

Master’s thesis

King Karel – An Educational
Programming Puzzle Game

Bc. Jan Bittner

Department of Software Engineering
Supervisor: Ing. Jan Matoušek

May 3, 2022

Acknowledgements

Throughout the writing of this thesis I have received a great deal of support
and assistance.

First and foremost, I would like to express my deep gratitude to my supervi-
sor, Ing. Jan Matoušek. I am incredibly grateful for our friendly chats and his
dedicated support and guidance.

I want to acknowledge my colleagues from the FIT Discord community for
their tremendous support throughout my studies. Their regular dose of memes
often improved my mood. It has been an honor to serve beside you.

Last but not least, I owe more than thanks to my family and friends for
providing me with unfailing support and continuous encouragement through-
out my years of study and through the process of writing this thesis. This
accomplishment would not have been possible without them. Thank you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 3, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Jan Bittner. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Bittner, Jan. King Karel – An Educational Programming Puzzle Game.
Master’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2022. Also available from: ⟨https://github.com/tenhobi/
masters-thesis⟩.

https://github.com/tenhobi/masters-thesis
https://github.com/tenhobi/masters-thesis

Abstrakt

Magisterská práce se zabývá vývojem prototypu hry King Karel, logické hry na
výuku programování. Práce popisuje proces analýzy, návrhu a implementace
zmiňované hry s důrazem na návrh architektury jednotlivých částí. Klientská
část je tvořena pomocí frameworku Flutter a serverová část je tvořena pomocí
frameworku ASP.NET Web API.

Klíčová slova výuková hra, web, desktop, Flutter, C#, programovací
logická hra, multiplatformní framework

vii

Abstract

The master’s thesis deals with the development of a prototype of the game
King Karel – an educational programming puzzle game. The thesis describes
the process of analysis, design, and implementation of the mentioned game,
emphasizing the design of the architecture of individual parts. The client part
is created using the Flutter framework, and the server part is created using
the ASP.NET Web API framework.

Keywords educational game, web, desktop, Flutter, C#, programming
puzzle, cross-platform framework

viii

Contents

Introduction 1
Motivation . 2
Aims and Objectives . 3

1 Survey 5
1.1 Conducted Survey . 5
1.2 Evaluation . 7

2 Analysis 9
2.1 Analysis of the Game . 9
2.2 Functional Requirements . 16
2.3 Non-functional Requirements 19

3 Existing Similar Games 21
3.1 Scratch . 22
3.2 Khan Academy . 23
3.3 CodeCombat . 24
3.4 Minecraft . 26
3.5 Opus Magnum . 28
3.6 7 Billion Humans . 29
3.7 Codewars . 30
3.8 CodeMonkey . 31
3.9 Codemancer . 32
3.10 Baba Is You . 33
3.11 Evaluation . 34

4 Design 37
4.1 Use Cases . 37
4.2 Game Mechanics . 44

ix

4.3 Architecture . 46
4.4 Client Application . 51
4.5 Server Application . 63
4.6 Database . 68
4.7 User Interface . 71

5 Implementation 77
5.1 Client Application . 77
5.2 Server Application . 88
5.3 Database . 92
5.4 User Inteface . 92

6 Usability Testing 97
6.1 Scenarios . 98
6.2 First Phase . 101
6.3 Second Phase . 103
6.4 Evaluation . 106

Conclusion 107
Acquired Experience . 107
Ideas on Future Development . 108

Bibliography 109

A List of Acronyms 113

B Contents of the Attached Disc 115

x

List of Figures

1.1 Played Non-educational Types of Games 7

3.1 Scratch [4] . 22
3.2 Khan Academy [5] . 23
3.3 CodeCombat [6] . 25
3.4 Minecraft [7] . 26
3.5 Opus Magnum [8] . 27
3.6 7 Billion Humans [9] . 29
3.7 Codewars [10] . 30
3.8 CodeMonkey [11] . 31
3.9 Codemancer [12] . 33
3.10 Baba Is You [13] . 34

4.1 Use Case Diagram . 44
4.2 The Clean Architecture [18] . 50
4.3 The CORS Mechanism [19] . 52
4.4 WebView [20] . 53
4.5 Reactive View [20] . 54
4.6 Flutter [20] . 55
4.7 Flutter’s Architectural Layers [24] 56
4.8 Flutter on Web [24] . 57
4.9 Flutter Layout and Rendering [24] 58
4.10 Client Architecture . 59
4.11 Server Architecture . 64
4.12 JSON Web Tokens [35] . 68
4.13 Conceptual Schema . 70
4.14 Sign-In Wireframe . 71
4.15 Missions Wireframe . 72
4.16 Learning and Storytelling Missions Wireframe 72
4.17 Game Mission Wireframe . 73

xi

4.18 Game Screen Wireframe . 74
4.19 Game Dialog Wireframe . 74
4.20 Statistics Wireframe . 75

5.1 Command Blocks . 78
5.2 Overlay . 82
5.3 Navigator 2.0 [39] . 84
5.4 Routing . 85
5.5 Game Grid . 86
5.6 Game Dialog . 86
5.7 Relational Schema . 91
5.8 Game Mission Screen . 93
5.9 Game Mission’s Dialog . 94
5.10 Stories Screen . 94
5.11 Story Screen . 95
5.12 Game Statistics Screen . 96
5.13 About-Us Screen . 96

xii

List of Tables

3.1 Comparison of Similar Games . 35

4.1 Implementation of Use Cases and Compliance with Requirements . 43

xiii

List of Listings

4.1 Sample Database Context . 66
5.1 Closest Container Lookup . 81
5.2 From-Json Factory Constructor 83
5.3 Server Configuration . 88
5.4 LINQ to Entities . 89
5.5 GroupJoin to Fetch Story’s Missions 90
5.6 Entity Framework Migration Tools 92

xv

Introduction

In recent years people have used more and more games and applications,
mainly due to the arrival, further development, and massive popularization
of laptops, mobile phones, and other smart devices.

For clarity, this thesis uses the term game for a type of a program whose
purpose is to entertain or use the user’s knowledge to elevate the mechanics
of the game in comparison with the term application for a type of a program
whose primary purpose is helping a user do things. Therefore even though
regular users might refer to some programs as applications, the term game
will be used instead in this thesis.

Although not many games design their concepts to be educational,
the benefits of educational aspects are crystal clear. It is always good to
introduce as many fun concepts and mechanics as possible for educational
applications.

Dedicated educational games introduce students to the studied subject
using classical approaches such as strictly focusing on the topic with no extra
features. While using interactive methods fulfills its purpose, and students can
learn the concepts from these resources, they also face problems with students’
attention spans because they feel bored with the knowledge they are learning.

Instead of developing only dull and bland dedicated educational applica-
tions, many games use a concept called gamification. Gamification is a rela-
tively new technique without a clear definition.

According to the article [1], gamification in education is a psychologically
driven approach to increasing the motivation and engagement of students by
including game design principles. The article also states that research on gam-
ification is diverse and that the focus is mainly on empirical studies. However,
the article also “identified a growing number of studies reporting empirical
evidences for the effectiveness of gamification in educational context.” [1]
It also states that the understanding of gamification processes is limited, and
it is unknown how to produce beneficial learning outcomes while avoiding
harmful learning outcomes.

1

Introduction

According to the article [2], gamification might affect participants
differently based on their personality traits. The study used students from
an undergraduate programming class who were given gamified and
non-gamified learning environments. The article concludes that students with
low agreeableness, low openness, and introverts showed remarkable improve-
ment and that introverted students were more engaged than extroverted ones.

In the article [3] the study examines the effects of gamification on numeracy
at a primary school level. They selected three features from the survey —
challenges, feedback, graphics — and created two game versions presented
to children. One version with all features enabled and the second one with
an apparent lack of these features. The study results showed that gamification
methods were “more effective in enhancing children’s learning and they found
it more engaging.”

After reviewing mentioned articles, it is clear that gamification in educa-
tion has been proven by empirical methods to provide a significantly better and
more engaging learning environment. Mentioned studies show a good direction
in designing an entertaining education game despite the lack of non-empirical
studies on psychological benefits.

Motivation
I have enjoyed playing computer games from an early age. Although most
of my friends exclusively played non-educational games or games where one
did not need to think, I always enjoyed the puzzle, strategic, building, and
educational games. Even today, I remember how I and my sister both played
together game Alík - Veselá matematika to practice the basics of mathematics.
This game was enjoyable, even though it was an educational game. The main
reason was that it had some story, and it did not feel like learning. It felt
like playing a video game. You needed to compute some numbers to move or
help some character in the game. After completing a task, you receive some
points, and I think using them, you can acquire some toys for your hard-won
in-game collection.

These concepts sound like gamification to me, and I would like to create
a prototype for a game that will teach children the basics of programming
concepts, so maybe some children, like me years prior, will enjoy their time
learning a bit more.

I have been helping with organizing summer camps and other events for
children with a local organization for years. We prepare activities and games
for children to enjoy the time and learn something new. I also have experience
educating children and adults while writing technical articles and lecturing
about programming. I always try to present relevant information in the most
friendly form in all my articles and lectures. In the future, I would like to
focus on developing an educational project or teaching.

2

Aims and Objectives

Aims and Objectives
Gamification in education is a noteworthy aid to educational games. This
thesis focuses on the analysis, design, and development of a prototype of such
a game that focuses on teaching programming concepts.

Due to mentioned motivations, the game is aimed primarily at young
people, but this condition is not exclusive; everyone will be able to play
the game. That means focusing on middle school or high school children,
i.e., 11–18 years old. Therefore, the game must be simple, easy to under-
stand, and the mechanics shall be quick to master.

In order for the game to be designed as best as possible, a survey among
children, parents, and teachers will be needed. Based on the survey and
the mentioned articles, an analysis of the requirements for the game will
be created. Then the game will be designed and implemented, and finally,
usability testing will be performed and evaluated.

3

Chapter 1
Survey

Surveys gather information through questions on a sample of people. They
can take many forms, including telephone surveys, face-to-face surveys, paper
surveys, and online surveys. Unlike other forms, online surveys benefit from
being faster, cheaper, more accurate, and easy to get and analyze.

Online surveys often consist of open-ended and closed-ended questions that
help analyze the studied topic. They can also contain different questions based
on participants’ roles. There are also dedicated applications to create and
conduct online surveys that can set up different questions, separate them into
individual groups or pages, make conditions to display them only to specific
user roles, etc.

The first important task is defining the survey’s goals and who to survey.
With that in mind, questions are created. And in the end, the gathered data
has to be analyzed. It is often required to process and adjust the data before
analyzing, especially the open-ended questions. Therefore a human worker
must go through these questions and take out the relevant data.

1.1 Conducted Survey

Even though this thesis focuses on developing a prototype mainly focused
on children, also parents and teachers participated in it. The game’s future
development counts on developing more features to include these user groups
in the children’s education.

Articles mentioned in the introduction also analyzed some use-cases of
gamification in education or educational games. These studies have been
analyzed, and the conducted survey follows and considers their results.

The primary purpose of the conducted survey for this thesis was to under-
stand what some children, their parents, and teachers think and would make
them motivated in a gamified game.

5

1. Survey

The survey recognizes three participant roles: a child, a parent, and
a teacher. Each role has a modified set of questions.

Questions asked only to children

1. What (non-educational) games do you usually play and why? What
is your motivation for playing them? (Open-ended question.)

2. Do you like receiving points as a reward for completing tasks? (Closed-
ended question.)

3. Do you like rankings in educational games? (Closed-ended question.)

4. Would you like an advanced final task as a challenge? (Closed-ended
question.)

5. What is your primary motivation to play an educational game? (Open-
ended question.)

Questions asked to children, parents, and teachers

1. What aspects or mechanics are important in an educational game
according to you? (Closed-ended question with options: a game; a story;
study materials; an explanation.)

2. Do you (or your children/students) use any educational application or
game? (Closed-ended question with options: Duolingo, Khan Academy,
Minecraft, Scratch, other.)

3. What experiences do you have with educational applications or games.
What aspects do you like the most, what don’t you like? (Open-ended
question.)

4. What would you appreciate most in an educational game? (Open-ended
question.)

Questions asked only to parents and teachers

1. What is important to you? (Closed-ended question with options: pro-
gress monitoring; checking the results; ratings and comparison with
other players; planning tasks for children to practice; an option to change
child’s settings.)

6

1.2. Evaluation

re
sp

on
se

s
[%

]

0

5

10

15

20

25

no
thi

ng

bu
ild

ing

bo
ard

 ga
mes

ca
su

al

pu
zz

le/
str

ate
gy

ba
ttle

 ro
ya

l

sh
oo

tin
g

mob
a

Non-educational games

Figure 1.1: Played Non-educational Types of Games

1.2 Evaluation

The survey where children, parents, and teachers participated was held online
using Google Forms. An equivalent face-to-face survey was also done with
children. Both groups showed, on average, the same results.

The assumptions before doing the survey were that at least 90 percent
of respondents play non-educational games; respondents (especially children)
play some building games (such as Minecraft), children are mostly (at least
75 percent) competitive, and the most crucial aspect is the game itself, expla-
nation, and a story.

The survey results pointed out that almost 22 percent of respondents do
not play non-educational games. Almost 18 percent of respondents (primarily
children) play building games. Respondents also chose to play casual games
and shooting games in almost 14 percent of responses, puzzle or strategy games
in nearly 12 percent of responses, board games, battle-royal-like games, and
shooting games in about 7 percent. The results of which non-educational
games people play are shown in figure 1.1.

In a matter of educational games people use, almost 60 percent of respon-
dents use Duolingo — language learning educational game. Almost 30 per-
cent of respondents also selected Minecraft — a game known for its building
mechanics and an option to program with unique blocks. Almost 15 percent
of respondents use Scratch — a tool to do visual programming. Other minor
answers were, for example, Khan Academy and Kahoot with almost 7 percent.

7

1. Survey

Focusing on children’s answers, almost 80 percent like receiving some
reward for completing tasks; nearly 75 percent like rating systems; and
almost 80 percent of respondents would like the last task to be a challenge.

Questions about what aspects or mechanics are important in an educa-
tional game showed exciting differences. While children selected with the same
share a game, a story, and an explanation, almost none selected study mate-
rials. Parents and teachers selected a story and an explanation, while almost
none chose a game and study materials. Interestingly, the difference between
children and parents or teachers is the view on the importance of the game
aspects.

The results and initial assumptions contradict that most people play non-
educational games; confirm that building games are the most common kind
of games children play; and show that children are — majority with almost
75 percent — competitive.

The conducted survey with the addition of articles mentioned in
the introduction suggests that gamification in educational games might
introduce valuable benefits. In summary, children like to receive rewards
in some form of points, want to compete and be rated, and like challenges.
All these factors underline the motivational aspects found in mentioned
studies, as they help to increase the attention span.

8

Chapter 2
Analysis

According to previous chapters’ survey results and other resources, this chap-
ter describes the game’s prototype analysis. The output of this chapter
is an analysis of the game’s concepts, mechanics, and screens and setting
functional and non-functional requirements.

2.1 Analysis of the Game
The game King Karel is an educational programming puzzle game that uses
gamification methods to enhance its capabilities in educating children’s pro-
gramming concepts.

The game should be accessible to a majority of users. Therefore it should
be provided as a web and desktop application. These game versions should be
equal in features, look-alike, and have the same synced content. Additionally,
the game should be prepared for expanding to mobile devices, either using
responsive web technologies or as dedicated programs.

2.1.1 Stories and Missions
The game is built around the stories of Karel, the king, who must solve
the problems plaguing his land and other adventures. In the stories, Karel
must complete tasks and fight difficulties using algorithms properly. He can
move, put and grab marks, look around and determine if he should do some
action or he can repeat them. He also has to be careful not to step into
the woods, a lake, a wall, or outside his land. Making the game around stories
should increase motivation to play, as suggested by conducted survey and
mentioned articles. It is also an excellent way to connect game missions with
storytelling and learning missions.

Each story contains several missions. Each mission can be focused on
storytelling, learning, or playing. As the player continues through the story,
they learn new concepts and practice skills by helping the king with his tasks.

9

2. Analysis

Storytelling missions aim to increase motivation to play because players will be
interested to learn about the characters. Learning missions aim to introduce
players to new concepts or explain what they can use in the game or how
the game evaluates its completion. Game missions aim to provide players
with a fun aspect. The game challenges players, who have to think, but their
focus is to move or control their character, not focus on learning and practicing
programming concepts.

Story selection contains a name and a description of a story and its count
of missions. Mission selection of a specific story contains its missions in order.
Each mission also contains graphics representing its type; a book for a story-
telling mission, a university hat for a learning mission, and a boat for a game
mission. A game mission also contains additional statistics information in
the form of crowns. Game missions can have up to three crowns; one —
the biggest — for completing a mission, one for meeting the size, and one for
completing the speed criteria.

2.1.2 Game Missions
Game missions should offer multiple ways to solve a problem. Some can be
easy and almost step-by-step. Some might be solved using loops or ifs to make
the program more efficient or fast.

For the prototype purpose, an initial story and its missions are made. Each
game mission contains a game grid that shows and represents the current view
of the game progress. It also contains a description view, a command panel
view with a list of commands used to program the game, a command palette,
and control buttons. Using commands, a player can alter the game, which
updates the grid view, and the player can see how their character moves or
does other things. Each command is also displayed with a mark on execution,
indicating that that command is in use. Players can show or hide descriptions
and reset, save, or run a game using control buttons. While a game is in
progress, players can not alter the commands, but they can stop the running
game.

There are only basic commands available for the initial story and
its missions. Those commands include a command to move the character
in a direction, place a mark on a current cell, grab a mark from a current cell,
and conditionally check once or repeatedly. Players can choose from direc-
tions up, right, bottom, and left. Similarly, they can choose from conditions
based on the current direction or whether they can place or grab a mark.

Players can pick and place commands from the command palette in
the default place or into the commands’ inner place if they have one.
Drag-and-drop gestures can also reorder commands. The position of dragged
commands has the same graphics but has half opacity. Commands dragged
out of the palette do not have a position, but their position is synced after
the first pass over the default or inner places. And they can be thrown away by

10

2.1. Analysis of the Game

dragging command away from the default or inner place. Commands dragged
out have quarter opacity to signify that the command will be removed.

As has been mentioned, the grid contains cells of different types. Some of
the cells are walkable, and some of them are non-walkable. Walkable cells are
empty, and players can put and grab marks from them. Non-walkable cells
represent natural structures like walls, lakes, or forests. Players cannot walk
to those cells.

The game mission shows a status dialog after a running game finishes.
The dialog is either with success or failure statuses. The failure dialog also
shows a note of which specific error occurred. The error can represent invalid
commands, invalid moves, invalid use of put-mark command, invalid use of
grab-mark command, or exceeding the speed limit.

A status dialog also shows statistics of speed and size attributes. The size
attribute corresponds to the number of commands used. The speed attribute
corresponds to the number of executed commands. They are both optional
challenges for players to gain additional points. If the game does not meet
the size or speed criteria, the dialog displays that attribute in a failure color.

2.1.3 Statistics
Players can also show results from playing game missions. The statistics
divide its view by a story. Each story then contains rows for each of its game
missions containing a mission name, if the mission is completed, and what size
and speed results they have.

2.1.4 Profile
Players can also display their profiles to check the used username, email
address, or description. The corresponding screen should be the first screen
they are introduced to after the registration.

2.1.5 Signing Up, In and Out
The game has a main menu containing different buttons that control naviga-
tion between screens. It consists of the main screen button, stories button,
stats button, profile button, about-us button, and sign-out button.
If the player is not signed in, the menu contains sign-up and sign-in buttons.

To sign up, the player has to fill in the username, password, real name,
email, and description text fields. After submitting the form, either by using
the submit action or by clicking the submit button, signing up is done, and
if no conflicts occur, the player is redirected to their profile screen. Similarly,
the player must fill in the username and password to sign in. If the password
and username match the player’s record, the player is redirected to their profile
screen. If any error occurs for any of both processes, a fail message is displayed.

11

2. Analysis

2.1.6 Game Information
The game must have a space to display information about the approach,
contact, guidelines, help, info, press, privacy, and terms. It should all be
on one screen or divided into connected subscreens. These screens should be
accessible from the main menu. A small sub-menu with references to these
screens should be on all screens if their design allows that.

2.1.7 Future Features
Not every feature can be made for the prototype version. Therefore, other
analyzed features suggested for future development of the game are recognized
in this section.

2.1.7.1 Game Mission

First, game missions will introduce more commands players can use. One of
the first features that should be implemented in the future is the feature
of creating separate function-like commands. That means that players will be
able to create commands that can be reused both in the default command list,
in other function-like commands, and even in the current function-like com-
mand to allow using programming constructs like recursion. These commands
will be added to the command palette in a special section. Players will be
able to update them after invoking a particular action to switch the default
command list to the block’s command list.

Game missions should also introduce unique cells that can contain ma-
chines. Every machine can also add a set of commands that Karel can use,
including conditions. That means that machines can be, for example, acti-
vated or deactivated. Interactions with machines, or their end state, can also
be included in evaluating the mission. Machine cells can be both walkable and
non-walkable. They can also share a state, so two machines can work with
one logical property.

While machines are stationary cell-locked entities, tools that the game
mission should also introduce are to be carried with the character. Tools can
also introduce commands, conditions, and directions. But the use of these
commands should have limited use, so they can be used only if the character
carries the tool at the moment. Therefore, tools can be picked and placed on
walkable cells or inside a machine that might destroy the item.

Tools and machines can introduce an almost unlimited number of features.
Players could, for example, use teleport, walk with different lengths of steps,
open a door, deactivate a trap, and much more. Tools or machines can also
add negative perks.

Later updates of the game mission can also introduce the feature of com-
bining tools. For example, players will be forced first to collect two diamonds
that can be combined into a diamond key that can open doors.

12

2.1. Analysis of the Game

2.1.7.2 Practice Missions

There could also be another type of mission, practice. This mission would
check that players understand storytelling and learning missions. Practice
missions can contain a simple quiz with multiple simple yes-no or ABC quiz-
like questions.

With these concepts, game missions could set up prerequisites, so players
do not run game missions before understanding the story and learning
materials. Another option could be that by completing these quizzes, players
receive additional points.

2.1.7.3 Social Features

In the prototype, players cannot interact with other players. Social features
could include a support forum, chats, global statistics, public profiles, etc.

Support forum would introduce players with the option to ask other players
to help them with an understanding of Karel’s story, learning concepts, or
with their algorithms. On the forum, players would be displayed with their
username and a count of crowns, representing their gained points from stories
and their completed stories. Players could upvote questions and answers
so people can see the most relevant answers first.

Global statistics and public profiles could be beneficial in terms of gamifi-
cation. These features would enable social challenges with friends. Challenges
are one of the features article [3] promoted as enhancing players’ learning.
It also makes the game more engaging.

Public profiles also make it possible to friend other players. Then players
can even compete with their friends.

2.1.7.4 Creator Screen

The prototype’s scope is only to implement screens that players can use.
The creator screen could provide essential tools for content creators to create
and manage game content.

Using the stories tool, creators can create and edit stories. When creating,
they have to choose a name, a description, an URL, and an order number,
in which this story will be sorted in lists. When editing, creators can edit
a name, a description, or an order. Regular creators cannot change the URL
to ensure players can access played stories by the URL they already used.

Using the missions tool, creators can create all types of missions. Like
the stories tool, they can create a mission with a name, an URL, and a de-
scription. Creators can also edit a name and a description. Regular creators
cannot change the URL. Then, the creator chooses what type the mission
should be. Creators can add a list of texts in a Markdown format for learning
and storytelling missions. For practice missions, they have to add a list of

13

2. Analysis

questions where each question contains a question text, a list of answers, and
a correct solution.

Game missions are unique because they require multiple dynamic setups.
Creators are presented with a commands list view, where they insert all default
commands they want for the mission. Then, they are presented with a grid
view, where they can select a cell type and point and click on a grid cell to
change the cell type. Some cells can contain additional data like walkable
cells can have some marks. For those data, a unique JSON-generated view
is generated. The exact process is repeated for the result grid view. Creators
can use the button to clone the initial grid view so they can use the structures
they created. To choose the character’s initial and end position, they also
select, point, and click on a cell — which must be a valid walkable cell. If we
consider that the game before this feature also introduced the machines and
tools update, tools and machines can be selected and placed in a cell. If tools
or machines use some logic, proper input or output fields are displayed, and
the creator works with the ids of tools or machines.

2.1.7.5 Managers Screen

The game contains multiple screens with texts that managers should easily
update. Those screens are the main screen and subscreens of the about-us
screen, i.e., approach, contact, guidelines, help, info, press, privacy, and terms
screens. For these screens, managers can update their content. Most can
be done by editing their text content using the Markdown format. With this
format of texts, managers can use advanced formatting needed for the content
to use headings, links, bold and italic styles, etc. Optionally, screens can also
contain multiple texts or even lists of texts. Nonetheless, texts are always in
the Markdown format.

2.1.7.6 Teacher Screen

A teacher screen or possibly a classroom screen should allow teachers to moni-
tor students’ progress and see their results. They could also set up assignments
and visibility of results and scoring in the class.

The main feature of the screen is a list of students. Teachers can see
a name, points gained this week, total points, and students’ state of the current
assignment. They can also order the list by each column to better analyze
students in need of help or students that exceed expectations.

Teachers can also display an archive of past assignments. For these
assignments, they can display a list of results. Results display a name, total
assignment score, if the assignment is completed, etc. These data can also be
generated so teachers can print them or use them in sheets or other applica-
tions that can process it.

14

2.1. Analysis of the Game

From a student’s point of view, the student can see their classrooms. Inside
the classroom view, they can compare themselves with other students’ results
if the visibility of the classroom or assignment allows that. And the main
thing students see is a current assignment and a history of assignments for
which they see either only their results or results of other students as well,
based on the visibility settings.

Students and teachers can also use the classroom chat. The teacher can
send a global message to everyone and have a private chat with each student.
Teachers can also pin messages to the noticeboard that can be used as a place
with recommended notes for students.

2.1.7.7 Parent Screen

Parents can register children under their profile to monitor them and set up
some assignments. They can see the results in the stories of all of their
children, and they can also see scores received this the current week.

From the children’s point of view, they cannot see their parent’s data.
They can only see what account is set up as their parent.

2.1.7.8 Random Challenge

As another gamification feature, the game should also contain a daily challenge
to improve players’ motivation and challenge them more. As a reward for
completing these challenges, players can gain additional points from it and
compete with their friends in daily statistics.

These challenges are generated randomly. This feature introduces an algo-
rithm that can generate exciting grids with possible-to-complete tasks. That
means Karel can get from the initial position to the end position. If some
marks are placed, there will be an empty place for them, and players can
move to the cell. Similarly, if some marks are grabbed, players can move
the character to that cell, and the cell should have the marks needed.

Considering that machines and tools are presented, the algorithm will be
able to make valid requirements for using them. If the algorithm uses a locked
door, it has to place the key somewhere or make it so the player can retrieve
it.

The algorithm will also generate a reasonable description from provided
criteria. It must determine a logical order of instructions, and if some require-
ments are relative to each another, they will be placed next to each other.

The algorithm will also be able to compute the optimal size and speed
attributes and increase them by some amount to make the mission reasonably
challenging but not too easy or too hard. That also applies to the mission
itself. The algorithm should have ways to recognize too easy tasks like moving
characters by one cell. Therefore a minimal grid size of 42 cells is required
because too small grids also support the creation of uncomplicated tasks.

15

2. Analysis

In summary, the algorithm will be able to generate such a task so most of
the players can complete the mission, but not every player can satisfy its size
and speed requirements.

2.2 Functional Requirements

For the context of this section, a not-signed user is called ‘a user’, and a signed
user is called ‘a player’. Moreover, a player can use all features a user can.

Functional requirements describe individual requirements for the function-
ality of the game. They describe actions or features users or players can use.
These requirements can be looked at as individual units, and they can form
separate game modules.

Analysis of the game that is the base for requirements is described in
more detail in section 2.1. Signing up, in, and out — as described in sec-
tion 2.1.5 — are crucial requirements that allow users to use the locked-in
features of the game. Looking up game information — as described in sec-
tion 2.1.6 — is an essential feature that allows all types of users and players to
get the available information like contacts, press data, guidelines, terms of use,
etc. Players also might need to take a look at their profile or statistics — as de-
scribed in sections 2.1.3 and 2.1.4. The game provides several courses called
stories and their missions. Missions can be of different types: storytelling,
learning, or game missions. Courses and missions are widely described in sec-
tion 2.1.1, and game mission and all its features, in particular, are described in
section 2.1.2. Some additional features are also described as future develop-
ment ideas in section 2.1.7. However, these features are not included in the list
of functional requirements, as this list only contains elements for the prototype
that will be designed and implemented in the game.

The following list shows the analyzed functional requirements. Require-
ments marked with * are beyond the scope of this thesis and will not be
designed and implemented in more detail.

16

2.2. Functional Requirements

F1 Sign Up, In and Out — An anonymous user must sign in to unlock
courses and other in-game screens. If they do not have an account, they
can create one on the sign-up screen. If they already have an account,
they can sign in to the game on the sign-in screen. If the user is signed in,
they can sign out of the game, thus losing the access to view the in-game
screens.

F2 Game Information — An anonymous user can display game informa-
tion on the about-us screen, including approach, apps, contact, guide-
lines, help, info, press, privacy, and terms subscreens.

F3 Statistics — A player is shown the result of the game mission after
its completion. They see whether they succeeded in the mission and
the optional attributes size and speed. The player can also view their
summary statistics from all missions on the statistics screen. On this
screen, they can see the name of the mission, the affiliation to the story,
whether it was successful, and the optional attributes size and speed.

F4 Profile — A player can view their profile on the profile screen. There
they can see their nickname, name, email, and description.

F5 Courses — A player can view a list of courses. This overview displays
the courses’ names, descriptions, and how many missions they contain.
On the screen of individual courses, the player then sees the name of
the course and individual missions. The player sees their name and
description for each mission and can run them. In addition, they see
a state of the game mission. The state indicates whether the game
mission has been completed and, if so, whether the optional size and
speed attributes have been met.

F6 Storytelling Missions — A player can view the storytelling mission.
They can gradually click through the story, introducing them to it.
The storytelling parts contain formatted text and pictures.

F7 Learning Missions — A player can view the learning mission. They
can read the learning sections to learn the concepts of the game.
The learning sections contain formatted text and pictures.

17

2. Analysis

F8 Game Missions — A player can view and play the game mission.
It has several game mission features that will help players understand
the mission objectives and fulfill them. The player can:

a) Display visual commands added to the command list and can be
moved in it using drag-and-drop. The player can move new com-
mands from the palette.

b) Display the game grid, in which the individual cells of the game
mission are displayed. There are cells for walkable cells and non-
walkable cells. The robot cannot walk outside the marked grid.
Walkable cells can display marks.

c) Start a game that processes visual commands and starts an inter-
active robot walk through the grid. The player sees the currently
executed command and the robot’s current position in the grid.

d) At the end of the game, a success or failure dialog will appear.
Additionally, a specific error message may be displayed if it fails.
Optional size and speed attributes are displayed on success.

F9* Function Commands — A player can use advanced commands such
as functions. Functions can use other functions, and functions can also
use themselves. The player can create, edit and delete functions.

F10* Machines — The game has special cells containing machines. A player
can interact with machines. The robot can use commands and conditions
which machines add to the game.

F11* Tools — The game has tools. These are entities that the robot can pick
up and use. They add commands and conditions to the game. Tools
can also be combined.

F12* Practice Missions — A player can view and complete a practice mis-
sion that includes quizzes with yes-no or ABC questions. Questions must
be answered correctly for the player to continue.

F13* Social Features — Players can communicate with each other through
forums and chats. Players can view global statistics and public profiles.
A player can add other players to their friend list.

F14* Creator Features — The game has features for creating and managing
missions and stories. A creator can create and edit stories. They can also
create and edit missions of all types. Various missions have adequate
tools for their creation.

F15* Manager Features — The game has features for editing texts on infor-
mation screens. A manager can edit the main screen, about-us screen,
and about-us subscreens.

18

2.3. Non-functional Requirements

F16* Teacher Features — The game has an additional type of user,
a teacher. Teachers can create classrooms where classes can be created.
In a given class, the teacher can add and remove students for whom they
can monitor performance and assign tasks. Students can view assigned
tasks on the classroom screen and compare themselves with other class-
mates if the settings allow it.

F17* Parent Features — The game has an additional type of user, a parent.
A parent can monitor their children and give them assignments.

F18* Random Challenge — The game automatically creates a random
daily challenge. Players receive points for completing challenges, and
players can compare with other players in the statistics. The game
generates challenges automatically and correctly, including goals, grid,
and description.

2.3 Non-functional Requirements
Non-functional requirements do not describe the game’s behavior or its
in-game features. They instead describe limitations and user expectations
like the ease of use.

N1 Education — The game is focused on teaching programming. It passes
on the necessary knowledge to its players, gradually develops their
awareness of programming concepts, and provides them with tasks in
which they gain practical experience.

N2 Comprehensibility — The game is easy to understand and easy to
use, even for inexperienced users. Inexperienced users should be able
to learn basic concepts in some form of tutorial. For more complex
concepts, there should be explanations in the game.

N3 Localizations — The game supports English and is ready to be exten-
ded to other languages. The game implementation supports a localiza-
tion system.

N4 Cross-platform — The game is available on modern versions of web
browsers and desktops on Windows and Linux platforms. The game
is developed with a view to its easy expansion on mobile devices.
At the same time, all versions should have a similar appearance and
functionality, and data should be shared between different versions.

N5 Architecture — The game code is written clearly with the appropriate
architecture and conventions used, which will allow easy expansion of
functionalities.

19

Chapter 3
Existing Similar Games

This chapter aims to compare the analyzed game, as described in chapter 2,
with existing similar educational or programming games. Games will be com-
pared based on criteria found in the conducted survey and studies mentioned
in the introduction.

There is a vast number of such different games. There are games for
the web, desktop, mobile phones, and possibly various board games. It is
impossible to describe all types of games, so 10 representatives will be selected
to represent a broader range of such products. Listed games are selected
subjectively as the most related and known by the author.

The conducted survey done in chapter 1 found that children players are
competitive, they like receiving rewards and ratings and play mostly building
games. Also, in the article [3] they found that challenges were the most
appealing, together with feedback — with the meaning that players like to
be scored — and graphics. In the article [2], similar results were shown while
investigating the influence of points, badges, and ranking. As the article states,
“Gamified group participants had a significant improvement in the quality of
the submitted solutions, having obtained more accuracy.”

Therefore, this chapter will compare similar games’ comprehensibility,
story, study materials, graphics, and feedback. Moreover, because the game
King Karel aims at young people, it will also compare their prices.

For each game, it will be described what the player can do in the game
and what mechanisms they can use. The user interface and how it is handled
will also be described. In particular, the elements that the game does not
address adequately and, conversely, the aspects that the game excels in will
be highlighted. The proposed game will try to avoid inappropriate elements
and inspire the appropriate ones.

21

3. Existing Similar Games

Figure 3.1: Scratch [4]

3.1 Scratch

Scratch is one of the most extensive coding applications with a simple visual
interface that allows the creation of universal programs, as can be seen in
the figure 3.1.

After entering the game, a user sees several projects of other users, which
they can open and try. If the user opens a game, they see a game window,
instructions for playing, and other notes and credits. If the user is interested
in how the game is programmed, they can see the inside, which takes them
to its editor screen. They can then create a remix for the game, an open
continuation of the original game with any modifications.

It is already clear from the mentioned progress that the game Scratch
is focused on open creation and encourages the creativity of its players.
The user can create a new game. The only means are the editor’s free area
and the blocks on the window side that can be moved and combined to achieve
the desired effect — to program the game according to the user’s idea.

The editor provides a wide range of visual commands divided into several
categories. There are categories like motion, looks, sound, events, etc. Each
such category contains several visual commands that interact with the game
character or the world differently. These commands consist of individual
blocks glued together in the editor area. All commands under the current
command are stuck to it, and if the user grabs a command, anything stuck
under it will be grabbed with it. Commands are placed anywhere in the area,
and there is no fixed grid.

22

3.2. Khan Academy

Figure 3.2: Khan Academy [5]

Players can create games, animation, and other visual creations. That
promotes problem-solving skills and collaboration. According to [4], Scratch
is a nonprofit organization, widely available in more than 70 languages, and
designed for ages 8 to 16. The game is also completely free.

Although Scratch has no story, it does contain a few more miniature tuto-
rials that bring the user closer to the editor and its abilities. Since the game
does not have fixed rules for the games created, the created games have no
score for fulfillment. The only measure can be the number of impressions,
likes in the form of stars and hearts, and the number of remixes created.

3.2 Khan Academy

Khan Academy is one of the most extensive generic purpose educational
applications with gamification elements. “For every student, every classroom.
Real results.” [5] They provide interactive learning materials for math, sci-
ence, history, economics, etc. It includes instructional videos supplemented
by interactive quizzes and study materials.

After entering the website, users see all the Khan Academy’s courses.
There are a vast number of them, and the courses themselves contain even
more individual tasks. One of the main focus of the courses is the teaching of
mathematics, which covers content from primary school, through secondary
school, to some topics of university mathematics.

23

3. Existing Similar Games

When clicking on one of the math courses, the user is shown a screen with
many units. On the side of the screen, there is also a summary of the given
units. That visually represents the status of the given parts. Each unit has
several tasks that are either educational, for example, in the form of text
or, more often, video, and several practice tasks that verify the knowledge
gained from the unit. The practice tasks themselves are created visually, and
therefore, for example, not only the example 2+3=? is displayed. Most of
the time, there is also a visual representation like two blue boxes and three
red ones or marking the sum on the axis, etc., according to the settings of
the given task.

The application contains the Computer programming course, which covers
an intro to JS, HTML, CSS, and SQL languages. The College Computer Sci-
ence Principles course covers digital information, the Internet, cybersecurity,
programming, algorithms, simulations, and data analysis. These courses draw
on canvas in JavaScript or do websites using HTML and CSS.

Programming tasks often take the form of challenges, where the user
receives a text entry, a small help, and an editor in which they can write
the solution of the task. An example of a challenge can be seen in the
figure 3.2. Such a challenging task can also have several steps, and the task
automatically recognizes the completion of the current part. After complet-
ing the task, the user will have a button to create a spin-off if they want to
improve the task and engage in the solution with their creative spirit.

It also provides a feature to create and manage classes. Therefore, teachers
can create a class and invite their students to join. Then, teachers can create
assignments and see students’ performances, scores, etc.

According to [5], Khan Academy is available in more than 50 languages
and is free to use. They are partnered with several schools in the United
States. And they have more than 130 million registered users in more than
190 countries. For kids aged 2 to 8, there is also a learning game-like applica-
tion called Khan Academy Kids that provides a joyful and engaging learning
curriculum for young children.

3.3 CodeCombat

CodeCombat is one of the representatives of a very story-driven game in which
the player controls a character through programming. It is a community
project where volunteers create levels and add features. Players have their
characters with stats and items that add new features to the player in a game.

As CodeCombat mentions [6], “Programming is magic.” They provide
wizard-like features to players so they can use their pure imagination to solve
game missions. And according to the game, this approach enables players to
learn faster.

24

3.3. CodeCombat

Figure 3.3: CodeCombat [6]

After entering a game, the player sees several game maps. However,
the player often has to finish the previous ones to make them available.
The novice player has the first game map at their disposal, which guides
the player through the basic concepts of programming and controlling
the game itself. Each map includes a path that intersects the points that con-
tain game missions. The player must pass these points gradually. The whole
game is styled in a medieval RPG style, as can be seen in the figure 3.3.

After starting the game mission, the player sees the playing area and
the goals they must meet. In addition, the window may also display smaller
help. In the corner of the game, the goals are displayed, which are marked
if the player has met them. After completing the mission, a dialog box will
appear where the player will be credited with experience points.

The player can choose one of several languages for programming: Python,
JavaScript, CoffeeScript, and Lua. Languages C++ and Java are available for
subscribers. The player can play as one of several avatars, each with different
abilities and skills. Some are warriors, others are archers, and others are
mages.

Optional missions are also shown on the map, but they are only accessible
to subscribers. The player can get a more extensive selection of avatars and
access to more than 500 missions for a subscription.

25

3. Existing Similar Games

Figure 3.4: Minecraft [7]

3.4 Minecraft

Minecraft is the most famous building game. Its minimalistic graphics, where
all worlds are made of cube blocks, support creative thinking and creating
experiences [7]. It also has an Education Edition, which focuses on generic
purpose education. That means people can play or create different educational
content in the Minecraft world for any subject. Both Minecraft: Education
Edition and Minecraft have ways of introducing programming to children.
Minecraft costs about €24, and anyone can play Education Edition with
a Microsoft 365 account.

Minecraft is mainly a building game. However, builders also want to
build interactive buildings or automate things, so there is Redstone powder
in the game, as can be seen in the figure 3.4. That is an entity that can be
placed on blocks and is used to transmit a signal. The game also provides
several blocks and entities that can work with the signal. These can be, for
example, basic buttons and sensors, but also an archery target, a light sensor,
a music block, and more.

Some blocks can transmit a redstone signal, others can receive, and some
can do both. The restone signal gradually loses its power over the distance
travelled. The signal loses all power when more than 15 blocks from the source.
The game also includes a redstone repeater and comparator to manipulate
the redstone signal. A repeater is a block used to repeat the total signal
strength and can also delay the signal or determine the direction of the signal.
A comparator is a block that can compare or subtract signals.

26

3.4. Minecraft

Figure 3.5: Opus Magnum [8]

Other special blocks are, for example, a piston that can move blocks. These
and other special blocks give players of this game quite versatile programming
skills. The only downside may be that the blocks have to be physically placed,
and the design of such a redstone circuit can be very complicated.

Minecraft: Education Edition is a version of Minecraft designed for schools
and education. It is no longer primarily intended for open-world exploration
but more for exploring created learning missions or creating worlds through
programming.

The Code Builder tool is used for programming, in which the player can
program an agent that executes commands for them. The agent is pro-
grammed either in JavaScript or using Scratch-style visual programming.
The agent can do every type of action an ordinary player would be able to do.

Another option in Minecraft: Education Edition is the Chemistry Lab,
where players can get acquainted with the elements and their creation,
compounds, etc. With this feature, players can learn chemistry and have
interactive school lessons.

Minecraft is very popular due to the modding. That means players can
develop unique modes to customize the world and game mechanics. For exam-
ple, developers can create a mod that adds Pokemons to expand the Minecraft
world.

27

3. Existing Similar Games

3.5 Opus Magnum

Opus Magnum is an exciting game that takes place in an alchemical world.
According to [8], the player’s goal is to assemble potions, move them,
transmute them, etc., to complete open-ended puzzles. The game contains
a transmutation engine. This engine allows players to place machines that
operate according to a program. An example of the game can be seen in
the figure 3.5.

In each mission, the player must produce a specific alchemical product.
They achieve this using the transmutation engine. The player places elements
and components in the game and uses them to try to produce the targeted
product. The game is divided into hexes, and arms are used to move the ele-
ments. Arms can rotate and move elements closer or further. There are several
types of arms, some of which can handle only one element, some of which can
hold more than one element at a time. There are also tracks in the game that
can transport elements by rail. And glyphs that can join elements together or
transform into another element.

These mechanical parts are controlled by programming. At the bottom of
the game is a panel with programmable sequences. According to the sequences,
mechanical parts are controlled. Players can also compete with each other
in three criteria. One is the total price, where each mechanical part costs
a certain amount of money. The second is the area of the table that the player’s
machine took. And the third is the number of actions that the player’s machine
has performed. The game shows histograms and individual statistics among
friends on Steam (a game distribution service) for these three criteria. Players
are challenged to make their engines smaller and faster and embrace symmetry
and infinity. The game also contains a solitaire minigame.

The game’s background contains a sophisticated story with other alche-
mists and the city’s ancient Houses, where the game missions occur. The story
also introduces the basic concepts necessary to understand the game.
The graphics are situated in the dark world of alchemists. Although the
graphics are excellent, novices or children could have problems with the game’s
programming mechanics in the beginning. A good element is providing
feedback on cost, cycles, and area statistics in which friends can compete.
The game is not free; it costs around €16.

The game, according to [8], provides a puzzle editor. Players can use it to
create their game missions. These can then be saved to the Steam Workshop,
and other players and their friends can play the player’s mission.

28

3.6. 7 Billion Humans

Figure 3.6: 7 Billion Humans [9]

3.6 7 Billion Humans

7 Billion Humans is a puzzle game where your task is to program a par-
allel computer made of people, as can be seen in the figure 3.6. Therefore,
the player’s job is to figure out how to synchronize workers to achieve
the expected outcome.

The players are presented with simple, stylish graphics. Players have to
solve programming puzzles, and each game mission has a specific task. They
have human workers who follow the visual commands. Data cubes are often
used in tasks.

Interestingly, the same program is used to program all human staff at once.
Of course, each employee works with the program individually according to
their surroundings and internal logic. That requires players to engage in wit
in creating such a sequence of commands to make the game come true.

According to [9], once the player comes up with a working solution,
the game performs another 25 cases in which they randomly exchange data
like in the data cubes, thus testing the quality of the solution. Optional game
tasks are overcoming the average number of steps and average time. This
concept motivates players to optimize programs.

The biggest drawback for inexperienced players might be that the game
does not explain the concepts. But the concepts are simple so that players
can get into it quickly. The game costs around €12.

29

3. Existing Similar Games

Figure 3.7: Codewars [10]

3.7 Codewars
Codewars is a game that provides a place for independent tasks. The game has
no story or fixed order of tasks. Instead, the tasks have tags that distinguish
their focus, and the player themselves chooses the engaging exercises they
want to play. That makes this game very unique.

These tasks, which are code challenges, are called ‘kata’. Each kata has
a Kyu/Dan rank, indicating its difficulty. According to [10], these terms are
borrowed from Japanese martial arts. The master level is called Dan, and
Kyu indicates the number of levels from that level. Beginners thus have 8 kyu.
Conversely, the best grade is 4 dan. Each player has a Kyu/Dan rating, and
the player progresses when they complete the kata of the same or higher level.

In addition, the game has an honor system, which is obtained by creat-
ing a kata, constructive commentary, and promising solutions. This system
is therefore based on community evaluation. Together, these concepts form
a fascinating combination in teaching, similar to martial arts.

The player can use over 20 programming languages such as Python,
JavaScript, etc. Each kata has its description and instructions, where
the player learns what the task is focused on. Players also see sample tests
that the generated code must pass. Then the players try to write a code
that will meet the requirements. If players do not know how to complete
a kata, they can unlock a reference solution, but that will deprive them of
the opportunity to gain a kata rank or honor. They can also open a discus-
sion to ask about problems or other advice. A sample of the kata screen can
be seen in the figure 3.7.

30

3.8. CodeMonkey

Figure 3.8: CodeMonkey [11]

Katas are met by passing tests. If the player programs a solution, they
can test it against the sample input. These usually cover units of simple cases.
Once these tests are completed, the code can be tested on a larger sample of
tests and then submitted.

Codewars is suitable for getting out of players’ comfort zone. Individual
katas are challenging, cover a variety of cases, and allow players to try new
things and approaches. Players can also learn a new programming language
that they can try out in practice and even create solutions in multiple lan-
guages. Some katas require geometry and algebra, which players will also
repeat. And one of the most beneficial uses is the opportunity to learn from
the solutions of others. And of course, compete and compare with friends.

3.8 CodeMonkey

CodeMonkey is a game focused on teaching programming to children.
The game contains several separate courses, each with a different story and
a different form of programming. Simplified visual programming with picture
boxes is available for the youngest children and beginners. Other courses then
use visual programming blocks similar to Scratch. And other more advanced
courses use text programming using Python or CoffeeScript. The game
provides students with various educational resources that provide learning
material for the youngest to the oldest.

31

3. Existing Similar Games

According to [11], CodeMonkey provides classroom support for schools in
which students can be managed. The teacher sees the statistics, can assign
tasks and can set up an automatic evaluation. The game is used by over
25 million students and over 120,000 teachers. Of course, the game can be
played as an individual outside of school, from home comfort. The game also
supports web and mobile applications, making it accessible to most players.

After logging in to the game, the user sees many available courses. Each
is marked for novices, beginners, intermediate or advanced. It also indicates
which method is used for programming: block coding, text coding, etc. Players
will see a slightly different game window based on the method used. Usually,
however, the player has a command panel, whether in visual or textual form,
and a game panel. The assignment is displayed to the player in the panel
itself or is gradually communicated using dialog boxes. Game missions with
block coding in a version similar to Scratch also have progressive goals that
are marked if the user accomplishes them. Each goal also has advice on how to
meet them. The player can use various sprites, widgets, sounds, and command
blocks in this Scratch-like environment. An example of the game mission can
be seen in the figure 3.8.

As in Scratch, players can create their games using text or visual pro-
gramming. However, the game builder editor is only available to subscribers.
Players can see the creations of others, which they can also try, evaluate and
remix.

The game includes ten free courses but includes an additional twenty-one
for subscribed players. The cheapest individual license costs about $6 per
month. Unique school plans are available for schools, which must be agreed
upon individually.

3.9 Codemancer

Codemancer is an educational game that teaches programming to children.
“A fantasy game that teaches the magic of code,” [12] as stated by their site.
According to [12], the game is aimed at children aged 6 to 12. It has a moving
fantasy story that is a big part of the game. The story revolves around a little
girl Aurora, who is trying to grow up and is facing obstacles. The girl must
learn the magic which she must use to save her father.

In the game, players use commands in the form of special runs. These
runes can be modified in an attached box, where the player can usually
select the number of repetitions. Typically, the player selects a rune to
move and modifies its number so that, for example, the character moves three
times. Similarly, it can modify the rotation rune. The game takes place on
a hexagonal grid, on which is the player’s character, the girl Aurora, whom
the player controls, as can be seen in the figure 3.9.

32

3.10. Baba Is You

Figure 3.9: Codemancer [12]

An exciting concept is how the steps are performed. The player does not
have to set all the steps immediately but can perform graduate sequences
one after the other. The character can rotate one hex to the right and take
two steps forward, and in the following sequence, they can turn left and take
action. That adds an exciting aspect of gradual development to the game.
As the game progresses, the game shows players new programming concepts
such as cycles, variables, conditions, and functions.

The game is available on mobile devices and desktops. It is available for
free at the Steam store, which distributes the game for desktops, and the App
Store distributes the game on Apple devices. It is available for about €5 in
the Google Play store, which distributes the game on Android.

3.10 Baba Is You

Baba Is You is a very different game. While in previous games, players create
sequences using blocks or by writing code, in this game, the game itself pro-
grams the game. The game character can move blocks that are composed
of text. These text blocks can create another combination, such as allowing
a character to walk through a wall or change a character to another object,
even to a wall.

According to [13], the game relies on manipulating the rules that are part
of the game, and the player’s goal is to change and abuse these rules to their
advantage. The game has simple pixel graphics that add a pleasant atmo-
sphere, as can be seen in the 3.10. The mechanics themselves, where the rules

33

3. Existing Similar Games

Figure 3.10: Baba Is You [13]

are incorporated into the game itself, and the game is governed by changing
rules, is an exciting way for one to improve in problem-solving.

The object of the game may be, for example, to touch a flag that signifies
victory in a given mission; if the rules of the game mention it. But the problem
is how to get to the flag. In addition, the game map consists of several
walls, rooms, and other blocks that the character cannot pass. Touching some
blocks can mean a defeat. The player’s goal is to find such game rules and
modifications so that the player reprograms the game and wins the mission.

The game is available on Windows, Linux, and macOS desktops for around
$15. The game contains over 200 levels that players can play.

3.11 Evaluation
All the mentioned games have fascinating concepts and mechanics, thanks
to which players, and therefore children, can improve their programming
skills. However, none are available for free (without significant restrictions),
contain an exciting and engaging story, and provide study materials at the
same time. Therefore a game with gamification features mentioned in chap-
ter 2 will be designed and implemented.

Each game has unique features by which the proposed game can be
inspired. Scratch has tools for creative game development using visual pro-
gramming and promotes healthy competitiveness, but it is not very focused
on teaching and story. Khan Academy has an extensive curriculum and many
challenges, but it is not focused on the story. CodeCombat has an excit-
ing story and, with the help of excellent graphics, allows children to learn

34

3.11. Evaluation

to program, but the free version can be limited in time. Minecraft has
a uniquely integrated programming feature to the in-game world, but it focuses
on exploring and creating worlds rather than on teaching and the story
itself. Opus Magnum has joyful visual programming tools with an engag-
ing, mysterious story in the background, but not available for free. 7 Billion
Humans is an exciting game with nice graphics and parallel programming,
but it lacks a deeper story and teaching materials. CodeWars is more suit-
able for self-study with challenges than teaching with a plan. CodeMonkey
contains a wide variety of programming missions and various programming
approaches, but the options of the free version are limited. Codemancer
is partially free and provides an exciting story around which the whole game
revolves, but more complex concepts are not much explained, and the game
is more suitable for more minor children. And Baba Is You is a great-looking
and exciting game, but it is more suitable for practicing problem-solving than
teaching programming.

The designed game should incorporate all these games’ benefits into it-
self. The game should have good storytelling, create a joyful visual program-
ming tool that can be easily understood by children, and provide a way how
players can learn basic and advanced concepts. The proposed game should
also be accessible and open-source to provide its content to students for free
while making the code available to other developers who may be looking
for inspiration.

Criteria for comparing similar games are shown in the table 3.1.
As mentioned, the criteria are comprehensibility (CO), story (ST), study
materials (SM), feedback (FB), and whether the game is free of charge (FC).

Criteria
Game CO ST SM FB FC
Scratch ∗ ∗
Khan Academy ∗ ∗ ∗
Code Combat ∗ ∗ ∗ ∗
Minecraft ∗
Minecraft: Education Edition ∗ ∗ ∗ ∗
Opus Magnum ∗ ∗ ∗
7 Billion Humans ∗ ∗
Codewars ∗ ∗
CodeMonkey ∗ ∗ ∗ ∗
Codemancer ∗ ∗ ∗ ∗
Baba Is You ∗

Table 3.1: Comparison of Similar Games

35

Chapter 4
Design

This chapter designs the game’s prototype according to the analysis done
in chapter 2. The outputs of this chapter are use cases that uses described
functional requirements, designed game mechanics, selection and a description
of the architecture, a discussion and design of a client and server applications
and database, and creation of user interface design.

4.1 Use Cases

A use case is a term that describes how actors use a program to achieve spe-
cific goals. They describe and organize functional requirements from the end
users’ point of view. They are sequences of events and interactions that users
can easily follow to achieve specific goals. Use cases have primary and can
optionally have secondary scenarios of their flow.

Each use case has a name, triggering events, and the main flow of events.
The name contains a verb and a noun that express the goal of the use case.
The triggering events describe an initiation of the use case. Each use case
can have multiple triggering events. And the main flow of events, step by
step, describes the flow of interactions between the system and the actor.
Optionally, use cases can also have preconditions. Preconditions are conditions
that must be met before executing the use case. Initiation and preconditions
are a part of the flow, but they can be described separately.

Use cases of designed game recognize two actors: an Anonymous User,
an actor who is not signed in to the game, and a Player, an actor who is signed
in to the game. The Player is an extension of the Anonymous User. That
means that the Player can use or execute everything the Anonymous User can
use or execute.

37

4. Design

UC1 Sign Up
This use case describes signing up for the game and is used by an Anonymous
User who, if processed successfully, becomes a Player actor. If a Player actor
tries to activate the use case, they are redirected to the main screen.

This use case starts when an actor navigates to the sign-up screen or
activates the sign-up button.

1. The game navigates the actor to the sign-up screen.

2. The actor fills in their username, real name, email, password, and
description into text inputs.

3. The game determines the validity of the actor’s data.

a) If no issues were found, the game signs in the actor and navigates
them to their profile screen. the actor becomes a Player.

b) If issues were found, the game announces the fail.

UC2 Sign In
This use case describes the signing in the game, and only an Anonymous User
can use it. If a Player actor tries to activate the use case, they are redirected
to the main screen. If processed successfully, the actor becomes a Player actor.

This use case starts when an actor navigates to the sign-in screen or acti-
vates the sign-in button.

1. The game navigates the actor to the sign-in screen.

2. The actor fills in their username and password into text inputs.

3. The game determines the validity of provided username and the corre-
sponding password.

a) If no issues were found, the game signs in the actor and navigates
them to their profile screen. The actor becomes a Player.

b) If issues were found, the game announces the fail.

UC3 Sign Out
This use case describes signing out of the game, and only a Player actor can
use it. After processing the use case, the actor becomes an Anonymous User.

This use case starts when an actor activates the sign-out button.

1. The game signs the actor out of the game.

2. The actor is navigated to the main screen.

38

4.1. Use Cases

UC4 View Publicly Available Game Information
This use case describes viewing the publicly available game information and
other publicly available screens like the main screen and about-us screen and
its subscreens. It can be used by an Anonymous User actor, which also extends
the use to the Player actor.

This use case starts when an actor navigates to the main screen, about-us
screen, or its subscreens, activates the main-screen button, or navigates to or
activates any other screen or buttons, leading to screens with publicly available
information.

Scenario A — Main Screen

1. The game navigates the actor to the main screen.

2. There, the actor can view the information.

Scenario B — About-Us Screen

1. The game navigates the actor to the about-us screen (or one of its
corresponding subscreens).

2. There, the actor can view the information.

UC5 View Own Profile
This use case describes viewing an actor’s in-game profile. A Player actor can
only use it. If an actor, not a Player, tries to activate the use case, they are
redirected to the sign-in screen.

This use case starts when an actor navigates to the profile screen or acti-
vates the profile button.

1. The game navigates them to their profile screen.

2. There, the actor can view the profile.

UC6 View Own Statistics
This use case describes viewing an actor’s in-game statistics. A Player actor
can only use it. If an actor, not a Player, tries to activate the use case, they
are redirected to the sign-in screen.

This use case starts when an actor navigates to the statistics screen or
activates the profile button.

1. The game navigates the user to their statistics screen.

2. There, the actor can view the statistics.

39

4. Design

UC7 View Courses

This use case describes viewing a list of game courses — called stories —
a specific story, and a list of the story’s missions. A Player actor can only use
it. If an actor, not a Player, tries to activate the use case, they are redirected
to the sign-in screen.

This use case starts differently based on its scenarios.

Scenario A — View Courses

This scenario starts when an actor navigates to the stories screen or activates
the stories button.

1. The game navigates the actor to the stories screen.

2. The actor can view a list of courses.

Scenario B — View Course

This scenario starts when an actor navigates to the story screen or activates
the specific story button.

1. The game navigates the actor to the selected story screen.

2. The actor can view a list of the story’s missions and the story’s name
and description.

Scenario C — View Mission

This scenario starts when, on the story screen, an actor activates the mission’s
item or button.

1. The game displays a popup containing additional data about the mis-
sion. It displays the mission’s name and description.

2. If it is a storytelling mission, a ‘read’ button is displayed.

3. If it is a learning mission, a ‘learn’ button is displayed.

4. If it is a game mission, a ‘play’ button is displayed.

5. The actor can activate the displayed button to leave the screen.

40

4.1. Use Cases

UC8 Use Missions
This use case describes using and viewing the game mission. A Player actor
can only use it. If an actor, not a Player, tries to activate the use case, they
are redirected to the sign-in screen.

This use case starts when an actor navigates to the story’s mission screen
or activates the mission’s item or button on the story screen.

Scenario A — Storytelling Mission

This scenario starts when an actor navigates to the storytelling mission or
activates the storytelling mission’s item or button on the story screen.

1. The game navigates the actor to the storytelling mission screen.

2. The actor is presented with a list of texts that can be shown step by
step by clicking the next button.

3. The ‘Back to story’ button is displayed after the actor progresses through
all the texts.

4. Using the ‘Back to story’ button, the actor can leave the screen to
the mission’s story screen.

Scenario B — Learning Mission

This scenario starts when an actor navigates to the learning mission or acti-
vates the learning mission’s item or button on the story screen.

1. The game navigates the actor to the learning mission screen.

2. The actor is presented with a learning text.

3. The ‘Back to story’ button is displayed.

4. Using the ‘Back to story’ button, the actor can leave the screen to
the mission’s story screen.

Scenario C — Game Mission

This scenario starts when an actor navigates to the game mission or activates
the game mission’s item or button on the story screen.

1. The game navigates the actor to the game mission screen.

2. The actor is presented with a game grid, command list view, and buttons
that control the mission.

3. The user can add or move commands, run or stop the current game or
save the current game — as described in custom use cases.

41

4. Design

UC9 Save Current Game
This use case describes the saving of the actor’s current game. A Player actor
can only use it.

This use case starts when an actor activates the save button on the game
mission screen. Being on the game mission screen is a precondition of this use
case.

1. The game loads the current progress of the commands presented in
the command list view.

2. The game saves those data, together with completed, size, and speed
attributes.

UC10 Play Current Game
This use case describes the playing of the actor’s current game. A Player actor
can only use it.

This use case starts when an actor activates the play button on the game
mission screen. Being on the game mission screen is a precondition of this use
case.

1. The game locks the command list view, so the actor cannot interact with
it.

2. The game loads the current progress of the commands presented in
the command list view.

3. The game process these commands.

4. The game starts presenting a step-by-step progression of the game grid.
the procession of each step is signalized by an arrow next to a command
block.

5. After a presentation is done, the game shows a dialog with optional size
and speed challenge attributes.

a) If the game resulted in a success, a success dialog is presented with
a corresponding status message.

b) If the game resulted in a failure, a failure dialog is presented with
a corresponding status message and related error message.

6. The game unlocks the command list view.

7. The game saves the current progression, as described in the separate use
case.

42

4.1. Use Cases

UC11 Stop Current Game

This use case describes the stopping of the actor’s current game. A Player
actor can only use it.

This use case starts when an actor activates the stop button on the game
mission screen while the game is in progress. Being on the game mission screen
with a game in progress is a precondition of this use case.

1. The game stops the progressing game.

2. The game unlocks the command list view.

3. The game does not save the progression and does not show the success
or failure dialog.

4.1.12 Requirements Implementation Overview

Use cases organize functional requirements. An overview of the implementa-
tion of use cases by functional requirements can be seen in the table 4.1.

Use cases distinguish two actors, an Anonymous User and a Player.
The Player actor is an extension of the Anonymous User actor. The com-
petence of both actors and relationships of individual use cases can be seen in
the figure 4.1.

Functional Requirements
Use Case F1 F2 F3 F4 F5 F6 F7 F8
UC1 ∗
UC2 ∗
UC3 ∗
UC4 ∗
UC5 ∗
UC6 ∗
UC7 ∗ ∗ ∗ ∗
UC8 ∗ ∗ ∗
UC9 ∗
UC10 ∗
UC11 ∗

Table 4.1: Implementation of Use Cases and Compliance with Requirements

43

4. Design

Use Case King Karel

Sign Up

Sign Out

View Publicly Available
Game Information

View Own Profile

View Own Statistics

View Courses

Save Current Game

Play Current Game

Stop Current Game

<<include>>

<<precondition>>
The used Mission

is a Game Mission.

Sign In

Use Missions

<<extend>>

<<extend>>

<<extend>>
<<extend>>

Player

Anonymous
User

Figure 4.1: Use Case Diagram

4.2 Game Mechanics
The game’s principle is to fulfill the individual game missions with the training
courses gradually. Because the game is designed as an educational game, users
must first register.

The game contains separate courses called stories. The story contains
several missions. These can be of different types: storytelling, learning, and
game. The goal is to gradually go through the missions, read the story
in the storytelling missions, and get used to it. Storytelling missions have
step-by-step messages to structure the story. In learning missions, the goal
is to learn information and new concepts and terms or improve on them.
The information in these missions should be more comprehensive and may
overlap. Game missions are used to test the acquired knowledge, understand
the task, come up with solutions, and overcome the challenge.

The very concept of the game is based on the fact that the player uses
command blocks to move the playable character of the robot Karel, the king
of the game’s story. The player tries to perform various tasks with him.
Command blocks are a visual programming interface that needs to be inserted

44

4.2. Game Mechanics

into the command list in the correct order and, if necessary, nested correctly.
However, there is no single correct solution. In addition, the command blocks
must be valid, i.e., all their mandatory attributes must be set. There are
several types of command blocks.

Command move <direction> moves Karel one square in the chosen
direction. However, Karel can only move through the boxes designated for
this purpose. For example, it must not hit a wall, outside the grid, water, etc.
If Karel manages to hit such a square, the game ends with an error.

With the put mark command Karel places one mark on the square he
is standing on. However, there cannot be an unlimited number of marks in
a square. If Karel tries to put a mark on a square where there is no more
space, the game ends with an error.

With the grab mark command Karel takes the mark from the square he
is standing on. However, such a mark must be on the square. If Karel tries to
take the mark from the square where the mark was not, the game ends with
an error.

With the if <condition> command Karel asks a question. The question
may be whether it can move in that direction one square. It may also be up to
the marks whether Karel can remove a mark from the current square or place
it on it. Additional commands are nested in this command. These will only
be performed if the business is evaluated successfully. If the condition is not
evaluated successfully, the command and the nested commands are skipped.

The while <condition> command works similarly to the command
if <condition>. The difference is that Karel repeats the process as long
as the condition is met. If the condition fails the first time, the statement
is not executed, and no nested statements are executed.

Using the appropriate commands correctly makes it possible to compose
a tree structure of command blocks that solve the given game mission. After
pressing the play button, the game evaluation starts. The evaluation is
stepped through, and the player has the opportunity to see which current
command is being executed. The player also has the opportunity to see where
Karel is and which other squares are updated, i.e., where the number of marks
has changed. The player can stop the game by pressing the stop button.

While passing through the game, Karel collects optional size and speed
attributes. The size attribute indicates the number of blocks that were used.
The speed attribute indicates how many times any block has been used.

The final dialog will be displayed if an error is encountered during the eval-
uation or if the game is evaluated successfully. This dialog takes two forms,
either successful or unsuccessful. The successful dialog displays a success
message and the status of the optional size and speed attributes. These
attributes have a specified limit. If a player scores better than these limits,
they receive a bonus point for each attribute.

45

4. Design

4.3 Architecture
A discussion and a design on the importance of good architecture must take
place to comply with the non-functional requirement of the architecture.
A good software design is essential to keep the software’s code understand-
able, simple to extend, and easy to manage. That applies to the structure of
all parts of the software. “Software has two types of value: the value of its
behavior and the value of its structure. The second of these is the greater of
the two because it is this value that makes software soft.” [14] As mentioned
in the cited text, the issue of software is not making its behavior correct and
making it work as expected. The issues developers can face are caused by
the poor design of individual parts of the software and its whole. It’s a matter
of quality, not quantity.

Many developers tend to write code fast. They can even think that if
the code works, everything is fine. That might be a truth, but “It is not enough
for code to work.” [15] The same functionality can be written in different ways
and with various qualities. No matter how the code was written, it has to be
flexible and easy to understand enough so developers can read it and refactor
it easily. Stated and all related reasons combined make software either good
or terrible.

What caused developers to force themselves to write a working software
but with horrible designs? Maybe companies that try to save money or release
as fast as possible? The actual reason behind that does not matter. Writing
a flexible, easily extendable, manageable, and easy-to-read code is not more
complex than not doing that. “Indeed, the ratio of time spent reading versus
writing is well over 10 to 1. We are constantly reading old code as part of
the effort to write new code. . . . [Therefore,] making it easy to read makes it
easier to write.” [15]

The code developers write really should be flexible to changes. And
the same applies to the design. There is no reasoning behind not making
it flexible. Sticking to designing and coding too specifically might seem to
work out at the moment, but changes in the future will be nearly impossi-
ble to make. The same also applies to extending features or adding new ones.
“A design that doesn’t take change into account risks major redesign in the fu-
ture.” [16] And many might argue that every code might be improved, and
postponing writing flexible code instead of code that ‘just works’ is no big
deal. “Of course bad code can be cleaned up. But it’s very expensive.” [15]
Developers should instead use their time to design, build, and code, not to fix
issues they could have avoided in the first place. “The only way to go fast,
is to go well.” [14]

Even if developers agree that individual parts of the code should be writ-
ten well, flexible, and easy to read and extend, why should they invest in
making a good design and architecture? Because the same issues that have
been discussed in the scope of individual parts of code also similarly apply to

46

4.3. Architecture

higher levels. Choosing the way of easy solutions now instead of proper design
brings the software into technical debt. “Good architecture makes the system
easy to understand, easy to develop, easy to maintain, and easy to deploy.
The ultimate goal is to minimize the lifetime cost of the system and to maxi-
mize programmer productivity.” [14]

4.3.1 Client-Server Architecture Design

Multiple options should be considered to design the best approach to create
the desired product. There might be one program that handles everything, or
multiple programs, that each does separate tasks. The software is often sepa-
rated into the server and client parts, no matter the target platform. Analyzed
requirements also require cross-platformness, as stated in non-functional
requirements. Because of that, cross-platformness almost forces the archi-
tecture to divide the software into multiple parts. The software can be deliv-
ered as individual programs to each targeted platform. Also, a shared func-
tionality can be extracted into a separate part. The question is how many
parts the software should contain to offer the best value and be the easiest
to develop.

The standard way of doing such software is to divide the software into two
parts: client and server. A client part mainly handles the aspect of display-
ing UI (user interface) to users. Client application usually runs on the user’s
device and relies on the other part to perform or check some operations. And
a server part that handles incoming requests and processes them. The server
application also usually handles communication with a database. A database
part can also be considered a third part of the software division. For the soft-
ware to be cross-platform, the software contains multiple client implementa-
tions, each for a different targeted platform. This way, the software can have
a client for web, desktop, and mobile where all of these clients communicate
with the same server application. That is very economical and also provides
the integrity of offered functionalities.

There are many ways in which client applications can be implemented.
According to [17], implementation strategies can also be divided into two
types. There are thick clients and thin clients. Both of them provide benefits
and disadvantages, and it is up to the software designer to determine which
type would fit the current case the most. The difference between them is which
processes the work, a client or a server?

Thin clients are designed to be small. They usually process only the data
they have to, sending all extra data to a server to process. That might
make thin clients easy to install, as they are usually smaller. The benefits
of this approach might be that a client application can be run almost any-
where, no matter the hardware specifications, because the thin client only
displays the data, and the actual processing and work happen in

47

4. Design

a server application [17]. The disadvantages are that users often must rely
on their internet connection, as most servers are in a different network.

Thick clients are designed to be self-sufficient. They usually use a server
application only as a middleware that handles storing and fetching data from
the database. Thick clients handle and process most of the data inside of
the client. The benefits of this approach are that even if the client applica-
tion loses an internet connection or does not have one at all at the moment,
the application can still do its work [17]. And the data can be stored, synced,
or verified later when the internet connection is restored. The disadvantage
that thick clients might face is that all versions of clients must implement all
the features that force developers to reinvent the wheel.

Both thick and thin clients provide a lot of benefits and disadvantages.
Therefore a lot of the time, some hybrid clients are used instead. They combine
those two approaches, making most of the processing on the server, especially if
that is data-related, and making most of the UI-related processing in the client
application.

The designed game should implement a hybrid-like type of client because
it uses features of both approaches. Its data must be stored in servers, but
a slow internet will suffice, yet it cannot work without it. The client part
should process all UI-related functionality and game-related processing, but
the server should handle the data storing, data processing and verifying, and
authentication.

4.3.2 Selection of Architectures for Client and Server
As software development evolved and improved, new ways of designing and
new architectures appeared and tried a battle against time. As mentioned
in [18], many architectures of systems try to achieve similar goals. The most
common primary goal of architectures is to address the separation of concerns.
Architectures like Hexagonal Architecture, Onion Architecture, and Clean
Architecture separate concerns into different software layers. Such architec-
tures and their layers should be independent of UI, frameworks, databases, or
other external tools. If architecture depends on one of those things, it would
significantly limit its abilities, which is not desirable. Architecture should be
generic and should not compromise with specific tools.

The article [18] also mentiones the dependency rule. This rule describes
requirements for a flow of software layers. Outer layers do specific things and
use inner layers that describe policies. Therefore, the dependencies should
always come from an outer layer to an inner layer. Inner layers should not even
know some outer layer exists. This rule applies to all the code inside the layer,
whether a class, a function, or any other entity. The inner layer commonly
contains business rules like entities and use cases. Outer layers commonly
contain layers with interface adapters and frameworks. The number of layers
can vary from architecture to architecture. The important thing is the concept:

48

4.3. Architecture

the separation of details and abstractions and that only details can point to
abstractions, not the other way around. Architectures also must solve how to
cross the boundaries of layers and call abstractions that have to use details.
That is typically done by using the dependency inversion principle described
in 4.3.3.

Both the client and the server parts should use a good architecture that
uses mentioned concepts. The goals are the same: to create flexible and
manageable codebases. Both parts will use architectures similar to the Clean
Architecture, especially its dependency inversion principle and other SOLID
principles. “Good software systems begin with clean code. On the one hand,
if the bricks aren’t well made, the architecture of the building doesn’t matter
much. On the other hand, you can make a substantial mess with well-made
bricks. This is where the SOLID principles come in.” [14]

4.3.3 The Clean Architecture

The Clean Architecture was described in an eponymous book [14] authored
by Robert C. Martin, also known by the nickname Uncle Bob. The author
is an American software engineer known for the invention or promotion of soft-
ware principles, especially the SOLID principles. The architecture can be seen
in the figure 4.2.

The book [14] explains multiple topics. It discusses paradigms of program-
ming: benefits and disadvantages of structured programming, object-oriented
programming, and functional programming. There is a discussion about what
these paradigms remove from developers, like assignments, goto statements,
pointers, etc. The section about object-oriented programming brings a de-
pendency inversion, allowing dependency to point in the inverted direction
compared to the flow of control. The dependency inversion principle is a pil-
lar of the Clean Architecture, alongside the single responsibility principle.
The single responsibility principle states that every module should have only
one reason to change, and therefore, that module should be responsible to
only one actor.

There are more SOLID principles. The open-closed principle describes
how entities should be open for an extension rather than change. The Liskov
substitution principle explains that extensions should be substitutable for their
origin. And interface segregation principle that explains that implementation
of things that are not used should be avoided.

Single-responsibility principle “An active corollary to Conway’s law:
The best structure for a software system is heavily influenced by the
social structure of the organization that uses it so that each software
module has one, and only one, reason to change.” [14, p. 57–59]

49

4. Design

Figure 4.2: The Clean Architecture [18]

Open–closed principle “Bertrand Meyer made this principle famous
in the 1980s. The gist is that for software systems to be easy to change,
they must be designed to allow the behavior of those systems to be
changed by adding new code, rather than changing existing code.” [14,
p. 57–59]

Liskov substitution principle “Barbara Liskov’s famous definition of sub-
types, from 1988. In short, this principle says that to build software
systems from interchangeable parts, those parts must adhere to a con-
tract that allows those parts to be substituted one for another.” [14,
p. 57–59]

Interface segregation principle “This principle advises software designers
to avoid depending on things that they don’t use.” [14, p. 57–59]

Dependency inversion principle “The code that implements high-level
policy should not depend on the code that implements low-level details.
Rather, details should depend on policies.” [14, p. 57–59]

50

4.4. Client Application

4.4 Client Application
This section discusses the design aspects of the client application of the
designed game. It discusses platforms that can be used and their limitations
and benefits. Then there is a discussion on different options of frameworks
to use according to platform specifications with extra pieces of information
about the selected framework and how it works. Also, the client architecture
is described and designed according to previous chapters. And last but not
least, the state management selection and options discussion is done.

4.4.1 Platforms
The designed game targets especially web and desktop platforms. One of
the non-functional requirements is that it should be possible to extend the
game to other platforms, like mobiles. The web and desktop platforms are
pretty similar. They are both used on computers and use similar resolutions
and workflow. On the other hand, the mobile platform uses entirely differ-
ent resolutions, and its users use their hands to control the screen’s content.
Mobiles also often have slow internet connections, and the design of the game
for mobile in general and the extension of the game to mobiles in the future
should count with this.

For the design of the game King Karel, the development of an applica-
tion for the web platform and the desktop platform, targeting the Windows
operating system, will be considered.

4.4.1.1 Cross-Origin Resource Sharing

The web platform also has its limitations. Modern web browsers include
mechanisms that permit loading resources only from trusted client sources for
security reasons. When a web application initiates a XMLHttpRequest or uses
the Fetch API, a browser requires that it must follow the same-origin policy.
This mechanism is called CORS, and it means Cross-Origin Resource Sharing.

As stated in [19], CORS is a mechanism that lets servers specify trusted
origins using HTTP headers. Its purpose is to protect users and their cookies
and other stuff stored in the browser specifically. Not enforcing the same-
origin policy could be a potential risk for applications, e.g., banks that use
cookies to verify that you are who you are, and using some malicious soft-
ware attackers could dry out bank accounts. That is not an issue on desktop
and mobile because cookies are stored inside applications’ storage, and other
applications cannot access their cookies; therefore, these data can not be
stolen. The essential idea from this concept is that this is not the applications’
fault; it is the browsers’ fault. Servers set the Access-Control-Allow-Origin
header, and if matched with the origin, a browser allows the application
to view and process its response.

51

4. Design

Figure 4.3: The CORS Mechanism [19]

The header format Access-Control-Allow-Origin: <origin> | *must
be used. It can also be set with wildcards to relax the CORS specification.
Communication between an application and a server with same-origin and
cross-origin requests and their responses can be seen in the figure 4.3.

4.4.2 Frameworks
It is often possible to use various libraries and frameworks to develop games
and applications, making it easier to build software in terms of speed and
capabilities. Many experienced developers develop and optimize frameworks
and develop an efficient and versatile set of tools that allow developers who use
these frameworks to take advantage of high-level functionality that addresses
low-level functions such as security, component communication, dependency,
and more.

Individual frameworks have different requirements and goals. Some fo-
cus on specific programming languages, particular platforms, cross-platform
mobile application development, and cross-platform development in general,
whether it’s mobile, web, or desktop.

Since the developed game needs development for the web, desktop (espe-
cially for the Windows platform), and the future possibility of extension to
mobile devices, choosing one of the cross-platform frameworks is necessary.
There are not many frameworks that support easy and stable development for

52

4.4. Client Application

Figure 4.4: WebView [20]

both the web and the desktop and mobile devices. Most frameworks, as men-
tioned, target a single platform. Some frameworks focus on the development of
applications or games for mobile devices, where they are further divided into
development for Android and iOS [20]. They release SDKs (Software Devel-
opment Kit) to develop on mentioned platforms, allowing developers to create
widgets rendered to canvas and use native services. Of course, this way does
not allow the creation of cross-platform software because of the specificity of
developing to the individual platform, so they will not be considered. There
are also web frameworks that focus on robust web application development,
which, in contrast, has an actual usage even on mobile devices.

The advantage of web frameworks over mobile ones, in terms of cross-
platform development, is that thanks to technologies such as WebView and
other supporting tools, it is possible to create a mobile version of the appli-
cation. Many cross-platform web frameworks use JavaScript with WebView,
with a design usually similar to the figure 4.4. Representatives of these proce-
dures are PhoneGap, Ionic, and other frameworks. One of the problems this
approach has to solve is communication with device services such as cameras,
Bluetooth, sensors, etc. Therefore, the so-called bridges, which communicate
via JavaScript with native code, were most often created.

However, WebView does not perform well, so over time, other web frame-
works have come up with different approaches. One of these approaches is not
to use WebView, but to use the OEM (Original Equipment Manufacturer)
widgets of the platform directly for displaying [20]. One representative of this
approach is React Native [21] with a design similar to the figure 4.5. It was
created in 2015 by extending the React web framework, both developed by
Facebook [21]. Unlike React, which uses web components, React Native uses
OEM widgets. OEM widgets are accessed from JavaScript using a bridge that

53

4. Design

Figure 4.5: Reactive View [20]

communicates with widgets and native platform services [20]. Both technolo-
gies are high-speed. However, the use of a bridge causes a communication
bottleneck. That causes a slowdown in performance if a lot of communica-
tion is done using the bridge. React Native has brought many benefits of
reactive views to mobile applications. React Native nowadays also focuses on
developing for Windows, macOS, and the web using React Native Windows,
ReactNative macOS, and React Native Web [21]. All mentioned projects use
bridges to communicate with the platform.

The Flutter framework provides an entirely different approach. It has
been historically developed as a cross-platform framework for development on
mobile devices. Today, however, the framework also supports development
for the web and desktops. According to [20], unlike previous frameworks,
which used web technologies to one degree or another, Flutter does not use
JavaScript and web technologies to achieve better performance. It uses custom
widgets that are rendered to the platform’s canvas. That also means that no
matter the operating system version, the look and feel are always the same
because they do not rely on OEM widgets.

4.4.2.1 Flutter

Flutter is an open-source framework developed by Google [22] that uses the
Dart programming language, which allows the ahead-of-time (AOT) compi-
lation into native cross-platform code [20]. In addition, it allows the just-in-
time (JIT) compilation, which will enable developers to view changes almost
instantly. Compiling into native code provides many benefits, such as execu-
tion speed and performance. “The fact that Flutter is the only mobile SDK
that provides reactive views without requiring a JavaScript bridge should be
enough to make Flutter interesting and worth trying, but there is something

54

4.4. Client Application

Figure 4.6: Flutter [20]

far more revolutionary about Flutter, and that is how it implements wid-
gets.” [20] The framework still needs to communicate with the native platform.
The platform channels interface is used for this purpose, as can be seen in 4.6,
which works on the principle of data transfer. The framework encodes and
decodes the data, but overall the whole process works faster than JavaScript
bridges.

The Dart language also contributed to the significant improvement of
Flutter 2, introducing sound null safety, which further helps Flutter type
correctness and prevents null error crashes that can be caught during devel-
opment [23]. This feature allows developers to use Flutter to write better
and better code. Flutter2 also introduced support for the Add-to-app feature,
enabling developers to use Flutter code inside their existing applications.

Flutter is very simple in principle. It is designed to abstract its engine
and framework from platforms, which will allow easy development on various
platforms, as mentioned in [24]. Platform-specific things are implemented,
and the rest of the framework can remain unchanged, as seen in the figure 4.7.
No layer must interfere with the layer below, and each part of the system will
design so that it can be replaced. As described in [24], the embedder layer
is written in the languages appropriate for the platform. For Windows and
Linux in C++, macOS and iOS in Objective-C or Objective-C++, and An-
droid in Java and C++. Embedder mediates communication with the operat-
ing system, services, inputs, events, etc. The basics of Flutter are contained in
the engine layer, which is created primarily in C++. The engine is responsible
for any rendering which uses the Skia library. The Skia library is a 2D graphics
library used as a graphics engine, e.g., Google Chrome, Android, Flutter [25].
The engine mediates the framework using dart:ui libraries. The frame-
work layer then provides access to a reactive framework in the Dart language

55

4. Design

Figure 4.7: Flutter’s Architectural Layers [24]

and provides a range of widgets, layouts, gesture detectors, animation support,
etc. Developers usually use this layer.

A particular case is Flutter’s web support [24]. Flutter on the web works
with Dart’s compiler, which compiles the code into JavaScript. Dart histor-
ically has a significantly enhanced toolchain focused on compiling Dart code
into JavaScript because Dart’s first goal was to replace JavaScript in browsers.
Today some big applications like the advertiser tooling for Google Ads use Dart
to JavaScript compilation. The framework layer, written in Dart, will compile
into JavaScript. However, the engine layer is written in C/C++; therefore,
this layer cannot be used on the web. Similarly, it cannot use the embedder
layer to render as it is designed to run with the operating system. Flutter on
the web uses a reimplemented version of the engine above the standard browser
APIs. This unique browser layer currently has two strategies to render.
It can use HTML mode to render HTML, CSS, Canvas, and SVG. Or it can
use WebGL mode, which uses CanvasKit, a particular version of Skia library
compiled to WebAssembly. The layers used in the web version of Flutter can
be seen in the figure 4.8.

56

4.4. Client Application

Figure 4.8: Flutter on Web [24]

Widgets and Composition sections in the Flutter documentation [24] also
mention that Flutter uses widgets as building blocks of the user interface.
Each widgets nests inside its parent, and together they form one hierarchy
of widgets. The hierarchy of widgets also declares widgets’ size, styles, or
transformations. Basic widgets are Collumn and Row, for layout of children
widgets in a collumn or a row; Stack for stack-based layouts; and Container
as a generic purpose widget. Widgets use composition rather than an exten-
sion, and they are usually split into small single-purpose widgets.

The framework uses two types of widgets: stateful and stateless [24].
If the widget does not change over time and therefore does not have a state it-
self, the StatelessWidget widget is used. If the widget changes its state,
the StatefulWidget is used. Such a widget is assigned a unique State
object that holds the state of the widget, and the widget must call setState()
method each time its state changes and needs to be redrawn. The framework
responds to the call to this method and redraws it in the next cycle. Sep-
arating widgets into stateful and stateless improves application performance
by not having to browse and render unchanged widgets. In addition, thanks
to a separate state and widget, the framework can support a hot reload func-
tion, which allows the app to rebuild widgets, i.e., appearance, but maintain
the state of the respective widgets if they are in the same place and the frame-
work can map them.

Whenever it is needed to redraw a widget, its build() method is called.
Calling the build() method, as mentioned in [24], returns the subtree of
widgets according to which the UI is rendered. Because each widget can con-
sist of others, a tree of all widgets must be made recursively. During this
time, Flutter creates a tree element that contains an element for each widget.
The element represents a widget instance and represents either
the element that participates in the rendering (RenderObjectElement)

57

4. Design

Figure 4.9: Flutter Layout and Rendering [24]

or the element that engages in composing the hierarchy. Another tree is cre-
ated from this tree, a tree that defines an abstract model for layout and
rendering consisting of the general RenderObject. During the build phase,
Flutter goes through the RenderObjectElement in the element tree and cre-
ates a specific RenderObject for each. Flutter traverses the tree and transmits
the constraints downwards to determine the layout, while the descendants
transmit their constraints, which must respect the constraints. This process
can be seen in the figure 4.9.

As mentioned, Flutter offers many benefits: compilation to native code,
being able to compile using AOT and JIT, having a fast performance, and
much more. It can also build for mobile platforms, desktops, and the web.
That includes Android, iOS, Windows, Linux, macOS, and web. There-
fore, the Flutter framework will be used to develop the game. With Flutter,
the game can be implemented as a web version and a Windows version (with
a Linux and a macOS versions). Also, it can be easily extended to mobile to
provide an Android and an iOS version in the future. React Native would also
be a good choice, yet using JavaScript-based technology with its poor static
analysis and dealing with other issues coming from the JavaScript ecosystem
is not preferable. Therefore, Flutter was selected as a better candidate.

4.4.3 Architecture
As mentioned in chapter 4.3.3, the client application should adhere to a version
of the Clean Architecture. Its layers should be divided into multiple layers:
business contracts, business, data, and presentation.

The business contracts layer contains entities and all contracts needed for
services and repositories. This layer describes the interface that other layers
use, and its interfaces do not contain any logic other than entities that can
have a simple entity modifying logic. These layers should be isolated and
should not use or know about any other layers. It also should not use any

58

4.4. Client Application

Business
Contracts

Layer

Business
Layer

Data
Layer

Presentation
Layer

main

API server

Figure 4.10: Client Architecture

external packages, especially with some logic. It might use some external
packages that help create interfaces or entities, nothing else.

The business layer contains contracts implementations from the business
contracts layer, and it implements all services. Some services might use con-
tracts for repositories, but this layer does not implement those. The layer
uses repositories’ interfaces and gets specific instances as dependencies from
constructors.

The data layer contains implementations from the business contracts layer,
and it implements all repositories. The purpose of this layer is to implement
repositories that communicate with the API server. Repositories are simple
workers that process communication with the external world.

And last but not least, the presentation layer implements the UI of the
client application. It uses services’ contracts to request specific implementa-
tions by the dependency injection tool registered with services and repositories
in the main method. The dependency injection tool provides repositories that
are used by the registered services.

The main method registers all business contracts layer’s interfaces to its
dependency injection (DI) container and assigns them with specific implemen-
tations from business data layers. Then it runs the app.

59

4. Design

As can be seen from the description and the figure 4.10, the client architec-
ture follows the SOLID principles, mainly the dependency inversion principle.

4.4.4 State Management

In order for the client application design to be complete, it is necessary to
determine how it will process its state. That is possible by simple variables
and passing up and down from the widget to the widget. As can be seen,
this would not be the most efficient solution, especially since passing data
from the top widget to the bottom ultimately would require passing data
across multiple layers. For this purpose, developers use state management
procedures that allow data to be transferred differently. Proper design and
use of state management will also support the sustainability and scalability of
the application, which is one of the non-functional requirements.

Flutter is a declarative framework [26]. That means the framework does
not use an imperative method to manage widgets and other framework parts,
but rather the framework expects that state changes, and the framework then
rebuilds and updates the UI. In other words, the user interface is a function of
the state. This approach is atypical in many frameworks, such as the Android
SDK, and the imperative method is often used. The declarative principle
should also be maintained in state management. Thanks to the declarative
approach, there is only one way to get to the desired state, bringing many ben-
efits. On the contrary, the disadvantage of this approach is that it is initially
non-intuitive.

According to [27], there can be several types of states in the software. And
anything that is stored in memory at runtime could be considered a state.
A better definition of states from an architectural point of view is “whatever
data you need in order to rebuild your UI at any moment in time.” [27] States
are often divided into ephemeral and app states.

An ephemeral state, also often referred to as a UI state, is a state that
is relevant to only one widget, and only that widget works with it [27].
In this case, there is no need for the state to be shared in any way with
other parts of the application, as this would add unnecessary communication
and the need for more complex logic. An example of such a state can be
the current navigation tab. For an ephemeral state, it is enough to use the
StatefulWidget widget and use the setState() method to notify the widget
and then redraw it.

In contrast, the app state, sometimes referred to as the shared state, is part
of several parts of the application [27]. So this state is trivially not ephemeral.
App state needs more complex management because it is used by multiple
parts of the application, which are often independent and far apart. The choice
of the appropriate type of management for such a state depends on the
complexity of the application. An example of an app state can be the

60

4.4. Client Application

management of information about a logged-in user, a shopping cart in an
e-shop, settings, etc.

Whether to use ephemeral or app state may not always be clear.
Ephemeral states can also be used outside the widget by passing callbacks;
however, if a callback is passed more than one level, it will probably be pos-
sible to use another solution. “The rule of thumb is: Do whatever is less
awkward.” [27] Some of the most used state management tools are MobX,
Redux, and BLoC.

4.4.4.1 MobX

MobX is a state management library with three concepts: Observables,
Actions, and Reactions [28]. This is an implementation of the observer pattern.
Concepts are simple in nature and have a fast learning curve. According
to [28], the MobX library uses the following concepts:

Observables Represent states in the form of any object with data, from
numbers to complex objects. Data are reactive, which means that each
change will notify each observer.

Actions Describe changes in the states of observables. Observables can be
changed directly, but actions add semantic meaning, so instead of calling
value++ directly, the increment() action should be called. The action
triggers a state change.

Reactions Automatically monitor state changes. a reaction is made imme-
diately after each change.

4.4.4.2 Redux

Redux is a predictable and centralized state container. It is one of the most
known libraries on state management. According to [29], it works with three
concepts: Actions, Reducers, and Store:

Actions Represent information sent from the application to the store and are
its only data source.

Reducers Describe how the application state changed in response to actions.
Reducers must be pure, which means they must not use non-pure func-
tions and do not mutate the state; they create a new copy.

Store Represents an object that holds the application state. It also provides
the current state and sets up the initial state.

61

4. Design

4.4.4.3 BLoC

The Business Logic Component (BLoC) is not a library but a design pattern.
This pattern consists of simple rules that each implementation must follow,
leaving specific implementation elements to developers. According to [30]
these design rules are:

1. Inputs and outputs are simple Stream/Sink only.

2. Dependencies must be injectable and platform agnostic.

3. No platform branching allowed.

4. Implementation can be whatever you want if you follow the previous
rules.

BLoC also has rules for UI design. These rules describe the relationship
between the UI component and the BLoC component. According to [30] these
rules are:

1. Each ‘complex enough’ component has a corresponding BLoC.

2. Components should send inputs ‘as is’.

3. Components should show outputs as close as possible to ‘as is’.

4. All branching should be based on simple BLoC boolean outputs.

This design pattern was created to separate code with logic from platform-
specific dependencies [30]. In contrast to the Redux library, the BLoC pattern
works with multiple state stores.

There is a Bloc library by Alex Angelov for Dart language that imple-
ments the BLoC pattern [31]. It tries to implement the rules described above
using the Stream and Sink classes, which allow asynchronous communication.
In addition, this library provides unique Flutter widgets that help listen to
changes and rebuild widgets. This library works with four basic concepts:
Events, States, Transitions, Blocs. In parallel, the library also provides a ver-
sion called Cubit, which works with functions instead of events. That al-
lows events to be triggered synchronously using functions instead of adding
an event to the Stream. Cubit can be easier for smaller applications that can
handle more straightforward logic. According to [31], the Bloc library uses the
following concepts:

62

4.5. Server Application

Events Represent events in the form of any object. It is the only input that
comes inside the Bloc.

States Represent states in the form of any object.

Transitions Describes the transition from one state to another, consisting of
the current state, the next state, and the triggered event.

Blocs Represent classes extending the Bloc class. They accept events, out-
put states, and handle transactions. Blocs register event handlers using
on<Event>() methods used in the constructor.

4.4.4.4 Evaluation

Sending states and callbacks through several levels of widgets is not suitable,
so it is not even considered for state management. Although the MobX library
offers simple concepts and less boilerplate due to code generation, code gener-
ation may be slower. The Redux and Bloc libraries seem to be similar. Both
work with data asynchronously, but implementations are different. The most
significant difference is that Redux has only one source of state, while there
are multiple in Bloc. In Redux, only parts of the states change. In Bloc,
on the other hand, the whole state constantly changes. However, it is small
enough and understandable, so it does not cause any problems. The Bloc
library will be used to develop the designed game, which will enable an easy
and robust solution thanks to its asynchronous design.

4.5 Server Application
This section discusses the design aspects of the server application of the de-
signed game. It discusses the design of an API server. Then the server ar-
chitecture is described and designed according to previous chapters. There
is a discussion on different framework options and how the framework works
with entities and DTOs. Then there is a discussion about controllers, reposi-
tories, and services. And finally, a note about tokens.

4.5.1 Web API

Application Programming Interface (API) is an interface with a set of func-
tions that can be used to get data from an application [32]. API accessed over
the web using the HTTP protocol is called Web API. They can be developed
with different technologies like ASP.NET, Java, Python, etc. A web API can
be used from a mobile, desktop, web, or any other application or game using
the HTTP protocol. Web API can also use other web APIs.

63

4. Design

Controllers
Layer

Repositories
Contracts

Layer

Data
Layer

Services
Contracts

Layer

main

Clients

Services
Layer

Repositories
Layer

DB

Figure 4.11: Server Architecture

One of the representatives of web API is ASP.NET Web API [32].
It is a web framework that is often used to create websites and APIs using
languages such as C#. The framework supports an automatic serialization of
data classes into the JSON format. It supports built-in support for authen-
tication and authorization with built-in support for standards such as JSON
Web Tokens (JWT). It also provides multiple annotations for use inline with
the code, like routing annotations that let developers mark methods that
should provide routing.

The ASP.NET Web API framework will be used in the server part of
the designed game for its simplicity and industry-level power.

4.5.2 Architecture
As mentioned in chapter 4.3.3, the server application will follow the principles
mentioned in the Clean Architecture. It is divided into multiple layers: data
layer, repositories contracts layers and repositories layer, services contracts
layer and services layer, and controllers layers.

The data layer declares entities and their mapping. Entities should use
Object-Relational Mapping (ORM) to map themselves to the database model.
Using the ASP.NET and its Entity Framework, setting up entities and map-
ping is very straightforward. The Entity Framework recognizes the primary
identification and translates all attributes and their types to corresponding
database types.

The repositories contracts layer contains repositories’ interfaces. They are
used to provide basic methods for communication with the database. These
interfaces do not use any code from other layers.

64

4.5. Server Application

The repositories layer contains the repositories contracts layer’s imple-
mentation of the repositories. These implementations return Data Transfer
Objects (DTOs) after processing entities fetched from the database.

The services contracts layer contains services’ interfaces. They are used
as a layer between controllers and repositories. These interfaces do not use
any code from other layers.

The services layer contains the services contracts layer’s implementation
of the services. These implementations use repositories contracts passed in
their constructors using the dependency injection.

The controllers layer provides Web API controllers that processes work
using services.

As you can see from the description and the figure 4.11, the server architec-
ture follows the SOLID principles, mainly the dependency inversion principle.

4.5.3 Entities and DTOs

The Entity Framework is an open-source data access framework. It does
Object-Relational Mapping (ORM), so developers can use the database as with
objects [33]. The framework also reduces the direct data access needed and
exposes a high-level interface.

The database model consists of entities and the database context ob-
ject [34]. The context object represents the database relations. Entities are
ordinary data objects. Each entity is registered as DbSet<Entity> attribute
with a getter and a setter. The context can set up entity mappers using
the Fluent API, as can be seen in the code 4.1. The Fluent API is a method
of modifying the model without changing the entity class. It also has higher
precedence than annotations that can be used directly on entity class and its
attributes.

Querying data from the database with the Entity Framework can be done
using the Language-Integrated Query (LINQ). LINQ queries are strongly
typed, and it is as simple as calling methods in the database context. Be-
cause methods returns live queries, it is recommended to await the query
as a collection to finish the fetching.

Entities are mapped from the database. Entities are transformed into Data
Transfer Objects (DTO) to handle incoming and outcoming data. DTOs
always contain only data needed for further processing to prevent sending
unnecessary data.

The typical scenario flow might be that a controller is triggered, it calls
a service, which calls a repository. The repository does a fetch to the database,
and data are stored in a collection and later transformed into DTOs. DTOs are
returned from the repository and processed by the service. After processing,
the data are returned to the controller, creating a response containing those
data.

65

4. Design

internal class MyContext : DbContext
{

public DbSet<User> Users { get; set; }

protected override void OnModelCreating(
ModelBuilder modelBuilder

)
{

modelBuilder.Entity<User>()
.HasIndex(u => u.Username)
.IsUnique();

}
}

Listing 4.1: Sample Database Context

4.5.4 Controllers

Controllers provide Web APIs that process requests using services from the
services layer delivered to the services contracts layers using the dependency
injection tool. Controllers should be designed to cover all use cases of the
developed game.

There should be a controller for the authentication of users. That means
signing in and signing up for the game. These API endpoints should be allowed
to be run anonymously. If the sign-in or sign-up processes finish successfully,
a JWT token should be generated and returned as a response with user data.

The user controller should contain endpoints to get a user by id, get a user
by username and get a user by the token. These endpoints should be locked
and available only to authenticated users. Each endpoint should return a user
object.

The story controller should be able to get all stories and a story by its id.
Based on the endpoint, different data should be returned. The get-all-stories
endpoint should return a list of stories. The get-story-by-id endpoint should
return a story with all of its missions. These endpoints should be locked and
available only to authenticated users.

Similarly, the mission controller should also be able to get all missions
and a specific mission. Both endpoints return game, learning, or storytelling
mission. Additionally, it should also have an endpoint to update the game
result. These endpoints should be locked and available only to authenticated
users.

66

4.5. Server Application

And finally, the stats endpoint should return stats for all stories and their
mission for the authenticated user. This endpoint should be locked and avail-
able only to authenticated users.

4.5.5 Services
Services handle requests from controllers. They are the middleware between
controllers and repositories and handle additional logic. There should be three
types of services: a user service, a story service, and a token service.

The user service should be able to get a user by their id or username.
It should also process login and register processes. This service should also
know how to hash and verify users’ passwords.

The story service should contain methods to get story and stories, mission
and missions, and save game progress. Their URL attribute differentiates
the mission and the story. If requesting all missions, a story URL must be
provided. All stories do not need additional data.

The token service needs to contain the generation of a token and its
verification. The token is generated based on the user data object. And
the verification is done by passing the token.

4.5.6 Repositories
There should be at least two repositories for stories and users. The user
repository should contain creating a new user and getting a user by their id
or username. The story repository should contain all methods to fetch and
modify stories and missions. Getting all stories, getting a specific story by its
story URL, getting all missions by their story URL, and getting a particular
mission by its URL. It should also provide getting stories’ stats for a user.
And the save game progress.

4.5.7 Tokens
User authentication is done either by sessions or tokens. These two methods
do a similar job, but servers manage sessions, and clients manage tokens.
Both methods can deal with authentication and authorization. Authentication
verifies that a user is who they say they are. That can be done by providing
a password or a fingerprint. Authorization verifies that a user has permission
to do things. It is a way to allow a user to access some locked resource. [35]

Tokens deals with the authorization of APIs. Typically JSON Web Tokens
(JWT) are used to secure APIs. JWT is an open security standard that
allows the secure transmission of data [35]. JWT is added to an authorization
header Authorization: Bearer <jwt-token> on the client’s request, and
the server then reads it and verifies it. A schema of JWT lifetime can be seen
in the figure 4.12.

67

4. Design

Figure 4.12: JSON Web Tokens [35]

Users will be forced to sign in using their username and password combi-
nations to authenticate. The game verifies that the user is who they say they
are. Then, the game saves the JWT token from the response, and from now
on, it uses the token to authorize the request to the Web API.

4.6 Database

In this section, there are discussions about types of databases, SQL vs.
NoSQL, inheritance, and conceptual schema.

A database is a collection of data stored in a system. They are used for
the persistent storage of information from applications. According to software
requirements, the data is well-organized and offers many advantages over sim-
ple file storage, such as fast search and querying.

According to [36], one of the most critical decisions is choosing the right
type of database and the correct database system. Databases can be relational
(SQL) and non-relational (NoSQL).

68

4.6. Database

Relational databases mainly use the SQL (Structured Query Language)
language. It is a declarative query language that allows performing complex
queries [36]. In SQL databases, data are structured, and it is based on ACID
principles: atomicity, consistency, isolation, and durability. Their scheme
is fixed. SQL databases are vertically scalable, which means increased RAM,
CPU, or SSD performance. An example of such a database is PostgreSQL.

Non-relational databases are of many kinds and types. They have a dy-
namic schema and are suitable for hierarchic data storage [36]. NoSQL
databases are horizontally scalable, allowing to handle a more significant
amount of workload by using another server. These databases are based
on CAP: consistency, availability, partition tolerance. Examples of NoSQL
databases are Neo4j and MongoDB.

Because the data for the developed game are with a fixed schema, using
a SQL database is more than suitable. The game will use the open-source
database PostgreSQL.

4.6.1 Conceptual Schema

To create a database, creating a conceptual schema is a good choice. A con-
ceptual schema is a schema that models only the relations between entities.
Entities have attributes, but they do not have a type. An essential part of
the schema is the relations, which can have different cardinality and partiality.

The designed schema has six entities: User, Story, Mission,
Game_mission, Learning_mission, and Game_progress. The schema can
be seen in the figure 4.13.

The User entity has primary key id and attributes name,
password, username, and description. The username attribute is unique.

The Story entity has primary key id and attributes url, name, and
description. The url attribute is unique.

The Mission entity has primary key id and attributes url, name,
description, and order. The url attribute is unique.

The Game_mission entity extends entity Mission and has attributes
commands_initial, board_initial, board_result, speed_limit,
robot_initial, robot_result, and task_description.

The Learning_mission entity extends entity Mission and has attributes
data, and is_story.

The Game_progress entity has primary key id and has attributes
commands, speed, size, and completed.

From the relations, the Story entity can have multiple Missions. The User
entity and Game_mission can have multiple Game_progress.

69

4. Design

Figure 4.13: Conceptual Schema

4.6.2 Inheritance

In the conceptual schema, inheritance is used. Inheritance can be solved with
three different approaches.

The first approach is a table per hierarchy [37]. This approach denor-
malizes the schema and joins all tables into one. A column that determines
a type of data is added to the schema. That means only one table per hierarchy
is created.

The second approach is a table per type [37]. This approach uses tables
from all entities. There is a foreign key to the base table in children’s tables.
Even abstract classes have their tables. And children’s tables contain only
non-inherited properties.

The third approach is a table per concrete type [37]. This approach is sim-
ilar to the table per type, but it does not create tables for abstract classes.

Determining what approach is the best is a matter of specific needs.
In the developed game, the second approach will be used — the table
per type. That means no attributes will be duplicated, and all hierarchy
will be preserved.

70

4.7. User Interface

Figure 4.14: Sign-In Wireframe

4.7 User Interface

In this section, a design of wireframes will be discussed.

4.7.1 Sign-In and Sign-Up Screens

On the screen will be one of the important components — sign in and sign
up, as can be seen in the figure 4.14. If the user does not register or log in,
they cannot play the game. Therefore, it will be more than appropriate if
the screen is simple and contains a meaningful design.

The screen contains text inputs for entering nicknames, passwords, and
more and includes a button that is used to submit the form.

4.7.2 Missions Screen

Missions screen 4.15 is a transition screen for selecting missions to play.
It contains a top menu from which it is possible to access all stories, statistics,
a profile, and a button on the main page.

It contains an overview of individual missions, tuned into a linear sequence,
but it is also possible to make a divided linear sequence of missions. A line
is displayed between the missions, indicating continuing to the next mission.
Next to the mission is its name.

71

4. Design

Figure 4.15: Missions Wireframe

Figure 4.16: Learning and Storytelling Missions Wireframe

4.7.3 Story Screen — Learning and Storytelling

Like the previous wireframe, in the figure 4.16 there is a story screen which,
after clicking on the learning mission or storytelling mission, displays a bubble
dialog with information about the learning mission or storytelling mission.
It contains information about the title, description, and a button to start
a learning or storytelling mission.

72

4.7. User Interface

Figure 4.17: Game Mission Wireframe

4.7.4 Story Screen — Game
Story screen with click on a game mission in the figure 4.17. The click will
show a bubble dialog that contains information about the number of points
completed, the mission name, the caption, and the play button.

4.7.5 Game Screen
The main part of the prototype of the developed game is on the screen 4.18.
It contains both a top menu that includes buttons to jump to the main screen,
stories, statistics, and a profile.

The screen contains a panel with command blocks on the left. These are
arranged below each other and possibly nested inside each other. To the right
of this is a palette of commands that can be used for a given mission. Below
these panels, there is a panel at the bottom with buttons to save and stop
the game.

In the right part of the screen, there is a grid display that represents
the game’s current state. The grid can display walkable lungs or non-walkable
squares that form walls or other types of obstacles. The grid also shows a doll
that marks the robot, Karel. That is the character the player is playing as.

4.7.6 Game Dialog
Whether successful or not, a dialog window will appear with a status message
at the end of the game, as can be seen in the figure 4.19. This dialog reports
whether the game ended with an error or successfully. In addition, the dialog
contains a caption. The optional size and speed bonus attributes are displayed
if the status is successful.

73

4. Design

Figure 4.18: Game Screen Wireframe

Figure 4.19: Game Dialog Wireframe

74

4.7. User Interface

Figure 4.20: Statistics Wireframe

4.7.7 Statistics Screen
The statistics screen 4.20 shows the status of success of game missions and
values of the optional size and speed attributes. It displays it in the tabular
form separately according to the player and other players. The statistics are
divided according to the game mission.

75

Chapter 5
Implementation

This chapter describes exciting parts of the implementation or possible prob-
lems encountered during the implementation. It describes the client applica-
tion, server application, database, and user interface design implementation.

5.1 Client Application
In the design chapter 4, the following technologies were selected for the client
application implementation. According to the design, the implemented
application must support web and Windows and other desktop platforms,
respectively. It must also be easily extensible to mobile devices. Therefore,
the Flutter framework was chosen, enabling cross-platform development on
web, desktop, and mobile platforms. The Bloc library was chosen for the state
management app state, which, thanks to its asynchronous approach, provides
a robust implementation and allows easy expansion or modification.

5.1.1 Used Technologies
The Flutter framework in version 2.10.5 was used on its stable channel.
This version uses the Dart programming in version 2.16.2. The package
flutter_bloc in version 8.0.1 was used in the presentation layer for pro-
viding the Bloc library. This package provides the basic implementation of
the Bloc library and supporting widgets and other things for use with the
Flutter framework.

The package get_it in version 7.2.0 was used for dependency injection in
the presentation layer. This package allows registering specific class
implementations to their interfaces. Registered classes are then located from
anywhere in the code.

The data layer uses the package http in version 0.13.4 for the HTTP com-
munication. This package provides an interface for sending HTTP methods
POST, GET, PUT, DELETE, etc.

77

5. Implementation

Figure 5.1: Command Blocks

The business layer uses package shared_preferences in version 2.0.13
to store the token. This package stores data in the appropriate place based
on the platform.

5.1.2 Command Blocks Rendering

Command blocks are one of the most critical components of the implemented
game and their implementation, and the whole development process was fas-
cinating. These are used for visual programming of individual game missions.
Before describing the development of this feature, there is a little reminder of
what command blocks are and how they should behave.

Command blocks are used to program a game mission. Blocks are visual
components that can be grabbed and moved within the left panel of the game
mission screen. An example of command blocks is in the figure 5.1. Blocks are
part of the command block list, and if a player tries to drop a block outside
that list, the command is deleted. The player can use command blocks that
are available in the command block palette. Command blocks can be dragged
to the command block list from this palette.

Command blocks use widgets for their implementation. The initial idea
for the implementation was to use one of the already existing widgets of
the Flutter framework. Flutter contains several widgets that could handle
similar functionality, so several options have been tried.

One of the ways to implement this could be ReorderableListView widget
from the Flutter Material library. According to [38], this widget works like
a regular widget that positions its children in a column, provides scrolling,
and allows to drag items within the list. This widget provides different
drag-and-drop behavior based on whether it’s used on a mobile device where

78

5.1. Client Application

the player uses a finger to drag or on a web where the player uses a mouse
to drag elements. All elements of the list must have a unique key. The
ReorderableListView widget would work well if it did not need to be able to
nest command blocks. However, this widget does not support element nest-
ing, and a similar solution using this widget failed. In addition, the elements
in this widget only drag inside their container, which is also not required.
The elements should be possible to drag in all directions and across different
containers or drag elements from the command block palette.

Another option would be to use the Draggable and DraggableTarget
widgets. These widgets, according to [38], work in their interplay. Widget
Draggable defines the data that the widget should transmit. This widget also
has three children that differentiate what the widget should look like, what
the widget should look like when dragged, and how the area behind the wid-
get should look. The second widget, widget DraggableTarget, is used to
determine where Draggable widget can be dragged. It defines several func-
tions according to which the widget determines whether the dragged widget
should be accepted or what should happen if dropped. It also defines a builder
that determines how the widget should appear based on whether or not any
data has been dragged to it. This approach sounded very promising at first;
however, it turned out that it would be complicated to use these widgets to
make a dynamic implementation within the scope of command block require-
ments. One problem was that if a new command block was added to the end
of the command block list, a new slot for the next block needed to be cre-
ated. It would also be challenging to implement block reordering. Additional
empty DraggableTarget widgets would have to be added to all the used
DraggableTarget widgets to check if the player moves the block to one of
the locations between blocks. After moving the block, a recalculation would
have to follow, and a similar situation would be repeated.

Command blocks must be rendered declaratively because widgets in the
Flutter framework are rendered declaratively. Because the position of all
blocks would have to be complicatedly mapped to the state, the second pro-
posed option could not be implemented. Because of this, a custom solution
was created. The solution contains two essential elements, containers, and
blocks. A container is a widget that will accept blocks. And blocks are wid-
gets that represent commands. Some blocks also contain a nested container to
which the exact definition applies. In addition, this container and block struc-
ture is defined by a state, which is represented as a command tree structure.
These commands are of two basic abstract types and can be group or single
commands. Each command has its class that extends one of these abstract
classes. A special case is the root command class, which is used as the root
of the tree structure. That makes a declarative rendering of the structure.
It uses its widget CommandItem, to which an instance of the command is passed
as an argument, and according to its abstract type, other CommandItem widgets
are recursively added to the widget tree. These CommandItem widgets then

79

5. Implementation

add the widget CommandBlock to the structure, which solves the visual render-
ing of the command block, i.e., displays the colored rectangle of the command.
The entire display of list command blocks takes place in the CommandsView
widget.

The moving command blocks feature is missing to complete the required
functions. For CommandBlock widget to drag, the player must hold and
move it. As the player drags the block, the ‘shadow’ (as can be seen in the
figure 5.1) of the original block must remain beneath it, which moves to the
location where the block could be placed as it is being dragged. It must also
be determined in which specific container this block is to be placed. Whether
in the main or in one of the nested, which belong to the commands that have
nested blocks. If the block is moved outside of any container, the ‘shadow’ will
soften, indicating that it will be removed if the player releases the block. Con-
versely, the block must also be able to be moved and copied from the command
palette. All these operations continuously update the state of the command
tree structure. The blocks themselves are not physically moved. The state
according to which the widgets are redrawn changes. The Key keys are used to
ensure that the framework does not redraw blocks that do not change or that
the algorithm knows which widget to move. Keys are, according to [38], unique
widget identifiers. The key for the CommandItem widget is an ObjectKey key
using the object of the respective command, i.e., its hash.

The move is processed in the CommandsView widget. All blocks and con-
tainers are registered in this widget so that this widget can subsequently
browse them. To start a move event, the CommandBlock widget (which draws
a visual rectangle) uses the Listener widget, which according to [38] provides
an interface to basic pointer events. Specifically, the PointerDownEvent event
is captured. This event is passed to the CommandsView widget, which starts
processing the move. It also starts listening to other events using the Flutter
class PanGestureRecognizer. It provides an interface for capturing update
and end events. Widget CommandsView uses the Stack widget, which allows
to display widgets on top of each other. It will display a special proxy widget
at the top of this stack. Visually, this widget is the original widget being
dragged. However, as described above, the original widget remains in place
as a ‘shadow.’ This added proxy widget is the one that is being dragged.

For each update event, the position of the proxy widget must be updated by
the delta difference of the event. Subsequently, a lookup is performed to find
the nearest container in which the event position is located, i.e., the player’s
pointer. If no container is found, the dragged command bloc is marked as suit-
able for deletion. If found, the block closest to the dragged block is also
found. That determines the position to which the block’s ‘shadow’ should
move. The state is updated, and Flutter declaratively redraws the command
blocks, so the ‘shadow’ visually moves to the correct position.

80

5.1. Client Application

if (containerRender.size.contains(
position

- containerRender.localToGlobal(Offset.zero)
+ const Offset(2, 2)

)) {
// But it is not subtree of original item.
if (!container._isChildOfItem(_dragging!)) {

// Find the closest one.
if (container.index.length > maxIndexes) {

maxIndexes = container.index.length;
closestContainer = container;

}
}

}

Listing 5.1: Closest Container Lookup

Iteration through all registered containers is used for the lookup of the
nearest container. The current container’s RenderObject or RenderBox,
respectively, is requested with container.context.findRenderObject() as
RenderBox. Then, as can be seen in the code 5.1, the position of the container
is compared with the cursor position, and then, if the container is not part of
a block (that is if the container is not a block subcommand), the nearest such
container is found. A similar algorithm finds the nearest block below.

Some blocks may have conditions or directions. These are also rendered by
the CommandBlock widget if the command has a choice of condition or direc-
tion. An overlay must be created when the mouse is moved over for a player to
be able to select a condition or direction in such a block. The options are dis-
played in the respective overlay, and after selecting the option, the command
state is adjusted.

5.1.3 Overlays

The custom widget OverlayButton is used to implement overlays. This widget
is used to select conditions and directions for command blocks in the game
mission and for some submenu buttons in the menu.

Overlays display content above the standard widget tree. Such logic could
be created using a custom implementation using the Stack widget. Imple-
menting it this way for all applications can be annoying and error-prone.
Flutter provides the Overlay widget, which implements exactly this function-
ality. This can be used to display input suggestions, tooltips, or anything
that needs to float above the screen. According to [38], Overlay is “A stack

81

5. Implementation

Figure 5.2: Overlay

of entries that can be managed independently.” Overlay, therefore, maintains
its Stack and manages widgets that are added to it. This widget can be cre-
ated directly, or it can be used already pre-created one using the Navigator.
An example of an overlay for a command block can be seen in the figure 5.2.

To create an overlay, the insert() method needs to be called on the men-
tioned Overlay created by Navigator. OverlayEntry is used as an argument
for this method. According to [38], OverlayEntry is the object that Overlay
use to represent its items.

In addition, the custom OverlayButton widget, which is used for overlays
in the game mission, menu, etc., detects if the overlay overflows the screen to
the right or left and adjusts it to be at its edge instead. Because in some cases,
it is necessary to ensure that the overlay moves with the widget that triggered
it. For example, when scrolling, it is necessary to synchronize the position on
the screen. It can also be used only to synchronize the position, whether it
will change later. That can be implemented manually, but Flutter has ready
functionality for this. Flutter provides the ability to create a LayerLink
object that allows linking a follower to a target [38]. OverlayEntry can use
the CompositedTransformFollower widget to set the follower and
CompositedTransformTarget to set the target. The follower will automati-
cally follow the position of the target. OverlayButton detects enter and end
events on the widget and displays the overlay accordingly.

5.1.4 Networking
The http package is used for networking. The package is used to com-
municate with the Web API server. From there, JSON encoded data are
fetched. Fetched data are decoded into Map<String, dynamic> data and
are further processed to create entities. Most of the entities has a factory
constructor .fromJson(Map<String, dynamic> json). These constructors

82

5.1. Client Application

factory User.fromJson(Map<String, dynamic> json) {
return User(

id: json['id'],
name: json['name'],
username: json['username'],
email: json['email'],
description: json['description'],

);
}

Listing 5.2: From-Json Factory Constructor

parse the typed JSON and create entities from it. A simple example of the user
entity can be seen in the code 5.2.

Data are usually simple to parse. There are some compelling cases in which
the parsing is more complicated. After loading a game mission, a GameMission
entity is created. This entity contains all its properties as simple data types.
But it contains the commands and commandsInitial properties that contains
a string with a encoded JSON structure. This structure must be further
decoded and processed. That is done by the GameMission’s parseGame()
method. This method decodes the command’s properties to the JSON map
and recursively creates a commands tree using the factory constructor of
the RootCommand. This constructor parses its data which are recursively
parsed to the specific command classes. This process, therefore, elegantly
creates a command tree structure.

5.1.5 Router and Navigation

Flutter initially used an imperative approach to routing and navigation.
According to [39], this was problematic, and it was challenging to push or
pop several screens or otherwise change the state of the screen stack. A new
Navigator 2.0 API has been added to Flutter, allowing control of the navi-
gator declaratively. A schema of Navigator 2.0 can be seen in the figure 5.3.
According to [40], the imperative approach can get the application into trouble
because it does not separate app logic from the UI logic. UI logic is separated
from app logic using a declarative approach. UI logic displays screens accord-
ing to data, respectively depending on the application’s state. And app logic
retrieves data and changes the state of the application.

According to [40], Navigator 2.0 needs to do three things. Convert app
state to navigator state (build method). Convert app state to Abstract Data
Type (ADT) and further to the path. And convert the path to the ADT and
then to the app state. According to [39], two new classes are used for this.

83

5. Implementation

Figure 5.3: Navigator 2.0 [39]

The RouteInformationParser class, which uses the method
parseInformationRouter to convert the path to the ADT and uses the
restoreRouteInformation method to convert the ADT to the path.
And the RouterDelegate class, which uses the setNewRoutePath to convert
the ADT to app state and the currentConfiguration method to convert app
state to the ADT.

Several screens have been created for the implemented game, each of which
must have an appropriate representation using a path, navigation state, and
app state. According to the text above, the Bloc library is used as the app
state, which represents the app state. Of course, this state is only in the con-
text of routing. It contains several states (and therefore screens) that can
extend interfaces. Interface RequiresAuthentication is used to indicate
those states that require the user to be able to access them only when logged in.
This Bloc, therefore, communicates with the Bloc that manages the
authentication. Before Bloc invokes a state redirecting to a given screen, it
checks that the user is signed in if the future state implements this interface.
It also contains the ForbiddenAfterAuthentication interface, which works
very similarly to the former. If the user tries to get to the screen, they will be
redirected to the sign-in screen instead. The difference is that Bloc will not
emit those states that redirect to that screen if the user is signed in. That
is used for sign-in and sign-up screens that are only available to anonymous
users. If the user still tries to get to the screen, they will be redirected to
the home screen. The scheme of individual states and their attributes can be
seen in the figure 5.4.

5.1.6 Game Processing

At the beginning of this section, command blocks were described as one of
the critical components of the implemented game. Game missions consist of
two critical parts. One is the part with the visual programming, wherewith
the help of command blocks, the player sorts blocks so that the robot per-
forms the correct sequence of steps and fulfills the mission goal. The second

84

5.1. Client Application

«interface»
RequiresAuthentication

«interface»
ForbiddenAfterAuthentication

RouterState

HomeRoute

UnknownRoute

SignRoute SignInRoute

SignUpRoute

PlayRoute

StoriesRoute

StoryRoute

+ id: String

MissionRoute

+ storyId: String
+ missionId: String

StatsRoute

ProfileRouteAboutRouteInfoRoute

ApproachRoute

PressRoute

ContactRoute

AppsRoute

HelpRoute

TermsRoute

PrivacyRoute

Figure 5.4: Routing

part is the game processing. That includes both game grid implementation,
visual representation of the game state, and processing of visual programming
(command blocks).

The game grid is implemented as a grid of cells. It can be seen in the
figure 5.5. These, like command blocks, use widgets to render. These widgets
are rendered into several types according to the type of each cell. A walkable
cell is rendered as an empty cell that a robot can walk on. This cell can also
have several marks. These appear as horizontal plates.

Several types of non-walkable cells are implemented. These are walls,
forests, and water. The wall has a gray coloration and represents, for example,
the castle walls. The forest has a green coloration and represents an impene-
trable forest. Water has a blue tint and represents water. The robot must not
get out of the walkable cells. If a player tries to step outside the walkable cell
or the grid, the game will allow them to see their mistake visually in the first
step. After this step, however, the game opens a failed game dialog, where it
reports error. That can be seen in the figure 5.6. Coordinates with numbers
for the vertical axis and letters for the horizontal axis are displayed around
the grid. The coordinates are also displayed when you hover over a cell to
make navigation easier when thinking about how to complete the game.

85

5. Implementation

Figure 5.5: Game Grid

Figure 5.6: Game Dialog

86

5.1. Client Application

In order for the player to know clearly where they are in each step, the
robot is marked on the grid with a figure with a crown. As the game pro-
gresses, this character moves around the grid to perform the tasks assigned by
the visual programming. At the same time, the currently executed command
block is indicated by an arrow. In this way, the player knows which command
is currently being executed and which is responsible for potential unplanned
behavior.

After clicking the play button, the current command blocks are saved,
and an event to play the game is added with those commands. The game
itself is processed in the processGame() method in class GameService, or
rather in its implementation class GameServiceImpl. This method receives
as an argument an entity with all the game data. The algorithm thus has
access to all the necessary data. The output of this method is the queue of
the ProcessGameResult object. This object contains the object with the game
and the index of the currently processed command. If an error occurred in
the given step, the type of an error is also included. The algorithm first
determines if the commands are valid. That is checked by recursively pass-
ing commands using their isValid() method. If the commands are valid,
the commands begin to be processed recursively. The algorithm gradually
calls group and single command processing methods according to the given
command type.

For the single command type, the process is trivial. The algorithm creates
a clone of the game object modified by the given command effect. Then it
is added to the queue. If an error occurs during processing, an error is also
added to it.

For the group command type, the command if is processed separately
from the while command. Both commands first add a state to the queue,
pointing to the index of their command block. Command if then it checks
the condition and, if it is met, it calls the method to process the nested
commands. Command while works similarly, but the condition is checked in
a while loop. During this pass, the speed argument is counted, which indicates
the number of executed commands of the given command, i.e., the method
call for solving a group or single command.

The size argument is also calculated at the beginning of processing, which
indicates the number of blocks used. The countSize()method is invoked over
the root command object. After the recursive processing is completed, the last
state is added to the queue with the game modified by filled size and speed
attributes, and the completed attribute, which indicates whether the game
was completed. This is detected by calling the isCompleted() method on
the game object.

87

5. Implementation

{
"AppSettings": {

"DatabaseUrl": "<db url>",
"JwtSecret": "<token>",
"CorsOrigins": [

"http://localhost:8080"
]

}
}

Listing 5.3: Server Configuration

5.2 Server Application

The design chapter 4 selected the ASP.NET Web API in version 6.0.102 with
C# and the Entity Framework in version 6.0.3 tool.

All services and repository interface implementations are registered in
the dependency injection tool provided by the ASP.NET. The dependency
injection tool allows automatic injection into constructors, thus abstracting
the process of creating most objects. This is a kind of magic compared to
other languages and technologies, but it works well. Registration is done in
the Startup class using IServiceCollection to register in the
ConfigureServices method. Controllers are also registered in a similar
way using the services.AddControllers() method does an automatic reg-
istration of all controllers. Services and repositories are registered using
services.AddScopped<InterfaceType, ImplementationType>().

Setting up configurations for the game is also made in the
ConfigureServices. For configuration a combination of standard public file
appsettings.json and a secret file secrets.json can be used. The structure
of the game’s configuration can be seen in the code 5.3. The DatabaseUrl
and JwtSecret should be stored in a secured file.

The primary purpose of the server application is to provide a Web API
that handles storing and fetching the game’s data. It uses controllers to han-
dle incoming HTTP requests. Controllers use injected services that handle
all logic. Services usually use injected repositories that communicate with
the database using the Language-Integrated Query (LINQ) to Entities. LINQ
to Entities can be used on the DbSet properties of the DbContext object. An
example of such usage in LINQ method syntax can be seen in the code 5.4
that shows a fetch of missions for a specific story.

88

5.2. Server Application

var missions = _dbContext.Stories
.Include(s => s.Missions)
.FirstOrDefault(s => s.Url == storyUrl)
?.Missions;

Listing 5.4: LINQ to Entities

5.2.1 Saving the Game Progress

To save the game progress the HTTP PUT method on
{storyUrl}/{missionUrl} resource must be called. It should contain
GameProgressDto data, which includes commands as an encoded JSON in
a string, speed and size attributes as an int, and the completed attribute
as a bool.

Inside of the controller, the StoryService is called with the
SaveGameProgress method. Inside the service, an eponymous method is
called on the StoryRepository. Inside the repository, if game progress
existed before, it is fetched. If there is already an existing record, its data get
updated. Otherwise, a new GameProgress object must be created.
An important note is that the created object must contain a reference to
the user and game entities. Therefore they must be fetched and used.

5.2.2 Fetching Story’s Missions

The StoryRepository repository also contains the GetMissions method.
That is used to fetch missions of all types. Because the game mission can
have an associated GameProgress record for the specified user, a join has to be
made. LINQ contains two joins. The Join()method corresponds to the SQL’s
inner join. And the GroupJoin() method that corresponds to the SQL’s left
outer join. For this purpose, the GroupJoin() method was used. The code of
the left outer join can be seen in the code 5.5. Note that missions contains all
missions of the selected story. It also uses the resultSelector that merges
the joined data and converts the entity from the entity to do a more suitable
DTO.

DTOs cannot return different data based on inheritance. For this purpose,
the GetMissionDtoFromGroupJoin() method returns the MissionsListDto,
which has two subtrees: either inside a game property or a learning property;
the other is null. This way, inherited data can be returned in response to
the client from the controller. A better solution was not found.

89

5. Implementation

var queryData = missions.OrderBy(m => m.Order)
.GroupJoin(

_dbContext.GameProgresses.Where(
progress => progress.User.Id == userId

),
m => m.Id,
gp => gp.Game.Id,
(mission, progresses) => GetMissionDtoFromGroupJoin(

mission, progresses.SingleOrDefault()
)

).ToList();

Listing 5.5: GroupJoin to Fetch Story’s Missions

5.2.3 Tokens

The tokens were discussed in the 4.5.7 chapter. JwtService service uses
the Microsoft.AspNetCore.Authentication.JwtBearer library in version
6.0.3 for token generation and validation.

For the generation, it uses the user’s id as an id claim, expiration is set
to seven days, and it is signed using the HmacSha256Signature algorithm.
Mentioned and other data create the SecurityTokenDescriptor and the
JwtSecurityTokenHandler then creates the token from it.

Validation of the token uses ValidateToken() from the
JwtSecurityTokenHandler object.

Clients must add JWT to the authorization header like
Authorization: Bearer <jwt-token>. A custom authentication scheme
KingKarelAuthHandler is used to validate the token. The handler checks
the presence of the authorization header and whether it starts with the ‘Bearer’
string. The handler then uses the JwtService that tries to validate the to-
ken. If the token is valid, the id claim is fetched from the token and added
as the identity claim to the AuthenticationTicket. Controllers then can use
these claims by accessing User.Claims.

5.2.4 Passwords

Passwords are hashed using the BCrypt.Net-Next library in version 4.0.3.
The library provides the BCrypt object that has a method HashPassword()
that hashes a password with a generated salt. It also provides the Verify()
method that requires a password and a hashed password arguments.
Only hashed passwords are stored in the database.

90

5.2. Server Application

Figure 5.7: Relational Schema

91

5. Implementation

installation
dotnet tool install --global dotnet-ef

create a migration
cd KingKarel
dotnet ef migrations add "Name of the migration"

update the database
dotnet ef database update

Listing 5.6: Entity Framework Migration Tools

5.3 Database
According to the design chapter 4, PostgreSQL was used as a database for
the game. For local development, a docker container with the database is set
up. The docker-compose file is located in the server application project.

In the chapter 4.6.1 a conceptual schema is described. According to that
schema, a relational schema was created. The relational schema can be seen
in the figure 5.7. The strucute of relational schema is similar to the structure
of the conceptual schema. For unique identifiers integer data types are used.
For other attributes an integer, a string, or a boolean data types are used.
Inside some of the string attributes an encoded JSONs are stored.

5.3.1 Migrations
Migrations manage the database from the server application. Entity frame-
work tools support the creation and updates of migrations. That is useful,
especially when the database schema is created using the ORM from the code.
Each migration creates a file with the Up() and Down() methods. These
methods allow migration tools to apply and undo a migration. Migration files
are generated to KingKarel/Migrations directory. Useful migration tool’s
commands can be seen in the code 5.6.

5.4 User Inteface
In this chapter, implemented user interface screens will be presented and dis-
cussed. They are based on wireframes discussed in chapter 4.7.

5.4.1 Game Mission Screen
In the figure 5.8 there is a game mission screen. It consists of two parts.
The left part contains a visual programming tool that includes command

92

5.4. User Inteface

Figure 5.8: Game Mission Screen

blocks, its palette, and button used to play, save, and reset the game, and
a show or hide description button. The right part contains a game grid that
dynamically changes while the game progresses.

5.4.2 Game Mission’s Dialog
The dialog that can be seen in the figure 5.9 displays the information to
the player about what the outcome of the processed game is. It can be
a success or failure. The success dialog displays size and speed attributes which
are optional challenges. Failure dialog can display a note about
a specific error.

5.4.3 Stories Screen
The stories screen, as can be seen in the figure 5.10, displays a list of stories.
Each story is represented by a card containing its title, description, and
the number of missions contained inside the story courses.

5.4.4 Story Screen
The story screen, as can be seen in the figure 5.11, displays the story’s title and
its missions. Circles represent missions with an icon based on the mission’s
type, and next to it, there is a mission’s name. After clicking the circle,
an outlay is displayed with additional information about the mission, like its
description and a button to read, learn, or play.

93

5. Implementation

Figure 5.9: Game Mission’s Dialog

Figure 5.10: Stories Screen

94

5.4. User Inteface

Figure 5.11: Story Screen

A game mission also contains three crowns, one for completing its mission
and two optional. The latter two are for beating the size and speed attribute
challenges. Crowns can be seen in the figure 5.11.

5.4.5 Game Statistics Screen
The statistics screen displayed in the figure 5.12 contains a simple table-
like view of missions’ results. The screen is separated into sections based
on the story.

5.4.6 About-Us Screen
The about-us screen and its subscreens can be seen in the figure 5.13.
It contains a tab menu that can be used to navigate between the subscreens.
Each tab content has a specific content, usually a markdown text.

95

5. Implementation

Figure 5.12: Game Statistics Screen

Figure 5.13: About-Us Screen

96

Chapter 6
Usability Testing

In general, game developers or software developers need to gain an unbiased
view of how their software performs when used by a real user. It is undeniably
essential to find out how the software is controlled, how easily and efficiently,
and whether they would appreciate any changes. They will be the ones to use
the software after all.

Usability testing (sometimes also referred to as ‘user testing’), one of
the user experience (UX) methods, is used to verify these questions.
According to [41], its goals are to identify problems, find out preferences,
and find out how the target users behave. An essential advantage can also be
finding out which other features users would like to see and use. For testing
to be successful and for developers to find valuable data, unbiased people,
ideally from the target group, must do testing. That is because software de-
velopers have too much information about what to expect, where to expect it,
and even how the software works. They also typically have too much general
technical knowledge and are therefore not suitable candidates for represent-
ing the average user; if the average user is the target group of the software.
Testing is also suitable if the development team has an experienced UI or UX
designer. Although they may have practical experience and knowledge, even
these do not match the perceptions of the real user who sees the software
for the first time. “The only way to get UX design right is to test it.” [41]
In addition, usability testing can be used to point out or disprove a deficiency
or need for improvement that most developers do not perceive as essential.

Usability testing has specific rules and procedures, as described in [41].
It is undoubtedly impossible to turn on the software and let the user do
anything. It requires a moderator, typically one of the developers, or someone
who has all the necessary information about the software. Testers are also
needed. There is no need to have many testers; five participants are enough.

97

6. Usability Testing

The moderator’s task is to assign several tasks to the
testers, which the testers gradually perform. They monitor testers during this,
and testers give feedback. The moderator should be impartial and should not
influence the testers in any way but may ask for specific details.

For testing to make sense, testers must perform real-world tasks.
According to [41], they can be of various types, both specific and open.
Tasks should not use a specific software language but users’ languages. Using
software-specific terms can affect testers. The design of tasks should consider
the choice of appropriate and comprehensible words that could unnecessarily
confuse testers. Tasks can be communicated to testers in spoken or writ-
ten form. It is a frequent requirement that the testers read the tasks aloud
or reformulate them with their own words, allowing the moderator to verify
that they have understood the task correctly. When performing tasks, testers
should also say their thoughts aloud so that the moderator knows what and
how they think.

Testing can be done in several forms. As mentioned by [41], the most
common division is into personal vs. remote testing. Remote testing is often
moderated, but it does not have to be. Moderated testing tries to approach
personal testing, so the moderator and the tester are in the same video call,
and the tester typically shares their screen, camera, etc. Special tools and
technologies such as eye tracking or mouse tracking can also be used.

Remote test methods with testers with a shared screen will be used to
test the developed game King Karel. Tasks will be handed over in writing.
It will be tested in two phases. The first phase will test 4 participants. After
completing the testing of the first phase, minor changes in the implementation
of the game will apply, according to the participants’ feedback. A pre-test
expectations are that participants will have difficulty finding a button to
display a description of the game mission. Then the testing of the second
phase will be performed, also with 4 participants. Finally, the testing of both
phases will be evaluated, and feedback will be used to improve the implemen-
tation of the game in the future.

6.1 Scenarios

Testers will have to complete several test scenarios. They will be given tasks,
and the moderator has the expected results, according to which they can verify
whether testers have fulfilled the assignment.

98

6.1. Scenarios

Scenario 1 — Sign Up
Task You are interested in trying the game. Create an account and log in to

the game.

Expected result a user finds the sign-up button, opens the sign-up screen,
and successfully executes the sign-up process. the user, therefore, had
created an account and is signed in.

Scenario 2 — Main Screen and Profile
Task Go to the main screen. From there, navigate yourself to the profile

screen. Find your name and nickname.

Expected result a user finds a way to navigate themselves to the main
screen — clicking to the app name. Then user finds the button with
an avatar or the profile button in a submenu of the avatar button and
navigates themselves to the profile screen.

Scenario 3 — Courses
Task Find courses that contain games and other missions. What is the name

of a course that contains three missions? Select this course.

Expected result a user is expected to find a stories button in the menu.
This button navigates the user to the stories screen, where stories are
listed. the user should find the number of missions in each story and
read its name.

Scenario 4 — Story
Task You are on the story screen. What are the missions of this story? Each

mission contains different graphics; what do you think they represent?

Expected result a user is expected to list the missions of the current story.
There are three types of mission graphics: a boat icon represents a game
mission, a book icon represents a learning mission in a story mode, and
a school icon represents a learning mission.

Scenario 5 — Missions
Task Open the learning missions and read its contents. Then return to

the story screen.

Expected result a user is expected to click the learning mission circle, then
click on the ‘read’ button, complete the learning process, and return to
the story screen by clicking a ‘back to story’ button.

99

6. Usability Testing

Scenario 6 — Game Mission

Task Open the game mission.

1. Find and read the game description, where you will find what
the task is.

2. Explain the task visually using the grid view.

3. Use commands to complete the task.

4. Run the game.

Expected result a user is expected to click the game mission circle and click
on the ‘play’ button. Then they should find a description-commands
switch to be able to view the task description. the user should explain
the task using the grid. And then, the user should play the game,
resulting in a completed diagram shown.

Scenario 7 — Statistics

Task Navigate yourself to a statistics screen. Which missions are completed?

Expected result a user is expected to find and navigate to the statistics
screen. On the screen, they should list all the mission names that
the user has already completed.

Scenario 8 — About-Us

Task Imagine you are a journalist and you want to use some information that
King Karel prepared for reporters. Find and navigate to such a screen.

Expected result a user is expected to find a ‘Press’ tab on the about-us
screen. They can navigate to that screen using the bottom menu with
links.

Scenario 9 — Sign Out

Task a family member wants to progress in the game. Log out of the appli-
cation and navigate them to the log-in screen.

Expected result a user is expected to find a ‘Sign Out’ button inside of
a menu option under an avatar icon. Then they should navigate to
the sign-in screen by clicking the ‘Sign In’ button in the menu.

100

6.2. First Phase

6.2 First Phase
The moderator and testers met one at a time for a video call using Microsoft
Teams. Each tester was acquainted with the process and purpose of testing.
They were explained and advised that they should share their idea aloud and
that they should also read the tasks aloud and, if necessary, reformulate them
in their own words. They were informed that the moderator would monitor
their actions and not actively communicate so as not to interfere with their
decisions. Each tester was sent a task assignment in the chat.

The first testing phase was attended by representatives of children, parents,
and teachers. These testers were assigned a five-digit code for anonymization
and the possibility of reference to specific testers in the text. The testers
cbefa, 3977c, a6ef3, and fcb22 took part in the first testing.

Task 1
The first task was to sign in to the game, i.e., create an account.

This task for all testers was understandable and straightforward. The but-
ton that moves them to the registration screen is expected where it was. Tester
cbefa mentioned that they would appreciate the additional password verifi-
cation input.

Task 2
The second task was to go to the game’s main screen and then navigate to
the profile screen.

That was easy and understandable for most testers. However, tester 3977c
did not understand what the main screen was supposed to be and did not know
how to get to it. But in the end, they successfully got to it. Finding and going
to the profile screen was no problem for all testers. Most testers also noticed
that it is possible to use a direct click on the avatar icon as well as a click on
a button in the submenu.

Task 3
The third task was to find a course screen and search for a course that con-
tained three missions. They should then read the name of this course.

This task was more complicated than the previous ones. A word that
is not a word from the language of the game was used in the task. It confused
the testers as they searched in vain for the word. The biggest problem with
this had testers 3977c and a6ef3. However, everyone eventually understood,
for example, by the exclusion method, that the right thing they were looking
for was ‘stories’. Tester 3977c mentioned that they had a problem with this
task because they associated the word ‘stories’ with a function of the same
name from other applications, such as Instagram.

101

6. Usability Testing

Task 4
The fourth task was to find out which missions the story contained. The task
was also to describe and explain how different mission graphics affect them
and what they think they represent.

No one had a problem with completing this task. However, tester 3977c
did not understand the graphics of a learning mission and believed it meant
success, not teaching.

Task 5
The fifth task was to open learning missions and read them.

This task came easy for all testers, and they all completed it correctly.
However, tester fcb22 did not stop at learning missions and also tried to
launch a game mission.

Task 6
The sixth task concerns the game itself. The goal is to open a game mission
and complete several subtasks. They were to read the description, explain
how they understood it, and use a visual programming tool to accomplish
the task.

The first task was to find and read the mission description. Tester 3977c
said they did not know what the task was and tried to deduce it from the game
grid. Tester cbefa found the button but mentioned that they would expect
the mission description to be displayed straight away. However, all testers
successfully found the button and could read the game’s description. They
also managed to understand and explain it.

Another task was to meet the objectives of the mission using visual blocks.
Everyone succeeded, and everyone managed to understand the meaning of
the blocks. Tester fcb22 tried to use if and while command blocks but did
not understand their meaning, so they used a different way to accomplish
the mission.

When the game progress ended, the results were displayed in the dialog,
along with optional size and speed. Everyone except the tester fcb22 groped
for their meaning.

Tester fcb22 positively evaluated everything was easy to find, the game
mission was clear, and the design was not bloated.

Task 7
The seventh task was to go to the statistics screen and determine which mis-
sions were completed.

The testers completed this task without any problems. At first, tester
fcb22 misunderstood the screen and confused the story and the mission.

102

6.3. Second Phase

Task 8

The eighth task was to empathize with a journalist looking for information.
The task was to get to the page intended for them.

All testers got to the about-us screen. This screen contains a signpost to
all other informational screens. However, testers 3977c, a6ef3, and fcb22 did
not know the word ‘press’, so they did not go to the dedicated screen.

Task 9

The ninth task was to sign out of the game and navigate to the sign-in screen.
All testers completed this task without any problems.

Identified Shortcomings

The first phase of testing confirmed the assumption that it would be appro-
priate to display a description of the game mission as soon as it is opened.
It also turned out that the testers mostly did not understand the meaning of
the size and speed attributes. Apart from that, no other significant problems
were found.

6.3 Second Phase
As in the first phase, the moderator and testers gradually made a video call
using Microsoft Teams. Each tester was acquainted with the process and pur-
pose of testing. They were explained and advised that they should share their
idea aloud and that they should also read the tasks aloud and, if necessary,
reformulate them in their own words. They were informed that the mod-
erator would monitor their actions and not actively communicate so as not
to interfere with their decisions. Each tester was sent a task assignment in
the chat.

The second testing phase was attended by representatives of children, par-
ents, and teachers. These testers were assigned a five-digit code for anonymiza-
tion and the possibility of reference to specific testers in the text. The testers
2df9c, 93750, a5961, and 84152 took part in the second testing.

Unlike the first phase, the game mission’s description was displayed
immediately after launch. A description of the size and speed attributes
has also been added into the learning mission.

Task 1

The first task was to sign in to the game, i.e., create an account. This task
was not a problem for any testers; everything was without problems.

103

6. Usability Testing

Task 2

The second task was to go to the game’s main screen and then navigate to
the profile screen.

This task was also very easy for all testers. In addition, tester 2df9c
recommended that the application name serves as a button on the main page
for more applications and games, but would like to highlight it more because
it looks just like any other text. Testers 84152 would like to have the name
of the currently signed-in player in addition to the avatar icon in the menu.

Task 3

The third task was to find a course screen and search for a course that con-
tained three missions. They should then read the name of this course.

This task was also successful for all testers. However, tester a5961, at first,
did not realize that ‘stories’ were the courses they were looking for. Even so,
everyone found the screen they were looking for in the end.

Task 4

The fourth task was to find out which missions the story contained. The task
was also to describe and explain how different mission graphics affect them
and what they think they represent.

The testers completed this task without any problems. They all under-
stood what missions are and their meaning according to the graphics used.

Task 5

The fifth task was to open learning missions and read them.
This task was also easy for everyone. Everyone went through the missions

and understood the meaning of the story and the explanation of the commands
of the game mission.

Task 6

The sixth task concerns the game itself. The goal is to open a game mission
and complete several subtasks. They were to read the description, explain
how they understood it, and use a visual programming tool to accomplish
the task.

As in the first testing phase, the task was more difficult for testers.
However, they all completed the mission.

104

6.3. Second Phase

Testers 2df9c, 93750 and a5961 had trouble adding blocks to the bottom
of the command list. The problem was with the addition itself when the area
to be added was too small, and the testers dropped the blocks as if outside,
albeit visually close. Another problem was when a tester used the entire
height of the panel, had to scroll down, and had to scroll again after adding.
So the problem was, or rather the expectation, that the panel would scroll
automatically if the user dragged the block and pulled it down. A similar
problem with scrolling was when selecting the direction when part of the menu
overlay overflows the bottom of the window, and the player had to scroll
complicatedly. Even then, the selection was not entirely straightforward.

Tester 2df9c also did not understand what marks are and what their
meaning is. Tester 84152 still had trouble understanding size and speed
attribute, and suggested that the post-game dialog could also contain some
help.

Tester 93750 also discovered an error while starting the game when the
game tried to process an empty while command block, which caused an
endless loop, which prevented the completion of queue processing.

Task 7

The seventh task was to go to the statistics screen and determine which mis-
sions were completed.

Completing this mission was not a problem for the testers, and everyone
completed the task. The tester 2df9c, like another tester in the first phase,
first confused mission and story.

Task 8

The eighth task was to empathize with a journalist looking for information.
The task was to get to the page intended for them.

All testers completed this task without any problems. Testers a5961 and
84152 mentioned that they would welcome a special button in the bottom
menu.

Task 9

The ninth task was to sign out of the game and navigate to the sign-in screen.
All testers managed to complete this task. Tester 93750 was not sure

about the sign-in icon that they did not understand, but they understood
what to do. In conclusion, tester a5961 would welcome a video tutorial or
overlay tutorial.

105

6. Usability Testing

Identified Shortcomings
The second phase of testing confirmed that displaying the description of
the game mission immediately after launch is more appropriate. A critical
error was also found in processing blocks into the executable queue, where
the program made an endless loop. This bug has been fixed. In addition,
no other errors were found. Players had less trouble understanding size and
speed attributes, but it would probably be better to add some form of expla-
nation to the dialog.

6.4 Evaluation
As described in previous texts, most tasks were completed without any prob-
lems. The assumption that not immediately displaying the game mission’s
description is a worse solution has been verified. It was found that size and
speed attributes are not self-describing, so their explanation has been added
to the learning mission. A critical error was also discovered in processing
command blocks into the game’s queue, which caused an endless loop. This
bug has been fixed.

Therefore, overall the results of usability testing are very positive.
The testers were able to complete the assigned tasks. They mostly understood
the meaning of everything, and everyone managed to complete the game mis-
sion. Finding a critical error is also a good sign that user testing has paid off.

106

Conclusion

This thesis aimed to develop an educational game for teaching program-
ming, which focuses primarily on young people and uses gamification con-
cepts. A survey was conducted, followed by an analysis of functional and
non-functional requirements. Based on the analysis, research on existing simi-
lar games and applications that can be used to teach programming was made.
According to the analysis and research, the design of such a game was done.
That was inspired by the advantages of the compared software, which tries to
solve their shortcomings. According to the design, the game was implemented
and evaluated based on usability testing.

When designing the implemented game King Karel, the architecture Clean
Architecture was chosen, which inspires the implementation parts mainly to
the easy extensibility and reusability of the code. The Flutter framework was
chosen to implement the client part of the game as a cross-platform framework
suitable for software development on mobile devices, desktops, and websites.
ASP.NET Web Api technology with the use of the C# language was chosen
to implement the server part of the game, which, thanks to its supporting
technologies, enables the creation of high-quality and robust implementation.
The PostgreSQL relational database was selected as the database. Based on
the design, a user interface was created that takes care of this education-first
game’s understandable and straightforward appearance.

Acquired Experience

I successfully got acquainted with and implemented the user interface with
a declarative approach, which the Flutter framework encourages. That was
initially very non-intuitive compared to the imperative approach. Still, this
approach has worked for me over time, and I understand that it has many
advantages over the imperative approach.

107

Conclusion

To my surprise, I practically tried to perform usability testing, which went
very well overall. The testers understood most of the tasks and performed
them very well. The game came to them visually, not bloated, and easy to
understand. The testers even found a few minor bugs or tips for improvement
and one critical bug.

Ideas on Future Development
According to the usability testing of the prototype and the fulfilled goals of
the work, the developed could have a potential. That can be true, especially
after further processing, better graphic and musical styling, and the addition
of more story and educational material. The game can also be used in primary
or secondary schools to introduce programming and programming concepts.

Not-to-be-implemented features have already been analyzed in the chap-
ter 2.1.7. However, all the features are exciting and would add other vital
elements to the game. In addition, and from experience gained from the de-
velopment and response of testers, more improvements could expand the game.
One idea is that block visual programming, as seen in the game mission, may
not be the only concept of the game. Therefore, other types of missions could
be added to the game, where, for example, the player would directly perform
a logical puzzle by clicking, moving, etc. Thus, a universal system for puzzles
could be created that would allow them to be generated and checked using pre-
prepared configurations. Another type of mission could be with circuit and
gate concepts, i.e., the use of and, or, not, or xor gates to achieve the desired
output result.

One of the first extensions could and should be to improve the game’s
graphics and unique look-and-feel styling. Although the game consists of
tutorials, the passage through the screens could be improved, for example,
by using graphic elements and images that would color the game and create
a pleasant atmosphere. Related to this is the passage of missions that are
far too separate. Ideally, the game should be improved so that players can
connect directly between missions, i.e., adding the ‘next’ button to the mission
screens.

There are many ideas for expanding this game. Some ideas focus on looks,
others on game options. The game’s future development is straightforward —
gradually implement all appropriate improvements.

108

Bibliography

1. DICHEV, Christo; DICHEVA, Darina. Gamifying education: what
is known, what is believed and what remains uncertain: a critical review.
International Journal of Educational Technology in Higher Education.
2017, vol. 14. Available from DOI: 10.1186/s41239-017-0042-5.

2. SMIDERLE, Rodrigo; RIGO, Sandro José; MARQUES, Leonardo B.;
PEÇANHA DE MIRANDA COELHO, Jorge Arthur; JAQUES, Patricia
A. The impact of gamification on students’ learning, engagement and
behavior based on their personality traits. Smart Learning Environments.
2020, vol. 7. Available from DOI: 10.1186/s40561-019-0098-x.

3. NAND, Kalpana; BAGHAEI, Nilufar; CASEY, John; BARMADA,
Bashar; MEHDIPOUR, Farhad; LIANG, Hai-Ning. Engaging children
with educational content via Gamification. Smart Learning Environ-
ments. 2019, vol. 6. Available from DOI: 10.1186/s40561-019-0085-2.

4. Scratch - About [online]. Scratch Foundation, 2022 [visited on 2022-04-
18]. Available from: https://scratch.mit.edu/about/.

5. Khan Academy [online]. Khan Academy, Inc., 2022 [visited on 2022-04-
18]. Available from: https://www.khanacademy.org.

6. CodeCombat [online]. CodeCombat Inc., 2022 [visited on 2022-04-18].
Available from: https://codecombat.com.

7. Minecraft Official Site [online]. Microsoft Corporation, 2022 [visited on
2022-04-18]. Available from: https://www.minecraft.net/en-us.

8. Zachtronics | Opus Magnum [online]. Zachtronics, 2022 [visited on 2022-
04-18]. Available from: https://www.zachtronics.com/opus-magnum/.

9. Tomorrow Corporation : 7 Billion Humans [online]. Tomorrow
Corporation, 2022 [visited on 2022-04-18]. Available from: https :
//tomorrowcorporation.com/7billionhumans.

109

https://doi.org/10.1186/s41239-017-0042-5
https://doi.org/10.1186/s40561-019-0098-x
https://doi.org/10.1186/s40561-019-0085-2
https://scratch.mit.edu/about/
https://www.khanacademy.org
https://codecombat.com
https://www.minecraft.net/en-us
https://www.zachtronics.com/opus-magnum/
https://tomorrowcorporation.com/7billionhumans
https://tomorrowcorporation.com/7billionhumans

Bibliography

10. Home | Codewars [online]. Qualified, Inc., 2022 [visited on 2022-04-28].
Available from: https://www.codewars.com.

11. Coding for Kids | Game-Based Programming | CodeMonkey [online].
CodeMonkey Studios Inc., 2020 [visited on 2022-04-28]. Available from:
https://www.codemonkey.com/.

12. Codemancer - A fantasy game that teaches the magic of code. [online].
Important Little Games, 2021 [visited on 2022-04-28]. Available from:
https://codemancergame.com/.

13. Baba Is You [online]. Hempuli, 2022 [visited on 2022-04-28]. Available
from: https://www.hempuli.com/baba/.

14. MARTIN, Robert C. Clean Architecture: A Craftsman’s Guide to Soft-
ware Structure and Design. Prentice Hall, 2018. ISBN 0134494164.

15. MARTIN, Robert C. Clean Code: A Handbook of Agile Software Crafts-
manship. Prentice Hall, 2010. ISBN 9780132350884.

16. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES,
John. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994. ISBN 9780201633610.

17. Difference between Thin clients and Thick Clients - GeeksforGeeks [on-
line]. GeeksforGeeks, 2020 [visited on 2022-05-03]. Available from: https:
//www.geeksforgeeks.org/difference- between- thin- clients-
and-thick-clients/.

18. MARTIN, Robert C. The Clean Architecture [online]. 2021 [visited on
2022-04-21]. Available from: https://blog.cleancoder.com/uncle-
bob/2012/08/13/the-clean-architecture.html.

19. Cross-Origin Resource Sharing (CORS) - HTTP | MDN [online]. Mozilla
Foundation, 2022 [visited on 2022-04-23]. Available from: https : / /
developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

20. LELER, Wm. What’s Revolutionary about Flutter [online]. Hackernoon,
2017 [visited on 2022-04-23]. Available from: https://hackernoon.com/
whats-revolutionary-about-flutter-946915b09514.

21. React Native · Learn once, write anywhere [online]. Meta Platforms, Inc.,
2022 [visited on 2022-04-23]. Available from: https://reactnative.
dev/.

22. Flutter - Build apps for any screen [online]. 2022 [visited on 2022-04-23].
Available from: https://flutter.dev/.

23. SELLS, Chris. What’s New in Flutter 2 [online]. Flutter, 2021 [visited
on 2022-04-23]. Available from: https://medium.com/flutter/whats-
new-in-flutter-2-0-fe8e95ecc65.

110

https://www.codewars.com
https://www.codemonkey.com/
https://codemancergame.com/
https://www.hempuli.com/baba/
https://www.geeksforgeeks.org/difference-between-thin-clients-and-thick-clients/
https://www.geeksforgeeks.org/difference-between-thin-clients-and-thick-clients/
https://www.geeksforgeeks.org/difference-between-thin-clients-and-thick-clients/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://hackernoon.com/whats-revolutionary-about-flutter-946915b09514
https://hackernoon.com/whats-revolutionary-about-flutter-946915b09514
https://reactnative.dev/
https://reactnative.dev/
https://flutter.dev/
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65

Bibliography

24. Flutter architectural overview [online]. 2022 [visited on 2022-04-23]. Avail-
able from: https://docs.flutter.dev/resources/architectural-
overview.

25. SKIA. Skia [online]. Google, 2022 [visited on 2022-04-23]. Available from:
https://skia.org/.

26. Start thinking declaratively [online]. 2022 [visited on 2022-04-23]. Avail-
able from: https://docs.flutter.dev/development/data- and-
backend/state-mgmt/declarative.

27. Differentiate between ephemeral state and app state [online]. 2022 [vis-
ited on 2022-04-23]. Available from: https : / / docs . flutter . dev /
development/data-and-backend/state-mgmt/ephemeral-vs-app.

28. MobX.dart [online]. 2022 [visited on 2022-04-23]. Available from: https:
//mobx.netlify.app.

29. EGAN, Brian. fluttercommunity/redux.dart: Redux for Dart [online].
2021 [visited on 2022-04-23]. Available from: https://github.com/
fluttercommunity/redux.dart.

30. SOARES, Paolo. Flutter / AngularDart – Code sharing, better together
(DartConf 2018) [online]. 2018 [visited on 2022-04-23]. Available from:
https://www.youtube.com/watch?v=PLHln7wHgPE&ab_channel=
GoogleDevelopers.

31. ANGELOV, Felix. Bloc State Management Library [online]. 2022 [visited
on 2022-04-23]. Available from: https://bloclibrary.dev.

32. ASP.NET Web APIs | Rest APIs with .NET and C# [online]. 2022
[visited on 2022-04-23]. Available from: https://dotnet.microsoft.
com/en-us/apps/aspnet/apis.

33. Overview of Entity Framework Core - EF Core [online]. 2021 [visited
on 2022-04-23]. Available from: https://docs.microsoft.com/en-
us/ef/core/.

34. Creating and configuring a model - EF Core [online]. Microsoft Corpo-
ration, 2022 [visited on 2022-04-23]. Available from: https://docs.
microsoft.com/en-us/ef/core/modeling/.

35. LIN, Joyce. Tuck in your APIs safe and sound with these guiding princi-
ples for API security [online]. Better Practices, 2018 [visited on 2022-04-
23]. Available from: https://medium.com/better-practices/tuck-
in-your-apis-safe-and-sound-with-these-guiding-principles-
for-api-security-cd69f71c291e.

36. Difference between SQL and NoSQL - GeeksforGeeks [online]. Geeks-
forGeeks, 2018 [visited on 2022-04-23]. Available from: https://www.
geeksforgeeks.org/difference-between-sql-and-nosql/.

111

https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://skia.org/
https://docs.flutter.dev/development/data-and-backend/state-mgmt/declarative
https://docs.flutter.dev/development/data-and-backend/state-mgmt/declarative
https://docs.flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://docs.flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://mobx.netlify.app
https://mobx.netlify.app
https://github.com/fluttercommunity/redux.dart
https://github.com/fluttercommunity/redux.dart
https://www.youtube.com/watch?v=PLHln7wHgPE&ab_channel=GoogleDevelopers
https://www.youtube.com/watch?v=PLHln7wHgPE&ab_channel=GoogleDevelopers
https://bloclibrary.dev
https://dotnet.microsoft.com/en-us/apps/aspnet/apis
https://dotnet.microsoft.com/en-us/apps/aspnet/apis
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/modeling/
https://docs.microsoft.com/en-us/ef/core/modeling/
https://medium.com/better-practices/tuck-in-your-apis-safe-and-sound-with-these-guiding-principles-for-api-security-cd69f71c291e
https://medium.com/better-practices/tuck-in-your-apis-safe-and-sound-with-these-guiding-principles-for-api-security-cd69f71c291e
https://medium.com/better-practices/tuck-in-your-apis-safe-and-sound-with-these-guiding-principles-for-api-security-cd69f71c291e
https://www.geeksforgeeks.org/difference-between-sql-and-nosql/
https://www.geeksforgeeks.org/difference-between-sql-and-nosql/

Bibliography

37. Enterprise .Net - Inheritance with EF Code First: Part 1 - Table
per Hierarchy (TPH) [online]. 2010 [visited on 2022-04-23]. Available
from: https://weblogs.asp.net/manavi/inheritance- mapping-
strategies-with-entity-framework-code-first-ctp5-part-1-
table-per-hierarchy-tph.

38. material library - Dart API [online]. 2022 [visited on 2022-04-24]. Avail-
able from: https://api.flutter.dev/flutter/material/material-
library.html.

39. RYAN, John. Learning Flutter’s new navigation and routing system [on-
line]. Flutter, 2020 [visited on 2022-04-25]. Available from: https://
medium.com/flutter/learning- flutters- new- navigation- and-
routing-system-7c9068155ade.

40. KIETAY. Flutter Navigator 2.0 (Pages API) Simply Explained [online].
2021 [visited on 2022-04-25]. Available from: https://www.youtube.
com/watch?v=rHbQD8ccM_g&t=2s&ab_channel=kietay.

41. MORAN, Kate. Usability Testing 101 [online]. Nielsen Norman Group,
2019 [visited on 2022-04-22]. Available from: https://www.nngroup.
com/articles/usability-testing-101/.

112

https://weblogs.asp.net/manavi/inheritance-mapping-strategies-with-entity-framework-code-first-ctp5-part-1-table-per-hierarchy-tph
https://weblogs.asp.net/manavi/inheritance-mapping-strategies-with-entity-framework-code-first-ctp5-part-1-table-per-hierarchy-tph
https://weblogs.asp.net/manavi/inheritance-mapping-strategies-with-entity-framework-code-first-ctp5-part-1-table-per-hierarchy-tph
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade
https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade
https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade
https://www.youtube.com/watch?v=rHbQD8ccM_g&t=2s&ab_channel=kietay
https://www.youtube.com/watch?v=rHbQD8ccM_g&t=2s&ab_channel=kietay
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/

Appendix A
List of Acronyms

AOT Ahead of Time

API Application Programming Interface

ASP.NET Active Server Pages.NET

BLoC Business Logic Component

CORS Cross-Origin Resource Sharing

DI Dependency Injection

DTO Data Transfer Object

JIT Just in Time

JWT JSON Web Tokens

JSON JavaScript Object Notation

LINQ Language-Integrated Query

NoSQL Non SQL

OEM Original Equipment Manufacturer

ORM Object-Relational Mapping

SDK Software Development Kit

SQL Structured Query Language

UI User Interface

UX User Experience

113

Appendix B
Contents of the Attached Disc

readme.txt...................brief description of the contents of the CD
exe....................directory with executable form of implementation
src

impl.................................... implementation source codes
thesis..........................source form of work in LATEX format

text..thesis text
MT_Bittner_Jan.pdf...................... thesis text in PDF format

115

	Introduction
	Motivation
	Aims and Objectives

	Survey
	Conducted Survey
	Evaluation

	Analysis
	Analysis of the Game
	Functional Requirements
	Non-functional Requirements

	Existing Similar Games
	Scratch
	Khan Academy
	CodeCombat
	Minecraft
	Opus Magnum
	7 Billion Humans
	Codewars
	CodeMonkey
	Codemancer
	Baba Is You
	Evaluation

	Design
	Use Cases
	Game Mechanics
	Architecture
	Client Application
	Server Application
	Database
	User Interface

	Implementation
	Client Application
	Server Application
	Database
	User Inteface

	Usability Testing
	Scenarios
	First Phase
	Second Phase
	Evaluation

	Conclusion
	Acquired Experience
	Ideas on Future Development

	Bibliography
	List of Acronyms
	Contents of the Attached Disc

