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Abstrakt

Algoritmy označované jako anytime slouž́ı k produkováńı aproximativńıch
výsledk̊u, jejichž kvalita se s výpočetńım časem zlepšuje. Tato diplomová
práce se zaměřuje na aplikaci anytime algoritmů v úlohách strojového učeńı za
využit́ı metody auto-sizing, která umožňuje efektivńı prořezáváńı komponent
umělých neuronových śıt́ı pomoćı gradientńı optimalizace. V rámci diplomové
práce je p̊uvodńı auto-sizing rozš́ı̌ren do metody nazvané dynamický auto-
sizing, která umožňuje měnit velikost a strukturu model̊u během tréninku
upravováńım aplikované śıly regularizace, a tato technika je dále začleněna
do několika anytime algoritmů strojového učeńı. Výsledky experiment̊u uka-
zuj́ı, že dynamický auto-sizing může být úspěšně použit v r̊uznorodých klasi-
fikačńıch a regresńıch úlohách, často s lepš́ımi výsledky než za použit́ı tradičńıch
př́ıstup̊u.

Kĺıčová slova anytime strojové učeńı, hluboké učeńı, auto-sizing, regulari-
zace, strukturovaná ř́ıdkost, anytime algoritmy, AutoML

Abstract

Anytime algorithms produce approximative results whose quality improves
with computation time. The thesis focuses on applying anytime algorithms
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on machine learning tasks with use of auto-sizing neural networks, which are
deep learning models that can efficiently prune their components during train-
ing and are trainable with gradient-based optimization methods. As part
of the thesis, auto-sizing is extended into a novel technique called dynamic
auto-sizing, which allows to dynamically change the size and structure of the
models during training according to the applied regularization strength, and
the technique is incorporated into several anytime learning algorithms. The
experimental evaluation shows that dynamic auto-sizing models can success-
fully be used in various classification and regression tasks and often provide
an improvement in predictive performance over traditional approaches.

Keywords anytime learning, deep learning, auto-sizing, regularization, struc-
tured sparsity, anytime algorithms, AutoML
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Chapter 1
Introduction

With today’s prevalent approach to training deep learning models, it is nec-
essary to explicitly set the hyperparameters controlling the sizes of hidden
layers of the model, specifically the numbers of units such as neurons or fil-
ters. Computationally intensive tuning of these hyperparameters is then re-
quired in order to find an efficient architecture. Moreover, such models can
not automatically prune unnecessary components or adjust their size to the
problem domain. To address this limitation, methods such as auto-sizing have
been proposed for efficiently choosing the layer sizes as well as for parameter
pruning [1, 2, 3, 4]. However, as these methods still operate on top of a static
model with a fixed architecture, they are still somewhat computationally in-
effective and also can not grow the models beyond their original sizes. More
complex techniques such as MorphNet exist that allow the models to grow
new units in hidden layers [5, 6], however the sizes of the resulting models are
then dependent on explicit resource constraints such as the number of FLOPS,
instead of the difficulty of the task.

This thesis builds upon original auto-sizing by introducing dynamic auto-
sizing, a novel method for producing feed-forward artificial neural network
models that can dynamically change their structure during training. Dynamic
auto-sizing enables the hidden layers of such models to automatically shrink
or grow by adjusting the numbers of hidden units during training, using the
novel weighted l1 regularization technique, which induces structured sparsity
in the model by penalizing every additional unit more, until some units are
regularized so much that they effectively do not contribute to the model’s
outputs. During training, new units are periodically grown and unnecessary
units are periodically pruned by being completely removed from the hidden
layers, until the model stabilizes at a final architecture. The size of the result-
ing model typically increases with growing complexity of the problem domain,
and can be further controlled by adjusting the strength of regularization.

In the thesis, dynamic auto-sizing is experimentally analyzed on selected
tasks, with focus on anytime learning settings in which the quality of the
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1. Introduction

obtained models gradually improves as training progresses, thus introducing
a trade-off between computational costs and predictive performance of the
models. Novel anytime learning algorithms that utilize dynamic auto-sizing
are designed, with close relation to the AutoML subfields of hyperparameter
optimization and neural architecture search. The algorithms are experimen-
tally evaluated with promising results, which demonstrate the potential for
use of dynamic auto-sizing in everyday machine learning tasks.

The thesis is structured as follows. Chapter 2 explains the theoretical
background. Chapter 3 expands on chapter 2 by presenting the related existing
research. Chapter 4 then fully describes the dynamic auto-sizing method
as well as the underlying weighted l1 regularization technique. Afterwards,
chapter 5 describes both existing and novel anytime learning algorithms, and
proposes approaches to integrate the algorithms with dynamic auto-sizing.
Chapter 6 then experimentally evaluates the dynamic auto-sizing technique
as well as its proposed applications in anytime learning. Finally, chapters 7
and 8 discuss the results and conclude the thesis.
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Chapter 2
Background

2.1 Anytime Algorithms

Anytime algorithms are defined by [7] as algorithms whose quality of solutions
gradually improve with computation time. Anytime algorithms can in general
be interrupted at any point and still return a valid solution to the problem,
as opposed to traditional algorithms that, if interrupted before completion,
do not produce any useful output. As such, anytime algorithms are useful
in problem domains in which computing optimal or exact solutions is not
computationally or economically feasible, as they allow to trade off the quality
of solutions with execution time or computational cost.

The term anytime algorithms was first used by Thomas Dean and Mark
Boddy in a study on time-dependent planning in robotics [8]. Anytime algo-
rithms have since been successfully applied to various fields such as evaluation
of Bayesian networks [9], constraint satisfaction problems [10], heuristic state-
space search [11], and path planning [12].

2.1.1 Properties of Anytime Algorithms

Anytime algorithms can be characterized by several typical properties, which
have been gathered by [7]. The remainder of this section lists and informally
defines these properties; it should be noted that these properties are merely
desirable features and a concrete algorithm does not have to comply with all
of them to be characterized as anytime.

Measurable quality of results. The solutions returned by anytime
algorithms are approximate in general, and establishment of a suitable metric
is crucial to the design of such algorithms. This metric can be as simple as
the value of objective function in optimization problems.

Recognizable quality of results. With a chosen metric, it is desirable
to have the ability to determine the quality of approximate results at run-
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2. Background

time. In practice, this would be difficult for example with a metric defined as
distance between the approximate and correct result.

Monotonicity. The quality of solutions should be a non-decreasing func-
tion of elapsed time. When the quality of results is recognizable, this is trivial
to achieve as the algorithm can simply store the best result.

Interruptibility. Interruptible algorithms can be stopped at virtually
any time and still return an admissible solution. Algorithms without this
property are called contract. Contract algorithms receive the amount of al-
located resources as a parameter, and are not guaranteed to yield any useful
results if interrupted sooner than was promised according to the allocation
[13].

Preemptability. Preemptible algorithms can be suspended and resumed
at will with negligible computational overhead.

Diminishing returns. It is common for anytime algorithms to improve
rapidly at first, but with the improvements diminishing over time.

Consistency. The quality of results is often correlated with computation
time (and possibly also with the quality of inputs). This is usually desirable
as it can allow to predict the quality of results.

2.1.2 Performance Measurement

For many applications of anytime algorithms, it is crucial to define a qual-
ity measure to monitor the progress of the algorithm so that computation
resources can be allocated effectively. As long computational time will typi-
cally reduce the overall utility in the vast majority of problem domains, the
decision of at which point to interrupt the anytime algorithm and act on the
current solution must often be made in practice. In autonomous systems, this
is known as the meta-level control problem. [14]

2.1.2.1 Metrics

As anytime algorithms vary greatly in the ways they approach the exact re-
sults, no universal metric of quality of solutions exists. Three common any-
time algorithm metrics have been listed by [7] as useful in different scenarios.
Arguably the most commonly used metric is accuracy, which measures the
distance between the approximate and exact solution. However in some set-
tings, the anytime algorithm always produces the optimal or exact solution,
only with the level of detail increasing with time. The specificity metric is
useful in such circumstances, as it measures the level of detail of the result.
Finally with certain anytime algorithms, the metric of certainty is utilized,
which measures the degree of certainty (such as probability or fuzzy set mem-
bership) that the result is correct.

Quality measurement can be problematic in some cases. For example, if
the function that evaluates quality is computationally costly or unavailable
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2.1. Anytime Algorithms

during algorithm execution, the algorithm may need to use an approximation
function instead. This introduces uncertainty into the monitoring process and
can even lead to the algorithm replacing an existing solution with a solution
of worse quality. [15]

2.1.2.2 Performance Traces

A performance trace describes a single execution of an anytime algorithm on
a particular instance. For a particular run r of an anytime algorithm, the
performance trace is defined by [15] as a function Kr : T → Q that maps t,
the execution time, to q, the quality of result that would be returned if the
algorithm was interrupted at that time. In most cases, performance traces can
be made non-decreasing simply by adjusting the algorithm so that it stores
the best result, with the exception of problematic quality metrics described in
section 2.1.2.1.

2.1.2.3 Performance Profiles

As anytime algorithms are often stochastic in nature, it is important to study
not only individual runs, but to also characterize the behavior of the algorithm
over different runs. One option is to create a quality map, which simply plots
performance traces of multiple runs of the algorithm. An alternative way is
to use performance profiles, which have been defined by [7] as functions
that map execution time of an algorithm to the expected output quality. An
alternative definition is given by [15], which defines the performance profile of
an algorithm over a set of runs R as a function

PR(t, q) = 1
|R|

∑
r∈R

[Kr(t) ≥ q] (2.1)

that denotes the frequency of a run of the algorithm returning solution of
quality at least q if interrupted at time t, where “[]” is the Iverson bracket.
Performance profiles can thus be used to measure the overall trade-off between
execution time and quality of solutions of an anytime algorithm.

2.1.3 Anytime Learning

The term anytime learning was coined in 1992 by John Grefenstette [16].
Originally it denoted a concrete approach for continuous learning in changing
environments, which utilized two integrated running modules - an execution
system, which controls the interactions of the agent with the external envi-
ronment, and a learning system, which provides the execution system with
a knowledge base by continuously testing new strategies against a simulated
model of the environment. However, today the term anytime learning is much
more general and refers to machine learning algorithms that share character-
istics with anytime algorithms [17, 13], usually the ones that learning can be
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2. Background

interrupted at any time while still producing an answer, that the returned
answers improve over time, and that the learning process can be suspended
and resumed at will with little overhead [17].

It is not immediately clear whether gradient-based optimization methods,
which are common for solving machine learning problems, can be regarded as
anytime. They can be regarded as contract anytime algorithms in the sense
that they always produce a non-trivial answer (that is, not merely a randomly
initialized model) if allowed to run at least for a single epoch. Moreover with
many implementations, the training can be interrupted and resumed at will
without significant computational overhead. However, the individual runs will
usually quickly stop improving because of overfitting, and more advanced tech-
niques are thus necessary for truly anytime learning that gives the potential
to improve indefinitely.

2.2 Deep Learning

Deep learning is a broad subfield of machine learning which constructs models
from complex algebraic components with tunable parameters. Such compo-
nents are typically organized into many layers so that the computation paths
from input to output of the model are “deep”. [18, p. 801] The origins of the
field lie in deep artificial neural networks, more specifically deep multi-layer
perceptrons, which are structured as a sequence of mutiple layers. However,
the common contemporary definitions of the field usually do not refer to arti-
ficial neural networks but rather define deep learning as the study of methods
that use multiple layers to automatically extract higher-level features from
raw input data. [19, p. 264] Deep learning has become a popular field of
research especially in recent years.

Artificial neural networks, on which much of the field of deep learning is
based upon, are a class of machine learning models that emerged as an attempt
to imitate the functionality of biological neural networks present in animal
or human brains, although artificial neural networks have gradually deviated
from their biological counterparts as the field matured. It is widely considered
that the first models that took inspiration from computation in biological
brains were introduced by Warren McCulloch and Walter Pitts in the year of
1943 [20], followed later by Frank Rosenblatt’s perceptron algorithm from
1957 that can be roughly described as training a single artificial neuron. [21].
Later, models known as multilayer perceptrons were proposed that organize
multiple perceptrons into layers, and have become popular especially with the
introduction of the backpropagation training algorithm [22] in 1986.

2.2.1 Multilayer Perceptrons

Multilayer perceptrons, often presented as fully-connected feedforward artifi-
cial neural networks, are composed of multiple units (often called artificial
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2.2. Deep Learning

Figure 2.1: Diagram of a multilayer perceptron with three units in the input
layer, five, four and three units in the following hidden layers, and a single
output unit. Generated using the NN-SVG tool [23].

neurons) which are arranged into multiple layers. The structure of a mul-
tilayer perceptron is described in figure 2.1. The first layer of a multilayer
perceptron is called the input layer, the last layer is called the output layer,
and the intermediate layers are called hidden layers. [24, p. 289] Every unit in
each hidden layer is connected to all units in the previous and following hidden
layer by a connection that is is represented by a parameter called weight. The
units in the input layer do not perform any computation but merely represent
the input data; on the other hand, the output units do perform computations,
and their outputs represent the output of the whole model.

The role of each unit is to calculate the weighted sum of inputs from
units in the preceding layer, and apply a nonlinear activation function to this
weighted sum to produce an output that is passed to units in the subsequent
layer. Every neuron also includes an additional parameter called bias, which is
added to the weighted sum before the activation function is applied; however,
it is common to represent the bias terms of all units in a layer as weights
of connections from a special “dummy” neuron in the previous layer, whose
output is fixed to the value 1. With this abstraction, the function of a single
unit can be described by the formula

y = φ(
∑

i

wixi) = φ(w⊤x), (2.2)

where xi the output of the i-th neuron in the preceding layer, wi is the weight of
the connection from the i-th neuron in the preceding layer, φ is the activation
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−6 −4 −2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0
y

y = σ(x)

y = σ ′(x)

Figure 2.2: The sigmoid function and its derivative. For values of x far-
ther from zero, the derivative becomes nearly zero, leading to difficulties with
gradient-based optimization techniques.

function, and y is the unit’s output1 [18, p. 803].

2.2.2 Activation Functions

The role of a nonlinear activation function is important both in multilayer
perceptrons and in most deep learning models in general. If this function was
simply linear, then multilayer perceptrons would be limited to representing
linear functions, no matter how the units would be arranged into layers [18, p.
803]. On the other hand, multilayer perceptrons with at least a single hidden
layer and a finite number of units can approximate any continuous function
with arbitrary precision [25, 26], provided that a non-polynomial activation
function is utilized [27, 28]. This is known as the universal approximation
theorem.

The activation function used in the original “perceptron” artificial neuron
was the Heaviside step function:

H(x) =
{

1 x > 0
0 x ≤ 0

(2.3)

However, use of this activation function makes training impossible using gra-
dient descent or similar methods, as there is no useful gradient. Historically,

1When we explicitly include the bias term b in the formula, the output of a single neuron
becomes φ(

∑
i
wixi + b).
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2.2. Deep Learning

more popular activation functions in multilayer perceptrons included the sig-
moid function (also known as logistic function), defined as σ(x) = 1/(1+e−x),
and the hyperbolic tangent function, defined as tanh(x) = (e2x−1)/(e2x+1)
[18, p. 804]. However, these functions still suffer from saturation, meaning
that they contain flat regions in which these functions are insensitive to small
changes to the input [29, p. 68]. To elaborate, the sigmoid and tanh function
are only strongly sensitive to changes in input when x is near 0. With large or
small values of x, the derivative of these functions becomes near zero, leading
to the problem of vanishing gradients [29, p. 290].

2.2.2.1 ReLU Activation

The rectified linear unit or ReLU is arguably the most widely used activation
function in deep learning models, and is at the same time usually recommended
for use in most applications [29, p. 174]. This simple activation function is
defined as ReLU(x) = max(0, x) [18, p. 803], therefore this function is piece-
wise linear with two linear pieces and as such it is advantageous for use with
gradient-based optimization methods; however, the resulting transformation
is still non-linear. Morevoer, the ReLU activation function is non-saturating
for positive values of x as the corresponding partial derivative for this region
is 1. [29, p. 175]

Unfortunately, as the gradient of the ReLU function for negative values
of x is 0, units that use this activation function may sometimes become stuck
at outputting only zeros. This issue is known as the dying ReLU problem
[24, p. 335], as such units do not contribute to the outputs of the model
and also are unlikely to “come back to life” by returning to positive values.
Remedies have been proposed that generalize the ReLU function to the form
of f(x) = max(0, x) + αmin(0, x), in which α is a parameter that controls the
slope of the linear part for negative values of x. Examples of such activation
functions include absolute value rectification that sets α = −1, the leaky ReLU
function that sets α to a small positive value, or the parametric ReLU function
which treats α as a learnable parameter. [29, p. 193]

2.2.2.2 ELU Activation

The exponential linear unit or simply ELU is another popular activation func-
tion, which similarly to the ReLU function can be defined piecewise [30]:

ELU(x) =
{

x x > 0
α(ex − 1) x ≤ 0

(2.4)

The parameter α controls the amount of saturation for negative values of x,
and when it is set to the usual value of 1, the function is smooth even around
0. For negative inputs, the outputs are also negative, which leads to the
average output of units that utilize ELU activation being closer zero. These

9
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Figure 2.3: Graphs of various activation functions. Note that only ELU is
smooth at x = 0.

properties are beneficial with gradient-based optimization methods. Moreover,
the derivative is non-zero even for negative values of x, mitigating the problem
of dying units. [24, p. 337] All in all, it has been shown that ELU activation
typically outperforms ReLU and its common variants in both training time
and predictive performance of models [30].

2.2.2.3 SELU Activation

The scaled exponential linear unit, or SELU, is a scaled variant of the ELU
activation function. This activation function is defined by the formula

SELU(x) = λ

{
x x > 0
α(ex − 1) x ≤ 0,

(2.5)

with λ and α having fixed predefined values rather than being parameters2

[31]. When used exclusively as the activation function of all units in a model,
SELUs have the important property of inducing self-normalization, which

2For the SELU activation function, the values of λ and α are defined as approximately
1.0507 and 1.6733, respectively.
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2.2. Deep Learning

means that during training, the outputs of every layer will be close to mean
of 0 and standard deviation of 1, thus strongly mitigating the problem of
vanishing gradients. This has been demonstrated to hold true with sequential
models when the input features of the model are standardized and the weights
of every layer are initialized using LeCun normal initialization. [24, p. 337]

2.2.2.4 Softmax Activation

The softmax activation function is typically used at the output layer of clas-
sification models to represent a multinoulli probability distribution over a
categorical variable. In most applications, softmax activation is used together
with cross-entropy loss. The function is defined as

softmax(z)i = ezi∑
j ezj

, (2.6)

where z is a vector of log probabilities produced by a linear layer, that is, z =
W x + b [29, p. 185]. The outputs represent a valid probability distribution,
as the value of each element is between 0 and 1 and all the values sum to 1.
In theory, a similar normalization could be achieved by dividing each input
by the sum of all inputs, however the exponential function roughly cancels
the logarithm in the cross-entropy loss [29, p. 185]. This leads to a roughly
constant gradient with incorrectly classified instances, that is, instances where
the true class has not obtained the highest output probability.

2.2.3 Layers

Deep learning models are composed of components called layers that out-
put mathematical transformations of their inputs. Numerous layer types of
varying complexity exist, ranging from simple fully-connected layers used in
multilayer perceptrons to the more complex convolutional and attention lay-
ers, with different layer types being suitable for different use-cases. All of
the mentioned layer types are examples of feedforward layers, that is lay-
ers in which information flows only in the direction from input to output;
nonetheless, recurrent layers also exist, which feed their outputs back into
their own inputs so that a single data instance is processed for multiple time
steps. However, this section will be limited to the study of fully-connected
and convolutional layers.

2.2.3.1 Fully-Connected Layers

Fully-connected or dense layers are layers known from multilayer perceptrons
and as such have already been described in section 2.2.1. To recapitulate, a
fully-connected layer is composed of multiple units known as artificial neurons,
with every unit being connected to all of the layer’s inputs. Instead of modeling
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2. Background

each neuron individually, today’s software implementations of deep learning
models usually represent the whole fully-connected layer by a weight matrix,
which is composed of connection weights belonging to all of the layer’s units,
and usually by an addidional vector of all of the units’ biases. Mathematically,
the transformation of a fully-connected layer can then be described by the
formula

y = g(W x + b), (2.7)

where W is the weight matrix with Wi,j being the weight of connection from
input j to output i, b is the vector of biases, x is a vector of inputs, and y is a
vector of outputs [24, p. 286]. The weight matrix notation of Wi,j representing
the connection from input i to output j yields the slightly altered formula

y⊤ = g(x⊤W + b⊤), (2.8)

which is useful when describing operations on batches of data and will be used
in the later parts of the thesis.

Fully-connected layers are very common in deep learning models. This is
partly because of multilayer perceptrons still being popular all-purpose ma-
chine learning models, however fully-connected layers are frequently used even
in more complicated deep learning architectures as separate building blocks.

2.2.3.2 Convolutional Layers

Convolutional layers were originally inspired by neuroscientific study of the
visual cortex in biological brains, and as such are mostly used in image data
processing. However, convolutional layers are not limited only to applications
in computer vision, as they have successfully been applied to tasks such as
voice recognition and natural language processing. [24, p. 445] As opposed
to fully-connected layers, convolutional layers are designed for parameter ef-
ficiency, as each hidden unit is connected only to a small local region from
the previous layer, thus respecting adjacency in image data. Moreover, spatial
invariance of image data is exploited by the weights of the hidden units of a
layer being shared for all local regions. [18, p. 811].

A pattern of connection weights that is replicated across all local regions
is called kernel or filter. Each convolutional layer typically consists of many
such kernels. Both the input and output of a convolutional layer are mul-
tidimensional arrays which are usually referred to as tensors, although the
terminology is problematic from a mathematical perspective. [18, p. 814]
With image data, tensors are typically three-dimensional3. For example, a
three-channel RGB image with width of 256 pixels and height of 128 pixels
would typically form a tensor of size 256× 128× 3, where the three channels
are in the context of convolutional layers usually known as feature maps. Each

3Four-dimensional if we consider batches of data.
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2.2. Deep Learning

Figure 2.4: Visualization of the operation performed by a convolutional layer.
Each of the two blocks is a three-dimensional tensor, composed of multiple two-
dimensional feature maps. Each value of a single feature map, as indicated
by the black square, is calculated as the weighted sum of the values in the
corresponding local regions of all feature maps from the previous layer (on the
left), where each feature map is weighted by the values in the corresponding
filter.

convolutional layer produces a tensor with the number of feature maps equal
to the number of the layer’s kernels.

Convolutional layers are built around discrete convolution, which is a
mathematical operation on two functions defined by [29] as

(f ∗ g)(n) =
∞∑

m=−∞
f(m)g(n−m). (2.9)

When we denote a two-dimensional feature map as X and a two-dimensional
kernel as K, and assume that the functions are zero for elements outside of
the feature map and kernel, the convolution operation can be written as

(X ∗K)(i, j) =
∑
m

∑
n

X(m, n)K(i−m, j − n), (2.10)

where the summation is over all values of m and n for which the indexing is
valid [29, p. 332]. In this notation, it is said that the kernel is “flipped”, as
when a summation index increases, the index into the feature map is increased
but the index into the kernel is decreased [29, p. 332]. It is common to omit
the flipping of the kernel in software implementations of convolutional layers,
however the resulting mathematical operation is then formally called cross-
correlation and not convolution [29, p. 333]. Moreover, it is common to
include a bias term, similarly to fully-connected layers. Bias can be tied, with
one bias per kernel, and untied, where one bias term is specific not only to a
single kernel but to a single output location in the feature map as well.

13



2. Background

Because the convolution operation produces a feature map that is smaller
than the input, the input feature maps are commonly padded with zeros so that
the outputs match their original dimensions. In case we wish to decrease the
size of feature maps produced by a convolutional layer, some of the elements
of the produced feature maps can be omitted by using “strides”, which specify
how many positions of the kernel should be skipped in each dimension of the
feature map [29, p. 348]. An alternative to using strides is to include pooling
layers, which aggregate sets of adjacent units from the previous convolutional
layer into single values, thus also decreasing the size of the feature maps [18,
p. 811].

The whole transformation defined by a standard convolutional layer can
be described by the formula

Yj,k,l =
∑

i,m,n

Xi,k+m−1,l+n−1Ki,j,m,n, (2.11)

where Xi,k,l is an input value within feature map i, row k and column l;
Yj,k,l is an output value with equivalent indexing; Ki,j,m,n is the element of
the kernel tensor K defining the weight of connection between input unit in
feature map i with offset of m rows and n columns, and the output unit in
feature map j; and the summation is over all values of i, m, and n for which
the tensor indexing is valid [29, p. 348]. Note that the kernel is not flipped in
this notation, and bias is omitted.

Convolutional neural networks are deep learning models that include
convolutional layers. Traditional convolutional neural network architectures
such as LeNet-5 [32], AlexNet, [33] or VGGNet [34] are usually formed by
several convolutional and pooling layers, which are followed by a small number
of fully-connected layers. During training, the first convolutional layers then
typically learn filters that detect simple features such as edges or textures,
while the later layers tend to learn filters that detect high-level features such
as human faces [35]. Several important enhancements to these traditional
convolutional architectures have been proposed, such as inception networks
[36], residual networks [37], and fully convolutional networks [38].

2.2.4 Loss Functions

Loss functions are functions that machine learning models minimize during
training. According to [29], the terms loss function, cost function, objec-
tive function and error function may often be used interchangeably, with the
convention that objective functions can be both minimized or maximized, ac-
cording to the chosen form.

A loss function typically includes the ground truth data and the corre-
sponding predictions of a model as inputs, and outputs a single number as a
measure of the error. Nonetheless, other forms of losses exist, as for example
a total cost function for training a model often combines a loss function with
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24@16x16

1x128

1x10

Figure 2.5: Diagram of a convolutional neural network composed of three
convolutional and two fully-connected layers. The input is a three channel
128 × 128 image. The convolutional layers are then composed of a growing
number of filters, and utilize 2-by-2 strides, which progressively halve the sizes
of feature maps produced by the layers. The following fully-connected hidden
layer then flattens the feature maps into a vector, and the 10-unit output layer
can be perceived as returning the probabilities of the input image belonging
to each of 10 classes. Generated using the NN-SVG tool [23].

a regularization term that includes the model’s parameters as inputs. [29, p.
178] In this section, two basic loss functions will be discussed: mean squared
error, which is popular for use in regression tasks, and cross-entropy, which
is commonly utilized in classification tasks.

2.2.4.1 Mean Squared Error

The mean squared error is arguably the most popular loss function for training
models on regression problems. The mean squared error measures the average
of the squares of the errors between predictions of the model and the ground
truth. The measure is given by

MSE(ŷ, y) = 1
m

m∑
i=1

(ŷ(i) − y(i))2, (2.12)

[29, p. 134]with y(i) being the target value of instance i, ŷ
(i)
k being the corre-

sponding prediction of a model, and m being the number of instances.
Closely related to mean squared error are other popular losses for use in

regression settings, such as the root mean squared error, which measures error
in units of the quantity being estimated, and mean absolute error, which also
uses the same scale as the estimated quantity, but additionally is less sensitive
to outliers [24, p. 41].
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2.2.4.2 Cross-Entropy

In statistics, it is common to measure how much two probability distributions
are different from each other using the Kullback-Leibler (KL) divergence,
which is defined as

DKL(P ||Q) = Ex∼P [log P (x)
Q(x) ] = Ex∼P [log P (x)− log Q(x)]. (2.13)

The KL divergence is non-negative, being 0 if and only if P and Q represent
the same probability distribution in case of discrete random variables4. [29,
p. 75] However, as minimizing the KL divergence with respect to Q does not
depend on the log P (x) term, it can be omitted for such tasks, leading to the
related statistical measure of cross-entropy [29, p. 75] [18, p. 809]:

H(P, Q) = −Ex∼P log Q(x) = −
∫

P (x) log Q(x)dx. (2.14)

Therefore, minimizing cross entropy is equivalent to minimizing KL diver-
gence between an empirical distribution defined by the training set and the
distribution defined by the model. [29, p. 132] In a machine learning task,
cross-entropy can be used as the loss function for both binary and multiclass
classification tasks, as it can be perceived to measure how well a set of es-
timated class probabilities matches the ground truth. The concept is more
clear when the equation for cross-entropy is written in an alternative notation
from the perspective of a classification task,

H(ŷ, y) = − 1
m

m∑
i=1

K∑
k=1

y
(i)
k log(ŷ(i)

k ), (2.15)

where y
(i)
k is the target probability that instance i belongs to class k, ŷ

(i)
k is

the respective probability predicted by a model, m is the number of instances,
and K is the number of classes. [24, p. 149] It is worth noting that in most
machine learning tasks, the target probability is binary with value always at
0 or 1, as training datasets typically consist of instances whose labels always
correspond to a single target class.

2.2.5 Optimization Techniques

The topic of optimization of deep learning models is very broad and, although
crucial for successful applications, not directly related to this thesis. For com-
pleteness, this section briefly describes two important optimization techniques:
the backpropagation algorithm, and the Adam optimizer.

4A similar property holds for continuous random variables.
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2.2.5.1 Backpropagation

Backpropagation was introduced by David Rumelhart et al. in a famous 1986
paper [22], which revolutionized the way in which artificial neural networks
were trained. The algorithm can be described as gradient descent, with the
gradients computed by two passes through the network. The instances from
the training set are fed to the algorithm in groups called mini-batches, with
the whole training set iterated over multiple times in so-called epochs. Each
mini-batch of the training set instances is first passed to the input layer of the
model, with the computed result being successively sent to the following layers
in the so-called forward pass. The error of the output layer is then calculated
using the cost function, and the contribution of each of the preceding layers
is consecutively measured in the backward pass, which calculates the partial
derivatives with respect to the individual parameters using the chain rule. The
parameters of the model are then updated in a gradient descent step. [24, p.
289]

2.2.5.2 Adam Optimization

As the cost functions with respect to parameters of deep learning models
often contain numerous local optima and plateaus, use of plain gradient de-
scent is usually not sufficient in practice. The Adam optimization algorithm,
which stands for adaptive moment optimization, combines the ideas of two
other optimization techniques, namely momentum optimization [39] and RM-
SProp. Momentum optimization does not update the model parameters using
the computed gradient directly, but instead uses the gradient to update mo-
mentum, which aggregates the gradients from the previous steps and is then
used to update the model parameters in the usual manner. This approach
gives the ability to escape some local optima and overcome plateaus faster.
On the other hand, RMSProp builds upon the AdaGrad algorithm [40] and
uses so-called adaptive learning rate to more effectively navigate the optimizer
to the optimum. These two approaches make Adam a powerful all-purpose
optimizer. [24, p. 356]

2.3 Regularization

Complex machine learning models can have thousands, millions or even bil-
lions of parameters, which gives them the ability to formulate very complicated
hypotheses about the world. Large numbers of parameters can allow such
models to represent very complex functions that can fit complicated datasets
- as John von Neumann used to say:

“With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk”. [41]
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However, models with a lot freedom can easily overfit the training dataset
by only performing well on the data seen during training; it can therefore
be desirable to explicitly penalize complex hypotheses. Such a process is
called regularization, with the name derived from the usual goal of obtaining
functions that are more regular. [18, p. 689]

The No Free Lunch theorem implies that machine learning algorithms
must be designed for specific tasks, as no single algorithm will be perfect
for all optimization problems. Therefore every machine learning algorithm
is built with an underlying set of preferences, and only performs well when
these preferences are aligned with the specific task to be solved. A certain
regularity of the function represented by the obtained model is often among
such preferences. In general, regularization techniques are designed to reduce
error on the test dataset, possibly while increasing the error on the training
dataset. It can be said that regularization works by trading increased bias
of a machine learning algorithm for reduced variance, with this method only
being effective when variance is reduced significantly while the bias is kept at
a satisfactory amount. [29, p. 229]

2.3.1 Parameter Norm Penalties

A typical approach to regularization is based on limiting the capacity of models
by searching for a hypothesis that minimizes an objective function with the
added penalty term that represents the complexity of the hypothesis. If we
denote the original objective function by J and the regularization term Ω, the
formula for the regularized objective function J̃ is

J̃(θ; X, y) = J(θ; X, y) + αΩ(θ), (2.16)

[29, p. 230] where θ are the parameters of the model and α is a hyperparam-
eter controlling the emphasis on the regularization term Ω in contrast to the
rest of the original objective function J . In general, parameter norm penal-
ties are designed to penalize the model for large values of its parameters, as
such parameters would usually contribute to more complicated, non-regular
functions.

2.3.1.1 l2 Regularization

l2 regularization, also known as Tikhonov regularization or weight decay, func-
tions by pushing the parameters of a model towards zero. The formula for the
l2 regularization term is

Ωl2(θ) = ∥θ∥22 = θ⊤θ =
∑

i

θ2
i , (2.17)

[29, p. 231] where θ is a vector containing all of the model’s parameters.
Therefore the objective function of a model regularized with l2 regularization
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becomes
J̃(θ; X, y) = J(θ; X, y) + αθ⊤θ, (2.18)

with the corresponding gradient being

∇θJ̃(θ; X, y) = ∇θJ(θ; X, y) + 2αθ, 5 (2.19)

which causes the learning of the model to be modified so that during each
step, every parameter is reduced (“decayed”) towards zero proportionally to
its value. This means that parameters with large values are pushed towards
zero much more than parameters that are already close to zero.

2.3.1.2 l1 Regularization

Similarly to l2 regularization, l1 regularization (sometimes referred to as lasso)
also pushes the parameters of the regularized model towards zero. The formula
for the l1 regularization term is

Ωl1(θ) = ∥θ∥1 =
∑

i

|θi|, (2.20)

[29, p. 234] therefore the model’s objective function becomes

J̃(θ; X, y) = J(θ; X, y) + α ∥θ∥1 , (2.21)

with the corresponding gradient

∇θJ̃(θ; X, y) = ∇θJ(θ; X, y) + αsgn(θ). (2.22)

By analyzing the gradient term, we can see that compared to l2 regulariza-
tion, the parameters are pushed towards zero by an additive constant, inde-
pendently of the size of the parameter’s value.

Adding an l1 regularizer to a model together with sufficient regularization
strength α causes the important effect of inducing sparsity in the parameters
of the model. More specifically, l1 regularization in general leads to more
sparse solutions than l2 regularization. Sparsity in this context means that
a number of parameters has an optimal value of zero. [29, p. 236] This can
be explained by the observation that in the l1 regularization cost function, all
parameters contribute linearly, even ones with values that are close to zero,
as can be seen in figure 2.6. On the other hand, as the parameters approach
zero, the corresponding limits of the partial derivatives of the l2 regularization
loss function are equal to zero, and the parameters thus typically end up with
values further from zero than when using l1 regularization.

In many types of models, such as linear regression, logistic regression, or
basic types of artificial neural networks, parameters with a value of zero do

5Sometimes the l2 regularization term is defined as 1
2 ∥θ∥2

2 so that the corresponding
gradient simply becomes αθ.
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Figure 2.6: Loss functions of l2 and l1 regularization when simplified to a
single parameter. As opposed to l1 regularization, l2 regularization leads to
negligible loss with parameters that are already close to zero, which thus
usually end up with non-zero values.

not contribute to the outputs of the model and can thus be safely omitted.
This implies that l1 regularization can often be utilized as a feature selection
technique, as parameters that are unimportant for the task being solved will
typically be set to values close to zero by most optimization methods.

2.3.1.3 Structured Sparsity Regularization

Structured sparsity regularizers are a generalization of standard sparsity in-
ducing regularizers such as the l1 norm, in which structures such as groups or
networks are defined on the model parameters or, in some cases, on the input
features. [43] One example for use with structures in form of non-overlapping
groups is group lasso [42], in which every group of parameters is regularized
using the unsquared l2 norm, which is sparsity-inducing as opposed to the
squared l2 norm used in l2 regularization. In principle, this can lead to only
some groups of parameters being “selected” as the other groups are zeroed
out.

The group lasso technique can be perceived as application of the regularizer
defined as the l2,1 matrix norm. For a parameter matrix Θ of a fully-connected
neural network layer in which each column forms a group, the corresponding
regularization term can be written as

Ωl2,1(Θ) =
∑

j

∥Θ:j∥2 =
∑

j

(∑
i

Θ2
ij

) 1
2

, (2.23)
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Figure 2.7: Comparison of the l1, l2, and l2,1 (group lasso) penalties. Each
figure depicts the surface at which the corresponding penalty is equal to 1. In
case of the l2,1 penalty, the parameters θ11 and θ12 form a group, and if both
parameters are set to 1, the resulting penalty is lower than if each parameter
formed a separate group. Created with inspiration from [42].
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as demonstrated by [1]. The group sparsity effect of l2,1 norm is described in
figure 2.7. Similarly, the l∞,1 norm, defined as

Ωl∞,1(Θ) =
∑

j

∥Θ:j∥∞ =
∑

j

max
i
|Θij |, (2.24)

can also be used as a structured sparsity regularizer [1].

2.3.2 Dropout

Dropout [44] is a powerful artificial neural network regularization technique
that introduces a hyperparameter p, called the dropout rate, which represents
the probability for each neuron to be omitted from the computations in each
training step. More specifically, for every training step6, dropout randomly
samples a binary mask that excludes a portion of units in input and hidden
layers of the model from the forward propagation, back-propagation, and the
learning update of this step. When making predictions after training is com-
plete, all parameters are utilized without any masking. Typically the empiri-
cal weight scaling inference rule is utilized to compensate for the fact that the
units suddenly sum up more input data than during training, by multiplying
the weights of every unit by the dropout rate p.

Dropout shares certain similarities with bagging, which is an ensemble
learning technique7 which constructs multiple datasets by sampling from the
original training set with replacement, and upon each sampled dataset trains
an independent machine learning model. Similarly to bagging, dropout can
also be perceived as a method that trains an ensemble of models, with the
major difference the models sampled by dropout share parameters, whilst
bagging works with independent models trained on their respective datasets.
[29, p. 265]

An important advantage of dropout is the simplicity of the method, which
results in both low computational costs and the benefit that dropout can
be used with many types of layers and optimization techniques. It has also
been shown that dropout is a more effective regularizer than traditional tech-
niques such as weight decay, and that dropout may additionally be coupled
with other regularizers to produce further improvements. [29, p. 265] Utiliz-
ing dropout during training often results in a significant boost in predictive
performance of the trained models, making it a popular method in the deep
learning community.

2.3.3 Early Stopping

Arguably the most popular form of regularization is the strategy known as
early stopping. This simple strategy is built on the common observation in

6Dropout is designed for use with minibatch-based learning algorithms.
7Bagging can also be perceived as a regularization technique, as it attempts to reduce

the test set error similarly to traditional regularizers.
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training models with higher representational capacity that during training, at
some point the model starts to overfit the training set, with the error on the
validation set going up while the training error keeps decreasing. With early
stopping, the validation error is thus measured after every training epoch and
if it stops improving for a certain number of epochs, the model corresponding
to the best epoch (regarding validation error) is returned as the result. Besides
formally being a regularization technique, early stopping can also be perceived
as a hyperparameter selection algorithm that chooses the optimal number of
training steps. [29, p. 246]

2.4 Hyperparameter Tuning

A typical machine learning algorithm is parameterized by various variables
controlling different aspects of the learning process. Such parameters, be-
longing not to individual models but to whole model classes, are known as
hyperparameters and must be set prior to training, instead of being set by the
optimization technique.

The typical aim is to select hyperparameters that lead to satisfactory per-
formance, either on validation sets or in a cross-validation setting, while still
keeping the time and memory cost of training at acceptable values. In ar-
tificial neural networks, possibly the most important hyperparameter is the
learning rate, while most other important hyperparameters adjust the repre-
sentational capacity of the model so that it suits the complexity of the task.
These hyperparameters usually include the number of hidden layers and the
corresponding numbers of units, the regularization strength α, and dropout
rate. Hyperparameters can be even categorical, such as when controlling the
type of activation function utilized in hidden units, or binary, such as indica-
tors of the use of batch normalization or custom preprocessing steps.

Approaches to hyperparameter tuning can be classified as either manual
or automatic. The advantage of automatic hyperparameter tuning methods
is that they require less understanding of the function of the hyperparameters
than manual tuning. On the other hand, automatic hyperparameter methods
are often more computationally expensive. [29, p. 428]

2.4.1 Manual Hyperparameter Tuning

The simplest and possibly also most common hyperparameter tuning tech-
nique is manual tuning, which is also known as hand-tuning. Manual tuning
is usually iterative - first some initial hyperparameter values are manually cho-
sen according to past experience of the engineer, then tested by training the
model and observing the performance on the validation set, and the results
are then used to choose the next combination of hyperparameter values. [18,
p. 428]
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Figure 2.8: Visualization of a run of a typical configuration of grid search
for two hyperparameters. Although 9 trainings were performed in total, only
three unique values of each hyperparameter were tested.

2.4.2 Automatic Hyperparameter Tuning

2.4.2.1 Grid Search

Grid search is a systematic approach to hyperparameter tuning, suitable in
cases when it is sufficient to consider only a few selected hyperparameters. For
each hyperparameter, first a set of values to be explored is selected by the user,
after which the grid search algorithm trains a model for every combination
of hyperparameter values in the Cartesian product of the individual sets of
hyperparameter values. The combination that yielded the best validation
error is then returned as result. [29, p. 432]

Grid search is not practically usable in cases when there is a large number
of hyperparameters and each hyperparameter can take a larger number of
values. If we denote the number of hyperparameters as m and the maximum
number of values that a single parameter can take as n, the number of requred
training and evaluation steps grows as O(nm). [29, p. 434] Therefore, the time
complexity grows exponentially with the number of parameters, which is a well
known phenomenon known as the curse of dimensionality.

2.4.2.2 Random Search

A more powerful alternative to grid search is random search [45]. Similarly
to grid search, random search tests every combination of hyperparameters
by training a model and evaluating it on the validation dataset. However,
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Figure 2.9: Visualization of a simulated run of random search for two hy-
perparameters, with values of each hyperparameter randomly sampled from
a uniform distribution. In total, 9 trainings were performed, and 9 unique
values of each hyperparameter were tested.

instead of choosing the combinations systematically from a Cartesian product
of possible hyperparemeter values, random search operates stochastically by
randomly sampling a unique combination of hyperparameter values for every
iteration.

In random search, the values of every hyperparameter are sampled from
a specified marginal distribution. Unlike with grid search, the values ideally
should not be discretized, as sampling from a continuous disctrubtion allows
to explore a larger set of values for every hyperparameter than with grid
search at no additional cost. This property is important as in many machine
learning problems, only some hyperparameters have a significant influence on
the training. Therefore even in problems with a larger number of hyperpa-
rameters, merely a limited number of random search iterations will often be
sufficient to obtain satistfactory values of the most important hyperparame-
ters.

It has been demonstrated that random search often converges faster to
satisfactory hyperparameter combinations than grid search. [45] The main
reason behind this advantage is that as the number of non-influential param-
eters increases, the amount of computational resources wasted by grid search
grows exponentially, while random search wastes less resources as new values
of influential parameters are tested on nearly every trial. [29, p. 433]
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2.5 Evolutionary Algorithms

Evolutionary algorithms are algorithms inspired by biological evolution, al-
though the analogy is often loose. The scientific theory of evolution was de-
veloped independently by Alfred Russel Wallace in 1858 and Charles Darwin
in 1859, with the central thesis being that characteristics of individuals in bio-
logical populations are preserved in proportion to their effect on reproductive
fitness [18, p. 136]. From the perspective of computer science, evolutionary
algorithms can be perceived as local search optimization algorithms in that
they operate by searching locally between neighboring states of the state space,
without storing the path from the initial state. More specifically, evolutionary
algorithms can be perceived as a version of local beam search called stochastic
beam search, which operates with multiple states at once and chooses successor
states stochastically based on their values. [18, p. 133]

From a biological perspective, states in evolutionary algorithms can be
seen as individuals of a population. Moreover, evolutionary algorithms
introduce operators such as selection, recombination, and mutation that op-
erate on encoded representations of the states8. Another common feature of
evolutionary algorithms is that the individuals are scored by a fitness func-
tion, whose main role is to determine the quality of solutions represented by
individuals. Evolutionary algorithms operate iteratively on generations of
individuals, with the goal to produce individuals of progressively better qual-
ity. The common procedure is that first an initial population is created, then
the individuals are recombined into new individuals, mutated, and afterwards
a new generation is selected according to the individuals’ fitnesses. An im-
portant concept is selective pressure, which can be roughly described as the
probability of selection of the best individuals [46]. Selective pressure that is
too strong can lead to degeneration of the population in the long term.

Concrete evolutionary algorithms differ in various aspects, such as in the
representation of each individual, the recombination procedure, and the mu-
tation and selection processes. [18, p. 134] This section will discuss two com-
mon classes of evolutionary algorithms, namely genetic algorithms, which
encode individuals as binary strings, and evolution strategies, which encode
individuals as real-valued vectors. Other popular branches of evolutionary al-
gorithms include genetic programming, which evolves computer programs en-
coded into tree structures [47], and evolutionary programming, which evolves
finite state machines [48].

2.5.1 Genetic Algorithms

Genetic algorithms are likely the most famous class of evolutionary algorithms,
popularized largely by the work of John Holland in the 1970s [49] but with

8Recombination and mutation are examples of variation operators, which directly change
the information encoded in the individuals.
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efforts dating back as early as 1950s [50, 51, 52]. In genetic algorithms, the
individuals are usually represented as binary strings, which are sometimes
called chromosomes and the individual values are sometimes called genes [47].
On the other hand, variants of genetic algorithms exist which operate on
permutations or vectors with values from discrete domains.

As for variation operators in genetic algorithms, the recombination opera-
tor is usually called crossover and typically operates on a pair of individuals,
called parents, by combining their chromosomes into an offspring individual.
For example, single-point crossover operates by randomly generating an index
with value between 1 and the length of the chromosomes, and changing the
parents’ genes with positions in the chromosome greater than the index [47],
thus producing two offspring. Mutation is performed by randomly flipping
the value of each gene with probability p, which is called the mutation rate.

The usual choice of the selection operator in genetic algorithms is either
roulette wheel selection or tournament selection. In roulette wheel selection,
an individual is selected for the next generation randomly with probability
being proportional to its fitness, which is usually linearly scaled to improve the
selective pressure [48]. On the other hand, tournament selection operates by
holding a “tournament” among k randomly selected individuals (with k oten
set to 2 or 3) and returning the fittest one. Rank-based selection mechanisms
such as tournament selection are often considered to be superior over fitness-
proportional selection mechanisms [53, 54].

2.5.2 Evolution Strategies

In general, evolution strategies focus on evolving individuals encoded as vec-
tors of real numbers (which are usually called objective parameters), although
the concrete implementations vary significantly. First efforts towards evolu-
tion strategies took place in the 1960s and 1970s by Hans-Paul Schwefel and
Ingo Rechenberg [48].

In the most basic version of evolution strategy, mutation is performed by
adding a normally distributed random vector N(0, I) to the objective param-
eters. Additional techniques can be used to control the mutation process,
such as self-adaptation, which adds an additional strategy parameter σ to
each individual, thus specifying mutation strength. In whole, mutation with
self-adaptation can be defined as

σl ← σleτN(0,I),

yl ← yl + σlN(0, I),
(2.25)

where σl is the strategy parameter for individual l, yl is the vector of objective
parameters for individual l, and τ is the learning hyperparameter controlling
the rate of self-adaptation [55]. Various recombination mechanisms can be
used, most notably arithmetical averaging [55], which is typically performed
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Algorithm 1 (µ/ρ, λ) evolution strategy with self-adaptation [55]
1: P← randomly initialized parent population of size µ
2: repeat
3: P̃← empty offspring population
4: while |P̃| < λ do
5: r ← individual recombined from ρ parent individuals randomly

sampled from P
6: r ← r with mutated strategy parameters
7: r ← r with mutated objective parameters
8: P̃← P̃ ∪ {r}
9: end while

10: P← new parent population selected from offspring population P̃
11: until termination criterion fulfilled
12: return best objective parameters from P

on the objective parameters as well as on the strategy parameters if present
[48].

Two ways of performing selection in evolution strategies are commonly
used. Comma selection selects individuals for new parent population only
from the offspring population, and evolution strategies that utilize this method
are usually denoted as (µ/ρ, λ)-ES, where µ is the size of parent population,
ρ is the size of offspring population, and ρ ≤ µ is the mixing number, that
is, the number of parents used for recombination. On the other hand, plus
selection selects individuals from both the parent and the offspring population;
evolution strategies utilizing plus selection are commonly denoted as (µ/ρ +
λ)-ES. [55] For both methods, it is common to use deterministic truncation
selection which selects top k individuals [55]. The pseudocode for (µ/ρ, λ)-ES
can be found under algorithm 1.
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Chapter 3
Related Work

3.1 Anytime Learning

In the field of anytime learning, a classical work is [16] which, besides coining
the term anytime learning, focused on using a genetic algorithm for control-
ling interactions of an agent with a changing environment using a two-module
system. A similar approach was also investigated in [56]. Regarding interac-
tions of agents with external environments, anytime learning was also utilized
together with a hexapod robot in [57], [58] and [59].

[13] introduced an anytime framework for induction of decision trees that
traded computational time for higher quality of trees, most notably in a novel
interruptible algorithm that starts with a greedily generated tree and con-
tinuously improves individual subtrees. Anytime learning with decision trees
was also studied in [60], which introduced an anytime technique for producing
anycost classifiers, that is, classifiers whose misclassification errors decrease
with allocation of more resources at inference time. Anytime classification
was also the topic of [61], a paper which focused on classification of streaming
data in which the varying time between two streams must be utilized in the
best possible way.

A different approach was investigated in [62], which introduced an anytime
learning technique in which an anytime algorithm is used for creating feature
representations, which can then be used to turn conventional models into
anytime models.

3.2 Parameter Pruning

A classical technique on neural network parameter pruning is Optimal Brain
Damage [63]. In this method, the saliency of every parameter, i.e. change in
the objective function caused by deleting that parameter, is estimated using
the second derivative of the objective function. The parameters with the
lowest saliency are then pruned.
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A more recent approach to pruning is to use a sparsity-inducing regular-
izer, such as the l1 norm, which is also known as lasso and was originally
used mainly as a technique for feature selection [64]. Connection pruning
was utilized for example in [65] and [66] for significantly reducing the sizes
of AlexNet and VGG-16 convolutional models. However, no practical com-
putational speedups were observed. In some cases, sparse representations of
artificial neural models can be utilized to achieve computational efficiency [67].

With dense representations of artificial neural networks, pruning individual
parameters is typically not sufficient, as these parameters are grouped into
units such as neurons or filters. As was described in section 2.3.1.3, such
groups of parameters can be pruned by using a structured sparsity regularizer
such as group lasso. Regarding deep learning models, structured sparsity was
utilized in [68] with convolutional neural networks to reduce the model sizes
and computation costs.

[69] focused on an approach to pruning deep neural networks in which there
is not produced a fixed pruned model for deployment, but instead the model
is pruned dynamically at runtime using a technique based on reinforcement
learning.

3.3 Auto-Sizing

3.3.1 Original Paper

Auto-sizing is a technique that was introduced by Kenton Murray and David
Chiang in a 2015 paper [1]. Auto-sizing automatically determines the numbers
of neurons in hidden layers of an artificial neural network, and can additionally
be used to prune previously trained models.

The method works as follows: first the weights of incoming connections
of every neuron in a fully-connected model are grouped, and the model is
regularized using a structured sparsity regularizer. The model is then trained.
If the regularization term is sufficiently large, then at the end of training some
of the neurons have all of the weights of the incoming connections set to a
value close to zero, and thus do not contribute to the outputs of the model.
Such neurons can then be pruned from the model altogether, resulting in a
model that is smaller than the initial one.

In the original paper, two structured sparsity regularizers were used, namely
the l2,1 and l∞,1 norm. Experiments were performed on simple n-gram natural
language models, which were composed of two hidden layers and trained using
the proximal gradient method. It was shown that auto-sizing can lower the
perplexity of the models while decreasing the number of parameters.
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3.3.2 Related Research

An approach very similar to auto-sizing was investigated in [2] on large-scale
image classification datasets with deeper convolutional models, and it was
shown that the method can prune the number of parameters of a model by
up to 80% while retaining its predictive accuracy. In [3], the authors took a
similar approach with comparable results. The algorithm used for training
was forward-backward splitting, and for inducing sparsity, besides using the
l2,1 norm, the authors also experimented with tensor low rank constraints.
Auto-sizing was also examined further by the original authors in [4], who
successfully utilized the original auto-sizing method for neural architecture
search with Transformer models.

In [5], the authors presented a neural network architecture design method
called MorphNet, which aims to find an optimal model under the specified re-
source constraint (such as model size or inference speed). The method works
by iteratively shrinking and growing the model while training. Shrinking is
achieved by utilization of a sparsity-inducing regularizer, more specifically the
l1 norm on the γL variables of batch normalization [70]. Growing is performed
by uniformly expanding all hidden layer sizes as much as the resource con-
straint allows, thus restructuring the model while approximately preserving its
original size. Training was carried out using gradient descent. An approach
somewhat similar to MorphNet is proposed in [6], where the authors itera-
tively grow a small initial artificial neural network model, again according to
a specified budget in form of number of parameters or FLOPS. The technique
allows for growth of new units as well as of entire layers, by using indica-
tor variables indicating the presence of each component. These variables are
continuous for most of the training, but effectively approach binary values as
training progresses.

3.4 Neuroevolution

Neuroevolution is the field of application of principles of evolution to artificial
neural networks. A common approach is to evolve both the parameters as well
as the topology of the networks, known as TWEANN (topology and weight
evolving artificial neural networks) [71]. An important TWEANN method is
NEAT [72]. The technique starts with a population of small and simple ar-
tificial neural networks and complexifies them via evolution, thus employing
growth of new units. Each model is represented by a genome of variable length,
in which genes correspond to individual neurons or connections. Crossover is
made possible by the introduction of historical markings, which align two
genomes by their historical origins. Diversity in the population is enhanced
using niching, more specifically by the explicit fitness sharing technique, which
forces similar individuals to share their fitness payoff. HyperNEAT [73] and
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CoDeepNEAT [74] are similar techniques suitable for larger and deeper mod-
els.

Another noteworthy TWEANN method was presented under the name
Symbiotic, Adaptive Neuro-Evolution (SANE). SANE utilizes an approach
called symbiotic evolution, which evolves a population neurons while promot-
ing both cooperation and specialization of the neurons. Another population
of neural networks constructed from these neurons is evolved simultaneously.
As the function of a neuron can change depending on where it is placed in
the network, [75] improved upon SANE by introducing separate populations
of neurons for different positions in the network in a technique called Enforced
Sub-Populations (ESP).

Another interesting approach is to work with ensembles of models. Evo-
lution can then be performed on trees representing hierarchical algorithmic
ensembles, as investigated in [76].

3.5 AutoML

Automated machine learning, broadly known as AutoML, can be described as
a field that aims to automate the process of construction of machine learning
pipelines [77]. Individual AutoML approaches usually focus on problems such
as data preparation, feature engineering, model selection, selection of opti-
mization algorithms, and model evaluation [78], although complete AutoML
solutions such as TPOT [79], Auto-Sklearn [80], Auto-Keras [81], and NNI
[82] are also available.

A notable subfield of AutoML is neural architecture search (NAS), which
focuses on automating the process of designing artificial neural network ar-
chitectures. An important NAS technique related to this thesis is the dif-
ferentiable neural architecture search (DARTS) framework presented in [83],
which allows to find an optimal architecture of deep learning models by work-
ing with high-level cells composed of arbitrary operations, and selecting over
possible combinations of these cells using the softmax function. Similarly to
the method presented in this thesis, differentiability implies that an optimizer
based on gradient descent can be utilized instead of more complex techniques
such as evolution.

Another important AutoML topic is hyperparameter optimization, with
many of the techniques based on Bayesian optimization. One of the popu-
lar subfields is sequential model-based optimization, which iterates between
fitting models and using the results to choose the next combination of hyper-
parameters to investigate [84]. A notable related method is the Hyperband
algorithm [85], which perceives hyperparameter optimization as an infinite-
armed bandit problem and creates a tradeoff between resource budgets and
the quality of the hyperparameters. This is done by allocating the resources
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only to the most promising hyperparameter combinations, as the algorithm
iteratively discards the worse half of the pool of combinations [78].
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Chapter 4
Dynamic Auto-Sizing

Similarly to the original auto-sizing technique, dynamic auto-sizing requires
a structured sparsity regularizer for limiting the size of the model during
training. Although standard regularizers that induce structured sparsity (such
as the l2,1 and l∞,1 penalty) can be used together with dynamic auto-sizing,
as part of the work on this thesis a novel suitable regularization method was
developed, which is presented here under the name weighted l1 regularization.
This chapter starts with a discussion of l1 regularization, which induces non-
structured sparsity, and is then in the next section modified into the weighted
l1 regularization method, which already induces structured sparsity.

In artificial neural networks, the l1 regularization belonging to the param-
eters W of l-th fully-connected or convolutional layer can be written as

αΩ(W) = α
Nl∑
i=1

Nl+1∑
j=1

Pl∑
k=1
|Wijk|, (4.1)

where Wijk is the k-th parameter of the connection from the i-th unit (neuron
or filter) in the l-th layer to the j-th unit in the (l + 1)-th layer, Nl is the
number of units in the l-th layer, Pl is the number of parameters per outgoing
connection from the l-th layer. This notation will be useful in the following
section. l1 regularization induces sparsity, meaning that using it within a neu-
ral network typically leads to the unimportant parameters ending up with a
value very close to zero. If we consider only fully-connected models, then con-
nections with only such parameters virtually do not contribute to the outputs
of the model, meaning that they could be removed from the model altogether.
However, with the omnipresent dense tensor representations of neural network
models, individual connections can’t be removed - this is only possible with
whole units.
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4.1 Weighted l1 Regularization

Weighted l1 regularization is a novel regularization technique that can be
used for inducing structured sparsity. As the name suggests, weighted l1
regularization is based on standard l1 regularization. If we number the units
(neurons or filters) in every hidden layer, then the trick for inducing structured
sparsity in the model is to set a higher strength of l1 regularization to the
parameters belonging to all incoming connections of units with a higher index
- the intuition is that every additional unit in a hidden layer is more costly
for the network than the previous unit in the same hidden layer. The general
formula for weighted l1 regularization term is

αΩ(W) = α
Nl∑
i=1

Nl+1∑
j=1

Pl∑
k=1

w(j)|Wijk|, (4.2)

where w is an arbitrary non-decreasing function which sets regularization
strength for the unit with index j. Therefore in every hidden layer, the pa-
rameters of every connection leading to the j-th unit are l1-regularized with
the coefficient of αw(j). Note that weighted l1 regularization typically should
not be applied to the output layer.

In the experiments presented in this thesis, an identity w(j) = j is used
for the function w. Combined with the non-negative term α controlling the
strength of regularization, w can take the form of any non-decreasing linear
function passing through origin, while experiments with non-linear functions
remain for future research. Regarding the bias terms, in this work they are
considered parameters belonging to special connections and are regularized as
well, as this is necessary for the pruning of whole units.

4.2 Auto-Sizing

Section 3.3.1 described the original auto-sizing method. Weighted l1 regu-
larization can be directly utilized in the auto-sizing setting. This section
describes how weighted l1 regularization induces structures sparsity necessary
for the correct functioning of auto-sizing, and at the same time recapitulates
the original auto-sizing technique.

Training a neural network regularized with weighted l1 regularization gen-
erally leads to the state in which for units with a high-enough index (and
therefore with a large-enough strength of l1 regularization), the optimizer has
set the parameters of all of the incoming connections to values very close to
zero. At the end of training, such units can be “pruned”, i.e. removed from
the weight matrices, without any relevant changes in the model’s outputs.9
The trained and pruned model can then be used in the usual “static” manner,

9In this work, the use of activation functions that satisfy f(0) = 0 is assumed.
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e.g. for inference. In theory, the layer sizes of such a pruned model are not
much dependent on the initial layer sizes, provided that the initial layer sizes
were large enough so that enough neurons were regularized with a very high
amount of l1 regularization and therefore ultimately pruned. This is approx-
imately the principle of the original auto-sizing method, the main difference
being that original auto-sizing utilized the l2,1 and l∞,1 regularizers.

4.3 Dynamic Auto-Sizing

Dynamic auto-sizing brings two major improvements to the original auto-
sizing method. The first enhancement is that units that do not contribute to
the model outputs are pruned periodically instead of only at the end of train-
ing, which improves performance as calculations are performed with smaller
tensors. The second enhancement, which addresses the problem of original
auto-sizing that training had to start with large layer sizes, is to periodically
“grow” new units by adding them to the corresponding weight tensors with
small initial random values of parameters - this at first does not change the
outputs of the model, but if the new units are beneficial for the optimized
task, the optimizer eventually increases the corresponding parameters and
they become a natural part of the model (otherwise, the newly grown units
are removed during the next pruning step). Therefore, it is possible to start
the training with a small model and only gradually increase its size if nec-
essary, leading to computational efficiency and relaxed requirements on the
initial layer sizes.

A model trained using dynamic auto-sizing therefore starts with the ini-
tially set layer sizes and gradually keeps growing or shrinking. The size of the
model typically stabilizes after some number of epochs, in a state near to an
equilibrium in which all of the new units added during a growing step would
be pruned during the subsequent pruning step. Utilizing larger regularization
strength α typically leads to a smaller resulting model.

The complete pseudocode for dynamic auto-sizing can be found under
algorithm 2. In theory, it is problematic that the initial parameter values of the
newly grown units are multiplied by the pruning threshold τ , as this changes
the average values of the units’ outputs and negates some of the beneficial
properties of parameter initialization techniques. However in practice, this
does not seem to significantly impair the performance of the models, although
the topic certainly remains up for debate.
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Algorithm 2 Dynamic auto-sizing
1: model ← randomly initialized model, regularized with suitable sparsity

inducing regularizer
2: τ ← pruning threshold
3: γperc ← growth percentage
4: γmin ← minimum growth
5: for each epoch do
6: for each fully-connected or convolutional hidden layer l do
7: n← number of units in l
8: γ ← max(n · γperc, γmin)
9: Grow l by adding γ new units with parameters randomly initialized

and multiplied by τ
10: end for
11: Fit model once on the train set
12: for each fully-connected or convolutional hidden layer l do
13: Prune l by removing units with all parameters smaller in absolute

value than τ
14: end for
15: end for
16: return model
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Chapter 5
Anytime Learning with Dynamic

Auto-Sizing

This chapter presents several anytime learning algorithms that can work to-
gether with dynamic auto-sizing models. Some of the algorithms are directly
based on dynamic auto-sizing, while the rest of the algorithms can in the-
ory benefit from the use of dynamic auto-sizing models, as it is argued in
the corresponding sections. All of the algorithms are interruptible and pro-
duce a trained model upon interruption, and as all of the algorithms can also
be perceived as hyperparameter optimization algorithms, they could also be
trivially modified to additionally produce the corresponding hyperparameter
combinations. Moreover, the algorithms are monotonic as the quality of the
solutions can only increase with time. The performances of the algorithms are
experimentally evaluated in chapter 6.2

5.1 Random Search

Although random search emerged mainly as a hyperparameter optimization
technique, it can be considered an anytime algorithm if we apply the simple
modification of always returning the overall best model. In this way, the algo-
rithm can continue improving indefinitely, although the rate of improvements
can be expected to slow down over time.

As was described in section 2.4.2.2, random search can be considered a rel-
atively powerful algorithm, with two major disadvantages. The first disadvan-
tage is that random search tries hyperparameters merely randomly, without
focusing on regions that have been found to be promising. As many machine
learning methods are stochastic, it is possible to switch from exploration to
exploitation simply by restarting the training with the best hyperparameter
combination with a good chance that the training will result in a better model.
The second issue with random search is that in its basic variant with a fixed
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number of training epochs, random search does not monitor the progress of
training, and thus does not interrupt the training of models that give bad
results from the very start of the training. This problem is alleviated by the
introduction of early stopping. Early stopping still does not interrupt training
of models that improve merely slowly from the start, but this behavior can
in some cases be considered reasonable as, for example, it is often the case
with small learning rate that training will proceed more slowly but the final
performance of the model will be better.

Applying dynamic auto-sizing to random search is quite straightforward.
Training can simply be switched from using a classical static model to using a
dynamic auto-sizing model, with the hyperparameters that control the hidden
layer sizes being replaced by a single hyperparameter that controls the strength
of regularization 10. This is a reasonable approach, as it can significantly
decrease the number of hyperparameters (provided that dynamic auto-sizing
functions correctly), and it will be demonstrated in chapter 6 that dynamic
auto-sizing can often bring predictive performance benefits.

5.2 Anytime Grid Search

Presumably the largest advantage of grid search is that it is a systematic
technique, meaning that it explores all of the specified regions of the hyperpa-
rameter space. In an anytime setting, this behavior is more difficult to achieve.
One possible approach is presented in this thesis under the name anytime grid
search. Anytime grid search works iteratively over increasing “levels” - on
each level, a grid search is run in a more granular fashion than on the previ-
ous level, while skipping the hyperparameter combinations that have already
been examined by the previous iterations. As the number of combinations on a
level can grow very quickly due to the curse of dimensionality, the order of the
examined hyperparameter combinations is randomized so that the algorithm
usually does not get stuck in small parts of the hyperparameter space for too
long. Because of this, after several levels a run of anytime grid search starts
to resemble random search, with the main difference being that the allowed
hyperparameter values are discretized in case of anytime grid search.

More specifically with n hyperparameters, in a single level of anytime grid
search it is iterated over the n-fold Cartesian product of the progressively more
granular set X of allowed relative values of a single hyperparameter, after the
subtraction of the set of the values from the previous levels. One concrete way
is to set the allowed relative hyperparameter values as

X =
2l−1⋃
i=1

i

2l
, (5.1)

10Although dynamic auto-sizing introduces new hyperparameters such as the initial hid-
den layer sizes, it will be shown in chapter 6 that these hyperparameters do not require
heavy fine-tuning as certain values work well in many training settings.
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5.3. Anytime Hyperparameter Evolution

where l is the number of the level starting at 1. The concrete hyperparameter
values can then be obtained analogically to linear scaling, with the relative
value of 0 denoting the minimal allowed value and the relative values of 1
denoting the maximum allowed value. A visualization of the explored relative
values of two hyperparameters for the first four iterations of anytime grid
search can be found in figure 5.1. An alternative formula for the allowed
relative hyperparameter values within a level could be designed so that the
second level of the algorithm tests the lower and upper bound of the interval.

As with random search, dynamic auto-sizing can be applied to anytime
grid search straightforwardly by switching from training with static models
to dynamic auto-sizing models, together with dropping the hyperparameters
controlling individual layer sizes and replacing them with a single hyperpa-
rameter controlling the regularization strength.

5.3 Anytime Hyperparameter Evolution

As was mentioned in section 5.1, random search carries the two limitations of
not exploiting promising regions of the hyperparameter space, and not inter-
rupting training prematurely when it does not appear to lead to a satisfactory
result. In order to address these two limitations, an evolutionary algorithm
was designed as part of this thesis, presented here under the name anytime
hyperparameter evolution. This technique allows to exploit promising sections
of the hyperparameter space, interrupt training of unsatisfactory models, and
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Figure 5.1: Visualization of the first four levels of iterations of anytime grid
search that tests combinations of values of two hyperparameters. Iterations
within the same level are tested in a random order.
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5. Anytime Learning with Dynamic Auto-Sizing

Algorithm 3 Anytime hyperparameter evolution
1: function Anytime-Hyperparameter-Evolution(hyperparam conf)
2: λ← population size
3: λnew ← number of new individuals added in each generation
4: best model← null
5: P← Initialize-Individuals*(λ, hyperparam conf)
6: loop
7: individualbest ← fittest individual from P
8: P← P ∪Recombination*(P, hyperparam conf)
9: P← P ∪ Initialize-Individuals*(λnew, hyperparam conf)

10: Train-Models*(P)
11: P← select λ individuals from P using tournament selection
12: P← P ∪ {individualbest}
13: increase age of all individuals in P by 1
14: update best model using models of individuals from P
15: end loop
16: return best model upon interruption
17: end function

moreover allows for the possibility of improving indefinitely as it periodically
trains new models.

Anytime hyperparameter evolution is mostly based on evolution strategies,
with several important modifications. First and foremost, an individual is
represented by a combination of hyperparameters and also a complete model,
but the genome is merely a vector of real numbers that defines the model’s
hyperparameters. Therefore, the genotype is decoupled from the phenotype
significantly. As is common in evolution strategies, during every epoch, the
genome of every recombinant individual is recombined from several parents
that are randomly sampled from the population, and afterwards it is randomly
mutated, corrected, and added to the population. Mutation is performed on
the genome in the usual manner of evolution strategies, ideally with separate
strategy parameters for each hyperaparameter and fixed to values provided by
expert in order to speed up the process11. Correction is performed so that the
hyperparameter values defined by the genome are placed in the valid ranges.
The model of each individual stays unchanged by recombination, mutation,
and correction, but is subsequently trained for a single epoch with use of
the hyperparameter values defined by the genome. After this training of the
individuals’ models, the offspring population is created using tournament se-
lection, with the fitness function defined as the performance on the validation
set divided by an age penalty, which is greater than 1 for individuals whose

11During prototyping, it was also experimented with random mutation of models, which
was implemented as noise being added to the model parameters. This, however, did not
seem to improve the performance of the algorithm.
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5.3. Anytime Hyperparameter Evolution

models have existed for longer than the specified number of epochs12. To serve
as possible replacements for the old individuals, new randomly generated in-
dividuals are introduced in each generation after the recombination operator.
Elitism is also applied, which copies the best individual from the previous gen-
eration and adds it to the current generation. This skips the current epoch’s
training for this model. In order to help the reader with understanding of the
algorithm, high-level pseudocode is provided under algorithm 3, with pseu-
docode of the custom components provided under algorithm 4.

The typical behavior of anytime hyperparameter evolution is to start train-
ing multiple randomly initialized models, and progressively select a subset
consisting of the best models and clone them with modified hyperparame-
ter values. Experiments during prototyping suggested that it is important to
clone the models instead of merely updating them in place with new hyperpa-
rameter values, as the modification can always have a negative effect on the
performance of individual models as well as of the whole algorithm. In any
case, after a number of epochs, only individuals belonging just to a handful of
the original models remain in the population, but each is usually present in
multiple copies with various values of hyperparameters. The algorithm thus
gradually switches from exploration to exploitation. After a sufficient num-
ber of epochs, the age penalization of the existing models becomes sufficiently
strong so that the models are replaced by new randomly initialized models.
As with random search and grid search, the algorithm remembers the overall
best result and always returns it upon interruption.

The integration of dynamic auto-sizing with anytime hyperparameter evo-
lution works in a similar manner as with random search and anytime grid
search, with the difference that the regularization strength is not constant
during training, but rather gets updated dynamically according to the value
of the hyperparameter in the genome. In the experiments, the initial regular-
ization strength was set to a relatively high value so that the models started
small, but the values of the regularization strength hyperparameter then pro-
gressively grew throughout the whole population as this enabled the models
to grow and thus obtain higher fitness.

Overall, the largest differences of the technique from ordinary evolutionary
algorithms are that the population size is typically much smaller in order to
limit the computational costs, an individual’s genotype only determines its
phenotype very indirectly, and deliberate degeneration of the phenotypes in
population is performed so that only a few best individuals are present (each
individual still carries a different genome and thus a different combination of
hyperparameter values). With small models and datasets, the technique could
be modified so that during each generation, the model of each individual is

12This duration is measured since the random initialization of the model. The penalty
can have the form of 1 + α · βageindividual−agelimit if ageindividual is greater than agelimit,
and 1 otherwise; α in this case is a small positive constant close to 0, and β is a constant
greater than 1.
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5. Anytime Learning with Dynamic Auto-Sizing

Algorithm 4 Components of anytime hyperparameter evolution
1: function Initialize-Individuals*(count, hyperparam conf)
2: I← {}
3: while |I| < count do
4: individual← New-Object()
5: individual.Genome←hyperparam conf.Initial-Values()
6: individual.Model← Initialize-Model()
7: individual.Age← 0
8: I← I ∪ {individual}
9: end while

10: return I
11: end function
12:
13: function Recombination*(P, hyperparam conf)
14: P̃← {}
15: for each individual in P do
16: offspring ← Copy-Object(individual)
17: offspring.Genome ← mean genome of ρ randomly sampled indi-

viduals from P
18: σ ← hyperparam conf.Get-Strategy()
19: mutate offspring.Genome using the strategy vector σ
20: correct offspring.Genome so that the values are within

hyperparam conf.Get-Allowed-Ranges()
21: P̃← P̃ ∪ {offspring}
22: end for
23: return P̃
24: end function
25:
26: function Train-Models*(P)
27: for each individual in P do
28: train individual.Model for a single epoch using hyperparameter

values from individual.Genome
29: end for
30: end function
31:
32: function Calculate-Fitness*(individual)
33: metricval ← performance of individual.Model on the validation set
34: if individual.Age ≤ age limit then
35: return metricval

36: end if
37: penalty ← 1 + α · βindividual.Age−age limit

38: return metricval/penalty
39: end function
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completely retrained from the start; this however is ineffective in case such
training is computationally expensive, as the initial generations would train
models on suboptimal hyperparameter combinations.

5.4 Progressive Model Growth

Dynamic auto-sizing enables to change size of the models over the course of
training by tweaking the strength of regularization. As smaller deep learning
models are in general faster to train than larger models as they need less data
and the calculations are less computationally intensive, an interesting option
is to start training with small models and large regularization strength, and
progressively increase the size of the models by decreasing the regularization
strength. Furthermore, the approach can be turned into an anytime algo-
rithm by restarting the training with random hyperparameter values once the
model ceases to improve13. This algorithm is presented here under the name
progressive model growth.

The algorithm works on two levels. The high level can be perceived as ran-
dom search, and simply calls the low level with a randomly sampled combina-
tion of hyperparameters. The low level randomly initializes a small dynamic
auto-sizing model and sets the regularization strength to a large value. The
model is then iteratively trained on a training dataset, and after each epoch
is evaluated on the validation set. If the validation loss is higher than the
best value achieved during this run of the low level, the training is said to be
stalled, and the regularization strength is lowered using a constant multiplier.
This allows the model to grow. In case the model improves beyond the best
achieved validation loss within a specified number of epochs after stall (which
can be called the stall duration limit), the low-level continues until the next
stall, then the regularization strength is lowered again, and so on. However,
in case the model fails to improve after stall, the regularization strength is not
lowered further, and after the number of epochs specified by the stall duration
limit, the low-level run is restarted by the high level with a new combination
of hyperparameter values. The pseudocode is presented in figure 5.

Several variants of the scheduling of regularization strength are possible.
The presented variant lowers the regularization strength at the point in time
in which the model stops improving, which can ideally mean that the model
is reaching its predictive capacity and growth could be beneficial. It was also
experimented with the variant that lowered the regularization strength even
sooner, at the point the rate of improvement became lower than a specified
threshold, but this did not seem to be beneficial. On the other hand, another
option would be to wait for several epochs after the model stops improving to
see if the stall is only temporary, and only decrease the regularization strength
if no improvement occurs.

13This can be expected to happen at some point due to overfitting.
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5. Anytime Learning with Dynamic Auto-Sizing

Algorithm 5 Progressive model growth
1: function Progressive-Model-Growth(hyperparam conf)
2: best model← null
3: loop
4: model← Initialize-Model()
5: hyperparams← hyperparam conf .Random-Sample()
6: reg strength← initial regularization strength
7: reg strengthmin ← regularization strength limit
8: val lossbest ←∞
9: stall duration← 0

10: stall durationmax ← limit of duration of stall
11: while reg strength ≥ reg strengthmin and stall duration ≤

stall durationmax do
12: train model for a single epoch using hyperparams and

reg strength
13: val loss← loss of model on the validation set
14: if val loss ≥ val lossbest then
15: if stall duration == 0 then
16: reg strength← reg strength · reg strength multiplier
17: end if
18: stall duration← stall duration + 1
19: else
20: val lossbest ← val loss
21: stall duration← 0
22: update best model if outperformed by model
23: end if
24: end while
25: end loop
26: return best model upon interruption
27: end function
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Chapter 6
Experiments and Results

This chapter describes the experimental evaluation of the methods described
in chapters 4 and 5. The first part of the chapter, section 6.1, focuses on
evaluation of dynamic auto-sizing as a standalone model training technique.
Section 6.2 then focuses on evaluation of applications of dynamic auto-sizing
in anytime learning algorithms.

6.1 Dynamic Auto-Sizing

6.1.1 Implementation

In order to conduct experiments, dynamic auto-sizing was implemented14

in the TensorFlow library [86]. As the library did not allow to dynami-
cally change the numbers of units with predefined layer types, custom fully-
connected and convolutional layers were developed, with the growth and prun-
ing of units implemented using low-level tensor operations. As it is not possible
to modify the number of units in a layer without knowledge of the size of the
previous layer, a custom class for sequential models was implemented which
allows to successively prune or grow all layers in the model, while optionally
leaving some of the layers unchanged. Moreover, as a change in the number
of filters in a convolutional layer can non-trivially affect a subsequent fully-
connected layer, a custom input flattening layer was implemented as well.

Although modern TensorFlow uses dynamic computational graphs by de-
fault, these can be compiled into static graphs in order to allow for reduced
computational time. Therefore in the implementation, between the growth
and pruning of units in each epoch, a static TensorFlow computational graph
was compiled in order to speed up the fitting of the model to the data, thus

14The TensorFlow implementation, together with the anytime algorithms as well as all
of the experiments presented in this thesis, are freely available under the MIT license at
https://github.com/vcahlik/dynamic-auto-sizing.
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6. Experiments and Results

limiting the need for the slower eager execution mode only for the relatively
inexpensive operations of growth and pruning.

6.1.2 Setup

The method was configured as follows: the values of the hyperparameters
λperc (growth percentage) and λmin (minimum number of grown units in each
layer) were set to 0.2 and 20, respectively. The pruning threshold τ was
set to 10−3. The initial parameters, as well as the parameters of the newly
grown units, were initialized using LeCun normal initialization [87]. For the
experiments in section 6.1, training was stopped after a predefined number of
epochs, which was set so that the size of the model as well as the performance
on the validation set would be stabilized. In some of the experiments, after
the model was trained using the dynamic auto-sizing approach, fine-tuning in
a static manner (without regularization, growth, or pruning) was performed.
Unless stated otherwise, the regularization strength α was set to 2×10−5, and
the initial number of units in each hidden layer was set to 100.

All models in the experiments are composed of five hidden layers, usually
with the first four being convolutional layers and the final one fully-connected.
In case of the convolutional models, the second and fourth convolutional layer
used strides of 2 to reduce the sizes of the feature maps, and these two layers
were followed by a dropout layer with dropout rate of 0.2 and 0.5, respec-
tively. No dropout was used with the fully-connected models. Instead of
using batch normalization to mitigate the problem of unstable gradients, self-
normalization [88] was used by standardizing the input data, using LeCun
normal initialization for all layers, and using the SELU activation function for
all layers except the output layer, for which either softmax or no activation
was used, depending on the task. Training was performed with Adam opti-
mizer and the categorical cross-entropy or mean squared error cost function.
The experiments in section 6.1 were run on an Nvidia Tesla V100 GPU.

6.1.3 Dependency of Discovered Layer Sizes on Various
Factors

The behavior of dynamic auto-sizing was initially analyzed on the CIFAR-100
dataset with a model composed of four convolutional layers and a single hidden
dense layer. Random restarts of training with identical hyperparameters lead
to very similar final layer sizes, as is shown in Fig. 6.1. This holds true even
when training is restarted with various initial layer sizes, as can be seen in
Fig. 6.2 and Fig. 6.3.

Another experiment demonstrates that training a dynamic auto-sizing
model with different regularization strengths α leads to different resulting
layer sizes, with a clear trend of higher amounts of regularization leading to
smaller models, as can be seen in Fig. 6.4, which shows sizes of hidden layers
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Figure 6.1: Final layer sizes of models trained using dynamic auto-sizing with
identical training configuration. Each curve represents one model.
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Figure 6.2: Final layer sizes of models trained using dynamic auto-sizing with
various initial numbers of units, equal for each layer. Each curve represents
one model.
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Figure 6.3: Evolution of the number of filters in the last convolutional layer
over the course of training, for the same experiment as in Fig. 6.2.
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Figure 6.4: Final layer sizes of fully-connected models trained using dynamic
auto-sizing with various regularization strengths α. Each curve represents one
model.

of fully-connected models trained on a regression task on the 15-puzzle dataset
[89] using dynamic auto-sizing.

Dynamic auto-sizing models tend to increase in size with the growing com-
plexity of the problem domain, as can be seen in table 6.1, which lists the
numbers of parameters, layer sizes, and accuracies of convolutional models
trained using dynamic auto-sizing on the MNIST, Fashion MNIST, SVHN
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6.1. Dynamic Auto-Sizing

Dataset Parameters Hidden layer sizes Cross-val. accuracy
(mean± 2SD)conv1 conv2 conv3 conv4 dense

MNIST 166K 19 14 18 34 93 99.4 % ± 0.1
Fashion MNIST 233K 22 15 21 36 124 93.3 % ± 0.5

SVHN 471K 17 16 21 45 158 93.1 % ± 0.3
CIFAR-10 665K 39 18 26 57 175 77.0 % ± 0.7
CIFAR-100 851K 66 20 30 64 194 45.1 % ± 1.1

Tiny ImageNet 5.32M 47 13 48 54 377 18.7 % ± 2.2

Table 6.1: Average sizes (total parameter counts and numbers of units in
hidden layers) of convolutional models trained using dynamic auto-sizing on
various computer vision datasets, together with cross-validated accuracies af-
ter fine-tuning.

(Street View House Numbers) [90], CIFAR-10, CIFAR-100, and Tiny Ima-
geNet [91] datasets. This is not a surprising phenomenon, as training a small
model on a complex task typically leads to a large training loss, which in turn
leads to the regularization term not having as much significance in the cost
function, allowing the model to grow.

6.1.4 Predictive Performance of Dynamic Auto-Sizing
Models

In these experiments, predictive capabilities of dynamic auto-sizing models
were tested against static models, as well as against dynamic auto-sizing mod-
els with the structured sparsity l2,1 regularization, which roughly corresponds
to the original auto-sizing method 15.

Training was performed on various computer vision datasets, with models
composed of four convolutional layers and a final hidden dense layer. On each
dataset, first a dynamic auto-sizing model utilizing weighted l1 regularization
was trained in a cross-validation setting, and the mean resulting layer sizes
were used as the architecture of a static model (labeled A). In order to deter-
mine how suitable the layer sizes discovered by the dynamic model are for a
static model, another static model (labeled B) was trained, this time with an
equal number of filters in each convolutional layer. The number of filters per
layer was set so that the number of parameters of the resulting model would
be as close as possible to that of the first two models. The number of neurons
in the final dense hidden layer was preserved. Also for each dataset, a dynamic
model utilizing the structured sparsity l2,1 regularization was trained, with a
regularization strength α set so that the resulting model would have approxi-
mately the same number of parameters as the other models. All models were

15It was also experimented with the l∞,1 regularizer, which however did not seem to
work well when coupled with the Adam optimizer. Theoretically, this could be due to the
regularizer only reducing a single value of each group of parameters at every step, although
this has not been experimentally confirmed.
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Dataset Cross-val. accuracy (mean± 2SD)
Dynamic, weighted l1 Static A Static B Dynamic, l2,1

MNIST 99.4 % ± 0.1 99.3 % ± 0.2 99.3 % ± 0.2 99.2 % ± 0.2
Fashion MNIST 93.3 % ± 0.5 92.4 % ± 0.3 92.8 % ± 0.4 92.1 % ± 0.3

SVHN 93.1 % ± 0.3 91.4 % ± 0.8 92.4 % ± 0.3 92.3 % ± 0.5
CIFAR-10 77.0 % ± 0.7 72.9 % ± 1.3 75.6 % ± 1.1 72.3 % ± 1.4
CIFAR-100 45.1 % ± 1.1 32.4 % ± 1.4 35.4 % ± 1.5 39.5 % ± 1.8

Tiny ImageNet 18.7 % ± 2.2 11.3 % ± 0.8 11.3 % ± 0.7 17.1 % ± 1.4

Table 6.2: Cross-validated accuracies of dynamic auto-sizing models trained
with weighted l1 regularization against the following baselines: Static A (static
model with identical layer sizes), Static B (static model with similar number
of parameters but uniform sizes of convolutional layers), and Dynamic, l2,1
(dynamic model with comparable number of parameters, trained with l2,1
regularization).

trained for 40 epochs, with the dynamic auto-sizing models using static fine-
tuning for the last 20 epochs. For each model, the results corresponding to
the best epoch were recorded. The learning rates were set independently for
each model and dataset using grid search.

The cross-validated results can be found in table 6.2. For each dataset,
the model trained using dynamic auto-sizing with weighted l1 regularization
surpassed the accuracies of all the baseline models, with the largest differences
being present on the most difficult datasets (CIFAR-100 and Tiny ImageNet),
where also dynamic auto-sizing with the l2,1 regularization (analogous to the
original auto-sizing method) outperformed both static models. It is interesting
that static model B, which used a uniform number of filters for all convolu-
tional layers, always matched or surpassed the accuracy of static model A,
which utilized the layer sizes discovered by dynamic auto-sizing with weighted
l1 regularization. This shows that the layer sizes obtained using dynamic
auto-sizing are not optimal for use in static models.

6.1.5 Analysis of Results

In order to explain the observed accuracy benefit of dynamic auto-sizing,
further tests were performed on the CIFAR-100 dataset. First a dynamic
auto-sizing model utilizing weighted l1 regularization was trained in a cross-
validation setting. The mean resulting layer sizes were then used as the ar-
chitecture for analogous models with deactivated growth of new units, which
further differed by the utilized regularization type, whether or not pruning of
units was activated, and whether or not the last 20 epochs were run in the
fine-tuning setting (with regularization, growth, and pruning deactivated). As
in the previous experiments, all models were trained for 40 epochs, the best
result of all the epochs was recorded for each model, and the learning rates as
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Type Growth Pruning Regularization Fine-Tuning Cross-val. accuracy
(mean± 2SD)

Dynamic Yes Yes weighted l1 Yes 45.1 % ± 1.1
Dynamic No Yes weighted l1 Yes 45.0 % ± 1.0

Static - - weighted l1 Yes 43.8 % ± 1.5
Dynamic No Yes weighted l1 No 43.7 % ± 0.8

Static - - weighted l1 No 43.0 % ± 1.8
Static - - l1 No 43.8 % ± 1.5
Static - - None - 32.4 % ± 1.4

Table 6.3: Cross-validated accuracies of various types of models on the CIFAR-
100 dataset.

well as the strength of l1 regularization (where utilized) were set independently
for each model using grid search.

The cross-validated results, which are presented in table 6.3, show that
most of the predictive advantage of dynamic auto-sizing models comes from
the mere use of weighted l1 regularization, which alone in this experiment
caused a 10.6 % accuracy boost over an unregularized model. Further, al-
though smaller, accuracy boosts come both from utilizing fine-tuning and the
use of pruning. Especially the accuracy benefit of pruning is surprising, as in
each case, only a few units were pruned from the model during training. The
results also show that utilizing mere l1 regularization also results in a signif-
icant accuracy boost over an unregularized model, however l1 regularization
can not be utilized in a true dynamic auto-sizing setting as it does not induce
structured sparsity.

6.2 Anytime Learning with Dynamic Auto-Sizing

In this section, performances of the various anytime learning algorithms pre-
sented in chapter 5 are analyzed and compared. As is common with anytime
algorithms, this comparison is performed using both the performance traces
and the estimated performance profiles, which are criteria that take into ac-
count both the predictive performance of the obtained models as well as the
invested computational time. Additionally, it is attempted to give an expla-
nation of the results by analyzing the performance metrics and durations of
the individual runs.

6.2.1 Setup

Experiments were performed with convolutional and fully-connected models
on various datasets. Compared to section 6.1, smaller datasets and models
were used in order to save computational resources as relatively long runs of
anytime learning algorithms are usually required to obtain relevant perfor-
mance traces. More specifically, for each run (such as a single iteration of
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random search or a single run of evolution), the train and test sets were ob-
tained using random sampling from the datasets (with the train and test set
never overlapping). This configuration has the benefit of being more flexible
than classical cross-validation, as it removes the dependency between the test
set size and the number of runs, which is beneficial as it does not require to
set the number of runs in advance before running the experiment. Moreover,
because of the small size of the models, training was in most cases faster on a
CPU than with a GPU. Therefore all experiments were run in the TensorFlow
eager execution mode on a system with an eight core AMD Ryzen 7 2700 CPU
and 24 GB of RAM, except for the experiments with the CIFAR-100 and 15-
puzzle datasets, which were run on a system with an Nvidia Tesla V100 GPU,
Intel Xeon Gold 6254 CPU, and 64 GB of RAM, on compiled TensorFlow
computational graphs. Regarding fine-tuning of the models (that is, training
with omitted regularization), this technique was not used, as preliminary ex-
periments surpringly showed that this is not beneficial to the approach. As
for the sampling of the datasets, a 2.5 % sample was used for the Fashion
MNIST, SVHN and CIFAR-10 datasets (with an 80:20 train set size to test
set size ratio), a 0.5 % sample was used for the 15-puzzle dataset with a 90:10
train/test ratio, and 100 % “samples” of the CIFAR-100 dataset (with an
83:17 train/test ratio). The sample sizes were set large enough so that at
least several hundred instances would be present in each test set.

The same model architectures were used as in experiments in section 6.1,
more specifically, convolutional models were used for the computer vision clas-
sification tasks and fully-connected models were used for the regression tasks,
with all models being composed of 5 hidden layers. Unless stated otherwise,
the hyperparameters were set equally for all models and techniques. The hy-
perparameters that could be optimized by a specific method (such as random
search and evolution) were set so that the allowed ranges would be identical,
and therefore the comparison across methods would be fair in the sense that
all methods would be allowed to set the hyperaparameters equally, this was
not possible in some edge cases, which will be described in the appropriate
sections.

6.2.2 Analysis of Individual Methods

6.2.2.1 Random Search

Random search was implemented as described in section 5.1, together with the
described modification of always returning the best result upon interruption.
To avoid the need for tuning a hyperparameter controlling the number of
epochs, early stopping was used that halted the training if the model failed to
improve on the test set for 8 consecutive epochs.

With “static” models that did not utilize dynamic auto-sizing, the tunable
hyperparameters included five hyperparameters for the size of each hidden
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Figure 6.5: Individual test set performance traces and the corresponding per-
formance profile for random search with static models trained on samples of
the SVHN dataset. The dotted line represents the average accuracy of a single
iteration.

layer (with uniform sampling, with range of 10 to 100 units), the learning
rate (uniform sampling, range from 1 · 10−4 to 6 · 10−4), batch size (uniform
sampling, range from 16 to 64), and the strength of L1 regularization, unless
stated differently in the corresponding sections. The strength of L1 regular-
ization would be allowed in the range of 1 · 10−3 to approximately 3.2 · 10−5,
with first uniformly sampling an exponent value from the range of -4.5 to -3
and then returning the value of 10 to the power of this exponent. In some ex-
periments, the ranges of allowed regularization strength were modified so that
the resulting models would be similar in size to the static models, as will be
mentioned in the corresponding sections. With dynamic auto-sizing models,
the tunable ranges of all hyperparameter values were identical to the static
version of random search, but the hyperparameters controlling the layer sizes
were dropped (the sizes of the models were determined only by the regular-
ization strength), with each hidden layer being initialized with 20 units. The
allowed ranges of hidden layer sizes of static models were chosen so that both
static and dynamic models would be allowed to grow to approximately equal
sizes, and thus the allowed hidden layer sizes of static models were modified
for some experiments, as will be noted in the corresponding sections.

Random search has the interesting property that the individual iterations
are independent. Therefore, it is possible to increase precision of the perfor-
mance profiles by sampling the performance traces from a pool of random
search iterations. The number of sampled performance traces for each ex-
periment was set to 50 in this thesis. This allowed to save some computa-
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Figure 6.6: Estimated test set performance profiles for random search with
static and dynamic models trained on samples of the SVHN dataset.

tional resources used for the experiments, although the experiments still were
resource-heavy, as for better precision of the results it is necessary to obtain
data of total duration that is longer at least by several multiples than the
length of the obtained performance traces16.

Several performance traces of random search with static models trained
on samples of the SVHN dataset17, along with the corresponding aggregated
performance profile, can be seen in figure 6.5. It can be seen that individual
performance traces are steppy rather than smooth; this is due to an imperfect
design of the experiments, in which the best accuracy was not updated after
each training epoch, but rather after each complete iteration. To help alleviate
this problem and avoid these “bumps” at least for the initial minutes of the
algorithm runs where differences in the accuracy metric are significant, the first
iteration of all random search experiments was always sampled from a set of
runs for which the best accuracy was updated after each epoch of training,
resulting in much smoother performance profiles.

For static models on the SVHN dataset, the mean accuracy obtained by
a random search iteration on the test set was approximately 71.4 %, with a
mean iteration duration at 182 seconds. With dynamic auto-sizing models,
the mean test accuracy grew to 74.9 %, but the mean iteration duration grew
to 343 seconds. This increase in time per iteration, caused mostly by the
dynamic auto-sizing models being trained for a significantly higher number of

16If the performance traces were sampled from a pool of equal total duration, each per-
formance trace would end with an equal value of the metric.

17For experiments on the SVHN dataset, the allowed regularization strength was limited
to the range from 10−5 to 10−4 for all algorithms.
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Figure 6.7: Test set accuracies and durations of individual iterations of ran-
dom search with static and dynamic models trained on samples of the SVHN
dataset. Two short and low-scoring iterations of random search with dynamic
models have been omitted from the figure.

epochs before halted by early stopping18, negatively affected the performance
of dynamic models in the anytime setting. This can be seen in figure 6.6,
which compares the estimated performance profiles of random search with
static and dynamic models trained on samples of the SVHN dataset. It can
be seen that the dynamic auto-sizing variant of random search soon takes
lead over the static variant, but with the accuracies being very close most
of the time. This can be explained by a scatter plot of the durations and
accuracies of individual iterations presented in figure 6.7, which shows that
the best accuracies achieved by iterations of random search with static and
dynamic models are comparable.

Experiments were also run on the complete CIFAR-100 dataset19. As can
be seen in figure 6.8, using dynamic auto-sizing also seems to provide a slight
benefit over static models in this case, however at the end of the measured
period, the static version of random search ties the performance of the dynamic
version and it is unknown whether this trend would continue if the algorithms
were allowed to run for a longer time.

18On average, an iteration of static random search consisted of roughly 40 epochs of
training, while an iteration of dynamic random search consisted of about 80 epochs.

19For this dataset, the strength of L1 regularization was allowed in the range of 1 · 10−5

to 1 · 10−4, and for the static models, the size of the final hidden layer was allowed in the
range from 50 to 400 units to match the sizes of the dynamic auto-sizing models.
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Figure 6.8: Estimated test set performance profiles for random search with
static and dynamic models trained on the CIFAR-100 dataset.

6.2.2.2 Anytime Grid Search

Experiments with anytime grid search were performed similarly to random
search. The algorithm was implemented as described in section 5.2. As with
random search, the best result was always returned upon interruption, and
early stopping was used to halt training once the model failed to improve on
the test set for 8 consecutive epochs. However, as the individual iterations of
grid search are not independent, complete performance traces were measured
instead of generating them by sampling from a set of iterations. The number
of measured performance traces was set to 6 for all experiments, and these
performance traces were used to estimate each resulting performance profile.
The configuration of the technique in terms of the used model architectures,
as well as in terms of the allowed ranges of tunable hyperparameters, was
identical to the configuration of random search, which was described in the
previous section.

Performance traces along with the aggregated performance profile of any-
time grid search with static models on the SVHN dataset can be seen in figure
6.9. The mean accuracy of individual iterations on the test set was approxi-
mately 70.9 %, with a mean iteration duration at 136 seconds. With dynamic
auto-sizing models, the mean test accuracy grew to 76.2 %, and the mean iter-
ation duration grew to 303 seconds. The performance profiles of both variants
can be seen in figure 6.10. This time, utilization of dynamic auto-sizing shows
a significant improvement in terms of the tradeoff of time against accuracy.
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Figure 6.9: Individual test set performance traces and the corresponding per-
formance profile for anytime grid search with static models trained on samples
of the SVHN dataset.
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Figure 6.10: Estimated test set performance profiles for anytime grid search
with static and dynamic models trained on samples of the SVHN dataset.
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6. Experiments and Results

6.2.2.3 Anytime Hyperparameter Evolution

Similarly to the other methods, anytime hyperparameter evolution was imple-
mented in Python, with the algorithm behaving as described in section 5.3.
The computational expenses were overwhelmingly dominated by the training
of the models of the individuals. The method was configured so that there
are 10 individuals in the parent population, the tournament size is 3, offspring
individuals are recombined from 5 parents, and 2 randomly initialized indi-
viduals are introduced in each epoch; the length of the period for which new
individuals are not penalized was set to 10. Experiments were run only with
dynamic auto-sizing models, which used similar training configuration to the
models used with random search and anytime grid search, and equal hyper-
parameters and hyperparameter ranges to the ones stated stated in section
6.2.2.1. The initial values of the hyperparameters were set to 32 in case of
batch size, 4 · 10−4 for learning rate, and 1 · 10−3 for regularization strength.
The initial regularization strength is the highest allowed value of the hyperpa-
rameter; this was set in order to ensure that the models would start at their
smallest possible size and gradually grow over time, in the case that higher
regularization strengths would be beneficial.

During the run of anytime hyperparameter evolution, the tracked value of
the best accuracy on the test set is updated after every generation. This is
imperfect design, as it would be slightly beneficial for the performance of the
algorithm to update the best accuracy after the training of each individual.
Regarding the sampling of datasets, this was always performed only once at
the start of the algorithm run. As with grid search, complete performance
traces were always measured, with the final performance profiles estimated
from 6 performance traces in all experiments. The performance traces of runs
of the algorithm on samples of the Fashion MNIST dataset, as well as the
resulting performance profile, are presented in figure 6.11.

6.2.2.4 Progressive Model Growth

Progressive model growth was implemented according to the description in
section 5.4. The high-level of the algorithm, that is random search of hy-
perparameters, was configured identically to the experiments with random
search described in section 6.2.2.1. In the experiments, the initial regulariza-
tion strength was set to 1 ·10−3 and the miminum regularization strength was
set to 3.2·10−5, as in the experiments with anytime hyperparameter evolution.
The maximum duration of stall was set to 10 epochs.

As the experiments were performed with very small datasets due to lim-
ited computational resources, the potential performance benefit of progressive
model growth could not be utilized, as the duration of a single run of the low
level is negligible. In this way, the results are mainly influenced by the result-
ing accuracies of the runs of the high level. On the other hand, preliminary
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Figure 6.11: Individual test set performance traces and the corresponding
performance profile for anytime hyperparameter evolution, trained on samples
of the Fashion MNIST dataset.

experiments with larger datasets suggested that models obtained by progres-
sive growth usually converge to worse predictive performance than models
that are trained with low regularization strength right from the start of train-
ing, even if these models start with equally small layer sizes and the size of
resulting models is equal to the size of models trained using progressive model
growth. This could be explained by inherently worse performance of the opti-
mizer in cases where growth of the model happens only after the smaller model
is almost fully trained, although more experiments are necessary to support
this hypothesis.

As with grid search and anytime hyperparameter evolution, the perfor-
mance profiles of all experiments with progressive model growth were esti-
mated using 6 continuously measured performance traces. The results on
samples of the Fashion MNIST dataset are presented in figure 6.12.

6.2.3 Collective Evaluation

This section compares the estimated performance profiles of the presented
anytime learning methods on selected datasets. Initial experiments were per-
formed on samples of the Fashion MNIST dataset, with the results shown in
figure 6.13. On this dataset, anytime hyperparameter evolution lead to the
worst results of all the methods, although the baseline of an average iteration
of random search was surpassed after some time. The performance of progres-
sive model growth and the dynamic version of random search was comparable.
The best results were obtained by grid search and the static version of ran-
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Figure 6.12: Individual test set performance traces and the corresponding
performance profile for progressive model growth, trained on samples of the
Fashion MNIST dataset.

dom search, with the static version of grid search obtaining slightly better
results than the other two methods, although this could be due to statistical
error. The observation of dynamic grid search surpassing the performance of
dynamic random search is slightly surprising given the theoretical advantages
of random search described in section 2.4.2.2. Nevertheless, this result could
be due to chance, as it is possible that the choice of the hyperparameter value
ranges resulted in favorable sequences of the hyperparameter values sampled
by grid search.

The estimated performance profiles of the anytime algorithms on samples
of the CIFAR-10 dataset can be found in figure 6.14. Dynamic auto-sizing
shows a significant advantage over static variants of random search and any-
time grid search, as the decision whether dynamic auto-sizing is used seems
to have higher impact on the performance than the choice whether to use
random search or anytime grid search. The performance of anytime hyper-
parameter evolution is comparable to the performance of the static variants
of random search and anytime grid search, with the estimated performance
profile of evolution slightly outperforming the two techniques at the end of
the measured period. The results of progressive model growth are very good
throughout the whole experiment and only at the end are surpassed by the
dynamic versions of random search and grid search.

As for the 15-puzzle dataset, slightly larger samples of the dataset were
used than in the experiments with Fashion MNIST and CIFAR-10. The
strength of L1 regularization was allowed in the range of 1 · 10−5 to approxi-
mately 3.2 · 10−4. The experiments were run on fully-connected models with
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Figure 6.13: Estimated test set performance profiles for various techniques
with samples of the Fashion MNIST dataset.

random search and grid search, with dynamic auto-sizing significantly outper-
forming the static methods. The results are shown in figure 6.15. On this
dataset, the performances of random search and grid search are comparable,
but the variants utilizing dynamic auto-sizing have a significant advantage over
the static variants. Due to low variance in the results of individual algorithms,
the results never improve much after the first iteration. The mean RMSE of
models obtained by a single iteration of static random search is roughly 9.3,
but the mean RMSE of models produced by single iterations of the dynamic
version of random search is around 6.9, thus explaining the results.
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Figure 6.14: Estimated test set performance profiles for various techniques
with samples of the CIFAR-10 dataset.
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Figure 6.15: Estimated test set performance profiles for various techniques
with samples of the 15-puzzle dataset.
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Chapter 7
Discussion

The experiments performed in the previous chapter show that dynamic auto-
sizing with weighted l1 regularization offers an interesting AutoML technique
that can replace the hyperparameters controlling the regularization strength
and hidden layer sizes with a single value. Moreover, dynamic auto-sizing can
be regarded as a framework for training deep learning models that is flexible
regarding the possible use-cases, as it allows to dynamically change the sizes
of models during training by changing the value of the regularization strength
hyperparameter. Additionally, it was shown that dynamic auto-sizing models
tend to grow with increasing complexity of the problem domain. Most impor-
tantly, it was demonstrated that the performance of dynamic auto-sizing mod-
els utilizing weighted l1 regularization is competitive against the performance
of models trained using conventional methods as well as dynamic auto-sizing
models with underlying l2,1 regularization. This result can be somewhat sur-
prising given the unusual nature of weighted l1 regularization, and the overall
results with the novel dynamic auto-sizing technique can be regarded as a
success.

As for the performance of the anytime algorithms, it is somewhat dis-
appointing that the results were usually dominated by random search and
anytime grid search. Although anytime grid search is a novel algorithm, it is
heavily inspired by grid search, a classical hyperparameter optimization tech-
nique. On the other hand, anytime grid search shares its stochastic nature
with the relatively powerful random search algorithm, thus mitigating the
limitations stemming from the curse of dimensionality.

Regarding the anytime hyperparameter evolution and progressive model
growth algorithms, although the obtained models were shown to outperform
single average iterations of random search, the measured performance pro-
files were in most cases still worse than with the simpler random search and
anytime grid search algorithms. This is unfortunately related to the high com-
putational costs of the experiments, which allowed only limited tuning of the
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7. Discussion

newly introduced methods20. Nonetheless, at least two possible improvements
of anytime hyperparameter evolution can be immediately suggested, although
neither has yet been experimentally evaluated. The first potential improve-
ment is to avoid using the fixed penalty period specifying at what time since
initialization should the fitness of the individuals start being penalized. This
could be done using an approach similar to early stopping, which would start
penalizing individuals that have not improved for a pre-determined number
of epochs. The second potential improvement draws from the behavior of the
presented configuration of the algorithm, in which the models of all individ-
uals are trained jointly epoch by epoch, thus proceeding to powerful models
only very slowly. In the anytime learning setting, it would be more effective if
a single powerful individual was fully trained first. On the other hand, main-
taining a small population in which some individuals are significantly older
and thus more powerful is problematic and it is thus possible that the anytime
hyperparameter evolution technique would have to be altered significantly.

The experiments with anytime learning algorithms were performed mostly
on very small datasets. It would thus be interesting to see results with larger
models and datasets, especially with the progressive model growth algorithm.
However, such experiments would be very computationally intensive and are
thus left for another study. Higher computational budgets could further be
utilized for sampling the performance profiles from a higher number of per-
formance traces. Aditionally, the anytime learning experiments were run only
for moderate durations, and experiments with longer time frames would thus
give insights into the long-term behavior of the algorithms.

Another possible improvement could focus on making the dynamic auto-
sizing technique less computationally intensive. Dynamic auto-sizing is inher-
ently slower than standard model training approaches in that the additional
operations of growth and pruning must be performed. However, for each
epoch, newly grown units are grown, and often these are all pruned at the end
of the epoch during the pruning step. Therefore, it could be experimented with
the values of the hyperparameters λperc and λmin that control the number of
the grown units.

Moreover, weighted l1 regularization is imperfect as well. One particular
issue is that in most cases, the hidden units are stuck with the initial regu-
larization strength for the whole duration of training. More specifically, the
units with a smaller index in a given hidden layer are regularized significantly
less than the units with a higher index, and there is no possibility of them
being assigned a higher amount of regularization during the training. It can
be hypothesized that some of these units are less powerful than some of the
units with a higher index, and would be naturally pruned if given a higher

20Even with the smallest dataset samples, a single generation of anytime hyperparam-
eter evolution took minutes to complete, thus limiting the potential for fine-tuning of the
technique.
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index. Therefore, it was also experimented with a regularization technique
that functioned similarly to weighted l1 regularization in that newly grown
units were given corresponding amounts of regularization, but the regulariza-
tion strengths for the existing units were shuffled for each epoch so that every
unit could be assigned a large regularization strength at some point, giving it
the potential to be pruned if ineffective. However, this modified regularization
lead to worse performance metrics than the basic version of weighted l1 reg-
ularization, possibly due to the regularization strengths changing too rapidly
for the individual units, and the search for improvement thus still remains
open.

As stated in chapter 6, fine-tuning of the models (that is, training with
omitted regularization) was not used in the anytime learning experiments, as
preliminary tests had shown that fine-tuning was not beneficial for the perfor-
mance of the anytime algorithms. This is a relatively surprising phenomenon,
as fine-tuning was shown to provide significant benefits to the performances of
both dynamic and static models in section 6.1. On the other hand, fine-tuning
can prolong the duration of the training, which would negatively impact the
anytime algorithm performance. In any case, this topic is also not concluded
and remains for future research.
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Chapter 8
Conclusion

The thesis introduced dynamic auto-sizing, an approach to training deep learn-
ing models that improves upon original auto-sizing by making it more com-
putationally effective and by enabling the model to grow. In the thesis, it was
shown that when coupled with the novel weighted l1 regularization, dynamic
auto-sizing can produce models that surpass the predictive performance of sev-
eral baseline models. It is plausible that dynamic auto-sizing could also serve
as a tool for other engineering tasks besides casual model training, as success-
ful experiments regarding the growth of small models have been presented in
the thesis. Moreover, it can be hypothesized that dynamic auto-sizing gives
the potential for pruning of deep learning models of unsuitable size, or for
adaptation of size of the models to concept drift in on-line or reinforcement
learning tasks. In order to support the potential future applications and re-
search, an implementation of dynamic auto-sizing has been released under an
open-source license as part of this thesis.

In the anytime learning setting, techniques that utilized dynamic auto-
sizing showed performance benefits over classical model training techniques
in multiple experiments. Three novel anytime learning algorithms have been
designed and evaluated, namely anytime grid search, anytime hyperparame-
ter evolution, and progressive model growth, and it was demonstrated that
classical random search can be perceived as an anytime learning algorithm as
well. Moreover, although the results of dynamic auto-sizing in the anytime
learning setting have been shown to be affected by longer training times, areas
for research have been envisioned that could help improve the results in future
works.
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[48] Bäck, T.; Schwefel, H.-P. An overview of evolutionary algorithms for
parameter optimization. Evolutionary computation, volume 1, no. 1, 1993:
pp. 1–23.

[49] Holland, J. H. Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[50] Turing, A. M. Computing machinery and intelligence. In Parsing the
turing test, Springer, 2009, pp. 23–65.

[51] Barricelli, N. A. Symbiogenetic evolution processes realized by artificial
methods. 1957.

74



Bibliography

[52] Fraser, A. S. Simulation of genetic systems by automatic digital comput-
ers I. Introduction. Australian journal of biological sciences, volume 10,
no. 4, 1957: pp. 484–491.

[53] Whitley, L. D.; et al. The GENITOR algorithm and selection pressure:
why rank-based allocation of reproductive trials is best. Citeseer, 1989.

[54] Yang, J.; Soh, C. K. Structural optimization by genetic algorithms with
tournament selection. Journal of computing in civil engineering, vol-
ume 11, no. 3, 1997: pp. 195–200.

[55] Beyer, H. Evolution strategies. Scholarpedia, volume 2, no. 8, 2007: p.
1965, doi:10.4249/scholarpedia.1965, revision #193589.

[56] Ramsey, C. L.; Grefenstette, J. J. Case-based anytime learning. In Case
Based Reasoning: Papers from the 1994 Workshop, AAAI Press Menlo
Park, California, 1994, pp. 91–95.

[57] Parker, G. B.; Mills, J. W. Adaptive hexapod gait control using anytime
learning with fitness biasing. In Proceedings of the 1st Annual Conference
on Genetic and Evolutionary Computation-Volume 1, Citeseer, 1999, pp.
519–524.

[58] Parker, G. B. Co-evolving model parameters for anytime learning in evo-
lutionary robotics. Robotics and Autonomous Systems, volume 33, no. 1,
2000: pp. 13–30.

[59] Parker, G. B. Punctuated anytime learning for hexapod gait generation.
In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, volume 3, IEEE, 2002, pp. 2664–2671.

[60] Esmeir, S.; Markovitch, S. Anytime learning of anycost classifiers. Ma-
chine Learning, volume 82, no. 3, 2011: pp. 445–473.

[61] Seidl, T.; Assent, I.; et al. Indexing density models for incremental learn-
ing and anytime classification on data streams. In Proceedings of the 12th
international conference on extending database technology: advances in
database technology, 2009, pp. 311–322.

[62] Xu, Z.; Kusner, M.; et al. Anytime representation learning. In Interna-
tional Conference on Machine Learning, PMLR, 2013, pp. 1076–1084.

[63] LeCun, Y.; Denker, J.; et al. Optimal brain damage. Advances in neural
information processing systems, volume 2, 1989.

[64] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), volume 58,
no. 1, 1996: pp. 267–288.

75



Bibliography

[65] Han, S.; Pool, J.; et al. Learning both weights and connections for effi-
cient neural network. Advances in neural information processing systems,
volume 28, 2015.

[66] Han, S.; Mao, H.; et al. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

[67] Yang, J.; Ma, J. Feed-forward neural network training using sparse rep-
resentation. Expert Systems with Applications, volume 116, 2019: pp.
255–264.

[68] Wen, W.; Wu, C.; et al. Learning structured sparsity in deep neural
networks. Advances in neural information processing systems, volume 29,
2016.

[69] Lin, J.; Rao, Y.; et al. Runtime neural pruning. Advances in neural in-
formation processing systems, volume 30, 2017.

[70] Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference
on machine learning, PMLR, 2015, pp. 448–456.
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Appendix A
Acronyms

AdaGrad Adaptive Gradient algorithm

Adam Adaptive moment estimation

AutoML Automated Machine Learning

CIFAR Canadian Institute For Advanced Research

CPU Central Processing Unit

DARTS Differentiable ARchiTecture Search

ELU Exponential Linear Unit

ES Evolution Strategy

ESP Enforced Sub-Populations

FLOPS FLoating point OPerations per Second

GPU Graphics Processing Unit

KL divergence Kullback-Leibler divergence

MNIST Modified National Institute of Standards and Technology

MSE Mean Squared Error

NAS Neural Architecture Search

NEAT NeuroEvolution of Augmenting Topologies

NNI Neural Network Intelligence

RAM Random Access Memory

ReLU Rectified Linear Unit
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A. Acronyms

RGB Red-Green-Blue

RMSE Root Mean Squared Error

RMSProp Root Mean Square Propagation

SANE Symbiotic, Adaptive Neuro-Evolution

SELU Scaled Exponential Linear Unit

SVHN Street View House Number

TPOT Tree-based Pipeline Optimization Tool

TWEANN Topology and Weight Evolving Artificial Neural Networks
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Appendix B
Contents of enclosed CD

README.md......................................description of contents
LICENSE................................................project license
requirements.txt ............................... Python requirements
nets.......................Python package containing implementations
notebooks .......... directory with Jupyter notebooks with experiments
thesis.pdf .............................. the thesis in the PDF format
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