet of the import generator code 38
3.9 A snippet of an endpoint . 44
4.1 XML definition of the case-studies’ data model 51
4.2 Case-study emulator trace test 53

xv

Introduction

DasContract is a visual language capable of defining smart contracts [1]. This
thesis aims to create a Cardano smart contract generator from DasContract
files.

Motivation

Current society closes deals and arrangements using contracts. These con-
tracts commonly take the form of signed papers with clearly stated conditions
of the agreement. Suppose an interested party breaks the conditions of a paper
contract. In that case, other parties must rely on a juridical system to enforce
the conditions of the contract, which can take years and cost a significant
amount of resources [2].

Blockchain smart contracts are a form of secure code that has the potential
to replace standard paper contracts and eliminate the need for central author-
ities because it is capable of enforcing certain conditions on its own [1][2].

Creating smart contracts is a non-trivial task requiring programming skills,
experience, and knowledge, especially for contracts handling a currency. These
contracts must behave as intended and be secure against attacks. DasContract
is a tool aiming to provide a better and more reliable way to design smart
contracts using visual languages, such as Business Process Model and Notation
(BPMN) or Decision Model and Notation (DMN).

The DasContract editor currently supports generating contracts for the
Ethereum blockchain. However, there are more blockchain networks capable
of running smart contracts. One of them is the Cardano blockchain. If a
new generator capable of creating Cardano contracts from the DasContract
format existed, it would empower DasContract as a potent abstract format
for designing smart contracts. The reason is that Cardano is fundamentally
different from the Ethereum blockchain in many areas. It would also provide a
new way of creating Cardano smart contracts, which may be beneficial to the
Cardano comunity since it is a new and still developing blockchain technology.

1

Introduction

Problem statements

Currently, there is no way to generate Cardano smart contracts based on the
DasContract format. This thesis aims to create a proof of concept generator
of Cardano smart contracts with DasContract file as an input.

Ethereum and Cardano blockchains are in many fundamental properties
different. Creating a new DasContract generator to Cardanos’ language Plu-
tus will deepen research of the DasContract format and potentially discover
abstraction flaws with the DasContract format itself.

A new tool such as DasContract to Plutus convertor could positively im-
pact the Cardano developer community since Cardano documentation and
instruments are scarce. Cardano is a developing platform that could use any
tools it can get.

Objectives

The main objective of this thesis is to investigate the possibilities of the Car-
dano technology, analyze, design, and implement an open-source contract gen-
erator based on the DasContract format.

The output of the smart contract generator must be an executable Haskell
file representing the logic described by a DasContract file. Further research
of the generator or DasContract should be suggested if required.

The state of the smart contract generator must be summarized with sup-
ported and unsupported features, along with recommended features for future
development and research.

The objectives of this thesis do not include developing the DasContract
language or any other DasContract-related products. Furthermore, objectives
do not include any development of a blockchain wallet or a User Interface
(UI).

Structure and methodology

When approaching the goals of this thesis, the Cardano blockchain has been
thoroughly investigated, and the Plutus language has been carefully learned.
Along with learning Plutus, the newest version of DasContract has been re-
searched and consulted with its authors and maintainers.

After all knowledge has been accumulated, the practical part, according
to the goals, has been implemented. First, a prototype contract has been con-
structed; then, iteratively, the proof-of-concept generator has been designed
and implemented.

The thesis has been finished by reporting the resulting product and rec-
ommending future research.

This thesis is organized as follows:

2

Structure and methodology

• In chapter 1, the Cardano blockchain is revied along with blockchain
basics and the Plutus development language.

• In chapter 2, the DasContract format and its inner workings are de-
scribed.

• In chapter 3, the proof-of-concept Plutus smart generator is described
along with fundamental implementation details.

• In chapter 4, a case study of a funds locking smart contract is described.

• In chapter 5, the state of the Plutus smart generator is summarized with
supported, unsupported, and future-recommended features.

3

Chapter 1
Review of the Cardano

blockchain

”Cardano is a proof-of-stake blockchain platform: the first to be founded on
peer-reviewed research and developed through evidence-based methods. It com-
bines pioneering technologies to provide unparalleled security and sustainabil-
ity to decentralized applications, systems, and societies.”

”With a leading team of engineers, Cardano exists to redistribute power
from unaccountable structures to the margins – to individuals – and be an
enabling force for positive change and progress.” [3]

1.1 Relevant blockchain cryptography

Blockchain technologies heavily utilize cryptography. Two primary tools are
asymmetric cryptography and hash functions.

Asymmetric cryptography is based on having two keys – private key
and public key. Public keys are distributed amongst users using a distribution
system. Private keys are the secrets of each owner/source [4].

One major use case of asymmetric cryptography is signing. If something
is signed, it can be easily verified where the data came from, its origin can
not be disputed, and that the data integrity holds. Private keys are used to
encrypt (=sign) data. They can only be decrypted using the respective public
key. This enables everyone on the network to verify data belonging to a user
since he is the only one that could have encrypted it (using his private key) [4].

data = Dpubkey(Eprivkey(data))

A hash function is a one-way function from set X to set Y (hash).
Usually, elements of set X have arbitrary sizes, and elements of set Y have
a fixed size. Hash functions are deterministic, and the map from set X to
set Y should appear as random and evenly distributed. It also should not be

5

1. Review of the Cardano blockchain

Figure 1.1: A possible structure of a blockchain network

possible to figure out items mapping from set Y to a specific item in set X in
a reasonable amount of time – making it one-way [5].

Hashing has many practical use cases. For example, a hash of a data string
should always be the same; thus, rehashing data can serve as an integrity check
when downloading large or critical data. Another use case is the commit
scheme, where commitment is done using a data hash instead of the original
data since the original data should be kept secret. Commitment is then proven
with the original data when it is no longer needed to keep it a secret – it is
borderline impossible to figure out the original data just from the hash [6][5].

1.2 Blockchain technology

Blockchain technology introduced by Satoshi Nakamoto is a decentralized,
distributed and autonomous peer-to-peer network. The network is trustless,
meaning there must exist some consensus mechanism on which the network
users agree [1][7].

Blockchain data is contained in blocks, abstractly connected by a chain –
hence the name blockchain. The blocks can be logically bound by hashes of
themselves and their predecessors. Changes in a block in the middle of a chain
would require rehashing of all upcoming blocks, which is an enormous obstacle
and ensures chain immutability. However, blocks of data, sometimes named
transactions, behave and are built differently on various blockchains [7][8][9].

A significant property of blockchain networks is their immutability, which
ensures security against attacks and forgeries. Every transaction is kept, and
every value or state can be backtracked and recalculated [1][7].

Blockchain technology represents a major resource for various applications,
such as decentralized finance, asset exchange, decentralized applications, or
even decentralized legal contracts. Possibilities are many.

Blockchain is mainly known for its use with Bitcoin as its underlying tech-
nology. Since Bitcoin, many more blockchains have emerged, such as Ethe-
reum or Cardano. These blockchains do follow the ideology on which Bitcoin
is built but offer so much more than just a decentralized currency [1][8][9].

6

1.3. UTXO

Figure 1.2: A simplified example of UTXO

1.3 UTXO

Unspent Transaction Output (UTXO) is an accounting model enabling keep-
ing track of every wallets’ state. UTXO can be imagined as three working
parts: transactions, inputs of these transactions, and outputs of these transac-
tions. Instead of keeping track of wallets’ state by centralized ledgers (similar
to banks), the UTXO system keeps track of wallets’ states by summing up
unspent outputs assigned to the wallet. These unspent outputs can be spent
by a transaction, which will produce other unspent outputs, redistributed
accordingly [10].

A real-world analogy would be imagining unspent outputs as banknotes
and coins in my wallet. I have five dollars consisting of a two-dollar bill and
a three-dollar bill. That means there are two unspent outputs, each having
its respective value. I can go to a shop and buy a Non-Fungible Token (NFT)
for four dollars. The ”buy” operation is a transaction. To be able to purchase
the NFT, I need at least four dollars. I am in luck; I have five dollars total.
I can use these dollars (unspent outputs) as inputs to the ”buy” transaction.
The transaction results in two new unspent outputs. One unspent output has
a value of four dollars and goes to the seller. The second unspent output has
a value of one dollar and goes back to me because I needed to spend only four
dollars but got banknotes for five dollars minimum.

The example is visualized at figure number 1.2. The NFT is also an input
and an output of the transaction, where the owner changes from the seller to
me.

A fundamental rule is that the number of resources consumed by the tran-
saction (inputs) equals the transactions’ output. There are exceptions to
this rule, such as fees, the genesis block, or token minting/burning [10][11].

7

1. Review of the Cardano blockchain

Figure 1.3: A simplified example of EUTXO

Another fundamental rule is that spent outputs can not be spent again or
altered [11].

The address of an unspent output determines who can spend it (who owns
it). If a transaction spending these outputs appears on the blockchain, their
owner must cryptographically sign it using their private key. This ensures
that no one can spend somebody else’s outputs [11].

The Bitcoin blockchain uses the UTXO model, just as described in this
section [10].

1.4 EUTXO

Extended Unspent Transaction Output (EUTXO) is an extension of the UTXO
model. UTXO validates output owners using a cryptographic signature. EU-
TXO extends the behavior of inputs and outputs and enables using custom
logic, not only wallet signatures [10][11].

For example, an unspent output can be created and programmed to be
claimed by anyone that knows the password. Another example would be an
unspent output that a person can claim after a deadline has passed.

Every unspent output can be equipped with a datum – an arbitrary data
value and a script – a piece of arbitrary logic. When a transaction tries to
spend the output, it does so with a redeemer – also arbitrary data. The script
(also called a validator script) checks the arbitrary logic when an output tries
to be redeemed with a redeemer [10][11].

The output needs to contain only the datum hash, but the redeeming
transaction must send a correct datum value. The script has its address and
can lock various valuables, including funds. The validator script accepts a
datum, a redeemer, and a context when it is run [10][11].

The EUTXO is Turing-complete, thus powerful enough to implement
even complex smart contracts [10].

8

1.5. Haskell

1.5 Haskell

”Haskell is an advanced purely-functional programming language. An open-
source product of more than twenty years of cutting-edge research, it allows
rapid development of robust, concise, correct software. With strong support
for integration with other languages, built-in concurrency and parallelism, de-
buggers, profilers, rich libraries and an active community, Haskell makes it
easier to produce flexible, maintainable, high-quality software.” [12]

Haskell is a functional, declarative language. In contrast, imperative
languages instruct the machine on how an operation should be executed – some
languages are more specific than others. Declarative functional languages
declare what should be the result. The compiler or some other tools then
infer the specific execution steps [13].

A key feature of Haskell is the lack of side effects. A function always
returns the same result for the same input – there are no global variables,
memory access, etc. The only tool with side effects is the IO monad, which
ensures communication with the ”outside world” such as file Input/Output
(I/O) operations, standard output communication, etc. [14][15]

Haskell is a statically typed language. The compilator checks if all types
are in order and only then compiles the program. The compiler is also capable
of inferring types from context [14].

Haskell supports a packaging system, where pieces of code can be sep-
arated into their own respective packages and then referenced when needed.
This promotes a good program structure and enables easy code sharing [14].

Haskell supports lazy evaluation. Expressions are not evaluated until
they are needed. Since Haskell is a purely-functional language, this property
should be hidden to the programmer [14].

1.6 Cardano

”Cardano is an open source proof-of-stake blockchain project that began in
2015 to address existing blockchain challenges in the design and development
of cryptocurrencies. It aims to provide a more balanced and sustainable ecosys-
tem that better accounts for the needs of its users as well as other systems
seeking integration.” [16]

The main driving force behind Cardano is the IOHK company, founded in
2015 by Charles Hoskinson and Jeremy Wood [17].

Cardanos’ accounting model uses the EUTXO. It empowers Cardano to
support monetary operations with its native currency ADA, minted tokens,
or even complex smart contracts, capable of executing complex logic, thanks
to being Turing-complete [8].

9

1. Review of the Cardano blockchain

1.6.1 The consensus algorithm

Cardano uses a proof-of-stake algorithm as its consensus mechanism called
Ouroboros. Ouroboros is ”a proof-of-stake protocol that provides and im-
proves the security guarantees of proof-of-work at a fraction of the energy
cost. Ouroboros applies cryptography, combinatorics, and mathematical game
theory to guarantee the protocols’ integrity, longevity, and performance, and
that of the distributed networks that depend upon it.” [18].

The Ouroboros protocol perceives time in epochs, which consists of time
slots. One epoch currently stretches over five days with exactly 432.000 time
slots. However, these time intervals are not guaranteed to persist, and the
real-time length of epochs and timeslots may change in the future [19][20].

Each time slot may elect a slot leader, which mines the next single block.
Slot leaders are stake pools, with a certain amount of stake entrusted from the
blockchains’ users. The more stake the pool controls, the higher probability of
being selected as the slot leader. Successfully mining the next block rewards
the stake pool and its staking participants (depending on the stake pools
settings) [18][19][20].

Notable is the power efficiency compared to the proof-of-work consensus
algorithms, such as in the Bitcoin blockchain. Secure and reliable proof-
of-stake algorithms are considerably more complex than proof-of-work algo-
rithms; however, their efficiency in terms of power consumption is superior
many times over [18].

1.6.2 Native tokens

Cardanos’ native currency is ADA. One ADA is further divisible to one million
Lovelace. ADA is the currency used to pay transactions fees. Its supply is
finite. The initial ADA coins are minted in the genesis block and can not be
minted again [21][22].

Cardano natively supports work with any type of tokens. Sending and
working with ADA is equally similar to working with other tokens [21][22].

User-defined tokens can be minted (=created) using a minting script at-
tached to a EUTXO. The script defines the minting behavior. For example,
one token can be minted for 1 ADA. Or, the token can be minted only once [22].

One categorization for tokens is fungibility. Fungible Token (FT) is in-
terchangeable. For example, it does not matter if I have this or that ADA
token – one ADA is still one ADA; it does not matter which one I have.
Non-Fungible Token (NFT) is always unique and one of a kind (not inter-
changeable). NFTs can be used to identify an art piece or an ongoing smart
contract process [21][22].

There are several ways of burning (=destroying) tokens. One is sending
the token to a void wallet of which nobody knows the private key – thus unable
to send the tokens elsewhere. Another way is creating a EUTXO with a script

10

1.7. Summary

that always fails – thus money in the EUTXO can not be further processed
by a transaction [22].

1.6.3 Plutus

Plutus is a language capable of developing Cardano smart contracts. Plu-
tus is built on the Haskell programming language, and Plutus programs are
essentially Haskell programs [23].

Plutus is used to develop the off-chain and on-chain parts of the smart
contract. The off-chain code is a code that runs on the clients’ side, possibly
in his preferred wallet application. The on-chain code is a code that runs on
the Cardano blockchain [10][23].

The off-chain code is responsible for creating transactions and submitting
them to the blockchain. Besides that, it can do many more operations, such
as client-side validation. The off-chain code is generally built as a Contract
monad, which offers one or more endpoints for a user to invoke [10][23].

The on-chain code is exclusively for validation scripts and minting policies.
By the nature of the blockchain, this code is run only on-demand, thus being
unable to establish communication with a user on its own – for example, an
event notification [10][23].

Both on-chain and off-chain are written concurrently to eliminate redun-
dancies and simplify the code, and both are written in Haskell. Later, the
on-chain part is compiled into Plutus Core – code running on Cardano – and
sent to the blockchain. Since the source of the on-chain code is written in
Haskell, it can be used, for example, by the off-chain part to validate the tran-
saction even before it reaches the blockchain entirely. Plutus is built to be
fully deterministic, and everything that is successfully validated off-chain will
be successfully validated on-chain. One single exception is user concurrency
– for example, two users can send the same transaction, and only one will get
validated because duplicities are not allowed [10][23][24][25].

By Haskells’ nature, the Cardano blockchains’ design, and Plutus’ Core
design, Plutus is a secure and reliable way to develop smart contracts. The
correct output of a function is more easily provable and verifiable, which
effectively eliminates any problems that other blockchains have with their
imperative-oriented languages [26]. Determinism and predictability are one of
the primary focuses of the Plutus platform. They significantly promote the
safety of the blockchain and user experience [10][24][25].

1.7 Summary

Blockchain is a decentralized peer-to-peer network. The backbones of these
networks are immutable append-only chains of transactions. The chains’ im-
mutability and user identification are ensured through cryptography.

11

1. Review of the Cardano blockchain

One blockchain technique to store and organize transactions is the UTXO,
where tokens are handled like traditional coins in a wallet – not in centralized
ledgers. The total value of someones’ tokens is the sum of their unspent
outputs.

Cardano is an advanced proof-of-stake blockchain with the support of
smart contracts. Cardano uses its own unique EUTXO model, where un-
spent outputs can contain arbitrary logic – smart contracts. Cardano natively
supports work with its currency ADA and user-defined tokens – working with
both is essentially the same.

Cardano smart contracts can be developed using the Plutus programming
language. Plutus programming is done in Haskell. Plutus programs consist
of off-chain and on-chain code. The off-chain primarily builds and submits
transactions to the blockchain. The on-chain code is compiled, sent, and
works on the blockchain as validation. A key advantage of Plutus contracts is
that the on-chain code can be also utilized in the off-chain part. It removes
redundancy and adds to the deterministic nature of Plutus programming.

12

Chapter 2
Review of the DasContract

format

DasContract is currently a semi-visual language, aiming to provide a platform
and a format for an efficient and less error-prone way to design and deploy
smart contracts. Smart contracts are a way of eliminating the current form of
legal contracts, which contain ambiguities. Furthermore, it may take longer for
existing contracts to wait before the legal system sorts out any non-compliant
parties or individuals [1]. Table 2.1 describes the contract maturity model and
contracts’ ambiguities, risk, or error-proneness.

The authors of the DasContract propose three key components to solve
contract issues in the current form:

Human Understanding part defines a contract between multiple parties

Maturity Name Contract Form Accuracy
1 Verbal con-

tract
A mutual under-
standing

No written record of a
contract

2 Written infor-
mal contract

Informal text Typically ambiguous
interpretation, pos-
sible errors, no legal
framework

3 Legally bind-
ing contract

Legal text Risks of ambiguous in-
terpretation, possible
errors, legal framework
contains ambiguities it-
self

4 Ontological
contract

Ontological
model

Ambiguity effectively
controlled

Table 2.1: Table of contract maturities [1]

13

2. Review of the DasContract format

Figure 2.1: High-level abstraction of how DasContract should work [1]

that they need to agree on. Such a contract is a combination of legal text
and formal ontological models. The legal text in some form specifies the legal
validity of the formal model. The formal models need to be unambiguous, so
only one possible interpretation is allowed.

Technical Implementation part specifies how formal models from the
contract are transformed into a software executable code and uploaded into a
blockchain as a smart contract.

Digital Interaction is a part where people, companies and legal author-
ities can interact with the agreed upon contracts. Since the contract is in a
blockchain, the interaction is fully digital, and thanks to cryptography can also
be legally binding. Blockchain by design also provides an audit trail of all ac-
tions performed by the parties and ensures that the agreed upon contract is
executed correctly. [1]

This thesis works with the presently most recent version DasContract 2.0.
DasContract 2.0 format perceives a smart contract as a combination of three
key areas – contract process, contract data model, and contract users.
Furthermore, these areas consist of several editors and languages working
together towards fully defining all essential logic and components of a smart
contract. These editors and languages include [1][27]:

• BPMN editor for processes

• Decision Model and Notation (DMN) editor for business tasks

• User forms editor for user activities

• Data model editor

• Users and roles editor

• Blockchain-specific code

14

2.1. User definition

Figure 2.2: High-level abstraction of how DasContract user models work

DasContract editors create and edit DasContract files and output a Das-
Contrac file with the extension .dascontract. This file contains all essential
data for generating the final smart contract [27].

A smart contract generator consumes DasContract files and generates
respective blockchain-specific code. At this time, there is a generator capa-
ble of transforming DasContract files into Solidity contracts running on the
Ethereum blockchain network [28]. This thesis aims to add another generator
capable of making Plutus smart contracts for the Cardano blockchain network.

Once the final smart contract is generated, it can be deployed on the
blockchain network. Interaction with the contract can be done multiple ways,
depending on the blockchain; however, a wallet or other off-chain program
should be capable of providing a UI-friendly interface to cater to people with
average blockchain knowledge.

2.1 User definition

The current DasContract 2.0 looks at users as a collection of individuals. Each
individual (user) may perform various roles [27].

Roles have a simple name and a symbolic description [27].
Users have a name, symbolic description, roles, and, most importantly, a

public key of their wallet [27].
Users or roles can be later utilized throughout the contract as an identi-

fication. One of the essential use cases for users and roles is the assignment
to a user activity – only certain users, identified directly or indirectly by their
roles, may submit and complete a user activity [27].

15

2. Review of the DasContract format

2.2 Data model definition

DasContract provides the possibility to design a custom data model. The
data model, if possible, is used to generate its image in the resulting block-
chain smart contract. Its usage may be arbitrary and depends on the con-
tracts’ developer. The data model image may look different depending on the
blockchains’ language [27][28].

The DasContract data model consists of:

• Enums

• Tokens

• Entities

Enums are a trivial structure of a finite set of values. An entity property
may reference these values [27].

A token is a blockchain token with important specified properties, such
as a symbol, fungibility, source mint script identification, and others. Unfor-
tunately, this structure is heavily aimed at the Ethereum blockchain and the
ERC-20 standard [27]. Blockchains such as Cardano treat tokens differently
and do not require attributes like a transfer script or if it was issued, which
the DasContract token defines [22][21].

Entities are a set of attributes and properties. Entity attributes include
entity name, entity identification and check, and if the entity is a root entity.
The root entity marks the entity as the entry point for data model generation.
There must be exactly one root entity. Entity properties (members) also
contain a set of attributes. Essential property attributes are identification and
display name. Most importantly, the property data type for the blockchains’
language must be derivable; therefore, further data type attributes must be
defined. The user can specify if a property is mandatory and property type
must be selected [27][29]:

• Property type set to ”single” means a single value property with a spec-
ified data type.

• Property type set to ”collection” means a collection of values of a speci-
fied data type. The data collection structure is unspecified but expected
to be an integer-indexable list-style collection.

• Property type set to ”dictionary” means a dictionary (key-value) collec-
tion of specified key type and data type.

Property types may be Int, Uint, Bool, String, DateTime, AddressPayable,
Address, Reference, or Enum. Reference properties contain another instance
of an entity. The property then requires another attribute for specifying the
target entity identification [27].

16

2.3. Process definition

Listing 2.1 Example of a DasContract data model XML definition
<DataTypes>

<Entity Id="Root" Name="Datum" IsRootEntity="true">
<Property Id="iNumber" Name="interestingNumber"

IsMandatory="true"
PropertyType="Single" DataType="Int" />

<Property Id="iMessages" Name="interestingMessages"
IsMandatory="false"
PropertyType="Collection" DataType="String" />

<Property Id="iEntity" Name="interestingEntity"
IsMandatory="true"
PropertyType="Single" DataType="Reference"
ReferencedDataType="SecondEntity" />

<Property Id="iEnum" Name="interestingEnum"
IsMandatory="true"
PropertyType="Dictionary" KeyType="Int"
DataType="Enum" ReferencedDataType="Enum1" />

</Entity>

<Entity Id="SecondEntity" Name="SecondEntity"
IsRootEntity="false" />

<Enum Id="Enum1" Name="Enum1">
<Value>Value1</Value>
<Value>Value2</Value>
<Value>Value3</Value>

</Enum>
</DataTypes>

2.3 Process definition

The process definition is a subset of the BPMN diagram stating how the
resulting smart contract should behave [27].

”The Business Process Model and Notation (BPMN) specification provides
a graphical notation for specifying business processes in a Business Process Di-
agram. Its goal is to support Business Process Modeling by providing a stan-
dard notation that is comprehensible to business users yet represents complex
process semantics for technical users.

Business Process Modeling Notation has become the de-facto standard for
business processes diagrams. It is intended to be used directly by the stake-
holders who design, manage and realize business processes, but at the same
time be precise enough to allow BPMN diagrams to be translated into software

17

2. Review of the DasContract format

process components. BPMN has an easy-to-use flowchart-like notation that’s
independent of any particular implementation environment.” [30]

The currently used subset of the BPMN notation includes the start event,
end event, exclusive gateway, parallel gateway, sequential multi-instance, par-
allel multi-instance, user task, script task, business rule task, call activity, and
the timer boundary event [27].

As is evident with the inclusion of the call activity, the DasContract pro-
cess can contain multiple subprocesses. There must be precisely one process
marked as executable, marking the entry point for smart contract genera-
tors [27].

The start event is the initial entry point for a process. If the process is
executable, the entire contracts’ entry point is the start event [27].

The end event either transitions to the caller process or ends the whole
contract if there is no caller process [27].

The exclusive gateway chooses only one possible output connection.
Output connections have conditions, where only the one selected output con-
nection should be truthful [27].

The parallel gateway simultaneously proceeds to all output connec-
tions [27].

Any task can be a sequential multi-instance. The task is then executed
in a loop. The number of loops is determined by loop cardinality. If a loop
collection property is set, the number of loops is the length of the collection,
and each loop will provide the nth element of the collection (foreach loop) [27].

Any task can be a parallel multi-instance. The task is then executed
multiple times, simultaneously. The number of instances is determined by
loop cardinality. If a loop collection property is set, the number of instances
is the length of the collection, and each instance will provide the nth element
of the collection (parallel foreach) [27].

User tasks represent a task with required input from a user – a form.
The form is defined using a special XML notation developed by Bc. Petr
Ančinec, in his masters’ thesis, Domain-Specific Languages for Off-chain UI
in Decentralized Applications. The notation contains data-binding syntax to
store values in the data model directly and effortlessly [31]. Additionally, user
tasks provide a space for a validation script, where the form can be manually
validated. This script may also save or further process the data model, or other
operations. User tasks may select an assignee, candidate users, or candidate
roles. These are the contracts’ users and roles. They must be the only users
capable of completing the task. The proof of completion is usually a digital
signature with respective private keys [27][29].

Script tasks run automatically and provide a place to code arbitrary
contract logic. The capabilities of the blockchain limit the logic [27][29].

Business rule tasks use DMN notation to define rules and decitions [27].
”DMN is a modeling language and notation for the precise specification of

business decisions and business rules. DMN is easily readable by the different

18

2.4. Evaluation tools

types of people involved in decision management. These include: business
people who specify the rules and monitor their application; business analysts.

DMN is designed to work alongside BPMN and/or CMMN, providing a
mechanism to model the decision-making associated with processes...” [32]

The DMN to Ethereum generation is currently under research and devel-
opment [29].

Call activities invoke a subprocess. Recursive and multi-level subprocess
calls are allowed. The subprocess starts at the start event and returns when
an end event is encountered [27][29].

The timer boundary event may be placed on any task. When the
boundary event timer times out, the process flow continues on the marked
boundary events’ timed out path. The timeout can be set using a specific
timeout date or a duration for which the task can be uncompleted [27].

2.4 Evaluation tools

The contracts’ process must be appropriately modeled and evaluated in the
target blockchain language. There is no fixed guideline since different blockchains
and respective languages vary. However, abstract tools generally describe the
behavior and are universally implementable in Turing-complete languages.

The deterministic finite state machine is formally defined as a tuple
of five elements (S,Σ, δ, q0, F) where [33]:

• S is a finite set of states

• q0 is the initial state

• δ is a transition function δ : S × Σ→ S

• F is a set of final states where F ⊆ S

• Σ is an input alphabet (a finite non-empty set)

The deterministic state machine is a suitable code design base for a pro-
gram to emulate a DasContract process. The DasContract process begins
with the start event (q0) then proceeds to transition (δ) depending on values
in the data model or simply to the next available state. The process finishes
in an end event (F).

It must be noted that a deterministic state machine cannot fully simulate
the DasContract process. However, it is a programmatically solid baseline
for the code design, which requires a small number of modifications. For
example, the deterministic state machine can not suitably handle multiple
processes, working with the persistent data model or concurrent tasks.

The call stack structure may be utilized to support multiple processes
and call activities [34]. Stack is a Last In – First Out (LIFO) structure. The

19

2. Review of the DasContract format

Figure 2.3: The BPMN subset used in the DasContract format

20

2.5. Summary

initial call stack is empty. When a call activity is encountered, a returning
state is pushed in the call stack, and the process referred by the called activity
is invoked – the current state is now at the invoked processes’ start event. The
same happens recursively, enabling call activities within call activities, even
recursive subprocesses. When an end event is encountered, a state is popped
from the call stack, and the contract continues from the popped state. If there
is no state to pop, the end events mean the end of the entire contract.

A state machine, a call stack, both with access to the persistent data
model and user information, is a suitable code design basis for any blockchain
language.

2.5 Summary

The DasContract format is trying to provide a solid platform for smart con-
tracts. Using DasContract should result in fewer errors, fewer ambiguities,
and a better understanding of the contracts’ logic.

DasContracts are made in editors, where users can design their contracts.
Afterward, the DasContract files can serve as an input to a blockchain gener-
ator. The targeted blockchain depends on the generator. Generated code can
then be executed on the blockchain network.

The DasContract format consists of three subformats: users, data model,
and processes. Users define the roles and specific personas interacting with
the contract. The data model serves the programmer for arbitrary usage. The
process, defined using a subset of the BPMN language, describes the business
logic of the contract.

The DasContract format eventually has to be translated into a blockchain
code. A good and solid code design base is to evaluate processes using a state-
machine-like execution with the support of a call stack for calling subprocesses
and access to the persistent data model. Additional details need to be figured
out based on the specific blockchain.

21

Chapter 3
Proof-of-concept Plutus

generator

The DasContract format currently supports the generation of Solidity smart
contracts for the Ethereum blockchain network [27]. A new generator into
the Plutus language would expand DasContract possibilities, test the correct-
ness of the DasContract format, and solidify its universality and blockchain-
language independence.

Cardano is an emerging 3rd generation blockchain and is continuously
under development [10]. The Cardano community could benefit from this tool
for rapid smart contract development for templates, prototypes, or production-
ready contracts.

This chapter describes a new data model designed explicitly for Plutus
contracts, underlying models for generating Plutus code, and parts of the
Plutus generator itself.

3.1 Plutus Contract data model

For purposes of this generator, a new contract data model has been created.
When generating a contract from the DasContract file, it first has to be con-
verted into a PlutusContract format and then into a Plutus code.

This PlutusContract data model is an extra step with extra work; however,
it brings a series of significant benefits:

1. The DasContract format is suitable for serialization, deserialization,
databases, etc. Unfortunately, this compromises the data model with
weaknesses, such as referring to an entity with an id instead of Object-
Oriented (OO) native references (or pointers) [27]. This dramatically
worsens working with DasContract objects. Suboptimal program inter-
faces occur, as broader, seemingly useless contexts, need to be passed
into methods or classes. Algorithms are polluted with searching logic.

23

3. Proof-of-concept Plutus generator

Figure 3.1: Hight abstraction of the conversion and generation process

PlutusContract does not need to be serialized and is properly modeled in
an OO manner with language-specific features, such as object references.

2. DasContract carries a series of backward compatibility features that are
not needed in the Plutus contract generator. PlutusContract is a cleaner
data model.

3. DasContract provides irrelevant or strait up unwanted features (in the
context of Plutus), such as the support for ERC-20 token models. Plu-
tusContract will be a cleaner data model without these features.

4. DasContract does not provide needed features for the Plutus generator
and does not implement suitable patterns for expanding its capabilities,
such as the visitor pattern. Although other methods are available, such
as C# extensions, they are not as ideal as the visitor pattern. Plutus-
Contract can be set up in any suitable way.

5. PlutusContract will be designed recursively on viable places, such as
the contracts’ process, making the generation process simpler and more
aligned with Haskell’s purely functional approach.

6. If any changes to the DasContract occur, there is a probability that
adjustments need to be made only at the data model conversion level.
These changes are objectively much simpler than adjusting the Plutus
contract generator and can be made by a person unfamiliar with the
generators’ inner workings.

Problems with the DasContract format in this use-case and improvements
that PlutusContract implementation brings heavily outweigh the work re-
quired to implement the PlutusContract. High abstraction of the conversion
and generation process is visualized at figure number 3.1.

The PlutusContract consists of three major sections, same as the Das-
Contract:

• Users

• Data model

• Processes

24

3.1. Plutus Contract data model

Figure 3.2: A UML class diagram of PlutusContract and its immediate mem-
bers

It also contains a code for global contract validation, which is extracted
from the single executable process. This code is run every state transition
and provides more detailed tools, such as the EUTXO information. This is
for advanced contracts with more complex logic that the DasContract format
does not account for.

A UML class diagram of PlutusContract and its immediate members is
pictured in figure number 3.2.

3.1.1 Users

The PlutusContract has modeled users very similarly to the DasContract.
There are roles, which have a name and a description, and there are users
who have a name, a description, a wallet public key, and a collection of their
roles. A UML class diagram of users and roles can be seen in figure number 3.3.

3.1.2 Data model

The PlutusContract, same as DasContract, has a custom contract data model.
The data model consists of Enums and Entities – Tokens are excluded from
this data model since ERC-20 tokens, used in the DasContract, are irrelevant
in the Cardano blockchain.

25

3. Proof-of-concept Plutus generator

Figure 3.3: A UML class diagram of PlutusContract users

PlutusContract is similar in most areas except entity properties. Plutus-
Contract chose a different approach when categorizing property types. Prop-
erty types may be:

• A primitive property

• A reference property

• A dictionary property

• An enum property

DasContract crams these properties into one class, which results in awk-
ward situations, where some property members are useless depending on other
property members. It is counter-intuitive and requires a manual to know which
members are useful and useless in what cases.

Plutus contract chose to distinct primitive, reference, enum, and dictionary
properties resulting in proper OO design. No members are useless anymore.
Some members are not even needed since the distinction clears up certain
situations. Recursive structures are now possible in the case of dictionary

26

3.1. Plutus Contract data model

Figure 3.4: A UML class diagram of PlutusContract data models

property (for example, a dictionary of a dictionary of a dictionary). Enums,
references, and dictionaries now refer to their related entities by reference,
instead of ids, making them more accessible and more native to work with, as
stated in the introduction of this section.

PlutusContract properties provide support for the visitor pattern in the
case of need.

A UML class diagram of important data model classes can be seen in figure
number 3.4.

27

3. Proof-of-concept Plutus generator

Figure 3.5: A UML class diagram of PlutusContract processes

3.1.3 Processes

PlutusContract processes have been mostly reworked. The core inheritance
structure remains similar; however, the relationship structure is reinvigorated.

DasContract has processes with their respective lists of elements. These
elements from the point of the BPMN have connections. DasContract handles
these connections as extra SequenceFlow objects, where each SequenceFlow
knows its source and destination. Boundary events are also elements that
know only the id of an element they are attached to. This approach is more
data-oriented than object-oriented and shows noticeable annoyances – polluted
interfaces, algorithms, and other problems mentioned in the introduction of
this section.

PlutusContract reworks the way elements are sequenced together with an
undiluted OO approach. Every process contains the start event task. The
start event then references the next element in the line, which references the
next element in the line etc. The structure then becomes effortlessly recur-
sively traversable. Working and generating on such structures is simpler and
more native to OO programming. Task elements have their boundary events
referenced directly. The only discovered negative side of this structure is
difficult aggregating information from all elements – however, this has been
resolved with a recursive aggregating algorithm and its implementation for
potential future users. The process structure is described at a UML diagram
number 3.5.

28

3.1. Plutus Contract data model

Figure 3.6: A UML class diagram of PlutusContract process elements

DasContract has similar problems, as the data model properties, with
multi instances. DasContract tasks have members like LoopCardinality,
LoopCollection, and InstanceType, which are sometimes needed and some-
times useless, depending on the InstanceType value. This bears the same
hardships as in the case of multiple data model properties mushed inside one
object, mentioned in section number 3.1.2.

PlutusContract has extra multi-instance objects removing the problem
mentioned above in a proper OO manner, as modeled on a UML class di-
agram number 3.6.

3.1.4 PlutusContract summary

DasContract format is suitable for serialization and is supposed to be blockchain-
independent; however, this makes proper OO modeling for Plutus contract
generation rather difficult. Figure number 3.1 outlines a new bespoke data
model PlutusContract that has been designed and created as an intermediate
between the DasContract format and the generator.

The PlutusContract offers a series of significant advantages, such as:

• Some potential code updates become trivial

29

3. Proof-of-concept Plutus generator

• The ideal structure for the code generator

• No unwanted features

• Added wanted blockchain-specific features

3.2 Plutus Code models

In the case of this thesis, smart contract code generation is not an easy en-
deavor. Proper data models, interfaces, and code structures for Plutus gener-
ation need to be created to build clean and consistent generator algorithms.

An interface that resonates throughout the project is the INamable inter-
face, which contains only one property Name. In Haskell programming, many
namable elements exist, such as functions, types, constructors, variables, etc.
Usually, the name is the only dynamic thing needed to generate a code. For ex-
ample, only the name is needed to invoke a parameterless method. Or, names
of properties and names of their respective types are needed to generate a
data structure.

First and foremost, the result of the generation is supposed to be a string-
convertible code. The IStringable interface ensures using the InString
method that any implementations will be able to convert into a string.

The generator perceives generated code as Plutus code, even though the
code is essentially a Haskell code. Plutus code is perceived as a sequence of
Plutus lines.

IPlutusLine is an interface that contains an indent value and inherits
the IStringable interface. An abstract implementation of the IPlutusLine,
PlutusLine, provides bases for any one-line Plutus constructs, such as a Plu-
tus comment, Plutus signature, Plutus import, etc. The most used PlutusLine
implementation is PlutusRawLine, where any text is considered as a line. It
is the most used since many lines are unique or user-provided and can not be
generalized.

IPlutusCode is an interface that contains Append and Prepend meth-
ods for aggregating other IPlutusLine and IPlutusCode. IPlutusCode is
also IStringable. An implementation of IPlutusCode, PlutusCode, ac-
cepts an IEnumerable structure of IPlutusLines and is capable of convert-
ing them into a multi-lined code string. PlutusCode is a parent of many
useful structures, such as the Plutus function, various Plutus typeclass in-
stances, Plutus data structures, etc. Another implementation of IPlutusCode
is PlutusCodes. It accepts IEnumerable structure of IPlutusCode and is used
for appending/prepending procedures.

The entirety of Plutus code models are immutable structures to pro-
mote propper OO approach and prevent any cascading errors encountered by
modifying key properties, such as names.

Base Plutus models and interfaces can be seen in figure number 3.7.

30

3.2. Plutus Code models

Figure 3.7: A UML class diagram of Plutus code data models

3.2.1 Types

Since Haskell (Plutus) is type-safe, types need to be considered when modeling
and generating the resulting code [14]. The Plutus code data model looks at
types from three perspectives:

• Predetermined

• Predefined

• User-defined

Predetermined types are essential types that will exist in the resulting
Plutus code. For example, the Datum data type will indeed always eventually
exist; thus, it is predetermined. This serves as a binding glue for referencing
across multiple components. Especially datum is needed almost everywhere,
so instead of passing tons of arguments for type names or type objects, these

31

3. Proof-of-concept Plutus generator

Listing 3.1 Example of a Plutus type model
public abstract class PlutusPremadeType : INamable
{

public abstract string Name { get; }
}

public class PlutusContractDatum : PlutusPremadeType
{

public override string Name { get; } = "ContractDatum";

public static PlutusContractDatum Type { get; }
= new PlutusContractDatum();

}

Listing 3.2 Plutus list type model
public class PlutusList : PlutusPremadeType
{

public PlutusList(INamable innerType)
{

InnerType = innerType;
}

public INamable InnerType { get; }

public override string Name => $"[{InnerType.Name}]";

public static PlutusList Type(INamable innerType)
=> new PlutusList(innerType);

}

predetermined objects have been created and are available anywhere. A pre-
determined object is essentially a name carried in an OO approach, as seen
on listing number 3.1.

Predefined types are types that already exist, such as an Integer, a Bool,
a String, etc. They are modeled the exact same way as predetermined types
with an example on listing number 3.1. Some predefined types require other
types; for example, a list needs to be a list of something, as seen on listing
number 3.2.

User-defined types are types defined with the data or newtype keyword.
These keywords are very versatile, and covering all possible situations would
be too much effort. Two essential situations were identified and implemented:

32

3.2. Plutus Code models

Listing 3.3 Haskell example of an algebraic data type and a record data type
-- Algebraic data type
data ContractState =

MainProcessStart |
...
SuccessWithdrawalProcess SuccessWithdrawalProcess |
ContractFinished

deriving (Show, Generic, FromJSON, ToJSON)

-- Record data type
data Role = Role {

rName :: BuiltinByteString,
rDescription :: BuiltinByteString

} deriving (Show, Generic, FromJSON, ToJSON)

algebraic types and records. An algebraic type is a data type with several
constructors and their parameters. A record is a data type with one single
constructor and multiple parameters; however, functions that extract these
parameters are automatically generated using a special Haskell record syn-
tax [35]. An example of these types is at listing number 3.3. A UML class
diagram of their Plutus solutions can be found at figure 3.8.

Apart from these three categories, there are also types for miscellaneous
situations where the type is not easy to model and is simply written in string.
However, these situations are avoided as much as possible.

3.2.2 Functions

A purely functional language can not be developed without functions. Three
function use-cases have been modeled and used in the generation process:

• Function

• One-line function

• Guard function

Additionally, every function has a signature. The signature consists of a
name and parameter types.

A function is a multiline Plutus code, requiring a signature, parameter
names, and implementation Plutus lines.

A one-line function is a shortened version of the function, where the entire
function definition is on a single line.

Guard function uses the Haskell guard syntax.

33

3. Proof-of-concept Plutus generator

Figure 3.8: A UML class diagram of Plutus user-defined types

3.2.3 Typeclass instances

The generated code and its user-defined data types need to implement certain
type classes. For this purpose, several instance generators were thought out
and implemented.

The Plutus models currently support four instances. PlutusMakeLift and
PlutusUnstableMakeIsData are just one-line referrers to instance generation
functions inside a Plutus library. PlutusEq and PlutusDefault generate
equality and default value instances. These are directly derived from user-
defined data types.

The PlutusEq generates Eq instance for a Plutus record or Plutus algebraic
type. It uses a simple pattern to match each constructor and its values, as
pictured on listing number 3.4. The Eq must be marked with INLINABLE

34

3.3. Plutus contract generator

Listing 3.4 Haskell example of a records’ Eq instance
instance Eq Role where

{-# INLINABLE (==) #-}
Role a b == Role a' b' = (a == a') && (b == b')

Listing 3.5 Haskell example of a records’ Default instance
instance Default Role where

{-# INLINABLE def #-}
def = Role {

rName = "",
rDescription = ""

}

pragma to property compile into the Plutus Core (=blockchain code).
The PlutusDefault generates Default instance for a Plutus record or

Plutus algebraic type. It figures out the default value of a type and then
assigns it. If it needs to generate default value for an algebraic type, the
default constructor needs to be supplied. A default instance is pictured on
listing number 3.5. The Default must be marked with INLINABLE pragma to
property compile into the Plutus Core (=blockchain code).

Instance generators highlight the advantages of the proper OO approach
to Plutus code generation instead of imperatively appending strings together
– making these tools challenging to implement. Instances are an enormous
time saver and are very convenient.

3.3 Plutus contract generator

With PlutusContract data model – a data model suitable for Plutus contract
generation – and support models for Plutus code generation, a quality Plutus
contract generator could be built.

The base interface for any generator is ICodeGenerator with a single
method Generate. This method returns IPlutusCode.

The resulting product, capable of generating the entire Plutus contract, is
the PlutusContractGenerator. This generator consists of six other genera-
tors, each ensuring generation of different parts of the contract. These parts
are:

• PlutusContractPragmaGenerator generates pragma expressions for the
contract.

• PlutusContractModuleGenerator generates the module definition for
the contract.

35

3. Proof-of-concept Plutus generator

Figure 3.9: A UML class diagram of the Plutus generator

• PlutusContractImportsGenerator generates import expressions for the
contract.

• PlutusContractDataModelGenerator generates data models for the con-
tract, including phases, datum, forms, redeemers, users, and contract
parameter.

• PlutusContractOnChainGenerator generates code which is then com-
piled and run on the blockchain or is related to on-chain code.

• PlutusContractOffChainGenerator generates mostly endpoints for the
contract, which run inside users wallet.

The code is generated in a user-readable manner. Indentation and white
spaces are built to be similar to ”traditional” hand-made programs. Sections,
subsections, transitions, and even some code lines are well commented. The
resulting contract should be easily modifiable, as real hand-made contracts
were made as templates for the contract generator.

Relationships of generators are visualized as UML class diagram in figure
number 3.9.

36

3.3. Plutus contract generator

Listing 3.6 A snippet of the pragma generator code
public IPlutusCode Generate()
{

var pragmas = new PlutusCode(new List<IPlutusLine>()
{

new PlutusPragma(0, "LANGUAGE DataKinds"),
...
new PlutusPragma(0, "LANGUAGE TypeOperators"),
PlutusLine.Empty,
new PlutusPragma(0,

"OPTIONS_GHC -fno-warn-unused-imports"),
PlutusLine.Empty,

});

return pragmas;
}

3.3.1 Pragma generator

The pragma generator is static and trivial. It generates several helpful or
required pragma statement lines. A snippet of the pragma generator can be
seen at listing number 3.6.

3.3.2 Module generator

The Haskell module, where the contract is generated, has been named Plu-
tusContract. Haskell modules allow setting what elements of the modules are
exported (public). In the case of PlutusContract, everything has been set
public.

A proposition for setting public only certain elements is described in sec-
tion 5.3.5 with a description of why everything is currently set public.

A snippet of the module generator can be seen at listing number 3.7.

3.3.3 Imports generator

The imports generator is static and trivial. It generates required import
statement lines. A snippet of the import generator can be seen at listing
number 3.8.

3.3.4 Data model generator

The data model generator is responsible for multiple subsections of the con-
tract, primarily related to defining data types and operations with these data
types.

37

3. Proof-of-concept Plutus generator

Listing 3.7 A snippet of the module generator code
public IPlutusCode Generate()
{

var module = new PlutusCode(new List<IPlutusLine>()
{

new PlutusRawLine(0, "module PlutusContract"),
new PlutusRawLine(1, "(module PlutusContract)"),
new PlutusRawLine(1, "where"),

PlutusLine.Empty,
PlutusLine.Empty,

});

return module;
}

Listing 3.8 A snippet of the import generator code
public IPlutusCode Generate()
{

var imports = new PlutusCode(new List<IPlutusLine>()
{

new PlutusImport(0, "Control.Monad hiding (fmap)"),
new PlutusImport(0, "Data.Aeson (ToJSON, FromJSON)"),
...
new PlutusImport(0, "Plutus.V1.Ledger.Bytes (fromHex)"),
new PlutusImport(0, "Data.String"),
PlutusLine.Empty,

});

return imports;
}

38

3.3. Plutus contract generator

SequentialMultiInstance is a generated algebraic data type with two
constructors: ToLoop Int and LoopEnded. This data type is assigned to con-
tract phases with sequential multi-instance attached to them. It keeps the
state of the loop – if it is still running or if it already ended. The equal-
ity instance is also generated. Additional functions are generated for data
operations:

• nextLoop returns decreased multi-instance by one or sets it to the end.

• toSeqMultiInstance returns multi-instance based on the input number.

• toNextSeqMultiInstance combines the previous two functions.

Phases for the contract are generated. Firstly, all subprocesses are gen-
erated. Each subprocess is represented by an algebraic data type where each
constructor is a process elements’ name. If an element is also sequential-multi
instance, the constructor then contains the SequentialMultiInstance value.

After all subprocesses have been generated, a data type for the main pro-
cess is generated and named ContractState. The ContractState data type
additionally contains ContractFinished state to finish the contract and a
constructor for each subprocess and its states.

Equality instances are also generated for each subprocess and the main
process. The default instance is generated for the main process, where the
default constructor is set to the start event.

The datum for the contract is generated. Datum refers to the persis-
tent data model described in PlutusContract. Firstly, enums are generated.
Secondly, all entities in the data model are generated, except the root en-
tity. Entities are generated in the order defined by topological sort, where
reference property dependencies represent connections between nodes. This
ensures that a type referring to an entity is not defined earlier than the entity
itself, and by the nature of topological sort, it forbids any circular dependen-
cies between entities. At last, the datum (=root entity) is generated with
extra properties for keeping the current contracts’ state and call stack.

Equality instance and default instance are also generated for each enum
and entity.

Additional methods for the datum are generated:

• pushState that returns the datum with a new state in the call stack

• popState that returns a tuple of datum without the popped state in the
call stack and the popped state

User form models are generated, where each user form record has cor-
responding properties to its form. Equality instances are also generated for
each form.

39

3. Proof-of-concept Plutus generator

Redeemers are generated. There is a redeemer constructor for each user
activity with its respective form. Additional redeemers are always generated,
specifically the TimeoutRedeemer for confirming user task timeouts and the
ContractFinishedRedeemer for requesting the end of the contract. Equality
instance is also generated for the redeemer.

User roles and users are generated with respective search methods for
easy access. Equality instances and default instances are also generated for
user roles and users. Additionally, a list of users and roles is generated.

Contract parameter is generated. Currently, the contract parameter
contains a list of users, a list of roles, a default user, a default role, and a
thread token.

3.3.5 On-chain generator

On-chain generator firstly generates user form validations. Implementa-
tions for the user form validations are extracted from the user activity vali-
dation codes. Form validation is generated as a pattern matching, where the
redeemer is matched. The default validation is always False.

On-chain generator then generates two major sections: non-transactional
transitions and transactional transitions.

The generator classifies process elements into three categories:

• Transactional (Tx)

• Non-Transactional (NonTx)

• Implicit

Transactional (Tx) states require a blockchain transaction to enter the
state. The current list of Tx states is:

• end event in the root process – ends the entire contract and requires a
transaction to release any unused funds if necessary

• user activity that is not a sequential-multi instance – user activities
require submission of forms and/or funds which inherently needs a tran-
saction

• timer boundary events – requires a transaction in order to ensure a time
constraint

Non-Transactional (NonTx) states do not require a blockchain transac-
tion to enter the state. They are executed before and after every transaction –
every time a transaction is submitted, all possible Non-Transactional (NonTx)
transitions are applied seamlessly. The current list of NonTx states is:

40

3.3. Plutus contract generator

Figure 3.10: A UML class diagram of the Tx type visitor

• Branching exclusive gateway

• Merging exclusive gateway

• End event which is not in the main process

• Call activity

• User activity which is a sequential multi-instance

• Script activity

Implicit states currently include only the start event. These states are
already set without any need to interfere.

This categorization classifies states based on the entry to the state, not
what happens after or before. For example, all sequential multi-instance el-
ements are always NonTx, because the entry to the state is NonTx. It does
not tell anything about what happens in the loop or whether the iterations
are transactional or non-transactional.

41

3. Proof-of-concept Plutus generator

The categorization dramatically simplifies the generation of transitions
since normally there would be n possible output connections from every el-
ement – which is n2 possible situations to handle. This limits the number
of potential cases to 3n. In reality, it is only 2n since implicits are, by their
nature, ignored. Additionally, most of the connections behave precisely the
same, decreasing the number of different cases even further.

The on-chain generator uses two visitors to recursively traverse the entire
process and collect the resulting code for transitions. Every visited element
generates and returns a code appended with a visit of the next element.

One transition visitor is strictly a NonTx visitor. NonTx visits are always a
simple datum transformation; however, there are more NonTx elements. The
other transition visitor is strictly a Tx visitor. Tx visits are more complicated
since they provide more options, such as value transfer, timeouts, etc.

After transitions, an extra validator is generated. The validator handles
additional custom validation using the GlobalValidation code line.

An end function that determines the end of the contract is also generated.
Contract ends when the state reaches ContractFinished.

A state machine that drives this contract is generated. The generated
Plutus smart contract uses a state machine library to model states and tran-
sitions since the process flow is very similar to that of a state machine.

Additional boilerplate functions are generated.

3.3.6 Off-chain generator

Off-chain generator firstly generates a series of useful methods:

• mapErr is a wrapper and helps to format errors

• createContractParam accepts a thread token and creates a Contract
monad with a new ContractParam

• initContractParam creates a thread token and continues to call the
createContractParam function

• onChainDatum retrieves the current on-chain datum as a Contract monad
using a state machine client

• onChainValue retrieves the current on-chain value as a Contract monad
using a state machine client

• logOnChainDatum retrieves the on-chain datum and logs it

• validateInputForm validates an input form in a redeemer

These monad functions serve the next section of the off-chain generation
– endpoints. Endpoints are functions that perform a task on the contract.

42

3.3. Plutus contract generator

Figure 3.11: A UML class diagram of the transition generators

43

3. Proof-of-concept Plutus generator

Listing 3.9 A snippet of an endpoint
withdrawTaskEndpoint :: (WithdrawTaskForm, ThreadToken)

-> Contract w s Text ()
withdrawTaskEndpoint (form, threadToken) = do

logInfo @String "withdrawTaskEndpoint called"

-- Client setup
contractParam <- createContractParam threadToken
let client = contractClient contractParam
logInfo @String "--- client created"

-- Create redeemer
let redeemer = WithdrawTaskRedeemer form

-- Validate form
validateInputForm threadToken client redeemer

-- State transition
void $ mapErr $ runStep client redeemer
logOnChainDatum client
logInfo @String "--- transition finished"

logInfo @String "withdrawTaskEndpoint ended"

An endpoint first initializes a client state machine, which then can create and
submit a new transaction to the blockchain.

Firstly, the contract must be initialized using the initialization endpoint.
This will create the starting transaction in its implicit state. The initialization
endpoint shares a thread token, which identifies the process and is essentially
an NFT.

Currently, there is one endpoint for each user task. User task endpoints
accept the identification thread token and a submission form. Then, the state
machine client is set up and fed the appropriate redeemer, which results in a
new submitted transaction if circumstances are correct (the form is valid, the
state of the contract is proper, etc.). An example of an endpoint can be seen
at listing number 3.9.

Additionally, endpoints for clearing timeouts and finishing the contract are
created.

After all endpoints are created, the contracts’ schema is generated. The
contract schema is just a combined type of all endpoints.

The final matter of contract generation is the endpoints variable, which

44

3.4. Testing

returns a Contract monad containing all endpoints (also Contract monads)
”together”. This variable represents the entire contract with all of its end-
points, and all endpoint calls are executed on this monad.

3.4 Testing

Testing is a vital part of any development. The proof-of-concept generator
has been thoroughly tested; however, many of these tests are only systematic
manual tests. The DasContract format is still evolving, and the expected
time to develop adaptable and practical unit tests would be enormous. A
”playground” contract has been designed to contain most of the implemented
features in the generator to serve as a quicker manual-testing tool.

The DasContract-to-PlutusContract converter has been tested manually
on exhaustive series of contracts and situations, including the playground
contract. The convertor is rudimentary, and unit tests could be easily added
in the future. However, this endeavor would be considerably time-consuming.

As a codebase for code generating, the Plutus code models have respective
unit tests implemented. These models are vital for the more complex generator
components, and any bugs occurring during the development process would
cause further damage and time-consuming bug searches. Creating automated
unit tests for these models has been a time-saver.

The proof-of-concept generator components have been tested manually and
systematically. Unit testing of these components would require considerable
effort and time, as described in section number 5.3.2.1.

3.5 NuGets

The Plutus smart contract generator is separated into two projects:

• DasContract.Blockchain.Plutus.Data contains the PlutusContract
data model and the DasContract-to-PlutusContract convertor

• DasContract.Blockchain.Plutus contains all generator-related code

Both these projects have their respective NuGets published on nuget.org.
Each of these projects targets the .NET Standard 2.1 platform. This plat-

form is widely supported, as stated by Microsofts’ documentation: ”Most
general-purpose libraries should not need APIs outside of .NET Standard 2.0.
.NET Standard 2.0 is supported by all modern platforms and is the recom-
mended way to support multiple platforms with one target.” [36]. The .NET
Standard 2.1 will also be supported in all future .NET releases [36].

45

https://nuget.org/

3. Proof-of-concept Plutus generator

Figure 3.12: A UML class diagram of the endpoints generator

46

3.6. Summary

3.6 Summary

Plutus contracts from the DasContract format are generated in two steps:

• DasContract is converted into PlutusContract, which is a more suitable
format with a series of significant benefits

• PlutusContract is converted into Plutus code using Plutus generation
tools

The PlutusContract data model is in many ways similar to DasContract,
except few key differences. One significant difference is better, more concise
OO design in data model properties and process elements. The other is an
entirely different approach to a process model, where process elements are
built recursively instead of linearly. This greatly simplifies the generation
process, which is inherently recursive. There are other minor benefits, such as
more straightforward changes to the generating process without the need for
complex know-how.

The Plutus contract generator has a solid foundation of Plutus generation
tools and interfaces. Fundamental models are recursive visitors capable of
traversing entire processes and generating any code using a reliable and clean
code. There are three of these visitors: Tx transitions visitor, NonTx tran-
sitions visitor, and endpoints visitor. These visitors are the most influential
and impressive code of this thesis.

Codes for both steps are in their respective, highly compatible packages
on the NuGet platform.

Testing of the generator is done primarily by systematic manual testing
due to the evolving nature of the DasContract format, the testing difficulty
of some areas, and the fact that this project is just a proof-of-concept, not a
ready-made production product.

47

Chapter 4
Case study

Development and testing contracts often do not fully reflect reality. A real-life
practical smart contract has been designed, implemented, and generated to
explore the actual practicality of the Plutus smart contract generator.

The case study smart contract is a locking contract. The script (=contract)
locks any funds from a person. These funds can only be retrieved if a defined
deadline has passed by a predefined person – it may be the same person or a
different one. A real-life application of this contract would be, for example,
locking funds for ones’ children to retrieve when they get older.

4.1 Users

There are two users in this contract:

• The one who locks the funds

• The one who retrieves the funds

There is no need for roles in this contract.
Both personas can be the same; there are no limits for setting their wallet

public keys.

4.2 Data model

The case-study contract does not require other properties than the following:

• lockedLovelace states the amount of Lovelace that will or has been
locked

• lockDeadline states the deadline time in POSIX time

49

4. Case study

Figure 4.1: A snippet of a DasContract editor with the case-study contract –
users

• messages is an array of informative messages or logs for potentially
better user experience

4.3 Process

The case-study contract contains four processes.
The setup subprocess contains a user activity with a form for setting

the locked amount and the deadline. It also includes a script task to log the
successful finish of the setup.

The successful withdrawal subprocess contains a user task to execute
the withdrawal of funds from the contract. It also contains a script task to
log the successful withdrawal.

50

4.4. Testing

Listing 4.1 XML definition of the case-studies’ data model
<DataTypes>

<Entity Id="Root" Name="Datum" IsRootEntity="true">
<Property Id="lockedLovelace" Name="lockedLovelace"

IsMandatory="true" PropertyType="Single"
DataType="Int" />

<Property Id="lockDeadline" Name="lockDeadline"
IsMandatory="true" PropertyType="Single"
DataType="DateTime" />

<Property Id="messages" Name="messages"
IsMandatory="true" PropertyType="Collection"
DataType="String" />

</Entity>
</DataTypes>

Figure 4.2: A snippet of a DasContract editor with the case-study contract –
data model

The failed unlock subprocess records any unsuccessful withdrawal at-
tempts.

The main process handles the essential structure and flow of the con-
tract with the setup, unlock loop, timer condition, and eventual successful
withdrawal.

4.4 Testing

An emulator program has been set up to test the case-study smart contract.
The emulator is an in-memory simulation of a real blockchain.

The emulator monad sets up simulated wallets and invokes contracts end-
points. A heap of logs is then outputted to inform the user about inner
workings and statuses.

The simulation test was a success, and everything ended up as it should
have.

51

4. Case study

Figure 4.3: BPMN of the case-study contract

52

4.4. Testing

Listing 4.2 Case-study emulator trace test
traceLockFunds :: EmulatorTrace ()
traceLockFunds = do

Extras.logInfo $ show "Trace started"

wallet1 <- activateContractWallet (knownWallet 1) endpoints
let deadline = slotToEndPOSIXTime def 11

--Initialize
callEndpoint @"initializeContract" wallet1 ()
threadToken <- getExistingThreadToken wallet1
void $ Emulator.waitNSlots 3

--Set funds and deadline
callEndpoint @"setAmountAndDeadlineTask" wallet1

(SetAmountAndDeadlineTaskForm {
lockedLovelaceAmount = 10000000,
lovelaceLockDeadline = deadline

}, threadToken)
void $ Emulator.waitNSlots 3

...

--Withdraw
callEndpoint @"withdrawTask" wallet1

(WithdrawTaskForm, threadToken)
void $ Emulator.waitNSlots 3

-- Finish
callEndpoint @"finishContract" wallet1 threadToken
void $ Emulator.waitNSlots 3

53

4. Case study

4.5 Results and summary

A case-study smart contract has been designed, modeled, and implemented
to test the Plutus smart contract generator on a real-life example.

The case-study contract is a locking contract capable of safekeeping locked
funds for a set amount of time. The parameters are fully customizable, along
with user wallets.

The case-study test ended up as a success, and a real-life applicable smart
contract has been successfully completed and generated into the Plutus pro-
gramming language.

54

Chapter 5
Plutus Generator state and

future development

Most Plutus contract generator features were successfully implemented; how-
ever, a series of key features are currently missing. This chapter lists the
implemented features and their functionality. It also lists the missing fea-
tures, reasons for their exclusion, and proposes further research to implement
them.

5.1 Implemented features

The proof-of-concept Plutus smart contract generator implemented the fol-
lowing DasContract features:

• Complete users and roles information generating and constraints

• Complete data model generating

• Full support for processes and subprocesses along with call activities

• XOR gateway branching

• Sequential multi-instances (loops)

• Script activities with custom datum transformation scripts

• User activities with form generating, custom form validation, scripts for
value transfer, scripts for datum transformation, and custom constraints

• Timer boundary event with a preset date as a timeout

These features are not thoroughly tested and are not production-ready.
However, they are stable with no known bugs and were capable of creating
several fully working smart contracts, including a real-life case study.

55

5. Plutus Generator state and future development

5.2 Missing features

Since the Plutus smart contract generator is just a proof-of-concept, a series
of features were not implemented. Some of them are not immediately possible
due to the properties of the Cardano blockchain, and some require further
extensive research or complicated implementations.

• Duration type timer for the timer boundary event has not been imple-
mented since it is impossible to reliably retrieve the current time on the
blockchain due to the nature of Cardano, which disables this feature,
unless further research finds a workaround, for example, with oracles.

• Form data binding has not been implemented due to the difficulty of
generating code since the immutable nature of Haskell records is not
well suited for data-binding procedures.

• Loop property for multi-instances has not been implemented due to the
complicated nature of compiling selector expressions and the nature of
Haskell.

• Business rule tasks have not been implemented due to their overcompli-
cated nature. A DMN converter is now under research [29].

• Parallelism has not been implemented due to its complicated nature.
Further research is required. Parallelism includes the parallel gateway
and parallel multi-instances.

5.3 Future research and development

The proof-of-concept Plutus generator has a long journey with unknown ob-
stacles ahead if it is to be a production-ready piece of software. However,
there are immediate steps that should be taken into consideration for further
research.

5.3.1 Bindings

Data bindings are a non-essential feature; however, they significantly ease the
development complexity, which is what essentially DasContract does.

The first problem with data bindings is the immutable nature of Haskell/-
Plutus data structures. Immutable structures are not capable of data binding.
They can only be created with an updated value. There is an opportunity to
generate function(s) to update the datum with bindings from a form.

If not for lists, dictionaries, and entity references, generating binding func-
tions would be simple. These greatly complicate the generation process and
the binding syntax. Thus, not only a complex interpreter for binding notation

56

5.3. Future research and development

has to be implemented, but also a challenging generator for binding functions
has to be implemented.

An interpreter for binding notation would also open doors for implementing
loop properties for multi-instances.

To develop the data binding feature well and concisely, a research endeavor
has to be undergone.

5.3.2 Testing

Testing is undoubtedly a crucial step toward excellent software. Currently,
dozens of unit tests have been implemented for Plutus code generation tools,
such as for instance generators, data structure generators, line generators
(comments), etc. It is imperative to continue testing the application and
make tests for the correctness of more essential and complicated modules.

5.3.2.1 Unit testing

An essential important step forward would be creating automated unit test
for generating tools, especially transition, and endpoint generators.

There are dozens, even hundreds, of complicated situations which need to
be tested. A more advanced testing framework needs to be created to allow
solid unit-testing of these complicated generating modules. It is also crucial
to make these unit tests well designed for future changes, as implementations
or formatting of the resulting text may differ a bit – unit tests need to be
simply fixable; otherwise they will become more of a burden than a help.

Unit testing should not be limited to the generator. More case-study
contracts and tools should be made to test the generated Haskell code and its
validity. This requires even more tools and redesigns to be made; however, it
is critical.

Case-study contracts should also be tested on the Cardano testnet or even
the production Cardano blockchain. Unfortunately, there are money to be
involved (fees at minimum), and these tests should be conducted only, and
only if at least unit tests thoroughly test the contracts.

5.3.3 Emulator generator

A first step in testing a contract is running an emulator and seeing the resulting
logs, which explains what happens on the emulated blockchain.

These emulator programs can be automatically generated along with the
smart contract, at least to some extent – the only problem is not knowing
which paths to take in the process.

A fluent API Plutus smart contract emulator generator could be created
to complement the Plutus generator and encourage testing. It is undoubtedly
better to be able to quickly generate these emulators rather than painstakingly

57

5. Plutus Generator state and future development

create them by hand and manually update them with every bit of change to
the Contracts’ process.

5.3.4 Parallelism

Parallelism has been left out of the current Plutus smart contract generator
implementation, primarily due to the lack of research and complex implemen-
tation.

There are currently two threads of thought on the parallel implementation:

• ”Fake” multi-state parallelism

• ”True” parallelism

The ”fake” parallelism is based on keeping track of multiple states. Cur-
rently, only one state is stored, the current state, which is capable of transi-
tioning to other states. Expanding this to an array of states could achieve a
parallel behavior without extra significant effort. However, this is comparable
to a single-threaded CPU running a multi-threaded program. From the pro-
grams’ perspective, it runs multiple threads but in reality, does not, similar
to the contract.

An example when this implementation will show its weaknesses is an im-
mense amount of users trying to use the contract simultaneously. By nature,
Cardano is capable of moving one contract by one Tx state in one slot, which
is currently a timeframe of one second (maximum speed). If, for example,
an election contract for millions of people was open, and two contract states
would be parallelly available – a vote or a stop by an admin – the stop would
be very hard to invoke since all the millions of people would constantly be
voting, depleting the one slot. Additionally, the user experience for the voting
contract may be horrid since people may be unable to vote due to the limited
window.

The ”real” implementation would be truly forking the contract into mul-
tiple EUTXOs. However, this brings tons of issues, especially with synchro-
nizing the data model. Currently, the DasContract format presumes that the
data model is available everywhere, every time, always up to date [29]. Up-
dating a single thread would mean updating all; however, this presents the
same issue as described above.

One possible solution would be to break the DasContracts’ rules and allow
merging parallel gateway to contain merging scripts or create a smart datum
merger. Another solution would be to enable the DasContract developer to
choose the approach since the ”fake” parallelism is easier to implement for
everyone and make the ”real” parallelism an extra feature.

58

5.4. Summary

5.3.5 PlutusContract module

The entire Plutus smart contract code is currently inside a PlutusContract
module, with everything publicly visible.

More use-cases and more research are required to determine what is best
to share and what not to share.

Additionally, the resulting code could be separated into multiple packages
as not to be thousands of lines long with moderately complex contracts.

5.3.6 Contracts’ efficiency

The efficiency of the Plutus smart contract generator is currently acceptable.
It is mostly linear in complexity, and the generation process can take a few
seconds max with hundreds of BPMN activities.

The efficiency of the generated Plutus code should be as high as possible
since the complexity of the code directly affects transaction fees. Efficien-
cies such as cutting an unnecessary transition can improve execution speed.
However, these improvements are complicated to map out and implement,
especially since many situations can occur and the contracts’ business logic
must remain intact.

5.3.7 Yoroi Wallet Connector

It would be appropriate to assume that the average blockchain user cannot
set up and submit their transactions for generated contracts. A proper UI
environment with a connection to a users’ wallet is one of the ways to pro-
vide smart contracts to everyday users. Of these wallet environments, one
potentially suitable for this task is Yoroi.

”Yoroi is a light wallet for Cardano. It’s simple, fast and secure. Yoroi
is an Emurgo product, engineered by IOHK. And it follows best practices for
software in the industry including a comprehensive security audit. [...] Yoroi
looks to be a day to day wallet for a Cardano user.” [37]

Future research with a generator that connects contracts to the Yoroi light
wallet with the newly released Yoroi dApp Connector to Cardano would be a
significant step toward providing DasContract services to everyday users [38].

5.4 Summary

The Plutus smart contract generator implemented most features, except par-
allelism, data binding, business rule tasks, duration timer, and other miscel-
laneous components. Unimplemented features either require ample time to
implement or extensive research.

59

5. Plutus Generator state and future development

Parallelism should be among the earliest additions, as it enables more
complex and powerful contracts. There are several options to approach par-
allelism, which need to be thoroughly researched and carefully implemented.

Testing is a vital part of development. The current generator contains a
few unit tests; however, a full-scale comprehensive testing framework should
be made to test the immense amount of possible situations. Smart contracts
should have the utmost trust and always work as intended.

60

Conclusion

The objective of this thesis was to review the Cardano blockchain and its
programming language Plutus and analyze, design, and implement a proof of
concept generator from DasContract format into Plutus smart contract.

Analysis, design, and a proof of concept implementation of the Plutus
smart contract generator have been successfully completed, and the funda-
mental structure of the code has been described. One case study of a funds
locking smart contract has been created to demonstrate the usefulness and
proper functioning of the generator.

Although the Plutus smart contract generator is working, it still lacks sev-
eral key features of the DasContract format. Mainly, it is parallelism and
data-binding. These features require further research and extensive program-
ming effort. Additionally, exhaustive testing needs to be undergone to ensure
the validity of the generators’ code.

The DasContract format can now create contracts for the Ethereum net-
work and, newly, the Cardano network. Some minor difficulties and blockchain-
specific features with the DasContract have been found, though nothing that
would make the creation of more generators impossible. Creating the second
generator for a fundamentally different blockchain indicates that the Das-
Contract format is solid and abstract enough to support a wide-scale amount
of other blockchain networks.

61

Bibliography

1. SKOTNICA, Marek; PERGL, Robert. Das Contract - A Visual Do-
main Specific Language for Modeling Blockchain Smart Contracts. In:
AVEIRO, David; GUIZZARDI, Giancarlo; BORBINHA, José (eds.). Ad-
vances in Enterprise Engineering XIII. Lisbon, Portugal: Springer Inter-
national Publishing, 2019, pp. 149–166. isbn 978-3-030-37932-2. Avail-
able from doi: 10.1007/978-3-030-37933-9_10.

2. DROZDÍK, Martin. Open-source prostřed́ı pro návrh právńıch proces̊u
za použit́ı frameworku Blazor. 2019 [online]. 2020, vol. 2019 [visited on
2022-02-07]. Available from: https://dspace.cvut.cz/handle/10467/
88271. Accepted: 2020-06-19T22:51:49Z Publisher: České vysoké učeńı
technické v Praze. Vypočetńı a informačńı centrum.

3. Cardano is a decentralized public blockchain and cryptocurrency project
and is fully open source. [Cardano] [online] [visited on 2022-03-21]. Avail-
able from: https://cardano.org/.

4. BI-BEZ Lecture #6 - RSA, kryptografie s veřejným kĺıčem, DSA, El-
Gamal̊uv algoritmus. Ve spol. s ING. LÓRENCZ, Róbert prof. 2019.
Available also from: https://courses.fit.cvut.cz/BI-BEZ/lectures.
html.

5. BI-BEZ Lecture #5 - Hašovaćı funkce, MD5, SHA-x, HMAC. Ve spol.
s ING. LÓRENCZ, Róbert prof. 2019. Available also from: https://
courses.fit.cvut.cz/BI-BEZ/lectures.html.

6. LARS BRÜNJES. Plutus Pioneer Program - Iteration #2 - Lecture #7
[online]. 2021 [visited on 2022-02-08]. Available from: https://www.
youtube.com/watch?v=uwZ903Zd0DU.

7. NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem [online]. 2019 [visited on 2020-04-07]. Available from: http://www.
bitcoin.org/bitcoin.pdf.

63

https://doi.org/10.1007/978-3-030-37933-9_10
https://dspace.cvut.cz/handle/10467/88271
https://dspace.cvut.cz/handle/10467/88271
https://cardano.org/
https://courses.fit.cvut.cz/BI-BEZ/lectures.html
https://courses.fit.cvut.cz/BI-BEZ/lectures.html
https://courses.fit.cvut.cz/BI-BEZ/lectures.html
https://courses.fit.cvut.cz/BI-BEZ/lectures.html
https://www.youtube.com/watch?v=uwZ903Zd0DU
https://www.youtube.com/watch?v=uwZ903Zd0DU
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

Bibliography

8. IOHK. Cardano Docs [Cardano] [online] [visited on 2022-02-07]. Available
from: https://docs.cardano.org/.

9. Ethereum development documentation [ethereum.org] [online]. 2021 [vis-
ited on 2022-02-08]. Available from: https://ethereum.org.

10. LARS BRÜNJES. Plutus Pioneer Program - Iteration #2 - Lecture #1
[online]. 2021 [visited on 2022-02-08]. Available from: https://www.
youtube.com/watch?v=_zr3W8cgzIQ.

11. Understanding the Extended UTXO model [online] [visited on 2022-02-
08]. Available from: https : / / docs . cardano . org / 10 - plutus / 02 -
eutxo-explainer/.

12. HaskellWiki [online] [visited on 2022-03-21]. Available from: https://
wiki.haskell.org/Haskell.

13. HUDAK, Paul. Conception, evolution, and application of functional pro-
gramming languages. ACM Computing Surveys [online]. 1989, vol. 21, no.
3, pp. 359–411 [visited on 2022-03-21]. issn 0360-0300, issn 1557-7341.
Available from doi: 10.1145/72551.72554.

14. Haskell Language [online] [visited on 2022-03-21]. Available from: https:
//www.haskell.org/.

15. LARS BRÜNJES. Plutus Pioneer Program - Iteration #2 - Lecture #4
[online]. 2021 [visited on 2022-02-08]. Available from: https://www.
youtube.com/watch?v=g4lvA14I-Jg.

16. Why use Cardano? [Online] [visited on 2022-03-19]. Available from: https:
//docs.cardano.org/03-new-to-cardano/03-why-use-cardano/.

17. Input Output [IOHK] [online] [visited on 2022-03-19]. Available from:
https://iohk.io/en/technology/.

18. Ouroboros [online] [visited on 2022-03-19]. Available from: https : / /
cardano.org/ouroboros/#proof-of-stake.

19. Cardano nodes [online] [visited on 2022-03-19]. Available from: https:
//docs.cardano.org/03-new-to-cardano/05-cardano-nodes/.

20. About Cardano - Understanding Consensus [online] [visited on 2022-
03-19]. Available from: https://cardano-foundation.gitbook.io/
stake-pool-course/lessons/introduction/about-cardano#slot-
leader-election.

21. Learn about native tokens [online] [visited on 2022-03-20]. Available from:
https://docs.cardano.org/native-tokens/learn.

22. LARS BRÜNJES. Plutus Pioneer Program - Iteration #2 - Lecture #5
[online]. 2021 [visited on 2022-02-08]. Available from: https://www.
youtube.com/watch?v=SsaVjSsPPcg.

64

https://docs.cardano.org/
https://ethereum.org
https://www.youtube.com/watch?v=_zr3W8cgzIQ
https://www.youtube.com/watch?v=_zr3W8cgzIQ
https://docs.cardano.org/10-plutus/02-eutxo-explainer/
https://docs.cardano.org/10-plutus/02-eutxo-explainer/
https://wiki.haskell.org/Haskell
https://wiki.haskell.org/Haskell
https://doi.org/10.1145/72551.72554
https://www.haskell.org/
https://www.haskell.org/
https://www.youtube.com/watch?v=g4lvA14I-Jg
https://www.youtube.com/watch?v=g4lvA14I-Jg
https://docs.cardano.org/03-new-to-cardano/03-why-use-cardano/
https://docs.cardano.org/03-new-to-cardano/03-why-use-cardano/
https://iohk.io/en/technology/
https://cardano.org/ouroboros/#proof-of-stake
https://cardano.org/ouroboros/#proof-of-stake
https://docs.cardano.org/03-new-to-cardano/05-cardano-nodes/
https://docs.cardano.org/03-new-to-cardano/05-cardano-nodes/
https://cardano-foundation.gitbook.io/stake-pool-course/lessons/introduction/about-cardano#slot-leader-election
https://cardano-foundation.gitbook.io/stake-pool-course/lessons/introduction/about-cardano#slot-leader-election
https://cardano-foundation.gitbook.io/stake-pool-course/lessons/introduction/about-cardano#slot-leader-election
https://docs.cardano.org/native-tokens/learn
https://www.youtube.com/watch?v=SsaVjSsPPcg
https://www.youtube.com/watch?v=SsaVjSsPPcg

Bibliography

23. Learn about Plutus [online] [visited on 2022-03-21]. Available from: https:
//docs.cardano.org/10-plutus/01-learn-about-plutus/.

24. Transaction costs and determinism [online] [visited on 2022-03-21]. Avail-
able from: https://docs.cardano.org/10-plutus/11-transaction-
costs-determinism/.

25. LARS BRÜNJES. Plutus Pioneer Program - Iteration #2 - Lecture #2
[online]. 2021 [visited on 2022-02-08]. Available from: https://www.
youtube.com/watch?v=sN3BIa3GAOc.

26. R, Manoj P. Most common smart contract bugs of 2020 [Solidified] [on-
line]. 2020-11-30 [visited on 2022-03-21]. Available from: https://medium.
com/solidified/most- common- smart- contract- bugs- of- 2020-
c1edfe9340ac.

27. SKOTNICA, Marek; FRAIT, Jan; KLICPERA, Jan; DROZDÍK, Mar-
tin; ONDŘEJ, Šelder. CCMiResearch/DasContract [GitHub] [online] [vis-
ited on 2022-02-19]. Available from: https://github.com/CCMiResearch/
DasContract.

28. FRAIT, Jan. Generating Ethereum Smart Contracts from DasContract
Language. 2020 [online]. [N.d.] [visited on 2022-02-19]. Available from:
https://dspace.cvut.cz/handle/10467/90034.

29. SKOTNICA, Marek. Personal conversation: DasContract language. Praha,
2022.

30. Business Process Model & Notation™ (BPMN™) — Object Management
Group [online] [visited on 2022-03-17]. Available from: https://www.
omg.org/bpmn/.

31. ANČINEC, Petr. Domain-Specific Languages for Off-chain UI in De-
centralized Applications [online]. 2021 [visited on 2022-02-19]. Available
from: https : / / dspace . cvut . cz / handle / 10467 / 94542. Accepted:
2021-06-03T22:52:43Z Publisher: České vysoké učeńı technické v Praze.
Vypočetńı a informačńı centrum.

32. Decision Model and Notation™ (DMN™) — Object Management Group
[online] [visited on 2022-03-18]. Available from: https://www.omg.org/
dmn/.

33. Finite State Machines — Brilliant Math & Science Wiki [online] [visited
on 2022-03-22]. Available from: https://brilliant.org/wiki/finite-
state-machines/.

34. Call stack - MDN Web Docs Glossary: Definitions of Web-related terms
— MDN [online] [visited on 2022-03-22]. Available from: https : / /
developer.mozilla.org/en-US/docs/Glossary/Call_stack.

65

https://docs.cardano.org/10-plutus/01-learn-about-plutus/
https://docs.cardano.org/10-plutus/01-learn-about-plutus/
https://docs.cardano.org/10-plutus/11-transaction-costs-determinism/
https://docs.cardano.org/10-plutus/11-transaction-costs-determinism/
https://www.youtube.com/watch?v=sN3BIa3GAOc
https://www.youtube.com/watch?v=sN3BIa3GAOc
https://medium.com/solidified/most-common-smart-contract-bugs-of-2020-c1edfe9340ac
https://medium.com/solidified/most-common-smart-contract-bugs-of-2020-c1edfe9340ac
https://medium.com/solidified/most-common-smart-contract-bugs-of-2020-c1edfe9340ac
https://github.com/CCMiResearch/DasContract
https://github.com/CCMiResearch/DasContract
https://dspace.cvut.cz/handle/10467/90034
https://www.omg.org/bpmn/
https://www.omg.org/bpmn/
https://dspace.cvut.cz/handle/10467/94542
https://www.omg.org/dmn/
https://www.omg.org/dmn/
https://brilliant.org/wiki/finite-state-machines/
https://brilliant.org/wiki/finite-state-machines/
https://developer.mozilla.org/en-US/docs/Glossary/Call_stack
https://developer.mozilla.org/en-US/docs/Glossary/Call_stack

Bibliography

35. Making Our Own Types and Typeclasses [online] [visited on 2022-03-25].
Available from: http://learnyouahaskell.com/making- our- own-
types-and-typeclasses.

36. GEWARREN. .NET Standard [online] [visited on 2022-03-27]. Available
from: https://docs.microsoft.com/en-us/dotnet/standard/net-
standard.

37. Yoroi - Light Wallet for Cardano [online] [visited on 2022-04-11]. Avail-
able from: https://yoroi-wallet.com/.

38. Yoroi Wallet’s dApp Connector Now Available for Cardano Ecosystem
[Emurgo] [online] [visited on 2022-04-11]. Available from: https : / /
emurgo.io/blog/yoroi-wallets-dapp-connector-now-available-
for-cardano-ecosystem.

66

http://learnyouahaskell.com/making-our-own-types-and-typeclasses
http://learnyouahaskell.com/making-our-own-types-and-typeclasses
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://yoroi-wallet.com/
https://emurgo.io/blog/yoroi-wallets-dapp-connector-now-available-for-cardano-ecosystem
https://emurgo.io/blog/yoroi-wallets-dapp-connector-now-available-for-cardano-ecosystem
https://emurgo.io/blog/yoroi-wallets-dapp-connector-now-available-for-cardano-ecosystem

Appendix A
Acronyms

BPMN Business Process Model and Notation.

DMN Decision Model and Notation.

EUTXO Extended Unspent Transaction Output.

FT Fungible Token.

I/O Input/Output.

LIFO Last In – First Out.

NFT Non-Fungible Token.

NonTx Non-Transactional.

OO Object-Oriented.

Tx Transactional.

UI User Interface.

UML Unified Modeling Language.

UTXO Unspent Transaction Output.

XML Extensible Markup Language.

67

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

case-study the case study source files
application................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

69

	Introduction
	Motivation
	Problem statements
	Objectives
	Structure and methodology

	Review of the Cardano blockchain
	Relevant blockchain cryptography
	Blockchain technology
	UTXO
	EUTXO
	Haskell
	Cardano
	The consensus algorithm
	Native tokens
	Plutus

	Summary

	Review of the DasContract format
	User definition
	Data model definition
	Process definition
	Evaluation tools
	Summary

	Proof-of-concept Plutus generator
	Plutus Contract data model
	Users
	Data model
	Processes
	PlutusContract summary

	Plutus Code models
	Types
	Functions
	Typeclass instances

	Plutus contract generator
	Pragma generator
	Module generator
	Imports generator
	Data model generator
	On-chain generator
	Off-chain generator

	Testing
	NuGets
	Summary

	Case study
	Users
	Data model
	Process
	Testing
	Results and summary

	Plutus Generator state and future development
	Implemented features
	Missing features
	Future research and development
	Bindings
	Testing
	Unit testing

	Emulator generator
	Parallelism
	PlutusContract module
	Contracts' efficiency
	Yoroi Wallet Connector

	Summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

